Ornl 4577

Page 1

HOME HELP

C m I C A L TECHNOLOGY DIVISION U N I T OPERATIONS SECTION

LOW-PRESSURE DISTILLATION QP A PORTIOiV OF THE FUEL C J E K I ~ RSALT FROM THE MOLTEN SALT REACTOR EXPmIm?JT

J. L. B. H.

W. Kigh-tower, Jr. E. McMeese

A. flannaford B. Cochran, Jr.

AUGUST 1971

This report was prepared as am account of work sponsored by the United Stater Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, of their employees, makes any warranty, express or implied, or assumes any legal liability OK responsibility foe the accuracy, completeness or usefulness of any information, apparatus, produch oe process disclosed, or represents that its use would not infringe prhately owned rights.

OAK RIDGE NATIOHBL LBQRBTORY Oak Ridge, Tennessee operated by UNIOR CAl3BIDE CORPORATION U.S.

...-..;5 .:.:..A.

for %he ATOMIC EilTERGY COMMISSION


.

L.


iii CONTENTS

..... ... .<w .,. ..

.

Page

................. INTRODUCTION . . . . .. .. . BESCRIPTLON OF EQUIP,mm . .. . . . 2.1 Process Equipment . .. . . . 2.2 Instrumentation . . . . . . 2.2.1 Measurement and Control of Temperature . 2.2.2 Measurement and C o n t r o l of Pressure . . 2.2.3 Measurement and Control of Liquid Level . . 2.2.4 Wadktion Instrumentation . . 2.2.5 Instrument Panel . .. . . 2.3 Condensate Sampler . . .2*4 Location of Equipment at the MSRE . . . . DESCRIPTION OF DISTILLATION OPERATION .. . ~STEtACT..........

E. 2.

e

e

e

e

e

e

a

*

a

e

e

a

a

e

e

e

e

e

e

a

e

a

e

a

e

a

a

e

a

a

e

e

e

e

a

e

e

a

3.

a

4.1

. .

Sumnmry of Experimental Data

- .

~ e s d t sof

a

a

e

e

e

e

e

.

a

.

Relative Volatility Calculations

.

e

4.4.3 Contamination samples 4.hc.h Inaccurate Analyses a

e

e

e

e

e

.

.

a

e e

=

-

a

e

17 20

a

e

20

a

.a

e

e

.

-

..

e

a

a

e

a

e

4.4 Possible Explanations of Calculated Results 4.4.1 Entrainment of moplets of S t i l P - P o t Liquid 4.4.2 Concentration Polarization .. a

a

e

e

..

3

e

a

e

a

e

4.2 Material Balance Calculations k,3

a

e

e

e

a

e

3

a

*

a

a

1

e

a

a

e

i

a

.

.

27

e

28

-

33

.

42

a

e

.

.

e

41

4? 45 46 43

48 7.

...................

REFERENCES.......

8. APPENDIX: ANALYSES OF EXPmImNT

49

SAMPLES FROM TU3 MSRE DISTILLATION

.

e

a

-..

o

.

.

.*.. .

a

e

e

e

a

51



b

LOW-PRESSURE DISTILEATION OF A PORTION OF THE FUEL CARRIER SALT' FROM TKF: MOLTEN SALT REACTOR EXFEPIIMENY

J. 8. Hightower, J r . L. E . VcNeese B. A. Hannaford H. D, Cochran, J r .

ABSTRACT An experiment t o demonstrate t h e high-temperature low-pressure d i s t i l l a t i o n o f i r r a d i a t e d Molten S a l t Reactor Experiment ( N S R X ) f u e l c a r r i e r salt has been s u c c e s s f u l l y conpleted. A t o t a l of 12 l i t e r s of ISERE f u e l c a r r i e r s a l t w a s d i s t i l l e d i n 23 h r of t r o u b l e - f r e e o p e r a t i o n w i t h s t i l l p o t temlser-atures i n t h e range gOO-980"C and condenser press u r e s i n t h e range 0.1-0.8 t o r r . Eleven condensate samples were t a k e n during t h e course of t h e run a t i n t e r v a l s of approximately 90 min and were subsequently analyzed f o r L i , ~ e ~, r , 6 3 7 c s , 9 5 ~ r ,l44ce, 1 4 7 ~ n ,155~u,g l ~ 9QSr, , and 89sr. E f f e c t i v e r e l a t i v e v o l a t i l i t i e s w i t h r e s p e c t t o LiF, f o r Be and Zr were i n good agreement w i t h v a l u e s measured p r e v i o u s l y i n t h e l a b o r a t o r y . E f f e c t i v e r e l a t i v e v o l a t i l i t i e s fsr t h e s l i g h t l y v o l a t i l e materials lk4Ce, 91Y, g0Sr, and 89Sr were found t o b e much h i g h e r t h a n v a l u e s measured in t h e l a b o r a t o r y . The h i g h values w e b e l i e v e d t o be t h e r e s u l t of contamination from o t h e r K R E s a l t samples, although c o n c e n t r a t i o n p o l a r i z a t i o n may have a l s o been a c o n t r i b u t o r . The e f f e c t i v e r e l a t i v e voha t i l i t y f o r l37Cs was found t o be only 20$, c r l e s s , of t h e v a l u e measured i n t h e l a b o r a t o r y ; no e x p l a n a t i o n sf t h i s discrepancy i s a v a i l a b l e . Although t h e e f f e c t i v e r e l a t i v e v o l a t i l i t i e s f o r t h e l a n t h a n i d e s were found t o b e h i g h e r t h a n a n t i c i p a t e d , t h e v a l u e s observed would s t i l l a l l o w adequate recovery of 7LiF from w a s t e salt streams by d i s t i l l a t i o n .

1. Low-pressure d i s t i l l a t i o n may be r e q u i r e d i n o r d e r t o recover v a l u a b l e c a r r i e r s a l t components from waste s a l t streams coming from t h e f u e l p r o c e s s i n g p l a n t of a molten-salt ...,...,..,..................

-.&/

breeder r e a c t o r (MSBR)


T y p i c a l l y , 'LiF

would be vaporized and recovered, l e a v i n g a l i q u i d h e e l

more c o n c e n t r a t e d i n t h e l e s s v o l a t i l e l a n t h a n i d e f i s s i o n p r o d u c t s ( a s fluorides).

This heel would t h e n b e d i s c a r d e d .

The f i n a l stage of a

three-phase experimental program t o s t u d y and demonstrate t h e f e a s i b i l i t y o f d i s t i l l a t i o n f o r decontaminating c a r r i e r s a l t components of l a n t h a n i d e f i s s i o n products i s d e s c r i b e d i n t h i s r e p o r t .

The experimental program

included measurements of r e l a t i v e v o l a t i l i t i e s of s e v e r a l l a n t h a n i d e and a l k a l i n e - e a r t h f l u o r i d e s i n mixtures of LiF and BeF2, E ' 2 t h e operat i o n and t e s t i n g of a l a r g e s i n g l e - s t a g e s t i l l u s i n g f u e l c a r r i e r salt from t h e Molten S a l t Reactor Experiment (MSRE) w i t h simulated f i s s i o n produ c t ~ ~ " ,and, as d e s c r i b e d h e r e , a demonstration of t h e d i s t i l l a t i o n process using i r r a d i a t e d f u e l c a r r i e r s a l t from t h e MSRE. The o p e r a t i o n o f t h e d i s t i l l a t i o n equipment w i t h u n i r r a d i a t e d s a l t

had t h e following o b j e c t i v e s : l a r g e , low-pressure,

(1)o b t a i n i n g o p e r a t i n g experience w i t h

high-temperature d i s t i l l a t i o n equipment; ( 2 ) in-

v e s t i g a t i n g entrainment r a t e s and s e p a r a t i o n i n e f f i c i e n c i e s due t o conc e n t r a t i o n g r a d i e n t s i n t h e s t i l l p o t ; ( 3 ) measuring d i s t i l l a t i o n rates under a v a r i e t y of c o n d i t i o n s ; and

(4)

uncovering unexpected d i f f i c u l t i e s .

The o b j e c t i v e s of t h e demonstration d i s t i l l a t i o n of t h e i r r a d i a t e d YSRE f u e l c a r r i e r s a l t were:

(1)t o provide MSBR f u e l p r o c e s s i n g technology

w i t h a p r o c e s s t e s t e d w i t h fuel s a l t from an o p e r a t i n g r e a c t o r , ( 2 ) t o provide information ( n o t a v a i l a b l e from t h e l a b o r a t o r y i n v e s t i g a t i o n s ) on r e l a t i v e v o l a t i l i t i e s of f i s s i o n p r o d u c t s , and t o g i v e a g e n e r a l confirmation of p r e d i c t e d f i s s i o n product b e h a v i o r , and ( 3 ) t o uncover unexpected d i f f i c u l t i e s a s s o c i a t e d w i t h r a d i o a c t i v e o p e r a t i o n .


3 . w<;i.

.. ...

I n t h e n o n r a d i o a c t i v e t e s t s , s i x 48-liter batches of s a l t t h a t had t h e composition of t h e MSRE f u e l c a r r i e r salt and contained MdF

3

were

d i s t i l l e d a t condenser p r e s s u r e s below 0.1 t o r r " and a t a s t i l l - p o t temperature o f 1 8 0 0 ' ~ .

Whereas t h e s e t e s t s i n d i c a t e d areas i n which

f u r t h e r engineering development was r e q u i r e d , t h e y a l s o i n d i c a t e d t h a t decontamination from l a n t h a n i d e f l u o r i d e s by d i s t i l l a t i o n w a s f e a s i b l e . The s t i l l t h z t w a s used i n t h e n o n r a d i o a c t i v e t e s t s w a s a l s o used t o

distill t h e r a d i o a c t i v e salt ( c o n t a i n i n g no uranium) from t h e &ERE. T h i s o p e r a t i o n and i t s r e s u l t s a r e d e s c r i b e d i n t h e s e c t i o n s t h a t f o l l c w .

2

DESCRIPTION OF EQUPPMEhrE

2.1

Process Equipment

The equipment used i n t h e MSRE D i s t i l l a t i o n Experiment included a

48-liter f e e d t a n k c o n t a i n i n g a s a l t charge from the MSWE t c b e d i s t i l l e d , a 1 2 - l i t e r s t i l l from which t h e salt w a s v a p o r i z e d , a lO-in.-diam by condenser, and a 48-liter condensate r e c e i v e r .

?l-in.-long

This equrip-

rnent is only briefly described here; a more complete d e s c r i p t i o n i s g i v e n

elsewhere

3 e

The f e e d t a n k , shown i n F i g . 1, was a 9/2-in.-diam

by 2 6 - i n . - t a l l

r i g h t c i r c u l a r c y l i n d e r made from l/h-in.-thick H a s t e l l o y designed t o w i t h s t a n d an e x t e r n a l p r e s s u r e of

1 5 p s i a t 608'C.

It w a s The

condensate r e c e i v e r , shown i n ~ i g .2 , was a 16-in.-diam by 1 6 - ~ / 2 - i n . -

t a l l r i g h t c i r c u l a r c y l i n d e r having s i d e s of 1/4-in.-thick H a s t e l l o y K and a bottom of 3/8-in.-thick

B a s t e l l o y N.

an external p r e s s u r e of' 15 p s i at 6OQ"C.

