AULA 1 Integral Indefinida
INTRODUÇÃO Cálculo Diferencial e Integral são ferramentas muito importantes para diversas áreas do conhecimento, entre elas os cursos de Engenharia, por possibilitarem o estudo e a modelagem de situações-problema reais. A integração surgiu, historicamente, da necessidade de se calcular áreas de figuras cujos contornos não são figuras planas, como quadrados, triângulos e outras. Mas o Cálculo Integral não se restringe apenas a isso. Ele tem inúmeras aplicações, entre elas o cálculo do volume de sólidos por cortes e de discos e anéis circulares; do comprimento do arco de uma curva; do centro de massa de uma partícula; da massa total de uma barra; do centroide de uma região plana; do trabalho para esticar uma mola; da pressão líquida e da taxa de crescimento de uma comunidade proporcional à população em determinado instante. Os dois principais conceitos do Cálculo, derivado e integral, são desenvolvidos a partir de ideias geométricas relativas a curvas. A derivada resulta da construção das tangentes a determinada curva. Já a integral provém do cálculo da área de uma região limitada por uma curva.
CÁLCULO INTEGRAL
Como engenheiro, você utilizará a integral no estudo e dimensionamento de vigas. Outra aplicação é o desenvolvimento de um modelo matemático aplicado ao controle do processo de esterilização de alimentos enlatados. Você também poderá usar os conhecimentos que obterá a partir de agora para medir a velocidade e a aceleração, por exemplo, de um foguete de água e ar comprimido, utilizando a integral de funções baseada em informações como variação de tempo, distância e velocidade. Nesta aula, você estudará a integral indefinida e as técnicas de integração, que serão muito úteis para você compreender a integral definida, que será o assunto de aulas posteriores.
OBJETIVOS » » Reconhecer a importância da integral indefinida como subsídio para a integral definida. » » Compreender as propriedades da integral indefinida na resolução de exercícios. » » Compreender as regras da integral indefinida aplicando os conceitos matemáticos básicos. » » Aplicar o Cálculo Diferencial para a resolução de alguns casos de integral indefinida.
1. INTEGRAL INDEFINIDA Ao estudar Matemática, você já deve ter se habituado a trabalhar com operações inversas: a subtração inversa da adição, a divisão inversa da multiplicação e radiciação e logaritmação como inversas da potenciação, por exemplo. Agora, é hora de aprender a integração (antidiferenciação ou antiderivação) como inversa da derivação (diferenciação). Quando você estudou diferenciação, viu situações em que havia uma função e era preciso obter, a partir dela, outra função, que chamamos de derivada. Agora, você fará o inverso. Isto é, é dada a derivada e será necessário encontrar a função original, que chamaremos de primitiva. Para isso, é importante conhecer as regras de derivação e as derivadas de várias funções. Veja a seguir a ilustração de algumas primitivas da função f(x) = 2.
Figura 1 – Representação de algumas curvas da família y = x2 + c. Fonte: Costa (2014).
8
AULA 1 – INTEGRAL INDEFINIDA
Você pode criar os seus próprios gráficos. Busque pela ferramenta Geogebra, um software livre para fins didáticos, no site <www.geogebra.org.>.
Uma função F, que é a primitiva de uma função f(x) em um intervalo I, será chamada de integral ou antiderivada de uma função f em um intervalo I se F’(x) = f(x), para todo x em I. Para compreender melhor esse conceito, analise o seguinte exemplo. Se F for definida por F(x) = 4x³ + x² + 5, então F’(x) = 12x² + 2x. Desse modo, se f for a função definida por f(x) = 12x² + 2x, afirmamos que f é a derivada de F, F é integral de f, e F é a primitiva de f(x). Da mesma forma, se G for a função definida por G(x) = 4x³ + x² – 17, então G também será uma integral de f, pois G’(x) = 12x² + 2x. Com isso, toda função dada por 4x³ + x² + c, com c uma constante qualquer, é uma integral de f. Para afirmar que qualquer integral particular de f em um intervalo I será dada por F(x) + c, em que c é uma constante arbitrária, chamada de constante de integração, é necessário utilizar dois teoremas. » » Teorema 1: Se f e g forem duas funções, tais que f’(x) = g’(x) para todo x no intervalo I, então haverá uma constante k, tal que f(x) = g(x) + k , para todo x em I. » » Teorema 2: Se F for uma integral particular de f em um intervalo I, então toda integral de f em I será dada por F(x) + c (1), em que c é uma constante arbitrária e todas a as integrais de f em I poderão ser obtidas de (1), atribuindo-se certos valores a c. Logo, integração ou antidiferenciação é o processo de encontrar o conjunto de todas as integrais de uma dada função. O símbolo ∫ denota a operação: ∫ f(x)dx = F(x) + c, em que F’(x) = f(x) e d(F(x)) = f(x)dx
Integral indefinida é uma família de antiderivadas de uma dada função.
