Onesteel. Duragal product guide.

Page 1

№Бе

Dur aGal design capacity tables for steel hollow sections

MARCH 2002

DCTDHS/06 MARCH 2002

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

i


This publication, the DuraGal design capacity tables for hollow sections, is also available on CD, as part of the OneSteel Structural Products catalogue, and on our web site at www.onesteel.com Other OneSteel Pipe & Tube technical publications and design aids that are available are:

DuraGal design capacity tables for structural steel angles, channels & flats

Technical Information – DuraGal Profiles, angles, channels & flats, Technical Specification TS100 (There is no Australian Standard for these products, TS100 details technical requirements for manufacture & supply)

Technical Information – Structural Cold Formed Hollow Sections and Profiles (Product information, specifications, dimensions and properties and product availability)

CAD Files – DFX Format Files for OneSteel Market Mills Pipe & Tube structural steel sections, both hollows and profiles, available only from the web site (www.onesteel.com)

DuraGal Easy Welding Guide

DuraGal Easy Painting & Corrosion Protection Guide

DuraGal & Galtube Plus Powder Coating Guide

Product Guide (a list of all OneSteel Market Mills Pipe & Tube products)

DuraGal Flooring System (A bearer, joist and height adjustable pier system using DuraGal RHS)

DuraGal Mezzanine Flooring System for commercial storage and industrial applications.

DuraGal Post – The low maintenance steel verandah post

DuraGal Verandah beam spanning tables

DuraGal Plus for Lintels

For further information contact OneSteel Direct: Freecall

1800 1 STEEL (1800 1 78335)

Freefax

1800 101 141

E-mail

onesteeldirect@onesteel.com

Or visit web site at www.onesteel.com and print and download the section you need.

This publication has been prepared by OneSteel Market Mills an operating business group of which OneSteel Trading Pty Limited ABN 59 000 010 873 is a part of. Please note that the specifications and technical data are subject to change without notice and to ensure accuracy and adequacy users of this publication are requested to check the information to satisfy themselves and not to rely on the information without first doing so. Unless required by law, the company cannot accept any responsibility for any loss, damage or consequence resulting from the use of this publication. Photographs shown are representative only of typical applications, current at March 13 2002. This brochure is not an offer to trade and shall not form any part of the trading terms in any transaction. ©Copyright 2002. OneSteel Trading Pty Limited ABN 59 000 010 873   Registered Trademarks of OneSteel Trading Pty Limited ABN 59 000 010 873: DuraGal , Family of DuraGal Products Issue (6) March 2002. Printed March 13 2002

ii

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

DCTDHS/06 MARCH 2002


CONTENTS Page Foreword ............................................................................................................................. iv Acknowledgements ............................................................................................................. iv Preface ................................................................................................................................. v INTRODUCTION ................................................................................................................ vi GRADE .............................................................................................................................. vii LIMIT STATES DESIGN USING THESE TABLES .............................................................. xi GENERAL NOTES ON THE TABLES ............................................................................... xii CONVERSION TO SAFE WORKING LOADS .................................................................. xiii LIST OF PRINCIPAL SYMBOLS USED IN THE TABLES ................................................ xiv PART 1:

SECTION PROPERTIES ............................................................................... D1-1

PART 2:

Determination of DESIGN EFFECTS ........................................................... D2-1

PART 3:

SECTION CAPACITIES ................................................................................. D3-1

PART 4:

Members Subject to BENDING .................................................................... D4-1

PART 5:

Members Subject to AXIAL COMPRESSION .............................................. D5-1

PART 6:

Members Subject to AXIAL TENSION ......................................................... D6-1

PART 7:

Members subject to COMBINED ACTIONS ................................................ D7-1

PART 8:

MAXIMUM DESIGN LOADS for Beams ....................................................... D8-1

DCTDHS/06 MARCH 2002

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

iii


FOREWORD DuraGal C450L0 Rectangular Hollow Sections offer significant benefits in the design of tubular structures of all kinds. The high strength characteristics of DuraGal make the product design efficient in terms of mass reduction and therefore improve the economy of tubular structures. It is strongly recommended that DuraGal hollow sections manufactured by OneSteel be specified for use when any of the design information in these design capacity tables are used. The calculations including product tolerances, mechanical properties and chemical composition have been validated by testing using only OneSteel products. To ensure that the designers intentions are met, it is recommended that a note to this effect is included on any design documentation.

ACKNOWLEDGMENTS OneSteel Market Mills Pipe & Tube wish to acknowledge the cooperation of the Australian Institute of Steel Construction in allowing some data from their publication “Design Capacity Tables for Structural Steel Hollow Sections” to be included in this publication. Recognition and thanks are also due to:

AISC Technical Services staff

in the calculation and compilation of the technical text and design capacity tables. Acknowledgment is also made of Standards of Australia permission to reprint a table from AS 4100-1998.

PREVIOUS ISSUES June 1994 June 1996 September 1999 September 2000 July 2001 (electronic format only)

iv

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

DCTDHS/06 MARCH 2002


PREFACE DuraGal RHS is manufactured to meet the requirements of AS 1163 Grade C450L0. The companion is necessary as the DuraGal DCT’s include some research that was not available to The AISC and some design aids that were not incorparated in the AISC DCT’s. The Differences are :-

Dramatically increased segment length for full lateral restraint (FLR)[6].

Maximum design loads for continuous, fixed end and cantilever beams.

Elastic buckling loads (Nom) for various effective lengths.

DCTDHS/06 MARCH 2002

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

v


INTRODUCTION DESIGN CAP ACITY TABLES CAPACITY The DuraGal Design Capacity Tables have been prepared in accordance with AS 4100-1998 - Steel Structures. Research was undertaken at the Centre for Advanced Structural Engineering, The University of Sydney[1,2] to confirm the application of those member design rules in AS 4100 applicable to the design of coldformed sections for the determination of DuraGal Design Capacities. The tables in this publication use the method recommended in [6] for calculating the segment length for full lateral restraint (FLR) of Rectangular Hollow Sections (RHS). OneSteel Market Mills Pipe & Tube commissioned the Centre for Advanced Structural Engineering, Civil Engineering, The University of Sydney to undertake an analytical study of the lateral buckling of RHS. The study was conducted as RHS sections rarely buckle laterally, yet AS 4100-1990 Steel Structures required a reduction in the section capacity to account for lateral buckling in RHS members with comparatively closely spaced braces. The results of the study are contained in [6] and show that the rules in AS 4100 give conservative values of FLR for RHS. The results of the analytical investigation have been confirmed by a testing program. [8] Design capacity tables have been included for the 2.3 and 2.8 mm thick C450L0 material produced by OneSteel and are headed Non-Standard thickness. These tables are provided to allow designers to select an equivalent capacity section when converting to a OneSteel standard DuraGal section. Design capacities for sizes in thicknesses 1.6 to 6 mm are contained in tables headed Standard Thickness.

CONNECTIONS A research program[7] has been completed at the Centre for Advanced Structural Engineering, The University of Sydney, to develop rules for the design of connections in cold-formed steel hollow sections manufactured by OneSteel. The program included DuraGal and also covered sections less than 3.0 mm thick. Standards Australia, Amendment No. 3 to AS 4100-1990 Steel Structures, incorporated this research work and allowed the use of hollow sections to AS 1163, thinner than 3mm thick.

PLASTIC DESIGN Another research program[10] completed at the Centre for Advanced Structural Engineering, The University of Sydney, has shown that plastic design methods can be used in the design of portal frames using DuraGal hollow sections. Typically a 15% increase in strength design capacity can result. This increase can be of most benefit in rigid frames, ie low rise portal frames such as those used in commercial/ industrial sheds, garages, farm buildings, etc, where deflection due to design loads is not a critical limit state. The research was partially funded by CIDECT, an international committee for the development and study of tubular structures, and will eventually be incorporated in their series of design aids. OneSteel is developing a range of proprietary fittings suitable for use in the above types of buildings. For more information ring Freecall 1800 1 STEEL (1800 1 78335) or Freefax on 1800 101 141.

vi

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

DCTDHS/06 MARCH 2002


GRADE DuraGal RHS is manufactured by a unique cold forming process which ensures that it complies with the requirements of AS 1163 to both Grade C350L0 and Grade C450L0.

Grade and Mechanical Properties Grade

C350L0/C450L0

Minimum Yield Stress fy MPa

Minimum Tensile Strength fu MPa

Minimum elongation as a proportion of gauge length of 5.65√So

450

500

16

%

L0 indicates that DuraGal has Charpy V-notch impact properties as specified in AS 1163-1991. AS4100 - 1998 Steel Structures, in section 10, permits L0 grades to have the following minimum service temperature:

Thickness - mm

Lowest One Day Mean Ambient Temperature - oC

t< 6

-30

SURFACE FINISH External In-line Hot dip galvanizes over a prepared metal surface to produce a fully bonded coating with a minimum average coating mass of 100 g/m2 or approximately 14.3 microns thick, in accordance with AS/NZS 4792:1999, Hot-dip galvanized (zinc) coatings on ferrous hollow sections, applied by a continuous or a specialized process. A surface conversion coating is applied to protect the galvanizing prior to fabrication. Internal Black steel surface.

SIZE RANGE

DCTDHS/06 MARCH 2002

Square

Rectangle

20 x 20 to 100 x 100

50 x 20 to 150 x 50

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

vii


LENGTH RANGE DuraGal is stocked by distributors in the following lengths. Size

Standard Length - m

Non-Standard Lengths* - m

20 x 20 to 30 x 30

6.5

4.5 to 8.0

35 x 35 to 100 x 100 50 x 20 to 150 x 50

8.0

4.5 to 13.0

* Non-standard Lengths - Minimum order quantities and/or price extras may apply.

CHEMISTRY Chemical Composition (Cast or Product), % max. C

Si

Mn

P

S

Al

CE

0.20

0.05

1.60

0.040

0.030

0.10

0.39

The carbon equivalent (CE) in the above is calculated for an actual composition using the following equation: CE = C +

Mn Cr + Mo + V Ni + Cu + + 6 5 15

This value is used in AS/NZS 1554.1:2000 Structural steel welding - Welding of steel structures, to determine the welding preheat required. Steels with CE of less than 0.39 in general, do not require preheat.

TOLERANCES Cross Section Outside Dimension d or b mm

Maximum permissible Variation from specified outside dimension (mm)

< 50 > 50

Maximum permissible out-of-square at corners (degree)

± 0.5 ± 0.01d or ± 0.01b

1

d = outside depth of section b = outside breadth of section

Thickness

±10% of nominal

Mass

Not less than 0.96 times nominal

Straightness

Specified length 500

Twist

viii

2 mm plus 0.5 mm per metre of length

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

DCTDHS/06 MARCH 2002


Length Size

Mill Cut Length Tolerance*

20 x 20 to 30 x 30

- 0 + 25mm

35 x 35 to 100 x 100 50 x 20 to 150 x 50

- 0 + 50mm

* Exact lengths, subject to enquiry.

Corner Radii Size

Typical external corner radii

Typical angle of arc

t < 3mm t > 3mm

2.0t 2.5t

75ο 75o

t = section thickness

WELDING DuraGal is readily welded. Its thin, evenly applied galvanized coating ensures minimal welding fumes. However, the ventilation recommendations given in WTIA (Welding Technology Institute of Australia) Technical Note 7, July 1989 Table 17.2 should be observed. Mechanical dilution ventilation is advised for open work space and mechanical ventilation by local exhaust system for limited work space and confined space. DuraGal’s carbon equivalent of less than 0.39 allows it to be welded without preheat, in accordance with AS/NZS 1554.1:2000 Structural steel welding - Welding of steel structures. The following are recommended consumables. Process

Recommended Consumables

Manual Metal-Arc (AS/NZS 1553.1)

E48XX (Grade 2)

Gas-Metal-Arc (AS/NZS 2717.1)

W502

Submerged Arc (AS 1858.1)

W502Y

Flux-Cored Arc (AS 2203.1)

W502X.X

For more advice reference should be made to the DuraGal Easy Welding Guide available from OneSteel. Further research [5], [7] has shown that the mechanical properties of cold-formed hollow sections are not reduced by a wide range of welding operations. The grade designations of cold-formed hollow sections based on yield strength are also not affected by hot dip galvanising.

PAINTING DuraGal’s unique surface preparation and protective coating means painting and powder coating are easy and economical, and the result is a smooth attractive surface. Refer to the DuraGal Painting and Corrosion Protection Guide for more detailed information.

POWDER COATING A degrease and zinc phosphate pretreatment prior to applying the powder coating is recommended. Refer to the OneSteel Powder Coating Guide for more detailed recommendations. DCTDHS/06 MARCH 2002

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

ix


WHITE RUST If white rust is present, this should be removed before painting. Refer to the DuraGal Easy Painting Guide for information on the removal of white rust.

PROTECTION OF WELD AFFECTED AREAS See the DuraGal Easy Painting & Corrosion Protection Guide for information. Copies of the painting guide can be obtained by contacting OneSteel Direct Freecall

1800 1 STEEL (1800 1 78335)

Freefax

1800 101 141

E-mail

onesteeldirect@onesteel.com

REFERENCES [1]

Centre for Advanced Structural Engineering, The University of Sydney, “Tests to Determine the Reliability of Stub Columns of DuraGal RHS”, Investigation Report S916, August 1992.

[2]

Centre for Advanced Structural Engineering, The University of Sydney, “Tests to Determine the Reliability of Beams of DuraGal RHS”, Investigation Report S917, August 1992.

[3]

Hasan, S.W., Hancock, G.J., “Plastic Bending Tests of Cold-Formed Rectangular Hollow Sections”, Steel Construction, AISC, Vol.23, No.4 1989.

[4]

Key, P.W., Hasan, S.W., Hancock, G.J., “Column Behaviour of Cold-Formed Hollow Sections”, Journal of Structural Engineering, ASCE, Vol. 114, No. 2, 1988.

[5]

HERA, “Investigation of the Brittle Fracture Resistance of Cold-Formed Rectangular Hollow section. (Part 2)”, HERA Report R4-39, Auckland Industrial Development Division Department of Scientific and Industrial Research, 1987.

[6]

Centre For Advanced Structural Engineering, Civil Engineering, The University of Sydney, “Inelastic Buckling Strength of RHS’s”, Investigation Report S941, May 1993.

[7]

Centre For Advanced Structural Engineering, School of Civil and Mining Engineering, The University of Sydney, “Tests and Design of Butt Welds and Fillet Welds in DuraGal RHS Members”, Research Report No. R702, November 1994.

[8]

Zhao, X-L, Hancock, G.J., and Trahair, N.S., “Lateral-BuckIing Tests of Cold-Formed RHS Beams”, Journal of Structural Engineering, ASCE, Vol. 121, No. 11, 1995.

[9]

Centre for Advanced Structural Engineering, School of Civil and Mining Engineering, The University of Sydney, “Behaviour of Cold-Formed Slender SHS Beam Columns”, Research Report No. R707, September 1995.

[10]

Centre for Advanced Structural Engineering, School of Civil and Mining Engineering, The University of Sydney, “Plastic Design of Cold-Formed RHS”, CIDECT Project 2S-5-98, Final Report.

x

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

DCTDHS/06 MARCH 2002


LIMIT ST ATES DESIGN USING STA THESE T ABLES TABLES Definition of limit states - When a structure or part of a structure is rendered unfit for use it reaches a ‘limit state’. In this state it ceases to perform the functions or to satisfy the conditions for which it was designed. Relevant limit states for structural steel include strength, serviceability, stability, fatigue, brittle fracture, fire and earthquake. Only two limit states for structural steel are considered in these tables - strength limit state, and where applicable, serviceability limit state. Australian Standard AS 4100-1998 Steel Structures introduced a limit states approach to structural steel design within Australia. The code follows a semi-probabilistic limit states basis presented in a deterministic format. Limit states design requires structural members and connections to be proportioned such that the design capacity effect (S *) resulting from the design action (W *), is less than or equal to the design capacity (φRu) i.e. S * < φRu Design action or design load (W*) is the combination of the nominal actions or loads (e.g. transverse loads on a beam) imposed upon the structure, multiplied by the appropriate load factors as specified in AS 1170. These design actions/loads are identified by a superscript (*) after the appropriate action/load (e.g. W *L describes the design transverse load on a beam). Design action effects (S *) are the actions (e.g. design bending moments, shear forces, axial loads) computed from the design actions or design loads using an acceptable method of analysis. These effects are identified by a superscript (*) after the appropriate action effect (e.g. M * describes the design bending moment). Design capacity (fRu ) is the product of the nominal capacity (Ru) and the appropriate capacity factor (f) found in Table 3.4 of AS 4100. Ru is determined from Sections 5 to 8 as appropriate, in AS 4100. For example, consider the strength limit state design of a simply supported beam subject to a total transverse design load (W *L) distributed uniformly along the beam with full lateral restraint. The corresponding design action effect (S *) is the design bending moment (M *) which is determined by:

where

L =

span of the beam

In this case the design capacity (φRu) is equal to the design section moment capacity (φMs), which is given by:

where

φ = fy = Ze =

DCTDHS/06 MARCH 2002

the capacity factor yield stress used in design effective section modulus

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

xi


To satisfy the requirement for strength limit state design the following relationship must be satisfied: M * < φMs The maximum design bending moment is therefore equal to the design section moment capacity (M * < φMs), and the maximum design load is that design load (W *L) which corresponds to the maximum design bending moment. It should be noted that in this instance the bending capacity of the beam may not be the only criteria in the strength limit state which needs to be considered. (eg. shear capacity, bearing capacity). The DCTDHS gives values of design capacity (φRu) and maximum design load (W *), where applicable, determined in accordance with AS 4100. When using these tables, the designer must determine the relevant strength limit state design action (W *) and/or the corresponding design action effects (S *) to ensure the strength limit state requirements of AS 4100 are satisfied. Other limit states (e.g. serviceability, fatigue) must also be considered by the designer. Section 8 of the tables contains design aids for checking the serviceability limit state for some specific beam load and support configurations.

GENERAL NOTES ON THE TABLES CONTENTS AND USAGE For the commonly available Australian structural steel hollow sections, tables are provided for: (i)

(ii)

section dimensions and section properties, i.e: - Dimensions and Properties

(PART 1)

- Surface Areas

(PART 1)

- Properties for Assessing Section Capacity to AS 4100

(PART 1)

- Properties for Fire Design

(PART 1)

- Telescoping Sections

(PART 1)

design capacity (φRu) for: - Section Capacities

(PART 3)

- Members Subject to Bending

(PART 4)

- Members Subject to Axial Compression

(PART 5)

- Members Subject to Axial Tension

(PART 6)

(iii)

elastic buckling load (Nom)

(PART 7)

(iv)

maximum design load (W *) for: - Strength Limit State (W *L) for Beams

(PART 8)

(PART 8) - Serviceability Limit State (W *S) for Beams (simply supported, continuous, fixed end and cantilever beams) Acceptable methods of analysis for determining the design action effects are described in Section 4 of AS 4100 and PART 2 of this publication. Information relevant to such methods of analysis is presented briefly in PART 7 of this publication. The above recommendations apply to predominantly statically loaded structures but also in broad principle to dynamically loaded structures subject to moderate cyclic loads, as specified in AS 4100 Section 1, Fatigue.

xii

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

DCTDHS/06 MARCH 2002


PROPERTIES OF STEEL The properties of steel adopted in these tables are listed below: Property

Symbol

Value

Elastic Modulus

E

200 x 103 MPa

Shear Modulus

G

80 x 103 MPa

Density

ρ

7850 kg/m3

Poisson’s Ratio

ν

0.25

Coefficient of Thermal Expansion

αT

11.7 x 10-6 per oC

VALUES PUBLISHED IN TABLES The design capacities given in these tables are limit states design capacities calculated in accordance with AS 4100, and must be equal to or greater than the design action effect (eg. bending moment, shear force, axial force) resulting from the design loads. These design loads are not working loads, but are obtained by factoring the nominal (working) loads applied to the structure in accordance with the loading code AS 1170.

DCTDHS/06 MARCH 2002

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

xiii


LIST OF PRINCIPAL SYMBOLS USED IN THE TABLES Ae

effective area of a cross-section

Ag

gross area of a cross-section

An

net area of a cross-section

b

width of a section

be

effective width of a plate element

bb, bbf, bbw, bs

bearing widths defined in Section D4.3.2

C

torsional section modulus

Cm

factor for unequal moments

d

depth of a section

de

effective outside diameter of a circular hollow section

do

outside diameter of a circular hollow section

dw

depth of web

d1

clear depth between flanges

E

Young’s modulus of elasticity

fu

tensile strength used in design

fy

yield stress used in design

f *va

average design shear stress in the web

f *vm

maximum design shear stress in the web

G

shear modulus of elasticity; or nominal dead load

I

second moment of area of a cross-section

Iw

warping section constant

Ix

I about the cross-sectional major principal x-axis

Iy

I about the cross-sectional minor principal y-axis

J

torsional section constant

ke

member effective length factor

kf

form factor for members subject to axial compression

kl

load height effective length factor

kr

effective length factor for restraint against lateral rotation

ksm

exposed surface area to mass ratio

kt

correction factor for distribution of forces in a tension member; or twist restraint effective length factor

L

span or member length; or segment or sub-segment length

Le

effective length of a compression member; or effective length of a laterally unsupported flexural member

Mb

nominal member moment capacity

Mbx

Mb about major principal x-axis

Mix

nominal in-plane member moment capacity about major principal x-axis

Miy

nominal in-plane member moment capacity about minor principal y-axis

Mo

reference elastic buckling moment for a member subject to bending

Moa

amended elastic buckling moment for a member subject to bending

Mox

nominal out-of-plane member moment capacity about major principal x-axis

Mrx

Ms about major principal x-axis reduced by axial force

xiv

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

DCTDHS/06 MARCH 2002


Mry

Ms about minor principal y-axis reduced by axial force

Ms

nominal section moment capacity

Msx

Ms about major principal x-axis

Msy

Ms about minor principal y-axis

Mz

nominal torsional moment section capacity

M*

design bending moment

M *m

maximum calculated design bending moment along the length of a member or in a segment

M *x

design bending moment about major principal x-axis

M *y

design bending moment about minor principal y-axis

M *z

design torsional moment

Nc

nominal member capacity in compression

Ncx

Nc for member buckling about major principal x-axis

Ncy

Nc for member buckling about minor principal y-axis

Nom

elastic flexural buckling load of a member

Nomb

Nom for a braced member

Nomx

Nomy

Ď€ 2El x

(k e L ) 2 π 2El x

(k e L )

2

Nom about major principal x-axis

Nom about minor principal y-axis

Ns

nominal section capacity of a concentrically loaded compression member

Nt

nominal section capacity in tension

N*

design axial force, tensile or compressive

P

applied load

Rb

nominal bearing capacity of a web

R bb

nominal bearing buckling capacity

Rby

nominal bearing yield capacity

Ru

nominal capacity

r

radius of gyration

rext

external corner radius

rx

radius of gyration about major principal x-axis

ry

radius of gyration about minor principal y-axis

R*

design bearing force

S

plastic section modulus

Sx

S about major principal x-axis

Sy

S about minor principal y-axis

S*

design action effect

t

thickness of a section

tf

thickness of a flange

tw

thickness of a web

DCTDHS/06 MARCH 2002

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

xv


Vu

nominal shear capacity of a web with a uniform shear stress distribution

Vv

nominal shear capacity of a web

Vvx

Vv of a member in the major principal x-axis direction

Vvy

Vv of a member in the minor principal y-axis direction

V*

design shear force

W

applied load

W*

design action

W *L

strength limit state maximum design load

W *S

serviceability limit state maximum design load

Z

elastic section modulus

Ze

effective section modulus

Zex

Ze for bending about major principal x-axis

Zey

Ze for bending about minor principal y-axis

Zn

Z for bending about n-axis

Zx

Z for bending about major principal x-axis

Zy

Z for bending about minor principal y-axis

aa

compression member factor (as defined in Clause 6.3.3 of AS 4100)

ab

compression member section constant (as defined in Clause 6.3.3 of AS 4100)

ac

compression member slenderness reduction factor

am

moment modification factor for bending

α sh

modified slenderness reduction factor

αT

coefficient of thermal expansion for steel

βm

ratio of smaller to larger bending moments at the ends of a member

deflection of a member

δb

moment amplification factor for a braced member

δm

moment amplification factor, taken as the greater of δb and δs

δs

moment amplification factor for a sway member

η

compression member imperfection factor (as defined in Clause 6.3.3 of AS 4100)

θ

angle of twist per unit length slenderness ratio

λc

elastic buckling load factor

λe

plate element slenderness

λed

plate element deformation slenderness limit

λep

plate element plasticity slenderness limit

λey

plate element yield slenderness limit

λn

modified compression member slenderness

ν

Poisson’s ratio

ξ

compression member factor (as defined in Clause 6.3.3 of AS 4100)

π

pi ( ≈ 3.14159)

ρ

density of a material

φ

capacity factor

xvi

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

DCTDHS/06 MARCH 2002


PART 1 SECTION PROPERTIES

1 1 PAGE

D1.1

INTRODUCTION ............................................................................................................ D1-2

D1.2

SECTION PROPERTY TABLES .................................................................................... D1-2

D1.2.1

Dimensions and Properties ............................................................................................ D1-2

D1.2.1.1

Torsion Constants ........................................................................................................... D1-3

D1.2.1.2

Corner Radii ................................................................................................................... D1-4

D1.2.2

Surface Areas ................................................................................................................. D1-4

D1.2.3

Properties for Assessing Section Capacities .................................................................. D1-4

D1.2.3.1

Compactness .................................................................................................................. D1-5

D1.2.3.2

Effective Section Modulus............................................................................................... D1-5

D1.2.3.3

Form Factor .................................................................................................................... D1-6

D1.3

PROPERTIES FOR FIRE DESIGN ................................................................................ D1-7

D1.4

TELESCOPING SECTIONS ........................................................................................... D1-8

D1.4.1

Scope ............................................................................................................................. D1-8

D1.4.2

Method ............................................................................................................................ D1-8

TABLES TABLES D1.2-1 to D1.2-4 Dimensions and Properties/Properties for Assessing Section Capacity ...................... D1.11 TABLES D1.3-1 to D1.3-4 Properties for Fire Design ............................................................................................. D1-17 TABLES D1.4-1 to D1.4-2 Telescoping Information ................................................................................................ D1-22

NOTE: SEE PAGE vii FOR THE SPECIFIC MATERIAL STANDARD REFERRED TO BY THE SECTION TYPE AND STEEL GRADE IN THESE TABLES.

DCTDHS/06 MARCH 2002

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

D1-1


PART 1 SECTION PROPERTIES D1.1

INTRODUCTION

The section property tables include all relevant section dimensions and properties necessary for assessing ‘DuraGal’ tubular steel structures in accordance with AS 4100 - 1998.

D1.2

SECTION PROPERTY TABLES

For each group of structural hollow section the tables include:

Dimensions and Properties

Properties for Assessing Section Capacity to AS 4100.

D1.2.1 Dimensions and Properties The tables give standard dimensions and properties for DuraGal structural steel hollow sections. The second moments of area are required for serviceability calculations and the radii of gyration are required for assessing member stability. The elastic and plastic section moduli for bending about the various axes are also tabulated. These are utilised in an intermediate step to determine the effective section modulus for flexural design to AS 4100. The elastic section moduli are also used in the determination of elastic stresses where design for fatigue must be considered, or where the stress state at serviceability loads may need to be checked. The torsion constants are used in determining the torsional moment and angle of twist per unit length.

D1-2

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

DCTDHS/06 MARCH 2002


D 1.2.1.1 Torsion Constants The torsional inertia constant (J) and the torsional modulus constant (C) for square and rectangular hollow sections are defined as follows:  h  J = t 3 + 2kAh   3 

 3 h  + 2kAh  t =  3  k   t +     t

=

Ro + Ri 2

h

=

2[(b - t) + (d - t)] - 2Rc(4 - π)

Ah

=

(b - t)(d - t) - Rc2 (4 - π)

k

=

t

=

specified thickness of section

b

=

width of section

d

=

depth of section

Ro

=

outer corner radius

Ri

=

inner corner radius

Rc

=

mean corner radius

h

=

length of the mid-contour

Ah

=

area enclosed by h

k

=

integration constant

where Rc

and

2Aht h

as shown in Figure D1.2.1.1

Figure D1.2.1.1: Parameters for Calculation of Torsion Constants

The information contained in Section D1.2.1.1 was extracted from:

International Standard ISO 657/XIV, “Hot-rolled steel sections - Part XIV : Hot-finished structural hollow sections - Dimensions and sectional properties”, 1977.

DCTDHS/06 MARCH 2002

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

D1-3


D 1.2.1.2 Corner Radii The section properties presented in this publication are calculated in accordance with AS 1163. Figure D1.2.1.2 shows the corner radii detail used in determining section properties. However it should be noted that the actual corner geometry may vary from that shown.

a) thickness 3.0 mm and less

b) thickness greater than 3.0 mm

Figure D1.2.1.2: Corner Geometry for Determining Section Properties

D1.2.2 Surface Areas Surface area data may be used in estimating quantities of protective coatings. Tables D1.2-1 to D1.2-6 include values of external surface area per metre and external surface area per tonne.

D1.2.3 Properties for Assessing Section Capacities These properties are necessary for calculating the section capacities of the structural hollow sections in accordance with AS 4100. The effective section moduli, “compactness� of section, and the form factor are tabulated according to steel grade.

D1-4

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

DCTDHS/06 MARCH 2002


D 1.2.3.1 Compactness In Clauses 5.2.3, 5.2.4, and 5.2.5 of AS 4100, sections are described as compact, non-compact or slender. This type of categorisation provides a measure of the relative importance of yielding and local buckling on the effective section modulus. The tables include a column headed “compactness” where the compactness or otherwise of the sections is indicated for a given axis of bending as follows: C compact N non-compact S slender These terms are important with respect to selecting the methods of analysis that may be used to determine the design action effects (see Clause 4.5 of AS 4100) or in using the provisions of Section 8 of AS 4100 for designing members subject to combined actions. Clause 4.5 of AS 4100 does not currently permit plastic analysis when designing with structural hollow sections. Research has shown that most DuraGal hollow sections are suitable for design by plastic analysis and AS 4100 will be revised as soon as possible. In the interim, for details of the research in a case study phone OneSteel Direct on Freecall 1800 1 STEEL (1800 1 78335) or Freefax 1800 101 141.

D 1.2.3.2 Effective Section Modulus Subsequent to the evaluation of “compactness” the effective section modulus (Ze) is also tabulated. Ze is determined by the requirements of Clauses 5.2.2 to 5.2.5 inclusive, of AS 4100 and is used in the calculation of the nominal section moment capacity (Ms) as defined in Clause 5.2.1 of AS 4100. Table D1.2.3.2 gives values of plate element slenderness limits for structural hollow sections used in the determination of Ze in Tables D1.2-1 to D1.2-4. It should be noted that the deformation limit (λed) is only exceeded for one of the hollow sections manufactured in accordance with AS 1163 and listed in this manual. Therefore noticeable deformations (local buckling) will not occur under service loadings except for 150x50x2.0 product bent about the weak y-axis (λey = 97.9). Section

RHS,SHS

Element

Residual Stresses

Plasticity Limit λ ep

Yield Limit λ ey

Deformation Limit λ ed

Compression Flange

CF

30

40

90

Web

CF

82

115

-

Table D1.2.3.2: Plate Element Slenderness Limits for Members Subject to Bending The CF residual stress classification is used as DuraGal is manufactured in Australia by the cold forming process.

DCTDHS/06 MARCH 2002

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

D1-5


D 1.2.3.3 Form Factor The form factor (kf) determined in accordance with Clause 6.2.2 of AS 4100 is given by: kf =

where

Ae Ag

Ag = gross cross-sectional area Ae = effective area

Ae was calculated by summing the effective areas of the individual elements whose effective widths are specified: for RHS and SHS by

b

be = b − 2t

gFGH λλ IJK ≤ bb − 2t g ey e

where be =

effective width of section (Clause 6.2.4 of AS 4100)

b =

full width of section

t =

thickness of section

λey = yield slenderness limit (see Table D1.2.3.3) λe = plate element slenderness (see Table D1.2.3.3)

Table D1.2.3.3: Plate Element Slenderness Limits for Members Subject to Axial Compression

Section

RHS, SHS

Residual Stresses

CF

Yield Slenderness Limit

λ ey

40

Plate Element Slenderness

λe

bb − 2t g FG f IJ t H 250 K y

kf must be known in order to determine the nominal section capacity of a concentrically loaded compression member (Ns) as defined in Clause 6.2.1 of AS 4100. The calculation of kf indicates the degree to which the column section will buckle locally before squashing (i.e. kf = 1.0 signifies a column section which will yield rather than buckle locally in a short or stub column test). A knowledge of kf is also important when using the provisions of Section 8 of AS 4100 for designing members subject to combined actions.

D1-6

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

DCTDHS/06 MARCH 2002


D1.3

PROPERTIES FOR FIRE DESIGN

To assist in the design of ‘DuraGal’ sections for fire resistance in accordance with Section 12 of AS 4100, values of the exposed surface area to mass ratio (ksm) are tabulated for the various cases shown in Figure D1.3. For unprotected structural hollow sections the values of ksm corresponding to four- and three- sided exposure should be taken as those corresponding to Cases 1 and 4 respectively. In these instances fire protection is necessary where a fire rating is required. For members requiring the addition of fire protection materials, the “Handbook of Fire Protection Materials for Structural Steel” published by AISC [1] may be consulted to determine the thickness of proprietary materials required for a given value of ksm and Fire-Resistance Level (FRL). In the AISC Handbook, the exposed surface area to mass ratio (E) may be taken as equivalent to ksm. (See also references[3][4]) Figure D1.3: Cases for Calculation of Exposed Surface Area to Mass Ratio

Cases of fire exposure considered: 1 = Profile-protected 2 = Total Perimeter, Box-protected, No Gap 3 = Total Perimeter, Box-protected, 25 mm Gap 4 = Top Flange Excluded, Profile-protected 5 = Top Flange Excluded, Box-protected, No Gap 6 = Top Flange Excluded, Box-protected, 25 mm Gap Suggested references for Fire Design: [1]

Proe, D.J., Bennetts, I.D., Thomas, I.R., Szeto, W.T., “Handbook of Fire Protection Materials for Structural Steel”, Australian Institute of Steel Construction, 1990.

[2]

Bennetts, I.D., Proe, D.J., Thomas, I.R., “Guidelines for Assessment of Fire Resistance of Structural Steel Members”, Australian Institute of Steel Construction, 1987.

[3]

Thomas, I.R Bennetts, I.D and Proe, D.J., “Design of Steel Structures for Fire Resistance in Accordance with AS 4100”, Steel Construction, Australian Institute of Steel Construction, Vol 26, No 3, 1992.

[4]

O’Meagher, A.J., Bennetts, I.D., Dayawansa, P.H. and Thomas, I.R., “Design of Single Storey Industrial Buildings for Fire Resistance”, Steel Construction, Australian Institute of Steel Construction, Vol 26, No2, 1992.

DCTDHS/06 MARCH 2002

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

D1-7


D1.4

TELESCOPING SECTIONS

D1.4.1 Scope The tables of telescoping sections provided can be used to determine hollow sections which are suitable for telescoping.

D1.4.2 Method Total available clearance is tabulated to allow designers to select sections with suitable clearance for the type of fit required. Sections with clearances less than 2.0 mm are shown bold in the tables. Figure D1.4.2 shows typical telescoping data required to select appropriate sections. All calculations used in preparation of the tables are based on the nominal dimensions of hollow sections and manufacturing tolerances specified in AS 1163. Owing to dimensional tolerances permitted within that standard actual clearances of sections manufactured to this specification will vary marginally from the values tabulated. For tight fits, varying corner radii and internal weld heights can affect telescoping of sections and it is recommended that some form of testing is carried out prior to committing material. Where telescoping over some length is required, additional clearance may be needed to allow for straightness of the section. Telescoping of SHS and RHS where the female (outer) has a larger wall thickness requires careful consideration of corner clearances due to the larger corner radii of the thicker section. Typical corner geometry may differ from that used for calculation of section properties and reference should be made to individual manufacturers.

D1-8

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

DCTDHS/06 MARCH 2002


Figure D1.4.2: Telescoping Data

DCTDHS/06 MARCH 2002

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

D1-9


[ BLANK ]

D1-10

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

DCTDHS/06 MARCH 2002


DCTDHS/06 MARCH 2002

TABLE D1.2-1(1)

DIMENSIONS AND PROPERTIES DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness

DIMENSIONS AND RATIOS Designation

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

d

b

mm

mm

Mass per m

t

External Surface Area

PROPERTIES

b-2t

d-2t

t

t

mmkg/m

m2/m

Gross

m2/t

mm 2

About x-axis

Section Area

Ag

per m per t

PROPERTIES FOR DESIGN TO AS 4100

Ix

Zx

106mm4 103mm 3 103mm3

Sx

rx

Iy

mm 106mm4 103mm3

Zy

Sy

103mm 3

Torsion

Form

Constant Modulus

Factor

Torsion

About y-axis

ry

J

C

mm 106mm4 103mm3

kf

About x-axis

位ex

Compact- Z ex ness 103mm 3

(C,N,S)

About y-axis

位ey

Compactness

Zey

103mm3

(C,N,S)

150 x 50 x 6.0 RHS 16.7 5.0 RHS 14.2 4.0 RHS 11.6 3.0 RHS 8.96 2.5 RHS 7.53 2.0 RHS 6.07

0.374 0.379 0.383 0.390 0.391 0.393

22.4 26.6 32.9 43.5 52.0 64.7

6.33 8.00 10.5 14.7 18.0 23.0

23.0 28.0 35.5 48.0 58.0 73.0

2130 1810 1480 1140 959 774

5.06 4.44 3.74 2.99 2.54 2.08

67.5 59.2 49.8 39.8 33.9 27.7

91.2 78.9 65.4 51.4 43.5 35.3

48.7 49.5 50.2 51.2 51.5 51.8

0.860 0.765 0.653 0.526 0.452 0.372

34.4 30.6 26.1 21.1 18.1 14.9

40.9 35.7 29.8 23.5 19.9 16.3

20.1 20.5 21.0 21.5 21.7 21.9

2.63 2.30 1.93 1.50 1.28 1.04

64.3 56.8 48.2 38.3 32.8 26.9

1.00 1.00 0.887 0.713 0.633 0.553

8.50 10.7 14.1 19.7 24.1 30.9

C C C C C N

91.2 78.9 65.4 51.4 43.5 31.6

30.9 37.6 47.6 64.4 77.8 97.9

N N S S S S

40.4 31.8 22.7 14.5 10.9 7.64

125 x 75 x 6.0 RHS 16.7 5.0 RHS 14.2 4.0 RHS 11.6 3.0 RHS 8.96 2.5 RHS 7.53 2.0 RHS 6.07

0.374 0.379 0.383 0.390 0.391 0.393

22.4 26.6 32.9 43.5 52.0 64.7

10.5 13.0 16.8 23.0 28.0 35.5

18.8 23.0 29.3 39.7 48.0 60.5

2130 1810 1480 1140 959 774

4.16 3.64 3.05 2.43 2.07 1.69

66.6 58.3 48.9 38.9 33.0 27.0

84.2 72.7 60.3 47.3 40.0 32.5

44.2 44.8 45.4 46.1 46.4 46.7

1.87 1.65 1.39 1.11 0.942 0.771

50.0 43.9 37.0 29.5 25.1 20.6

59.1 51.1 42.4 33.3 28.2 22.9

29.6 30.1 30.6 31.1 31.4 31.6

4.44 3.83 3.16 2.43 2.05 1.67

86.2 75.3 63.0 49.5 42.1 34.4

1.00 1.00 1.00 0.845 0.763 0.624

14.1 17.4 22.5 30.9 37.6 47.6

C C C N N S

84.2 72.7 60.3 46.5 34.7 24.8

25.3 30.9 39.2 53.2 64.4 81.2

C N N S S S

59.1 50.5 37.4 24.2 18.2 13.0

100 x 50 x 6.0 RHS 12.0 5.0 RHS 10.3 4.0 RHS 8.49 3.5 RHS 7.53 3.0 RHS 6.60 2.5 RHS 5.56 2.0 RHS 4.50 1.6 RHS 3.64

0.274 0.279 0.283 0.285 0.290 0.291 0.293 0.295

22.8 27.0 33.3 37.9 43.9 52.4 65.1 81.0

6.33 8.00 10.5 12.3 14.7 18.0 23.0 29.3

14.7 1530 18.0 1310 23.0 1080 26.6 959 31.3 841 38.0 709 48.0 574 60.5 463

1.71 1.53 1.31 1.18 1.06 0.912 0.750 0.613

34.2 30.6 26.1 23.6 21.3 18.2 15.0 12.3

45.3 39.8 33.4 29.9 26.7 22.7 18.5 15.0

33.4 34.1 34.8 35.1 35.6 35.9 36.2 36.4

0.567 0.511 0.441 0.400 0.361 0.311 0.257 0.211

22.7 20.4 17.6 16.0 14.4 12.4 10.3 8.43

27.7 24.4 20.6 18.5 16.4 14.0 11.5 9.33

19.2 19.7 20.2 20.4 20.7 20.9 21.2 21.3

1.53 1.35 1.13 1.01 0.886 0.754 0.616 0.501

40.9 36.5 31.2 28.2 25.0 21.5 17.7 14.5

1.00 1.00 1.00 1.00 0.967 0.856 0.746 0.661

8.50 10.7 14.1 16.5 19.7 24.1 30.9 39.2

C C C C C C N N

45.3 39.8 33.4 29.9 26.7 22.7 18.2 12.5

19.7 24.1 30.9 35.6 42.0 51.0 64.4 81.2

C C N N S S S S

27.7 24.4 20.3 17.1 13.9 10.4 7.33 5.19

Notes:

1.

D1-11

2. 3.

For Grade C450L0 fy=450 MPa and fu =500 MPa. fy = yield stress used in design; fu = tensile strength used in design; as defined in AS 4100. Grade C450L0 to AS 1163 is cold-formed and therefore is allocated the CF residual stresses classification in AS 4100. C =Compact Section; N = Non-compact Section; S =Slender Section; as defined in AS 4100.


D1-12

TABLE D1.2-1(2)

DIMENSIONS AND PROPERTIES DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness

DIMENSIONS AND RATIOS Designation

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

d

b

mm

mm

Mass per m

t

External Surface Area

PROPERTIES

b-2t

d-2t

t

t

mmkg/m

75 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

m2/m

m2/t

9.67 8.35 6.92 5.42 4.58 3.72 3.01

0.224 0.229 0.233 0.240 0.241 0.243 0.245

mm 2

23.2 27.4 33.7 44.2 52.7 65.4 81.3

Gross

6.33 8.00 10.5 14.7 18.0 23.0 29.3

About x-axis

Section Area

Ag

per m per t

PROPERTIES FOR DESIGN TO AS 4100

Ix

Zx

106mm4 103mm 3 103mm3

10.5 1230 13.0 1060 16.8 881 23.0 691 28.0 584 35.5 474 44.9 383

Sx

rx

Iy

mm 106mm4 103mm3

Zy

Sy

103mm 3

Torsion

Form

Constant Modulus

Factor

Torsion

About y-axis

ry

J

C

mm 106mm4 103mm3

0.800 0.726 0.630 0.522 0.450 0.372 0.305

21.3 19.4 16.8 13.9 12.0 9.91 8.14

28.1 24.9 21.1 17.1 14.6 12.0 9.75

25.5 26.1 26.7 27.5 27.7 28.0 28.2

0.421 0.384 0.335 0.278 0.240 0.199 0.164

16.9 15.4 13.4 11.1 9.60 7.96 6.56

21.1 18.8 16.0 12.9 11.0 9.06 7.40

18.5 19.0 19.5 20.0 20.3 20.5 20.7

1.01 0.891 0.754 0.593 0.505 0.414 0.337

kf

About x-axis

位ex

103mm 3

(C,N,S)

29.3 26.4 22.7 18.4 15.9 13.1 10.8

Compact- Z ex ness

About y-axis

位ey

Compactness

Zey

103mm3

(C,N,S)

1.00 1.00 1.00 1.00 1.00 0.904 0.799

8.50 10.7 14.1 19.7 24.1 30.9 39.2

C C C C C N N

28.1 24.9 21.1 17.1 14.6 11.8 8.26

14.1 17.4 22.5 30.9 37.6 47.6 60.2

C C C N N S S

21.1 18.8 16.0 12.8 9.95 7.07 5.01

75 x 25 x 2.5 RHS 3.60 2.0 RHS 2.93 1.6 RHS 2.38

0.191 53.1 0.193 65.8 0.195 81.7

8.00 28.0 10.5 35.5 13.6 44.9

459 374 303

0.285 0.238 0.197

7.60 6.36 5.26

10.1 8.31 6.81

24.9 25.3 25.5

0.0487 0.0414 0.0347

3.89 3.31 2.78

4.53 3.77 3.11

10.3 10.5 10.7

0.144 0.120 0.0993

7.14 6.04 5.05

1.00 0.878 0.746

10.7 14.1 18.3

C C C

10.1 8.31 6.81

37.6 47.6 60.2

N S S

4.05 2.88 2.02

65 x 35 x 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS

5.35 4.25 3.60 2.93

0.183 0.190 0.191 0.193

34.2 44.7 53.1 65.8

6.75 9.67 12.0 15.5

14.3 19.7 24.0 30.5

681 541 459 374

0.328 0.281 0.244 0.204

10.1 8.65 7.52 6.28

13.3 11.0 9.45 7.80

22.0 22.8 23.1 23.4

0.123 0.106 0.0926 0.0778

7.03 6.04 5.29 4.44

8.58 7.11 6.13 5.07

13.4 14.0 14.2 14.4

0.320 0.259 0.223 0.184

12.5 10.4 9.10 7.62

1.00 1.00 1.00 0.985

9.06 13.0 16.1 20.8

C C C C

13.3 11.0 9.45 7.80

19.1 26.4 32.2 40.9

C C N S

8.58 7.11 5.95 4.37

50 x 25 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

3.07 2.62 2.15 1.75

0.140 0.141 0.143 0.145

45.5 54.0 66.6 82.5

6.33 8.00 10.5 13.6

14.7 18.0 23.0 29.3

391 334 274 223

0.112 0.0989 0.0838 0.0702

4.47 3.95 3.35 2.81

5.86 5.11 4.26 3.53

16.9 17.2 17.5 17.7

0.0367 0.0328 0.0281 0.0237

2.93 2.62 2.25 1.90

3.56 3.12 2.62 2.17

9.69 9.91 10.1 10.3

0.0964 0.0843 0.0706 0.0585

5.18 4.60 3.92 3.29

1.00 1.00 1.00 1.00

8.50 10.7 14.1 18.3

C C C C

5.86 5.11 4.26 3.53

19.7 24.1 30.9 39.2

C C N N

3.56 3.12 2.58 1.92

50 x 20 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

2.83 2.42 1.99 1.63

0.130 0.131 0.133 0.135

45.8 54.2 66.8 82.7

4.67 6.00 8.00 10.5

14.7 18.0 23.0 29.3

361 309 254 207

0.0951 0.0848 0.0723 0.0608

3.81 3.39 2.89 2.43

5.16 4.51 3.78 3.14

16.2 16.6 16.9 17.1

0.0212 0.0192 0.0167 0.0142

2.12 1.92 1.67 1.42

2.63 2.32 1.96 1.63

7.67 7.89 8.11 8.29

0.0620 0.0550 0.0466 0.0389

3.88 3.49 3.00 2.55

1.00 1.00 1.00 1.00

6.26 8.05 10.7 14.1

C C C C

5.16 4.51 3.78 3.14

19.7 24.1 30.9 39.2

C C N N

2.63 2.32 1.93 1.44

Notes:

1.