*l t o r r i s 1/760 of a s t a n d a r d atmosphere.

It w a s designed t o w i t h s t a n d


T -g L Fig.

feed

tank.

c

0

1.

Molten

Salt

Distillation

Experiment.

Schematic

c

diagram

of


5

Fig. 2. Nolten Salt Distillation Experiment. the condensate receiver.

& .;.& . .

, .....

Schematic diagram of


The s t i l l and t h e condenser are shown i n F i g . 3.

The s t i l l pot

c o n s i s t e d o f an a n n u l a r volume between t h e vapor l i n e and t h e o u t l e t w a l l , and had a working volume of about 18 l i t e r s . t h e condenser were made of 3/8-in.-thick

Both t h e s t i l l and

B a s t e l l o y N and were designed

for p r e s s u r e s as low as 0.55 t o 1 . 5 t o r r .

The design temperature for

b o t h t h e still pot and t h e condenser w a s 982'C. The f e e d t a n k , t h e still p o t , t h e condenser, and t h e r e c e i v e r were mounted i n an angle i r o n frame t o f a c i l i t a t e t h e i r t r a n s f e r between BPdg. 3541, where t h e n o n r a d i o a c t i v e t e a t s were c a r r i e d

MSRE s i t e .

Q U ~ ,and

the

Since t h e equipment w a s t o be i n s t a l l e d i n a c e l l o n l y

s l i g h t l y l a r g e r t h a n t h e equipment frame, t h e thermocouples, t h e h e a t e r s , t h e i n s u l a t i o n , and most o f t h e p i p i n g were added b e f o r e t h e equipment

w a s placed i n t h e c e l l .

Ffgure

(without t h e i n s u l a t i o n ) .

4

i s a photograph cf t h i s equipment

A s t a i n l e s s s t e e l pan t o c a t c h molten s a l t

i n t h e event of a v e s s e l r u p t u r e w a s p l a c e d around t h e bottom o f t h e f ram.

Because l a r g e q u a n t i t i e s of i r o n and n i c k e l p a r t i c l e s were expected t o be p r e s e n t i n t h e f u e l s t o r a g e t a n k (FST) a t t h e MSWE (as a r e s u l t of t h e chemical processing of t h e f u e l s a l t ) , a porous metal f i l t e r w a s i n s t a l l e d i n t h e f e e d t a n k fill l i n e downstream from t h e freeze v d v e i n l i n e 112 (see Fig. 5 ) .

The I n ~ ~ n fei l t e r medium c o n s i s t e d o f ap-

proximately 28 i n . * of Huyck F e l t m e t a l FM

284

having a mean p o r e s i z e

of 45 p.

To prevent p a r t i c u l a t e s from reaching t h e vacuum p m p , F l a n d e r s High P u r i t y f i l t e r s were i n s t a l l e d i n t h e v a c w ~l i n e s from t h e f e e d t a n k and t h e r e c e i v e r .

These f i l t e r s were t e s t e d and d e n o n s t r a t e d t o

..>.. ..:..,. .. L . ! .. ,

. ...


VIEW A-A

-4

I t

the

Molten Salt Distillation Fig. 3. vacuum still and condenser.

Experiment.

Sehemati@

diagrm

of


8

c

Fig. 4. Molten-Salt Distillation Equipment Before Installation in Spare Cell at MSRE.


_i

-----e-c I ARGON SUPPLY

i

LEVEL

,

AND

u MEASUREMENT I

CONTROL

r-7

FEED TANK

Fig.

5.

Simplified

Flow

Diagram

L

CONDENSATE

of

MSRE Distillation

Experiment.


e f f e c t i v e l y remove

99.997% of 0. 3-LI p a r t i c l e s .

f i l t e r s can b e seen i n Fig.

4 on

The housings Tor t h e s e

two of t h e l a r g e r l i n e s a t t h e r i g h t -

hand s i d e .

All v a l v e s and p i p i n g t h a t d i d n o t c o n t a c t t h e molten salt were made o f s t a i n l e s s s t e e l and were housed i n a s e a l e d s t e e l c u b i c l e c o n t a i n i n g p r e s s u r e t r a n s m i t t e r s and two vacuum pmps- one t o evacuate t h e r e f e r e n c e s i d e of a d i f f e r e n t i a l p r e s s u r e t r a n s m i t t e r , and t h e o t h e r t o evacuate t h e d i s t i l l a t i o n process v e s s e l s .

The v a l v e box, w i t h i t s f r o n t and r e a r

cover p l a t e s removed, i s shown i n F i g .

6.

This box completed t h e second-

a r y containment around p i p i n g and i n s t r u m e n t a t i o n when i t s lower p l a t e s

were b o l t e d and s e a l e d i n p l a c e .

With t h e box w d e r a p r e s s u r e of 1 5 i n .

M 2 0, t h e l e a k r a t e w a s 0 . 1 c f h .

Ddring o p e r a t i o n , t h e p r e s s u r e i n t h e box

never exceeded 0 . 5 i n . H 0 , and t h e Peak r a t e was n e g l i g i b l e . 2

2 2 e

I n s t r m e n t a t ion

Measurement and Control of Temperature

2.2.1

Temperatures w e r e measured and c o n t r o l l e d over two r a n g e s :

500-606~~

f o r t h e f e e d t a n k and t h e condensate r e c e i v e r , and 800-1000QC f o r t h e

s t i l l and t h e condenser.

Platinum v s platinum

-

10% rhodium thermocouples

w e r e used f o r t h e high-temperature measurements, whereas l e s s expensive Chromel-Almel thermocouples were used on t h e f e e d t a n k s , condensate rec e i v e r , and salt t r a n s f e r l i n e s . w a s enclosed i n a 1/8-in.-diam

were used. the Pt

QS

Each of t h e thermocouples ( t o t a l ,

s t a i n l e s s s t e e l sheath; i n s u l a t e d Junctions

F i v e 12-point r e c o r d e r s were a v a i l a b l e f o r r e a d o u t :

~t

-

thermocouples.

60)

two f o r

10% R ~ thermocouples, L and t h r e e f o r t h e el-iromel-klumel

w.xw....

:... ..


..i/

.... . .. .... ,.. ... .. w&&-


l2

There were a t o t a l o f n i n e i n d i v i d u a l l y h e a t e d zones on t h e f e e d

tank, t h e s t i l l , t h e condenser, and t h e r e c e i v e r .

& ? .,.,;

The h e a t e r s for each

o f t h e s e zones were independently c o n t r o l l e d by a Pyrovane " ~ n - ~ f f 'con' t r o l l e r ; t h e v o l t a g e t o t h e h e a t e r s w a s c o n t r o l l e d by Variacs.

Heaters

on t h e v a r i o u s s a l t t r a n s f e r and argon Pines were nnanually c o n t r o l l e d by sron-offsr switches and Variacs

2.2.2

Measurement and Control o f P r e s s u r e P r e s s u r e measurements over t h r e e ranges were r e q u i r e d :

0 to

15 p s i a

f ~ monitoring r system pmpdown at t h e s t a r t of t h e r u n , f o r monitoring system r e p r e s s u r i z a t i o n a t t h e end of t h e run, and f o r c o n t r o l l i n g s a l t t r a n s f e r from t h e f u e l s t o r a g e t a n k ; 0 t o 10 t o r r f u r s u p p r e s s i n g vaporiz a t i o n w h i l e t h e s a l t w a s h e l d a t o p e r a t i n g temperature i n t h e s t i l l ; and 0 t o 1 t o r r during d i s t i l l a t i o n .

Absolute-pressure t r a n s d u c e r s (Foxboro D/P c e l l s w i t h one l e g evacuated) covering t h e 0- t o 1 5 - p i a range were used t o measure t h e p r e s s u r e i n t h e f e e d t a n k and i n t h e stiPP-condenser-receiver complex. p r e s s u r e measuring d e v i c e w i t h ranges of 0-0.083, 0-6.3,

An MMS Baratron

0-8.01, 0 - 0 . 0 3 ,

0-0.1,

0-1, 0-3, and 0-PO t o r r w a s used t o measure v e r y low p r e s s u r e s i n

t h e condensate r e c e i v e r The system pressure w a s c o n t r o l l e d i n t h e 0.1- t o 1 0 - t o m range by feeding argun t o t h e i n l e t of t h e vacuum p m p .

The B a r a t r s n u n i t produced

t h e s i g n a l r e q u i r e d f o r r e g u l a t i n g t h e argon flow. It w a s necessary t o ensure t h a t an e x c e s s i v e i n t e r n a l p r e s s u r e d i d n o t develop i n t h e system s i n c e , at o p e r a t i n g temperature, a p r e s s u r e i n excess of 2 a t m would have been u n s a f e .

T h i s was accomplished by u s i n g .

an absolute-pressure t r a n s m i t t e r i n t h e condenser off-gas l i n e t o monitor

..


13 ....># ..

. ...

:.:.I

L.

t h e system p r e s s u r e .

When t h e p r e s s u r e exceeded 15 p s i a , t h e argon

supply w a s s h u t off a u t o m a t i c a l l y .

2.2.3

Measurement and Control of Liquid Level The d i f f e r e n c e i n t h e p r e s s u r e a t t h e o u t l e t of a n argon-purged d i p

t u b e extending to t h e bottom of t h e v e s s e l and t h a t i n t h e gas space above t h e salt w a s used t o measure t h e depth of t h e s a l t i n b o t h t h e f e e d t a n k and t h e condensate r e c e i v e r . Two conductivity-type l e v e l probes were used i n t h e s t i l l for measuri n g and c o n t r o l l i n g t h e l i q u i d l e v e l .

These probes e s s e n t i a l l y measured

t h e total conductance between t h e m e t a l probes ( t h a t extended i n t o t h e molten s a l t ) and t h e wall of t h e s t i l l ; t h e t o t a l conductance was a funct i o n of t h e immersed s u r f a c e a r e a o f t h e probe. The c o n d u c t i v i t y probes ( s e e F i g .

7) were s i m i l a r t o t h e s i n g l e - p o i n ~

bevel probes t h a t were used i n t h e MERE d r a i n t a n k s .

T e s t s have shown

t h a t t h e range o f such an instrument i s l i m i t e d t o approximately 30% of t h e l e n g t h of t h e s i g n a l g e n e r a t i n g s e c t i o n .

A &in.

s e n s i n g probe w a s

used t o c o n t r o l t h e l f q u i e l e v e l between p o i n t s t h a t were 1 i n . and 3 i n . below t h e s t i l l - p o t overflow; a l o n g e r sensing probe w a s used t o measure v e r y low l e v e l s o f l i q u i d i n t h e s t L l 1 p o t . Metal d i s k s were welCed t o t h e c o n d u c t i v i t y probes t o a i d i n t h e i r calibration.

These d i s k s provided abrupt changes i n t h e i m e r s e d s u r f a c e

area o f each probe a t known l i q u i d l e v e l s .

During o p e r a t i o n , t h e s i g n a l

from a probe changed a b r u p t l y when t h e s a l t l e v e l reached one of t h e disks. The l i q u i d - l e v e l c o n t r o l l e r f o r t h e s t i l l p o t was a Foxboro Dynalog ,;.:........-j.