9
CÁLCULO INTEGRAL
Foi o matemático e filósofo alemão Gottfried Leibniz quem introduziu a convenção de escrever a diferencial de uma função após o símbolo de integração. Ele viveu entre 1646 e 1716 e foi um gênio universal, um dos fundadores da ciência moderna (TENT, 2012).
Como a integração é a operação inversa da derivação, os teoremas sobre integração podem ser obtidos dos teoremas sobre derivação. Assim, são válidos os seguintes teoremas: » » Teorema 3: ∫ dx = F(x) + c . Quando você derivar x + c, ou seja, d(x + c), obterá dx. Logo, ∫ dx = F(x) + c. » » Teorema 4: ∫ af (x)dx = a ∫ f(x)dx, em que a é uma constante. Ou seja, para determinarmos uma integral do produto entre uma constante e uma função, achamos primeiro uma integral da função, multiplicando-a, em seguida, pela constante. Veja a seguir um exemplo de aplicação desses dois teoremas. Exemplo 1
2x + c » » Teorema 5: Se f1 e f2 estão definidas no mesmo intervalo, então ∫ [f1(x) + f2(x)]dx = ∫ f1(x)dx + ∫ f2(x)dx. Em outras palavras, a integral da soma de funções é a soma das integrais dessas funções. Ou seja, para encontrar a integral da soma de funções, você deve primeiro encontrar a integral de cada uma das funções separadamente e, então, somar os resultados, ficando subentendido que ambas funções estão definidas no mesmo intervalo. Tal teorema pode ser estendido a um número finito de funções. Exemplo 2
O segundo termo da soma de integrais você já sabe calcular utilizando o teorema 4. Porém, você ainda não aprendeu como resolver a primeira integral dessa soma. Não se preocupe: em breve, você poderá resolver por completo o exemplo 2.
10
AULA 1 – INTEGRAL INDEFINIDA
Combinando os teoremas 4 e 5, temos o seguinte: Teorema 6: Se f1 , f2, ..., fn estão definidas no mesmo intervalo, ∫ [c1f1(x) + c2f2(x) + c3f3(x) + ... + cnfn(x)]dx = c1 ∫ f1(x)dx + c2 ∫ f2(x)dx + ... + cn ∫ fn(x)dx, em que c1, c2, ... , cn são constantes. Exemplo 3
» » Teorema 7: Se n for um número racional,
, com n ≠ –1
Exemplo 4
Figura 2 – Representação da função f(x) = x2 e da ∫ x2 dx Fonte: Costa (2014).
11
CÁLCULO INTEGRAL
Agora, é hora de retomar o exemplo 2. Agora que você já aprendeu o Teorema 7, podemos concluir a resolução dele. Você chegou até o seguinte passo da resolução:
Vamos prosseguir utilizando o Teorema 7 no primeiro termo da soma de integrais. Na segunda parte, é só usar o Teorema 3.
Como c1 e c2 são constantes arbitrárias, podemos escrever a expressão da seguinte forma: x² + 5x + c » » Teorema 8: ∫ senx dx = – cosx + c.
Figura 3 – Representação gráfica do Teorema 8. Fonte: Costa (2014).
» » Teorema 9: ∫ cosx dx = senx + c. » » Teorema 10: ∫ sec2x dx = tgx + c.
12
AULA 1 – INTEGRAL INDEFINIDA
Figura 4 – Representação gráfica do Teorema 10. Fonte: Costa (2014).
» » Teorema 11: ∫ cosec2x dx = –cotgx + c. » » Teorema 12: ∫ secx tgx dx = secx + c. » » Teorema 13: ∫ cosecx cotgx dx = –cosecx + c. Exemplo 5 ∫ (3secx tgx – 5cosec2x)dx Resolução Aplicando os Teoremas 12 e 11, temos:
13
CÁLCULO INTEGRAL
Figura 5 – Representação gráfica do exemplo 5. Fonte: Costa (2014).