DCTDHS/06 MARCH 2002

2. 3.

For Grade C450L0 fy=450 MPa and fu =500 MPa. fy = yield stress used in design; fu = tensile strength used in design; as defined in AS 4100. Grade C450L0 to AS 1163 is cold-formed and therefore is allocated the CF residual stresses classification in AS 4100. C =Compact Section; N = Non-compact Section; S =Slender Section; as defined in AS 4100.


DCTDHS/06 MARCH 2002

TABLE D1.2-2

DIMENSIONS AND PROPERTIES DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

DIMENSIONS AND RATIOS Designation

d

b

mm

mm

Mass per m

t mmkg/m

External Surface Area

b-2t

PROPERTIES d-2t

t

t

m2/m

Gross

m2/t

mm 2

About x-axis

Section Area

Ag

per m per t

PROPERTIES FOR DESIGN TO AS 4100

Ix

Zx

106mm4 103mm 3 103mm3

Sx

rx

Iy

mm 106mm4 103mm3

Zy 103mm 3

Sy

Torsion

Form

Constant Modulus

Factor

Torsion

About y-axis

ry

J

C

mm 106mm4 103mm3

kf

About x-axis

位ex

Compact- Z ex ness 103mm 3

(C,N,S)

About y-axis

位ey

Compactness

Zey

103mm3

(C,N,S)

125 x 75 x 2.8 RHS 8.39 2.3 RHS 6.95

0.390 46.5 0.392 56.4

24.8 30.6

42.6 1070 52.3 885

2.29 1.92

36.6 30.6

44.4 37.0

46.2 46.5

1.04 0.875

27.8 23.3

31.3 26.1

31.2 31.4

2.28 1.90

46.6 39.1

0.812 0.721

33.3 41.1

N S

41.8 30.2

57.2 70.2

S S

21.7 16.1

100 x 50 x 2.8 RHS 6.19 2.3 RHS 5.14

0.290 46.9 0.292 56.8

15.9 19.7

33.7 41.5

788 655

1.00 0.848

20.1 17.0

25.1 21.0

35.7 36.0

0.341 0.290

13.6 11.6

15.5 13.0

20.8 21.0

0.834 0.699

23.6 20.0

0.922 0.812

21.3 26.5

C C

25.1 21.0

45.2 55.6

S S

12.5 9.12

75 x 50 x 2.8 RHS 5.09 2.3 RHS 4.24

0.240 47.2 0.242 57.1

15.9 19.7

24.8 30.6

648 540

0.493 0.419

13.2 11.2

16.1 13.6

27.6 27.9

0.263 0.224

10.5 8.96

12.2 10.3

20.1 20.4

0.558 0.469

17.4 14.8

1.00 0.984

21.3 26.5

C C

16.1 13.6

33.3 41.1

N S

11.6 8.80

65 x 35 x 2.8 RHS 3.99 2.3 RHS 3.34

0.190 47.7 0.192 57.6

10.5 13.2

21.2 26.3

508 425

0.267 0.229

8.21 7.04

10.4 8.81

22.9 23.2

0.101 0.0869

5.75 4.96

6.73 5.72

14.1 14.3

0.245 0.208

9.92 8.53

1.00 1.00

14.1 17.7

C C

10.4 8.81

28.5 35.2

C N

6.73 5.32

50 x 25 x 2.8 RHS 2.89 2.3 RHS 2.44

0.140 48.5 0.142 58.4

6.93 15.9 8.87 19.7

368 310

0.107 0.0931

4.27 3.72

5.57 4.78

17.0 17.3

0.0352 0.0310

2.82 2.48

3.39 2.92

9.78 0.0917 10.0 0.0790

4.96 4.34

1.00 1.00

9.30 11.9

C C

5.57 4.78

21.3 26.5

C C

3.39 2.92

50 x 20 x 2.8 RHS 2.67 2.3 RHS 2.25

0.130 48.8 0.132 58.6

5.14 15.9 6.70 19.7

340 287

0.0912 0.0800

3.65 3.20

4.91 4.23

16.4 16.7

0.0205 0.0183

2.05 1.83

2.51 7,76 0.0594 2.18 7.98 0.0518

3.73 3.31

1.00 1 .00

6.90 8.98

C C

4.91 4.23

21.3 26.5

C C

2.51 2.18

Notes:

1. 2. 3.

For Grade C450L0 fy=450 MPa and fu =500 MPa. fy = yield stress used in design; fu = tensile strength used in design; as defined in AS 4100. Grade C450L0 to AS 1163 is cold-formed and therefore is allocated the CF residual stresses classification in AS 4100. C =Compact Section; N = Non-compact Section; S =Slender Section; as defined in AS 4100.

D1-13


D1-14

TABLE D1.2-3(1)

DIMENSIONS AND PROPERTIES DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness

DIMENSIONS AND RATIOS Designation

Mass per m

External Surface Area

PROPERTIES b-2t t

Gross

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002

b

t

per m

per t

Ag

mm

mm

mm

kg/m

m2/m

mm 2

16.7 14.2 11.6 8.96 7.53 6.07

0.374 0.379 0.383 0.390 0.391 0.393

22.4 26.6 32.9 43.5 52.0 64.7

14.7 18.0 23.0 31.3 38.0 48.0

SHS SHS SHS SHS

8.01 6.74 5.45 4.39

0.350 0.351 0.353 0.355

43.6 52.1 64.8 80.8

89 x 89 x 6.0 SHS 5.0 SHS 3.5 SHS

14.6 12.5 9.06

0.330 0.334 0.341

75 x 75 x 6.0 5.0 4.0 3.5 3.0 2.5 2.0

SHS SHS SHS SHS SHS SHS SHS

12.0 10.3 8.49 7.53 6.60 5.56 4.50

65 x 65 x 6.0 5.0 4.0 3.0 2.5 2.0 1.6

SHS SHS SHS SHS SHS SHS SHS

10.1 8.75 7.23 5.66 4.78 3.88 3.13

90 x 90 x 3.0 2.5 2.0 1.6

Notes:

1. 2. 3.

About x-, y- and n-axis

Section Area

d

100 x100 x 6.0 SHS 5.0 SHS 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS

PROPERTIES FOR DESIGN TO AS 4100

Ix

Torsion

Torsion

Form

Constant

Modulus

Factor

kf

位e

Compactness

Ze

(C,N,S)

103mm3

19.7 24.1 30.9 42.0 51.0 64.4

C C N S S S

73.5 63.5 51.9 34.4 26.2 19.0

1.00 0.878 0.696 0.553

37.6 45.6 57.7 72.8

N S S S

29.4 22.3 16.1 11.6

71.6 62.7 47.1

1.00 1.00 1.00

17.2 21.2 31.4

C C N

56.6 49.1 35.7

2.04 1.77 1.48 1.32 1.15 0.971 0.790

48.2 42.6 36.1 32.5 28.7 24.6 20.2

1.00 1.00 1.00 1.00 1.00 1.00 0.841

14.1 17.4 22.5 26.1 30.9 37.6 47.6

C C C C N N S

38.4 33.6 28.2 25.3 22.2 17.0 12.2

1.27 1.12 0.939 0.733 0.624 0.509 0.414

34.2 30.6 26.2 21.0 18.1 14.9 12.2

1.00 1.00 1.00 1.00 1.00 0.978 0.774

11.9 14.8 19.1 26.4 32.2 40.9 51.8

C C C C N S S

27.5 24.3 20.6 16.6 13.7 9.80 7.03

Zx

Zn

Sx

rx

J

C

106mm 4

103mm 3

103mm3

103mm3

mm

106mm4

103mm3

2130 1810 1480 1140 959 774

3.04 2.66 2.23 1.77 1.51 1.23

60.7 53.1 44.6 35.4 30.1 24.6

47.1 40.5 33.5 26.0 21.9 17.8

73.5 63.5 52.6 41.2 34.9 28.3

37.7 38.3 38.8 39.4 39.6 39.9

5.15 4.42 3.63 2.79 2.35 1.91

93.6 81.4 68.0 53.2 45.2 36.9

1.00 1.00 1.00 0.952 0.787 0.624

28.0 34.0 43.0 54.3

1020 859 694 559

1.27 1.09 0.889 0.724

28.3 24.1 19.7 16.1

20.8 17.6 14.3 11.6

33.0 28.0 22.8 18.5

35.3 35.6 35.8 36.0

2.01 1.70 1.38 1.12

42.5 36.2 29.6 24.1

22.5 26.7 37.6

12.8 15.8 23.4

1870 1590 1150

2.06 1.81 1.37

46.2 40.7 30.9

36.3 31.4 23.2

56.6 49.1 36.5

33.2 33.7 34.5

3.54 3.05 2.24

0.274 0.279 0.283 0.285 0.290 0.291 0.293

22.8 27.0 33.3 37.9 43.9 52.4 65.1

10.5 13.0 16.8 19.4 23.0 28.0 35.5

1530 1310 1080 959 841 709 574

1.16 1.03 0.882 0.797 0.716 0.614 0.505

30.9 27.5 23.5 21.3 19.1 16.4 13.5

24.7 21.6 18.0 16.1 14.2 12.0 9.83

38.4 33.6 28.2 25.3 22.5 19.1 15.6

27.5 28.0 28.6 28.8 29.2 29.4 29.7

0.234 0.239 0.243 0.250 0.251 0.253 0.255

23.1 27.3 33.6 44.1 52.6 65.3 81.2

8.83 11.0 14.3 19.7 24.0 30.5 38.6

1290 1110 921 721 609 494 399

0.706 0.638 0.552 0.454 0.391 0.323 0.265

21.7 19.6 17.0 14.0 12.0 9.94 8.16

17.8 15.6 13.2 10.4 8.91 7.29 5.94

27.5 24.3 20.6 16.6 14.1 11.6 9.44

23.4 23.9 24.5 25.1 25.3 25.6 25.8

For Grade C450L0 fy=450 MPa and fu =500 MPa. fy = yield stress used in design; fu = tensile strength used in design; as defined in AS 4100. Grade C450L0 to AS 1163 is cold-formed and therefore is allocated the CF residual stresses classification in AS 4100. C =Compact Section; N = Non-compact Section; S =Slender Section; as defined in AS 4100.

About x- and y-axis


DCTDHS/06 MARCH 2002

TABLE D1.2-3(2)

DIMENSIONS AND PROPERTIES DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness

DIMENSIONS AND RATIOS Designation

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

d

b

mm

mm

Mass per m

t mm

50 x 50 x 5.0 4.0 3.0 2.5 2.0 1.6

External Surface Area per m

per t

kg/m

2

m /m

PROPERTIES b-2t t

PROPERTIES FOR DESIGN TO AS 4100

Gross

About x-, y- and n-axis

Section Area

Ag mm

Ix 2

6

10 mm

Zx 4

3

10 mm

Zn 3

3

10 mm

Sx 3

3

10 mm

Torsion

Torsion

Form

Constant

Modulus

Factor

J

C

kf

rx 3

6

mm

10 mm

4

3

10 mm

About x- and y-axis

位e

3

Compactness

Ze

(C,N,S)

103mm3

SHS SHS SHS SHS SHS SHS

6.39 5.35 4.25 3.60 2.93 2.38

0.179 0.183 0.190 0.191 0.193 0.195

27.9 34.2 44.7 53.1 65.8 81.7

8.00 10.5 14.7 18.0 23.0 29.3

814 681 541 459 374 303

0.257 0.229 0.195 0.169 0.141 0.117

10.3 9.15 7.79 6.78 5.66 4.68

8.51 7.33 5.92 5.09 4.20 3.44

13.2 11.4 9.39 8.07 6.66 5.46

17.8 18.3 19.0 19.2 19.5 19.6

0.469 0.403 0.321 0.275 0.226 0.185

16.3 14.3 11.8 10.2 8.51 7.03

1.00 1.00 1.00 1.00 1.00 1.00

10.7 14.1 19.7 24.1 30.9 39.2

C C C C N N

13.2 11.4 9.39 8.07 6.58 4.74

40 x 40 x 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS

4.09 3.30 2.82 2.31 1.88

0.143 0.150 0.151 0.153 0.155

34.9 45.3 53.7 66.4 82.3

8.00 11.3 14.0 18.0 23.0

521 421 359 294 239

0.105 0.0932 0.0822 0.0694 0.0579

5.26 4.66 4.11 3.47 2.90

4.36 3.61 3.13 2.61 2.15

6.74 5.72 4.97 4.13 3.41

14.2 14.9 15.1 15.4 15.6

0.192 0.158 0.136 0.113 0.0927

8.33 7.07 6.21 5.23 4.36

1.00 1.00 1.00 1.00 1.00

10.7 15.2 18.8 24.1 30.9

C C C C N

6.74 5.72 4.97 4.13 3.37

35 x 35 x 3.0 2.5 2.0 1.6

SHS SHS SHS SHS

2.83 2.42 1.99 1.63

0.130 0.131 0.133 0.135

45.8 54.2 66.8 82.7

9.67 12.0 15.5 19.9

361 309 254 207

0.0595 0.0529 0.0451 0.0379

3.40 3.02 2.58 2.16

2.67 2.33 1.95 1.62

4.23 3.69 3.09 2.57

12.8 13.1 13.3 13.5

0.102 0.0889 0.0741 0.0611

5.18 4.58 3.89 3.26

1.00 1.00 1.00 1.00

13.0 16.1 20.8 26.7

C C C C

4.23 3.69 3.09 2.57

30 x 30 x 2.0 SHS 1.6 SHS

1.68 1.38

0.113 0.115

67.4 83.3

13.0 16.8

214 175

0.0272 0.0231

1.81 1.54

1.39 1.16

2.21 1.84

11.3 11.5

0.0454 0.0377

2.75 2.32

1.00 1.00

17.4 22.5

C C

2.21 1.84

25 x 25 x 2.5 SHS 2.0 SHS 1.6 SHS

1.64 1.36 1.12

0.0914 0.0931 0.0945

55.7 68.3 84.1

8.00 10.5 13.6

209 174 143

0.0169 0.0148 0.0128

1.35 1.19 1.02

1.08 0.926 0.780

1.71 1.47 1.24

8.99 9.24 9.44

0.0297 0.0253 0.0212

2.07 1.80 1.54

1.00 1.00 1.00

10.7 14.1 18.3

C C C

1.71 1.47 1.24

20 x 20 x 1.6 SHS

0.873

0.0745

85.4

10.5

111

0.00608

0.608

0.474

0.751

7.39

0.0103

0.924

1.00

14.1

C

0.751

Notes:

1.

D1-15

2. 3.

For Grade C450L0 fy=450 MPa and fu =500 MPa. fy = yield stress used in design; fu = tensile strength used in design; as defined in AS 4100. Grade C450L0 to AS 1163 is cold-formed and therefore is allocated the CF residual stresses classification in AS 4100. C =Compact Section; N = Non-compact Section; S =Slender Section; as defined in AS 4100.


D1-16 TABLE D1.2-4

DIMENSIONS AND PROPERTIES DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

DIMENSIONS AND RATIOS Designation

Mass per m

External Surface Area

PROPERTIES b-2t t

PROPERTIES FOR DESIGN TO AS 4100

Gross

About x-, y- and n-axis

Section Area

d

b

t

per m

per t

Ag

mm

mm

mm

kg/m

m2/m

mm 2

Ix 106mm 4

Torsion

Torsion

Form

Constant

Modulus

Factor

kf

Zx

Zn

Sx

rx

J

C

103mm 3

103mm3

103mm3

mm

106mm4

103mm3

About x- and y-axis

位e

Compactness

Ze

(C,N,S)

103mm3

100 x 100 x 2.8 SHS 2.3 SHS

8.39 6.95

0.390 0.392

46.5 56.4

33.7 41.5

1070 885

1.67 1.40

33.3 27.9

24.4 20.3

38.7 32.3

39.5 39.7

2.61 2.17

50.0 41.9

0.886 0.721

45.2 55.6

S S

31.0 23.1

75 x 75 x 2.8 SHS 2.3 SHS

6.19 5.14

0.290 0.292

46.9 56.8

24.8 30.6

788 655

0.676 0.571

18.0 15.2

13.3 11.2

21.2 17.7

29.3 29.5

1.08 0.900

27.1 22.9

1.00 0.974

33.3 41.1

N S

20.1 15.0

65 x 65 x 2.3 SHS

4.42

0.252

57.0

26.3

563

0.364

11.2

13.1

25.4

0.579

16.9

1.00

35.2

N

12.1

50 x 50 x 2.8 SHS 2.3 SHS

3.99 3.34

0.190 0.192

47.7 57.6

15.9 19.7

508 425

0.185 0.159

7.40 6.34

5.60 4.74

8.87 7.52

19.1 19.3

0.303 0.256

11.2 9.55

1.00 1.00

21.3 26.5

C C

8.87 7.52

40 x 40 x 2.8 SHS 2.3 SHS

3.11 2.62

0.150 0.152

48.3 58.1

12.3 15.4

396 333

0.0890 0.0773

4.45 3.86

3.43 2.93

5.43 4.64

15.0 15.2

0.149 0.127

6.74 5.83

1.00 1.00

16.5 20.6

C C

5.43 4.64

35 x 35 x 2.8 SHS 2.3 SHS

2.67 2.25

0.130 0.132

48.8 58.6

10.5 13.2

340 287

0.0570 0.0499

3.26 2.85

2.54 2.19

4.02 3.46

12.9 13.2

0.0970 0.0831

4.95 4.32

1.00 1.00

14.1 17.7

C C

4.02 3.46

Notes:

1. 2. 3.

8.27

For Grade C450L0 fy=450 MPa and fu =500 MPa. fy = yield stress used in design; fu = tensile strength used in design; as defined in AS 4100. Grade C450L0 to AS 1163 is cold-formed and therefore is allocated the CF residual stresses classification in AS 4100. C =Compact Section; N = Non-compact Section; S =Slender Section; as defined in AS 4100.

DCTDHS/06 MARCH 2002


TABLE D1.3-1(A)

FIRE ENGINEERING DESIGN EXPOSED SURFACE AREA TO MASS RATIO (m2/t) DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness about x-axis

1 = TOTAL PERIMETER, PROFILE-PROTECTED 2 = TOTAL PERIMETER, BOX-PROTECTED, NO GAP 3 = TOTAL PERIMETER, BOX-PROTECTED, 25mm GAP 4 = TOP FLANGE EXCLUDED, PROFILE-PROTECTED 5 = TOP FLANGE EXCLUDED, BOX-PROTECTED, NO GAP 6 = TOP FLANGE EXCLUDED, BOX PROTECTED, 25mm GAP

Designation d b t mm

mm

mm

Mass per m

1

2

3

4

5

6

kg/m

150 x 50 x

6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS

16.7 14.2 11.6 8.96 7.53 6.07

22.4 26.6 32.9 43.5 52.0 64.7

23.9 28.1 34.4 44.7 53.1 65.9

35.8 42.1 51.6 67.0 79.7 98.8

21.2 24.8 30.3 39.3 46.7 57.8

20.9 24.6 30.1 39.1 46.5 57.6

26.9 31.6 38.7 50.2 59.8 74.1

125 x 75 x

6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS

16.7 14.2 11.6 8.96 7.53 6.07

22.4 26.6 32.9 43.5 52.0 64.7

23.9 28.1 34.4 44.7 53.1 65.9

35.8 42.1 51.6 67.0 79.7 98.8

19.7 23.1 28.2 36.5 43.4 53.7

19.4 22.8 28.0 36.3 43.2 53.5

25.4 29.8 36.6 47.5 56.5 70.0

100 x 50 x

6.0 RHS 5.0 RHS 4.0 RHS 3.5 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

12.0 10.3 8.49 7.53 6.60 5.56 4.50 3.64

22.8 27.0 33.3 37.9 43.9 52.4 65.1 81.0

24.9 29.1 35.4 39.9 45.5 53.9 66.6 82.5

41.6 48.5 58.9 66.4 75.8 89.8 111 138

21.1 24.6 29.8 33.5 38.1 45.2 55.8 69.0

20.8 24.2 29.5 33.2 37.9 44.9 55.5 68.8

29.1 33.9 41.2 46.5 53.0 62.9 77.7 96.3

75 x 50 x

6.0 RHS 5.0 RHS 4.0 RHS 3 0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

9.67 8.35 6.92 5.42 4.58 3.72 3.01

23.2 27.4 33.7 44.2 52.7 65.4 81.3

25.8 29.9 36.1 46.1 54.5 67.2 83.1

46.5 53.9 65.1 83.0 98.2 121 150

21.1 24.4 29.3 37.2 43.9 54.1 66.8

20.7 23.9 28.9 36.9 43.6 53.8 66.5

31.0 35.9 43.4 55.3 65.4 80.7 99.7

75 x 25 x

2.5 RHS 2.0 RHS 1.6 RHS

3.60 2.93 2.38

53.1 65.8 81.7

55.5 68.2 84.0

111 136 168

49.0 60.0 73.9

48.6 59.7 73.5

76.3 93.7 116

65 x 35 x

4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS

5.35 4.25 3.60 2.93

34.2 44.7 53.1 65.8

37.4 47.1 55.5 68.2

74.8 94.2 111 136

31.4 39.3 46.2 56.6

30.9 38.9 45.8 56.2

49.6 62.4 73.6 90.3

50 x 25 x

3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

3.07 2.62 2.15 1.75

45.5 54.0 66.6 82.5

48.9 57.2 69.8 85.6

114 134 163 200

41.3 48.2 58.7 71.9

40.7 47.7 58.2 71.4

73.3 85.8 105 128

50 x 20 x

3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

2.83 2.42 1.99 1.63

45.8 54.2 66.8 82.7

49.4 57.7 70.3 86.1

120 140 171 209

43.0 50.1 60.8 74.3

42.4 49.5 60.3 73.8

77.7 90.7 110 135

See page D1-7 for details of the cases of fire exposure considered.

DCTDHS/06 MARCH 2002

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

D1-17


TABLE D1.3-1(B)

FIRE ENGINEERING DESIGN EXPOSED SURFACE AREA TO MASS RATIO (m2/t) DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness about y-axis

1 = TOTAL PERIMETER, PROFILE-PROTECTED 2 = TOTAL PERIMETER, BOX-PROTECTED, NO GAP 3 = TOTAL PERIMETER, BOX-PROTECTED, 25mm GAP 4 = TOP FLANGE EXCLUDED, PROFILE-PROTECTED 5 = TOP FLANGE EXCLUDED, BOX-PROTECTED, NO GAP 6 = TOP FLANGE EXCLUDED, BOX PROTECTED, 25mm GAP

Designation d b t mm

mm

mm

Mass per m

1

2

3

4

5

6

kg/m

150 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS

16.7 14.2 11.6 8.96 7.53 6.07

22.4 26.6 32.9 43.5 52.0 64.7

23.9 28.1 34.4 44.7 53.1 65.9

35.8 42.1 51.6 67.0 79.7 98.8

15.2 17.8 21.7 28.1 33.4 41.3

14.9 17.6 21.5 27.9 33.2 41.2

20.9 24.6 30.1 39.1 46.5 57.6

125 x 75 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS

16.7 14.2 11.6 8.96 7.53 6.07

22.4 26.6 32.9 43.5 52.0 64.7

23.9 28.1 34.4 44.7 53.1 65.9

35.8 42.1 51.6 67.0 79.7 98.8

16.7 19.6 23.9 30.9 36.7 45.5

16.4 19.3 23.7 30.7 36.5 45.3

22.4 26.3 32.3 41.9 49.8 61.7

100 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.5 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

12.0 10.3 8.49 7.53 6.60 5.56 4.50 3.64

22.8 27.0 33.3 37.9 43.9 52.4 65.1 81.0

24.9 29.1 35.4 39.9 45.5 53.9 66.6 82.5

41.6 48.5 58.9 66.4 75.8 89.8 111 138

17.0 19.7 23.9 26.9 30.6 36.2 44.7 55.3

16.6 19.4 23.6 26.6 30.3 35.9 44.4 55.0

24.9 29.1 35.4 39.9 45.5 53.9 66.6 82.5

75 x 50 x

6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

9.67 8.35 6.92 5.42 4.58 3.72 3.01

23.2 27.4 33.7 44.2 52.7 65.4 81.3

25.8 29.9 36.1 46.1 54.5 67.2 83.1

46.5 53.9 65.1 83.0 98.2 121 150

18.5 21.4 25.7 32.6 38.5 47.4 58.5

18.1 20.9 25.3 32.3 38.2 47.1 58.2

28.4 32.9 39.8 50.7 60.0 74.0 91.4

75 x 25 x

2.5 RHS 2.0 RHS 1.6 RHS

3.60 2.93 2.38

53.1 65.8 81.7

55.5 68.2 84.0

111 136 168

35.1 43.0 52.9

34.7 42.6 52.5

62.5 76.7 94.5

65 x 35 x

4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS

5.35 4.25 3.60 2.93

34.2 44.7 53.1 65.8

37.4 47.1 55.5 68.2

74.8 94.2 111 136

25.8 32.2 37.9 46.4

25.3 31.8 37.5 46.0

44.0 55.4 65.2 80.1

50 x 25 x

3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

3.07 2.62 2.15 1.75

45.5 54.0 66.6 82.5

48.9 57.2 69.8 85.6

114 134 163 200

33.1 38.7 47.1 57.6

32.6 38.2 46.5 57.1

65.2 76.3 93.1 114

50 x 20 x

3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

2.83 2.42 1.99 1.63

45.8 54.2 66.8 82.7

49.4 57.7 70.3 86.1

120 140 171 209

32.4 37.7 45.8 55.9

31.8 37.1 45.2 55.3

67.1 78.4 95.4 117

See page D1-7 for details of the cases of fire exposure considered.

D1-18

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

DCTDHS/06 MARCH 2002


TABLE D1.3-2(A)

FIRE ENGINEERING DESIGN EXPOSED SURFACE AREA TO MASS RATIO (m2/t) DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness about x-axis

1 = TOTAL PERIMETER, PROFILE-PROTECTED 2 = TOTAL PERIMETER, BOX-PROTECTED, NO GAP 3 = TOTAL PERIMETER, BOX-PROTECTED, 25mm GAP 4 = TOP FLANGE EXCLUDED, PROFILE-PROTECTED 5 = TOP FLANGE EXCLUDED, BOX-PROTECTED, NO GAP 6 = TOP FLANGE EXCLUDED, BOX PROTECTED, 25mm GAP

Designation d b t

Mass per m

mm

kg/m

mm

mm

1

2

3

4

5

6

125 x 75 x 2.8 RHS 2.3 RHS

8.39 6.95

46.5 56.4

47.7 57.6

71.5 86.3

38.9 47.0

38.7 46.8

50.7 61.2

100 x 50 x 2.8 RHS 2.3 RHS

6.19 5.14

46.9 56.8

48.5 58.3

80.8 97.2

40.6 48.9

40.4 48.6

56.5 68.0

75 x 50 x 2.8 RHS 2.3 RHS

5.09 4.24

47.2 57.1

49.1 59.0

88.4 106

39.6 47.5

39.3 47.2

58.9 70.7

65 x 35 x 2.8 RHS 2.3 RHS

3.99 3.34

47.7 57.6

50.1 59.9

100 120

41.7 49.8

41.3 49.4

66.4 79.4

50 x 25 x 2.8 RHS 2.3 RHS

2.89 2.44

48.5 58.4

51.9 61.6

121 144

43.8 51.9

43.2 51.3

77.8 92.4

50 x 20 x 2.8 RHS 2.3 RHS

2.67 2.25

48.8 58.6

52.4 62.1

127 151

45.5 53.8

44.9 53.2

82.3 97.6

See page D1-7 for details of the cases of fire exposure considered.

TABLE D1.3-2(B)

FIRE ENGINEERING DESIGN EXPOSED SURFACE AREA TO MASS RATIO (m2/t) DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness about y-axis

1 = TOTAL PERIMETER, PROFILE-PROTECTED 2 = TOTAL PERIMETER, BOX-PROTECTED, NO GAP 3 = TOTAL PERIMETER, BOX-PROTECTED, 25mm GAP 4 = TOP FLANGE EXCLUDED, PROFILE-PROTECTED 5 = TOP FLANGE EXCLUDED, BOX-PROTECTED, NO GAP 6 = TOP FLANGE EXCLUDED, BOX PROTECTED, 25mm GAP

Designation d b t

Mass per m

mm

kg/m

mm

mm

1

2

3

4

5

6

125 x 75 x 2.8 RHS 2.3 RHS

8.39 6.95

46.5 56.4

47.7 57.6

71.5 86.3

33.0 39.8

32.8 39.6

44.7 54.0

100 x 50 x 2.8 RHS 2.3 RHS

6.19 5.14

46.9 56.8

48.5 58.3

80.8 97.2

32.6 39.1

32.3 38.9

48.5 58.3

75 x 50 x 2.8 RHS 2.3 RHS

5.09 4.24

47.2 57.1

49.1 59.0

88.4 106

34.7 41.6

34.4 41.3

54.0 64.8

65 x 35 x 2.8 RHS 2.3 RHS

3.99 3.34

47.7 57.6

50.1 59.9

100 120

34.2 40.8

33.8 40.4

58.9 70.4

50 x 25 x 2.8 RHS 2.3 RHS

2.89 2.44

48.5 58.4

51.9 61.6

121 144

35.1 41.6

34.6 41.1

69.1 82.1

50 x 20 x 2.8 RHS 2.3 RHS

2.67 2.25

48.8 58.6

52.4 62.1

127 151

34.3 40.5

33.7 39.9

71.1 84.3

See page D1-7 for details of the cases of fire exposure considered.

DCTDHS/06 MARCH 2002

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

D1-19


TABLE D1.3-3

FIRE ENGINEERING DESIGN EXPOSED SURFACE AREA TO MASS RATIO (m2/t) DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness about x- and y-axis

1 = TOTAL PERIMETER, PROFILE-PROTECTED 2 = TOTAL PERIMETER, BOX-PROTECTED, NO GAP 3 = TOTAL PERIMETER, BOX-PROTECTED, 25mm GAP 4 = TOP FLANGE EXCLUDED, PROFILE-PROTECTED 5 = TOP FLANGE EXCLUDED, BOX-PROTECTED, NO GAP 6 = TOP FLANGE EXCLUDED, BOX PROTECTED, 25mm GAP

Designation d b t mm

mm

Mass per m

mm

1

2

3

4

5

6

kg/m

100 x 100 x 6.0 5.0 4.0 3.0 2.5 2.0

SHS SHS SHS SHS SHS SHS

16.7 14.2 11.6 8.96 7.53 6.07

22.4 26.6 32.9 43.5 52.0 64.7

23.9 28.1 34.4 44.7 53.1 65.9

35.8 42.1 51.6 67.0 79.7 98.8

18.2 21.3 26.0 33.7 40.0 49.6

17.9 21.1 25.8 33.5 39.9 49.4

23.9 28.1 34.4 44.7 53.1 65.9

90 x 90 x 3.0 2.5 2.0 1.6

SHS SHS SHS SHS

8.01 6.74 5.45 4.39

43.6 52.1 64.8 80.8

44.9 53.4 66.1 82.0

69.9 83.1 103 128

33.9 40.3 49.8 61.7

33.7 40.0 49.6 61.5

46.2 54.9 67.9 84.3

89 x 89 x 6.0 SHS 5.0 SHS 3.5 SHS

14.6 12.5 9.06

22.5 26.7 37.6

24.3 28.5 39.3

37.9 44.5 61.4

18.5 21.6 29.7

18.2 21.3 29.5

25.0 29.3 40.5

75 x 75 x 6.0 5.0 4.0 3.5 3.0 2.5 2.0

SHS SHS SHS SHS SHS SHS SHS

12.0 10.3 8.49 7.53 6.60 5.56 4.50

22.8 27.0 33.3 37.9 43.9 52.4 65.1

24.9 29.1 35.4 39.9 45.5 53.9 66.6

41.6 48.5 58.9 66.4 75.8 89.8 111

19.1 22.2 26.8 30.2 34.3 40.7 50.2

18.7 21.8 26.5 29.9 34.1 40.4 50.0

27.0 31.5 38.3 43.2 49.2 58.4 72.2

65 x 65 x 6.0 5.0 4.0 3.0 2.5 2.0 1.6

SHS SHS SHS SHS SHS SHS SHS

10.1 8.75 7.23 5.66 4.78 3.88 3.13

23.1 27.3 33.6 44.1 52.6 65.3 81.2

25.6 29.7 36.0 45.9 54.4 67.1 83.0

45.3 52.6 63.6 81.3 96.2 119 147

19.6 22.7 27.4 34.8 41.1 50.6 62.5

19.2 22.3 27.0 34.5 40.8 50.3 62.2

29.1 33.7 40.8 52.1 61.7 76.1 94.1

50 x 50 x 5.0 4.0 3.0 2.5 2.0 1.6

SHS SHS SHS SHS SHS SHS

6.39 5.35 4.25 3.60 2.93 2.38

27.9 34.2 44.7 53.1 65.8 81.7

31.3 37.4 47.1 55.5 68.2 84.0

62.6 74.8 94.2 111 136 168

24.0 28.6 35.7 42.0 51.5 63.4

23.5 28.1 35.3 41.6 51.1 63.0

39.1 46.8 58.9 69.4 85.2 105

40 x 40 x 4.0 3.0 2.5 2.0 1.6

SHS SHS SHS SHS SHS

4.09 3.30 2.82 2.31 1.88

34.9 45.3 53.7 66.4 82.3

39.1 48.4 56.8 69.4 85.2

88.0 109 128 156 192

30.0 36.8 43.1 52.5 64.4

29.3 36.3 42.6 52.0 63.9

53.8 66.6 78.1 95.4 117

35 x 35 x 3.0 2.5 2.0 1.6

SHS SHS SHS SHS

2.83 2.42 1.99 1.63

45.8 54.2 66.8 82.7

49.4 57.7 70.3 86.1

120 140 171 209

37.7 43.9 53.3 65.1

37.1 43.3 52.7 64.6

72.4 84.5 103 126

30 x 30 x 2.0 SHS 1.6 SHS

1.68 1.38

67.4 83.3

71.5 87.3

191 233

54.3 66.1

53.7 65.5

113 138

25 x 25 x 2.5 SHS 2.0 SHS 1.6 SHS

1.64 1.36 1.12

55.7 68.3 84.1

61.0 73.3 89.0

183 220 267

46.6 55.8 67.5

45.7 55.0 66.7

107 128 156

20 x 20 x 1.6 SHS

0.873

85.4

91.7

321

69.8

68.8

183

See page D1-7 for details of the cases of fire exposure considered.

D1-20

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

DCTDHS/06 MARCH 2002


TABLE D1.3-4

FIRE ENGINEERING DESIGN EXPOSED SURFACE AREA TO MASS RATIO (m2/t) DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness about x- and y-axis

1 = TOTAL PERIMETER, PROFILE-PROTECTED 2 = TOTAL PERIMETER, BOX-PROTECTED, NO GAP 3 = TOTAL PERIMETER, BOX-PROTECTED, 25mm GAP 4 = TOP FLANGE EXCLUDED, PROFILE-PROTECTED 5 = TOP FLANGE EXCLUDED, BOX-PROTECTED, NO GAP 6 = TOP FLANGE EXCLUDED, BOX PROTECTED, 25mm GAP

Designation d b t

Mass per m

mm

kg/m

mm

mm

1

2

3

4

5

6

100 x 100 x 2.8 SHS 2.3 SHS

8.39 6.95

46.5 56.4

47.7 57.6

71.5 86.3

36.0 43.4

35.8 43.2

47.7 57.6

75 x 75 x 2.8 SHS 2.3 SHS

6.19 5.14

46.9 56.8

48.5 58.3

80.8 97.2

36.6 44.0

36.4 43.7

52.5 63.2

65 x 65 x 2.3 SHS

4.42

57.0

58.8

104

44.4

44.1

66.7

50 x 50 x 2.8 SHS 2.3 SHS

3.99 3.34

47.7 57.6

50.1 59.9

100 120

38.0 45.3

37.6 44.9

62.6 74.9

40 x 40 x 2.8 SHS 2.3 SHS

3.11 2.62

48.3 58.1

51.4 61.2

116 138

39.1 46.4

38.6 45.9

70.7 84.1

35 x 35 x 2.8 SHS 2.3 SHS

2.67 2.25

48.8 58.6

52.4 62.1

127 151

39.9 47.1

39.3 46.6

76.7 90.9

See page D1-7 for details of the cases of fire exposure considered.

DCTDHS/06 MARCH 2002

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

D1-21


TABLE D1.4-1

DuraGal TELESCOPING INFORMATION RECTANGULAR HOLLOW SECTIONS

Female (outer)

Nominal Clearance

Male (inner)

Female (outer)

Nominal Clearance

Male (inner)

d mm

b mm

t mm

Top mm

Side mm

d mm

b mm

d mm

b mm

t mm

Top mm

Side mm

d mm

b mm

125 125 125 125 125 125 125 125

75 75 75 75 75 75 75 75

6.0 5.0 4.0 3.0 2.8* 2.5 2.3* 2.0

13.0 15.0 17.0 19.0 19.4 20.0 20.4 21.0

13.0 15.0 17.0 19.0 19.4 20.0 20.4 21.0

100 100 100 100 100 100 100 100

50 50 50 50 50 50 50 50

75 75 75

25 25 25

2.5 2.0 1.6

20.0 21.0 21.8

0.0 1.0 1.8

50 50 50

20 20 20

100 100 100 100 100 100 100 100 100 100

50 50 50 50 50 50 50 50 50 50

6.0 5.0 4.0 3.5 3.0 2.8* 2.5 2.3* 2.0 1.6

23.0 25.0 27.0 28.0 29.0 29.4 30.0 30.4 31.0 31.8

3.0 5.0 7.0 8.0 9.0 9.4 10.0 10.4 11.0 11.8

65 65 65 65 65 65 65 65 65 65

35 35 35 35 35 35 35 35 35 35

65 65 65 65 65 65

35 35 35 35 35 35

4.0 3.0 2.8* 2.5 2.3* 2.0

7.0 9.0 9.4 10.0 10.4 11.0

2.0 4.0 4.4 5.0 5.4 6.0

50 50 50 50 50 50

25 25 25 25 25 25

50 50 50 50 50 50

25 25 25 25 25 25

3.0 2.8* 2.5 2.3* 2.0 1.6

NO SECTION AVAILABLE

100 100 100 100 100 100 100 100 100 100

50 50 50 50 50 50 50 50 50 50

6.0 5.0 4.0 3.5 3.0 2.8* 2.5 2.3* 2.0 1.6

13.0 15.0 17.0 18.0 19.0 19.4 20.0 20.4 21.0 21.8

13.0 15.0 17.0 18.0 19.0 19.4 20.0 20.4 21.0 21.8

75 75 75 75 75 75 75 75 75 75

25 25 25 25 25 25 25 25 25 25

50 50 50 50 50

20 20 20 20 20

3.0 2.8* 2.5 2.3* 2.0

NO SECTION AVAILABLE

75 75 75 75 75 75 75 75 75

50 50 50 50 50 50 50 50 50

6.0 5.0 4.0 3.0 2.8* 2.5 2.3* 2.0 1.6

13.0 0.0 2.0 4.0 4.4 5.0 5.4 6.0 6.8

13.0 5.0 7.0 9.0 9.4 10.0 10.4 11.0 11.8

50 65 65 65 65 65 65 65 65

25 35 35 35 35 35 35 35 35

* Non-Standard thickness

Note: RHS is not a precision tube and all dimensions in this chart, although in accordance with the specifications, may vary marginally. Varying corner radii and the internal weld bead may need to be considered when a closer fit is required. SIZES WITH A CLEARANCE LESS THAN 2.0 mm ARE SHOWN BOLDER IN THE CHARTS. For tight fits it is recommended that some form of testing is carried out prior to committing material. Where telescoping over some length is required, additional allowance may be needed for straightness.

HOW TO USE THIS CHART 1. Select the size of Female (or outer) member closest to your requirements from the left hand column. 2. Depending on the application select the clearance required between the two members. Members may need to slide freely inside each other, or be locked with a pin, spot welded or fixed with wedges. This means, in some cases, a 'sloppy' fit may be suitable, while for others the tightest fit possible may be more appropriate. 3. Having selected the most suitable clearance for your application, take the appropriate size of the Male (inner) section from the right hand column, eg. Female Section

Clearance

(outer)

mm

Male Section (inner)

75 x 50 x 3.0

4.0 x 9.0

65 x 35

Note that the clearance is total available difference between member dimensions, not the gap on both sides.

4. Where two telescoping sections are being used, thickness should be similar and will be determined by normal structural requirements. If a third section is to be used consideration of both clearance and thickness within the size list available may be required. 5. RHS has the obvious advantage that its shape prevents rotation of the section. 6. Press Fit: for short pieces with no need for separation or sliding an interference fit can be achieved using the ductility of the steel. Sizes where clearance is shown as 0.0 may occasionally require press fit.

D1-22

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

DCTDHS/06 MARCH 2002


TABLE D1.4-2

DuraGal TELESCOPING INFORMATION SQUARE HOLLOW SECTIONS

Female (outer)

Nominal Clearance

Male (inner)

Female (outer)

Nominal Clearance

Male (inner)

b mm

d mm

b mm

t mm

Top mm

Side mm

d mm

b mm

d mm

b mm

t mm

Top mm

Side mm

d mm

100 100 100 100 100 100 100 100

100 100 100 100 100 100 100 100

6.0 5.0 4.0 3.0 2.8* 2.5 2.3* 2.0

13.0 15.0 17.0 19.0 19.4 20.0 20.4 21.0

13.0 15.0 17.0 19.0 19.4 20.0 20.4 21.0

75 75 75 75 75 75 75 75

75 75 75 75 75 75 75 75

50 50 50 50 50 50 50 50

50 50 50 50 50 50 50 50

5.0 4.0 3.0 2.8* 2.5 2.3* 2.0 1.6

0.0 2.0 4.0 4.4 5.0 5.4 6.0 6.8

0.0 2.0 4.0 4.4 5.0 5.4 6.0 6.8

40 40 40 40 40 40 40 40

40 40 40 40 40 40 40 40

100 100 100 100 100 100 100 100

100 100 100 100 100 100 100 100

6.0 5.0 4.0 3.0 2.8* 2.5 2.3* 2.0

13.0 0.0 2.0 3.0 4.4 5.0 5.4 6.0

13.0 0.0 2.0 3.0 4.4 5.0 5.4 6.0

75 90 90 90 90 90 90 90

75 90 90 90 90 90 90 90

40 40 40 40 40 40 40

40 40 40 40 40 40 40

4.0 3.0 2.8* 2.5 2.3* 2.0 1.6

2.0 4.0 4.4 0.0 0.4 1.0 1.8

2.0 4.0 4.4 0.0 0.4 1.0 1.8

30 30 30 35 35 35 35

30 30 30 35 35 35 35

90 90 90 90

90 90 90 90

3.0 2.5 2.0 1.6

9.0 10.0 11.0 11.8

9.0 10.0 11.0 11.8

75 75 75 75

75 75 75 75

89 89 89

89 89 89

6.0 5.0 3.5

1.9 3.9 6.9

1.9 3.9 6.9

75 75 75

75 75 75

35 35 35 35 35 35

35 35 35 35 35 35

3.0 2.8* 2.5 2.3* 2.0 1.6

4.0 4.4 0.0 0.4 1.0 1.8

4.0 4.4 0.0 0.4 1.0 1.8

25 25 30 30 30 30

25 25 30 30 30 30

30 30

30 30

2.0 1.6

1.0 1.8

1.0 1.8

25 25

25 25

75 75 75 75 75 75 75 75 75

75 75 75 75 75 75 75 75 75

6.0 5.0 4.0 3.5 3.0 2.8* 2.5 2.3* 2.0

13.0 0.0 2.0 3.0 4.0 4.4 5.0 5.4 6.0

13.0 0.0 2.0 3.0 4.0 4.4 5.0 5.4 6.0

50 65 65 65 65 65 65 65 65

50 65 65 65 65 65 65 65 65

25 25 25

25 25 25

2.5 2.0 1.6

0.0 1.0 1.8

0.0 1.0 1.8

20 20 20

20 20 20

20

20

1.6

1.8

1.8

15

15

65 65 65 65 65 65 65 65

65 65 65 65 65 65 65 65

6.0 5.0 4.0 3.0 2.5 2.3* 2.0 1.6

3.0 5.0 7.0 9.0 10.0 10.4 11.0 11.8

3.0 5.0 7.0 9.0 10.0 10.4 11.0 11.8

50 50 50 50 50 50 50 50

50 50 50 50 50 50 50 50

* Non-Standard thickness Note: RHS is not a precision tube and all dimensions in this chart, although in accordance with the specifications, may vary marginally. Varying corner radii and the internal weld bead may need to be considered when a closer fit is required. SIZES WITH A CLEARANCE LESS THAN 2.0 mm ARE SHOWN BOLDER IN THE CHARTS. For tight fits it is recommended that some form of testing is carried out prior to committing material. Where telescoping over some length is required, additional allowance may be needed for straightness.