W ?

c i r c u l a r c h u t r e c o r d e r - c o n t r o l l e r , which c o n s i s t s o f a 1-kRz a6 bridge-type


14

TOP

VBEW

SIGNAL AMPLIFIER LEVEL INDICATO

HEA

COVER

FOLDED

EXCITATION SECTION

CONT.4lNMENT

AND

VESSEL

/

/SIGNAL

GENERATING

DISKS TQ CALIBRATION

Probe

Pig. for

9. Simplified Schematic of Still Pot in MSRE Distillation

SECTION

AIQ

Conductivity-Type Experiment.

Liquid

Level


measuring device using v a r i a b l e c a p a c i t a n c e for r e b a l a n c e .

The proper

c o n t r o l a c t i o n (see S e c t . 3 ) was accomplished by having a v a r i a b l e dead

zone imposed on t h e s e t - p o i n t adjustment mechanism.

With t h e c o n t r o l l e r

s e t f o r t h e d e s i r e d average l i q u i d l e v e l , t h e argon supply v a l v e t o t h e f e e d tali w a s opened when t h e l e v e l i n d i c a t o r dropped 3% below t h e s e t w a s c l o s e d when t h e l e v e l i n d i c a t o r r o s e 3% above t h e s e t p o i n t .

point

2.2.4

Radiation Instrumentation Ionization-chamber r a d i a t i o n monitors were mounted on p r o c e s s l i n e s

i n three locations:

one on t h e f i l t e r i n t h e f e e d t a n k v a c u m l i n e , one

on t h e f i l t e r i n t h e r e c e i v e r vacuum l i n e , and one on t h e l i q u i d - n i t r o g e n t r a p i n t h e receiver vacum l i n e .

The two monitors on t h e f i l t e r s were

s h i e l d e d from the r a d i a t i o n f i e l d in t h e cell by an 18-in.-thick

barytes

c o n c r e t e block w a l l and i n d i c a t e d t h e l e v e l of r a d i o a c t i v i t y f o r each filter.

The monitor on t h e l i q u i d - n i t r o g e n

trap w a s n o t s h i e l d e d from

t h e r a d i a t i o n f i e l d produced by t h e p r o c e s s vessels and t h u s registerec? t h e general l e v e l of r a d i a t i o n i n t h e c e l l .

Two Geiger-!48lPer

tubes

monitored t h e vacuum pumps.

which were a t t a c h e d t o t h e v a l v e box, They were s e t t o sound an alarm when t h e

r a d i a t i o n l e v e l reached 1 nR /hr a t a p o i n t about

2.2.5

6 i n . from t h e p u p s .

Instrument Panel The instrument p a n e l , from which t h e p r o c e s s w a s c o n t r o l l e d , con-

t a i n e d t h e temperature c o n t r o l l e r s , t h e p r e s s u r e and l e v e l r e c o r d e r s and c o n t r o l l e r s , t h e v a l v e o p e r a t i o n s w i t c h e s , t h e e l e c t r i c a l power supply c o n t r o l s , t h e temperature and p r e s s u r e a l u m s , and f o u r o f t h e f i v e temperatwe recorders.

T h i s p a n e l i s shown i n F i g . 8.

The f i f t h


16

w

"....,


17 temperature r e c o r d e r and t h e r a d i a t i o n measuring i n s t r u m e n t a t i o n w e r e mounted i n o t h e r c a b i n e t s .

2.3

Condensat e Sampler

The condensate sampler w%s t h e most important item of equipment f o r The s m p l e r w a s

o b t a i n i n g information from t h e d i s t i l l a t i o n experiment.

p a t t e r n e d a f t e r t h e equipment t h a t had p r e v i o u s l y been used t o add

233u

t o t h e f u e l d r a i n t a n k s and t o t a k e s a l t samples from t h e d r a i n t a n k s .

5

M o d i f i c a t i o n s o f t h i s design were made t o allow t h e s m p l e r t o be evacu a t e d t o a b u t 0.5 t o r r so t h a t condensate samples could b e w i t h d r a m without d i s t u r b i n g t h e o p e r a t i o n of t h e s t i l l . F i g u r e 9 shows a cutaway diagram of t h e sampler. o f t h e sampler were:

The main components

( I ) t h e containment v e s s e l i n which t h e samples

were s t o r e d ; ( 2 ) t h e t u r n t a b l e i n s i d e t h e containment v e s s e l , which

allowed t h e s m p l e c a p s u l e s t o be a l i g n e d w i t h t h e handling t o o l and a l s o w i t h t h e removal t o o l ; ( 3 ) t h e capsule handling t o o l , w i t h which empty c a p s u l e s were a t t a c h e d t o t h e c a b l e t o be lowered i n t o t h e sample r e s e r v o i r ; and

(4)

t h e r e e l assembly, w i t h which c a p s u l e s were lowered

and r a i s e d . The following sequence w a s used i n c o l l e c t i n g a condensate sample. With v a l v e HV-62 (see Fig. 9 ) c l o s e d and t h e containment v e s s e l a t

pheric

zl%mS-

p r e s s u r e , t h e sample handling t o o l w a s r a i s e d t o t h e h i g h e s t

position.

A s shown i n F i g . 9 , t h e c a b l e was a t t a c h e d about 2 0 i n . from

t h e t o p of t h e t o o l s o t h a t , when t h e c a b l e w a s r e e l e d t o t h e h i g h e s t p o s i t i o n , t h e t o p end of t h e t o o l p r o t r u d e d through v a l v e

W-66 and t h e

samples on t h e t u r n t a b l e could p a s s under t h e lower end of t h e t o o l .


BRML D W G 69-4945

Fig. 9. Experiment.

Cutaway Diagram of Condensate Sampler for MSRE Distillation

__...

....,........., , . ~ ... . ~


With t h e t o o l a t i t s h i g h e s t p o s i t i o n , an empty capsule was r o t a t e d underneath t h e Power end of t h e t o o l .

The t o o l was t h e n lowered onto

t h e s t e m o f t h e capsule and Pocked i n p l a c e by an adjustment a t t h e end of t h e t o o l p r o t r u d i n g through

Hv-66.

The t o o l and t h e a t t a c h e d c a p s u l e

were r a i s e d a g a i n , t h e t u r n t a b l e w a s r o t a t e d u n t i l t h e sampling notch w a s l o c a t e d underneath t h e t o o l , and t h e t o o l w a s lowered below v a l v e

KV-66.

Valve

W-66 w a s t h e n c l o s e d .

A t t h i s t i m e , t h e vacuum pump was

t u r n e d o n , and t h e containment v e s s e l w a s evacuated t o about 0 . 5 t o r r . When t h e p r e s s u r e i n t h e containment v e s s e l reached 0.5 t o r r , v a l v e IW-62

w a s opened and t h e sample handling t o o l and t h e empty c a p s u l e were lowe r e d u n t i l t h e sample capsule r e s t e d on t h e bottom of t h e sample r e s e r v o i r

at t h e end of t h e condenser.

The t o o l and capsule were t h e n r a i s e d above

valve IN-62, which w a s subsequently c l o s e d .

Next, t h e c o n t a i m e n t v e s s e l

w a s p r e s s u r i z e d t o atmospheric p r e s s u r e w i t h argon.

Valve PW-66 w a s

t h e n opened, and t h e sample handling t o o l w a s r a i s e d t o i t s h i g h e s t position.

F i n a l l y , t h e empty sample holder w a s r o t a t e d underneath t h e

sample handling t o o l , and t h e sample w a s lowered i n t o i t s h o l d e r and r e leased from t h e t o o l .

T h e process w a s repeated by raising t h e sample t o o l

a g a i n , r o t a t i n g another s m p l e capsule underneath i t , e t c . t u r n t a b l e w a s designed t o c o n t a i n 11 sample c a p s u l e s .

The

A f t e r t h e samples

had been c o l l e c t e d , t h e y were s t o r e d i n t h e containment v e s s e l .

A t the

end sf t h e experiment, t h e y were removed f o r a n a l y s i s .

A blower, which d r e w a i r i n t o t h e t o p of t h e l i n e a t t h e r e e l assemb l y to prevent r a d i o a c t i v e p a r t i c l e s f r o m escaping i n t o t h e o p e r a t i n g

area, w a s provided f o r t h e p a r t s of t h e o p e r a t i o n r e q u i r i n g IN-66 t o be ... ..i .........

.% . *e&

open. cell

e

The a i r handled by t h e blower w a s f i l t e r e d and exhausted i n t o t h e


20 The s m p l e capsules were s t a n d a r d 10-g MSRE sample c a p s u l e s s each of which w a s f i t t e d w i t h a key f o r a t t a c h i n g t o t h e sample handling t o o l .

The t h r e e w i r e r i b s on t h e s t e m

Figure 90 shows one of t h e s e c a p s u l e s .

e n s u e d t h a t t h e capsule would remain v e r t i c a l i n t h e c a p s u l e h o l d e r on the turntables F i g u r e 11 i s a photograph of t h e sampler during i n s t a l l a t i o n a t t h e

MSRE.

I n t h i s photograph, t h e unloading t u b e h a s been capped o f f , and

t h e t u r n t a b l e o p e r a t i n g handle i s not i n p l a c e .

The r i n g o f l e a d b r i c k s

around t h e sampler foms t h e base f o r t h e r a d i a t i o n s h i e l d , which i s f i t t e d over t h e containment v e s s e l .

2.4 Location of Equipment a t t h e MSRE The d i s t i l l a t i o n u n i t w a s i n s t a l l e d i n t h e s p a r e c e l l a t t h e MSRE

site; the s a p l e y

t h e v a l v e boxg and t h e instrument p a n e l were p l a c e d

i n t h e h i g h bay area above t h e c e l l .

F i g u r e 1 2 shows a schematic diagram

of t h e spare c e l l , while P i g . l 3 shows a photograph of t h e u n i t i n t h e c e l l b e f o r e t h e c e l l cover w a s put i n p l a c e .

3.

D E S C R I P T I O N OF DISTILLATION OPERATIOM

The t r a n s f e r of s a l t from t h e f u e l s t o r a g e t a n k (FST) t o t h e f e e d t a n k w a s i n i t i a t e d by evacuating t h e f e e d t a n k , which c o n t a i n e d about 2 l i t e r s o f u n i r r a d i a t e d s a l t , to about

1.5 psie.

Prior t o t h e t r a n s f e r ,

f r e e z e v a l v e FV-112, l o c a t e d between t h e FST and t h e f e e d t a n k f o r t h e s t i l l (see F i g . 5 )

w a s h e a t e d and opened.

( S a l t had p r e v i o u s l y been

f r o z e n i n t h e f e e d l i n e t o t h e s t i l l pot i n o r d e r t o i s o l a t e t h e f e e d

.............. .=,~


(D

P

d-



23

/LINE 8

(42

MOLTEN SALT FILTER I

I

Fig. 6 2 . South Elevation of MSN Spare Cell, Showing Distillation Unit and Sampler Locations.

.... ........ "'&w

(.i.-.

. . "i


24 ORNL

PHOTO 94840R

Fig. 13. Molten Salt S t i l l I n s t a l l e d in S p u e C e l l at MSRE.


t a n k from t h e c t h e r process v e s s e l s . )

A f t e r 12 l i t e r s o f s a l t had been

t r a n s f e r r e d fron t h e FST, t h e p r e s s u r e of t h e f e e d t a n k i n c r e a s e d from

4 psi% t o

about

atmospheric p r e s s u r e over a p e r i o d o f about 2 m i n ; t h i s

i c d i c a t e d t h z t gas w a s being t r a n s f e r r e d from t h e f e e d t a n k through $he

s a l t charging l i n e .