É importante relembrar algumas importantes identidades trigonométricas, pois estas são muito usadas quando calculamos integrais envolvendo funções trigonométricas. Destacamos as descritas a seguir como bastante importantes:
14
AULA 1 – INTEGRAL INDEFINIDA
Exemplo 6
Na sua vida como engenheiro, você poderá enfrentar situações nas quais, por exemplo, você conhece a função da velocidade escalar v em um movimento e precisa encontrar a função horária (ou função de posição) s. Você sabe como fazer isso? Será preciso tomar a derivada
para, a partir dela,
encontrar uma função s, cuja derivada é dada. Considerando v(t) = 2t, você terá de achar s tal que
Outra situação seria encontrar uma função f, conhecendo, em cada x do seu domínio, a inclinação da reta tangente ao gráfico em determinado ponto. Ou seja, queremos encontrar f, conhecendo f’. Por exemplo, sendo
, queremos achar f.
As integrais são usadas até mesmo na Economia, quando é dada a função custo marginal e você precisa encontrar a função custo total. Para resolver problemas como esses, você terá de encontrar uma integral específica que satisfaça determinadas condições – chamadas inicial ou lateral – conforme elas ocorram no ponto inicial ou para os extremos do intervalo de definição da variável. Acompanhe os exemplos. Exemplo 7 A velocidade escalar em um movimento é dada por v(t) = t2⁄3. Ache a função horária do movimento, sabendo que essa função vale 1 no instante t = 0. Resolução Temos:
15
CÁLCULO INTEGRAL
Ou seja:
Sabemos que s(0) = 1. Fazendo t = 0 na equação anterior, resulta em s(0) = c, ou seja, 1 = c. Substituindo na expressão s(t), obtemos:
que é a função horária do movimento, sabendo que ela vale 1 no instante t = 0.
Figura 6 – Representação gráfica do exemplo 7. Fonte: Costa (2014).
Exemplo 8 a) O custo marginal para produção de uma quantidade x de um bem é dado por Sabendo que o custo fixo é 40, determine a função custo.
.
b) O custo médio marginal relativo à produção de um bem é dado por Calcule o custo total, sabendo que o custo para produzir uma unidade (x = 1) é 79. Resolução a) A definição geral do conceito marginal em Economia refere-se à derivada das funções receita, lucro e custo médio, acrescidas do índice inferior mg. Tomando
16
, logo:
AULA 1 – INTEGRAL INDEFINIDA
Ou seja:
O custo fixo é obtido considerando x = 0 na expressão anterior, então, C(0) = c. Sabemos que o custo fixo é 40, logo, c = 40. Assim, substituindo na expressão de C(x), obtemos:
Figura 7 – Representação gráfica do exemplo 8 (a). Fonte:Costa (2014).
b) Temos:
Logo:
17
CÁLCULO INTEGRAL
Nesse caso, não foi dada uma condição inicial para Cm, ou seja, não foi adiantado nenhum valor dessa função. Se isso fosse feito, permitiria a determinação da constante c. Isso não é relevante, pois foi informada uma condição inicial para C. Como
, de modo que C(x) = x Cm(x):
Usando a informação de que C(1) = 79 e substituindo na expressão: C(x) = x3 – 12x2 + 30 + cx, temos:
Portanto: C(x) = x3 – 12x2 + 30 + 60 18
AULA 1 – INTEGRAL INDEFINIDA
Figura 8 – Representação gráfica do exemplo 8 (b). Fonte: Costa (2014).
Exemplo 9 Em qualquer ponto (x,y) de determinada curva, a reta tangente tem uma inclinação igual a 4x – 5. Considere f(x) ⊂ IR. Se a curva contém o ponto (3,7), encontre sua equação. Resolução Como a inclinação da reta tangente a uma curva em qualquer ponto (x,y) é o valor da derivada nesse ponto, temos:
A equação y = 2x2 – 5x + c representa uma família de curvas. Mas objetivamos encontrar a curva dessa família que contém o ponto (3,7) e, para tanto, devemos substituir x por 3 e y por 7, obtendo: 7 = 2(9) – 5(3) + c 7 = 18 – 15 + c c=4
19
CÁLCULO INTEGRAL
Ao substituir c por 4 na equação y = 2x2 – 5x + c, obteremos a equação da curva pedida, que é: y = 2x2 – 5x + 4
Figura 9 – Representação de algumas curvas da família y = 2x2 – 5x + c , da curva y = 2x2 – 5x + c e da reta com inclinação y = 4x – 5. Fonte: Costa (2014).