HOW TO USE THIS CHART 1. Select the size of Female (or outer) member closest to your requirements from the left hand column. 2. Depending on the application select the clearance required between the two members. Members may need to slide freely inside each other, or be locked with a pin, spot welded or fixed with wedges. This means, in some cases, a 'sloppy' fit may be suitable, while for others the tightest fit possible may be more appropriate. 3. Having selected the most suitable clearance for your application, take the appropriate size of the Male (inner) section from the right hand column, eg. Female Section

Clearance

(outer)

mm

Male Section (inner)

75 x 75 x 3.0

4.0 x 4.0

65 x 65

Note that the clearance is total available difference between member dimensions, not the gap on both sides.

4. Where two telescoping sections are being used, thickness should be similar and will be determined by normal structural requirements. If a third section is to be used consideration of both clearance and thickness within the size list available may be required. 5. RHS has the obvious advantage that its shape prevents rotation of the section. 6. Press Fit: for short pieces with no need for separation or sliding an interference fit can be achieved using the ductility of the steel. Sizes where clearance is shown as 0.0 may occasionally require press fit.

DCTDHS/06 MARCH 2002

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

D1-23


[ BLANK ]

D1-24

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

DCTDHS/06 MARCH 2002


PART 2 DETERMINATION OF DESIGN ACTION EFFECTS

2 PAGE

D2.1

METHODS OF ANALYSIS............................................................................................ D2-2

D2.2

SECOND-ORDER EFFECTS ....................................................................................... D2-2

D2.3

USE OF TABLES .......................................................................................................... D2-2

D2.4

USE OF ANALYSIS METHODS ................................................................................... D2-3

D2.4.1

First-Order Elastic Analysis ........................................................................................... D2-3

D2.4.2

First-Order Elastic Analysis with Moment Amplification ................................................. D2-4

D2.4.3

Second-Order Elastic Analysis in Accordance with Appendix E of AS 4100 ................ D2-4

DCTDHS/06 MARCH 2002

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

D2-1


PART 2 DETERMINATION OF DESIGN ACTION EFFECTS D2.1

METHODS OF ANALYSIS

The methods of structural analysis that are recognised in AS 4100 and most likely to be used for structural hollow sections are: a) First-order elastic analysis b) First-order elastic analysis with moment amplification (Clause 4.4.2 of AS 4100) c) Second-order elastic analysis in accordance with Appendix E of AS 4100 Plastic analysis is currently not permitted by AS 4100 for structural steel hollow sections, although research [1] has already been performed to establish the suitability of square and rectangular hollow sections.

D2.2

SECOND-ORDER EFFECTS

When combined bending and axial compression forces are present in members, SECOND-ORDER EFFECTS must be considered. Second-order bending moments are often classified as P∆ which arise from the relative end displacements (∆), or as Pδ which arise from the member deflecting (δ) from a straight line joining the member’s ends (Figure D2.2). In braced frames the relative member end displacements (δ) are small, and consideration is only given to the Pδ effects. In sway frames the P∆ effects are often more significant than the Pd effects.

D2.3

USE OF TABLES

The tabulated values in PARTS 4, 5 and 6 may be used for design in those cases where second-order effects:

can be neglected

are accounted for using moment amplification factors in conjunction with a first-order elastic analysis

are accounted for in a second-order elastic analysis

______________________ [1]

Centre for Advanced Structural Engineering, School of Civil and Mining Engineering, The University of Sydney, “Plastic Design of Cold-Formed RHS”, CIDECT Project 2S-5-98, Final Report.

D2-2

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

DCTDHS/06 MARCH 2002


Figure D2.2: First-order Analysis and Second-order Behaviour

D2.4

USE OF ANALYSIS METHODS

D2.4.1 First-order Elastic Analysis This method can be used to analyse members which do not have second-order effects. They are members with:

bending moments only

axial tension force only

combined bending moments and tension force

DCTDHS/06 MARCH 2002

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

D2-3


D2.4.2 First-order Elastic Analysis with Moment Amplification This method can be used to analyse members with combined bending and axial compression and when the moment amplification factors δb or δs (see Clauses 4.4.2.2 and 4.4.2.3 of AS 4100) are less than 1.4 (i.e. when second-order effects are less than 40%). The maximum moment in the member M*m as determined by the first-order elastic analysis, is multiplied by the moment amplification factor δb or δs. See PART 7, Figures D7.3(1) and D7.3(2) for the determination of δb and δs respectively.

D2.4.3 Second-order Elastic Analysis in Accordance with Appendix E of AS 4100 This method can be used to analyse members with combined bending and axial compression and must be used when the moment amplification factors δb or δs are greater than 1.4 (i.e. when second-order effects are greater than 40%). A suitable computer analysis program is normally used due to the iterative nature of this analysis.

D2-4

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

DCTDHS/06 MARCH 2002


PART 3 SECTION CAPACITIES

3 PAGE

D3.1

SCOPE ........................................................................................................................... D3-2

D3.2

METHOD ........................................................................................................................ D3-2

D3.2.1

Design Section Capacity for Axial Tension .................................................................... D3-2

D3.2.2

Design Section Capacity for Axial Compression ........................................................... D3-2

D3.2.3

Design Moment Section Capacity .................................................................................. D3-3

D3.2.4

Design Shear Capacity of a Web ................................................................................... D3-3

D3.2.5

Design Torsional Moment Section Capacity ................................................................... D3-4

D3.2.5.1

Introduction ..................................................................................................................... D3-4

D3.2.5.2

Method ............................................................................................................................ D3-4

TABLES TABLES D3.1-1 to D3.1-4 Design Section Capacities (φNt, φNs, φMs, φVv, φMz) ................................................... D3-6

NOTE: SEE PAGE vii FOR THE SPECIFIC MATERIAL STANDARD REFERRED TO BY THE SECTION TYPE AND STEEL GRADE IN THESE TABLES.

DCTDHS/06 MARCH 2002

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

D3-1


PART 3 SECTION CAPACITIES D3.1

SCOPE

The following tables give values of design section capacities for axial tension (φNt), axial compression (φNs), moment (φMs), shear (φVv) and torsional moment (φMz).

D3.2

METHOD

The determination of each of the design section capacities (Tables D3.1-1 to D3.1-4) is detailed in Sections D3.2.1 to D3.2.5. PART 3 of the Tables contains design section capacities whilst PART 4 to PART 6 contain design member capacities. Section capacities give the maximum capacity of a section subjected to design action effects. Member capacities are determined by reducing the section capacities by factors accounting for restraints and loading conditions.

D3.2.1 Design Section Capacity for Axial Tension The design section capacity for axial tension (φNt) is determined from Clauses 7.1 and 7.2 of AS 4100 as the lesser of: φNt = φ Ag fy and where

φ Ag fy Kt An

= = = = = = =

fu =

φNt = φ 0.85 Kt An fu

0.9 (Table 3.4 of AS 4100) gross cross-sectional area yield stress used in design 1.0 net section area Ag gross cross-sectional area (assuming full perimeter welded connections with no penetrations or holes) tensile strength used in design

D3.2.2 Design Section Capacity for Axial Compression The design section capacity for axial compression (φNs) is determined from Clauses 6.1 and 6.2 of AS 4100 as: φNs = φ kf An fy where

φ = kf = An = = = fy =

D3-2

0.9 (Table 3.4 of AS 4100) Ae / Ag (see section D1.2.3.3 and Tables D1.2-1 to D1.2-4) net section area Ag gross cross-sectional area (assuming no penetrations or holes) yield stress used in design

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

DCTDHS/06 MARCH 2002


D3.2.3 Design Moment Section Capacity The design moment section capacity (φMs) is determined from Clauses 5.1 and 5.2.1 of AS 4100 as: φ Ms = φ fy Ze where

φ = fy = Ze =

0.9 (Table 3.4 of AS 4100) yield stress used in design effective section modulus (see Section D1.2.3.2 and Tables D1.2-1 to D1.2-4).

Values of the design section moment capacity (φMs) can be found in the tables for members bent about either principal x- or y-axis. It should be noted that the design member capacity in the minor principal y-axis is the design section capacity (φMs). For members which are fully restrained against flexural buckling the design member moment capacity equals the full section moment capacity (φMs).

D3.2.4 Design Shear Capacity of a Web The design shear capacity of a web (φVv) is determined from Clauses 5.11.3 and 5.11.4 of AS 4100, for RHS and SHS and as the lesser of:φVv = 0.6 φ fy (d - 2t) 2t

φVv = and

φ fy d t Vu f *va f *vm

where

= = = = = = =

2φVu f∗  0.9 +  vm   f ∗va 

(Clause 5.11.4 of AS 4100)

(Clause 5.11.3 of AS 4100)

0.9 (Table 3.4 of AS 4100) yield stress used in design full depth thickness of section 0.6 fy (d-2t) 2t average design shear stress in the web maximum design shear stress in the web

The ratio of maximum to average design shear stress in the web (f *vm /f *va) for bending about the x-axis is calculated [1] using:

b b

f *vm 3 2b + d = f * va 2 3b + d where

d = b =

g g

full depth of section full width of section

Note: for bending about the y-axis, b and d are interchanged in the calculation of the maximum to average design web shear stress ratio. Non-uniform shear stress governs when d / b > 0.75. For calculating the web area, the web depth has been taken as the clear depth between flanges (d1) for RHS and SHS.

[1]

Bridge, R.Q., Trahair, N.S., “Thin Walls Beams”, Steel Construction, AISC, Vol. 15, No.1, 1981.

DCTDHS/06 MARCH 2002

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

D3-3


D3.2.5 Design Torsional Moment Section Capacity The design torsional moment section capacity (φMz ) is determined in accordance with Sections D3.2.5.1 and D3.2.5.2.

D 3.2.5.1 Introduction Although AS 4100 makes no provision for the design of members subject to torsion it is nevertheless considered appropriate to supply torsional capabilities for hollow sections in the tables. Hollow sections perform particularly well in torsion and their behaviour under torsional loading is readily analysed by simple procedures. An explanation of torsional effects is provided in the references listed in Section D3.2.5.2. The general theory of torsion established by Saint-Venant is based on uniform torsion. The theory assumes that all cross-sections rotate as a body around the centre of torsion. When the torsional moment that is applied is non-uniform, such as when the torsional load is applied midspan between rigid supports or when the free warping of the sections is restricted, then the torsional load is shared between uniform and non-uniform torsion or warping. However in the case of hollow sections the contribution of non-uniform torsion is negligible and sections can be treated as subject to uniform torsion without any significant loss of precision.

D 3.2.5.2 Method For hollow sections, torsional actions can be considered using the following formulae: M *z < φMz φM *z = φ 0.6 fy C M *z = design torsional moment φ = 0.9 (Table 3.4 of AS 4100) φM z = design torsional moment section capacity fy = yield stress used in design C = torsional section modulus Note: The angle of twist per unit length θ (radians) can be determined using the following formula: where

φ = where

M ∗z GJ

M *z = design torsional moment for serviceability limit state G = 80 x 103 MPa J = torsional section constant

The method for determining the torsion sections constants C and J is detailed in Section D1.2.1.1.

Suggested references for design for torsion: [1]

“AS 4100 Supplement 1-1990: Steel Structures Commentary (Supplementary to AS 4100-1990)”, Standards Australia, Section C8.5.

[2]

Trahair, N.S.,Bradford, M.A., “The Behaviour and Design of Steel Structures”, 2nd ed., Chapman and Hall, London, 1998.

D3-4

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

DCTDHS/06 MARCH 2002


[ BLANK ]

DCTDHS/06 MARCH 2002

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

D3-5


TABLE D3.1-1

DESIGN SECTION CAPACITIES DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness about x- and y-axis

Designation

d

b

Mass

Axial

Axial

per m

Tension

Compression

x-axis

y-axis

x-axis

φNt

φNs

φMsx

φMsy

φVvx

t

Bending

Shear

Torsion

y-axis

φVvy

φMz

mm mm mm

kg/m

kN

kN

kNm

kNm

kN

150 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS

16.7 14.2 11.6 8.96 7.53 6.07

816 694 567 436 367 296

F F F F F F

864 735 526 329 246 173

36.9 31.9 26.5 20.8 17.6 12.8

16.4 12.9 9.19 5.89 4.40 3.10

374 316 257 195 164 92.5

N N N N N B

111 97.2 81.6 64.2 54.7 44.7

U U U U U U

15.6 13.8 11.7 9.30 7.97 6.55

125 x 75 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS

16.7 14.2 11.6 8.96 7.53 6.07

816 694 567 436 367 296

F F F F F F

864 735 600 390 296 196

34.1 29.5 24.4 18.8 14.1 10.0

23.9 20.5 15.1 9.80 7.39 5.27

317 269 219 167 140 113

N N N N N N

184 158 130 101 85.1 69.0

U U U U U U

21.0 18.3 15.3 12.0 10.2 8.36

100 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.5 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

12.0 10.3 8.49 7.53 6.60 5.56 4.50 3.64

586 503 414 367 322 271 219 177

F F F F F F F F

621 532 438 388 329 246 173 124

18.4 16.1 13.5 12.1 10.8 9.18 7.37 5.05

11.2 9.88 8.23 6.92 5.63 4.22 2.97 2.10

244 208 170 151 131 110 88.9 71.7

N N N N N N N N

111 97.2 81.6 73.1 64.2 54.7 44.7 36.4

U U U U U U U U

9.94 8.87 7.58 6.85 6.08 5.22 4.31 3.53

75 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

9.67 8.35 6.92 5.42 4.58 3.72 3.01

471 407 337 264 223 181 147

F F F F F F F

499 431 357 280 236 173 124

11.4 10.1 8.56 6.92 5.91 4.77 3.34

8.56 7.61 6.47 5.17 4.03 2.86 2.03

178 153 126 97.4 82.3 66.8 54.0

N N N N N N N

111 97.2 81.6 64.2 54.7 44.7 36.4

U U U U U U U

7.11 6.41 5.52 4.47 3.85 3.19 2.62

75 x 25 x 2.5 RHS 2.0 RHS 1.6 RHS

3.60 2.93 2.38

176 143 116

F F F

186 133 91.6

4.07 3.36 2.76

1.64 1.17 0.816

79.1 N 64.2 N 51.9 N

24.3 20.4 17.0

U U U

1.73 1.47 1.23

65 x 35 x 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS

5.35 4.25 3.60 2.93

261 207 176 143

F F F F

276 219 186 149

5.38 4.45 3.83 3.16

3.48 2.88 2.41 1.77

106 82.3 69.7 56.7

N N N N

52.5 42.3 36.5 30.1

U U U U

3.05 2.54 2.21 1.85

50 x 25 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

3.07 2.62 2.15 1.75

149 128 105 85.4

F F F F

158 135 111 90.4

2.37 2.07 1.73 1.43

1.44 1.26 1.05 0.777

61.1 52.1 42.6 34.7

N N N N

27.7 24.3 20.4 17.0

U U U U

1.26 1.12 0.952 0.800

50 x 20 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

2.83 2.42 1.99 1.63

138 118 97.0 79.2

F F F F

146 125 103 83.9

2.09 1.83 1.53 1.27

1.06 0.938 0.783 0.582

60.3 51.4 42.0 34.2

N N N N

20.4 18.2 15.6 13.1

U U U U

0.942 0.847 0.730 0.619

Notes : 1. 2. 3. 4. 5. 6.

D3-6

φ Nt Nt Ns Ms Mz U

= = = = = = =

N

=

B

=

kN

kNm

0.9 A g fy indicated by suffix Y (Clause 7.2 of AS 4100) 0.85 Ag fu indicated by suffix F (Clause 7.2 of AS 4100) kf Ag fy (Clause 6.2.1 of AS 4100) f y Ze (Clause 5.2.1 of AS 4100) 0.6 fy C (See Section D3.2.5) approximately uniform shear stress distribution. Design shear capacity calculated in accordance with clause 5.11.4 of AS 4100. Vv = Vu = Vw = 0.6 fy Aw non-uniform shear stress distribution. Design shear capacity calculated in accordance with clause 5.11.3 of AS 4100. Vv = 2Vu / (0.9 + (f *vm / f *va)) ≤ Vu shear bulckling failure mode. Design shear capacity calculated in accordance with clause 5.11.5 of AS 4100. Vv = Vb = αvVw ≤ Vw

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

DCTDHS/06 MARCH 2002


TABLE D3.1-2

DESIGN SECTION CAPACITIES DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness

Designation

Mass

Axial

Axial

per m

Tension

Compression

Bending

Shear

Torsion

φNt

φNs

φMs

φVv

φMz

kg/m

kN

kN

kNm

kN

kNm

100 x 100 x 6.0 SHS 5.0 SHS 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS

16.7 14.2 11.6 8.96 7.53 6.07

816 694 567 436 367 296

F F F F F F

864 735 600 440 305 196

29.8 25.7 21.0 13.9 10.6 7.63

253 216 177 135 114 92.2

N N N N N N

22.7 19.8 16.5 12.9 11.0 8.97

90 x 90 x 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS

8.01 6.74 5.45 4.39

390 329 265 214

F F F F

413 305 196 125

11.9 9.03 6.48 4.70

121 102 82.6 66.7

N N N N

10.3 8.80 7.20 5.87

89 x 89 x 6.0 SHS 5.0 SHS 3.5 SHS

14.6 12.5 9.06

714 609 441

F F F

756 645 467

22.9 19.9 14.5

221 189 138

N N N

17.4 15.2 11.4

75 x 75 x 6.0 SHS 5.0 SHS 4.0 SHS 3.5 SHS 3.0 SHS 2.5 SHS 2.0 SHS

12.0 10.3 8.49 7.53 6.60 5.56 4.50

586 503 414 367 322 271 219

F F F F F F F

621 532 438 388 341 287 196

15.6 13.6 11.4 10.2 8.99 6.90 4.91

181 156 129 114 99.4 84.0 68.2

N N N N N N N

11.7 10.4 8.78 7.90 6.98 5.98 4.91

65 x 65 x 6.0 SHS 5.0 SHS 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS

10.1 8.75 7.23 5.66 4.78 3.88 3.13

494 426 352 276 233 189 153

F F F F F F F

523 451 373 292 247 196 125

11.1 9.85 8.34 6.71 5.54 3.97 2.84

153 132 109 85.0 72.0 58.6 47.5

N N N N N N N

8.31 7.43 6.36 5.11 4.40 3.63 2.98

50 x 50 x 5.0 SHS 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS

6.39 5.35 4.25 3.60 2.93 2.38

311 261 207 176 143 116

F F F F F F

330 276 219 186 151 123

5.33 4.61 3.80 3.27 2.66 1.92

96.0 80.6 63.4 54.0 44.2 35.9

N N N N N N

3.95 3.47 2.86 2.48 2.07 1.71

40 x 40 x 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS

4.09 3.30 2.82 2.31 1.88

199 161 137 112 91.5

F F F F F

211 170 145 119 96.9

2.73 2.32 2.01 1.67 1.36

61.4 49.0 42.0 34.6 28.3

N N N N N

2.02 1.72 1.51 1.27 1.06

35 x 35 x 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS

2.83 2.42 1.99 1.63

138 118 97.0 79.2

F F F F

146 125 103 83.9

1.71 1.50 1.25 1.04

41.8 36.0 29.8 24.4

N N N N

1.26 1.11 0.945 0.792

30 x 30 x 2.0 SHS 1.6 SHS

1.68 1.38

81.7 67.0

F F

86.5 70.9

0.893 0.746

25.0 20.6

N N

0.667 0.564

25 x 25 x 2.5 SHS 2.0 SHS 1.6 SHS

1.64 1.36 1.12

79.9 66.4 54.8

F F F

84.6 70.3 58.0

0.694 0.594 0.500

24.0 20.2 16.7

N N N

0.503 0.438 0.375

20 x 20 x 1.6 SHS

0.873

42.5

F

45.0

0.304

12.9

N

0.224

d mm

b

t

mm mm

Notes : 1. 2. 3. 4. 5. 6.

DCTDHS/06 MARCH 2002

φ Nt Nt Ns Ms Mz U

= = = = = = =

N

=

0.9 A g fy indicated by suffix Y (Clause 7.2 of AS 4100) 0.85 Ag fu indicated by suffix F (Clause 7.2 of AS 4100) kf Ag fy (Clause 6.2.1 of AS 4100) f y Ze (Clause 5.2.1 of AS 4100) 0.6 fy C (See Section D3.2.5) approximately uniform shear stress distribution. Design shear capacity calculated in accordance with clause 5.11.4 of AS 4100. Vv = Vu = Vw = 0.6 fy Aw non-uniform shear stress distribution. Design shear capacity calculated in accordance with clause 5.11.3 of AS 4100. Vv = 2Vu / (0.9 + (f *vm / f *va)) ≤ Vu

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

D3-7


TABLE D3.1-3

DESIGN SECTION CAPACITIES DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness about x- and y-axis

Designation

d

b

Mass

Axial

Axial

per m

Tension

Compression

x-axis

y-axis

x-axis

φNt

φNs

φMsx

φMsy

φVvx

t

mm mm mm

Bending

Shear

Torsion

y-axis

φVvy

φMz

kg/m

kN

kN

kNm

kNm

kN

125 x 75 x 2.8 RHS 2.3 RHS

8.39 6.95

409 339

F F

351 259

16.9 12.3

8.80 6.50

156 129

N N

94.4 78.7

U U

11.3 9.50

100 x 50 x 2.8 RHS 2.3 RHS

6.19 5.14

302 251

F F

295 215

10.2 8.52

5.05 3.70

122 102

N N

60.4 50.7

U U

5.74 4.86

75 x 50 x 2.8 RHS 2.3 RHS

5.09 4.24

248 207

F F

263 215

6.52 5.49

4.71 3.56

91.4 76.2

N N

60.4 50.7

U U

4.23 3.59

65 x 35 x 2.8 RHS 2.3 RHS

3.99 3.34

194 163

F F

206 172

4.21 3.57

2.72 2.16

77.3 64.6

N N

40.0 34.0

U U

2.41 2.07

50 x 25 x 2.8 RHS 2.3 RHS

2.89 2.44

141 119

F F

149 126

2.26 1.94

1.37 1.18

57.5 48.3

N N

26.4 22.8

U U

1.21 1.05

50 x 20 x 2.8 RHS 2.3 RHS

2.67 2.25

130 110

F F

138 116

1.99 1.71

1.02 0.882

56.8 47.7

N N

19.6 17.2

U U

0.907 0.803

Notes : 1. 2. 3. 4. 5. 6.

φ Nt Nt Ns Ms Mz U

= = = = = = =

N

=

kN

kNm

0.9 A g fy indicated by suffix Y (Clause 7.2 of AS 4100) 0.85 Ag fu indicated by suffix F (Clause 7.2 of AS 4100) kf Ag fy (Clause 6.2.1 of AS 4100) f y Ze (Clause 5.2.1 of AS 4100) 0.6 fy C (See Section D3.2.5) approximately uniform shear stress distribution. Design shear capacity calculated in accordance with clause 5.11.4 of AS 4100. Vv = Vu = Vw = 0.6 fy Aw non-uniform shear stress distribution. Design shear capacity calculated in accordance with clause 5.11.3 of AS 4100. Vv = 2Vu / (0.9 + (f *vm / f *va)) ≤ Vu

TABLE D3.1-2

DESIGN SECTION CAPACITIES DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness

Designation

d mm

b

Mass

Axial

Axial

per m

Tension

Compression

φNt

t

mm mm

Bending

Shear

Torsion

φNs

φMs

φVv

φM z

kg/m

kN

kN

kNm

kN

100 x 100 x 2.8 SHS 2.3 SHS

8.39 6.95

409 339

F F

383 259

12.5 9.35

127 105

kNm

75 x 75 x 2.8 SHS 2.3 SHS

6.19 5.14

302 251

F F

319 259

8.16 6.07

93.3 77.7

N N

6.59 5.56

65 x 65 x 2.3 SHS

4.42

215

F

228

4.91

66.7

N

4.10

50 x 50 x 2.8 SHS 2.3 SHS

3.99 3.34

194 163

F F

206 172

3.59 3.05

59.7 50.1

N N

2.71 2.32

40 x 40 x 2.8 SHS 2.3 SHS

3.11 2.62

152 127

F F

161 135

2.20 1.88

46.2 39.1

N N

1.64 1.42

35 x 35 x 2.8 SHS 2.3 SHS

2.67 2.25

130 110

F F

138 116

1.63 1.40

39.5 33.6

N N

1.20 1.05

N N

12.2 10.2

Notes : Refer to TABLE D3.1-3

D3-8

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

DCTDHS/06 MARCH 2002


PART 4 MEMBERS SUBECT TO BENDING

4 PAGE

D4.1

DESIGN MOMENT CAPACITY FOR MEMBERS WITHOUT FULL LATERAL RESTRAINT .................................................................................................................. D4-2

D4.1.1

Scope ............................................................................................................................. D4-2

D4.1.2

Method ............................................................................................................................ D4-2

D4.1.3

Segment Length for Full Lateral Restraint ...................................................................... D4-3

D4.1.4

Effective Length .............................................................................................................. D4-3

D4.1.5

Other Loading and Restraint Conditions ......................................................................... D4-4

D4.1.6

Examples ........................................................................................................................ D4-6

D4.2

DESIGN SHEAR CAPACITY ......................................................................................... D4.8

D4.2.1

Scope ............................................................................................................................. D4-8

D4.2.2

Method ............................................................................................................................ D4-8

D4.2.3

Interaction of Shearing and Bending ............................................................................... D4-8

D4.2.4

Examples ........................................................................................................................ D4-8

D4.3

DESIGN WEB BEARING CAPACITY ......................................................................... D4-10

D4.3.1

Scope ........................................................................................................................... D4-10

D4.3.2

Method .......................................................................................................................... D4-10

D4.3.3

Example ........................................................................................................................ D4-12

D4.4

BENDING AND BEARING INTERACTION ................................................................ D4-13

D4.4.1

Method .......................................................................................................................... D4-13

D4.4.2

Example ........................................................................................................................ D4-14

D4.5

CALCULATION OF BEAM DEFLECTIONS ............................................................... D4-15

TABLES TABLES D4.1-1 to D4.1-2 Design Moment Capacities for Members Without Full Lateral Restraint (φMb) ............ D4-16 TABLES D4.3-1 to D4.3-4 Design Web Capacities of Beams (φRbb/bb, φRby/bb, φVv) .......................................... D4-19

NOTE: SEE PAGE vii FOR THE SPECIFIC MATERIAL STANDARD REFERRED TO BY THE SECTION TYPE AND STEEL GRADE IN THESE TABLES.

DCTDHS/06 MARCH 2002

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

D4-1


D4.1

DESIGN MOMENT CAPACITY FOR MEMBERS WITHOUT FULL LATERAL RESTRAINT

D4.1.1 Scope These tables for RHS bending about the x-axis, without full lateral restraint, have been prepared in accordance with Section 5 of AS 4100 and [1]. Values of design moment capacity (φMb) are given for various values of effective length (Le). SHS are not included in these tables as they are not susceptible to lateral buckling. The design member moment capacity (φMb) always equals the design section moment capacity (φMs), as given in Tables D3.1-2 to D3.1-4 for SHS, except for the extreme case when the load acts far above the shear centre (Clause C5.6.1.4 of the Commentary to AS 4100).

D4.1.2 Method The values of design moment capacity (φMb) are determined in accordance with AS 4100 and [1] as: φMb = φ αm αsh Ms φ

where

=

αm =

0.9 (Table 3.4 of AS 4100) 1.0 (Table 5.6.1 of AS 4100 corresponding to the case of uniform moment over the effective length (Le))

for Le £ FLR αsh =

(FLR = maximum segment length for full lateral restraint as determined in Section D4.1.3) 1.0

for Le > FLR

RSL dM TMN

h

2

OP Q

+ 2.7 − Mpx / M yz

UV W

αsh =

0.7

M px = Myz =

Msx Moa - amended elastic buckling moment for a member subject to bending

=

px

/ M yz

Mo - reference buckling moment

from

[1]

(Clause 5.6.1.1(a)(iv) of AS 4100)

F π El I GJ GH L JK (Equation 5.6.1.1(3) of AS 4100) 2

=

y

2

e

E

[1]

=

200 x 103 MPa

ly =

second moment of area about the minor principal y-axis (Tables D1.2-1 to D1.2-4)

G

=

80 X 103 MPa

J

=

torsional section constant

Le =

effective length

Ms =

fy Ze

(see Section D1.2.1.1 and Tables D1.2-1 to D1.2-4)

(see Section D4.1.3)

(see Section D3.2.3 and Tables D3.1-1 to D3.1-4

fy =

yield stress used in design

Ze =

effective section modulus

(see Section D1.2.3.2 and Tables D1.2-1 to D1.2-4)

Centre For Advanced Structural Engineering, Civil Engineering, The University of Sydney, “Inelastic Buckling Strength of RHS’s”, Investigation Report S941, May 1993.

D4-2

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

DCTDHS/06 MARCH 2002


D4.1.3 Segment Length for Full Lateral Restraint FLR is the length of a member between braces for which: Mbx = Msx OneSteel Pipe & Tube commissioned the Centre for Advanced Structural Engineering, Civil Engineering, The University of Sydney, to undertake an analytical study of the lateral buckling of Rectangular Hollow Sections (RHS). The study was conducted although RHS sections rarely buckle laterally, yet AS 4100-1990 Steel Structures, incorporating Amendment 2, in clauses 5.3.2.4 and 5.6.1.4 required reductions to be made below the section capacity to account for lateral buckling in RHS members with comparatively closely spaced braces. The results of the study are contained in [1] which recommends the following method for calculating the FLR values for RHS members loaded through their shear centre.

FLR =

FM I GH M JK yz

where

Msx =

Ď€ 2 El yGJ

sx

FLR

2 M sx

nominal section moment capacity about major principal x-axis

(Msx/Myz)FLR =

see Table D4.1.5(1)

E =

Young’s modulus of elasticity, 200 x 103 MPa

Iy =

second moment of area about the cross-section minor principal y-axis

G

shear modulus of elasticity, 80 x 103 MPa

=

The FLR values listed in Tables D4.1-1(1) to D4.1-1(2) and Tables D8.1-1(1)(A) to D8.4-4(A) have been calculated using the above approach.

D4.1.4 Effective Length Before using these tables it is necessary to determine the effective length (Le), which depends on the restraint against twisting and lateral rotation, and the load height. Le is determined in accordance with Clause 5.6.3 of AS 4100 and given by: Le = kt kl kr L where k t = kl =

twist restraint factor load height factor

(Table D4.1.4(1)) (Table D4.1.4(2))

kr =

lateral rotation restraint factor

(Table D4.1.4(3))

L =

length of segment Table D4.1.4(1): Twist Restraint Factors (kt) Restraint Arrangement

Factor, (kt)

FF,FL,LL,FU FP,PL,PU

1.0

LMF d I F t MNGH L JK GH 2t 1+ 1

IJ K

f w

3

OP PQ

IJ K

3

nw

PP

LM F d I F t MN2GH L JK GH 2t 1+ 1

f w

OP PQ

nw

DCTDHS/06 MARCH 2002

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

D4-3


Table D4.1.4(2): Load Height Factors (kl) for Gravity Loads

Longitudinal load position

Restraint arrangement

Load height position Shear

Top Flange

Within segment

FF, FP, FL, PP, PL, LL FU, PU

1.0 1.0

1.4 2.0

At segment end

FF, FP, FL, PP, PL, LL FU, PU

1.0 1.0

1.0 2.0

Table D4.1.4(3): Lateral Rotation Restraint Factors(kr) Restraint arrangement

Ends with lateral rotation restraints

Factor (kr)

Any None One Both

1.0 1.0 0.85 0.70

FU, PU FF, FP, FL, PP, PL, LL FF, FP, PP FF, FP, PP where

d1 = clear depth between flanges ignoring fillets or welds nw = number of webs =thickness of critical flange tf =thickness of web tw F ≡fully restrained L ≡laterally restrained P ≡partially restrained U ≡unrestrained and two of the symbols F, L, P, U are used to indicate the conditions at the ends of the segment. Restraint requirements are detailed in Clause 5.4.3 of AS 4100.

D4.1.5 Other Loading and Restraint Conditions The design moment capacities presented in these tables can be used for other restraints and loading conditions. For these situations the effective length (Le) corresponding to the relevant conditions must be assessed and the relevant value of αm determined in accordance with Clause 5.6.1.1(a) of AS 4100 and [1] . The design moment capacity (φMb) can then be determined as the lesser of: φMsx = φ Ze fy φMbx = φ αm αsh Ze fy

and where φ φMsx φM bx αm

= = = = ≤

αsh =

0.9 (Table 3.4 of AS 4100) the design section moment capacity (Tables D3.1-1 to D3.1-4) αm times the value of (φMb = φ αs Ze fy) given in Tables D4.1-1 to D4.1-2 moment modification factor 1 α

sh

slenderness reduction factor

(see Section D4.1.2)

It should be noted that: αm ≤ 1.0 for SHS as they are not susceptible to lateral buckling and αsh = 1.0

• •

generally αm ≤ 1.0 for RHS, as these sections (with the exception of 150 x 50 and 75 x 25) are only susceptible to lateral buckling at larger spans (ie. αsh < 1.0).

D4-4

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

DCTDHS/06 MARCH 2002


Table D4.1.5(1) Values of (Msx/Myz)FLR

DCTDHS/06 MARCH 2002

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

D4-5


D4.1.6 Examples 1.

A simply supported beam shown below has two concentrated loads applied in such a way that full restraint is provided at the location of the loads. The calculated design load at each point is 9 kN. What size beam is required to support these loads?

Bending Moment Diagram Design Data: Design bending moment

M * = 18 kNm

Solution: For beam segment 2: End restraint condition = FF

(fully restrained at both ends of the segment)

Twist restraint factor

k t = 1.0

(Table D4.1.4(1))

Load Height Factor

k I = 1.0

(Table D4.1.4(2))

(For loading at segment end and top flange loading) Lateral rotation restraint factor

kr = 0.7

∴ Effective length

Le = kt kI kr L

(Table D4.1.4(3))

= 1.0 x 1.0 x 0.7 x 4.0 = 2.8 m

D4-6

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

DCTDHS/06 MARCH 2002


A rectangular hollow section is the most efficient and most practical hollow section for this application. As a uniform bending moment is applied to segment 2, αm = 1.0 (Table 5.6.1 of AS 4100). Thus alternatives can be read directly from Table D4.1-1(1) for a uniform bending moment of 18 kNm on segment 2 with an effective length (Le = 2.8 m). They are: 150 x 50 x 3.0 DuraGal RHS Grade C450L0 (8.96 kg/m) φMb = 20.8 kNm > M * (Table D4.1-1)(1) 125 x 75 x 3.0 DuraGal RHS Grade C450L0 (8.96 kg/m) φMb = 18.8 kNm > M * (Table D4.1-1)(1) As both sections have the same mass select the stronger 150 x 50 x 3.0 DuraGal RHS Grade C450L0 (8.96 kg/m). The extra depth will provide increased stiffness which may be important. Additional design checks which should be performed are:

• • • • • •

Additional design bending moment due to self-weight Shear (Section D4.2) Interaction of Shear and Bending (Section D4.2.3) Bearing (Section D4.3) Bearing and Bending Interaction (Section D4.4) Deflection (Section D4.5)

Beam segments 1 and 3 do not have to be checked because they have the same design bending moment and end restraints with a shorter effective length. 2.

A free standing sign post which is securely concreted into the ground is required to resist a calculated horizontal design force of 0.8 kN at a height of 3 m. What size SHS is required?

Bending Moment Diagram Design Data: Design bending moment

M * = 2.4 kNm

Solution: The appropriate size of SHS may be selected from the section capacity tables in PART 3.The alternatives are: 40 x 40 x 4.0 DuraGal SHS Grade C450L0 (4.09 kg/m) φMs = 2.73 kNm > M * 50 x 50 x 2.0 DuraGal SHS Grade C450L0 (2.93 kg/m) φMs = 2.66 kNm > M *

(Table D3.1-2) (Table D3.1-2)

Based on mass select 50 x 50 x 2.0 DuraGal SHS Grade C450L0 (2.93 kg/m). Additional design checks which should be performed are:

• • •

Shear Interaction of Shear and Bending Deflection

DCTDHS/06 MARCH 2002

(Section D4.2) (Section D4.2.3) (Section D4.5) if it is critical for this type of application

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

D4-7


D4.2

DESIGN SHEAR CAPACITY

D4.2.1 Scope The section capacity tables (Tables D3.1-1 to D3.1-4) include values of design web shear capacity for bending about the x- and y-axis.

D4.2.2 Method The design shear capacity of a web (φVv) is determined from the lesser of Clauses 5.11.3 and 5.11.4 of AS 4100 for RHS and SHS as described in Section D3.2.4.

D4.2.3 Interaction of Shear and Bending The design web shear capacity determined in Section D4.2.2 of the Tables may be significantly reduced when the section is subject to a large bending moment at the same location. The reduced shear capacity (φVvm) is determined in accordance with Clause 5.12.3 of AS 4100 as follows: φVvm = or

=

φV v

for

M * ≤ 0.75 φMs

  16 . M∗  φVv 2.2 −     φM s  

for

0.75 φMs ≤ M * ≤ φMs

where φ V v

=

design web shear capacity

M*

=

design moment capacity

φMs

=

design section moment capacity

(Section D4.2.2)

(Section D3.2.3)

Note: If V * < 0.6 φVv or if M * < 0.75 φMs then no check on the interaction of shear and bending is necessary.

D4.2.4 1.

Examples

Check the shear capacity of the 150 x 50 x 3.0 DuraGal RHS Grade C450L0 beam in Example 1 from Section D4.1.6.

Design Data: Design shear force

V * = 9 kN

Solution: Design shear capacity of the section φVvx = 195 kN (Table D3.1-1) >V* Therefore the 150 x 50 x 3.0 DuraGal RHS Grade C450L0 is satisfactory.

D4-8

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

DCTDHS/06 MARCH 2002


2.

Check the shear capacity of the 50 x 50 x 2.0 DuraGal SHS Grade C450L0 beam in Example 2 from Section D4.1.6.

Design Data: Design shear force V * = 0.8 kN Solution: Design shear capacity of the section φV v

= >

44.2 kN V*

(Table D3.1-2)

Therefore the 50 x 50 x 2.0 DuraGal SHS Grade C450L0 is satisfactory.

3.

Check the 150 x 50 x 3.0 DuraGal RHS Grade C450L0 beam in Example 1 from Section D4.1.6 for the interaction of shear and bending.

Design Data: V* =

Design shear force Design shear capacity Design bending moment Design member moment capacity

9 kN

φV vx =

195 kN

M* =

18 kNm

φMsx =

(Table D3.1-1)

20.8 kNm

(Table D3.1-1)

Solution: 0.75 φMsx = then M * >

therefore φVvm =

0.75 x 20.8 = 15.6 kNm 0.75 φMsx   16 . M∗  φVv 2.2 −     φM sx  

LM N

=

195 2.2 −

=

159 kN

therefore V * =

FG 16. x18 IJ OP H 20.8 K Q

9 kN < φVvm =159 kN

Therefore the 150 x 50 x 3.0 DuraGal RHS Grade C450L0 is satisfactory.

DCTDHS/06 MARCH 2002

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

D4-9


D4.3

DESIGN WEB BEARING CAPACITY

D4.3.1 Scope The tables give values of design web bearing capacity per unit length (φRby/bb) and the design web bearing buckling per unit length (φRbb/bb) for SHS and RHS for - interior bearing, and - end bearing.

D4.3.2 Method The design web bearing capacity (φRb) has been determined from Clause 5.13 of AS 4100, and taken as the lesser of: φRby = φ 2 αp bb t fy and φRbb = φ 2 αc bb t fy

where

φ

=

0.9

(Table 3.4 of AS 4100)

φR bb =

design web bearing buckling capacity

(Clause 5.13.4 of AS 4100)

φR by =

design web bearing yield capacity

(Clause 5.13.3 of AS 4100)

t = fy =

thickness of section yield stress used in design

Interior bearing for bd > 1.5d5 bb =

bs + 5rext + d5

bs =

actual length of bearing

(see Figure D4.3.2(b))

d5 =

flat width of web

(see Figure D4.3.2(a))

rext =

outside corner radius

αp =

0.5 k 0.25 2 2 1 + 1 − α pm 1 + s − 1 − α pm ky ks k v2

LM MN d

α pm =

1 0.5 + ks k v

ks =

2rext −1 t

kv =

d5 t

αc =

D4-10

iFGH

d

i

I OP JK PQ

member slenderness reduction factor determined in accordance with Section D5.3 of these Tables using kf = 1.0 and αb = 0.5, and modified slenderness ratio (Le/r = 3.5 d5/t)

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

DCTDHS/06 MARCH 2002


End bearing for bd < 1.5d5 bb

=

bs + 2.5rext +

αp

=

2 + k s2 − k s

αc

=

d5 2

member slenderness reduction factor determined in accordance with Section D5.3 of these Tables using kf = 1.0 and αb = 0.5, and modified slenderness ratio (Le/r = 3.8 d5/t)

Figure D4.3.2: Dispersions of Force Through Flange, Radius and Web

DCTDHS/06 MARCH 2002

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

D4-11


D4.3.3 Example 1.

The design concentrated force of 9 kN on the 150 x 50 x 3.0 DuraGal RHS Grade C450L0 beam in Example 1 of Section D4.1.6 is applied over the full width of the RHS and for a length of 50 mm along the RHS. Check the bearing capacity of the beam.

Design Data: Design bearing force

R* =

Stiff bearing length

9 kN

bs = 5rext = bbw =

50 mm 30.0 mm 69.0 mm

bbf =

bs + 5rext

= =

50 + 30.0 80 mm

bb =

bbf + 2bbw

(Table D4.3-1(A)) (Table D4.3-1(A))

Solution: Bearing length at the edge of the corner radius

Bearing length at the centre of the web

=

80 + (2 x 69.0)

=

218 mm

The web bearing capacity (φRb) is the lesser of φRby and φRbb From Table D4.3-1(A): φRby

Design web yield capacity

bb φRbb bb

Design web buckling capacity

=

0.785 kN/mm

=

0.357 kN/mm

φRby bb

>

φRbb bb

Therefore web buckling will govern. Design web bearing capacity φRb

=

φR bb

=

0.357 x 218

=

77.8 kN (> R*)

Therefore the 150 x 50 x 3.0 DuraGal RHS Grade C450L0 is satisfactory.

D4-12

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

DCTDHS/06 MARCH 2002


D4.4

BENDING AND BEARING INTERACTION

D4.4.1 Method The design web bearing capacity determined in Section D4.3 of the Tables may be significantly reduced when the section is subject to a large bending moment at the same location. The effect of this interaction of bending and bearing force in hollow sections is not addressed by AS 4100, but suitable interaction equations have been developed from research. [1],[2] The bending and bearing interaction is dependent on the ratio of bearing length to the width of bearing bs/b and the web slenderness (d1/t). The interaction equation for bs/b > 1.0 and (d1/t) < 30 is:

FG R * IJ + FG M * IJ ≤ 15. H φR K H φM K

12 .

b

s

or

0.8

FG R * IJ + FG M * IJ ≤ 10. H φR K H φM K b

where bs = b = (d1/t) = d1 = t = R* = φ

=

stiff bearing length

Otherwise

s

(see Figure D4.3.2)

width of section web slenderness clear depth between flanges thickness of section maximum design bearing force 0.9

(Table 3.4 of AS 4100)

φR b =

design web bearing capacity

M* =

maximum design bending moment

φMs =

design section moment capacity

Note: these formulae only apply to bearing across the full width of section. Design aids have not been produced for this interaction because of the numerous bearing lengths which may occur for each section size.

[1]

Zhao, X.L., Hancock, G.J., “Square and Rectangular Hollow Sections Subject to Combined Actions”, Journal of Structural Engineering, ASCE, Vol 118, No. 3, pp 648-668, 1992.

[2]

Zhao, X.L., Hancock, G.J., “Design Formulae for Web Crippling of Rectangular Hollow Sections”, Proceedings, Third Pacific Structural Steel Conference, Tokyo, Japan, 1992.

DCTDHS/06 MARCH 2002

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

D4-13


D4.4.2 Example 1.

Considering further Example 1 of Section D4.1.6 and Example 1 of Section D4.3.3 the interaction of bending and bearing is checked for the 150 x 50 x 3.0 DuraGal RHS Grade C450L0 beam.