More s a l t could n o t b e t r a n s f e r r e d from t h e FST even

though t h e bubbler i n t h e FST i n d i c a t e d t h s t a d d i t i o n a l s e l t w a s p r e s e n t . Only one f u r t h e r attempt a t s a l t t r a n s f e r was made because o f t h e p o t e n t i a l danger o f blowing t h e t r a p p e d s a l t o u t of t h e f r e e z e v a l v e ; t h i s would have made it impossible t o o b t e i n a s e a l between t h e f e e d t a n k and t h e f u e l storage tank.

A f t e r we had e s t a b l i s h e d t h a t

EL

t i g h t s e a l could be

made, we decided t o proceed w i t h t h e experiment u s i n g t h e s a l t a l r e a d y t r a n s f e r r e d , even though i t s volwne w a s much l e s s t h a n t h e a n t i c i p a t e d volume

(48 l i t e r s ) .

TO start t h e d i s t i l l a t i o n experiment, t h e s t i l l - p o t

Feed l i n e was

thawed, a l l p r o c e s s v e s s e l s were evacuated t o 5 t o r r , and t h e s t i l l pot

w a s h e a t e d t o gSOQC.

The v a l v e between t h e f e e d t a n k and t h e v a c u m p m p

w a s t h e n c l o s e d , and argon w a s i n t r o d u c e d i n t o t h e f e e d t a n k t o i n c r e a s e t h e p r e s s u r e to about 0 . 5 a t m ; this f o r c e d the s a l t t o f l o w f r o m t h e feed

t a n k into t h e s t i l l p o t .

When 7 l i t e r s of s a l t had been t r a n s f e r r e d t o

t h e still p o t , t h e condenser p r e s s u r e w a s reduced t o 0.2 torr t o start the d i s t i l l a t i o n of salt.

A t t h i s point, control of t h e l i q u i d level i n

t h e s t i l l p o t w a s switched t o t h e automatic mode.

I n t h i s mode, s a l t w a s

f e d t o t h e s t i l l p o t a t a ate s l i g h t l y g r e a t e r t h a n t h e v a p o r i z a t i o n r a t e . The argon f e e d valve t o t h e f e e d t a n k remained open ( f o r c i n g more s a l t i n t o t h e s t i l l p o t ) u n t i l t h e l i q u i d l e v e l i n t h e s t i l l rose t~ a given .... .(..... .;&,>.....

s e t p o i n t ; t h e v a l v e t h e n c l o s e d and remained c l o s e d u n t i l t h e l i q u i d


26

l e v e l decreased t o a second s e t p o i n t .

I n t h i s manner, t h e s a l t volume

i n t h e s t i l l p o t w a s maintained n e a r 7 l i t e r s . A s t h e s a l t vapor passed through t h e condenser, h e z t w a s removed

from it by conduction through t h e condenser walls and t h e i n s u l a t i c n and by convection t o t h e a i r i n t h e cell.

The condenser was d i v i d e d i n t o

t h r e e h e a t e d zones, t h e temperatures of which could be c o n t r o l l e d separ a t e l y when condensation w a s n o t o c c u r r i n g .

A s h a r p i n c r e a s e i n tempera-

t u r e above t h e s e t p o i n t s n e a r t h e condenser e n t r a n c e , as w e l l as a g r a d u a l temperature r i s e n e a r t h e end of t h e condenser, accompanied t h e beginning of d i s t i l l a t i o n .

Operation of h e a t e r s t o keep t h e t e m p e r a t m e

of t h e condenser above t h e l i q u i d u s t e n p e r a t m e o f t h e condensate w a s not necessary d u r i n g vapor condensation.

I n t h i s psrt o f t h e r u n , the still-

p o t temperature w a s slowly i n c r e a s i n g ; and, s i n c e t h e c o n c e n t r a t i o n s o f v o l a t i l e BeF

2

and ZrF

4 were

s t i l l f a i r l y high, t h e vaporization r a t e w a s

An abnoz-malby h i g h temperature a t t h e end o f t h e con-

also increasing.

denser i n d i c a t e d t h a t t h e c a p a c i t y o f t h e condenser would be exceeded. By r a i s i n g t h e Condenser p r e s s u r e to 0.8 t o r r , t h e d i s t i l l a t i o n r a t e w a s reduced s u f f i c i e n t l y t o m a i n t a i n t h e condenser temperature n e a r 700QC, an a c c e p t a b l y low temperature. When t h e c o n t e n t s o f t h e feed t a n k ( 7 l i t e r s ) had been d e p l e t e d , t h e

salt i n t h e s t i l l feed l i n e w a s frozen; then a t o t a l of

4 of

o f s a l t i n t h e s t i l l p o t w a s d i s t i l l e d by b a t c h d i s t i l l z k i s n .

the 7 l i t e r s A t this

p o i n t , t h e s t i l l - p o t temperature w a s 980QC. As t h e more v o l a t i l e mate-

~ i a l swere vaporized from t h e s t i l l p o t , t h e condenser pressure w a s reduced from 0.8 t o r r t o 0 . 1 t o r r i n o r d e r t o m a i n t a i n a f a i r l y h i g h distillation rate

a

When t h e condenser p r e s s u r e could n o t be decreased


.. .. ,_... ,... w .. ~

: . i

f u r t h e r , t h e d i s t i l l a t i o n o p e r a t i o n w a s t e r m i n a t e d by i n c r e a s i n g t h e p r e s s u r e i n a l l t h e process v e s s e l s to atmospheric pressure and t u r n i n g o f f t h e power t o a l l t h e h e a t e r s .

The semicontinuous d i s t i l l a t i o n phase l a s t e d f o r 9.3 hr; the average d i s t i l l a t i o n r a t e during t h i s p e r i o d w a s 0.57 l i t e r j h r .

The d u r a t i o n of

t h e b a t c h d i s t i l l a t i o n p e r i o d w a s 13.8 h r ; t h e average d i s t i l l a t i o c r a t e

f o r t h i s p e r i o d w a s 0.36 l i t e r / h r .

Eleven condensate samples were taken

during t h e run at approximately 90-min i n t e r v a l s .

A t t h e end o f t h e

experiment, r a d i a t i o n r e a d i n g s o f t h e s e smples ranged from c o n t a c t ( t h e f i r s t sample) t o 5QQ

4 R/hr a t

at contact ( t h e last s m p l e ) .

After t h e s t i l l had been allowed t o c o o l down, a l l e l e c t r i c a l and thermocouple l e a d s t o t h e s t i l l were c u t and a l l p n e u m k i c instrument Pines f r ~ mt h e v a l v e box were disconnected.

The sampler w a s dismantled

and s e n t t o t h e b u r i a l ground; t h e p r o j e c t i n g end of t h e s m p l e l i n e w a s flanged.

Valve handle e x t e n s i o n s were c u t f l u s h w i t h t h e f l o o r o f t h e

h i g h b8y sea.

The process v e s s e l s and t h e valve box were allowed to

remain i n piece.

4. 4.1

EXPERIMENTAL RESULTS

S m a r y of Experimental Data

I n o r d e r t o determine t h e c a p a b i l i t y o f t h e d i s t i l l a t i o n equipment f o r s e p a r a t i n g f i s s i o n products from t h e c a r r i e r s a l t , w e measured t h e f o l l o w i n g q u a n t i t i e s i n t h e course of t h i s experiment: of .... .. ,.. ;,. ....: ;

.@w

8.11

t h e concentration

t h e major and most of t h e minor components i n t h e f e e d s a l t t o t h e

s t i P P , $the c o n c e n t r a t i o n of each component i n t h e condensate as it l e f t


28 t h e s t i l l p o t , t h e volume of l i q u i d f e d t o t h e s t i l l p o t , and t h e volume

of' l i q u i d c o l l e c t e d i n t h e r e c e i v e r .

~. .& .....?

An e s t i m a t e 7 w a s made of t h e con-

c e n t r a t i o n o f each f i s s i o n product whose c o n c e n t r a t i o n i n t h e f e e d s a l t

The estimate w a s based on t h e production r a t e o f each

was not measured.

f i s s i o n product i n t h e MSRE and assumed that a l l t h e p r e c u r s o r s o f a given f i s s i o n product remained i n t h e s a l t .

This seemed t o b e a f a i r l y

good assumption f o r i s o t o p e s having no long-lived gaseous p r e c u r s o r s .

All t h e Concentrations were converted t o mole f r a c t i o n s ; t h e m o l e f r a c t i o n s of r a d i o a c t i v e m a t e r i a l s were c a l c u l s t e d as of May 7 , 1969. The volumes were determined by measuring t h e weight of l i q u i d over t h e end o f a b u b b l e r , d i v i d i n g by a s a l t d e n s i t y o f 2.2 g / m 3 t o o b t a i n t h e depth o f l i q u i d , and m u l t i p l y i n g t h i s v a l u e by t h e c r o s s - s e c t i o n a l area of t h e p a r t i c d a r vessel t o o b t a i n t h e volume.

We assumed t h a t t h e mass

d e n s i t y of t h e l i q u i d w a s independent of c a n p o s i t i o n and t h a t t h e volume

of l i q u i d i n t h e s t i l l pot could b e c a l c u l a t e d by s u b t r a c t i n g t h e volnne of condensate c o l l e c t e d from t h e t o t a l volume of s a l t f e d to t h e s t i l l from t h e f e e d t a n k . E

Assuming t h a t molar volumes can be added (which i s

f a i r l y gooti assumption f o r f l u o r i d e s a l t s ) , we c a l c u l a t e d m a s s d e n s i t i e s

f o r liquids i n t h e c o n c e c t r a t i o n range seen i n t h i s experiment and found o n l y a 5% v a r i a t i o n ; hence, o u r assumption o f c o n s t a n t d e n s i t y appears

t o be acceptable.

The a n a l y s e s of a l l t h e condensate samples are r e p o r t e d

i n t h e kppendix.

4.2

M a t e r i d Balance C a l c u l a t i o n s

One of t h e most concise ways t o express t h e s e p a r a t i o n performance of t h e d i s t i l l a t i o n equipment i s to convert t h e condensate a n a l y s e s t o e f f e c t i v e

&.&",


‘-

r e l a t i v e v o l a t i l i t i e s w i t h r e s p e c t t o LiF.

The e f f e c t i v e r e l a t i v e

v o l a t i l i t y of component i w i t h r e s p e c t t o LiF i s d e f i n e d a s :

a i-LiF

= yLiP /xLiF

9

v h e r e y = mole f r a c t i o n i n t h e condensates

x = mole f r a c t i o n i n t h e s t i l l p o t . Although t h e composition of each component i n t h e still pot w a s not neasu r e d d i r e e t l y during t h e r u n , t h e d a t a allowed t h e composition of t h e s t i l l p o t t o b e e s t i m a t e d from a mzterial balance f o r each component.

I n t h i s s e c t i o n , w e d e r i v e t h e material balance equations and o u t l i n e t h e c a l c u l a t i o n a l procedure.