O gráfico anteriormente representado foi construído com auxílio da ferramenta ZGrapher, que é um software livre, disponível para download em <http://download.cnet.com/ZGrapher/3000-2053_4-10350845. html>. Você mesmo pode criar seus gráficos com ele!
No gráfico, podemos observar que as parábolas coloridas representam parte da família de curvas y = 2x2 – 5x + c. A curva em vermelho é a curva da família y = 2x2 – 5x + c que contém o ponto (3,7). Muitas integrais não podem ser calculadas de forma imediata utilizando os teoremas que você viu até aqui. Portanto, é preciso aprender algumas técnicas que o auxiliarão na resolução dessas integrais. Para facilitar o trabalho na aplicação dessas técnicas, veja a seguir uma tabela básica de primitivas. Tabela 1 - Tabela básica de primitivas
20
AULA 1 – INTEGRAL INDEFINIDA
Fonte: Boulos (1999).
Você pode encontrar outras tabelas de integrais mais completas nos livros que constam nas referências desta aula.
2. ALGUMAS TÉCNICAS DE INTEGRAÇÃO Mesmo com as técnicas de integração, encontrar a primitiva de uma função nem sempre é uma tarefa fácil. É muito grande a quantidade de situações em que artifícios matemáticos específicos devem ser utilizados, os quais têm base nos métodos que você verá a seguir. » » Teorema 14: a regra da cadeia (ou encadeamento) para a antidiferenciação Considere ɡ uma função diferenciável, e o intervalo I é a imagem de ɡ. Suponha que f seja uma função definida em I e que F seja uma antiderivada de f em I. Então:
Como um caso particular do teorema 14, a partir do teorema 7, temos a fórmula da potência generalizada para a integral a seguir, que é o próximo Teorema. Teorema 15: se ɡ for uma função diferenciável e se n for um número racional
Exemplo 10 Calcule
.
Resolução
21
CÁLCULO INTEGRAL
Temos que ɡ(x) = 3x + 4 então ɡ’(x)dx = 3dx. Assim, precisamos de um fator de 3 que acompanhe dx para dar ɡ’(x)dx . Assim, escrevemos:
Do teorema 15, com ɡ(x) = 3x + 4 e ɡ’(x)dx = 3dx, temos:
Exemplo 11 Encontre fx2(5 + 2x3)8 dx. Resolução Note que, se ɡ(x) = 5 + 2x3, então e ɡ’(x)dx = 6x dx. Como fx2(5 + 2x3)8 dx = f (5 + 2x3)8 (x2)dx, precisamos de um fator 6 que acompanhe x dx para obtermos ɡ’(x)dx. Dessa forma, escrevemos:
Aplicando o teorema 15, com ɡ(x) = 5 + 2x e ɡ’(x)dx = 6x dx, obtemos:
22
AULA 1 – INTEGRAL INDEFINIDA
Exemplo 12 Calcule ∫ x cos2x dx. Resolução Tomando ɡ(x) = 2x2 então ɡ’(x)dx = 2x dx. Como ∫ x cos2x dx = ∫(cosx2) (x dx), precisamos de um fator 2 acompanhando x dx para obtermos ɡ’(x)dx. Assim, escrevemos:
Segundo o teorema 14:
Se, nessa fórmula, ∫ for a função cosseno, então F será a função seno, e teremos:
Sempre que você quiser conferir se o resultado de sua integração está correto, basta derivá-lo. Se você encontrar o integrando, ou seja, o termo que aparece após o símbolo de integração, então você integrou a função corretamente.
Às vezes, é possível calcular integrais fazendo uma mudança de variável, recurso muito útil quando você tem o produto de funções em que uma delas é a derivada da outra. Esse artifício facilita a visualização da integral que você tem a resolver. A seguir, você conhecerá um método de integração, que advém do método que você acabou de aprender.