Design Data: R* =

Design bearing force Design web bearing capacity Design bending moment Design section moment capacity Stiff bearing length Web slenderness

9 kN

(Section D4.1.6)

φR b =

77.8 kN

(Section D4.3.3)

M* =

18 kNm

(Section D4.1.6)

20.8 kNm

(Table D3.1-1)

50 mm

(Section D4.3.3)

48

(Table D1.2-1 (1))

φMs = bs = d1/t =

Solution: bs b

=

50 50

= 1.0 > 1.0 d1/t = >

48 30

∴ the interaction equation is

 R*   M *  0.8 +  ≤ 1.0  φRb   φMs  9   1.8  0.8 + = 0.958  77.8   20.8  ≤ 1.0 Therefore the 150 x 50 x 3.0 DuraGal RHS Grade C450L0 is satisfactory

D4-14

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

DCTDHS/06 MARCH 2002


D4.5

CALCULATION OF BEAM DEFLECTIONS

Common methods for calculating the elastic deflection of a beam include: (i) (ii) (iii) (iv) (v)

integration of M/EI diagram moment area slope deflection published solutions for particular cases approximate or numerical methods (eg. finite elements)

Table D4.5 gives the more commonly used beam deflection formulae. Due to the large range of loading configurations and support conditions considered for beams in design, a more comprehensive set of beam deflection formulae are published in the AISC technical journal “Steel Construction”, Volume 26 No. 1 (February 1992). Table D4.5: Beam Deflection Formulae

Where: ∆ W L E I

DCTDHS/06 MARCH 2002

= = = = =

maximum deflection total load on beam span of beam Young’s modulus of elasticity second moment of area of cross-section

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

D4-15


D4-16

TABLE D4.1-1(1)

DESIGN MOMENT CAPACITIES FOR MEMBERS WITHOUT FULL LATERAL RESTRAINT DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis Designation d

b

Design Moment Capacities φMb (kNm)

Mass per m

t

FLR

Effective Length (Le) in metres

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

mm mm mm

kg/m

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

13.0

14.0

m

150 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS

16.7 14.2 11.6 8.96 7.53 6.07

36.9 31.9 26.5 20.8 17.6 12.8

36.9 31.9 26.5 20.8 17.6 12.8

36.9 31.9 26.5 20.8 17.6 12.8

36.0 31.2 26.0 20.4 17.3 12.8

34.5 30.0 25.0 19.7 16.7 12.4

33.1 28.8 24.0 18.9 16.0 12.0

31.8 27.7 23.1 18.2 15.4 11.6

30.6 26.6 22.2 17.5 14.9 11.2

29.4 25.6 21.4 16.9 14.3 10.8

28.3 24.7 20.6 16.2 13.8 10.5

27.2 23.7 19.8 15.7 13.3 10.1

26.2 22.9 19.1 15.1 12.8 9.79

25.3 22.1 18.5 14.6 12.4 9.48

24.4 21.3 17.8 14.1 12.0 9.19

3.37 3.43 3.50 3.53 3.56 4.01

125 x 75 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS

16.7 14.2 11.6 8.96 7.53 6.07

34.1 29.5 24.4 18.8 14.1 10.0

34.1 29.5 24.4 18.8 14.1 10.0

34.1 29.5 24.4 18.8 14.1 10.0

34.1 29.5 24.4 18.8 14.1 10.0

34.1 29.5 24.4 18.8 14.1 10.0

34.1 29.5 24.4 18.8 14.1 10.0

34.1 29.5 24.4 18.8 14.1 10.0

33.4 28.9 24.0 18.5 14.1 10.0

32.8 28.3 23.5 18.2 13.9 10.0

32.1 27.8 23.1 17.8 13.6 9.95

31.5 27.3 22.6 17.5 13.4 9.80

30.9 26.7 22.2 17.2 13.2 9.65

30.3 26.2 21.8 16.9 13.0 9.51

29.7 25.7 21.3 16.5 12.7 9.37

6.99 7.04 7.08 7.18 8.17 9.32

100 x 50 x6.0 RHS 5.0 RHS 4.0 RHS 3.5 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

12.0 10.3 8.49 7.53 6.60 5.56 4.50 3.64

18.4 16.1 13.5 12.1 10.8 9.18 7.37 5.05

18.4 16.1 13.5 12.1 10.8 9.18 7.37 5.05

18.4 16.1 13.5 12.1 10.8 9.18 7.37 5.05

18.4 16.1 13.5 12.1 10.8 9.18 7.37 5.05

17.9 15.7 13.2 11.9 10.6 8.99 7.25 5.05

17.3 15.2 12.8 11.5 10.2 8.71 7.03 4.96

16.7 14.7 12.4 11.1 9.91 8.44 6.81 4.83

16.2 14.3 12.0 10.8 9.60 8.18 6.61 4.71

15.7 13.8 11.7 10.5 9.31 7.93 6.41 4.59

15.2 13.4 11.3 10.1 9.02 7.69 6.22 4.47

14.7 13.0 11.0 9.84 8.75 7.46 6.03 4.36

14.3 12.6 10.6 9.54 8.49 7.23 5.86 4.25

13.8 12.2 10.3 9.26 8.23 7.02 5.69 4.15

13.4 11.8 10.0 8.99 7.99 6.82 5.52 4.04

4.19 4.26 4.31 4.34 4.32 4.35 4.46 5.32

Notes:

1. 2. 3. 4. 5.

φ = 0.9 FLR - segment length for Full Lateral Restraint (φMbx = φMsx) for simply supported beams with uniform moment. FLR = 0.231 (π2 E /y G J / Msx2)0.5 (See Section D4.1.3 of these tables for explanation) Values to the left of the solid line are segment lengths with full lateral restraint. αsh = 0.7(((Msx / Moa)2 + 2.7))0.5 - Ms/Moa ) (See Section D4.1.2 of these tables for explanation) αm = 1.0

DCTDHS/06 MARCH 2002


DCTDHS/06 MARCH 2002

TABLE D4.1-1(2)

DESIGN MOMENT CAPACITIES FOR MEMBERS WITHOUT FULL LATERAL RESTRAINT DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis Designation d

b

Design Moment Capacities φMb (kNm)

Mass per m

t

FLR

Effective Length (L e) in metres kg/m

0.5

0.75

1.0

1.25

1.5

1.75

2.0

2.5

3.0

3.5

4.0

4.5

5.0

6.0

m

100 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.5 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

12.0 10.3 8.49 7.53 6.60 5.56 4.50 3.64

18.4 16.1 13.5 12.1 10.8 9.18 7.37 5.05

18.4 16.1 13.5 12.1 10.8 9.18 7.37 5.05

18.4 16.1 13.5 12.1 10.8 9.18 7.37 5.05

18.4 16.1 13.5 12.1 10.8 9.18 7.37 5.05

18.4 16.1 13.5 12.1 10.8 9.18 7.37 5.05

18.4 16.1 13.5 12.1 10.8 9.18 7.37 5.05

18.4 16.1 13.5 12.1 10.8 9.18 7.37 5.05

18.4 16.1 13.5 12.1 10.8 9.18 7.37 5.05

18.4 16.1 13.5 12.1 10.8 9.18 7.37 5.05

18.4 16.1 13.5 12.1 10.8 9.18 7.37 5.05

18.4 16.1 13.5 12.1 10.8 9.18 7.37 5.05

18.2 16.0 13.4 12.1 10.7 9.14 7.36 5.05

17.9 15.7 13.2 11.9 10.6 8.99 7.25 5.05

17.3 15.2 12.8 11.5 10.2 8.71 7.03 4.96

4.19 4.26 4.31 4.34 4.32 4.35 4.46 5.32

75 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

9.67 8.35 6.92 5.42 4.58 3.72 3.01

11.4 10.1 8.56 6.92 5.91 4.77 3.34

11.4 10.1 8.56 6.92 5.91 4.77 3.34

11.4 10.1 8.56 6.92 5.91 4.77 3.34

11.4 10.1 8.56 6.92 5.91 4.77 3.34

11.4 10.1 8.56 6.92 5.91 4.77 3.34

11.4 10.1 8.56 6.92 5.91 4.77 3.34

11.4 10.1 8.56 6.92 5.91 4.77 3.34

11.4 10.1 8.56 6.92 5.91 4.77 3.34

11.4 10.1 8.56 6.92 5.91 4.77 3.34

11.4 10.1 8.56 6.92 5.91 4.77 3.34

11.4 10.1 8.56 6.92 5.91 4.77 3.34

11.4 10.1 8.56 6.92 5.91 4.77 3.34

11.3 10.0 8.52 6.89 5.89 4.77 3.34

10.9 9.73 8.28 6.69 5.72 4.64 3.33

4.73 4.79 4.85 4.84 4.87 4.97 5.80

75 x 25 x 2.5 RHS 2.0 RHS 1.6 RHS

3.60 2.93 2.38

4.07 3.36 2.76

4.07 3.36 2.76

4.07 3.36 2.76

4.07 3.36 2.76

4.07 3.36 2.76

4.06 3.36 2.76

3.97 3.29 2.71

3.81 3.16 2.60

3.66 3.04 2.50

3.52 2.92 2.41

3.38 2.81 2.32

3.25 2.71 2.23

3.13 2.61 2.15

2.90 2.42 2.00

1.70 1.73 1.76

65 x 35 x 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS

5.35 4.25 3.60 2.93

5.38 4.45 3.83 3.16

5.38 4.45 3.83 3.16

5.38 4.45 3.83 3.16

5.38 4.45 3.83 3.16

5.38 4.45 3.83 3.16

5.38 4.45 3.83 3.16

5.38 4.45 3.83 3.16

5.38 4.45 3.83 3.16

5.38 4.45 3.83 3.16

5.27 4.37 3.76 3.11

5.15 4.27 3.68 3.04

5.03 4.17 3.60 2.97

4.92 4.08 3.52 2.91

4.71 3.90 3.37 2.78

3.05 3.07 3.10 3.13

50 x 25 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

3.07 2.62 2.15 1.75

2.37 2.07 1.73 1.43

2.37 2.07 1.73 1.43

2.37 2.07 1.73 1.43

2.37 2.07 1.73 1.43

2.37 2.07 1.73 1.43

2.37 2.07 1.73 1.43

2.37 2.07 1.73 1.43

2.31 2.01 1.69 1.40

2.23 1.95 1.63 1.35

2.16 1.89 1.58 1.31

2.09 1.83 1.53 1.27

2.02 1.77 1.48 1.23

1.96 1.71 1.44 1.19

1.84 1.61 1.35 1.12

2.07 2.10 2.13 2.16

50 x 20 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

2.83 2.42 1.99 1.63

2.09 1.83 1.53 1.27

2.09 1.83 1.53 1.27

2.09 1.83 1.53 1.27

2.09 1.83 1.53 1.27

2.08 1.82 1.53 1.27

2.03 1.78 1.50 1.25

1.98 1.74 1.46 1.22

1.89 1.66 1.40 1.16

1.80 1.58 1.34 1.11

1.72 1.51 1.28 1.07

1.64 1.45 1.22 1.02

1.57 1.38 1.17 0.977

1.50 1.32 1.12 0.937

1.37 1.22 1.03 0.863

1.44 1.47 1.50 1.53

mm mm mm

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

D4-17

Notes:

φ = 0.9 FLR - segment length for Full Lateral Restraint (φMbx = φMsx) for simply supported beams with uniform moment. FLR = 0.231 (π2 E /y G J / Msx2)0.5 (See Section D4.1.3 of these tables for explanation) 3. Values to the left of the solid line are segment lengths with full lateral restraint. 1. 2.

2

0.5

4. αsh = 0.7(((Msx / Moa) + 2.7)) for explanation) 5. αm= 1.0

- Ms/Moa ) (See Section D4.1.2 of these tables


D4-18

TABLE D4.1-2

DESIGN MOMENT CAPACITIES FOR MEMBERS WITHOUT FULL LATERAL RESTRAINT DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness bending about x-axis Designation d

b

Design Moment Capacities φMb (kNm)

Mass per m

t

FLR

Effective Length (L e) in metres

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

kg/m

0.5

0.75

1.0

1.25

1.5

1.75

2.0

2.5

3.0

3.5

4.0

4.5

5.0

6.0

m

125 x 75 x 2.8 RHS 2.3 RHS

8.39 6.95

16.9 12.3

16.9 12.3

16.9 12.3

16.9 12.3

16.9 12.3

16.9 12.3

16.9 12.3

16.9 12.3

16.9 12.3

16.9 12.3

16.9 12.3

16.9 12.3

16.9 12.3

16.9 12.3

7.51 8.69

100 x 50 x 2.8 RHS 2.3 RHS

6.19 5.14

10.2 8.52

10.2 8.52

10.2 8.52

10.2 8.52

10.2 8.52

10.2 8.52

10.2 8.52

10.2 8.52

10.2 8.52

10.2 8.52

10.2 8.52

10.1 8.48

9.94 8.34

9.63 8.08

4.34 4.37

75 x 50 x 2.8 RHS 2.3 RHS

5.09 4.24

6.52 5.49

6.52 5.49

6.52 5.49

6.52 5.49

6.52 5.49

6.52 5.49

6.52 5.49

6.52 5.49

6.52 5.49

6.52 5.49

6.52 5.49

6.52 5.49

6.49 5.47

6.31 5.32

4.85 4.88

65 x 35 x 2.8 RHS 2.3 RHS

3.99 3.34

4.21 3.57

4.21 3.57

4.21 3.57

4.21 3.57

4.21 3.57

4.21 3.57

4.21 3.57

4.21 3.57

4.21 3.57

4.13 3.50

4.04 3.43

3.95 3.35

3.86 3.28

3.69 3.14

3.08 3.11

50 x 25 x 2.8 RHS 2.3 RHS

2.89 2.44

2.26 1.94

2.26 1.94

2.26 1.94

2.26 1.94

2.26 1.94

2.26 1.94

2.26 1.94

2.19 1.89

2.12 1.83

2.05 1.77

1.99 1.71

1.92 1.66

1.86 1.61

1.75 1.51

2.08 2.11

50 x 20 x 2.8 RHS 2.3 RHS

2.67 2.25

1.99 1.71

1.99 1.71

1.99 1.71

1.99 1.71

1.98 1.71

1.93 1.67

1.89 1.63

1.80 1.56

1.72 1.49

1.64 1.42

1.57 1.36

1.50 1.30

1.43 1.25

1.31 1.15

1.45 1.48

mm mm mm

Notes:

1. 2. 3. 4. 5.

φ = 0.9 FLR - segment length for Full Lateral Restraint (φMbx = φMsx) for simply supported beams with uniform moment. FLR = 0.231 (π2 E /y G J / Msx2)0.5 (See Section D4.1.3 of these tables for explanation) Values to the left of the solid line are segment lengths with full lateral restraint. αsh = 0.7(((Msx / Moa)2 + 2.7))0.5 - Ms/Moa ) (See Section D4.1.2 of these tables for explanation) αm = 1.0

DCTDHS/06 MARCH 2002


TABLE D4.3-1(A)

DESIGN WEB CAPACITIES OF BEAMS DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness about x-axis

Interior Bearing Designation d

b

Mass per m

t

mm mm mm

φVv

kg/m

kN

150 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS

16.7 14.2 11.6 8.96 7.53 6.07

374 316 257 195 164 92.5

125 x 75 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS

16.7 14.2 11.6 8.96 7.53 6.07

100 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.5 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

φRby

φRbb

bb

bb

End Bearing Useful Parameters 5rext

bbw

Le/r

φRby

φRbb

bb

bb

bbw

L e/r

mm

mm

mm

kN/mm

kN/mm

mm

mm

mm

N N N N N B

1.28 1.05 0.828 0.785 0.651 0.519

2.54 1.60 0.860 0.357 0.208 0.107

75.0 62.5 50.0 30.0 25.0 20.0

60.0 62.5 65.0 69.0 70.0 71.0

70.0 87.5 114 161 196 249

1.18 0.983 0.786 0.769 0.641 0.513

2.30 1.42 0.752 0.308 0.179 0.0918

37.5 31.3 25.0 15.0 12.5 10.0

60.0 62.5 65.0 69.0 70.0 71.0

76.0 95.0 124 175 213 270

317 269 219 167 140 113

N N N N N N

1.31 1.07 0.838 0.790 0.654 0.521

3.16 2.11 1.19 0.506 0.298 0.154

75.0 62.5 50.0 30.0 25.0 20.0

47.5 50.0 52.5 56.5 57.5 58.5

55.4 70.0 91.9 132 161 205

1.18 0.983 0.786 0.769 0.641 0.513

2.95 1.92 1.06 0.439 0.257 0.132

37.5 31.3 25.0 15.0 12.5 10.0

47.5 50.0 52.5 56.5 57.5 58.5

60.2 76.0 99.8 143 175 222

12.0 10.3 8.49 7.53 6.60 5.56 4.50 3.64

244 208 170 151 131 110 88.9 71.7

N N N N N N N N

1.35 1.10 0.854 0.738 0.797 0.659 0.524 0.417

3.79 2.74 1.69 1.21 0.758 0.455 0.238 0.123

75.0 62.5 50.0 43.8 30.0 25.0 20.0 16.0

35.0 37.5 40.0 41.3 44.0 45.0 46.0 46.8

40.8 52.5 70.0 82.5 103 126 161 205

1.18 0.983 0.786 0.688 0.769 0.641 0.513 0.410

3.64 2.58 1.54 1.08 0.667 0.396 0.205 0.106

37.5 31.3 25.0 21.9 15.0 12.5 10.0 8.00

35.0 37.5 40.0 41.3 44.0 45.0 46.0 46.8

44.3 57.0 76.0 89.6 111 137 175 222

75 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

9.67 8.35 6.92 5.42 4.58 3.72 3.01

178 153 126 97.4 82.3 66.8 54.0

N N N N N N N

1.44 1.15 0.884 0.809 0.667 0.528 0.420

4.33 3.34 2.32 1.20 0.756 0.410 0.216

75.0 62.5 50.0 30.0 25.0 20.0 16.0

22.5 25.0 27.5 31.5 32.5 33.5 34.3

26.3 35.0 48.1 73.5 91.0 117 150

1.18 0.983 0.786 0.769 0.641 0.513 0.410

4.25 3.25 2.20 1.08 0.670 0.358 0.186

37.5 31.3 25.0 15.0 12.5 10.0 8.00

22.5 25.0 27.5 31.5 32.5 33.5 34.3

28.5 38.0 52.3 79.8 98.8 127 163

75 x 25 x 2.5 RHS 2.0 RHS 1.6 RHS

3.60 2.93 2.38

79.1 64.2 51.9

N N N

0.667 0.528 0.420

0.756 0.410 0.216

25.0 20.0 16.0

32.5 33.5 34.3

91.0 117 150

0.641 0.513 0.410

0.670 0.358 0.186

12.5 10.0 8.00

32.5 33.5 34.3

98.8 127 163

65 x 35 x 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS

5.35 4.25 3.60 2.93

106 82.3 69.7 56.7

N N N N

0.906 0.817 0.672 0.532

2.56 1.44 0.945 0.528

50.0 30.0 25.0 20.0

22.5 26.5 27.5 28.5

39.4 61.8 77.0 99.8

0.786 0.769 0.641 0.513

2.47 1.33 0.850 0.465

25.0 15.0 12.5 10.0

22.5 26.5 27.5 28.5

42.8 67.1 83.6 108

50 x 25 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

3.07 2.62 2.15 1.75

61.1 52.1 42.6 34.7

N N N N

0.836 0.685 0.539 0.426

1.82 1.31 0.800 0.452

30.0 25.0 20.0 16.0

19.0 20.0 21.0 21.8

44.3 56.0 73.5 95.4

0.769 0.641 0.513 0.410

1.74 1.22 0.723 0.399

15.0 12.5 10.0 8.00

19.0 20.0 21.0 21.8

48.1 60.8 79.8 104

50 x 20 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

2.83 2.42 1.99 1.63

60.3 51.4 42.0 34.2

N N N N

0.836 0.685 0.539 0.426

1.82 1.31 0.800 0.452

30.0 25.0 20.0 16.0

19.0 20.0 21.0 21.8

44.3 56.0 73.5 95.4

0.769 0.641 0.513 0.410

1.74 1.22 0.723 0.399

15.0 12.5 10.0 8.00

19.0 20.0 21.0 21.8

48.1 60.8 79.8 104

Notes : 1. 2. 3. 4. 5. 6. 7.

φ Le/r φRby φRbb αb kf U N B

DCTDHS/06 MARCH 2002

kN/mm kN/mm

Useful Parameters 2.5rext

= 0.9 = 3.5 d5 /t for interior bearing or Le/r = 3.8 d5/t for end bearing = 2φ αp bb t fy = 2φ αc bb t fy = 0.5 = 1.0 = approximately uniform shear stress distribution. Design shear capacity calculated in accordance with clause 5.11.4 of AS 4100. Vv = Vu = Vw = 0.6 fy Aw = non-uniform shear stress distribution. Design shear capacity calculated in accordance with clause 5.11.3 of AS 4100. Vv = 2Vu / (0.9 + (f *vm/f *va)) ≤ Vu = shear buckling failure mode. Design shear capacity calculated in accordance with clause 5.11.5 of AS 4100. Vv = Vb = αvVw ≤ Vw

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

D4-19


TABLE D4.3-1(B)

DESIGN WEB CAPACITIES OF BEAMS DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness about y-axis

Interior Bearing Designation d

b

Mass per m

t

mm mm mm

kg/m

φVv kN

φRby

φR bb

bb

bb

End Bearing φRby

φRbb

5rext

b bw

L e/r

bb

bb

Useful Parameters

Useful Parameters 2.5rext

b bw

Le/r

kN/mm

kN/mm

mm

mm

mm

kN/mm

kN/mm

mm

mm

mm

150 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS

16.7 14.2 11.6 8.96 7.53 6.07

111 97.2 81.6 64.2 54.7 44.7

U U U U U U

1.72 1.30 0.962 0.836 0.685 0.539

4.81 3.85 2.88 1.82 1.31 0.800

75.0 62.5 50.0 30.0 25.0 20.0

10.0 12.5 15.0 19.0 20.0 21.0

11.7 17.5 26.3 43.9 56.0 73.5

1.18 0.983 0.786 0.769 0.641 0.513

4.77 3.81 2.83 1.74 1.22 0.723

37.5 31.3 25.0 15.0 12.5 10.0

10.0 12.5 15.0 19.0 20.0 21.0

12.7 19.0 28.5 48.1 60.8 79.8

125 x 75 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS

16.7 14.2 11.6 8.96 7.53 6.07

184 158 130 101 85.1 69.0

U U U U U U

1.44 1.15 0.884 0.809 0.667 0.528

4.33 3.34 2.32 1.20 0.756 0.410

75.0 62.5 50.0 30.0 25.0 20.0

22.5 25.0 27.5 31.5 32.5 33.5

26.3 35.0 48.1 73.5 91.0 117

1.18 0.983 0.786 0.769 0.641 0.513

4.25 3.25 2.20 1.08 0.670 0.358

37.5 31.3 25.0 15.0 12.5 10.0

22.5 25.0 27.5 31.5 32.5 33.5

28.5 38.0 52.3 79.8 98.8 127

100 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.5 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

12.0 10.3 8.49 7.53 6.60 5.56 4.50 3.64

111 97.2 81.6 73.1 64.2 54.7 44.7 36.4

U U U U U U U U

1.72 1.30 0.962 0.814 0.836 0.685 0.539 0.426

4.81 3.85 2.88 2.39 1.82 1.31 0.800 0.452

75.0 62.5 50.0 43.8 30.0 25.0 20.0 16.0

10.0 12.5 15.0 16.3 19.0 20.0 21.0 21.8

11.7 17.5 26.3 32.5 44.3 56.0 73.5 95.4

1.18 0.983 0.786 0.688 0.769 0.641 0.513 0.410

4.77 3.81 2.83 2.33 1.74 1.22 0.723 0.399

37.5 31.3 25.0 21.9 15.0 12.5 10.0 8.00

10.0 12.5 15.0 16.3 19.0 20.0 21.0 21.8

12.7 19.0 28.5 35.3 48.1 60.8 79.8 104

75 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

9.67 8.35 6.92 5.42 4.58 3.72 3.01

111 97.2 81.6 64.2 54.7 44.7 36.4

U U U U U U U

1.72 1.30 0.962 0.836 0.685 0.539 0.426

4.81 3.85 2.88 1.82 1.31 0.800 0.452

75.0 62.5 50.0 30.0 25.0 20.0 16.0

10.0 12.5 15.0 19.0 20.0 21.0 21.8

11.7 17.5 26.3 44.3 56.0 73.5 95.4

1.18 0.983 0.786 0.769 0.641 0.513 0.410

4.77 3.81 2.83 1.74 1.22 0.723 0.399

37.5 31.3 25.0 15.0 12.5 10.0 8.00

10.0 12.5 15.0 19.0 20.0 21.0 21.8

12.7 19.0 28.5 48.1 60.8 79.8 104

75 x 25 x 2.5 RHS 2.0 RHS 1.6 RHS

3.60 2.93 2.38

24.3 20.4 17.0

U U U

0.754 0.578 0.449

1.88 1.40 1.01

25.0 20.0 16.0

7.50 8.50 9.30

21.0 29.8 40.7

0.641 0.513 0.410

1.85 1.37 0.973

12.5 10.0 8.00

7.50 8.50 9.30

22.8 32.3 44.2

65 x 35 x 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS

5.35 4.25 3.60 2.93

52.5 42.3 36.5 30.1

U U U U

1.11 0.878 0.711 0.554

3.17 2.15 1.67 1.17

50.0 30.0 25.0 20.0

7.50 11.5 12.5 13.5

13.1 26.8 35.0 47.3

0.786 0.769 0.641 0.513

3.15 2.11 1.62 1.11

25.0 15.0 12.5 10.0

7.50 11.5 12.5 13.5

14.3 29.1 38.0 51.3

50 x 25 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

3.07 2.62 2.15 1.75

27.7 24.3 20.4 17.0

U U U U

0.949 0.754 0.578 0.449

2.35 1.88 1.40 1.01

30.0 25.0 20.0 16.0

6.50 7.50 8.50 9.30

15.2 21.0 29.8 40.7

0.769 0.641 0.513 0.410

2.33 1.85 1.37 0.973

15.0 12.5 10.0 8.00

6.50 7.50 8.50 9.30

16.5 22.8 32.3 44.2

50 x 20 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

2.83 2.42 1.99 1.63

20.4 18.2 15.6 13.1

U U U U

1.02 0.801 0.603 0.463

2.43 1.97 1.50 1.12

30.0 25.0 20.0 16.0

4.00 5.00 6.00 6.80

9.33 14.0 21.0 29.8

0.769 0.641 0.513 0.410

2.43 1.95 1.48 1.10

15.0 12.5 10.0 8.00

4.00 5.00 6.00 6.80

10.1 15.2 22.8 32.3

Notes : 1. 2. 3. 4. 5. 6. 7.

φ Le/r φRby φRbb αb kf U N

D4-20

= 0.9 = 3.5 d5/t for interior bearing or Le/r = 3.8 d5/t for end bearing = 2φ αp bb t fy = 2φ αc bb t fy = 0.5 = 1.0 = approximately uniform shear stress distribution. Design shear capacity calculated in accordance with clause 5.11.4 of AS 4100. Vv = Vu = Vw = 0.6 fy Aw = non-uniform shear stress distribution. Design shear capacity calculated in accordance with clause 5.11.3 of AS 4100. Vv = 2Vu / (0.9 + (f *vm /f *va)) ≤ Vu

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

DCTDHS/06 MARCH 2002


TABLE D4.3-2(A)

DESIGN WEB CAPACITIES OF BEAMS DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness about x-axis Interior Bearing Designation d

b

Mass per m

t

mm mm mm 125 x 75 x 2.8 RHS 2.3 RHS 100 x 50 x 2.8 RHS 2.3 RHS

kg/m 8.39 6.95 6.19 5.14

75 x 50 x 2.8 RHS 2.3 RHS

5.09 4.24

65 x 35 x 2.8 RHS 2.3 RHS

φVv

φRbb

bb

bb

Useful Parameters 5rext

bbw

Le/r

φRby

φRbb

bb

bb

bbw

L e/r

mm 14.0 11.5 14.0 11.5

mm 56.9 57.9 44.4 45.4

mm 154 191 121 150

kN/mm 0.735 0.601 0.741 0.605

kN/mm 0.414 0.233 0.626 0.358

mm 28.0 23.0 28.0 23.0

mm 56.9 57.9 44.4 45.4

mm 142 176 111 138

91.4 76.2

N N

0.752 0.611

1.01 0.604

28.0 23.0

31.9 32.9

79.8 100

0.718 0.590

0.908 0.532

14.0 11.5

31.9 32.9

86.6 109

3.99 3.34

77.3 64.6

N N

0.758 0.616

1.24 0.766

28.0 23.0

26.9 27.9

67.3 84.9

0.718 0.590

1.13 0.683

14.0 11.5

26.9 27.9

73.0 92.2

50 x 25 x 2.8 RHS 2.3 RHS

2.89 2.44

57.5 48.3

N N

0.775 0.626

1.62 1.10

28.0 23.0

19.4 20.4

48.5 62.1

0.718 0.590

1.53 1.01

14.0 11.5

19.4 20.4

52.7 67.4

50 x 20 x 2.8 RHS 2.3 RHS

2.67 2.25

56.8 47.7

N N

0.775 0.626

1.62 1.10

28.0 23.0

19.4 20.4

48.5 62.1

0.718 0.590

1.53 1.01

14.0 11.5

19.4 20.4

52.7 67.4

φ Le/r φRby φRbb αb kf U N

kN/mm kN/mm 0.718 0.359 0.590 0.200 0.718 0.548 0.590 0.310

Useful Parameters 2.5rext

N N N N

Notes : 1. 2. 3. 4. 5. 6. 7.

kN 156 129 122 102

φRby

End Bearing

= 0.9 = 3.5 d5 /t for interior bearing or Le/r = 3.8 d5/t for end bearing = 2φ αp bb t fy = 2φ αc bb t fy = 0.5 = 1.0 = approximately uniform shear stress distribution. Design shear capacity calculated in accordance with clause 5.11.4 of AS 4100. Vv = Vu = Vw = 0.6 fy Aw = non-uniform shear stress distribution. Design shear capacity calculated in accordance with clause 5.11.3 of AS 4100. Vv = 2Vu / (0.9 + (f *vm/f *va)) ≤ Vu

TABLE D4.3-2(B)

DESIGN WEB CAPACITIES OF BEAMS DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness about y-axis Interior Bearing Designation d

b

Mass per m

t

φVv

φRby

φRbb

bb

bb

End Bearing Useful Parameters 5rext

bbw

Le/r

φRby

φRbb

bb

bb

bbw

L e/r

mm mm mm

kg/m

kN

kN/mm

kN/mm

mm

mm

mm

mm

mm

mm

125 x 75 x 2.8 RHS 2.3 RHS

8.39 6.95

94.4 78.7

U U

0.752 0.611

1.01 0.609

28.0 23.0

31.9 32.9

79.8 100

0.718 0.590

0.908 0.532

14.0 11.5

31.9 32.9

86.6 109

100 x 50 x 2.8 RHS 2.3 RHS

6.19 5.14

60.4 50.7

U U

0.775 0.626

1.62 1.10

28.0 23.0

19.4 20.4

48.5 62.1

0.718 0.590

1.53 1.01

14.0 11.5

19.4 20.4

52.7 67.4

75 x 50 x 2.8 RHS 2.3 RHS

5.09 4.24

60.4 50.7

U U

0.775 0.626

1.62 1.10

28.0 23.0

19.4 20.4

48.5 62.1

0.718 0.590

1.53 1.01

14.0 11.5

19.4 20.4

52.7 67.4

65 x 35 x 2.8 RHS 2.3 RHS

3.99 3.34

40.0 34.0

U U

0.810 0.647

1.96 1.48

28.0 23.0

11.9 12.9

29.8 39.3

0.718 0.590

1.92 1.42

14.0 11.5

11.9 12.9

32.3 42.6

50 x 25 x 2.8 RHS 2.3 RHS

2.89 2.44

26.4 22.8

U U

0.869 0.682

2.16 1.69

28.0 23.0

6.90 7.90

17.3 24.0

0.718 0.590

2.14 1.66

14.0 11.5

6.90 7.90

18.7 26.1

50 x 20 x 2.8 RHS 2.3 RHS

2.67 2.25

19.6 17.2

U U

0.932 0.719

2.25 1.78

28.0 23.0

4.40 5.40

11.0 16.4

0.718 0.590

2.24 1.77

14.0 11.5

4.40 5.40

11.9 17.8

Notes : 1. 2. 3. 4. 5. 6. 7.

φ Le/r φRby φRbb αb kf U N

DCTDHS/06 MARCH 2002

kN/mm kN/mm

Useful Parameters 2.5rext

= 0.9 = 3.5 d5/t for interior bearing or Le/r = 3.8 d5/t for end bearing = 2φ αp bb t fy = 2φ αc bb t fy = 0.5 = 1.0 = approximately uniform shear stress distribution. Design shear capacity calculated in accordance with clause 5.11.4 of AS 4100. Vv = Vu = Vw = 0.6 fy Aw = non-uniform shear stress distribution. Design shear capacity calculated in accordance with clause 5.11.3 of AS 4100. Vv = 2Vu / (0.9 + (f *vm /f *va)) ≤ Vu

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

D4-21


TABLE D4.3-3

DESIGN WEB CAPACITIES OF BEAMS DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness about x- and y-axis

Interior Bearing Designation d

b

Mass per m

t

mm mm mm

φVv

kg/m

kN

100 x 100 x 6.0 SHS 5.0 SHS 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS

16.7 14.2 11.6 8.96 7.53 6.07

253 216 177 135 114 92.2

90 x 90 x 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS

8.01 6.74 5.45 4.39

89 x 89 x 6.0 SHS 5.0 SHS 3.5 SHS

φRby

φR bb

bb

bb

End Bearing φRby

φRbb

5rext

b bw

L e/r

bb

bb

Useful Parameters

Useful Parameters 2.5rext

b bw

Le/r

kN/mm

kN/mm

mm

mm

mm

kN/mm

kN/mm

mm

mm

mm

N N N N N N

1.35 1.10 0.854 0.797 0.659 0.524

3.79 2.74 1.69 0.758 0.455 0.238

75.0 62.5 50.0 30.0 25.0 20.0

35.0 37.5 40.0 44.0 45.0 46.0

40.8 52.5 70.0 103 126 161

1.18 0.983 0.786 0.769 0.641 0.513

3.64 2.58 1.54 0.667 0.396 0.205

37.5 31.3 25.0 15.0 12.5 10.0

35.0 37.5 40.0 44.0 45.0 46.0

44.3 57.0 76.0 111 137 175

121 102 82.6 66.7

N N N N

0.800 0.662 0.525 0.418

0.907 0.551 0.291 0.151

30.0 25.0 20.0 16.0

39.0 40.0 41.0 41.8

91.0 112 144 183

0.769 0.641 0.513 0.410

0.804 0.482 0.252 0.130

15.0 12.5 10.0 8.00

39.0 40.0 41.0 41.8

98.8 122 156 199

14.6 12.5 9.06

221 189 138

N N N

1.38 1.11 0.746

4.04 3.02 1.45

75.0 62.5 43.8

29.5 32.0 35.7

34.4 44.7 71.4

1.18 0.983 0.688

3.93 2.89 1.31

37.5 31.3 21.9

29.5 32.0 35.7

37.3 48.6 77.5

75 x 75 x 6.0 SHS 5.0 SHS 4.0 SHS 3.5 SHS 3.0 SHS 2.5 SHS 2.0 SHS

12.0 10.3 8.49 7.53 6.60 5.56 4.50

181 156 129 114 99.4 84.0 68.2

N N N N N N N

1.44 1.15 0.884 0.760 0.809 0.667 0.528

4.33 3.34 2.32 1.79 1.20 0.756 0.410

75.0 62.5 50.0 43.8 30.0 25.0 20.0

22.5 25.0 27.5 28.8 31.5 32.5 33.5

26.3 35.0 48.1 57.5 73.5 91.0 117

1.18 0.983 0.786 0.688 0.769 0.641 0.513

4.25 3.25 2.20 1.66 1.08 0.670 0.358

37.5 31.3 25.0 21.9 15.0 12.5 10.0

22.5 25.0 27.5 28.8 31.5 32.5 33.5

28.5 38.0 52.3 62.4 79.8 98.8 127

65 x 65 x 6.0 SHS 5.0 SHS 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS

10.1 8.75 7.23 5.66 4.78 3.88 3.13

153 132 109 85.0 72.0 58.6 47.5

N N N N N N N

1.51 1.19 0.906 0.817 0.672 0.532 0.422

4.52 3.55 2.56 1.44 0.945 0.528 0.283

75.0 62.5 50.0 30.0 25.0 20.0 16.0

17.5 20.0 22.5 26.5 27.5 28.5 29.3

20.4 28.0 39.4 61.8 77.0 99.8 128

1.18 0.983 0.786 0.769 0.641 0.513 0.410

4.46 3.48 2.47 1.33 0.850 0.465 0.246

37.5 31.3 25.0 15.0 12.5 10.0 8.00

17.5 20.0 22.5 26.5 27.5 28.5 29.3

22.2 30.4 42.8 67.1 83.6 108 139

50 x 50 x 5.0 SHS 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS

6.39 5.35 4.25 3.60 2.93 2.38

96.0 80.6 63.4 54.0 44.2 35.9

N N N N N N

1.30 0.962 0.836 0.685 0.539 0.426

3.85 2.88 1.82 1.31 0.800 0.452

62.5 50.0 30.0 25.0 20.0 16.0

12.5 15.0 19.0 20.0 21.0 21.8

17.5 26.3 44.3 56.0 73.5 95.4

0.983 0.786 0.769 0.641 0.513 0.410

3.81 2.83 1.74 1.22 0.723 0.399

31.3 25.0 15.0 12.5 10.0 8.00

12.5 15.0 19.0 20.0 21.0 21.8

19.0 28.5 48.1 60.8 79.8 104

40 x 40 x 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS

4.09 3.30 2.82 2.31 1.88

61.4 49.0 42.0 34.6 28.3

N N N N N

1.04 0.859 0.700 0.548 0.431

3.08 2.05 1.56 1.05 0.640

50.0 30.0 25.0 20.0 16.0

10.0 14.0 15.0 16.0 16.8

17.5 32.7 42.0 56.0 73.5

0.786 0.769 0.641 0.513 0.410

3.05 2.00 1.50 0.975 0.578

25.0 15.0 12.5 10.0 8.00

10.0 14.0 15.0 16.0 16.8

19.0 35.5 45.6 60.8 79.8

35 x 35 x 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS

2.83 2.42 1.99 1.63

41.8 36.0 29.8 24.4

N N N N

0.878 0.711 0.554 0.435

2.15 1.67 1.17 0.760

30.0 25.0 20.0 16.0

11.5 12.5 13.5 14.3

26.8 35.0 47.3 62.6

0.769 0.641 0.513 0.410

2.11 1.62 1.11 0.699

15.0 12.5 10.0 8.00

11.5 12.5 13.5 14.3

29.1 38.0 51.3 67.9

30 x 30 x 2.0 SHS 1.6 SHS

1.68 1.38

25.0 20.6

N N

0.564 0.441

1.29 0.888

20.0 16.0

11.0 11.8

38.5 51.6

0.513 0.410

1.25 0.836

10.0 8.00

11.0 11.8

41.8 56.1

25 x 25 x 2.5 SHS 2.0 SHS 1.6 SHS

1.64 1.36 1.12

24.0 20.2 16.7

N N N

0.754 0.578 0.449

1.88 1.40 1.01

25.0 20.0 16.0

7.50 8.50 9.30

21.0 29.8 40.7

0.641 0.513 0.410

1.85 1.37 0.973

12.5 10.0 8.00

7.50 8.50 9.30

22.8 32.3 44.2

20 x 20 x 1.6 SHS

0.873

12.9

N

0.463

1.12

16.0

6.80

29.8

0.410

1.10

8.00

6.80

32.3

Notes : 1. 2. 3. 4. 5. 6. 7.

φ Le/r φRby φRbb αb kf U N

D4-22

= 0.9 = 3.5 d5 /t for interior bearing or Le/r = 3.8 d5/t for end bearing = 2φ αp bb t fy = 2φ αc bb t fy = 0.5 = 1.0 = approximately uniform shear stress distribution. Design shear capacity calculated in accordance with clause 5.11.4 of AS 4100. Vv = Vu = Vw = 0.6 fy Aw = non-uniform shear stress distribution. Design shear capacity calculated in accordance with clause 5.11.3 of AS 4100. Vv = 2Vu / (0.9 + (f *vm/f *va)) ≤ Vu

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

DCTDHS/06 MARCH 2002


TABLE D4.3-4

DESIGN WEB CAPACITIES OF BEAMS DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness about x- and y-axis

Interior Bearing Designation d

b

Mass per m

t

mm mm mm

φVv

kg/m

kN

100 x 100 x 2.8 SHS 2.3 SHS

8.39 6.95

127 105

75 x 75 x 2.8 SHS 2.3 SHS

6.19 5.14

65 x 65 x 2.3 SHS 50 x 50 x 2.8 SHS 2.3 SHS 40 x 40 x 2.8 SHS 2.3 SHS 35 x 35 x 2.8 SHS 2.3 SHS Notes : 1. 2. 3. 4. 5. 6. 7.

φ Le/r φRby φRbb αb kf U N

DCTDHS/06 MARCH 2002

= = = = = = = Vv =

φRby

φRbb

bb

bb

End Bearing Useful Parameters 5rext

bbw

Le/r mm

φRby

φRbb

bb

bb

kN/mm kN/mm

Useful Parameters 2.5rext

bbw

L e/r

kN/mm

kN/mm

mm

mm

mm

mm

N N

0.741 0.605

0.626 0.358

28.0 23.0

44.4 45.4

111 138

0.718 0.590

0.548 0.310

14.0 11.5

44.4 45.4

121 150

mm

93.3 77.7

N N

0.752 0.611

1.01 0.604

28.0 23.0

31.9 32.9

79.8 100

0.718 0.590

0.908 0.532

14.0 11.5

31.9 32.9

86.6 109

4.42

66.7

N

0.616

0.766

23.0

27.9

84.9

0.590

0.683

11.5

27.9

92.2

3.99 3.34

59.7 50.1

N N

0.775 0.626

1.62 1.10

28.0 23.0

19.4 20.4

48.5 62.1

0.718 0.590

1.53 1.01

14.0 11.5

19.4 20.4

52.7 67.4

3.11 2.62

46.2 39.1

N N

0.794 0.638

1.86 1.36

28.0 23.0

14.4 15.4

36.0 46.9

0.718 0.590

1.80 1.29

14.0 11.5

14.4 15.4

39.1 50.9

2.67 2.25

39.5 33.6

N N

0.810 0.647

1.96 1.48

28.0 23.0

11.9 12.9

29.8 39.3

0.718 0.590

1.92 1.42

14.0 11.5

11.9 12.9

32.3 42.6

0.9 3.5 d5/t for interior bearing or Le/r = 3.8 d5/t for end bearing 2φ αp bb t fy 2φ αc bb t fy 0.5 1.0 approximately uniform shear stress distribution. Design shear capacity calculated in accordance with clause 5.11.4 of AS 4100. = Vu = Vw = 0.6 fy Aw non-uniform shear stress distribution. Design shear capacity calculated in accordance with clause 5.11.3 of AS 4100. Vv = 2Vu / (0.9 + (f *vm/f *va)) ≤ Vu

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

D4-23


[ BLANK ]

D4-24

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

DCTDHS/06 MARCH 2002


PART 5 MEMBERS SUBECT TO AXIAL COMPRESSION

5 PAGE

D5.1

SCOPE ........................................................................................................................... D5-2

D5.2

DESIGN CAPACITY FOR MEMBERS SUBJECT TO AXIAL COMPRESSION ........ D5-2

D5.3

METHOD ....................................................................................................................... D5-2

D5.4

EFFECTIVE LENGTH ................................................................................................... D5-4

D5.5

MODES OF BUCKLING ............................................................................................... D5-6

D5.6

EXAMPLE ...................................................................................................................... D5-6

TABLES TABLES D5.2-1 to D5.2-4 Design Capacities for Members Subject to Axial Compression (φNc) Buckling About Principal Axis .......................................................................................... D5-8

NOTE: SEE PAGE vii FOR THE SPECIFIC MATERIAL STANDARD REFERRED TO BY THE SECTION TYPE AND STEEL GRADE IN THESE TABLES.

DCTDHS/06 MARCH 2002

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

D5-1


PART 5 MEMBERS SUBECT TO AXIAL COMPRESSION D5.1

SCOPE

The following tables give values of design axial compression capacity for various effective lengths and have been determined using Section 6 of AS 4100. All loads are assumed to be applied through the centroid of the section and the column capacity is assumed to be associated with flexural buckling about either the x- or y-axis.

D5.2

DESIGN CAPACITY FOR MEMBERS SUBJECT TO AXIAL COMPRESSION

Values of the design capacity for axial compression (φNc) for buckling about both principal axes, based on the appropriate effective length (Le), are given in Tables D5.2-1 to D5.2-4. The tables in this section have been grouped into two series for rectangular hollow sections:

the (A) series (e.g. Table D5.2-1(1)(A)) for the member buckling about the x-axis, and

the (B) series (e.g. Table D5.2-1(1)(B)) for the member buckling about the y-axis.

The (A) series tables are immediately followed by the (B) series tables.

D5.3

METHOD

The design axial compression member capacity is obtained from Clauses 6.3 of AS 4100 and is given by: φNc = φ αc Ns ≤ φNs where

φ φN s kf An

fy αc

D5-2

= = = = = = = =

0.9 (Table 3.4 of AS 4100) φ kf An fy (see Section D3.2.2 and Tables D3.1-1 to D3.1-4) Ae /Ag (see Section D1.2.3.3 and Clause 6.2.2 of AS 4100) net section area Ag gross cross-sectional area (assumed no penetrations or holes) yield stress used in design member slenderness reduction factor

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

DCTDHS/06 MARCH 2002


According to Clause 6.3.3 of AS 4100, αc depends on the modified slenderness reduction factor (λn) and the member section constant (αb). The member slenderness reduction factor (αc) is determined from Clause 6.3.3 of AS 4100 and taken as:

R| S| T

αc = ξ 1−

LM1 − F 90 I MN GH ξλ JK

2

OP U| PQ V|W

FG λ IJ + 1 + η H 90 K FλI 2G J H 90 K 2

ξ

where

=

2

λ = λn + αa αb η = 0.00326(λ -13.5) >0 λn =

αa =

FG L IJ bk g FG f IJ HrK H 250 K 2100bλ − 13 .5g f

λ n 2 − 15 .3λ n + 2050

α a = -0.5

FG L IJ HrK e

Le r kf fy

y

e

(Table D5.3)

= geometrical slenderness ratio = = = =

effective length of a compression member (see Section D5.4) radius of gyration (see Tables D1.2-1 to D1.2-4) form factor (see Section D1.2.3.3 and Tables D1.2-1 to D1.2-4) yield stress used in design

Note that the member capacity equals the section capacity (φNc = φNs ) when the effective length Le = 0. The residual stress classification used in determining kf is shown in Table D5.3 and is described in Section D1.2.3.3 of the Tables.

Table D5.3 Section

RHS, SHS

DCTDHS/06 MARCH 2002

Residual

Yield Slenderness

Stresses

Limit

CF

αb

λey

kf = 1.0

kf < 1.0

40

- 0.5

- 0.5

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

D5-3


D5.4

EFFECTIVE LENGTH

Before using these tables and graphs it is necessary to determine the effective length, which depends on the rotational and translational restraints at the ends of the member and is determined using the following formula: Le = ke L The member effective length factor (ke) (Clause 6.3.2 of AS 4100) can be determined using Clause 4.6.3 of AS 4100 or by a rational frame buckling analysis as described in Clause 4.7 of AS 4100. Information relevant to assessing ke, for members in frames using Clause 4.6 of AS 4100, is reproduced in Part 7 of this publication. For members with idealised end restraints ke is given in Table D5.4. Table D5.4: Effective Length Factors for Members for Idealised Conditions of End Restraint

Note: This table reproduced from AS 4100 -1998 by kind permission of Standards Australia.