For t h e s e m i c o n t i n u ~ u snode of o p e r a t i o n , a d i f f e r e n t i a l mole b a l a n c e f o r component i g i v e s :

where

I = t o t a l moles f e d t o t h e still p o t , 0 = t c t a l moles removed f r o m the s t i l l p o t ,

Mi fi

yi

= moles of component i i n t h e still p o t , = mole f r a c t i o n o f component i i n t h e f e e d , = mole f r a e t i o n of component i i n t h e condensate.

Since volume w a s t h e measured q u a n t i t y , we can make t h e following substitutions:

.. ... .... ......

.wiw


Vin

where

= volume of' s a l t Ped t o t h e s t i l l p o t , l i t e r s , = v d m e of condensate c o l l e c t e d $l i t e r s

v

j

= p a r t i a l moEar volume" of component j, l i t e r s / m o k .

When w e s u b s t i t u t e t h e q u a n t i t i e s i n Eq. ( 3 ) i n t o Eq. (21, we o b t a i n :

Y,

f,

f;

bJ

v in -

f .v j -1 J j

where t h e c o n d i t i o n s V were used.

in

=

vout

= Mi = 0 a t t h e s t a r t o f t h e experiment

The composition i n t h e s t i l l p o t can be determined by s o l v i n g

f o r Ne f o r each component. 1

vout

This equation i s v a l i d up t o t h e p o i n t where

= 7.07 l i t e r s ( t h e ecd o f t h e semicontinuous d i s t i l l a t i o n ) . Sf M. moles of component i are p r e s e n t i n t h e s t i l l p o t and dbl P i

moles of component i are vaporized during t h e b a t c h d i s t i l l a t i o n , t h e mole f r a c t i o n o f component i i n t h e vapor i s given by

yi = N k-l

9

%

"Assumed t o be independent of t h e cornposition o f t h e l i q u i d .


= ......;'

.

'.I:-

.

;

s i m i l a r l y , f o r component j ( i

From E q s . ( 6 ) and

(91, w e

+ j),

o b t a i n t h e expression

Assuming t h a t t h e p a r t i a l molar volumes v

i

are independent of t h e c o n p ~ ~ i -

t i s n of t h e l i q u i d (as b e f o r e ) , w e multiply b o t h s i d e s sf Eq. ( 9 ) by vi and sum both s i d e s over all i to o b t a i n t h e following e q u a t i o n :

where

V s t i l l = volume of s a l t i n t h e still pot, l i t e r s .

I. Sslving ~ q .(1.0)f o r CM

I n t e g r a t i n g Eq.

9

yields:

(11)y i e l d s : ~

Vstill Y.

d V s t i i l9

N . . . .

............ c "+ ..wp.

li

i=l

I

I


32

where %a

jo

= moles o f component j p r e s e n t i n t h e s t i l l p o t a t t h e s t a r t

,.:.w.>. ......,.

of t h e batch d i s t i l l a t i o n , V

6

= volume of s a l t i n s t i l l p o t at start of b a t c h d i s t i l l a t i o n .

The q u a n t i t y M

jo

t h e v a l u e s of

vin

distillation. liters

i n Eq. ( 6 2 ) i s c a l c u l a t e d by e v a l u a t i n g Eq. (51, u s i n g

m a vo u t

ana

vout

t h a t correspond t o t h e end of t h e senicontinuous

( A t t h e end of semicontinuous d i s t i l l a t i o n , Vin = 5.07 l i t e r s . )

TIE

=

13.8

composition of t h e s t i l l pot i s

determined by e v a l u a t i n g Eq. ( 1 2 ) f o r each component t h a t i s p r e s e n t . The i n t e g r a l s i n E q s .

( 5 ) and ( 1 2 ) were e v a l u a t e d by p l o t t i n g Y.

v s t h e volume of condensate c o l l e c t e d i n t h e r e c e i v e r during t h e senzicontinuous d i s t i l l a t i o n and

vs the s t i l l - p o t volume ( c a l c u l a t e d as explained p r e v i o u s l y ) dcring t h e b a t c h d i s t i l l a t i o n , f i t t i n g t h e r e s u l t i n g curves t o simple e m p i r i c a l f u n c t i o n s of t h e a p p r o p r i a t e volume, and t h e n i n t e g r a t i n g t h e s e equations

F o r any component, a f a i r l y wide range of e q u a t i o n parameters f i t t h e s c a t t e r e d d a t a e q u a l l y w e l l ; howevers t h e v a l u e s sf t h e i n t e g r a l s were not s i g n i f i c a n t l y s e n s i t i v e t o t h e s e v a r i a t i o n s i n t h e parameters. The N Tu’ f.v . were adequately r e p r e s e n t e d by c o n s i d e r i n g only sums r y i v i and 1 1 i=l t h e major s8lt components EiF, BeF2$ and ZrF4 s i n c e t h e mole f r a c t i o n s

e


3% of t h e f i s s i o n p r o d u c t s were n e g l i g i b l e as compared w i t h t h e mole f r a c t i o n s of t h e s e components. Using Eqs. ( 5 ) and (121,we c a l c u l a t e d the number of moles o f each component p r e s e n t i n t h e s t i l l p o t a t t h e t i m e each condensate sample was taken,

The mole f r a c t i o n of each component i n t h e s t i l l pot a t t h a t t i m e

w a s c a l c u l a t e d u s i n g t h e following equation:

The measured v a l u e s o f yi and t h e c 8 l c u l a t e d v a l u e s of x. were t h e n used 1

i n Eq.

(1) t o c a l c u l a t e t h e r e l a t i v e v o l a t i l i t y of each component, w i t h

r e s p e c t t o EiF, f o r each sample.

4.3

R e s u l t s of Relative ~ o l a t i l i t yC a l c u l a t i o n s

The e f f e c t i v e r e l a t i v e v o l a t i l i t i e s

mafor s a l t components, B ~ Fana z 2

w i t h r e s p e c t t o LiF

of t h e

~ ana F of~ the ~ f i s s i o n products 9 % ~ ~

o f t h e d i s t i l l a t i o n o p e r a t i o n , as o b t a i n e d from t h e c a l c u l a t i o n s , a r e g i v e n i n F i g s . 14-17.

I n t h e s e f i g u r e s , t h e most s e l f - c o n s i s t e n t v a l u e s

r e s u l t e d when t h e c a r r i e r s a l t composition i n t h e f e e d was assumed -to b e

65-30-9 mole % LiP-BeF2-ZrF4 r a t h e r t h a n t h e s l i g h t l y d i f f e r e n t composit i o n i n d i c a t e d by t h e a n a l y s i s of t h e s a l t from the f u e l s t o s

The d i f f e r e n c e between t h e a n a l y t i c a l v a l u e s and t h e v a l u e s a c t u a l l y ....<,w<pp ........:i

used c a n probably b e a t t r i b u t e d t o z i r c o n i m metal, which was p r e s e n t in


34

~.

%,..... ....... "


LlTEWS CONDEF6SATE COLLECTED


LITERS CONDENSATE COLLECTED


37 ..... .,.,. ..... ..,by

0

2

3

4

5

6

a

8

LITERS CONDENSATE COLLECTED

F i g . 17. E f f e c t i v e R e l a t i v e V o l a t i l i t y of l a 7 C s , Varying t h e AS SUE^ ~ e e dC o n c e n t r a t i o n of 1 3 7 ~ s .

Showing E f f e c t of


t h e f u e l s t o r a g e tank a t t h e t i m e t h e a n a l y s i s w a s made b u t w a s f i l t e r e d

'v

o u t when t h e s a l t w a s t r a n s f e r r e d t o t h e s t i l l f e e d t a n k . The e f f e c t i v e r e l a t i v e v o l a t i l i t i e s of BeF2' ZrF4, and 95Zr are

shorn i n F i g . 1 4 .

The e f f e c t i v e r e l a t i v e v o l a t i l i t y of BeF

w a s essen-

2

t i a l l y constanat during t h e r u n , e x h i b i t i n g an average v a l u e o f 3.8.

This

v a l u e a g r e e s f a v o r a b l y w i t h t h e v a l u e of 3.9 measured by Smith, F e r r i s , and Thompson* b u t i s s l i g h t l y lower t h a n t h e v a l u e of

4.7 measured

by

S l i g h t i n a c c u r a c i e s i n c a l c u l a t i o n s (especially

Hightower and McNeese

t h e material b a l a n c e c a l c u l a t i o n s d e s c r i b e d e a r l i e r ) and a n a l y s e s probably account f o r such d i f f e r e n c e s . he e f f e c t i v e r e l a t i v e v o l a t i l i t i e s o f f i s s i o n product

9 5 ~ rand of

ZrF4, t h e c a r r i e r s a l t c o n s t i t u e n t , a r e i n agreement w i t h r e s p e c t t o

magnitude and v a r i a t i o n during t h e r u n .

When t h e a n a l y s i s of t h e s a l t

i n t h e FST w a s used i n t h e r e l a t i v e v o l a t i l i t y c a l c u l a t i o n , t h e r e s u l t i n g r e l a t i v e v o l a t i l i t i e s of t h e ZrF v a l u e s f o r "ZrS value n e a r

4

Figure

4 were

about a f a c t o r o f 2 lower t h a n t h e

1 4 shows t h a t a ZrFb -Lip decreased from an i n i t i a l

a t t h e s t a r t sf t h e run t o about l a t t h e end of t h e r u n .

These v a l u e s b r a c k e t t h e v a l u e ( 2 . 2 ) measured by Smith e t a l . mixtures having a ZrF

4

L

i n salt

c o n c e n t r a t i o n about 2% of t h a t i n t h i s system.

The e f f e c t i v e r e l a t i v e v o l a t i l i t i e s o f t h e l a n t h a n i d e f i s s i o n products '44Ce:,

l4'Prn,

and 155Eu a r e shown i n F i g .

v o l a t i l i t y of 144Ce

r o s e s h a r p l y from

-2

sample t o about 1.0 x 1 0 quent samples.

15. The e f f e c t i v e r e l a t i v e

6.1 x 1 0-4 a t t h e

t i m e of the f i r s t

where it remained f o r n e a r l y a l l t h e subse-

However, t h e r e l a t i v e v o l a t i l i t y f o r t h e f i f t h sample

w a s lower t h a n 1 . 0 x

lo-'

by a factor of 3.

The IGW i n i t i a l value w a s

1 . 5 t o 3.4 t i m e s the v a l u e measured i n an e q u i l i b r i u m s t i l l , whereas t h e

. .. ... ....:...x;;...y % ..


39 h i g h , s t e a d y v a l u e w a s 24 t o

56 t i m e s

t h e v a l u e measured i n t h e

equilibrium s t i l l . The e f f e c t i v e r e l a t i v e v o l a t i l i t y

0%

147,

w a s based on a computed

f e e d c o n c e n t r a t i o n , which w a s considered t o be a more a c c u r a t e v a l u e t h a n t h e measured f e e d c o n c e n t r a t i o n s i n c e measured c o n c e n t r a t i o n s of o t h e r l a n t h a n i d e f i s s i o n p r o d u c t s had agreed w e l l w i t h computed concen$rations

A s i n t h e case of

144Ce, t h e r e l a t i v e v o l a t i l i t y of L47h was

low a t t h e t i m e t h e f i r s t sample w a s t a k e n , t h a t i s , l e s s t h a n 7.8 x

4

10- ; it r o s e s h a r p l y to about 3.4 x POm3 f o r t h e remaining samples except f o r t h e f i f t h sample, which w a s low.