2.1 INTEGRAÇÃO POR SUBSTITUIÇÃO (OU POR MUDANÇA DE VARIÁVEL) A integração por substituição (ou por mudança de variável) é baseada na Regra da Cadeia. Assim, poderíamos utilizá-la para resolver os exemplos 10, 11 e 12. A ideia de usar a Integração por Substituição é substituir uma integral relativamente complicada por uma mais simples. Para isso, basta mudar a variável x por uma nova variável u, que é uma função de x. O maior desafio desse método de integração é descobrir uma substituição apropriada. Você deve tentar escolher u como uma função cuja derivada também faça parte do integrando. E, se isso não der certo, tente escolher u como uma parte complicada do integrando.
23
CÁLCULO INTEGRAL
É comum cometer erros na escolha da substituição e, por isso, se algo der errado na primeira tentativa, tente outra alteração.
Agora, veja como ficariam as resoluções dos exemplos 10, 11 e 12 utilizando a Integração por Substituição. Exemplo 13 Calcule
.
Resolução
Como u = 3x + 4, temos:
Exemplo 14 Encontre fx2(5 + 2x3)8 dx Resolução
24
AULA 1 – INTEGRAL INDEFINIDA
Como u = 5 + 2x2, temos:
Exemplo 15 Calcule ∫ x cos2x dx. Resolução
Como u = x2, então:
Você percebeu que utilizar o método da substituição simplificou o uso do método da Regra da Cadeia? Você também poderia ter resolvido esse exemplo de outra forma. Observe:
Assim:
25
CÁLCULO INTEGRAL
Como
, temos:
Veja agora outro exemplo. Exemplo 16 Determine Resolução Seja u = 1 + x
.
x = u – 1
du = dx
Temos:
Ao aplicar o quadrado da diferença, temos:
Multiplicando tudo que está entre parênteses por u1/2, obtemos:
Como u = 1 + x, temos:
26
AULA 1 – INTEGRAL INDEFINIDA
Em ɡ(x), se você considerar c = 0, obterá a seguinte representação gráfica:
Figura 10 – Representação gráfica do exemplo 14. Fonte:Costa (2014).
Exemplo 17 Calcule ∫ sen x cos x dx. Resolução Note que o fator cos x é a derivada de sen x, então fazemos u = sen x. Logo, du = cos x dx . Substituindo em ∫ sen x cos x dx, temos:
Figura 11 – Representação gráfica do exemplo 14. Fonte: Costa (2014).
27
CÁLCULO INTEGRAL
O que você acabou de conhecer sobre integral indefinida e as técnicas de integração será extremamente importante e necessário para que você avance no estudo do Cálculo Integral. É um conteúdo fundamental para que você entenda a integral indefinida, ou seja, o valor numérico da variação da primitiva de uma função contínua em um intervalo [a, b], nesse intervalo. Em outras palavras, conhecendo ∫ f(x)dx, você pode encontrar o valor numérico dessa integral em um intervalo [a, b], que é .
Toda técnica de integração é limitada, ou seja, pode resolver algumas integrais, mas não todas.
Você aprenderá como resolver integrais indefinidas na aula 3. Por enquanto, o que você precisa saber é que o conceito de integral indefinida, bem como seus teoremas e suas técnicas de integração, é muito importante para que você possa aprender integral definida e avançar no estudo do Cálculo Integral.
CONCLUSÃO O Cálculo Diferencial e Integral será uma ferramenta muito útil para sua formação profissional. Nesta aula, você aprendeu algumas regras e conceitos básicos que você utilizará para resolver problemas futuros, que você verá em aulas mais à frente. Você viu algumas aplicações do Cálculo Diferencial e, mais especificamente, da Integral. Estudou a definição de integral indefinida e as visualizou como uma família de antiderivadas de determinada função. A partir daí, você estudou diversos teoremas que permitem encontrar as primitivas das funções conhecendo sua derivada, bem como as técnicas de integração. Assim, você deu um grande passo para aprender sobre a Integral Definida, que está diretamente ligada ao cálculo da área de regiões curvilíneas. Com isso, você deve ter percebido que a integral é muito importante na construção de modelos matemáticos que permitirão resolver situações-problema do cotidiano de seu ambiente de trabalho. Na próxima aula, você conhecerá mais um método de integração. Até lá!
28