Advice on the determination of effective lengths of members in trusses and girders is not covered in AS 4100, but suitable equations have been developed in [1]. The following equations are applicable for:

welded joints with gap or partial overlap

bracing members welded along the full perimeter

no cropping or flattening of the ends of the bracings

D5-4

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

DCTDHS/06 MARCH 2002


In all cases Le / L > 0.5 (i)

Chord: Bracing:

square circular

 d12  Le = 2.35  L  Lbo  (ii)

Chord: Bracing:

 2 b = 2.30 1   Lb o  L  

= = = = =

≤ 0.75

square square

Le

where Le L d1 bo b1

0 .25

0.25

≤ 0.75

effective length of a compression member distance between intersection points of chord and web centre lines (see Figure D5.4) outside diameter of a circular bracing member external width of a square chord member external width of a square bracing member

The effective length of members in a pitched roof can be determined from the reference[2] below.

Figure D5.4

[1]

Rondal, J., “Effective Lengths of Tubular Lattice Girder Members Statistical Tests”, CIDECT Report 3 K - 90/3 Final Report, University of Liege, 1990.

[2]

Fraser, D.J., “Stability of Pitched Roof Frames”, Transaction of The Institution of Engineers Australia, Civil Engineering, Vol. CE28, No. 1, 1986.

DCTDHS/06 MARCH 2002

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

D5-5


D5.5

MODES OF BUCKLING

Although it is also possible for some doubly symmetric sections to buckle in a torsional mode, this is not the governing buckling mode for hollow sections.

D5.6 1.

EXAMPLE

A compression member in a truss, shown below, is to resist a concentrically applied axial compression force of 250 kN. End connections are full perimeter welded gap joints, with chord and web members being the same size DuraGal SHS.

Design Data: N*

= 250 kN

Solution:

From Section 5.4

Le L bI

Le L Trial Le

For

Le L bo

=

Fb I 2.30G H Lb JK 2 1

0 .25

≤ 0.75

For SHS chord and bracing

0

= bo

For same size chord and bracing 0 .25

=

Fb I 2.30G J HLK

= =

0.75 x 4.0 m 3.0 m

≤ 0.75

o

(Section D5.4)

= 0.75 = 0.113 L = 45 mm

=

0.113 x 4

- Selecting the DuraGal section with the least mass from Table D5.2-3(1): 100 x 100 x 3.0 SHS Grade C450L0 (8.96 kg/m) As bo

Le L

=

100 mm > 45 mm

=

2.30

FG 100 IJ H 4000 K

φNc = 265 > N*

(Table D5.2-3(1))

∴ section is satisfactory

0 .25

= 0.914 > 0.75

∴ The assumption that Le = 0.75L was correct

D5-6

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

DCTDHS/06 MARCH 2002


[ BLANK ]

DCTDHS/06 MARCH 2002

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

D5-7


D5-8

TABLE D5.2-1(1)(A)

DESIGN CAPACITIES FOR MEMBERS SUBJECT TO AXIAL COMPRESSION DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness buckling about x-axis Designation d

b

Design Capacities for Axial Compression φNc (kN)

Mass per m

t

Effective Length (Le) in metres

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

mm mm mm

kg/m

0.0

1.0

1.5

2.0

2.5

3.0

3.5

4.0

5.0

6.0

7.0

8.0

150 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS

16.7 14.2 11.6 8.96 7.53 6.07

864 735 526 329 246 173

841 716 515 324 243 172

808 689 499 316 237 168

764 653 476 305 230 164

704 604 447 291 221 158

629 541 410 273 209 151

542 469 364 251 195 143

455 396 316 226 178 133

318 278 228 172 141 109

228 200 166 129 107 85.1

171 150 125 98.1 82.4 66.1

125 x 75 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS

16.7 14.2 11.6 8.96 7.53 6.07

864 735 600 390 296 196

835 711 581 381 290 192

796 679 556 367 280 187

741 634 520 348 268 180

668 573 471 323 251 171

576 497 411 291 229 160

479 415 345 253 203 147

392 341 285 215 176 131

267 233 195 151 126 98.7

190 166 139 109 91.9 73.3

100 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.5 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

12.0 10.3 8.49 7.53 6.60 5.56 4.50 3.64

621 532 438 388 329 246 173 124

583 502 414 367 313 235 167 120

534 461 382 340 291 221 158 115

462 402 335 299 258 200 146 107

371 326 274 246 216 172 129 96.6

286 253 214 193 171 141 109 83.7

220 196 167 150 134 112 89.0 69.9

173 154 131 119 106 89.6 72.1 57.5

114 101 86.5 78.1 70.2 59.7 48.5 39.2

80.0 71.4 61.0 55.1 49.5 42.2 34.5 28.0

0.9 φ αc Ns - 0.5

(Clause 6.3.3 of AS 4100) (Table 6.3.3 of AS 4100)

Notes : 1. 2. 3.

φ φ Nc αb

= = =

10.0

12.0

132 116 97.0 76.5 64.6 52.1

85.9 75.4 63.1 50.0 42.3 34.3

60.3 52.9 44.3 35.1 29.8 24.2

142 124 104 81.8 69.1 55.6

110 95.8 80.3 63.4 53.6 43.3

71.1 62.1 52.1 41.2 34.9 28.3

49.8 43.5 36.5 28.9 24.5 19.9

59.3 53.0 45.3 40.9 36.8 31.4 25.7 20.9

45.7 40.8 34.9 31.5 28.4 24.2 19.8 16.1

29.6 26.4 22.6 20.4 18.4 15.7 12.8 10.5

20.7 18.5 15.8 14.3 12.8 11.0 8.99 7.33

DCTDHS/06 MARCH 2002


DCTDHS/06 MARCH 2002

TABLE D5.2-1(2)(A)

DESIGN CAPACITIES FOR MEMBERS SUBJECT TO AXIAL COMPRESSION DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness Buckling about x-axis Designation d

b

Design Capacities for Axial Compression φNc (kN)

Mass per m

t

Effective Length (Le) in metres

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

D5-9

mm mm mm

kg/m

0.0

0.25

0.5

0.75

1.0

1.25

1.5

1.75

2.0

2.5

3.0

3.5

4.0

5.0

100 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.5 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

12.0 10.3 8.49 7.53 6.60 5.56 4.50 3.64

621 532 438 388 329 246 173 124

621 532 438 388 329 246 173 124

614 527 434 385 327 244 173 124

600 516 425 377 321 240 170 122

583 502 414 367 313 235 167 120

561 484 399 355 303 228 163 117

534 461 382 340 291 221 158 115

501 434 360 321 276 211 153 111

462 402 335 299 258 200 146 107

371 326 274 246 216 172 129 96.6

286 253 214 193 171 141 109 83.7

220 196 167 150 134 112 89.0 69.9

173 154 131 119 106 89.6 72.1 57.5

114 101 86.5 78.1 70.2 59.7 48.5 39.2

75 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

9.67 8.35 6.92 5.42 4.58 3.72 3.01

499 431 357 280 236 173 124

499 431 357 280 236 173 124

487 421 349 274 232 171 122

470 407 338 266 225 166 119

447 388 323 255 216 160 116

416 362 303 240 203 152 111

376 330 277 221 188 142 105

329 291 247 198 169 130 97.0

280 250 213 173 148 116 88.2

198 179 154 126 108 87.1 68.8

143 130 112 92.3 79.4 64.7 52.0

108 97.4 84.3 69.5 59.8 49.0 39.8

83.4 75.5 65.4 54.0 46.5 38.2 31.1

54.2 49.1 42.6 35.2 30.3 24.9 20.4

75 x 25 x 2.5 RHS 2.0 RHS 1.6 RHS

3.60 2.93 2.38

186 133 91.6

186 133 91.6

181 130 90.1

175 126 87.7

165 120 84.4

153 113 80.3

138 104 75.1

120 92.5 68.6

101 80.2 61.2

71.2 58.1 46.2

51.3 42.3 34.3

38.4 31.9 26.0

29.8 24.7 20.3

19.4 16.1 13.2

65 x 35 x 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS

5.35 4.25 3.60 2.93

276 219 186 149

275 219 186 149

267 212 180 145

254 203 173 139

236 190 162 131

212 173 147 120

183 151 129 106

152 127 109 89.8

124 105 90.5 74.8

84.3 71.7 62.2 51.7

60.0 51.2 44.5 37.0

44.8 38.2 33.2 27.7

34.6 29.5 25.7 21.4

22.4 19.2 16.7 13.9

50 x 25 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

3.07 2.62 2.15 1.75

158 135 111 90.4

157 134 110 89.6

149 128 105 85.6

137 118 96.9 79.3

119 103 85.2 70.0

96.0 83.7 70.0 57.9

74.3 65.2 54.9 45.6

57.4 50.6 42.7 35.6

45.1 39.8 33.7 28.1

29.7 26.2 22.2 18.6

20.9 18.5 15.6 13.1

15.5 13.7 11.6 9.71

12.0 10.6 8.95 7.49

7.73 6.83 5.79 4.84

50 x 20 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

2.83 2.42 1.99 1.63

146 125 103 83.9

144 124 102 83.0

137 117 96.7 79.1

125 107 88.8 72.8

106 92.5 77.0 63.5

84.2 74.0 62.2 51.7

64.3 56.8 48.1 40.2

49.3 43.8 37.2 31.1

38.7 34.3 29.2 24.5

25.4 22.5 19.2 16.1

17.8 15.9 13.5 11.4

13.2 11.8 10.0 8.43

10.2 9.08 7.74 6.50

6.59 5.87 5.00 4.20

Notes : 1. 2. 3.

φ φ Nc αb

= = =

0.9 φ αc Ns - 0.5

(Clause 6.3.3 of AS 4100) (Table 6.3.3 of AS 4100)


D5-10

TABLE D5.2-1(1)(B)

DESIGN CAPACITIES FOR MEMBERS SUBJECT TO AXIAL COMPRESSION DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness buckling about y-axis Designation d

b

Design Capacities for Axial Compression φNc (kN)

Mass per m

t

Effective Length (L e) in metres

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

mm mm mm

kg/m

0.0

1.0

1.5

2.0

2.5

3.0

3.5

4.0

5.0

6.0

7.0

8.0

10.0

12.0

150 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS

16.7 14.2 11.6 8.96 7.53 6.07

864 735 526 329 246 173

714 614 454 295 223 160

517 452 356 248 193 142

335 296 245 185 151 116

224 199 167 131 110 87.2

159 141 119 94.5 80.0 64.8

118 105 88.9 70.8 60.3 49.1

91.1 81.0 68.7 54.9 46.8 38.3

59.0 52.5 44.6 35.7 30.5 25.0

41.3 36.7 31.2 25.0 21.4 17.5

30.5 27.2 23.1 18.5 15.8 13.0

23.5 20.9 17.8 14.3 12.2 10.0

15.1 13.5 11.5 9.20 7.88 6.47

10.6 9.40 8.00 6.43 5.50 4.52

125 x 75 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS

16.7 14.2 11.6 8.96 7.53 6.07

864 735 600 390 296 196

797 680 556 367 281 187

709 608 500 337 261 177

579 501 415 293 231 161

438 382 319 237 192 141

326 285 239 184 152 116

247 217 182 142 119 93.7

193 169 142 112 94.2 75.2

126 110 92.8 73.4 62.2 50.3

88.3 77.5 65.3 51.7 43.9 35.6

65.4 57.5 48.4 38.3 32.6 26.5

50.4 44.3 37.3 29.6 25.1 20.4

32.6 28.6 24.1 19.1 16.3 13.2

22.8 20.0 16.8 13.4 11.4 9.27

100 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.5 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

12.0 10.3 8.49 7.53 6.60 5.56 4.50 3.64

621 532 438 388 329 246 173 124

503 437 363 324 278 213 154 112

352 311 264 237 209 168 127 95.2

223 200 171 155 138 116 92.1 72.4

149 133 115 104 93.3 79.3 64.4 51.8

105 94.5 81.3 73.8 66.3 56.6 46.3 37.6

78.1 70.2 60.5 54.9 49.3 42.2 34.7 28.3

60.3 54.2 46.7 42.4 38.1 32.7 26.9 21.9

39.0 35.1 30.2 27.4 24.7 21.2 17.4 14.3

27.3 24.6 21.2 19.2 17.3 14.8 12.2 10.0

20.2 18.2 15.7 14.2 12.3 11.0 9.05 7.41

15.5 14.0 12.0 10.9 9.84 8.45 6.97 5.70

10.0 9.01 7.76 7.05 6.34 5.45 4.49 3.68

6.98 6.29 5.42 4.92 4.43 3.81 3.14 2.57

Notes :

1. 2. 3.

φ φ Nc αb

= = =

0.9 φ αc Ns - 0.5

(Clause 6.3.3 of AS 4100) (Table 6.3.3 of AS 4100)

DCTDHS/06 MARCH 2002


DCTDHS/06 MARCH 2002

TABLE D5.2-1(2)(B)

DESIGN CAPACITIES FOR MEMBERS SUBJECT TO AXIAL COMPRESSION DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness buckling about y-axis Designation d

b

Design Capacities for Axial Compression φNc (kN)

Mass per m

t

Effective Length (L e) in metres

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

D5-11

mm mm mm

kg/m

0.0

0.25

0.5

0.75

1.0

1.25

1.5

1.75

2.0

2.5

3.0

3.5

4.0

5.0

100 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.5 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

12.0 10.3 8.49 7.53 6.60 5.56 4.50 3.64

621 532 438 388 329 246 173 124

617 529 436 387 328 245 173 124

593 510 420 373 317 238 169 121

556 480 397 353 301 227 162 117

503 437 363 324 278 213 154 112

432 378 317 284 247 193 142 104

352 311 264 237 209 168 127 95.2

280 250 213 192 171 141 109 84.1

223 200 171 155 138 116 92.1 72.4

149 133 115 104 93.3 79.3 64.4 51.8

105 94.5 81.3 73.8 66.3 56.6 46.3 37.6

78.1 70.2 60.5 54.9 49.3 42.2 34.7 28.3

60.3 54.2 46.7 42.4 38.1 32.7 26.9 21.9

39.0 35.1 30.2 27.4 24.7 21.2 17.4 14.3

75 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

9.67 8.35 6.92 5.42 4.58 3.72 3.01

499 431 357 280 236 173 124

495 428 355 278 235 173 124

475 411 341 268 227 167 120

443 385 321 253 214 159 115

396 347 291 231 196 148 108

334 296 251 202 172 132 98.5

268 240 206 167 143 113 86.4

211 190 164 135 116 93.0 73.1

167 152 131 108 93.2 75.8 60.6

111 101 87.5 72.3 62.4 51.3 41.7

78.3 72.1 62.0 51.3 44.3 36.5 29.8

58.2 52.9 46.0 38.1 32.9 27.2 22.3

44.9 40.8 35.5 29.4 25.4 21.0 17.2

29.0 26.4 23.0 19.1 16.5 13.6 11.2

75 x 25 x 2.5 RHS 2.0 RHS 1.6 RHS

3.60 2.93 2.38

186 133 91.6

179 129 89.2

155 115 81.3

115 90.0 67.5

75.2 62.0 49.5

50.5 42.3 34.7

35.8 30.2 25.0

26.7 22.5 18.7

20.6 17.4 14.5

13.3 11.3 9.42

65 x 35 x 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS

5.35 4.25 3.60 2.93

276 219 186 149

270 215 183 147

250 200 170 137

215 175 149 121

166 138 119 98.1

120 102 88.3 73.4

87.5 74.5 65.0 54.4

65.8 56.2 49.1 41.2

51.1 43.7 38.2 32.0

33.2 28.5 24.9 20.9

50 x 25 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

3.07 2.62 2.15 1.75

158 135 111 90.4

151 130 106 86.9

129 111 92.0 75.6

90.5 79.6 67.1 55.9

57.7 51.2 43.6 36.7

38.4 34.2 29.2 24.6

27.2 24.2 20.7 17.5

20.2 18.0 15.4 13.0

15.6 13.9 11.9 10.0

10.1 9.01 7.71 6.50

7.06 6.31 5.40 4.55

50 x 20 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

2.83 2.42 1.99 1.63

146 125 103 83.9

136 117 96.2 78.8

101 88.9 74.7 62.0

58.5 52.5 45.1 38.1

34.8 31.4 27.1 23.1

22.7 20.5 17.8 15.1

16.0 14.4 12.5 10.7

11.8 10.7 9.28 7.90

5.90 5.33 4.62 3.94

4.12 3.73 3.23 2.75

Notes : 1. 2. 3.

φ φ Nc αb

= = =

0.9 φ αc Ns - 0.5

(Clause 6.3.3 of AS 4100) (Table 6.3.3 of AS 4100)

9.13 8.25 7.15 6.09

9.35 7.91 6.60 23.3 20.0 17.5 14.7

6.91 5.85 4.89

5.32 4.50 3.76

3.43 2.90 2.43

13.3 11.4 9.98 8.38

8.59 7.37 6.45 5.41

5.22 4.66 3.99 3.37

4.01 3.59 3.07 2.59

2.59 2.31 1.98 1.67

3.04 2.75 2.39 2.03

2.34 2.12 1.84 1.56

1.51 1.36 1.18 1.01

17.3 14.8 13.0 10.9


D5-12

DESIGN CAPACITIES FOR MEMBERS SUBJECT TO AXIAL COMPRESSION DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness TABLE D5.2-2(A) buckling about x-axis Designation d

b

Design Capacities for Axial Compression φNc (kN)

Mass per m

t

Effective Length (Le) in metres

kg/m

0.0

0.25

0.5

0.75

1.0

1.25

1.5

1.75

2.0

2.5

125 x 75 x 2.8 RHS 2.3 RHS

8.39 6.95

351 259

351 259

351 259

348 256

343 253

338 250

331 246

324 241

315 235

293 221

266 204

233 183

100 x 50 x 2.8 RHS 2.3 RHS

6.19 5.14

295 215

295 215

292 214

287 211

280 206

272 201

262 195

249 187

235 178

198 155

159 128

126 103

75 x 50 x 2.8 RHS 2.3 RHS

5.09 4.24

263 215

263 215

258 211

250 205

239 197

225 186

208 172

187 155

163 136

119 100

65 x 35 x 2.8 RHS 2.3 RHS

3.99 3.34

206 172

206 172

200 167

191 160

179 150

163 137

142 120

120 102

50 x 25 x 2.8 RHS 2.3 RHS

2.89 2.44

149 126

148 124

141 119

129 109

113 95.9

91.3 78.4

70.8 61.2

50 x 20 x 2.8 RHS 2.3 RHS

2.67 2.25

138 116

136 115

129 109

118 100

101 86.5

80.3 69.4

61.4 53.5

mm mm mm

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

Notes : 1.

φ = 0.9

2.

φ Nc = φ αc Ns

(Clause 6.3.3 of AS 4100)

3.

αb = - 0.5

3.0

3.5

4.0 199 159

5.0 141 116

99.7 82.7

66.1 55.3

87.2 73.8

65.8 55.7

51.1 43.3

33.3 28.2 18.2 15.6

99.1 84.5

68.0 58.1

48.6 41.6

36.3 31.1

28.0 24.0

54.8 47.5

43.1 37.5

28.4 24.7

20.0 17.4

14.8 12.9

11.4 9.95

7.39 6.43

47.2 41.2

37.0 32.4

24.3 21.3

17.1 15.0

12.7 11.1

9.77 8.57

6.32 5.54

(Table 6.3.3 of AS 4100)

TABLE D5.2-2(B) buckling about y-axis Designation d

b

Design Capacities for Axial Compression φNc (kN)

Mass per m

t

Effective Length (Le) in metres

kg/m

0.0

0.25

0.5

0.75

1.0

1.25

1.5

1.75

2.0

2.5

125 x 75 x 2.8 RHS 2.3 RHS

8.39 6.95

351 259

348 259

348 257

341 252

332 246

320 239

306 229

289 219

268 205

219 173

100 x 50 x 2.8 RHS 2.3 RHS

6.19 5.14

295 215

294 215

284 209

271 200

251 188

225 172

192 151

159 128

130 107

87.8 73.5

62.5 52.6

75 x 50 x 2.8 RHS 2.3 RHS

5.09 4.24

263 215

261 214

252 207

238 196

217 180

190 158

158 132

127 107

102 86.7

68.5 58.2

65 x 35 x 2.8 RHS 2.3 RHS

3.99 3.34

206 172

202 169

188 158

165 139

131 111

27.1 23.4

50 x 25 x 2.8 RHS 2.3 RHS

2.89 2.44

149 126

143 120

122 104

50 x 20 x 2.8 RHS 2.3 RHS

2.67 2.25

138 116

128 109

mm mm mm

DCTDHS/06 MARCH 2002

Notes : 1.

φ = 0.9

2.

φ Nc = φ αc Ns

96.6 83.5

96.4 82.6

70.9 60.9

53.5 46.1

41.6 35.9 14.9 13.1

86.4 74.8

55.2 48.4

36.8 32.3

26.1 22.9

19.4 17.0

56.2 49.7

33.5 29.8

21.9 19.5

15.4 13.7

11.4 10.2

(Clause 6.3.3 of AS 4100)

3.

αb = - 0.5

(Table 6.3.3 of AS 4100)

8.80 7.84

3.0

4.0

5.0

105 86.9

69.0 57.6

46.6 39.3

36.0 30.4

23.3 19.7

48.5 41.3

36.1 30.7

27.9 23.7

18.0 15.4

19.0 16.4

14.1 12.2

10.9 9.37

7.01 6.05

171 139

3.5 133 109

9.68 8.51

6.78 5.96

5.01 4.41

3.85 3.39

2.48 2.19

5.69 5.07

3.98 3.54

2.94 2.62

2.26 2.01

1.45 1.30


DCTDHS/06 MARCH 2002

TABLE D5.2-3(1)

DESIGN CAPACITIES FOR MEMBERS SUBJECT TO AXIAL COMPRESSION DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness buckling about x- and y-axis Designation d

b

Design Capacities for Axial Compression φNc (kN)

Mass per m

t

Effective Length (Le) in metres

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

mm mm mm

kg/m

0.0

1.0

1.5

2.0

2.5

3.0

3.5

4.0

5.0

6.0

7.0

8.0

10.0

12.0

100 x 100 x 6.0 SHS 5.0 SHS 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS

16.7 14.2 11.6 8.96 7.53 6.07

864 735 600 440 305 196

823 701 573 422 296 191

770 658 539 399 282 184

693 594 488 365 263 175

590 508 420 319 238 162

477 413 344 265 206 146

377 328 274 214 172 128

300 262 219 172 141 108

199 174 146 115 96.4 76.5

141 123 103 81.7 68.8 55.2

105 91.5 76.7 60.7 51.3 41.4

80.7 70.6 59.2 46.9 39.6 32.1

52.3 45.7 38.3 30.4 25.7 20.9

36.6 32.0 26.8 21.3 18.0 14.6

90 x 90 x 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS

8.01 6.74 5.45 4.39

413 305 196 125

391 291 189 122

362 273 179 117

319 246 166 110

264 210 148 102

207 170 126 90.6

162 135 104 77.9

128 107 84.7 65.4

84.1 71.2 57.3 45.5

59.3 50.3 40.7 32.7

44.0 37.4 30.3 24.5

34.0 28.9 23.4 18.9

22.0 18.7 15.2 12.3

15.4 13.1 10.6 8.62

89 x 89 x 6.0 SHS 5.0 SHS 3.5 SHS

14.6 12.5 9.06

756 645 467

710 607 441

649 557 406

559 483 356

448 390 290

344 301 226

265 233 176

208 183 138

137 120 91.1

96.2 84.7 64.2

71.4 62.8 47.6

55.0 48.4 36.7

35.6 31.3 23.7

24.9 21.9 16.6

75 x 75 x 6.0 SHS 5.0 SHS 4.0 SHS 3.5 SHS 3.0 SHS 2.5 SHS 2.0 SHS

12.0 10.3 8.49 7.53 6.60 5.56 4.50

621 532 438 388 341 287 196

565 486 401 357 313 265 183

490 425 353 315 278 235 166

384 337 283 253 225 191 142

280 248 210 189 169 144 112

205 182 155 140 125 107 85.4

154 137 117 106 94.7 81.0 65.5

120 107 91.0 82.2 73.7 63.1 51.3

78.1 69.6 59.4 53.6 48.1 41.2 33.6

54.8 48.8 41.7 37.6 33.8 29.0 23.7

40.6 36.2 30.9 27.9 25.0 21.4 17.6

31.3 27.9 23.8 21.5 19.3 16.5 13.5

20.2 18.0 15.4 13.9 12.5 10.7 8.75

14.1 12.6 10.7 9.70 8.71 7.46 6.12

0.9 φ αc Ns - 0.5

(Clause 6.3.3 of AS 4100) (Table 6.3.3 of AS 4100)

Notes : 1. 2. 3.

φ φ Nc αb

= = =

D5-13


TABLE D5.2-3(2)

D5-14

DESIGN CAPACITIES FOR MEMBERS SUBJECT TO AXIAL COMPRESSION DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness buckling about x- and y-axis Designation d

b

t

Design Capacities for Axial Compression φNc (kN)

Mass per m

Effective Length (L e) in metres

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002

mm mm mm

kg/m

0.0

0.25

0.5

0.75

1.0

1.25

1.5

1.75

2.0

2.5

3.0

3.5

4.0

5.0

75 x 75 x 6.0 SHS 5.0 SHS 4.0 SHS 3.5 SHS 3.0 SHS 2.5 SHS 2.0 SHS

12.0 10.3 8.49 7.53 6.60 5.56 4.50

621 532 438 388 341 287 196

621 532 438 388 341 287 196

608 522 430 382 335 282 193

590 507 418 371 326 275 189

565 486 401 357 313 265 183

532 459 380 338 298 252 176

490 425 353 315 278 235 166

440 383 320 286 253 215 155

384 337 283 253 225 191 142

280 248 210 189 169 144 112

205 182 155 140 125 107 85.4

154 137 117 106 94.7 81.0 65.5

120 107 91.0 82.2 73.7 63.1 51.3

78.1 69.6 59.4 53.6 48.1 41.2 33.6

65 x 65 x 6.0 SHS 5.0 SHS 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS

10.1 8.75 7.23 5.66 4.78 3.88 3.13

523 451 373 292 247 196 125

523 451 373 292 247 196 125

508 439 363 285 241 191 123

487 421 349 274 232 184 120

458 397 330 260 220 176 115

418 365 305 241 205 164 109

368 324 273 217 185 149 102

313 277 235 189 162 131 93.2

260 232 198 161 137 112 83.0

179 161 138 113 97.2 79.8 62.3

128 116 99.6 81.7 70.2 57.8 46.2

95.8 86.4 74.5 61.2 52.6 43.4 35.0

74.1 66.9 57.7 47.4 40.8 33.6 27.3

48.1 43.4 37.5 30.8 26.5 21.9 17.8

50 x 50 x 5.0 SHS 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS

6.39 5.35 4.25 3.60 2.93 2.38

330 276 219 186 151 123

327 274 218 185 150 122

312 262 209 178 145 118

289 244 196 167 136 111

256 218 176 151 123 101

212 183 150 129 106 87.0

167 146 122 105 87.0 71.5

130 115 96.6 83.6 69.5 57.3

103 91.0 76.9 66.7 55.5 45.8

67.9 60.2 51.1 44.4 37.0 30.6

47.9 42.5 36.1 31.4 26.2 21.6

35.5 31.6 26.8 23.3 19.5 16.1

27.4 24.4 20.7 18.0 15.0 12.4

17.7 15.8 13.4 11.7 9.72 8.04

40 x 40 x 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS

4.09 3.30 2.82 2.31 1.88

211 170 145 119 96.9

207 168 143 117 95.5

193 157 135 110 90.1

170 140 120 99.3 81.2

135 115 99.5 82.6 68.1

100 87.0 76.0 63.6 52.7

73.9 64.7 56.8 47.8 39.7

55.9 49.1 43.2 36.4 30.3

43.5 38.3 33.7 28.4 23.7

28.3 25.0 22.0 18.6 15.5

19.9 17.6 15.5 13.1 10.9

14.7 13.0 11.5 9.68 8.08

11.3 10.0 8.83 7.46 6.22

7.33 6.48 5.71 4.82 4.02

35 x 35 x 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS

2.83 2.42 1.99 1.63

146 125 103 83.9

143 122 101 82.2

131 113 92.9 76.1

111 95.9 79.7 65.7

82.9 72.8 61.2 50.9

58.9 52.1 44.1 36.9

42.6 37.8 32.1 26.9

32.0 28.4 24.1 20.2

24.8 22.0 18.7 15.7

16.1 14.3 12.2 10.2

11.3 10.0 8.55 7.18

8.37 7.43 6.33 5.32

6.44 5.72 4.87 4.09

4.16 3.70 3.15 2.64

30 x 30 x 2.0 SHS 1.6 SHS

1.68 1.38

86.5 70.9

83.8 68.8

74.8 61.7

58.9 49.1

40.7 34.3

27.8 23.5

19.9 16.8

14.8 12.5

11.5 9.70

7.43 6.30

5.21 4.41

3.85 3.26

2.96 2.51

1.91 1.62

25 x 25 x 2.5 SHS 2.0 SHS 1.6 SHS

1.64 1.36 1.12

84.6 70.3 58.0

80.2 66.9 55.3

66.1 55.8 46.5

43.6 37.7 32.0

27.0 23.6 20.2

17.8 15.6 13.4

12.6 11.0 9.46

9.34 8.19 7.03

7.21 6.32 5.42

4.66 4.09 3.51

3.26 2.86 2.46

2.41 2.11 1.82

1.85 1.63 1.40

1.19 1.05 0.900

20 x 20 x 1.6 SHS

0.873

45.0

41.5

30.1

16.9

4.58

3.40

2.62

1.69

1.18

0.872

0.671

0.432

Notes : 1.

φ = 0.9

2.

φ Nc = φ αc Ns

(Clause 6.3.3 of AS 4100)

9.99 3.

αb = - 0.5

6.52

(Table 6.3.3 of AS 4100)


DCTDHS/06 MARCH 2002

TABLE D5.2-4

DESIGN CAPACITIES FOR MEMBERS SUBJECT TO AXIAL COMPRESSION DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness buckling about x- and y-axis Designation d

b

Design Capacities for Axial Compression φNc (kN)

Mass per m

t

Effective Length (Le) in metres

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

kg/m

0.0

0.25

0.50

0.75

1.0

1.25

1.5

1.75

2.0

2.5

3.0

100 x 100 x 2.8 SHS 2.3 RHS

8.39 6.95

383 259

383 259

382 258

376 255

369 251

360 246

350 241

337 234

323 226

286 207

242 182

75 x 75 x 2.8 SHS 2.3 SHS

6.19 5.14

319 259

319 259

314 255

305 248

294 239

279 228

261 213

238 195

212 175

159 133

118 99.0

65 x 65 x 2.3 SHS

4.42

228

228

223

215

204

190

172

150

128

90.5

65.4

49.0

38.0

24.7

50 x 50 x 2.8 SHS 2.3 SHS

3.99 3.34

206 172

205 171

197 165

184 154

166 140

142 120

115 98.1

91.5 78.1

73.0 62.4

48.5 41.5

34.3 29.4

25.5 21.8

19.7 16.8

12.7 10.9

40 x 40 x 2.8 SHS 2.3 SHS

3.11 2.62

161 135

158 133

148 125

133 112

109 92.9

82.7 71.2

61.7 53.3

46.9 40.6

36.5 31.7

23.9 20.7

16.8 14.5

12.4 10.8

35 x 35 x 2.8 SHS 2.3 SHS

2.67 2.25

138 116

135 114

124 105

105 89.6

79.0 68.3

56.3 49.0

40.8 35.6

30.6 26.8

23.7 20.8

15.4 13.5

10.8 9.47

mm mm mm

Notes : 1. 2. 3.

φ φ Nc αb

= = =

0.9 φ αc Ns - 0.5

(Clause 6.3.3 of AS 4100) (Table 6.3.3 of AS 4100)

3.5 198 155 89.3 75.2

8.01 7.01

4.0 160 128 69.6 58.6

5.0 108 88.6 45.4 38.3

9.58 8.31

6.19 5.37

6.17 5.40

3.98 3.49

D5-15


[ BLANK ]

D5-16

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

DCTDHS/06 MARCH 2002


PART 6 MEMBERS SUBJECT TO AXIAL TENSION

6 PAGE

D6.1

SCOPE ........................................................................................................................... D6-2

D6.2

METHOD ....................................................................................................................... D6-2

D6.3

EXAMPLE ...................................................................................................................... D6-3

TABLES TABLES D6.1-1 to D6.1-4 Design Capacities for Members Subject to Axial Tension (φNt) ..................................... D6-4

NOTE: SEE PAGE vii FOR THE SPECIFIC MATERIAL STANDARD REFERRED TO BY THE SECTION TYPE AND STEEL GRADE IN THESE TABLES.

DCTDHS/06 MARCH 2002

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

D6-1


PART 6 MEMBERS SUBJECT TO AXIAL TENSION D6.1

SCOPE

Tables D6.1-1 to D6.1-4 give values of design section capacity for axial tension determined in accordance with Section 7 of AS 4100. The tables give values of design capacity for DuraGal structural steel hollow sections with full perimeter welded connections.

D6.2

METHOD

The design section capacity for axial tension (φNt) has been determined from Clause 7.2 of AS 4100 and taken as the lesser o : φNt = φ Ag fy φNt = φ (0.85) kt An fu

and φ

where

=

fy = An =

0.9

(Table 3.4 of AS 4100)

yield stress used in design net section area

=

Ag

=

gross cross-sectional area (for full perimeter welded connections)

fu =

ultimate strength used in design

kt =

tension correction factor

=

1.0

(Clause 7.3.1 of AS 4100)

The lesser value of φNt = φ Ag fy and φNt = φ (0.85) Ag fu is highlighted in bold type in the tables. φNt = φ (0.85) Ag fu is the lesser value of φNt.

Note: for Grade C450L0

For sections reduced by penetrations or holes, the value of φNt can be determined from the tables as the lesser value of:

and where An =

φN t =

φ Ag fy

φN t =

φ (0.85) Ag fu (An / Ag)

net section area

Values of Ag are tabulated in Tables D6.1-1 to D6.1-4. Note that all the values in Tables D6.1-1 to D6.1-4 assume kt = 1.0.

D6-2

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

DCTDHS/06 MARCH 2002


D6.3 1.

EXAMPLE

A tension member with a full perimeter welded connection is subjected to an axial tension force of 150 kN. Design a suitable DuraGal RHS tension member.

Design Data: N* = 150 kN kt

= 1.0 (for a full perimeter welded connection)

Solution: Select a suitable DuraGal member from Tables D6.1-1 and D6.1-3. The alternatives are: 65 x 35 x 2.5 DuraGal RHS Grade C450L0 (3.60 kg/m) φNt = 176 > N* 65 x 65 x 1.6 DuraGal SHS Grade C450L0 (3.13 kg/m) φNt = 153 > N* Choose 65 x 65 x 1.6 RHS Grade C450L0 (3.13 kg/m) because it is more economical based on mass.

DCTDHS/06 MARCH 2002

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

D6-3


TABLE D6.1-1

TABLE D6.1-2

DESIGN CAPACITIES FOR MEMBERS DESIGN CAPACITIES FOR MEMBERS SUBJECT TO AXIAL TENSION SUBJECT TO AXIAL TENSION DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness

Mass per m

Designation d

b

t

Axial Tension φ Nt φNt (1) φ Nt (2)

DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness

Gross Section Area Ag

d

b

t

Axial Tension φN t φ Nt (1) φNt (2)

Gross Section Area Ag

mm mm mm

kg/m

kN

kN

mm

mm mm mm

kg/m

kN

kN

mm2

150 x 50 x 6 0 RHS 5 0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS

16.7 14.2 11.6 8.96 7.53 6.07

864 735 600 462 388 313

816 694 567 436 367 296

2130 1810 1480 1140 959 774

125 x 75 x 2.8 RHS 2.3 RHS

8.39 6.95

433 359

409 339

1070 885

100 x 50 x 2.8 RHS 2.3 RHS

6.19 5.14

319 265

302 251

788 655

75 x 50 x 2.8 RHS 2.3 RHS

5.09 4.24

263 219

248 207

648 540

125 x 75 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS

16.7 14.2 11.6 8.96 7.53 6.07

864 735 600 462 388 313

816 694 567 436 367 296

2130 1810 1480 1140 959 774

65 x 35 x 2.8 RHS 2.3 RHS

3.99 3.34

206 172

194 163

508 425

50 x 25 x 2.8 RHS 2.3 RHS

2.89 2.44

149 126

141 119

368 310

50 x 20 x 2.8 RHS 2.3 RHS

2.67 2.25

138 116

130 110

340 287

100 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.5 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

12.0 10.3 8.49 7.53 6.60 5.56 4.50 3.64

621 532 438 388 341 287 232 188

586 503 414 367 322 271 219 177

1530 1310 1080 959 841 709 574 463

75 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

9.67 8.35 6.92 5.42 4.58 3.72 3.01

499 431 357 280 236 192 155

471 407 337 264 223 181 147

1230 1060 881 691 584 474 383

75 x 25 x 2.5 RHS 2.0 RHS 1.6 RHS

3.60 2.93 2.38

186 151 123

176 143 116

459 374 303

65 x 35 x 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS

5.35 4.25 3.60 2.93

276 219 186 151

261 207 176 143

681 541 459 374

50 x 25 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

3.07 2.62 2.15 1.75

158 135 111 90.4

149 128 105 85.4

391 334 274 223

50 x 20 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

2.83 2.42 1.99 1.63

146 125 103 83.9

138 118 97.0 79.2

361 309 254 207

Notes:

1. 2.

φ φ Nt (1)

3.

φ Nt (2) =

D6-4

= =

2

Mass per m

Designation

0.9 φ Ag fy

(Clause 7.2 of AS 4100)

φ 0.85 Ag fu

(Clause 7.2 of AS 4100)

Notes:

1. 2.

φ φ Nt (1)

3.

φ Nt (2) =

= =

0.9 φ Ag fy

(Clause 7.2 of AS 4100)

φ 0.85 Ag fu

(Clause 7.2 of AS 4100)

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

DCTDHS/06 MARCH 2002


TABLE D6.1-3

TABLE D6.1-4

DESIGN CAPACITIES FOR MEMBERS SUBJECT TO AXIAL TENSION

DESIGN CAPACITIES FOR MEMBERS SUBJECT TO AXIAL TENSION

DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness

DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness

Mass per m

Designation d

b

t

Axial Tension φN t φNt (1) φNt (2)

Gross Section Area Ag

d

b

t

Axial Tension φ Nt φNt (1) φ Nt (2)

Gross Section Area Ag

mm mm mm

kg/m

kN

kN

mm

mm mm mm

kg/m

kN

kN

mm2

100 x 100 x 6.0 SHS 5.0 SHS 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS

16.7 14.2 11.6 8.96 7.53 6.07

864 735 600 462 388 313

816 694 567 436 367 296

2130 1810 1480 1140 959 774

100 x l00 x 2.8 SHS 2.3 RHS

8.39 6.95

433 359

409 339

1070 885

75 x 75 x 2.8 SHS 2.3 SHS

6.19 5.14

319 265

302 251

788 655

65 x 65 x 2.3 SHS

4.42

228

215

563

90 x 90 x 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS

8.01 6.74 5.45 4.39

413 348 281 226

390 329 265 214

1020 859 694 559

50 x 50 x 2.8 SHS 2.3 SHS

3.99 3.34

206 172

194 163

508 425

40 x 40 x 2.8 SHS 2.3 SHS

3.11 2.62

161 135

152 127

396 333

89 x 89 x 6.0 SHS 5.0 SHS 3.5 SHS

14.6 12.5 9.06

756 645 467

714 609 441

1870 1590 1150

35 x 35 x 2.8 SHS 2.3 SHS

2.67 2.25

138 116

130 110

340 287

75 x 75 x 6.0 SHS 5.0 SHS 4.0 SHS 3.5 SHS 3.0 SHS 2.5 SHS 2.0 SHS

12.0 10.3 8.49 7.53 6.60 5.56 4.50

621 532 438 388 341 287 232

586 503 414 367 322 271 219

1530 1310 1080 959 841 709 574

65 x 65 x 6.0 SHS 5.0 SHS 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS

10.1 8.75 7.23 5.66 4.78 3.88 3.13

523 451 373 292 247 200 162

494 426 352 276 233 189 153

1290 1110 921 721 609 494 399

50 x 50 x 5.0 SHS 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS

6.39 5.35 4.25 3.60 2.93 2.38

330 276 219 186 151 123

311 261 207 176 143 116

814 681 541 459 374 303

40 x 40 x 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS

4.09 3.30 2.82 2.31 1.88

211 170 145 119 96.9

199 161 137 112 91.5

521 421 359 294 239

35 x 35 x 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS

2.83 2.42 1.99 1.63

146 125 103 83.9

138 118 97.0 79.2

361 309 254 207

30 x 30 x 2.0 SHS 1.6 SHS

1.68 1.38

86.5 70.9

81.7 67.0

214 175

25 x 25 x 2.5 SHS 2.0 SHS 1.6 SHS

1.64 1.36 1.12

84.6 70.3 58.0

79.9 66.4 54.8

209 174 143

20 x 20 x 1.6 SHS

0.873

45.0

42.5

111

Notes:

2

Mass per m

Designation

1.

φ

=

0.9

2.

φ Nt (1)

=

φ Ag fy

(Clause 7.2 of AS 4100)

3.

φ Nt (2) =

φ 0.85 Ag fu

(Clause 7.2 of AS 4100)

DCTDHS/06 MARCH 2002

Notes:

1.

φ

=

0.9

2.

φ Nt (1)

=

φ Ag fy

(Clause 7.2 of AS 4100)

3.

φ Nt (2) =

φ 0.85 Ag fu

(Clause 7.2 of AS 4100)

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

D6-5


[ BLANK ]

D6-6

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

DCTDHS/06 MARCH 2002


PART 7 MEMBERS SUBJECT TO COMBINED ACTIONS .

7 PAGE

D7.1

SCOPE ........................................................................................................................... D7-2

D7.2

METHOD ........................................................................................................................ D7-2

D7.3

MOMENT AMPLIFICATION .......................................................................................... D7-2

D7.3.1 D7.3.2

Values of cm .................................................................................................................... D7-3 Elastic Buckling Load ..................................................................................................... D7-3

D7.4

COMBINED BENDING AND AXIAL COMPRESSION ............................................... D7-7

D7.4.1 D7.4.1.1 D7.4.1.2

Uniaxial Bending - About the Major Principal x-axis ................................................ D7-7 Section Capacity............................................................................................................. D7-7 Member Capacity ............................................................................................................ D7-8

D7.4.2 D7.4.2.1 D7.4.2.2

Uniaxial Bending - About the Minor Principal y-axis ................................................ D7-9 Section Capacity ............................................................................................................ D7-9 Member Capacity ......................................................................................................... D7-10

D7.4.3 D7.4.3.1 D7.4.3.2

Biaxial Bending........................................................................................................... D7-10 Section Capacity .......................................................................................................... D7-10 Member Capacity ......................................................................................................... D7-11

D7.5

COMBINED BENDING AND AXIAL TENSION ......................................................... D7-11

D7.5.1 D7.5.1.1 D7.5.1.2

Uniaxial Bending - About the Major Principal x-axis .............................................. D7-11 Section Capacity .......................................................................................................... D7-12 Member Capacity ......................................................................................................... D7-12

D7.5.2

Uniaxial Bending - About the Minor Principal y-axis .............................................. D7-12

D7.5.2.1

Section Capacity .......................................................................................................... D7-13

D7.5.3 D7.5.3.1 D7.5.3.2

Biaxial Bending........................................................................................................... D7-13 Section Capacity .......................................................................................................... D7-13 Member Capacity ......................................................................................................... D7-14

D7.6

BIAXIAL BENDING ..................................................................................................... D7-15

D7.6.1 D7.6.2

Section Capacity .......................................................................................................... D7-15 Member Capacity ......................................................................................................... D7-15

D7.7

EXAMPLES ................................................................................................................. D7-16

TABLES TABLES D7.3.2-1 to D7.3.2-4 Elastic Buckling Loads (Nom) ........................................................................................ D7-23

NOTE: SEE PAGE vii FOR THE SPECIFIC MATERIAL STANDARD REFERRED TO BY THE SECTION TYPE AND STEEL GRADE IN THESE TABLES.

DCTDHS/06 MARCH 2002

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

D7-1


PART 7 D7.1

MEMBERS SUBJECT TO COMBINED ACTIONS

SCOPE

This part of the Tables contains the interaction formulae which must be used to design members subject to combined actions in accordance with Section 8 of AS 4100.The table below provides the location of design capacities and reference points within this publication for checking interaction effects on member capacities. Design Capacity Nomx Nomy φNc φNs φNt φMs φMsx, φMsy φMrx (comp) φMrx (tens) φMry φMr (comp) φMr (tens) φMb φVv φVvx φVvy φMz

D7.2

Description Elastic flexural buckling load of a member, about the principal x- axis Elastic flexural buckling load of a member, about the principal y- axis Nominal member capacity in compression Design section capacity in axial compression Design section capacity in axial tension Design section moment capacity (SHS) φMs about x- and y- axes (RHS) φMsx reduced by axial compression force (RHS) φMsx reduced by axial tension force (RHS) φMsy reduced by axial force (RHS) φMs about a principal axis reduced by axial compression force φMs about a principal axis reduced by axial tension force Design moment capacity (RHS) Design shear capacity of a web (SHS) φVv for bending about x- axis (RHS) φVv for bending about y- axis (RHS) Design torsional section moment capacity

Reference Tables 7.3.2-1 to D7.3.2-4 Tables 7.3.2-1 to D7.3.2-4 Tables D5.2-1(A) to D5.2-4 Tables D3.1-1 to D3.1-4 Tables D3.1-1 to D3.1-4 Tables D3.1-1 to D3.1-4 Tables D3.1-1 & D3.1-3 Section D7.4.1.1 Section D7.5.1.1 Section D7.4.2.1 & D7.5.2.1 Section D7.4.1.1 Section D7.5.1.1 Tables D4.1-1 to D4.1-2 Table D3.1-2 & D3.1-4 Table D3.1-1 & D3.1-3 Table D3.1-1 & D3.1-3 Tables D3.1-1 to D3.1-4

METHOD

Section D7.3 describes the use and determination of moment amplification factors and the determination of the elastic buckling load for braced or sway members. The elastic buckling load required for combined bending and axial compression when the moment is amplified by the moment amplification factors δb and δ s. Sections D7.4 and D7.5 give the interaction formulae for combined bending and axial compression and combined bending and axial tension respectively. Each section describes the method for uniaxial bending about the major principal x-axis, for uniaxial bending about the minor principal y-axis, and for biaxial bending. Section D7.6 gives the interaction formulae for biaxial bending without axial forces. In every case both the section capacity and the member capacity must be checked.