There were no previo-Jsly

measured v a l u e s f o r t h e r e l a t i v e v o l a t i l i t y of promethium w i t h which t h e s e r e s u l t s could be compared.

At t h i s p o i n t , it i s i n t e r e s t i n g t o note t h a t , when t h e e f f e c t i v e w a s c d c u l a t e d on t h e b a s i s of t h e measured r e l a t i v e v o l a t i l i t y of 147h c o n c e n t r a t i o n o f l4’Rn tisn, the

ci

1 4 7 h - L iP

i n t h e FST i n s t e a d of on an e s t i m a t e d concentra-

f o r each sample, except t h e f i r s t , n e a r l y coincided

w i t h t h e r e s p e c t i v e c a l c u l a t e d p o i n t fsr 144Cee T h e v a r i a t i o n sf t h e r e l a t i v e v o l a t i l i t i e s of 155Eu d u r i n g t h e run

c l o s e l y p a r a l l e l e d t h e v a r i a t i o n s observed f o r 144Ce and 147F’m. t h e v a l u e f o r t h e f i r s t sample w a s low ( l e s s t h a n

Although

1.5 x 10-5), t h e v a l u e s

f o r a l l subsequent samples, except t h e f i f t h , were much h i g h e r , th8.t i s ,

-4

about 2.2 x 10

a f a c t o r of 2.6. (which

.

The v a l u e f o r t h e f i f t h sample was lower t h a n t h i s by These c a l c u l a t e d e f f e c t i v e r e l a t i v e V Q h t i l i t i e S

were based on a computed f e e d c o n c e n t r a t i o n of 155Eu) were lower

t h a n t h e v a l u e of 1.1 x ...

....,.,.,. :........ ...&W . .

:l

measured i n r e c i r c u l a t i n g e q u i l i b r i u m s t i l l s .

However, t h e accuracy of t h e ’55Eu v a l u e s i s q u e s t i o n a b l e s i n c e some


40 d i f f i c u l t y w a s experienced i n making t h e analgrses; a l l o f Zhe r e s u l t s for "bu

i n t h e condensate samples were r e p o r t e d a s approximate (see On t h e o t h e r hand, it i s s i g n i f i c a n t t h a t t h e v a r i a t i o n

t h e Appendix). Of

during t h e run c l o s e l y p a r a l l e l e d t h e r e l a t i v e v o l a t i l i t i e s

%5rn,LiF

of 144,e

and

Figure

147pm. 16

shows t h e e f f e c t i v e r e l a t i v e v o l a t i l i t i e s of 91Y and "Sr.

During t h e r u n , t h e e f f e c t i v e r e l a t i v e v o l a t i l i t y of 91Y had an average v a l u e of

1.4 x

about 410 t i m e s t h e v a l u e measured i n r e c i r c u l a t i n g The v a r i a t i o n of agl

equilibrium s t i l l s .

Y-LiF

during t h e r u n w a s s i m i l a r

t o v a r i a t i o n s of r e l a t i v e v o l a t i l i t i e s o f t h e l a n t h a n i d e s ; t h e low v a l u e f o r t h e f i f t h smphe w a s most n o t i c e a b l e . The e f f e c t i v e r e l a t i v e v o l a t i l i t y of "Sy.

(based on t h e measured

c o n c e n t r a t i o n i n t h e f e e d ) had an average value during t h e run of 10-39 about

stills.

84 times

t h e v a l u e measured i n r e c f r c u l a t i n g e q u i l i b r i u m

Although not shown i n F i g .

v o l a t i l i t y o f "Sr

4.1 x

16, t h e average v a l u e o f t h e r e l a t i v e

(based on a computed Concentration i n t h e f e e d ) w a s

0.193, about 3900 times t h e v a l u e measured i n e q u i l i b r i u m s t i l l s .

The

r a t i o o f t h e 89Sr a c t i v i t y t o t h e 90Sr a c t i v i t y i n t h e condensate samples v a r i e d from 0.22 t o v a l u e s g r e a t e r t h a n 1 0 .

It should have been about

0.002 f o r each sample o r , a t t h e l e a s t , should have remained c o n s t a n t . C a l c u l a t i o n s of t h e e f f e c t i v e r e l a t i v e v o l a t i l i t y of "7,s

were

based on an e s t i m a t e d f e e d c o n c e n t r a t i o n s i n c e t h e c o n c e n t r a t i o n of 137Cs

i n t h e f e e d s a l t w a s n o t measured.

long-lived gaseous p r e c u r s o r (147Xe t h e a c t u a l c o n c e n t r a t i o n of 137C!s

However, 137Cs has a f a i r l y

h a l f - l i f e = 3.9 min) t h a t causes

i n t h e s a l t t o be l e s s t h a n t h a t pre-

d i c t e d when t h e method o u t l i n e d e a r l i e r i s used.

Also, because t h e


41 ... .;.... " .........: .;.. U & ,

a c t u a l r e l a t i v e v o l a t i l i t y of CsF i s fairly h i g h , t h e r e s u l t s of c a l c u l a t i o n s o f t h e e f f e c t i v e r e l a t i v e v o l a t i l i t y are s e n s i t i v e t o t h e assumed feed c o n c e n t r a t i o n of 137Cs.

Figure

1 7 shows c a l c u l a t e d r e l a -

t i v e v o l a t i l i t i e s . of " 7 ~ s f o r two assumed feed c o n c e n t r a t i o n s .

0

e he

p o i n t s around t h e lower curve r e s u l t f r o m t h e f e e d c o n c e n t r a t i o n of

sC'"

which would apply i f a l l t h e p r e c u r s o r s remained i n t h e s a l t These p o i n t s r e p r e s e n t lower l i m i t s f o r t h e

d u r i n g MSRE o p e r a t i o n .

e f f e c t i v e r e l a t i v e v o l a t i l i t y i n t h i s d i s t i l l a t i o n ; t h e p o i n t s around t h e upper l i n e r e s u l t from a feed c o n c e n t r a t i o n j u s t h i g h enough t o keep t h e computed c o n c e n t r a t i o n of '37,s

i n t h e s t i l l - p o t l i q u i d from falling

t o zero o r below, and r e p r e s e n t upper l i m i t s f o r t h e e f f e c t i v e r e l a t i v e volatility

0%"13',s.

he h i g h e s t e f f e c t i v e r e l a t i v e v s l E t i l i t y of

la7cs

seen i n t h e s e c a l c u l a t i o n s was o n l y about 20% o f t h e v a l u e measured by ,Smith e t a l . i n LiP-BeF

2

systems.

A s seen from t h e previous c a l c u l a t e d r e s u l t s , a l l components except b e r y l l i u m and zirconium had e f f e c t i v e r e l a t i v e v o l a t i l i t i e s t h a t d i f f e r e d

(in some c a s e s , d r a s t i c a l l y ) from v a l u e s p r e d i c t e d f r o m work w i t h equilibrium systems.

Some possible explanations for these discrepancies are

d i s c u s s e d i n t h e following s e c t i o n .

4.4

P o s s i b l e Explanations o f C a l c u l a t e d R e s u l t s

P o s s i b l e causes f o r t h e d i s c r e p a n c i e s between t h e e f f e c t i v e r e l a t i v e v o l a t i l i t i e s of some of t h e f i s s i o n p r o d u c t s i n t h i s experiment and v a l u e s measured p r e v i o u s l y i n c l u d e :

(1) entrainment of d r o p l e t s of s t i l l - p o t

P i q u i d i n t h e vapors ( 2 ) c o n c e n t r a t i o n g r a d i e n t s i n t h e s t i l l p o t , ,.@

.. ...

ii..

...


( 3 ) contamination o f samples during t h e i r p r e p a r a t i o n f o r radiochemical a n a l y s i s , and ( 4 ) i n a c c u r a t e a n a l y s e s .

These p o s s i b i l i t i e s a r e d i s c u s s e d

below. P

4.4.1

Entrainment of D r o p l e t s of 8 t i l l - P o t L i a s Entrainment r a t e s of o n l y 0.023 mole of l i q u i d p e r mole of vapor,

o r l e s s , would account f o r t h e high r e l a t i v e v o l a t i l i t i e s c a l c u l a t e d f o r t h e s l i g h t l y v o l a t i l e f i s s i o n p r o d u c t s 1 4 4 ~ e , 147,

, 9lY,

and 9OSr.

Rates of t h i s o r d e r would not b e r e f l e c t e d i n t h e e f f e c t i v e r e l a t i v e v o l a t i l i t i e s of r e l a t i v e l y v o l a t i l e m a t e r i a l ( a 2 1).

he h i g h c o r r e l a -

t i o n of t h e s c a t t e r of t h e c a l c u l a t e d e f f e c t i v e r e l a t i v e v o l a t i l i t i e s of d i f f e r e n t slightly v o l a t i l e f i s s i o n p r o d u c t s i s c o n s i s t e n t w i t h t h e h y p o t h e s i s t h a t entrainment o c c u r r e d . Although t h e r e w a s some evidence of entrainment d u r i n g t h e nonr a d i o a c t i v e o p e r a t i o n of t h e s t i l l ,

4 t h e c o n s i d e r a b l y lower r a t e of

d i s t i l l a t i o n o f t h e MSRE s a l t m k e s entrainment by t h e same mechanism less likely.

T h e r e f o r e , some o t h e r reason f o r entrainment i n t h e r a d i o -

a c t i v e o p e r a t i o n should be sought.

Evidence of a s a l t m i s t above t h e

s a l t i n t h e pump bowl a t t h e ,KRE and a l s o above s a l t samples removed

from t h e MSWE has been r e p ~ r t e d ; ~ �t h e s t u d i e s have i n d i c a t e d t h a t t h e s e m i s t s a r e p r e s e n t over r a d i o a c t i v e s a l t m i x t u r e s b u t not over nonradioactive mixtures.

According t o t h e r e p o r t e d d a t a , e i t h e r a m i s t

c o n c e n t r a t i o n (grams of s a l t p e r em3 of g a s ) or a r a t e of formation of

m i s t (grams of s a l t p e r second) could be c a l c u l a t e d .

Entrainment r a t e s

s u f f i c i e n t l y l a r g e t o e x p l a i n t h e r e s u l t s of t h i s experiment could only be o b t a i n e d by assuming t h a t t h e g a s space above t h e s a l t c o n t a i n e d s a l t

m i s t having t h e same c o n c e n t r a t i o n as t h a t seen i n t h e s t u d i e s , i n s t e a d


43 of by assuming equal m i s t formation r a t e s .

However, t h e c o n c e n t r a t i o n s

c a l c u l a t e d from t h e d a t a were s c a r c e l y adequate t o e x p l a i n t h e e n t r a i n e d f r a c t i o n t h a t must have occurred.

Furthermore, b o t h t h e m i s t formation

r a t e and t h e c o n c e n t r a t i o n o f t h e m i s t would be expected to decrease w i t h decreasing decay power d e n s i t y i n t h e l i q u i d .

Since t h e s a l t used

i n t h e d i s t i l l a t i o n experiment had a much lower decay power d e n s i t y t h a n t h e s a l t e x m i n e d f o r m i s t formation (400 days of coobing f o r 6 i s t i l l a t i o n f e e d , as compared w i t h l e s s t h a n 36, days of cooling f o r s a l t sam$.es t e s t e d f o r m i s t f o r m a t i o n ) , it seems u n l i k e l y t h a t t h e m i s t concentrat i o n would have been h i g h enough t o e x p l a i n t h e h i g h r e l a t i v e v o l a t i l i -

t i e s f o r t h e s l i g h t l y v o l a t i l e f i s s i o n products.

I n a d d i t i o n t o t h e argument a g a i n s t t h e entrainment h y p o t h e s i s j u s t g i v e n , n o t a91 t h e d i s c r e p a n c i e s , f o r example, t h e v a r i a t i o n s i n t h e 90~r a c t i v i t y r a t i o of and t h e low v d u e for t h e e f f e c t i v e v o l a t i l i t y

8'~r/

of 137Cs,

44 e

e

2

would be explained by t h e entrainment h y p o t h e s i s .

Concentration P o l a r i z a t i o n Concentration p o l a r i z a t i o n would cause t h e e f f e c t i v e r e l a t i v e vola-

t i l i t i e s of t h e s l i g h t l y v o l a t i l e materials t o be h i g h e r t h a n t h e t r u e relative volatilities.

A s t h e m o r e - v o l a t i l e materials w e r e vaporized

from t h e l i q u i d s u r f a c e , t h e s l i g h t l y v o l a t i l e m a t e r i a l s would be l e f t behind a t a h i g h e r c o n c e n t r a t i o n t h a n i n t h e l i q u i d j u s t below t h e s u r face.

I n turn, t h e vapor-phase c o n c e n t r a t i o n of t h e s e s l i g h t l y v o l a t i l e

m a t e r i s l s would i n c r e a s e , s i n c e f u r t h e r v a p o r i z a t i o n would occur from a l i q u i d w i t h s u c c e s s i v e l y h i g h e r c o n c e n t r a t i o n s of s l i g h t l y v o l a t i l e materials.

Thus, s i n c e e f f e c t i v e r e l a t i v e v o l a t i l i t i e s were based on

+ . .... ..& ...,'

average c o n c e n t r a t i o n s i n t h e s t i l l pot, t h e vapor c o n c e n t r a t i o n would


44 be h i g h e r t h a n t h a t corresponding t o t h e average l i q u i d c o n c e n t r a t i o n , and t h e c a l c u l a t e d e f f e c t i v e r e l a t i v e v o l a t i l i t y would b e h i g h e r t h a n t h e t r u e r e l a t i v e v o l a t i l i t y , i f t h e concentrations a t t h e surface of t h e l i q u i d were h i g h e r t h a n average.

S i m i l a r l y , c o n c e n t r a t i o n polariza-

t i o n would cause t h e e f f e c t i v e r e l a t i v e v o l a t i l i t i e s of components w i t h r e l a t i v e v o l a t i l i t i e s h i g h e r t h a n l t o b e lower t h a n t h e i r t r u e r e l a t i v e

If mixing o r d i f f u s i o n d i d n o t reduce t h e c o n c e n t r a t i o n

volatilities.

g r a d i e n t i n t h e l i q u i d , t h e n t h e s e p a r a t i o n performed by t h e s t i l l would be a d v e r s e l y a f f e c t e d . A s noted i n r e f .

4, t h e

e x t e n t t o which c o n c e n t r a t i o n p o l a r i z a t i o n

a f f e c t s t h e e f f e c t i v e r e l a t i v e v o l a t i l i t y of a p a r t i c u l a r component depends on t h e dimens.ionless group D/vL, which q u a l i t a t i v e l y r e p r e s e n t s t h e r a t i o of t h e s a t e of d i f f u s i o n o f a p a r t i c u l a r component f r o l n t h e vapor-liquid

i n t e r f a c e i n t o t h e b u l k of t h e s t i l l - p o t l i q u i d t o t h e r a t e

a t which t h i s material i s t r a n s f e r r e d by convection t o t h e i n t e r f a c e by

l i q u i d moving toward t h e v a p o r i z a t i o n s u r f a c e . effective diffusivity

0%

In t h i s ratio, D is the

t h e component of i n t e r e s t , v i s t h e v e l o c i t y o f

l i q u i d moving toward t h e i n t e r r a c e , and E i s t h e d i s t a n c e between t h e i n t e r f a c e and t h e p o i n t where t h e f e e d i s i n t r o d u c e d . The occurrence of c o n c e n t r a t i o n p o l a r i z a t i o n i s suggested by t h e s h a r p r i s e , a t t h e beginning of t h e run, i n t h e e f f e c t i v e r e l a t i v e vola-

t i l i t i e s of 144Ce, 147h, "*Eu,

and, p o s s i b l y ,

and 9oSr.

This r i s e

would correspond t o t h e formation o f t h e c o n c e n t r a t i o n g r a d i e n t a t t h e beginning of t h e r u n .

The e f f e c t i v e d i f f u s i v i t i e s sf NdF

3

i n the still

pot

c a l c u l a t e d from r e s u l t s o f t h e n o n r a d i o a c t i v e experiments

from

1 . 4 x lo-'

to

16

x 10-

4

2 em / s e e .

4 ranged

They form the b a s i s f o r e s t i m a t i n g

c......:.;.


45 t h e magnitude of t h e c o n c e n t r a t i o n p o l u i z a t i o n e f f e c t i n t h e r a d i o a c t i v e operation.

During t h e semicontinuous o p e r a t i o n a t t h e MSRE, t h e l i q u i d

-4 cm/sec

v e l o c i t y r e s u l t i n g from v a p o r i z a t i o n averaged 2.2 x 18 depth of l i q u i d above t h e i n l e t w a s approximately

9.4 cm.

and t h e

I f one assumes

t h a t t h e e f f e c t i v e d i f f u s i v i t y o f t h e f i s s i o n products i n t h e s t i l l pot d u r i n g t h e E R E D i s t i l l a t i o n Experiment w a s i n t h e same range as thet

seen d u r i n g t h e n o n r a d i o a c t i v e t e s t s

t h e observed r e l a t i v e v o l a t i l i t i e s

of t h e s l i g h t l y v o l a t i l e materials would b e only 2 . 0 t o actual r e l a t i v e v o l a t i l i t i e s

, and

18 t i m e s

the

t h e observed r e l a t i v e v o l a t i l i t y of

would be 0.011 t o 8.021 t i m e s i t s t r u e v a l u e ( i n each c a s e , assuming

I3'Cs

%hat t h e t r u e r e l a t i v e v o l a t i l i t i e s were t h o s e given i n r e f s . 1 and 2 ) . Although c o n c e n t r a t i o n p o l a r i z a t i o n may have been p r e s e n t i n t h e work w i t h r a d i o a c t i v e s a l t , t h e e f f e c t w a s l e s s important t h a n t h a t needed t o account f o r t h e d i s c r e p a n c i e s between observed r e l a t i v e v o l a t i l i t i e s and what we consider t o be t h e t r u e v a l u e s .

Concentr-ation p o l a r i z a t i o n would

n o t e x p l a i n t h e v a r i a t i o n i n t h e r a t i o o f t h e a c t i v i t i e s of @Sr- and "Sr between sztmples.

4.4.3

Contamination

Samples

The p o s s i b i l i t y t h a t t h e condensate samples were contaminated during p r e p a r a t i o n f o r a n a l y s i s i s suggested by t h e extreme v a r i a t i o n i n t h e r a t i o o f 89Sr and "Sr

a c t i v i t i e s between samples.

Although r o u t i n e

p r e c a u t i o n s a g a i n s t s m p l e contamination were t a k e n i n t h e h o t c e l l s where t h e c a p s u l e s were c u t open, no s p e c i a l p r e c a u t i o n s were t a k e n . (The sme manipulators t h a t are used t o handle MSRE s a l t samples were employed f o r opening t h e s e condensate samples.

1

If it i s assuaged t h a t

t h e source of t h e contamination w a s a sample from t h e MSRE taken just


46 b e f o r e t h e condensate a n a l y s e s were s e n t t o t h e h o t c e l l s , t h e n t h e m o u n t of r a d i o a c t i v e m a t e r i a l necessary t o r e s u l t i n t h e observed v a l u e s

of t h e r a t i o of 89Sr and "Sr per gram of sample.

a c t i v i t i e s w a s i n t h e range

to

g

Prevention of such a low l e v e l of contamination i s

extremely d i f f i c u l t . Other o b s e r v a t i o n s t h a t can be explained by assuming t h a t t h e samples were contaminated a r e t h e high r e l a t i v e v o l a t i l i t i e s o f t h e s l i g h t l y vola t i l e f i s s i o n p r o d u c t s and t h e high c o r r e l a t i o n between t h e v a r i a t i o n of c a l c u l a t e d r e l a t i v e v o l a t i l i t i e s of d i f f e r e n t f i s s i o n products.

other hand, t h e low r e l a t i v e v o l a t i l i t y for '3'Cs t h i s hypothesis

4.4.4

On t h e

i s not explained by

e

I n a c c u r a t e Analyses The a n a l y s e s f o r 95Zr, 137Cs,

144Ce,

"Sr,

and @Sr

were made by

proved, r e l i a b l e methods and a r e considered t o be a c c u r a t e w i t h i n The a n a l y s e s f o r 14'h and "Y

2 5%.

a r e thought t o be l e s s r e l i a b l e b u t ,

nevertheless, accurate t o within

-+ 10%. analysis for ' 5 5 ,

s

was difficult;

t h e r e f o r e , t h e r e s u l t s a r e only approximate and t h e i r accuracy i s open t o question.

10

The a n a l y s e s f o r

1 4 4Ce, which were made by gamma scanning and by

radiochemical s e p a r a t i o n techniques u s i n g s e p a r a t e p o r t i o n s of t h e cond e n s a t e samples, appeared t o be a c e m a t e .

Good agreement w a s obtained

between t h e two sets of a n a l y s e s .

,.. ...,...:"


47 5.

CONCLUSIONS

The f o l l o w i n g conclusions were dram from t h e r e s u l t s o b t a i n e d i n t h e experiment d e s c r i b e d above.

1. The s e p a r a t i o n of f u e l c a r r i e r s a l t from the l a n t h a n i d e f i s s i o n p r o d u c t s w a s demonstrated by p r o c e s s i n g 1 2 l i t e r s of f u e l s a l t from an o p e r a t i n g r e a c t o r .

Although t h e

volume of s a l t t h a t was processed w a s less t h a n a n t i c i p a t e d ,

a l l t h e important features of t h e o p e r a t i o n were adequately tested.

The o p e r a t i o n of t h e equipment f o r t h i s run w a s

smooth and t r o u b l e - f r e e . 2.

The e f f e c t i v e r e l a t i v e v o l a t i l i t i e s f o r BeP2 and ZrF4 (based on b o t h n a t u r a l zirconim. and f i s s i o n product 952,) agreed w i t h previous l a b o r s t o r y measurements.

3.

The upper l i m i t of t h e r e l a t i v e v o l a t i l i t y of 13'C!s,

e f f e c t i v e i n t h i s run, w a s found t o be o n l y about 28% of t h e v a l u e measured i n t h e l a b o r a t o r y

We cannot adequately

e x p l a i n t h i s discrepancy i n t e r n s sf t h e occurrence o f l i q u i d entrainment, concentration p o l a r i z a t i o n i n t h e still

4.

o r condensate s a p l e c o n t a n i n a t i o n .