D7.3

MOMENT AMPLIFICATION

For a member subjected to combined bending and axial compression force, irrespective of whether that member is an isolated statically determinate member or part of a statically indeterminate frame the bending moments will be amplified by the presence of axial compression force. Such amplification can be accounted for by a variety of means and these are now considered in relation to braced and sway members. Braced Member - the member is braced such that its ends cannot move relative to one another. If a first order elastic analysis is conducted then δb (Clause 4.4.2.2 of AS 4100) must be used to amplify the design action effects between the ends of the member. However, when the moment amplification factor is greater than 1.4, a second order elastic analysis must be carried out (see Appendix E of AS 4100).

D7-2

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

DCTDHS/06 MARCH 2002


If an appropriate second order elastic analysis is carried out, such that the design action effects at sufficient number of locations between the ends of the member are determined, then there is no need to modify the design action effects in the member using δb. The moment amplification factor (δb) must be calculated using the procedure shown in Figure D7.3(1). Sway Member - the ends of the member are permitted to move relative to one another. If a first order elastic analysis is carried out then the design action effects must be modified using the moment amplification factor (δm), which is the greater of δb and δs (see Clause 4.4.2.3 of AS 4100). However, when the moment amplification factor is greater than 1.4, a second order elastic analysis must be carried out (see Appendix E of AS 4100). If an appropriate second order elastic analysis is carried out, such that the design action effects at a sufficient number of locations along the length of the member are determined, then there is no need to modify the design action effects using δm. If this is not the situation, then the design action effects obtained from the second order elastic analysis may need to be modified using δb, as described in Appendix E of AS 4100. The moment amplification factors (δb and δs) must be calculated using the procedure shown in Figures D7.3(1) and D7.3(2).

D7.3.1 Values of cm The value of cm is specified in Clause 4.4.2.2 of AS 4100 as: cm = 0.6 - 0.4 βm ≤ 1.0 where βm is the ratio of the smaller to the larger bending moments at the ends of the member, taken as positive when the member is bent in reverse curvature. Where the member is subjected to transverse loading, βm may be taken as described in Clauses 4.4.2.2(a), (b) and (c) of AS 4100. Table D7.3.1 gives values of cm for a range of βm values for single and reverse curvature bending.

D7.3.2 Elastic Buckling Load Values of elastic buckling load (Nom) for various effective lengths (Le) are given in Tables D7.3.2-1 to D7.3.2-4. Nom values are determined in accordance with Clause 4.6.2 of AS 4100 as: π 2 EI

Nom = where E = I = ke L =

bk L g

2

e

200 x 103 MPa second moment of area effective length (Section 5.4 of these tables)

"Nom x-axis" indicates Nom for the member buckling about the x-axis. "Nom y-axis" indicates Nom for the member buckling about the y-axis.

DCTDHS/06 MARCH 2002

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

D7-3


Determination of δb

Members with Idealised End Restraints; Clause 4.6.3.2 of AS 4100

Members in Frames; Clause 4.6.3.3 of AS 4100

Calculate Member Effective Length keL; Figure 4.6.3.2 of AS 4100 or Table D5.4 of this publication

Calculate Member Effective Length keL; Clauses 4.6.3.3, 4.6.3.4 and Figure 4.6.3.3(a) of AS 4100

Compute Nomb from Clause 4.6.2 of AS 4100 or Tables D7.3.2-1 to D7.3.2-4 of this publication

Compute cm from Clause 4.6.2.2 of AS 4100 or Table D7.3.1 of this publication

δb =

cm

≥1 F N* I 1- G H N JK omb

Figure D7.3(1): Flow Chart for Determination of δb

D7-4

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

DCTDHS/06 MARCH 2002


Determination of δs

Members with Idealised End Restraints; Clause 4.6.3.2 of AS 4100

Members in Frames; Clause 4.6.3.3 of AS 4100

Rectangular Frames with Negligible Axial Forces in the Beams; Clause 4.4.2.3(a) of AS4100

Calculate Member Effective Length keL; Figure 4.6.3.2 of AS 4100 or Table D5.4 of this publication

Calculate Member Effective Length keL; 4.6.3.3, 4.6.3.4 and Figure 4.6.3.3(b) of AS 4100

Compute Nomb from Clause 4.6.2 of AS 4100 or Tables D7.3.2-1 to D7.3.2-4 of this publication

Non-Rectangular Frames; Clause 4.4.2.3(b) of AS4100

“P-δ” Analysis; Clause 4.4.2.3(a)(i) of AS 4100

1

δs = 1-

FG ∆ Hh

s s

ΣN * ΣV *

IJ K

Calculate λc from Rational Buckling Analysis

1

δs = 1-

FG 1 IJ Hλ K c

Compute λms from Clause 4.7.2.2 of AS 4100

δs =

1 1 1−    λms  Figure D7.3(2): Flow Chart for Determination of δs

DCTDHS/06 MARCH 2002

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

D7-5


Table D7.3.1: Values of cm for Braced Members

βm

cm

βm

cm

βm

cm

βm

cm

-1.00

1.00

-0.50

0.80

+0.05

0.58

+0.55

0.38

-0.95

0.98

-0.45

0.78

+0.10

0.56

+0.60

0.36

-0.90

0.96

-0.40

0.76

+0.15

0.54

+0.65

0.34

-0.85

0.94

-0.35

0.74

+0.20

0.52

+0.70

0.32

-0.80

0.92

-0.30

0.72

+0.25

0.50

+0.75

0.30

-0.75

0.90

-0.25

0.70

+0.30

0.48

+0.80

0.28

-0.70

0.88

-0.20

0.68

+0.35

0.46

+0.85

0.26

-0.65

0.86

-0.15

0.66

+0.40

0.44

+0.90

0.24

-0.60

0.84

-0.10

0.64

+0.45

0.42

+0.95

0.22

-0.55

0.82

-0.05

0.62

+0.50

0.40

+1.00

0.20

0.00

0.60

β m is negative for single curvature bending:

D7-6

βm is positive for reverse curvature bending:

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

DCTDHS/06 MARCH 2002


D7.4

COMBINED BENDING AND AXIAL COMPRESSION

In this section: φ

=

0.9 (Table 3.4 of AS 4100)

φMsx =

design section moment capacity for bending about the major principal x-axis (see Section D3.2.3 and Tables D3.1-1 to D3.1-4)

φMsy =

design section moment capacity for bending about the minor principal y-axis (see Section D3.2.3 and Tables D3.1-1 to D3.1-4)

N* = φN s =

design axial compressive force design section capacity of a compression member (see Section D3.2.2 and Tables D3.1-1 to D3.1-4)

φN cx =

design member capacity in compression, buckling about the x-axis (see Section D5.3 and Tables D5.2-1 to D5.2-4)

φN cy =

design member capacity in compression, buckling about the y-axis (see Section D5.3 and Tables D5.2-1 to D5.2-4)

φNy the effective length factor (ke) should equal 1.0 for In the determination of φNcx and φ both braced and sway members unless a lower value is calculated for braced members.

Note:

D7.4.1 Uniaxial Bending - about the major principal x-axis For a member subject to uniaxial bending about the major principal x-axis and axial compression, the following condition must be satisfied: M *x ≤ where

φ

=

min.[φMrx ; φMix ; φMox] 0.90 (Table 3.4 of AS 4100)

M *x =

design bending moment about the major principal x-axis

φMrx =

design section moment capacity (φMs) for bending about the major principal x-axis reduced by axial force (see Section D7.4.1.1)

φMix =

design in-plane member moment capacity (φMi) for bending about the major principal x-axis (see Section D7.4.1.2(a))

φMox =

design out-of-plane member moment capacity (φMo) for bending about the major principal x-axis (see Section D7.4.1.2(b))

D 7.4.1.1 Section Capacity The value of φMrx must be determined at all points along the member and the minimum value used to satisfy Section D7.4.1. φMrx

=

F GH

φMsx 1−

N* φNs

I JK

(Clause 8.3.2 of AS 4100)

Note: N * ≤ φNs Alternatively, For RHS & SHS to AS 1163, which are compact about the x- axis, φMrx may be calculated by one of the following:

DCTDHS/06 MARCH 2002

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

D7-7


(a)

For compression members where k f = 1.0, subject to bending φMrx

(b)

= 1.18

F GH

φMsx 1−

N* φNs

I JK

≤ Msx

(Clause 8.3.2 of AS 4100)

For compression members where k f is < 1.0, subject to bending

 82 − λ w    N*   φMrx = φMsx 1 − 1 + 0 . 18    82 − λ   ≤ φMsx  φN s    wy    λ w = λ e for the element slenderness of the web

where

= d − 2t

t

(Clause 8.3.2 of AS 4100)

(Clause 6.2.3 of AS 4100)

fy 250

λ wy = 40 for DuraGal RHS and SHS

(Table 6.2.4 of AS 4100)

D 7.4.1.2 Member Capacity This section only applies to members analysed using an elastic method of analysis. Where there is sufficient restraint to prevent lateral buckling, only the in-plane requirements of Sections D7.4.1.1 and D7.4.1.2 need to be satisfied. If there is insufficient restraint to prevent lateral buckling, then both the in-plane and out-of-plane requirements of Sections D7.4.1.1 and D7.4.1.2 need to be satisfied. (a)

In-plane capacity φMix

=

FG H

φMsx 1−

N* φNcx

IJ K

(Clause 8.4.2.2 of AS 4100)

Note: N * ≤ φNcx where φNcx is determined in accordance with Clause 6.3 for buckling about the same principal axis, with an effective length factor (kex) taken as 1.0 for braced and sway members, unless a lower value of (kex) is calculated for braced members (Clause 4.6.3 of AS 4100) Alternatively, For RHS & SHS to AS 1163, which are compact as defined in Clause 5.2.3 of AS 4100, and where the form factor (kf) determined in accordance with Clause 6.2.2 is unity, φMix may be calculated as per Clause 8.4.2.2 of AS 4100. 3    1 + βm  3    N *   N*   1 + βm  + − 1 18 φMix = φMsx  1 −  . 1  1−     φNcx   ≤ φM rx  2   2    φNcx    

Where

βm

Mrx

D7-8

=

the ratio of the smaller to the larger end bearing moment, taken as positive when the member is

=

bent in reverse curvature for members without transverse load, or the value determined in accordance with Clause 4.4.2.2 of AS 4100 for members with transverse load.

=

the nominal section moment capacity about the appropriate principal axis determined in accordance with Clause 8.3 of AS 4100.

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

DCTDHS/06 MARCH 2002


(b)

Out-of-plane capacity

φMox where φMbx = Note:

=

 N*  φMbx 1 − φNcy  

(Clause 8.4.4.1 of AS 4100)

design member moment capacity for bending about the major principal x-axis (see Section D4.1.2 and Tables D4.1-1 to D4.1-2)

N * ≤ φNcy

D7.4.2 Uniaxial Bending - about the minor principal y-axis For a member subject to uniaxial bending about the minor principal y-axis and axial compression, the following condition must be satisfied: M *y ≤ min.[φMry ; φMiy ]

where M *y = φ

=

design bending moment about the minor principal y-axis 0.9 (Table 3.4 of AS 4100)

φMry =

design section moment capacity (φMs) about the minor principal y-axis reduced by axial force (see Section D7.4.2.1)

φMiy =

nominal in-plane member moment capacity (φMi) about the minor principal y-axis (see Section D7.4.2.2)

D 7.4.2.1 Section Capacity The value of φMry must be determined at all points along the member and the minimum value is used to satisfy Section D7.4.2.

F GH

φMry = φMsy 1−

N* φNs

I JK

(Clause 8.3.3 of AS 4100)

Note: N * ≤ φNs Alternatively, for RHS and SHS to AS 1163, which are compact about the y-axis subject to bending and compression:

 N*  φMry = 118 . φMsy 1 −  ≤ φMsy  φN s 

DCTDHS/06 MARCH 2002

(Clause 8.3.3 of AS 4100)

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

D7-9


D7.4.2.2

Member Capacity

This section applies only to members analysed using an elastic method of analysis. For bending about the minor principal y-axis only the in-plane requirements need to be satisfied. In-plane capacity φMiy

=

 N*  φMsy  1−   φN cy 

(Clause 8.4.2.2 of AS 4100)

Note: N * ≤ φNcy φNcy is determined in accordance with Clause 6.3 for buckling about the same principal axis, with an effective length factor (key) taken as 1.0 for braced and sway members, unless a lower value of (key) is calculated for braced members (refer 4.6.3 of AS 4100)

where

Alternatively, For RHS & SHS to AS 1163, which are compact as defined in Clause 5.2.3 of AS 4100, and where the form factor (kf) determined in accordance with Clause 6.2.2 is unity, φMiy may be calculated as per Clause 8.4.2.2 of AS 4100. 3    1 + βmy  3   N*  N *    1 + βmy   − − + φMiy = φMsy  1 −  1 1 . 18 1    2   φNcy   ≤ φM ry       2    φNcy  

Where βm

=

the ratio of the smaller to the larger end bearing moment, taken as positive when the member is bent in reverse curvature for members without transverse load, or

=

the value determined in accordance with Clause 4.4.2.2 of AS 4100 for members with transverse load.

Mry

=

the nominal section moment capacity about the appropriate principal axis determined in accordance with Clause 8.3 of AS 4100.

D7.4.3

Biaxial Bending and Axial Compression

For a member subject to biaxial bending and axial compression, both the conditions defined in Sections D7.4.3.1 and D7.4.3.2 must be satisfied.

D 7.4.3.1 Section Capacity N* M *x M *y + + ≤1 φNs φM sx φM sy

(Clause 8.3.4 of AS 4100)

Alternatively, for RHS and SHS to AS 1163, which are compact about both the x- and y- axes: γ

γ

 M x*   M y*  ≤1   +  φMrx   φMry 

(Clause 8.3.4 of AS 4100)

where

 N*  γ = 1.4 +   ≤ 2.0  φN s  where φMrx and φMry are calculated in accordance with Clauses 8.3.2 and 8.3.3 of AS 4100

D7-10

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

DCTDHS/06 MARCH 2002


D 7.4.3.2 Member Capacity

 M x*     φMcx 

where M *x = φMcx =

1. 4

 M y*  +   φMiy 

1. 4

≤1

(Clause 8.4.5.1 of AS 4100)

design bending moment about the major principal x-axis lesser of the design in-plane member moment capacity (φMix) and the design out-ofplane member moment capacity (φMox) for bending about the major principal x-axis, determined in accordance with Sections D7.4.1.2(a) and (b) respectively

M *y =

design bending moment about the minor principal y-axis

φMiy =

design in-plane member moment capacity determined in accordance with Section D7.4.2.2

Note: M *x ≤ φMcx M *y ≤ φMiy

D7.5

COMBINED BENDING AND AXIAL TENSION

In this section: φ

=

0.9 (Table D3.4 of AS 4100)

φMsx =

design section moment capacity for bending about the major principal x-axis (see Section 3.2.3 and Tables D3.1-1 to D3.1-4)

φMsy =

design section moment capacity for bending about the minor principal y-axis(see Section 3.2.3 and Tables D3.1-1 to D3.1-4)

N* =

design axial compressive force

φNt =

design member capacity in tension (see Section D6.2 and Tables D6.1-1 to D6.1-4)

D7.5.1 Uniaxial Bending - about the major principal x-axis For a member subject to uniaxial bending about the major principal x-axis and axial tension, the following condition must be satisfied: M *x ≤ min.[φMrx ; φMox] where φ

=

0.9 (Table 3.4 of AS 4100)

M *x =

design bending moment about the major principal x-axis

φMrx =

design section moment capacity (φMs) for bending about the major principal x-axis reduced by axial force (see section D7.5.1.1)

φMox =

design out-of-plane member moment capacity (φMo) for bending about the major principal x-axis(see section D7.5.1.2)

DCTDHS/06 MARCH 2002

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

D7-11


D 7.5.1.1 Section Capacity The value of φMrx must be determined at all points along the member and the minimum value is used to satisfy Section D7.5.1. φMrx

where φN t =

=

FG H

φMsx 1−

N* φN t

IJ K

(Clause 8.3.2 of AS 4100)

design section capacity in tension (see Section D3.2.1 and Tables D3.1-1 to D3.1-4)

N * ≤ φNt

Note:

Alternatively, for RHS and SHS to AS 1163, which are compact about the x-axis subject to bending and tension:

 N*  φMrx = 118 . φMsx 1 −  ≤ φMsx  φNt 

(Clause 8.3.2 of AS 4100)

D 7.5.1.2 Member Capacity This section only applies to members analysed using an elastic method of analysis. Only the out-of-plane capacity needs to be considered. Out-of-plane capacity φMox = φMbx

FG1 + N * IJ H φN K

≤ φMrx

(Clause 8.4.4.2 of AS 4100)

t

where φMbx = φN t =

design member moment capacity for bending about the major principal x-axis (see Section D4.1.2 and Tables D4.1-1 to D4.1-2) design member capacity in tension (see Section D6.2 and Tables D6.1-1 to D6.1-4)

N * ≤ φNt

Note:

D7.5.2 Uniaxial Bending - about the minor principal y-axis For a member subject to uniaxial bending about the minor principal y-axis and axial tension, the following condition must be satisfied: M *y < φMry

where

φ =

0.9 (Table 3.4 of AS 4100)

M *y =

design bending moment about the minor principal y-axis

φMry =

design section moment capacity (φMs) for bending about the minor principal y-axis reduced by axial force

D7-12

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

DCTDHS/06 MARCH 2002


D 7.5.2.1 Section Capacity For The value of φMry must be determined at all points along the member and the following condition must be satisfied: φMry = φMsy

FG1 − N * IJ H φN K

(Clause 8.3.3 of AS 4100)

t

φN t = Note:

design section capacity in tension (see Section D3.2.1 and Tables D3.1-1 to D3.1-4)

N * ≤ φNt

Alternatively, for RHS and SHS to AS 1163, which are compact about the y-axis subject to bending and tension:

 N * . φMsy1 − φMry = 118  ≤ φMsy  φNt 

D7.5.3

(Clause 8.3.3 of AS 4100)

Biaxial Bending and Axial Tension

For a member subject to biaxial bending and axial tension both the conditions defined in Sections D7.5.3.1 and D7.5.3.2 must be satisfied.

D 7.5.3.1 Section Capacity N * M * x M *y + + ≤1 φNt φM sx φM sy

where φN t =

(Clause 8.3.4 of AS 4100)

design section capacity in tension (see Section D3.2.1 and Tables D3.1-1 to D3.1-4)

M *x =

design bending moment about the major principal x-axis

M *y =

design bending moment about the minor principal y-axis

Note: N * M *x M *y

≤ ≤ ≤

φN t φM sx φM sy

Alternatively, for RHS and SHS to AS 1163, which are compact about both the x- and y- axes: γ

γ

 M x*   M y*  ≤1   +  φMrx   φMry  where

 N*  γ = 1.4 +   ≤ 2.0  φNt  where φMrx and φMry are calculated using the alternatives presented in Section 8.4.1.1 and 8.4.2.1 of AS 4100.

DCTDHS/06 MARCH 2002

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

D7-13


D 7.5.3.2 Member Capacity

 M x*     φMtx  where M *x = φMtx =

M *y = φMry = Note: M *x M *y

D7-14

≤ ≤

1. 4

 M y*  +   φMry 

1. 4

≤1

(Clause 8.4.5.2 of AS 4100)

design bending moment about the major principal x-axis lesser of the design section moment capacity (φMrx) reduced by axial tension and the design out-of-plane member moment capacity (φMox) for bending about the major principal x-axis, determined in accordance with Sections D7.5.1.1 and D7.5.1.2 respectively design bending moment about the minor principal y-axis design section moment capacity reduced by axial tension, determined in accordance with Section D7.5.2 φM tx φMry

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

DCTDHS/06 MARCH 2002


D7.6

BIAXIAL BENDING

For a member subject to biaxial bending without any axial force both the conditions defined in Sections D7.6.1 and D7.6.2 must be satisfied.

D7.6.1 Section Capacity M y* M x* + ≤ 1.0 φMsx φMsy where M *x = φ

=

φMsx = M *y = φMsy = Note: M *x M *y

≤ ≤

(Clause 8.3.4 of AS 4100)

design bending moment about the major principal x-axis 0.9 (Table 3.4 of AS 4100) design section moment capacity for bending about the major principal x-axis (see Section D3.2.3 and Tables D3.1-1 to D3.1-4) design bending moment about the minor principal y-axis design section moment capacity for bending about the minor principal y-axis (see Section D3.2.3 and Tables D3.1-1 to D3.1-4) φM sx φM sy

Alternatively, for RHS and SHS to AS 1163, which are compact about both the x- and y- axes:

 M x*     φMsx 

1. 4

 M y*  +   φMsy 

1. 4

≤1

(Clause 8.3.4 of AS 4100)

≤1

(Clause 8.4.5 of AS 4100)

D7.6.2 Member Capacity

FG M * IJ H φM K x

bx

where M *x = φ

=

φMbx = M *y = φMsy = Note: M *x M *y

DCTDHS/06 MARCH 2002

≤ ≤

1.4

+

F M* I GH φM JK y

1.4

sy

design bending moment about the major principal x-axis 0.9 (Table 3.4 of AS 4100) design section moment capacity for bending about the major principal x-axis (see Section D4.1.2 and Tables D4.1-1 to D4.1-2) design bending moment about the minor principal y-axis design section moment capacity for bending about the minor principal y-axis (see Section D3.2.3 and Tables D3.1-1 to D3.1-4) φMbx φM sy

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

D7-15


D7.7

EXAMPLES

Exampe A. Braced Beam Column Design Data: Section:

125 x 75 x 4.0 DuraGal RHS Grade C450L0 steel

Effective lengths:

Flexural buckling (x-axis) = 4.0 m Flexural buckling (y-axis) = 4.0 m

1.

The purpose of this example is to illustrate the calculation of design moments using the amplification factor (δb). This factor is relevant for calculating the design moments as the member is braced against sway.

Solution: N* =

40 kN

Nombx =

377 kN

from Table D7.3.2-1(1)(A) for Lex = 4.0 m

Nomby =

171 kN

from Table D7.3.2-1(1)(B) for Ley = 4.0 m

M *x =

15 kNm

maximum at End A

M *y =

2.0 kNm

maximum at Ends A and B

βmx =

0

βmy

-1

=

cmx =

0.60

from Table D7.3.1 for βmx = 0

cmy =

1.00

from Table D7.3.1 for βmy = -1.0

D7-16

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

DCTDHS/06 MARCH 2002


From Figure D7.3(1) the moment amplification factor (δb) is given by:

δb =

Cm ≥ 1.0  N*  1−    Nomb 

Considering flexural buckling about x-axis:

δ bx =

0.671

Maximum moment occurs at the ends, ie. at End A

M*x =

15 kNm

Considering flexural buckling about y-axis:

δ by =

1.31

Maximum moment occurs between the ends, ie. in the span

M*y = =

1.31 x 2.0 2.62 kNm

2.

(< 1)

(> 1 and < 1.4)

Considering further Example 1 (Section D7.7), the adequacy of the member under the calculated design action effects is now checked as required by Clauses 8.3 and 8.4 of AS 4100.

Design Data: Section:

125 x 75 x 4.0 DuraGal RHS Grade C450L0

Effective lengths:

Flexural buckling (x-axis)

=

4.0 m

Flexural buckling (y-axis)

=

4.0 m

Lateral buckling

=

6.0 m

Design action effects:

N* =

40 kN

M *x = 15 kNm M *y = Solution:

(i)

2.62 kNm

The example involves biaxial bending and axial compression as defined in Section D7.4.3 of these Tables.

Section Capacity Check (Section D7.4.3.1) From Table D3.1-1 we obtain: φN s = 600 kN φMsx = 24.4 kNm φMsy = 15.1 kNm

Thus,

N* M *x M *y 40 15 2.62 + + = + + φNs φM sx φM sy 600 24.4 15.1

= 0.855 (< 1.0 ∴ O.K.) Note: This interaction formula was used as the section in this example is non-compact about the principal y- axis. For RHS and SHS to AS 1163, which are compact about both the x- and y- axes, as defined by Clause 5.2.2 of AS 4100, the interaction equation given in section D7.4.3.1 should be used . DCTDHS/06 MARCH 2002

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

D7-17


(ii)

Member Capacity Check (Section D7.4.3.2)

FG M * IJ H φM K

1.4

x

cx

FM* I +G H φM JK

1.4

≤1

y

(Clause 8.4.5 of AS 4100)

iy

From the Tables we obtain:

Calculate,

φN cx =

285 kN

(Table D5.2-1(1)(A))

φN cy =

142 kN

(Table D5.2-1(1)(B))

φMbx =

24.4 kNm

(Table D4.1-1(1))

φMsy =

15.1 kNm

(Table D3.1-1)

φMcx =

lesser of

(φMix, φM ox)

φMix

(a)

φM ox

(b)

φMsx

=

FG1 − N * IJ H φN K FG1 − 40 IJ H 285 K

(Clause 8.4.2.2 of AS 4100)

cx

=

24.4

=

21.0 kNm

=

φMbx

F1 − N * I GH φN JK cy

(Clause 8.4.4.1 of AS 4100)

Although αm is given as 1.75 in Table 5.6.1 of AS 4100, φ αm αs Msx must be less than or equal to φMsx, therefore:

therefore:

φM bx =

φ αm αs Msx ≤ φMsx

αs =

1.0 (Le (lateral buckling) < FLR ie, 6 < 7.08 - Table D4.1-1(1))

αm =

1.0 (φMsx = Mbx)

φM ox =

1.0 x 24.4

=

17.5 kNm

FG1 − 40 IJ H 142K

φM cx = =

lesser of (21.0 kNm, 17.5 kNm) 17.5 kNm

φM iy =

φMsy

F1− N * I GH φN JK FG1 − 40 IJ H 142 K cy

=

15.1

=

10.8 kNm

FG M * IJ + F M * I = FG 15 IJ + FG 2.62IJ H φM K GH φM JK H 17.5 K H 10.8K 1.4

14 .

Thus:

x

y

cx

iy

14 .

= 0.944

D7-18

1.4

(<1.0 ∴ O.K.)

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

DCTDHS/06 MARCH 2002


D7.7

EXAMPLES

Example 2.0 Braced Beam Column Design Data: Section:

125 x 75 x 6.0 DuraGal RHS Grade C450L0

Effective lengths:

Flexural buckling (x-axis) = 4.0 m Flexural buckling (y-axis) = 4.0 m Lateral buckling = 6.0 m

(1).

The purpose of this second example is to illustrate the calculation of design moments using the amplification factor (δb), and the alternative methods for calculating Member and Section capacities for Compact Sections as described in Sections D7.4.3.1 and D7.4.3.2. This factor is relevant for calculating the design moments as the member is braced against sway.

Solution: N* =

50 kN

Nombx =

513 kN

from Table D7.3.2-1(1)(A) for Lex = 4.0 m

Nomby =

231 kN

from Table D7.3.2-1(1)(B) for Ley = 4.0 m

M *x =

22 kNm

maximum at End A

M *y =

4.0 kNm

maximum at Ends A and B

βmx = βmy

0

= -1

cmx =

0.60

from Table D7.3.1 for βmx = 0

cmy =

1.00

from Table D7.3.1 for βmy = -1.0

DCTDHS/06 MARCH 2002

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

D7-19


From Figure D7.3(1) the moment amplification factor (δb) is given by:

δb =

Cm ≥ 1.0  N*  1−    Nomb 

Considering flexural buckling about x-axis:

δ bx =

0.665

Maximum moment occurs at the ends, ie. at End A

M*x =

22 kNm

Considering flexural buckling about y-axis:

δ by =

1.28

Maximum moment occurs between the ends, ie. in the span

M*y = =

1.28 x 4.0 5.12 kNm

(2).

(< 1)

(> 1 and < 1.4)

Considering further Example 1 (Section D7.7), the adequacy of the member under the calculated design action effects is now checked as required by Clauses 8.3 and 8.4 of AS 4100.

Design Data: Section:

125 x 75 x 6.0 DuraGal RHS Grade C450L0 steel

Effective lengths:

Flexural buckling (x-axis)

=

4.0 m

Flexural buckling (y-axis)

=

4.0 m

Lateral buckling

=

6.0 m

Design action effects:

N* =

50 kN

M *x = 22 kNm M *y = Solution:

(i)

5.12 kNm

The example involves biaxial bending and axial compression as defined in Section D7.4.3 of these Tables.

Section Capacity Check (Section D7.4.3.1) From Table D3.1-1 we obtain: φN s = 864 kN φMsx = 34.1 kNm φMsy = 23.9 kNm

As 127 x 75 x 6.0 DuraGal RHS is compact about the x- and y- axis, and kf = 1.0 Then

γ

γ

 M x*   M y*  ≤1   +  φMrx   φMry 

(Clause 8.3.4 of AS AS 4100)

where

 N*  γ = 1.4 +   ≤ 2.0  φNt 

D7-20

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

DCTDHS/06 MARCH 2002


Then

 N*  φMrx = 118 . φMsx 1 −  ≤ φMsx  φN s 

(Clause 8.3.2 of AS 4100)

50  ≤ 34.1 φMrx = 118 . × 34.11 −  864  = 34.1 kNm and

 N*  φMry = 118 . φMsy 1 −  ≤ φMsy  φN s 

(Clause 8.3.3 of AS 4100)

50  ≤ 23.9 φMry = 118 . × 23.91 −  864  = 23.9 kNm Then

50  ≤ 2.0 γ = 1.4 +   864 

 22   34.1

1. 46

.  510 +  23.9 

γ = 1.46

1. 46

≤1

= 0.633 < 1.0 Member Capacity Check (Section D7.4.3.2) From the Tables we obtain:

Calculate,

φN cx =

392 kN

(Table D5.2-1(1)(A))

φN cy =

193 kN

(Table D5.2-1(1)(B))

φM bx =

34.1 kNm

(Table D4.1-1(1))

φMcx =

lesser of

(φMix, φMox)

(a) (Clause 8.4.2.2 of AS 4100) 3    1 + βm  3    N *   N*   1 + βm  − + − 1 1 18 φMix = φMsx  1 −  . 1     2    φNcx   ≤ φM rx    2    φNcx  

3 3  1 + 0   50   1 + 0  1 − 50   ≤ 34.1kNm 1 + φMix = 34.11 −  − 118 .   2   392     2   392  

∴ φMix = 30.7 kNm ≤ φMrx = 34.1kNm

DCTDHS/06 MARCH 2002

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

D7-21


F1− N * I GH φN JK

φMox =φMbx

(b)

(Clause 8.4.4.1 of AS 4100)

cy

 50  φMox = 34.11 −   193 

= 25.3 kNm therefore:

lesser of (φMix, φMox)

φMcx = =

25.3 kNm (Clause 8.4.2.2 of AS 4100)

3    1 + βmy  3   N*  N *    1 + βmy   − − + φMiy = φMsy  1 −  1 1 . 18 1    2   φNcy   ≤ φM ry       2    φNcy  

3 3  1 + ( −1)   50   1 + ( −1)  1 − 50   ≤ 17.7kNm 1 + 118 φMiy = 23.91 −  − .   2   193     2   193  

φMiy = 17.7 kNm ≤ φMry =

23.9 kNm

Then

 M x*     φMcx 

 22   25.3 

1. 4

1. 4

 M y*  +   Miy 

.  512 +  17.7 

= 0.998 < 1

D7-22

1. 4

≤1 (Clause 8.4.5.1 of AS 4100)

1. 4

≤1

Therefore OK

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

DCTDHS/06 MARCH 2002


DCTDHS/06 MARCH 2002

TABLE D7.3.2-1(1)(A)

ELASTIC BUCKLING LOADS DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness buckling about x-axis

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

Designation d

b

Elastic Buckling Loads Nom (MN)

Mass per m

Effective Length (Le) in metres

t

mm mm mm

kg/m

0.0

1.0

1.5

2.0

2.5

3.0

150 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS

16.7 14.2 11.6 8.96 7.53 6.07

∞ ∞ ∞ ∞ ∞ ∞

9.99 8.77 7.37 5.89 5.02 4.10

4.44 3.90 3.28 2.62 2.23 1.82

2.50 2.19 1.84 1.47 1.25 1.02

1.60 1.40 1.18 0.943 0.802 0.655

125 x 75 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS

16.7 14.2 11.6 8.96 7.53 6.07

∞ ∞ ∞ ∞ ∞ ∞

8.21 7.19 6.03 4.79 4.08 3.33

3.65 3.19 2.68 2.13 1.81 1.48

2.05 1.80 1.51 1.20 1.02 0.832

100 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.5 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

12.0 10.3 8.49 7.53 6.60 5.56 4.50 3.64

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

3.37 3.02 2.58 2.33 2.10 1.80 1.48 1.21

1.50 1.34 1.15 1.04 0.934 0.800 0.658 0.538

0.844 0.754 0.645 0.583 0.525 0.450 0.370 0.302

Note:

1.

Nom = π2 EI / Le2 (Clause 4.6.2 of AS 4100)

3.5

4.0

5.0

6.0

1.11 0.974 0.819 0.655 0.557 0.455

0.815 0.716 0.602 0.481 0.409 0.334

0.624 0.548 0.461 0.368 0.313 0.256

0.399 0.351 0.295 0.236 0.201 0.164

0.277 0.244 0.205 0.164 0.139 0.114

1.31 1.15 0.964 0.767 0.652 0.532

0.913 0.798 0.670 0.533 0.453 0.370

0.671 0.587 0.492 0.391 0.333 0.272

0.513 0.449 0.377 0.300 0.255 0.208

0.329 0.287 0.241 0.192 0.163 0.133

0.540 0.483 0.413 0.373 0.336 0.288 0.237 0.194

0.375 0.335 0.287 0.259 0.233 0.200 0.164 0.134

0.275 0.246 0.211 0.190 0.172 0.147 0.121 0.0988

0.211 0.188 0.161 0.146 0.131 0.113 0.0925 0.0756

0.135 0.121 0.103 0.0933 0.0841 0.0720 0.0592 0.0484

7.0

8.0

10.0

12.0

0.204 0.179 0.151 0.120 0.102 0.0836

0.156 0.137 0.115 0.0921 0.0784 0.0640

0.0999 0.0877 0.0737 0.0589 0.0502 0.0410

0.0694 0.0609 0.0512 0.0409 0.0348 0.0284

0.228 0.200 0.167 0.133 0.113 0.0924

0.168 0.147 0.123 0.0978 0.0832 0.0679

0.128 0.112 0.0942 0.0749 0.0637 0.0520

0.0821 0.0719 0.0603 0.0479 0.0408 0.0333

0.0570 0.0499 0.0419 0.0333 0.0283 0.0231

0.0937 0.0838 0.0717 0.0648 0.0584 0.0500 0.0411 0.0336

0.0689 0.0615 0.0526 0.0476 0.0429 0.0367 0.0302 0.0247

0.0527 0.0471 0.0403 0.0364 0.0328 0.0281 0.0231 0.0189

0.0337 0.0302 0.0258 0.0233 0.0210 0.0180 0.0148 0.0121

0.0234 0.0209 0.0179 0.0162 0.0146 0.0125 0.0103 0.00840

D7-23


D7-24

TABLE D7.3.2-1(2)(A)

ELASTIC BUCKLING LOADS DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness buckling about x-axis

Designation d

b

Elastic Buckling Loads Nom (kN)

Mass per m

Effective Length (Le) in metres

t

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

mm mm mm

kg/m

0.0

DCTDHS/06 MARCH 2002

0.25

0.5

0.75

1.0

1.25

1.5

1.75

2.0

2.5

3.0

3.5

4.0

5.0

100 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.5 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

12.0 10.3 8.49 7.53 6.60 5.56 4.50 3.64

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

54000 48300 41300 37300 33600 28800 23700 19400

13500 12100 10300 9330 8410 7200 5920 4840

6000 5360 4590 4140 3740 3200 2630 2150

3370 3020 2580 2330 2100 1800 1480 1210

2160 1930 1650 1490 1340 1150 947 774

1500 1340 1150 1040 934 800 658 538

1100 985 842 761 686 588 483 395

844 754 645 583 525 450 370 302

540 483 413 373 336 288 237 194

375 335 287 259 233 200 164 134

275 246 211 190 172 147 121 98.9

211 188 161 146 131 113 92.5 75.6

135 121 103 93.3 84.1 72.0 59.2 48.4

75 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

9.67 8.35 6.92 5.42 4.58 3.72 3.01

∞ ∞ ∞ ∞ ∞ ∞ ∞

25300 22900 19900 16500 14200 11700 9640

6320 5730 4970 4120 3550 2930 2410

2810 2550 2210 1830 1580 1300 1070

1580 1430 1240 1030 887 734 602

1010 917 796 659 568 469 385

702 637 553 458 394 326 268

516 468 406 336 290 240 197

395 358 311 257 222 183 151

253 229 199 165 142 117 96.4

175 159 138 114 98.6 81.5 66.9

129 117 102 84.1 72.4 59.9 49.2

98.7 89.6 77.7 64.4 55.5 45.8 37.6

63.2 57.3 49.7 41.2 35.5 29.3 24.1

75 x 25 x 2.5 RHS 2.0 RHS 1.6 RHS

3.60 2.93 2.38

∞ ∞ ∞

9010 7530 6230

2250 1880 1560

1000 836 693

563 471 390

360 301 249

250 209 173

184 154 127

141 118 97.4

90.1 75.3 62.3

62.5 52.3 43.3

46.0 38.4 31.8

35.2 29.4 24.3

22.5 18.8 15.6

65 x 35 x 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS

5.35 4.25 3.60 2.93

∞ ∞ ∞ ∞

10400 8880 7720 6440

2590 2220 1930 1610

1150 986 858 716

648 555 483 403

415 355 309 258

288 247 214 179

212 181 158 131

162 139 121 101

104 88.8 77.2 64.4

72.0 61.6 53.6 44.7

52.9 45.3 39.4 32.9

40.5 34.7 30.2 25.2

25.9 22.2 19.3 16.1

50 x 25 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

3.07 2.62 2.15 1.75

∞ ∞ ∞ ∞

3530 3120 2650 2220

882 781 662 554

392 347 294 246

221 195 165 139

141 125 106 88.7

98.0 86.7 73.5 61.6

72.0 63.7 54.0 45.2

55.1 48.8 41.4 34.6

35.3 31.2 26.5 22.2

24.5 21.7 18.4 15.4

18.0 15.9 13.5 11.3

13.8 12.2 10.3 8.66

8.82 7.81 6.62 5.54

50 x 20 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

2.83 2.42 1.99 1.63

∞ ∞ ∞ ∞

3000 2680 2280 1920

751 669 571 480

334 297 254 213

188 167 143 120

120 107 91.3 76.8

83.5 74.4 63.4 53.3

61.3 54.6 46.6 39.2

46.9 41.8 35.7 30.0

30.0 26.8 22.8 19.2

20.9 18.6 15.9 13.3

15.3 13.7 11.7 9.80

11.7 10.5 8.92 7.50

7.51 6.69 5.71 4.80

Note:

1.

Nom = π2 EI / Le2 (Clause 4.6.2 of AS 4100)


DCTDHS/06 MARCH 2002

TABLE D7.3.2-1(1)(B)

ELASTIC BUCKLING LOADS DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness buckling about y-axis

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

Designation d

b

Elastic Buckling Loads Nom (MN)

Mass per m

Effective Length (Le) in metres

t

mm mm mm

kg/m

0.0

0.5

1.0

150 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS

16.7 14.2 11.6 8.96 7.53 6.07

∞ ∞ ∞ ∞ ∞ ∞

6.79 6.04 5.16 4.16 3.57 2.94

125 x 75 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2 5 RHS 2.0 RHS

16.7 14.2 11.6 8.96 7.53 6.07

∞ ∞ ∞ ∞ ∞ ∞

100 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.5 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

12.0 10.3 8.49 7.53 6.60 5.56 4.50 3.64

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Note:

1.

1.5

2.0

2.5

1.70 1.51 1.29 1.04 0.892 0.734

0.754 0.671 0.573 0.462 0.396 0.326

0.424 0.378 0.322 0.260 0.223 0.184

0.272 0.242 0.206 0.166 0.143 0.117

0.189 0.168 0.143 0.115 0.0991 0.0816

14.8 13.0 11.0 8.73 7.44 6.09

3.70 3.25 2.74 2.18 1.86 1.52

1.64 1.44 1.22 0.970 0.827 0.677

0.925 0.812 0.684 0.545 0.465 0.381

0.592 0.520 0.438 0.349 0.298 0.244

4.48 4.04 3.48 3.16 2.85 2.45 2.03 1.66

1.12 1.01 0.870 0.790 0.712 0.613 0.507 0.416

0.498 0.448 0.387 0.351 0.316 0.272 0.225 0.185

0.280 0.252 0.218 0.197 0.178 0.153 0.127 0.104

0.179 0.161 0.139 0.126 0.114 0.0981 0.0811 0.0666

Nom = π2 EI / Le2 (Clause 4.6.2 of AS 4100)

3.0

3.5

4.0

5.0

6.0

7.0

8.0

10.0

0.139 0.123 0.105 0.0848 0.0728 0.0559

0.106 0.0944 0.0806 0.0650 0.0557 0.0459

0.0679 0.0604 0.0516 0.0416 0.0357 0.0294

0.0471 0.0420 0.0358 0.0289 0.0248 0.0204

0.0346 0.0308 0.0263 0.0212 0.0182 0.0150

0.0265 0.0236 0.0201 0.0162 0.0139 0.0115

0.0170 0.0151 0.0129 0.0104 0.00892 0.00734

0.411 0.361 0.304 0.242 0.207 0.169

0.302 0.265 0.224 0.178 0.152 0.124

0.231 0.203 0.171 0.136 0.116 0.0952

0.148 0.130 0.110 0.0873 0.0744 0.0609

0.103 0.0903 0.0761 0.0606 0.0517 0.0423

0.0755 0.0663 0.0559 0.0445 0.0380 0.0311

0.0578 0.0508 0.0428 0.0341 0.0291 0.0238

0.0370 0.0325 0.0274 0.0218 0.0186 0.0152

0.124 0.112 0.0967 0.0878 0.0791 0.0681 0.0563 0.0462

0.0914 0.0824 0.0710 0.0645 0.0581 0.0500 0.0414 0.0340

0.0700 0.0631 0.0544 0.0494 0.0445 0.0383 0.0317 0.0260

0.0448 0.0404 0.0348 0.0316 0.0285 0.0245 0.0203 0.0166

0.0311 0.0280 0.0242 0.0219 0.0198 0.0170 0.0141 0.0116

0.0229 0.0206 0.0178 0.0161 0.0145 0.0125 0.0103 0.00849

0.0175 0.0158 0.0136 0.0123 0.0111 0.00958 0.00792 0.00650

0.0112 0.0101 0.00870 0.00790 0.00712 0.00613 0.00507 0.00416

D7-25


D7-26

TABLE D7.3.1(2)(B)

ELASTIC BUCKLING LOADS DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness buckling about y-axis

Designation d

b

Elastic Buckling Loads Nom (kN)

Mass per m

Effective Length (Le) in metres

t

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

mm mm mm

kg/m

0.0

DCTDHS/06 MARCH 2002

0.25

0.5

0.75

1.0

1.25

1.5

1.75

2.0

2.5

3.0

3.5

4.0

5.0

100 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.5 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

12.0 10.3 8.49 7.53 6.60 5.56 4.50 3.64

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

17900 16100 13900 12600 11400 9810 8110 6660

4480 4040 3480 3160 2850 2450 2030 1660

1990 1790 1550 1400 1270 1090 901 740

1120 1010 870 790 712 613 507 416

717 646 557 506 456 392 324 266

498 448 387 351 316 272 225 185

366 329 284 258 232 200 165 136

280 252 218 197 178 153 127 104

179 161 139 126 114 98.1 81.1 66.6

124 112 96.7 87.8 79.1 68.1 56.3 46.2

91.4 82.4 71.0 64.5 58.1 50.0 41.4 34.0

70.0 63.1 54.4 49.4 44.5 38.3 31.7 26.0

44.8 40.4 34.8 31.6 28.5 24.5 20.3 16.6

75 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

9.67 8.35 6.92 5.42 4.58 3.72 3.01

∞ ∞ ∞ ∞ ∞ ∞ ∞

13300 12100 10600 8770 7580 6290 5180

3330 3030 2640 2190 1900 1570 1290

1480 1350 1170 974 842 699 575

832 758 661 548 474 393 324

532 485 423 351 303 252 207

370 337 294 244 211 175 144

272 248 216 179 155 128 106

208 189 165 137 118 98.3 80.9

133 121 106 87.7 75.8 62.9 51.8

92.4 84.2 73.4 60.9 52.6 43.7 36.0

67.9 61.9 53.9 44.7 38.7 32.1 26.4

52.0 47.4 41.3 34.3 29.6 24.6 20.2

33.3 30.3 26.4 21.9 19.0 15.7 12.9

75 x 25 x 2.5 RHS 2.0 RHS 1.6 RHS

3.60 2.93 2.38

∞ ∞ ∞

1540 1310 1100

384 326 274

171 145 122

65 x 35 x 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS

5.35 4.25 3.60 2.93

∞ ∞ ∞ ∞

3890 3340 2920 2460

972 835 731 614

432 371 325 273

50 x 25 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

3.07 2.62 2.15 1.75

∞ ∞ ∞ ∞

1160 1040 887 749

290 259 222 187

129 115 98.6 83.2

50 x 20 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

2.83 2.42 1.99 1.63

∞ ∞ ∞ ∞

670 607 527 449

168 152 132 112

74.5 67.5 58.5 49.9

Note:

1.