The e f f e c t i v e r e l a t i v e v o l a t i l i t i e s for t h e l a n t h a n i d e f i s s i o n products 144Ce and n47h w e r e unexpectedly h i g h . The e f f e c t i v e r e l a t i v e v o l a t i l i t y of l 4 4 ~ ewas about

t i m e s t h a t i n d i c a t e d by previous measurements. p r e v i o u s measurements f o r

'47h

56

No

were a v a i l a b l e ; however,

t h e r e l a t i v e v o l a t i l i t y i s thought t o be c l o s e t o t h a t o f

CeP3.

It i s b e l i e v e d t h a t the discrepancy between

observed v a l u e s and previous measurements i s , in p a r t , due t o sample contamination.

5.

Even i f t h e r e l a t i v e v o l a t i l i t i e s of t h e l a n t h a n i d e s are as

high 8s seen here (W.019,adequate recovery of 7LiF

from w a s t e s a l t streams by d i s t i l l a t i o n i s still p o s s i b l e .


48 Lf t h e r e l a t i v e v o l a t i l i t i e s o f t h e r a r e - e a r t h f l ~ o r i d e s were as h i g h as 0.01, o n l y 3% of t h e rare e a r t h s would be vo%atilized during v a p o r i z a t i o n of 95% of t h e PrEiP i n a batch d i s t i l l a t i o n .

6.

ACmowLmGmms

The a u t h o r s g r a t e f u l l y acknowledge t h e h e l p of t h e following people

i n t h e i n s t a l l a t i o n , o p e r a t i o n , and a n a l y s i s of t h e %RE Experiment:

P. M. Haubenreich, W. H. Guymon, E'.

Distillation

H. Harley, A. I .

Krakoviak, and M. Richardson, sf t h e Reactor D i v i s i o n ; W. W. Tucker of t h e I n s t r u m e n t a t i o n and Controls D i v i s i o n , R. B. LindaUer of t h e Chemical Technology D i v i s i o n ; J.

H. Moneyhun of t h e Analytical Chemistry D i v i s i o n ;

8. S. Jackson of t h e P l a n t and Equipment D i v i s i o n ; and 8 . 0.

Payne,

V. E. Fowler, J. Beams, F. L. Rogers, E. I?. J o h n s , and J.

Rose,

C.

t e c h n i c i a n s i n t h e Unit Operations S e c t i o n of"t h e Chemical Technology Division.

w


49 7.

REFERENCES

1. 3 . R . Hightower, Jr., and %. E. McMeese, Measurement of t h e R e l a t i v e V o l a t i l i t i e s of F l u o r i d e s of Ce, La, P r , Nd, Sm, Eu, B a , S r , Y, and

Zr i n Mixtures sf LiF 2.

OWNL-TI-2058

(January

1968).

F. J . Smith, L. M. F e r r i s , and C . T. Thompson, Liquid-Vapor E q u i l i b r i a i n LiP-BeF,

and LiF-BeF,-ThF4

Systems, OWML-4415 (June

1969).

L

L

3.

a-BeF,,

W. E. C a r t e r , R. B. Lindauer, and L. E. McNeese, Design of an Engineering-Scale Vacuum D i s t i l l a t i o n Experiment f o r Molten S a l t Reactor F u e l , OR63L-TM-2213

4. J.

3 . Hightower,

(November

19689 -

Jr., and E. E. McNeese, Low-Pressure D i s t i l l a t i o n

o f Kolten Fluoride Mixtures :

Nonradioactive Tests f o r t h e MSRE

D i s t i l l a t i o n Experiment, OREL-4434 (January $1. 'd.

Rosenthal,

ORâ‚Ź&-4919, F.

6. M. W.

1971). 9

76.

Wosenthal,

OREL-4396, p. 24. 7.

E. E. Compere., ORNL, p e r s o n a l communication, J u l y 1,

8.

M. W. Rosenthal ,

1969. Y

ORm-4254, p . LOO. 9.

M. W. Wosenthal, MSR P r o g r t ~Semiann. ~~ Progr. Rept. Feb. 28, 1969,

0~~~-439 p.6 1-45. , J. H. Moneyhm, QRNL, p e r s o n a l conmunication, Feb. 9, 1970.



8.

..

.. ... .......

~

..X,.,&.,,.P

APPENDIX:

ANALYSES O F SAmEES PROM TEE YSRE DISTILLATIOM EXPEPIPbEITT



53

Table A - l .

Li

Be

Zr

(wt %)

(wt. % )

( w t $)

11.14 8.48 10.39 9.76

15.66

(ais

rnin-lg-l-1

Analyses of Samples from t h e MSRE D i s t i l l a t i o n Experiment

( d i s min-lg-')

(dis min-lg'l)

(ais

mira'lg-1)

( d i s min-lg-1)

(ais min-lg-1)

( d i s min-lg-1)

(dit, mTn'-lg-')

S a l t Volumes Associated w i t h Condensate Samples Total L i t e r s L i t e r s Condensate Fed Collect ea

Fuel storage tank-1 (Date analyzed)

Fuel storage tank-2 (Date analyzed) Condensate samples -1 -2

-3

-4 -5 -6

-7 -8

-9 -10 -11

(Date analyzed 1

8

3.88 4.67 6.86 7.24 8.15

10.00

l.o.09

1.53 109 1.39 x lo9 1.14 x l o 9 1.17 109

10.48

1.24 x 10'

12.05

10.04

9.93 i o . 49 9.24 10.53 8.48 9.83 7.66 8.71 13.02 5.11 8.26 13.28 5.22 8.11 (5/21/69) (5/23/69) (5/23/69) 7.05 7.82 8.77 9.80

k p l i e a t e samples d i f f e r e d by a f a c t o r o f 4 or more.

1.16 109 1.17 1 ~ 9 9.78 x 1 08 9.44 x 1 08

6.83 x lo6 1 . 2 1 x 108 2.39 x 108 1.97 x 108 8.09 x lo7 2.89 x i o8 8 1.99 x 1 0 3.01 x 108 4.63 x 108 4.75 x 1 08

9.25 x 108 (5/21/69)

4.91 x 108 (?/21/69)

1121

109

<2.6 x i o 6 1.53 x 10'1 2.78 x 107

107 8.85 x 1 06

2.23

3.20 x

lo7

2.16 x 107 3.08 107 5.98 107 6.27 107 6.90 x 107 (7/2/69 1

6.54 1.18 1.44 1.32 6.14 1.81 1.15 1.60 2.29 6.01

105 x 106 x

106

x 106 x

lo5

x 1 06 x i o6 x x

lo6 i o6

x 106

4.10 x 106 ( 9/30/ 69)

< 2 . 1 x 1 06

<5.2 x 1 06 8.54 x 1 06 5.76 x 1 06& e . 5 x 1 06. 8.93 x 1 06 8.57 x 106 8.75 x 106 1.56 x 1Q7 2.37 x 1 07 3.04 107 (7/8/ 69 1

9.46 109 6.49 x lo8 3.93 x 109 3.53 109 3.14 109 2.61 x 109 1.66 x 109 5.91 x lo8 4.06 x lo8 2.63 x lo8 2.96 x lo8 ( 5/ 21/ 69 1

7.9

0.42

10.0

1.93

11.2

2.96 3.81 4.35 4.95 5.80 6.34 6.89

12.6 13.4

13.6 13.8 13.8 13.8 13.8 13.8

1

7.49 7.85



55

ORNL-4574 UC-80 -Reactor Technology

INTERNAL DISTRIBUTION 1-3. Central Research Library 4-5. FlSRP Director's Qffice 6. OWE - Y-12 Technical Library Document Reference Section 7-41. Laboratory Records Department 42. Laboratory Records, ORNL R.C. 43. R. K. A d a m 4 4 . e. M. Adamson 45. s. E. Anderson 46. C . F. Baes 4 7 . 6 . E. Bamberger 48. C. J. Barton 49. H. F. Bauman 50. S. E. Beall 51. M. J. Bell 52. E. S. Bettis 53. R. E. Blaneo 54. P. F. Blankenship 55. J. 8 . Blomeke 56. R. Blumberg 57. E. G . Bshlmann 58. G . E. Boyd

59. J. 68. M. 61. R. 62. s. 63. W. 64. M. 65. E. 66. W. 67. B. 68. J. 6 9 . P. 70. J. 71. S. 72. W. 7 3 . J. 7 4 . D. 75. L.

Braunstein A . Bredig

B. Briggs Cantor L. Carter D. Cochran, Jr. k. Compere H. Cook Cox L. Crowley

E. C u l l e r PI. DeVan J. D i t t o B. Eatherly

a. Engle E. Ferguson M. Ferris

76. A. P. Fraas 77. W. R. Grimes 78. A. G . Grindell

79. R. H. Gupon 80. B. A. Hannaford 81. P. B. Harley 82. P . N. Haubenreich 83. R. F. Hibbs

R. Hightower, Jr. W e Hoffman W. Horton H. Jordan 89. P o R . Kasten

84-85. J . 86. H. 87. R. 88. W.

98. C. Id. Kee

91. M. J. Kelly 92. S. %.Mirs1is 9 3 . J . W. Koger 9 4 . K. B. Korsmeyer

95. A . I. Krakoviak 96. T. S. Kress 97. J. A . Lane 98. R. B. Eindauer 99. A. P . Litman 100. M. I. Lundin 101. H. G . MacPherson 102. J. C. Mailen 103. H. E. McCoy 1 0 4 . L. E. McNeese 105. A . S. Meyer 166. R. L. Moore 107. D . M. F f Q U 1 t O n 188. 9. P . NickoPs 109. E. L. Nicholson

110. A. N. Perry 111. J . E. Redford 1 1 2 . M. Richardson 113. G . D. Robbins 114. K. A . Romberger J. Roth

115. 116. 117. 118. 119. 120.

121. 122. 12%. 124. 125.

W. P. Schaffer Bunlap Scott J. H. Shaffer M. J . Skinner A. N. Smith E'. J. Smith D . A. Sundberg R. E. Thsrna I). B. Trauger Chia-Pao Tung W. E. Unger G . M. Watson

126. 127. 128. A. M. Weinberg 129. J. R. Weir 130. M. E. Whatley 131. J . C. White


56

3.32. Gale Young 133. E. L . Youngblood 134. P . H. Emmett (consultant) 135. J. J. Katz (consultant)

136. 6. E. Ice (consu%tant) 1 3 7 . E. A . Mason (consultant) 138. R. â‚Ź3. Richards (consultant)

EXTERNAL DISTRIBUTION

139. A. Giambusso, U.S. Atomic Energy Commission, Washington, D . C . 140. Kermit Laughon, AEC Site Representative, ORNL 141-142, T. W. McIntosh, U.S. Atomic Energy Commission, Washington, B.C. 143. M. Shaw, U.S. Atomic Energy Commission, WashPngt~n,D.C. 144. 3 . A . Swartout, Union Carbide Corporation, New Y w ~ , N . Y . 10019 145. Laboratory and University Division, AEC, OR0 146. Patent Office, AEC, OR0 147-149. Director, Division of Reactor Licensing, U.S. Atomic Energy Commission, Washington, D.C. 150-151. Director, Division of Reactor Standards, U.S. Atomic Energy Commission, Washington, D e C . 152-375. Given distribution as shown in TIB-4500 under Reactor Technology category (25 copies - NITS)

.... .: w,.;.;.>y Y


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.