Nom = π2 EI / Le2 (Clause 4.6.2 of AS 4100)

96.1 81.6 68.5

61.5 52.2 43.8

42.7 36.3 30.4

31.4 26.7 22.4

24.0 20.4 17.1

15.4 13.1 11.0

10.7 9.07 7.61

155 134 117 98.3

108 92.7 81.2 68.2

79.3 68.1 59.7 50.1

60.7 52.2 45.7 38.4

38.9 33.4 29.2 24.6

27.0 23.2 20.3 17.1

72.4 64.7 55.5 46.8

46.3 41.4 35.5 30.0

32.2 28.8 24.6 20.8

23.6 21.1 18.1 15.3

18.1 16.2 13.9 11.7

11.6 10.4 8.87 7.49

8.04 7.19 6.16 5.20

41.9 37.9 32.9 28.1

26.8 24.3 21.1 18.0

18.6 16.9 14.6 12.5

13.7 12.4 10.8 9.17

10.5 9.49 8.23 7.02

6.70 6.07 5.27 4.49

4.66 4.22 3.66 3.12

243 209 183 154

7.84 6.66 5.59

6.00 5.10 4.28

3.84 3.26 2.74

15.2 13.0 11.4 9.60

9.72 8.35 7.31 6.14

5.91 5.28 4.53 3.82

4.52 4.04 3.47 2.93

2.90 2.59 2.22 1.87

3.42 3.10 2.69 2.29

2.62 2.37 2.06 1.75

1.68 1.52 1.32 1.12

19.8 17.0 14.9 12.5


ELASTIC BUCKLING LOADS DCTDHS/06 MARCH 2002

DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness TABLE D7.3.2-2(A) buckling about x-axis Designation d

b

Elastic Buckling Loads Nom (kN)

Mass per m

Effective Length (Le) in metres

t

mm mm mm

kg/m

0.0

0.25

0 .5

0.75

1.0

1.25

1.5

1.75

2.0

2.5

3.0

3.5

4.0

5.0 180 151

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

125 x 75 x 2.8 RHS 2.3 RHS

8.39 6.95

∞ ∞

72200 60500

18000 15100

8020 6720

4510 3780

2890 2420

2000 1680

1470 1230

1130 945

722 605

501 420

368 309

282 236

100 x 50 x 2.8 RHS 2.3 RHS

6.19 5.14

∞ ∞

31700 26800

7930 6700

3530 2980

1980 1670

1270 1070

881 744

648 547

496 419

317 268

220 186

162 137

124 105

75 x 50 x 2.8 RHS 2.3 RHS

5.09 4.24

∞ ∞

15600 13200

3900 3310

1730 1470

974 827

623 529

433 368

318 270

244 207

156 132

108 91.9

79.5 67.5

60.9 51.7

39.0 33.1

65 x 35 x 2.8 RHS 2.3 RHS

3.99 3.34

∞ ∞

8430 7230

2110 1810

937 803

527 452

337 289

234 201

172 147

132 113

84.3 72.3

58.5 50.2

43.0 36.9

32.9 28.2

21.1 18.1

50 x 25 x 2.8 RHS 2.3 RHS

2.89 2.44

∞ ∞

3370 2940

844 735

375 327

211 184

135 118

93.7 81.7

68.9 60.0

52.7 46.0

33.7 29.4

23.4 20.4

17.2 15.0

13.2 11.5

8.44 7.35

50 x 20 x 2.8 RHS 2.3 RHS

2.67 2.25

∞ ∞

2880 2530

720 632

320 281

180 158

115 101

80.0 70.2

58.8 51.6

45.0 39.5

28.8 25.3

20.0 17.6

14.7 12.9

11.3 9.87

7.20 6.32

Note:

1.

Nom = π2 EI / Le2 (Clause 4.6.2 of AS 4100)

Designation d

b

TABLE D7.3.2-2(B) buckling about y-axis Elastic Buckling Loads Nom (kN)

Mass per m

Effective Length (Le) in metres

t

mm mm mm

79.3 67.0

kg/m

0.0

0.25

0 .5

0.75

1.0

1.25

1.5

1.75

2.0

2.5

3.0

3.5

4.0

5.0

228 192

168 141

128 108

82.2 69.1

D7-27

125 x 75 x 2.8 RHS 2.3 RHS

8.39 6.95

∞ ∞

32900 27600

8220 6910

3650 3070

2060 1730

1320 1110

913 768

671 564

514 432

329 276

100 x 50 x 2.8 RHS 2.3 RHS

6.19 5.14

∞ ∞

10800 9140

2690 2290

1200 1020

673 571

431 366

299 254

220 187

168 143

108 91.4

74.8 63.5

55.0 46.7

42.1 35.7

26.9 22.9

75 x 50 x 2.8 RHS 2.3 RHS

5.09 4.24

∞ ∞

8310 7080

2080 1770

923 786

519 442

332 283

231 197

169 144

130 111

83.1 70.8

57.7 49.1

42.4 36.1

32.4 27.6

20.8 17.7

65 x 35 x 2.8 RHS 2.3 RHS

3.99 3.34

∞ ∞

3180 2740

795 686

353 305

199 171

127 110

22.1 19.1

16.2 14.0

12.4 10.7

50 x 25 x 2.8 RHS 2.3 RHS

2.89 2.44

∞ ∞

1110 979

278 245

124 109

50 x 20 x 2.8 RHS 2.3 RHS

2.67 2.25

∞ ∞

647 577

162 144

Note:

1.

Nom = π2 EI / Le2 (Clause 4.6.2 of AS 4100)

71.9 64.1

88.3 76.2

64.9 56.0

49.7 42.9

31.8 27.4

7.95 6.86

69.5 61.2

44.5 39.2

30.9 27.2

22.7 20.0

17.4 15.3

11.1 9.79

7.72 6.80

5.67 5.00

4.34 3.83

2.78 2.45

40.4 36.1

25.9 23.1

18.0 16.0

13.2 11.8

10.1 9.02

6.47 5.77

4.49 4.01

3.30 2.94

2.53 2.25

1.62 1.44


D7-28

TABLE D7.3.2-3(1)

ELASTIC BUCKLING LOADS DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness buckling about x- and y-axis

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

Designation d

b

Elastic Buckling Loads Nom (MN)

Mass per m

Effective Length (Le) in metres

t

mm mm mm

kg/m

0.0

1.0

1.5

2.0

2.5

3.0

3.5

4.0

5.0

6.0

100 x 100 x 6.0 SHS 5.0 SHS 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS

16.7 14.2 11.6 8.96 7.53 6.07

∞ ∞ ∞ ∞ ∞ ∞

5.99 5.24 4.40 3.49 2.97 2.43

2.66 2.33 1.96 1.55 1.32 1.08

1.50 1.31 1.10 0.874 0.743 0.607

0.959 0.839 0.704 0.559 0.476 0.388

0.666 0.583 0.489 0.388 0.330 0.270

0.489 0.428 0.359 0.285 0.243 0.198

0.375 0.328 0.275 0.218 0.186 0.152

0.240 0.210 0.176 0.140 0.119 0.0971

0.167 0.146 0.122 0.0971 0.0826 0.0674

90 x 90 x 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS

8.01 6.74 5.45 4.39

∞ ∞ ∞ ∞

2.51 2.14 1.75 1.43

1.12 0.952 0.780 0.635

0.628 0.536 0.439 0.357

0.402 0.343 0.281 0.229

0.279 0.238 0.195 0.159

0.205 0.175 0.143 0.117

0.157 0.134 0.110 0.839

0.100 0.0857 0.0702 0.0572

89 x 89 x 6.0 SHS 5.0 SHS 3.5 SHS

14.6 12.5 9.06

∞ ∞ ∞

4.06 3.58 2.71

1.80 1.59 1.21

1.01 0.894 0.678

0.649 0.572 0.434

0.451 0.379 0.301

0.331 0.292 0.221

0.254 0.223 0.170

75 x 75 x 6.0 SHS 5.0 SHS 4.0 SHS 3.5 SHS 3.0 SHS 2.5 SHS 2.0 SHS

12.0 10.3 8.49 7.53 6.60 5.56 4.50

∞ ∞ ∞ ∞ ∞ ∞ ∞

2.29 2.04 1.74 1.57 1.41 1.21 0.997

1.02 0.906 0.774 0.699 0.628 0.539 0.443

0.571 0.510 0.435 0.393 0.353 0.303 0.249

0.366 0.326 0.279 0.252 0.226 0.194 0.159

0.254 0.227 0.194 0.175 0.157 0.135 0.111

0.187 0.166 0.142 0.128 0.115 0.0989 0.0814

0.143 0.127 0.109 0.0984 0.0884 0.0757 0.0623

Note:

1.

Nom = π2 EI / Le2 (Clause 4.6.2 of AS 4100)

7.0

8.0

10.0

12.0

0.122 0.107 0.0898 0.0713 0.0607 0.0496

0.0937 0.0819 0.0687 0.0546 0.0465 0.0379

0.0599 0.0524 0.0440 0.0349 0.0297 0.0243

0.0416 0.0364 0.0306 0.0243 0.0206 0.0169

0.0698 0.0595 0.0487 0.0397

0.0513 0.0437 0.0358 0.0292

0.0393 0.0335 0.0274 0.0223

0.0251 0.0214 0.0175 0.0143

0.0174 0.0149 0.0122 0.00992

0.162 0.143 0.109

0.113 0.0993 0.0754

0.0828 0.0730 0.0554

0.0634 0.0559 0.0424

0.0406 0.0358 0.0271

0.0282 0.0248 0.0188

0.0914 0.0815 0.0697 0.0629 0.0565 0.0485 0.0399

0.0635 0.0566 0.0484 0.0437 0.0393 0.0337 0.0277

0.0466 0.0416 0.0355 0.0321 0.0289 0.0247 0.0203

0.0357 0.0319 0.0272 0.0246 0.0221 0.0189 0.0156

0.0229 0.0204 0.0174 0.0157 0.0141 0.0121 0.00997

0.0159 0.0142 0.0121 0.0109 0.00982 0.00841 0.00692

DCTDHS/06 MARCH 2002


DCTDHS/06 MARCH 2002

TABLE D7.3.2-3(2)

ELASTIC BUCKLING LOADS DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness buckling about x- and y-axis Designation d

b

Effective Length (Le) in metres

t

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

D7-29

mm mm mm

kg/m

75 x 75 x 6.0 SHS 5.0 SHS 4.0 SHS 3.5 SHS 3.0 SHS 2.5 SHS 2.0 SHS 65 x 65 x 6.0 SHS 5.0 SHS 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 50 x 50 x 5.0 SHS 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 40 x 40 x 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 35 x 35 x 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 30 x 30 x 2.0 SHS 1.6 SHS 25 x 25 x 2.5 SHS 2.0 SHS 1.6 SHS 20 x 20 x 1.6 SHS

12.0 10.3 8.49 7.53 6.60 5.56 4.50 10.1 8.75 7.23 5.66 4.78 3.88 3.13 6.39 5.35 4.25 3.60 2.93 2.38 4.09 3.30 2.82 2.31 1.88 2.83 2.42 1.99 1.63 1.68 1.38 1.64 1.36 1.12 0.873

Note:

Elastic Buckling Loads Nom (kN)

Mass per m

1.

0.0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

0.25 36600 32600 27900 25200 22600 19400 15900 22300 20200 17400 14300 12400 10200 8370 8110 7220 6150 5350 4470 3700 3320 2940 2590 2190 1830 1880 1670 1420 1200 860 729 534 469 403 192

0.5 9140 8150 6970 6290 5650 4850 3990 5580 5040 4360 3590 3090 2550 2090 2030 1810 1540 1340 1120 924 831 736 649 548 458 470 418 356 299 215 182 133 117 101 48.0

Nom = π2 EI / Le2 (Clause 4.6.2 of AS 4100)

0.75 4060 3620 3100 2800 2510 2150 1770 2480 2240 1940 1590 1370 1130 931 902 803 683 595 496 411 369 327 288 244 203 209 186 158 133 95.5 81.0 59.3 52.1 44.7 21.3

1.0 2290 2040 1740 1570 1410 1210 997 1390 1260 1090 896 772 638 523 507 451 384 334 279 231 208 184 162 137 114 117 104 89.0 74.8 53.7 45.6 33.4 29.3 25.2 12.0

1.25

1.5

1460 1020 1300 906 1110 774 1010 699 905 628 775 539 638 443 892 620 806 560 697 484 574 398 494 343 408 283 335 233 325 225 289 201 246 171 214 149 179 124 148 103 133 92.3 118 81.8 104 72.1 87.7 60.9 73.2 50.8 75.1 52.2 66.8 46.4 56.9 39.5 47.9 33.2 34.4 23.9 29.2 20.3 21.3 14.8 18.7 13.0 16.1 11.2 7.68 5.33

1.75

2.0

2.5

3.0

3.5

4.0

746 666 569 514 462 396 325 455 411 356 293 252 208 171 166 147 125 109 91.2 75.4 67.8 60.1 53.0 44.7 37.3 38.3 34.1 29.1 24.4 17.5 14.9 10.9 9.56 8.22 3.92

571 510 435 393 353 303 249 349 315 272 224 193 159 131 127 113 96.1 83.6 69.8 57.8 51.9 46.0 40.5 34.2 28.6 29.4 26.1 22.2 18.7 13.4 11.4 8.34 7.32 6.29 3.00

366 326 279 252 226 194 159 223 202 174 143 124 102 83.7 81.1 72.2 61.5 53.5 44.7 37.0 33.2 29.4 25.9 21.9 18.3 18.8 16.3 14.2 12.0 8.60 7.29 5.34 4.69 4.03 1.92

254 227 194 175 157 135 111 155 140 121 99.6 85.8 70.9 58.2 56.3 50.2 42.7 37.2 31.0 25.7 23.1 20.4 18.0 15.2 12.7 13.0 11.6 9.89 8.31 5.97 5.06 3.71 3.25 2.80 1.33

187 143 166 127 142 109 128 98.4 115 88.4 98.9 75.7 81.4 62.3 114 87.1 103 78.7 88.9 68.1 73.2 56.0 63.0 48.2 52.1 39.9 42.7 32.7 41.4 31.7 36.9 28.2 31.4 24.0 27.3 20.9 22.8 17.5 18.9 14.4 17.0 13.0 15.0 11.5 13.2 10.1 11.2 8.56 9.34 7.15 9.58 7.34 8.52 6.53 7.26 5.56 6.10 4.67 4.39 3.36 3.72 2.85 2.72 2.08 2.39 1.83 2.05 1.57 0.979 0.750

5.0 91.4 81.5 69.7 62.9 56.5 48.5 39.9 55.8 50.4 43.6 35.9 30.9 25.5 20.9 20.3 18.1 15.4 13.4 11.2 9.24 8.31 7.36 6.49 5.48 4.58 4.70 4.18 3.56 2.99 2.15 1.82 1.33 1.17 1.01 0.480


D7-30 TABLE D7.3.2-4

ELASTIC BUCKLING LOADS DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness buckling about x- and y-axis DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

Designation d

b

Elastic Buckling Loads Nom (kN)

Mass per m

Effective Length (Le) in metres

t

mm mm mm

kg/m

0.0

0.25

0.5

0.75

1.0

1.25

1.5

1.75

2.0

2.5

3.0

3.5

4.0

5.0

206 172

132 110

100 x 100 x 2.8 SHS 2.3 SHS

8.39 6.95

∞ ∞

52600 44100

13200 11000

5850 4900

3290 2760

2100 1770

1460 1230

1070 901

822 690

526 441

365 306

268 225

75 x 75 x 2.8 SHS 2.3 SHS

6.19 5.14

∞ ∞

21400 18000

5340 4510

2370 2000

1330 1130

854 721

593 501

436 368

334 282

214 180

148 125

109 92.0

83.4 70.5

53.4 45.1

65 x 65 x 2.3 SHS

4.42

11500

2880

1280

719

460

320

235

180

115

50 x 50 x 2.8 SHS 2.3 SHS

3.99 3.34

∞ ∞

5840 5010

1460 1250

649 557

365 313

234 200

162 139

119 102

40 x 40 x 2.8 SHS 2.3 SHS

3.11 2.62

∞ ∞

2810 2440

703 610

312 271

176 152

112 97.6

78.1 67.8

35 x 35 x 2.8 SHS 2.3 SHS

2.67 2.25

∞ ∞

1800 1580

450 394

200 175

112 98.5

72.0 63.1

50.0 43.8

Note:

1.

Nom = π2 EI / Le2 (Clause 4.6.2 of AS 4100)

79.9

58.7

45.0

28.8

91.2 78.3

58.4 50.1

40.6 34.8

29.8 25.6

22.8 19.6

14.6 12.5

57.4 49.8

43.9 38.1

28.1 24.4

19.5 16.9

14.3 12.4

11.0 9.53

7.03 6.10

36.7 32.2

28.1 24.6

18.0 15.8

12.5 10.9

7.03 6.16

4.50 3.94

9.18 8.04

DCTDHS/06 MARCH 2002


[ BLANK ]

DCTDHS/06 MARCH 2002

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

D7-31


PART 8 MAXIMUM DESIGN LOADS FOR BEAMS

8 PAGE

D8.1

SCOPE ........................................................................................................................... D8-2

D8.2

METHOD ........................................................................................................................ D8-2

D8.2.1

Strength Limit State Design ............................................................................................ D8-2

D8.2.1.1

W *L1 - Based on Design Moment Capacity ................................................................... D8-3

D8.2.1.2

W *L2 - Based on Shear Moment Capacity ..................................................................... D8-3

D8.2.2

Serviceability Limit State Design .................................................................................... D8-4

D8.3

BEAMS WITH FULL LATERAL RESTRAINT .............................................................. D8-5

D8.4

ADDITIONAL DESIGN CHECKS ................................................................................. D8-5

D8.5

OTHER LOAD CONDITIONS ....................................................................................... D8-6

D8.6

EXAMPLES ................................................................................................................... D8-6

TABLES TABLES D8.1-1 to D8.1-4 Maximum Design Loads for Single Span, Simply Supported Beams - With Full Lateral Restraint - Deflection Limited ....................................................................................................... D8-10 TABLES D8.2-1 to D8.2-4 Maximum Design Loads for Continuous, Two Span, Simply Supported Beams - With Full Lateral Restraint - Deflection Limited ....................................................................................................... D8-22 TABLES D8.3-1 to D8.3-4 Maximum Design Loads for Single Span, Fixed End Beams - With Full Lateral Restraint - Deflection Limited ....................................................................................................... D8-34 TABLES D8.4-1 to D8.4-4 Maximum Design Loads for Cantilever Beams - With Full Lateral Restraint - Deflection Limited ....................................................................................................... D8-46

NOTE: SEE PAGE vii FOR THE SPECIFIC MATERIAL STANDARD REFERRED TO BY THE SECTION TYPE AND STEEL GRADE IN THESE TABLES.

DCTDHS/06 MARCH 2002

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

D8-1


PART 8 MAXIMUM DESIGN LOADS FOR BEAMS D8.1

SCOPE

PART 8 gives values of maximum design loads distributed uniformly along the length of the beam with full lateral restraint for different beam support conditions. Tables D8.1 for single span, simply supported beams Tables D8.2 for continuous, two span, simply supported beams Tables D8.3 for single span, fixed end beams Tables D8.4 for cantilever beams Each group of tables is separated into two series:

the (A) series (e.g. Table D8.1-1 (A)) for the strength limit state

the (B) series (e.g. Table D8.1-1 (B)) for the serviceability limit state

For each group of tables, the (A) series tables are immediately followed by the (B) series tables. The design load (W * = total design load) is assumed to be uniformly distributed and applied through the shear centre in the direction of the principal y-axis. NOTE - BEAM SELF WEIGHT: For all tables, the self weight of the beam has NOT been deducted. The designer must include the self weight as part of the dead load when determining the maximum design load W *L or W *S.

D8.2

METHOD

The maximum design load is the lesser of the strength limit state design load given in the (A) series tables determined in accordance with Section D8.2.1, and the serviceability limit state design load given in the (B) series tables determined and adjusted if necessary in accordance with Section D8.2.2.

D8.2.1 Strength Limit State Design The value of the maximum design load (W *L) given in the tables is the lesser of the maximum design load (W *L1) associated with the design section moment capacity (φMsx) and the maximum design load (W*L2) associated with the design shear capacity (φVvx). W *L = Min. [W *L1 ; W *L2 ] The method is illustrated in Section D8.2.1.1 for the case of a simply supported beam. Note:

D8-2

the interaction of shear and bending has not been included in the tables. φVv or if M * < 0.75 φMs then no interaction check is necessary. If V * < 0.6 φ Otherwise reference should be made to Section D8.4.

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

DCTDHS/06 MARCH 2002


D 8.2.1.1 W * L1 - Based on Design Moment Capacity (simply supported beam) For a beam with full lateral restraint, the design section moment capacity (φMsx) is used, which for bending about the x-axis is given by: φMsx = φ Zex fy where

φ = Zex = fy =

0.9 (Table 3.4 of AS 4100) effective section modulus (see Section D1.2.3.2) yield stress used in design

For a simply supported beam subject to uniformly distributed loading, the maximum bending moment (Mmax) is given by:

M max =

WL 8

where W = total uniformly distributed load L = length of the beam Therefore, substituting the design moment capacity (φMsx) for beams with full lateral restraint for the maximum bending moment (Mmax) and rearranging the equation gives: Maximum Design Load (W *L1) based on the design moment capacity of the beam bending about the x-axis 8φM sx W * L1 = L The equations for the other support conditions are given in Table D8.2.

D 8.2.1.2 W * L2 - Based on Design Shear Capacity (simply supported beam) The design shear capacity (φVvx) is given in Section D4.2 of the Tables. For a simply supported beam subject to uniformly distributed loading, the maximum shear force (Vmax) is given by:

Vmax = where W

=

W 2

total uniformly distributed load

Therefore, substituting the design shear capacity (φVvx) for the maximum shear force (Vmax) and rearranging the equation gives: Maximum Design Load (W *L2) based on the design bending capacity of the beam bending about the x-axis W *L2 = 2φVvx The equations for the other support conditions are given in Table D8.2.

DCTDHS/06 MARCH 2002

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

D8-3


D8.2.2 Serviceability Limit State Design The value of serviceability load (W *S) given in the tables is the maximum design load which will achieve a calculated total elastic deflection of L/250 (where L is the span of the beam). For deflection limits other than span/250, the value of W *S2 for the alternative deflection limit may be calculated from the tabulated value W *S1 using the formula:

W * S2 = where D

=

250W *S1 D

the denominator value in the deflection limit incorporating the span term (e.g. D = 500 for the L/500 deflection limit)

For sections with a high shape factor (ratio of plastic moment to the yield moment of a beam) it may be possible for the maximum stresses in a member to reach the yield stress at serviceability loads without exceeding the strength limit state. This will invalidate the deflection calculations based on the assumption of elastic behaviour. However it has been found that for the hollow sections contained in these tables, using the load factors in AS 1170 and AS 4100, the strength limit state will always be exceeded before first yield occurs. Therefore values of the load at which first yield occurs have not been included in the tables. The method is illustrated below for the case of a simply supported beam. W *S1 - based on a Deflection Limit of L/250

(simply supported beam)

For a simply supported beam subject to a uniformly distributed load, the maximum deflection (∆max) is given by : 5WL3 ∆ max = 384 El x where W

=

total uniformly distributed load

L =

length of span

E

200 x 103 MPa

=

/x =

second moment of area about the major principal x-axis

Therefore, substituting ∆max = L/250 and rearranging the equation gives the serviceability limit state maximum design load (W *S):

W *S =

D8-4

384El x 1250 L2

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

DCTDHS/06 MARCH 2002


Table D8.2: Summary of Equations for Maximum Design Loads

D8.3

BEAMS WITH FULL LATERAL RESTRAINT

Full lateral restraint may be achieved for a member by: a) continuous lateral restraint, or b) full or partial restraint provided at sufficient locations along the beam. The distance between these locations is termed the segment length and the maximum values of segment length to ensure full lateral restraint are tabulated for each section in the (A) series tables under the column “FLR”. These values of maximum segment length are determined in accordance with the method outlined in section D4.1.3 of these tables. FLR values are not given for SHS as they are not susceptible to lateral buckling.

D8.4 a)

ADDITIONAL DESIGN CHECKS

Interaction of Shear and Bending Where large shear forces are coincident with large bending moments the interaction of shear and bending may govern the design. An interaction check needs to be done if the design shear is greater than 60% of the design shear capacity (V * > 0.6 φVv) or if M * > 0.75 φMs. However for the case of simply supported beams with uniformly distributed loads interaction of shear and bending will not be critical.

b)

Compressive Bearing Action Where loads are transmitted into the webs at supports or at load points, the capacity of the web to resist such forces should be checked in accordance with Section D4.3. Tables D4.3-1 to D4.3-4 may be used to assist with any such assessment.

DCTDHS/06 MARCH 2002

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

D8-5


D8.5

OTHER LOAD CONDITIONS

The values given in Tables D8.1-1 to D8.1-4 are for single span, simply supported beams subject to uniformly distributed loads. However, the information presented in these tables may be used for other loading situations for beams with full lateral restraint and αm = 1.0, using the equivalent uniform design loads given in Table D8.5 and in conjunction with the following procedure: 1)

Calculate equivalent uniformly distributed maximum design load for moment (W *EM) using Table D8.5.

2)

Based on W *EM select a section with an adequate maximum design load (W *L1) associated with the design shear capacity from Tables D8.1-1(A) to D8.1-4(A).

3)

Calculate equivalent uniformly distributed maximum design load for shear (W *EV) using Table D8.5.

4)

Check that the section selected in 2) has an adequate maximum design load (W *L2) associated with the design shear capacity to resist W *EV. If not, select a new section size which can resist W *EV.

5)

Check shear and bending interaction in accordance with Section D4.2.3. A check is not necessary if the design shear is less than 60% of the design shear capacity (V * < 0.6 φVv) or if M * < 0.75 φMs.

6)

Calculate equivalent uniformly distributed serviceability load (W *ES) using Table D8.5.

7)

Check that the section selected in 4) has an adequate maximum serviceability design load (W *S1) to resist W *ES. If not, select a new section size which can resist W *ES.

D8.6 1.

EXAMPLES

A simply supported beam of 4 metres is subjected to uniformly distributed loads of: G (Dead Load) = 4 kN

(total load)

Q (Live Load) = 7 kN

(total load)

The beam has continuous lateral support. The total deflection of the beam under serviceability loads must not exceed L/250. Solution: (a)

Calculation of maximum design loads: Strength limit state

W *L = 1.25G + 1.5Q = 15.5 kN

Serviceability limit state

W *S = G + 0.7Q

(short term live load)

= 8.90 kN

D8-6

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

DCTDHS/06 MARCH 2002


Table D8.5: Table of Equivalent Uniformly Distributed Loads

DCTDHS/06 MARCH 2002

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

D8-7


(b)

Use of the Tables:

Strength Limit State - Select a section with the least mass from the Tables such that the maximum design loads W *L1 and W *L2 are greater than or equal to WL. It can be seen from Table D8.1-1(2)(A) that for a 100 x 50 x 2.5 DuraGal RHS Grade C450L0, the maximum design loads are: W *L1 = 18.4 kN W *L2 = 220 kN ∴

W *L = 18.4 kN (> 15.5 kN)

Therefore, a 100 x 50 x 2.5 DuraGal RHS has adequate strength. Serviceability Limit State - From Table D8.1-1(1)(B) it can be seen that for a 150 x 50 x 2.5 DuraGal RHS Grade C450L0, the serviceability load is: W *S = 9.76 kN (> 8.90 kN) The most efficient and practical hollow sections for this application are RHS and SHS. The alternative sections which satisfy the above strength and serviceability limit states are listed below: 150 x 50 x 2.5 DuraGal RHS Grade C450L0 125 x 75 x 3.0 DuraGal RHS Grade C450L0 100 x 100 x 5.0 DuraGal SHS Grade C450L0

mass per metre = 7.53 kg/m mass per metre = 8.96 kg/m mass per metre = 14.2kg/m

Therefore, based on mass, select 150 x 50 x 2.5 DuraGal RHS Grade C450L0.

2.

A beam which is simply supported has a span of 6.0 metres with full lateral restraint. The beam is subjected to nominal central dead and short term live loads of 1.0 kN and 2.5 kN respectively. Design a suitable DuraGal RHS in Grade C450L0 steel with no limit on deflection.

Solution: (i)

Calculate equivalent uniformly distributed maximum design load for moment (W *EM) From Table D8.5 (W *EM) associated with the central dead and live loads is: W *EM

(ii)

= 2P = 2 (1.25 x 1.0 + 1.5 x 2.5) = 10 kN

Based on W *EM select the least mass section with an adequate maximum design load (W *L1) based on design moment capacity. From Table D8.1-1(1)(A), a 100 x 50 x 2.5 DuraGal RHS Grade C450L0 has adequate maximum design load (W *L1 = 12.2 kN).

(iii)

Calculate equivalent uniformly distributed maximum design load for shear (W *EV). From Table D8.5 the equivalent uniform moment load is: W *EV = P = 1.25 x 1.0 + 1.5 x 2.5 = 5.0 kN

D8-8

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

DCTDHS/06 MARCH 2002


(iv)

Check that the section selected in Step 2 has an adequate maximum design load W *L2 based on shear capacity. From Table D8.1-1(1)(A), a 100 x 50 x 2.5 DuraGal RHS has adequate maximum design load (W *L2 = 220 kN).

(v)

Check if a shear and bending interaction check in accordance with Section D4.2.3 is necessary. From Table D8.1-1(1)(A), W *L2 = 220 kN for a 100 x 50 x 2.5 DuraGal RHS. W *L2 = φV v = 0.6 φVv

= = = >

2 φVv 220 2 110 kN 0.6 x 110 66 kN 5.0 kN (V * = W *EV)

Therefore no shear and bending interaction check in accordance with Section D4.2.3 is necessary. (vi)

Calculate equivalent uniformly distributed serviceability load (W *ES). From Table D8.5 W *ES for the central dead and live loads is: W *ES =

(vii)

8P 5

=

8 (1.0 + 0.7 x 2.5) 5

=

4.4 kN

From Table D8.1-1(1)(B), a 150 x 50 x 3.0 DuraGal RHS is the least mass section with adequate maximum serviceability design load (W *S1 = 5.10 kN) to resist W *ES. ∴ Adopt a 150 x 50 x 3.0 DuraGal Grade C450L0 section.

Note:

In this example the self weight of the beam is not taken into consideration. The calculation should be repeated to include self weight if significant.

References: [1]

Bradford, M.A., Bridge, R.Q., Trahair, N.S., “Worked Examples for Steel Members”, Australian Institute of Steel Construction, 1990.

[2]

“Steel Structures - Commentary (Supplement to AS 4100-1990)”, Standards Australia, 1990.

DCTDHS/06 MARCH 2002

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

D8-9


D8-10

TABLE D8.1-1(1)(A)

STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS SIMPLY SUPPORTED BEAMS WITH FULL LATERAL RESTRAINT DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis W *L1 = Maximum Design Load based on Design Moment Capacity W *L2 = Maximum Design Load based on Design Shear Capacity Maximum Design Load W *L is LESSER of W *L1 and W *L2

Designation DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

d

b

W*L1 (kN)

Mass per m

W*L2

FLR

Span of Beam (L) in metres

t

mm mm mm

kg/m

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

13.0

14.0

kN

m

150 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS

16.7 14.2 11.6 8.96 7.53 6.07

295 256 212 167 141 103

148 128 106 83.3 70.5 51.3

98.4 85.2 70.7 55.5 47.0 34.2

73.8 63.9 53.0 41.7 35.3 25.6

59.1 51.1 42.4 33.3 28.2 20.5

49.2 42.6 35.3 27.8 23.5 17.1

42.2 36.5 30.3 23.8 20.1 14.6

36.9 31.9 26.5 20.8 17.6 12.8

32.8 28.4 23.6 18.5 15.7 11.4

29.5 25.6 21.2 16.7 14.1 10.3

26.8 23.2 19.3 15.1 12.8 9.32

24.6 21.3 17.7 13.9 11.8 8.54

22.7 19.7 16.3 12.8 10.8 7.89

21.1 18.3 15.1 11.9 10.1 7.32

749 633 514 391 328 264

6.35 6.48 6.60 6.66 6.72 7.58

125 x 75 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS

16.7 14.2 11.6 8.96 7.53 6.07

273 236 195 151 113 80.4

136 118 97.6 75.4 56.3 40.2

91.0 78.6 65.1 50.3 37.5 26.8

68.2 58.9 48.8 37.7 28.1 20.1

54.6 47.1 39.1 30.2 22.5 16.1

45.5 39.3 32.5 25.1 18.8 13.4

39.0 33.7 27.9 21.5 16.1 11.5

34.1 29.5 24.4 18.8 14.1 10.0

30.3 26.2 21.7 16.8 12.5 8.93

27.3 23.6 19.5 15.1 11.3 8.04

24.8 21.4 17.8 13.7 10.2 7.31

22.7 19.6 16.3 12.6 9.38 6.70

21.0 18.1 15.0 11.6 8.66 6.18

19.5 16.8 13.9 10.8 8.04 5.74

634 538 438 334 281 226

13.2 13.3 13.4 13.6 15.4 17.6

100 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.5 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

12.0 10.3 8.49 7.53 6.60 5.56 4.50 3.64

147 129 108 97.0 86.4 73.5 59.0 40.4

73.5 64.4 54.1 48.5 43.2 38.7 29.5 20.2

49.0 42.9 36.1 32.3 28.8 24.5 19.7 13.5

36.7 32.2 27.1 24.2 21.6 18.4 14.7 10.1

29.4 25.8 21.6 19.4 17.3 14.7 11.8 8.08

24.5 21.5 18.0 16.2 14.4 12.2 9.83 6.73

21.0 18.4 15.5 13.9 12.3 10.5 8.43 5.77

18.4 16.1 13.5 12.1 10.8 9.18 7.37 5.05

16.3 14.3 12.0 10.8 9.60 8.16 6.55 4.49

14.7 12.9 10.8 9.70 8.64 7.35 5.90 4.04

13.4 11.7 9.84 8.82 7.85 6.68 5.36 3.67

12.2 10.7 9.02 8.08 7.20 6.12 4.92 3.37

11.3 9.91 8.33 7.46 6.64 5.65 4.54 3.11

10.5 9.20 7.73 6.93 6.17 5.25 4.21 2.89

489 417 341 301 261 220 178 143

7.92 8.03 8.14 8.19 8.16 8.22 8.41 10.0

Notes:

1.

DCTDHS/06 MARCH 2002

2. 3. 4. 5. 6.

FLR FLR φ αm αs W *L1 W *L2

= = = = = = =

0.436 (π2 E Iy G J / M2SX)0.5 (See Section D4.1.3 of these tables for explanation) Segment length for full lateral restraint (φMbx = φMsx) 0.9 1.0 1.0 8 φ Ms/L 2 φ Vv


DCTDHS/06 MARCH 2002

TABLE D8.1-1(1)(B)

SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS SIMPLY SUPPORTED BEAMS DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

Designation d

b

W*S1 (kN)

Mass per m

Span of Beam (L) in metres

t

mm mm mm

kg/m

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

13.0

14.0

150 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS

16.7 14.2 11.6 8.96 7.53 6.07

311 273 230 183 156 128

77.7 68.2 57.4 45.9 39.0 31.9

34.5 30.3 25.5 20.4 17.3 14.2

19.4 17.1 14.3 11.5 9.76 7.97

12.4 10.9 9.18 7.34 6.24 5.10

8.63 7.58 6.38 5.10 4.34 3.54

6.34 5.57 4.68 3.74 3.19 2.60

4.86 4.26 3.59 2.87 2.44 1.99

3.84 3.37 2.83 2.26 1.93 1.57

3.11 2.73 2.30 1.83 1.56 1.28

2.57 2.26 1.90 1.52 1.29 1.05

2.16 1.89 1.59 1.27 1.08 0.885

1.84 1.61 1.36 1.09 0.924 0.754

1.59 1.39 1.17 0.936 0.796 0.651

125 x 75 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS

16.7 14.2 11.6 8.96 7.53 6.07

256 224 188 149 127 104

63.9 55.9 46.9 37.3 31.7 25.9

28.4 24.9 20.8 16.6 14.1 11.5

16.0 14.0 11.7 9.33 7.93 6.47

10.2 8.95 7.50 5.97 5.08 4.14

7.10 6.21 5.21 4.14 3.52 2.88

5.22 4.56 3.83 3.05 2.59 2.11

3.99 3.50 2.93 2.33 1.98 1.62

3.16 2.76 2.32 1.84 1.57 1.28

2.56 2.24 1.88 1.49 1.27 1.04

2.11 1.85 1.55 1.23 1.05 0.856

1.78 1.55 1.30 1.04 0.881 0.719

1.51 1.32 1.11 0.883 0.751 0.613

1.30 1.14 0.957 0.761 0.647 0.528

100 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.5 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

12.0 10.3 8.49 7.53 6.60 5.56 4.50 3.64

105 93.9 80.3 72.6 65.4 56.0 46.1 37.7

26.3 23.5 20.1 18.1 16.4 14.0 11.5 9.41

11.7 10.4 8.92 8.06 7.27 6.23 5.12 4.18

6.56 5.87 5.02 4.54 4.09 3.50 2.88 2.35

4.20 3.75 3.21 2.90 2.62 2.24 1.84 1.51

2.92 2.61 2.23 2.02 1.82 1.56 1.28 1.05

2.14 1.92 1.64 1.48 1.33 1.14 0.940 0.769

1.64 1.47 1.25 1.13 1.02 0.876 0.720 0.588

1.30 1.16 0.991 0.896 0.807 0.692 0.569 0.465

1.05 0.939 0.803 0.726 0.654 0.560 0.461 0.377

0.868 0.776 0.664 0.600 0.541 0.463 0.381 0.311

0.729 0.652 0.558 0.504 0.454 0.389 0.320 0.262

0.622 0.555 0.475 0.429 0.387 0.332 0.273 0.223

0.536 0.479 0.410 0.370 0.334 0.286 0.235 0.192

Note:

1.

Serviceabilty Load W *S1 = 384EI / [5(250L2)]

D8-11


D8-12

TABLE D8.1-1(2)(A)

STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS SIMPLY SUPPORTED BEAMS WITH FULL LATERAL RESTRAINT DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness W * = Maximum Design Load based on Design Moment Capacity W * = Maximum Design Load based on Design Shear Capacity bending about x-axis Maximum Design Load W * is LESSER of W * and W * L1

L2

L

Designation d

b

L1

L2

W*L1 (kN)

Mass per m

W*L2

FLR

Span of Beam (L) in metres

t

0.5

0.75

1.0

1.25

1.5

1.75

2.0

2.5

3.0

3.5

4.0

4.5

5.0

6.0

kN

100 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.5 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

12.0 10.3 8.49 7.53 6.60 5.56 4.50 3.64

294 258 216 194 173 147 118 80.8

196 172 144 129 115 97.9 78.6 53.9

147 129 108 97.0 86.4 73.5 59.0 40.4

118 103 86.6 77.6 69.1 58.8 47.2 32.3

97.9 85.9 72.2 64.7 57.6 49.0 39.3 26.9

83.9 73.6 61.9 55.4 49.4 42.0 33.7 23.1

73.5 64.4 54.1 48.5 43.2 36.7 29.5 20.2

58.8 51.5 43.3 38.8 34.5 29.4 23.6 16.2

49.0 42.9 36.1 32.3 28.8 24.5 19.7 13.5

42.0 36.8 30.9 27.7 24.7 21.0 16.9 11.5

36.7 32.2 27.1 24.2 21.6 18.4 14.7 10.1

32.6 28.6 24.1 21.6 19.2 16.3 13.1 8.98

29.4 25.8 21.6 19.4 17.3 14.7 11.8 8.08

24.5 21.5 18.0 16.2 14.4 12.2 9.83 6.73

489 417 341 301 261 220 178 143

7.92 8.03 8.14 8.19 8.16 8.22 8.41 10.0

75 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

9.67 8.35 6.92 5.42 4.58 3.72 3.01

182 161 137 111 94.6 76.4 53.5

121 108 91.3 73.8 63.0 50.9 35.7

90.9 80.7 68.5 55.4 47.3 38.2 26.8

72.7 64.5 54.8 44.3 37.8 30.5 21.4

60.6 53.8 45.7 36.9 31.5 25.5 17.8

52.0 46.1 39.1 31.6 27.0 21.8 15.3

45.5 40.3 34.3 27.7 23.6 19.1 13.4

36.4 32.3 27.4 22.1 18.9 15.3 10.7

30.3 26.9 22.8 18.5 15.8 12.7 8.92

26.0 23.0 19.6 15.8 13.5 10.9 7.65

22.7 20.2 17.1 13.8 11.8 9.54 6.69

20.2 17.9 15.2 12.3 10.5 8.48 5.95

18.2 16.1 13.7 11.1 9.46 7.64 5.35

15.2 13.4 11.4 9.23 7.88 6.36 4.46

356 306 252 195 165 134 108

8.93 9.05 9.15 9.14 9.19 9.38 11.0

75 x 25 x 2.5 RHS 2.0 RHS 1.6 RHS

3.60 2.93 2.38

65.2 53.8 44.2

43.5 35.9 29.4

32.6 26.9 22.1

26.1 21.5 17.7

21.7 17.9 14.7

18.6 15.4 12.6

16.3 13.5 11.0

13.0 10.8 8.83

10.9 8.97 7.36

9.31 7.69 6.31

8.15 6.73 5.52

7.24 5.98 4.91

6.52 5.38 4.42

5.43 4.49 3.68

158 128 104

3.20 3.27 3.32

65 x 35 x 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS

5.35 4.25 3.60 2.93

86.0 71.2 61.3 50.5

57.4 47.5 40.8 33.7

43.0 35.6 30.6 25.3

34.4 28.5 24.5 20.2

28.7 23.7 20.4 16.8

24.6 20.3 17.5 14.4

21.5 17.8 15.3 12.6

17.2 14.2 12.3 10.1

14.3 11.9 10.2 8.42

12.3 10.2 8.75 7.22

10.8 8.90 7.66 6.32

9.56 7.91 6.81 5.62

8.60 7.12 6.13 5.05

7.17 5.94 5.10 4.21

212 165 139 113

5.76 5.80 5.85 5.91

50 x 25 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

3.07 2.62 2.15 1.75

38.0 33.1 27.6 22.8

25.3 22.1 18.4 15.2

19.0 16.5 13.8 11.4

15.2 13.2 11.0 9.14

12.7 11.0 9.21 7.61

10.9 9.45 7.89 6.53

9.50 8.27 6.91 5.71

7.60 6.62 5.52 4.57

6.33 5.51 4.60 3.81

5.43 4.73 3.95 3.26

4.75 4.14 3.45 2.86

4.22 3.68 3.07 2.54

3.80 3.31 2.76 2.28

3.17 2.76 2.30 1.90

122 104 85.2 69.3

3.90 3.96 4.02 4.07

50 x 20 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

2.83 2.42 1.99 1.63

33.4 29.2 24.5 20.3

22.3 19.5 16.3 13.6

16.7 14.6 12.3 10.2

13.4 11.7 9.80 8.13

11.1 9.74 8.17 6.78

9.55 8.35 7.00 5.81

8.36 7.31 6.13 5.08

6.68 5.85 4.90 4.07

5.57 4.87 4.08 3.39

4.77 4.18 3.50 2.91

4.18 3.65 3.06 2.54

3.71 3.25 2.72 2.26

3.34 2.92 2.45 2.03

2.79 2.44 2.04 1.69

121 103 84.1 68.4

2.71 2.77 2.84 2.89

mm mm mm

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002

Notes:

1. 2. 3.

FLR FLR φ αm

kg/m

= 0.436 (π2 E I y G J / M2SX)0.5 (See Section D4.1.3 of these tables for explanation) = Segment length for full lateral restraint (φMbx = φMsx) = 0.9 = 1.0

4. 5. 6.

αs W*L1 W*L2

= = =

1.0 8 φ Ms /L 2 φ Vv

m


DCTDHS/06 MARCH 2002

TABLE D8.1-1(2)(B)

SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS SIMPLY SUPPORTED BEAMS DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250

Designation d

b

W*S1 (kN)

Mass per m

Span of Beam (L) in metres

t

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

D8-13

kg/m

0.5

0.75

1.0

1.25

1.5

1.75

2.0

2.5

3.0

3.5

4.0

4.5

5.0

6.0

100 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.5 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

12.0 10.3 8.49 7.53 6.60 5.56 4.50 3.64

420 375 321 290 262 224 184 151

187 167 143 129 116 99.6 81.9 66.9

105 93.9 80.3 72.6 65.4 56.0 46.1 37.7

67.2 60.1 51.4 46.4 41.9 35.9 29.5 24.1

46.7 41.7 35.7 32.3 29.1 24.9 20.5 16.7

34.3 30.6 26.2 23.7 21.4 18.3 15.0 12.3

26.3 23.5 20.1 18.1 16.4 14.0 11.5 9.41

16.8 15.0 12.8 11.6 10.5 8.97 7.37 6.03

11.7 10.4 8.92 8.06 7.27 6.23 5.12 4.18

8.57 7.66 6.55 5.92 5.34 4.57 3.76 3.07

6.56 5.87 5.02 4.54 4.09 3.50 2.88 2.35

5.19 4.64 3.96 3.58 3.23 2.77 2.27 1.86

4.20 3.75 3.21 2.90 2.62 2.24 1.84 1.51

2.92 2.61 2.23 2.02 1.82 1.56 1.28 1.05

75 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

9.67 8.35 6.92 5.42 4.58 3.72 3.01

197 178 155 128 110 91.3 75.0

87.4 79.3 68.8 57.0 49.1 40.6 33.3

49.1 44.6 38.7 32.1 27.6 22.8 18.7

31.5 28.5 24.8 20.5 17.7 14.6 12.0

21.8 19.8 17.2 14.2 12.3 10.1 8.33

16.0 14.6 12.6 10.5 9.02 7.46 6.12

12.3 11.2 9.68 8.01 6.90 5.71 4.69

7.86 7.14 6.19 5.13 4.42 3.65 3.00

5.46 4.96 4.30 3.56 3.07 2.54 2.08

4.01 3.64 3.16 2.62 2.25 1.86 1.53

3.07 2.79 2.42 2.00 1.73 1.43 1.17

2.43 2.20 1.91 1.58 1.36 1.13 0.926

1.97 1.78 1.55 1.28 1.10 0.913 0.750

1.37 1.24 1.08 0.890 0.767 0.634 0.521

75 x 25 x 2.5 RHS 2.0 RHS 1.6 RHS

3.60 2.93 2.38

70.1 58.6 48.5

31.1 26.0 21.6

17.5 14.6 12.1

11.2 9.37 7.76

7.79 6.51 5.39

5.72 4.78 3.96

4.38 3.66 3.03

2.80 2.34 1.94

1.95 1.63 1.35

1.43 1.20 0.990

1.10 0.915 0.758

0.865 0.723 0.599

0.701 0.586 0.485

0.487 0.407 0.337

65 x 35 x 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS

5.35 4.25 3.60 2.93

80.7 69.1 60.1 50.1

35.8 30.7 26.7 22.3

20.2 17.3 15.0 12.5

12.9 11.1 9.61 8.02

8.96 7.67 6.68 5.57

6.58 5.64 4.90 4.09

5.04 4.32 3.76 3.13

3.23 2.76 2.40 2.01

2.24 1.92 1.67 1.39

1.65 1.41 1.23 1.02

1.26 1.08 0.939 0.783

0.996 0.853 0.742 0.619

0.807 0.691 0.601 0.501

0.560 0.480 0.417 0.348

50 x 25 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

3.07 2.62 2.15 1.75

27.5 24.3 20.6 17.2

12.2 10.8 9.16 7.67

6.86 6.07 5.15 4.31

4.39 3.89 3.30 2.76

3.05 2.70 2.29 1.92

2.24 1.98 1.68 1.41

1.72 1.52 1.29 1.08

1.10 0.972 0.824 0.690

0.763 0.675 0.572 0.479

0.560 0.496 0.420 0.352

0.429 0.380 0.322 0.269

0.339 0.300 0.254 0.213

0.275 0.243 0.206 0.172

0.191 0.169 0.143 0.120

50 x 20 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

2.83 2.42 1.99 1.63

23.4 20.8 17.8 14.9

10.4 9.26 7.90 6.64

5.84 5.21 4.44 3.74

3.74 3.33 2.84 2.39

2.60 2.31 1.97 1.66

1.91 1.70 1.45 1.22

1.46 1.30 1.11 0.934

0.935 0.833 0.711 0.598

0.649 0.579 0.494 0.415

0.477 0.425 0.363 0.305

0.365 0.325 0.278 0.234

0.289 0.257 0.219 0.184

0.234 0.208 0.178 0.149

0.162 0.145 0.123 0.104

mm mm mm

Note:

1.

Serviceabilty Load W *S1 = 384EI / [5(250L2)]


D8-14 TABLE D8.1-2(A)

STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS SIMPLY SUPPORTED BEAMS WITH FULL LATERAL RESTRAINT DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness bending about x-axis DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

W *L1 = Maximum Design Load based on Design Moment Capacity W *L2 = Maximum Design Load based on Design Shear Capacity Maximum Design Load W *L is LESSER of W *L1 and W *L2

Designation d

b

W*L1 (kN)

Mass per m

W*L2

FLR

Span of Beam (L) in metres

t

kg/m

0.5

0.75

1.0

1.25

1.5

1.75

2.0

2.5

3.0

3.5

4.0

4.5

5.0

6.0

kN

m

125 x 75 x 2.8 RHS 2.3 RHS

8.39 6.95

271 196

181 131

136 98.0

108 78.4

90.4 65.3

77.4 56.0

67.8 49.0

54.2 39.2

45.2 32.7

38.7 28.0

33.9 24.5

30.1 21.8

27.1 19.6

22.6 16.3

313 259

14.2 16.4

100 x 50 x 2.8 RHS 2.3 RHS

6.19 5.14

163 136

108 90.8

81.3 68.1

65.0 54.5

54.2 45.4

46.4 38.9

40.6 34.1

32.5 27.3

27.1 22.7

23.2 19.5

20.3 17.0

18.1 15.1

16.3 13.6

13.5 11.4

245 203

8.18 8.24

75 x 50 x 2.8 RHS 2.3 RHS

5.09 4.24

104 87.8

69.6 58.6

52.2 43.9

41.7 35.1

34.8 29.3

29.8 25.1

26.1 22.0

20.9 17.6

17.4 14.6

14.9 12.5

13.0 11.0

11.6 9.76

10.4 8.78

8.70 7.32

183 152

9.16 9.21

65 x 35 x 2.8 RHS 2.3 RHS

3.99 3.34

67.3 57.1

44.9 38.0

33.7 28.5

26.9 22.8

22.4 19.0

19.2 16.3

16.8 14.3

13.5 11.4

11.2 9.51

9.62 8.15

8.42 7.13

7.48 6.34

6.73 5.71

5.61 4.76

155 129

5.82 5.88

50 x 25 x 2.8 RHS 2.3 RHS

2.89 2.44

36.1 31.0

24.1 20.6

18.0 15.5

14.4 12.4

12.0 10.3

10.3 8.85

9.02 7.74

7.22 6.19

6.02 5.16

5.16 4.42

4.51 3.87

4.01 3.44

3.61 3.10

3.01 2.58

115 96.7

3.93 3.99

50 x 20 x 2.8 RHS 2.3 RHS

2.67 2.25

31.8 27.4

21.2 18.3

15.9 13.7

12.7 11.0

10.6 9.14

9.09 7.83

7.95 6.85

6.36 5.48

5.30 4.57

4.54 3.92

3.98 3.43

3.53 3.05

3.18 2.74

2.65 2.28

114 95.4

2.74 2.80

mm mm mm

Notes:

1. 2. 3. 4. 5. 6.

FLR FLR φ αm αs W *L1 W *L2

= = = = = = =

0.436 (π2 E Iy G J / M2SX)0.5 (See Section D4.1.3 of these tables for explanation) Segment length for full lateral restraint (φMbx = φMsx) 0.9 1.0 1.0 8 φ Ms/L 2 φ Vv

DCTDHS/06 MARCH 2002


DCTDHS/06 MARCH 2002

TABLE D8.1-2(B)

SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

SIMPLY SUPPORTED BEAMS DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness bending about x-axis W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250

Designation d

b

W*S1 (kN)

Mass per m

Span of Beam (L) in metres

t

mm mm mm

kg/m

0.5

0.75

1.0

1.25

1.5

1.75

2.0

2.5

3.0

3.5

4.0

4.5

5.0

6.0

125 x 75 x 2.8 RHS 2.3 RHS

8.39 6.95

562 471

250 209

140 118

89.9 75.3

62.4 52.3

45.8 38.4

35.1 29.4

22.5 18.8

15.6 13.1

11.5 9.61

8.77 7.35

6.93 5.81

5.62 4.71

3.90 3.27

100 x 50 x 2.8 RHS 2.3 RHS

6.19 5.14

247 208

110 92.7

61.7 52.1

39.5 33.4

27.4 23.2

20.2 17.0

15.4 13.0

75 x 50 x 2.8 RHS 2.3 RHS

5.09 4.24

121 103

53.9 45.8

30.3 25.7

19.4 16.5

13.5 11.4

65 x 35 x 2.8 RHS 2.3 RHS

3.99 3.34

65.6 56.2

29.2 25.0

16.4 14.1

10.5 9.00

50 x 25 x 2.8 RHS 2.3 RHS

2.89 2.44

26.3 22.9

11.7 10.2

6.56 5.72

50 x 20 x 2.8 RHS 2.3 RHS

2.67 2.25

22.4 19.7

5.60 4.92

Note:

1.

9.96 8.74

Serviceabilty Load W *S1 = 384EI / [5(250L2)]

9.88 8.34

6.86 5.79

5.04 4.25

3.86 3.26

3.05 2.57

2.47 2.08

1.71 1.45

9.90 8.41

7.58 6.44

4.85 4.12

3.37 2.86

2.48 2.10

1.89 1.61

1.50 1.27

1.21 1.03

0.842 0.715

7.29 6.25

5.35 4.59

4.10 3.51

2.62 2.25

1.82 1.56

1.34 1.15

1.02 0.878

0.810 0.694

0.656 0.562

0.455 0.390

4.20 3.66

2.92 2.54

2.14 1.87

1.64 1.43

1.05 0.915

0.729 0.636

0.536 0.467

0.410 0.358

0.324 0.283

0.263 0.229

0.182 0.159

3.59 3.15

2.49 2.19

1.83 1.61

1.40 1.23

0.897 0.787

0.623 0.546

0.458 0.401

0.350 0.307

0.277 0.243

0.224 0.197

0.156 0.137

D8-15


D8-16

TABLE D8.1-3(1)(A)

STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS SIMPLY SUPPORTED BEAMS WITH FULL LATERAL RESTRAINT DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis W *L1 = Maximum Design Load based on Design Moment Capacity W *L2 = Maximum Design Load based on Design Shear Capacity Maximum Design Load W *L is LESSER of W *L1 and W *L2

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

Designation d

b

W*L1 (kN)

Mass per m

W*L2 Span of Beam (L) in metres

t

mm mm mm

kg/m

100 x 100 x 6.0 SHS 16.7 5.0 SHS 14.2 4.0 SHS 11.6 3.0 SHS 8.96 2.5 SHS 7.53 2.0 SHS 6.07 90 x 90 x 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS

8.01 6.74 5.45 4.39

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

13.0

14.0

kN

238 206 168 120 91.0 65.1

119 103 84.1 60.1 45.5 32.5

79.4 68.6 56.1 40.1 30.3 21.7

59.6 51.4 42.1 30.1 22.7 16.3

47.7 41.2 33.6 24.1 18.2 13.0

39.7 34.3 28.0 20.0 15.2 10.8

34.0 29.4 24.0 17.2 13.0 9.30

29.8 25.7 21.0 15.0 11.4 8.13

26.5 22.9 18.7 13.4 10.1 7.23

23.8 20.6 16.8 12.0 9.10 6.51

21.7 18.7 15.3 10.9 8.27 5.92

19.9 17.1 14.0 10.0 7.58 5.42

18.3 15.8 12.9 9.25 7.00 5.01

17.0 14.7 12.0 8.59 6.50 4.65

507 432 353 271 228 184

95.4 77.9 55.5 39.9

47.7 38.9 27.8 19.9

31.8 26.0 18.5 13.3

23.8 19.5 13.9 9.97

19.1 15.6 11.1 7.98

15.9 13.0 9.25 6.65

13.6 11.1 7.93 5.70

11.9 9.74 6.94 4.98

10.6 8.65 6.17 4.43

9.54 7.79 5.55 3.99

8.67 7.08 5.05 3.63

7.95 6.49 4.63 3.32

7.34 5.99 4.27 3.07

6.81 5.56 3.96 2.85

242 204 165 133

89 x 89 x 6.0 SHS 9.06 5.0 SHS 12.5 3.5 SHS 14.6

116 159 183

57.8 79.5 91.6

38.5 53.0 61.1

28.9 39.8 45.8

23.1 31.8 36.6

19.3 26.5 30.5

16.5 22.7 26.2

14.5 19.9 22.9

12.8 17.7 20.4

11.6 15.9 18.3

10.5 14.5 16.7

9.64 13.3 15.3

8.89 12.2 14.1

8.26 11.4 13.1

275 379 443

75 x 75 x 6.0 SHS 12.0 5.0 SHS 10.3 4.0 SHS 8.49 3.5 SHS 7.53 3.0 SHS 6.60 2.5 SHS 5.56 2.0 SHS 4.50

124 109 91.5 82.0 71.9 55.2 42.3

62.2 54.5 45.8 41.0 36.0 27.6 21.2

41.5 36.3 30.5 27.3 24.0 18.4 14.1

31.1 27.3 22.9 20.5 18.0 13.8 10.6

24.9 21.8 18.3 16.4 14.4 11.0 8.47

20.7 18.2 15.3 13.7 12.0 9.20 7.06

17.8 15.6 13.1 11.7 10.3 7.89 6.05

15.6 13.6 11.4 10.2 8.99 6.90 5.29

13.8 12.1 10.2 9.11 7.99 6.13 4.70

12.4 10.9 9.15 8.20 7.19 5.52 4.23

11.3 9.91 8.32 7.45 6.54 5.02 3.85

10.4 9.08 7.63 6.83 5.99 4.60 3.53

9.57 8.39 7.04 6.31 5.53 4.25 3.26

8.89 7.79 6.54 5.86 5.14 3.94 3.02

363 312 257 228 199 168 136

Notes:

DCTDHS/06 MARCH 2002

1. 2. 3. 4. 5.

φ αm αs W *L1 W *L2

= = = = =

0.9 1.0 1.0 8 φ Ms/L 2 φ Vv


DCTDHS/06 MARCH 2002

TABLE D8.1-3(1)(B)

SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS SIMPLY SUPPORTED BEAMS DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250

Designation d

b

W*S1 (kN)

Mass per m

Span of Beam (L) in metres

t

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

187 163 137 109 92.5 75.6

46.6 40.8 34.2 27.2 23.1 18.9

20.7 18.1 15.2 12.1 10.3 8.40

11.7 10.2 8.56 6.80 5.78 4.72

7.46 6.53 5.48 4.35 3.70 3.02

5.18 4.53 3.80 3.02 2.57 2.10

3.81 3.33 2.79 2.22 1.89 1.54

2.92 2.55 2.14 1.70 1.45 1.18

2.30 2.02 1.69 1.34 1.14 0.933

1.87 1.63 1.37 1.09 0.925 0.756

1.54 1.35 1.13 0.899 0.765 0.625

8.01 6.74 5.45 4.39

78.2 66.7 54.6 44.5

19.6 16.7 13.6 11.1

8.69 7.41 6.07 4.94

4.89 4.17 3.41 2.78

3.13 2.67 2.18 1.78

2.17 1.85 1.52 1.24

1.60 1.36 1.11 0.908

1.22 1.04 0.853 0.695

0.965 0.823 0.674 0.549

0.782 0.667 0.546 0.445

89 x 89 x 6.0 SHS 9.06 5.0 SHS 12.5 3.5 SHS 14.6

84.4 111 126

21.1 27.8 31.6

9.38 12.4 14.0

5.28 6.95 7.89

3.38 4.45 5.05

2.35 3.09 3.51

1.72 2.27 2.58

1.32 1.74 1.97

1.04 1.37 1.56

75 x 75 x 6.0 SHS 12.0 5.0 SHS 10.3 4.0 SHS 8.49 3.5 SHS 7.53 3.0 SHS 6.60 2.5 SHS 5.56 2.0 SHS 4.50

71.1 63.5 54.2 49.0 44.0 37.7 31.0

17.8 15.9 13.6 12.2 11.0 9.43 7.76

7.90 7.05 6.02 5.44 4.89 4.19 3.45

4.45 3.97 3.39 3.06 2.75 2.36 1.94

2.85 2.54 2.17 1.96 1.76 1.51 1.24

1.98 1.76 1.51 1.36 1.22 1.05 0.862

1.45 1.30 1.11 1.00 0.898 0.770 0.633

1.11 0.992 0.847 0.765 0.688 0.589 0.485

0.878 0.783 0.669 0.605 0.543 0.466 0.383

mm

mm mm

kg/m

100 x 100 x 6.0 SHS 16.7 5.0 SHS 14.2 4.0 SHS 11.6 3.0 SHS 8.96 2.5 SHS 7.53 2.0 SHS 6.07 90 x 90 x 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS

D8-17

Note:

1.

1.0

Serviceabilty Load W *S1 = 384EI / [5(250L2)]

12.0

13.0

14.0

1.30 1.13 0.951 0.755 0.643 0.525

1.10 0.966 0.810 0.644 0.548 0.447

0.952 0.833 0.699 0.555 0.472 0.386

0.646 0.551 0.451 0.368

0.543 0.463 0.379 0.309

0.463 0.395 0.323 0.263

0.399 0.340 0.279 0.227

0.844 1.11 1.26

0.698 0.920 1.04

0.586 0.773 0.877

0.500 0.658 0.747

0.431 0.568 0.644

0.711 0.635 0.542 0.490 0.440 0.377 0.310

0.588 0.524 0.448 0.405 0.364 0.312 0.256

0.494 0.441 0.376 0.340 0.306 0.262 0.215

0.421 0.375 0.321 0.290 0.260 0.223 0.184

0.363 0.324 0.277 0.250 0.225 0.192 0.158


TABLE D8.1-3(2)(A)

D8-18

STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS SIMPLY SUPPORTED BEAMS WITH FULL LATERAL RESTRAINT DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis = Maximum Design Load based on Design Moment Capacity

W *L1 W *L2 = Maximum Design Load based on Design Shear Capacity Maximum Design Load W *L is LESSER of W *L1 and W *L2

Designation d

b

W*L1 (kN)

Mass per m

W*L2 Span of Beam (L) in metres

t

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002

mm mm mm

kg/m

0.5

0.75

1.0

1.25

1.5

1.75

2.0

2.5

3.0

3.5

4.0

75 x 75 x 6.0 SHS 5.0 SHS 4.0 SHS 3.5 SHS 3.0 SHS 2.5 SHS 2.0 SHS 65 x 65 x 6.0 SHS 5.0 SHS 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 50 x 50 x 5.0 SHS 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 40 x 40 x 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 35 x 35 x 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 30 x 30 x 2.0 SHS 1.6 SHS 25 x 25 x 2.5 SHS 2.0 SHS 1.6 SHS 20 x 20 x 1.6 SHS

12.0 10.3 8.49 7.53 6.60 5.56 4.50 10.1 8.75 7.23 5.66 4.78 3.88 3.13 6.39 5.35 4.25 3.60 2.93 2.38 4.09 3.30 2.82 2.31 1.88 2.83 2.42 1.99 1.63 1.68 1.38 1.64 1.36 1.12 0.873

249 218 183 164 144 110 78.6 178 158 133 107 88.6 63.5 45.4 85.3 73.8 60.8 52.3 42.6 30.7 43.6 37.1 32.2 26.8 21.8 27.4 23.9 20.1 16.6 14.3 11.9 11.1 9.50 8.01 4.86

166 145 122 109 95.9 73.6 52.4 119 105 89.0 71.6 59.1 42.4 30.3 56.8 49.2 40.6 34.9 28.4 20.5 29.1 24.7 21.5 17.9 14.5 18.3 16.0 13.4 11.1 9.53 7.95 7.40 6.33 5.34 3.24

124 109 91.5 82.0 71.9 55.2 39.3 89.1 78.8 66.7 53.7 44.3 31.8 22.7 42.6 36.9 30.4 26.2 21.3 15.4 21.8 18.5 16.1 13.4 10.9 13.7 12.0 10.0 8.31 7.15 5.96 5.55 4.75 4.00 2.43

99.6 87.2 73.2 65.6 57.5 44.2 31.4 71.3 63.1 53.4 43.0 35.5 25.4 18.2 34.1 29.5 24.3 20.9 17.0 12.3 17.5 14.8 12.9 10.7 8.73 11.0 9.58 8.02 6.65 5.72 4.77 4.44 3.80 3.20 1.95

83.0 72.7 61.0 54.7 47.9 36.8 26.2 59.4 52.5 44.5 35.8 29.5 21.2 15.1 28.4 24.6 20.3 17.4 14.2 10.2 14.5 12.4 10.7 8.93 7.27 9.13 7.98 6.68 5.54 4.76 3.98 3.70 3.17 2.67 1.62

71.1 62.3 52.3 46.8 41.1 31.5 22.5 50.9 45.0 38.1 30.7 25.3 18.2 13.0 24.4 21.1 17.4 14.9 12.2 8.78 12.5 10.6 9.20 7.65 6.23 7.83 6.84 5.73 4.75 4.08 3.41 3.17 2.71 2.29 1.39

62.2 54.5 45.8 41.0 36.0 27.6 19.7 44.6 39.4 33.4 26.8 22.2 15.9 11.4 21.3 18.4 15.2 13.1 10.7 7.68 10.9 9.27 8.05 6.70 5.45 6.85 5.99 5.01 4.16 3.57 2.98 2.77 2.38 2.00 1.22

49.8 43.6 36.6 32.8 28.8 22.1 15.7 35.7 31.5 26.7 21.5 17.7 12.7 9.08 17.1 14.8 12.2 10.5 8.52 6.14 8.73 7.42 6.44 5.36 4.36 5.48 4.79 4.01 3.33 2.86 2.39 2.22 1.90 1.60 0.973

41.5 36.3 30.5 27.3 24.0 18.4 13.1 29.7 26.3 22.2 17.9 14.8 10.6 7.57 14.2 12.3 10.1 8.72 7.10 5.12 7.27 6.18 5.36 4.46 3.64 4.57 3.99 3.34 2.77 2.38 1.99 1.85 1.58 1.33 0.811

35.6 31.1 26.1 23.4 20.5 15.8 11.2 25.5 22.5 19.1 15.3 12.7 9.08 6.49 12.2 10.5 8.69 7.47 6.09 4.39 6.24 5.30 4.60 3.83 3.12 3.91 3.42 2.86 2.38 2.04 1.70 1.59 1.36 1.14 0.695

31.1 27.3 22.9 20.5 18.0 13.8 9.83 22.3 19.7 16.7 13.4 11.1 7.94 5.68 10.7 9.22 7.60 6.54 5.33 3.84 5.46 4.64 4.02 3.35 2.73 3.43 2.99 2.51 2.08 1.79 1.49 1.39 1.19 1.00 0.608

Notes:

1.

φ

=

0.9

2.

αm

=

1.0

3.

αs

=

1.0

4.

W *L1

=

8 φ Ms/L

5. W *L2 =

2 φ Vv

4.5 27.7 24.2 20.3 18.2 16.0 12.3 8.74 19.8 17.5 14.8 11.9 9.85 7.06 5.05 9.47 8.19 6.76 5.81 4.73 3.41 4.85 4.12 3.58 2.98 2.42 3.04 2.66 2.23 1.85 1.59 1.33 1.23 1.06 0.890 0.540

5.0 24.9 21.8 18.3 16.4 14.4 11.0 7.86 17.8 15.8 13.3 10.7 8.86 6.35 4.54 8.53 7.38 6.08 5.23 4.26 3.07 4.36 3.71 3.22 2.68 2.18 2.74 2.39 2.01 1.66 1.43 1.19 1.11 0.950 0.801 0.486

6.0 20.7 18.2 15.3 13.7 12.0 9.20 6.55 14.9 13.1 11.1 8.95 7.39 5.29 3.78 7.10 6.15 5.07 4.36 3.55 2.56 3.64 3.09 2.68 2.23 1.82 2.28 2.00 1.67 1.39 1.19 0.994 0.925 0.792 0.667 0.405

kN 363 312 257 228 199 168 136 305 264 219 170 144 117 94.9 192 161 127 108 88.3 71.9 123 97.9 84.0 69.1 56.5 83.5 72.0 59.5 48.8 49.9 41.2 48.0 40.3 33.5 25.8


TABLE D8.1-3(2)(B) DCTDHS/06 MARCH 2002

SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS SIMPLY SUPPORTED BEAMS DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250

Designation d

b

W*S1 (kN)

Mass per m

Span of Beam (L) in metres

t

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

D8-19

mm mm mm

kg/m

0.5

75 x 75 x 6.0 SHS 5.0 SHS 4.0 SHS 3.5 SHS 3.0 SHS 2.5 SHS 2.0 SHS 65 x 65 x 6.0 SHS 5.0 SHS 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 50 x 50 x 5.0 SHS 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 40 x 40 x 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 35 x 35 x 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 30 x 30 x 2.0 SHS 1.6 SHS 25 x 25 x 2.5 SHS 2.0 SHS 1.6 SHS 20 x 20 x 1.6 SHS

12.0 10.3 8.49 7.53 6.60 5.56 4.50 10.1 8.75 7.23 5.66 4.78 3.88 3.13 6.39 5.35 4.25 3.60 2.93 2.38 4.09 3.30 2.82 2.31 1.88 2.83 2.42 1.99 1.63 1.68 1.38 1.64 1.36 1.12 0.873

285 126 254 113 217 96.4 196 87.1 176 78.2 151 67.0 124 55.1 174 77.1 157 69.7 136 60.3 112 49.6 96.1 42.7 79.4 35.3 65.2 29.0 63.1 28.1 56.2 25.0 47.8 21.3 41.6 18.5 34.8 15.5 28.8 12.8 25.9 11.5 22.9 10.2 20.2 8.97 17.1 7.58 14.2 6.33 14.6 6.50 13.0 5.78 11.1 4.92 9.31 4.14 6.69 2.97 5.67 2.52 4.15 1.85 3.65 1.62 3.13 1.39 1.49 0.664

Note:

1.

0.75

1.0

1.25

1.5

1.75

2.0

71.1 63.5 54.2 49.0 44.0 37.7 31.0 43.4 39.2 33.9 27.9 24.0 19.9 16.3 15.8 14.1 12.0 10.4 8.69 7.19 6.47 5.73 5.05 4.26 3.56 3.65 3.25 2.77 2.33 1.67 1.42 1.04 0.911 0.783 0.373

45.5 40.6 34.7 31.3 28.2 24.1 19.9 27.8 25.1 21.7 17.9 15.4 12.7 10.4 10.1 8.99 7.65 6.66 5.56 4.60 4.14 3.67 3.23 2.73 2.28 2.34 2.08 1.77 1.49 1.07 0.908 0.664 0.583 0.501 0.239

31.6 28.2 24.1 21.8 19.6 16.8 13.8 19.3 17.4 15.1 12.4 10.7 8.82 7.24 7.02 6.25 5.32 4.63 3.86 3.20 2.87 2.55 2.24 1.90 1.58 1.62 1.44 1.23 1.03 0.743 0.630 0.461 0.405 0.348 0.166

23.2 20.7 17.7 16.0 14.4 12.3 10.1 14.2 12.8 11.1 9.11 7.85 6.48 5.32 5.15 4.59 3.91 3.40 2.84 2.35 2.11 1.87 1.65 1.39 1.16 1.19 1.06 0.904 0.760 0.546 0.463 0.339 0.298 0.256 0.122

17.8 11.4 15.9 10.2 13.6 8.67 12.2 7.84 11.0 7.04 9.43 6.03 7.76 4.96 10.8 6.94 9.80 6.27 8.48 5.42 6.98 4.46 6.01 3.84 4.96 3.18 4.07 2.61 3.95 2.53 3.51 2.25 2.99 1.91 2.60 1.67 2.17 1.39 1.80 1.15 1.62 1.03 1.43 0.917 1.26 0.808 1.07 0.682 0.890 0.570 0.914 0.585 0.812 0.520 0.692 0.443 0.582 0.372 0.418 0.268 0.355 0.227 0.260 0.166 0.228 0.146 0.196 0.125 0.0933 0.0597

Serviceabilty Load W *S1 = 384EI / [5(250L2)]

2.5

3.0

3.5

4.0

4.5

5.0

6.0

7.90 7.05 6.02 5.44 4.89 4.19 3.45 4.82 4.36 3.77 3.10 2.67 2.21 1.81 1.75 1.56 1.33 1.16 0.966 0.799 0.718 0.636 0.561 0.474 0.396 0.406 0.361 0.308 0.259 0.186 0.158 0.115 0.101 0.0870 0.0415

5.81 5.18 4.43 4.00 3.59 3.08 2.53 3.54 3.20 2.77 2.28 1.96 1.62 1.33 1.29 1.15 0.976 0.850 0.710 0.587 0.528 0.468 0.412 0.348 0.291 0.298 0.265 0.226 0.190 0.137 0.116 0.0848 0.0744 0.0640 0.0305

4.45 3.97 3.39 3.06 2.75 2.36 1.94 2.71 2.45 2.12 1.74 1.50 1.24 1.02 0.987 0.878 0.748 0.651 0.543 0.449 0.404 0.358 0.315 0.267 0.223 0.228 0.203 0.173 0.145 0.105 0.0887 0.0649 0.0570 0.0490 0.0233

3.51 3.13 2.68 2.42 2.17 1.86 1.53 2.14 1.94 1.67 1.38 1.19 0.980 0.805 0.780 0.694 0.591 0.514 0.429 0.355 0.319 0.283 0.249 0.211 0.176 0.180 0.160 0.137 0.115 0.0826 0.0701 0.0513 0.0450 0.0387 0.0184

2.85 2.54 2.17 1.96 1.76 1.51 1.24 1.74 1.57 1.36 1.12 0.961 0.794 0.652 0.631 0.562 0.478 0.416 0.348 0.288 0.259 0.229 0.202 0.171 0.142 0.146 0.130 0.111 0.0931 0.0669 0.0567 0.0415 0.0365 0.0313 0.0149

1.98 1.76 1.51 1.36 1.22 1.05 0.862 1.21 1.09 0.942 0.775 0.667 0.551 0.453 0.438 0.390 0.332 0.289 0.241 0.200 0.180 0.159 0.140 0.118 0.0989 0.102 0.0903 0.0769 0.0647 0.0465 0.0394 0.0288 0.0253 0.0218 0.0104


D8-20 TABLE D8.1-4(A)

STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

SIMPLY SUPPORTED BEAMS WITH FULL LATERAL RESTRAINT DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness bending about x-axis W *L1 = Maximum Design Load based on Design Moment Capacity W *L2 = Maximum Design Load based on Design Shear Capacity Maximum Design Load W *L is LESSER of W *L1 and W *L2

Designation d

b

W*L1 (kN)

Mass per m

W*L2 Span of Beam (L) in metres

t

mm mm mm

kg/m

0.5

0.75

1.0

1.25

1.5

1.75

2.0

2.5

3.0

3.5

4.0

4.5

5.0

6.0

kN

100 x 100 x 2.8 SHS 2.3 SHS

8.39 6.95

201 150

134 99.7

100 74.8

80.2 59.8

66.9 49.8

57.3 42.7

50.1 37.4

40.1 29.9

33.4 24.9

28.7 21.4

25.1 18.7

22.3 16.6

20.1 15.0

16.7 12.5

254 211

75 x 75 x 2.8 SHS 2.3 SHS

6.19 5.14

131 97.1

87.0 64.7

65.3 48.6

52.2 38.8

43.5 32.4

37.3 27.7

32.6 24.3

26.1 19.4

21.8 16.2

18.6 13.9

16.3 12.1

14.5 10.8

13.1 9.71

10.9 8.09

187 155

65 x 65 x 2.3 SHS

4.42

78.6

52.4

39.3

31.4

26.2

22.5

19.6

15.7

13.1

11.2

9.82

8.73

7.86

6.55

133

50 x 50 x 2.8 SHS 2.3 SHS

3.99 3.34

57.5 48.7

38.3 32.5

28.8 24.4

23.0 19.5

19.2 16.2

16.4 13.9

14.4 12.2

11.5 9.75

9.58 8.12

8.21 6.96

7.19 6.09

6.39 5.42

5.75 4.87

4.79 4.06

119 100

40 x 40 x 2.8 SHS 2.3 SHS

3.11 2.62

35.2 30.1

23.5 20.1

17.6 15.0

14.1 12.0

11.7 10.0

10.1 8.60

8.80 7.52

7.04 6.02

5.86 5.01

5.03 4.30

4.40 3.76

3.91 3.34

3.52 3.01

2.93 2.51

92.5 78.2

35 x 35 x 2.8 SHS 2.3 SHS

2.67 2.25

26.1 22.4

17.4 15.0

13.0 11.2

10.4 8.98

7.45 6.41

6.52 5.61

5.21 4.49

4.34 3.74

3.72 3.21

3.26 2.80

2.90 2.49

2.61 2.24

2.17 1.87

79.0 67.1

Notes:

1. 2. 3. 4. 5.

φ αm αs W *L1 W *L2

= = = = =

0.9 1.0 1.0 8 φ Ms/L 2 φ Vv

8.69 7.48

DCTDHS/06 MARCH 2002


DCTDHS/06 MARCH 2002

TABLE D8.1-4(B)

SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS SIMPLY SUPPORTED BEAMS DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness bending about x-axis

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250

Designation d

b

W*S1 (kN)

Mass per m

Span of Beam (L) in metres

t

mm mm mm

kg/m

0.5

0.75

1.0

100 x 100 x 2.8 SHS 2.3 SHS

8.39 6.95

409 343

182 153

75 x 75 x 2.8 SHS 2.3 SHS

6.19 5.14

166 140

65 x 65 x 2.3 SHS

4.42

50 x 50 x 2.8 SHS 2.3 SHS

3.99 3.34

40 x 40 x 2.8 SHS 2.3 SHS

3.11 2.62

21.9 19.0

35 x 35 x 2.8 SHS 2.3 SHS

2.67 2.25

14.0 12.3

Note:

1.

1.25

1.5

1.75

2.0

2.5

3.0

3.5

4.0

4.5

5.0

6.0

102 85.8

65.5 54.9

45.5 38.2

33.4 28.0

25.6 21.5

16.4 13.7

11.4 9.54

8.36 7.01

6.40 5.37

5.06 4.24

4.09 3.43

2.84 2.38

73.8 62.4

41.5 35.1

26.6 22.5

18.5 15.6

13.6 11.5

10.4 8.77

6.65 5.61

4.61 3.90

3.39 2.86

2.60 2.19

2.05 1.73

1.66 1.40

1.15 0.975

89.6

39.8

22.4

14.3

9.95

7.31

5.60

3.58

2.49

1.83

1.40

1.11

0.896

0.622

45.4 39.0

20.2 17.3

11.4 9.74

7.27 6.24

5.05 4.33

3.71 3.18

2.84 2.44

1.82 1.56

1.26 1.08

0.927 0.795

0.710 0.609

0.561 0.481

0.454 0.390

0.316 0.271

9.72 8.44

5.47 4.75

3.50 3.04

2.43 2.11

1.79 1.55

1.37 1.19

0.875 0.759

0.608 0.527

0.446 0.387

0.342 0.297

0.270 0.234

0.219 0.190

0.152 0.132

6.22 5.45

3.50 3.07

2.24 1.96

1.56 1.36

1.14 1.00

0.875 0.767

0.560 0.491

0.389 0.341

0.286 0.250

0.219 0.192

0.173 0.151

0.140 0.123

0.0973 0.0852

Serviceabilty Load W *S1 = 384EI / [5(250L2)]

D8-21


D8-22

TABLE D8.2-1(1)(A)

STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS CONTINUOUS BEAMS WITH FULL LATERAL RESTRAINT DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis W *L1 = Maximum Design Load based on Design Moment Capacity W *L2 = Maximum Design Load based on Design Shear Capacity Maximum Design Load W *L is LESSER of W *L1 and W *L2

Designation DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

d

b

W*L1 (kN)

Mass per m

W*L2

FLR

Span of Beam (L) in metres

t

mm mm mm

kg/m

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

13.0

14.0

kN

m

150 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS

16.7 14.2 11.6 8.96 7.53 6.07

295 256 212 167 141 103

148 128 106 83.3 70.5 51.3

98.4 85.2 70.7 55.5 47.0 34.2

73.8 63.9 53.0 41.7 35.3 25.6

59.1 51.1 42.4 33.3 28.2 20.5

49.2 42.6 35.3 27.8 23.5 17.1

42.2 36.5 30.3 23.8 20.1 14.6

36.9 31.9 26.5 20.8 17.6 12.8

32.8 28.4 23.6 18.5 15.7 11.4

29.5 25.6 21.2 16.7 14.1 10.3

26.8 23.2 19.3 15.1 12.8 9.32

24.6 21.3 17.7 13.9 11.8 8.54

22.7 19.7 16.3 12.8 10.8 7.89

21.1 18.3 15.1 11.9 10.1 7.32

599 506 411 312 262 211

26.4 26.9 27.4 27.6 27.9 31.4

125 x 75 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS

16.7 14.2 11.6 8.96 7.53 6.07

273 236 195 151 113 80.4

136 118 97.6 75.4 56.3 40.2

91.0 78.6 65.1 50.3 37.5 26.8

68.2 58.9 48.8 37.7 28.1 20.1

54.6 47.1 39.1 30.2 22.5 16.1

45.5 39.3 32.5 25.1 18.8 13.4

39.0 33.7 27.9 21.5 16.1 11.5

34.1 29.5 24.4 18.8 14.1 10.0

30.3 26.2 21.7 16.8 12.5 8.93

27.3 23.6 19.5 15.1 11.3 8.04

24.8 21.4 17.8 13.7 10.2 7.31

22.7 19.6 16.3 12.6 9.38 6.70

21.0 18.1 15.0 11.6 8.66 6.18

19.5 16.8 13.9 10.8 8.04 5.74

507 430 350 267 224 181

54.7 55.1 55.5 56.2 64.0 73.0

100 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.5 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

12.0 10.3 8.49 7.53 6.60 5.56 4.50 3.64

147 129 108 97.0 86.4 73.5 59.0 40.4

73.5 64.4 54.1 48.5 43.2 36.7 29.5 20.2

49.0 42.9 36.1 32.3 28.8 24.5 19.7 13.5

36.7 32.2 27.1 24.2 21.6 18.4 14.7 10.1

29.4 25.8 21.6 19.4 17.3 14.7 11.8 8.08

24.5 21.5 18.0 16.2 14.4 12.2 9.83 6.73

21.0 18.4 15.5 13.9 12.3 10.5 8.43 5.77

18.4 16.1 13.5 12.1 10.8 9.18 7.37 5.05

16.3 14.3 12.0 10.8 9.60 8.16 6.55 4.49

14.7 12.9 10.8 9.70 8.64 7.35 5.90 4.04

13.4 11.7 9.84 8.82 7.85 6.68 5.36 3.67

12.2 10.7 9.02 8.08 7.20 6.12 4.92 3.37

11.3 9.91 8.33 7.46 6.64 5.65 4.54 3.11

10.5 9.20 7.73 6.93 6.17 5.25 4.21 2.89

391 333 273 241 209 176 142 115

32.8 33.3 33.8 34.0 33.9 34.1 34.9 41.6

Notes:

1.

DCTDHS/06 MARCH 2002

2. 3. 4. 5. 6.

FLR FLR φ αm αs W *L1 W *L2

= = = = = = =

1.809 (π2 E Iy G J / M2SX)0.5 (See Section D4.1.3 of these tables for explanation) Segment length for full lateral restraint (φMbx = φMsx) 0.9 1.0 1.0 8 φ Ms/L 1.6 φ Vv


DCTDHS/06 MARCH 2002

TABLE D8.2-1(1)(B)

SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS CONTINUOUS BEAMS DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250

Designation d

b

W*S1 (kN)

Mass per m

Span of Beam (L) in metres

t

mm mm mm

kg/m

1.0

2.0

3.0

4.0

5.0

6.0

150 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS

16.7 14.2 11.6 8.96 7.53 6.07

749 657 553 442 376 307

187 164 138 110 94.0 76.8

83.2 73.0 61.4 49.1 41.8 34.1

46.8 41.1 34.6 27.6 23.5 19.2

30.0 26.3 22.1 17.7 15.0 12.3

125 x 75 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS

16.7 14.2 11.6 8.96 7.53 6.07

616 539 452 359 306 249

154 135 113 89.9 76.4 62.4

68.4 59.9 50.2 39.9 34.0 27.7

38.5 33.7 28.2 22.5 19.1 15.6

100 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.5 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

12.0 10.3 8.49 7.53 6.60 5.56 4.50 3.64

253 226 193 175 158 135 111 90.7

63.3 56.5 48.4 43.7 39.4 33.7 27.7 22.7

28.1 25.1 21.5 19.4 17.5 15.0 12.3 10.1

15.8 14.1 12.1 10.9 9.85 8.44 6.94 5.67

D8-23

Note:

1.

Serviceabilty Load W *S1 = 185El/(250L2)

7.0

8.0

9.0

10.0

11.0

12.0

13.0

14.0

20.8 18.3 15.4 12.3 10.4 8.53

15.3 13.4 11.3 9.02 7.67 6.27

11.7 10.3 8.64 6.90 5.88 4.80

9.24 8.11 6.83 5.45 4.64 3.79

7.49 6.57 5.53 4.42 3.76 3.07

6.19 5.43 4.57 3.65 3.11 2.54

5.20 4.56 3.84 3.07 2.61 2.13

4.43 3.89 3.27 2.61 2.23 1.82

3.82 3.35 2.82 2.25 1.92 1.57

24.6 21.6 18.1 14.4 12.2 9.98

17.1 15.0 12.6 9.98 8.49 6.93

12.6 11.0 9.22 7.33 6.24 5.09

9.62 8.42 7.06 5.62 4.78 3.90

7.60 6.65 5.58 4.44 3.77 3.08

6.16 5.39 4.52 3.59 3.06 2.49

5.09 4.45 3.74 2.97 2.53 2.06

4.28 3.74 3.14 2.50 2.12 1.73

3.64 3.19 2.67 2.13 1.81 1.48

3.14 2.75 2.31 1.83 1.56 1.27

10.1 9.04 7.74 6.99 6.30 5.40 4.44 3.63

7.03 6.28 5.37 4.86 4.38 3.75 3.08 2.52

5.16 4.61 3.95 3.57 3.22 2.75 2.26 1.85

3.95 3.53 3.02 2.73 2.46 2.11 1.73 1.42

3.12 2.79 2.39 2.16 1.95 1.67 1.37 1.12

2.53 2.26 1.93 1.75 1.58 1.35 1.11 0.907

2.09 1.87 1.60 1.44 1.30 1.12 0.917 0.750

1.76 1.57 1.34 1.21 1.09 0.937 0.771 0.630

1.50 1.34 1.14 1.03 0.932 0.799 0.657 0.537

1.29 1.15 0.987 0.892 0.804 0.689 0.566 0.463


D8-24

TABLE D8.2-1(2)(A)

STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS CONTINUOUS BEAMS WITH FULL LATERAL RESTRAINT DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness = Maximum Design Load based on Design Moment Capacity bending about x-axis = Maximum Design Load based on Design Shear Capacity

W *L1 W *L2 Maximum Design Load W *L is LESSER of W *L1 and W *L2

Designation d

b

W*L1 (kN)

Mass per m

W*L2

FLR

Span of Beam (L) in metres

t

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

mm mm mm

kg/m

0.5

0.75

1.0

1.25

1.5

1.75

2.0

2.5

3.0

3.5

4.0

4.5

5.0

6.0

kN

m

DCTDHS/06 MARCH 2002

100 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.5 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

12.0 10.3 8.49 7.53 6.60 5.56 4.50 3.64

294 258 216 194 173 147 118 80.8

196 172 144 129 115 97.9 78.6 53.6

147 129 108 97.0 86.4 73.5 59.0 40.4

118 103 86.6 77.6 69.1 58.8 47.2 32.3

97.9 85.9 72.2 64.7 57.6 49.0 39.3 26.9

83.9 73.6 61.9 55.4 49.4 42.0 33.7 23.1

73.5 64.4 54.1 48.5 43.2 36.7 29.5 20.2

58.8 51.5 43.3 38.8 34.5 29.4 23.6 16.2

49.0 42.9 36.1 32.3 28.8 24.5 19.7 13.5

42.0 36.8 30.9 27.7 24.7 21.0 16.9 11.5

36.7 32.2 27.1 24.2 21.6 18.4 14.7 10.1

32.6 28.6 24.1 21.6 19.2 16.3 13.1 8.96

29.4 25.8 21.6 19.4 17.3 14.7 11.8 8.08

24.5 21.5 18.0 16.2 14.4 12.2 9.83 6.73

391 333 273 241 209 176 142 115

32.8 33.3 33.8 34.0 33.9 34.1 34.9 41.6

75 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

9.67 8.35 6.92 5.42 4.58 3.72 3.01

182 161 137 111 94.6 76.4 53.5

121 108 91.3 73.8 63.0 50.9 35.7

90.9 80.7 68.5 55.4 47.3 38.2 26.8

72.7 64.5 54.8 44.3 37.8 30.5 21.4

60.6 53.8 45.7 36.9 31.5 25.5 17.8

52.0 46.1 39.1 31.6 27.0 21.8 15.3

45.5 40.3 34.3 27.7 23.6 19.1 13.4

36.4 32.3 27.4 22.1 18.9 15.3 10.7

30.3 26.9 22.8 18.5 15.8 12.7 8.92

26.0 23.0 19.6 15.8 13.5 10.9 7.65

22.7 20.2 17.1 13.8 11.8 9.54 6.69

20.2 17.9 15.2 12.3 10.5 8.48 5.95

18.2 16.1 13.7 11.1 9.46 7.64 5.35

15.2 13.4 11.4 9.23 7.88 6.36 4.46

284 245 202 156 132 107 86.4

37.1 37.5 38.0 37.9 38.1 38.9 45.4

75 x 25 x 2.5 RHS 2.0 RHS 1.6 RHS

3.60 2.93 2.38

65.2 53.8 44.2

43.5 35.9 29.4

32.6 26.9 22.1

26.1 21.5 17.7

21.7 17.9 14.7

18.6 15.4 12.6

16.3 13.5 11.0

13.0 10.8 8.83

10.9 8.97 7.36

9.31 7.69 6.31

8.15 6.73 5.52

7.24 5.98 4.91

6.52 5.38 4.42

5.43 4.49 3.68

127 103 83.1

13.3 13.5 13.8

65 x 35 x 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS

5.35 4.25 3.60 2.93

86.0 71.2 61.3 50.5

57.4 47.5 40.8 33.7

43.0 35.6 30.6 25.3

34.4 28.5 24.5 20.2

28.7 23.7 20.4 16.8

24.6 20.3 17.5 14.4

21.5 17.8 15.3 12.6

17.2 14.2 12.3 10.1

14.3 11.9 10.2 8.42

12.3 10.2 8.75 7.22

10.8 8.90 7.66 6.32

9.56 7.91 6.81 5.62

8.60 7.12 6.13 5.05

7.17 5.94 5.10 4.21

170 132 112 90.7

23.9 24.1 24.3 24.5

50 x 25 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

3.07 2.62 2.15 1.75

38.0 33.1 27.6 22.8

25.3 22.1 18.4 15.2

19.0 16.5 13.8 11.4

15.2 13.2 11.0 9.14

12.7 11.0 9.21 7.61

10.9 9.45 7.89 6.53

9.50 8.27 6.91 5.71

7.60 6.62 5.52 4.57

6.33 5.51 4.60 3.81

5.43 4.73 3.95 3.26

4.75 4.14 3.45 2.86

4.22 3.68 3.07 2.54

3.80 3.31 2.76 2.28

3.17 2.76 2.30 1.90

97.8 83.3 68.1 55.5

16.2 16.4 16.7 16.9

50 x 20 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

2.83 2.42 1.99 1.63

33.4 29.2 24.5 20.3

22.3 19.5 16.3 13.6

16.7 14.6 12.3 10.2

13.4 11.7 9.80 8.13

11.1 9.74 8.17 6.78

9.55 8.35 7.00 5.81

8.36 7.31 6.13 5.08

6.68 5.85 4.90 4.07

5.57 4.87 4.08 3.39

4.77 4.18 3.50 2.91

4.18 3.65 3.06 2.54

3.71 3.25 2.72 2.26

3.34 2.92 2.45 2.03

2.79 2.44 2.04 1.69

96.5 82.2 67.3 54.7

11.2 11.5 11.8 12.0

Notes:

1. 2. 3.

FLR FLR φ αm

= 1.809 (π2 E I y G J / M2SX)0.5 (See Section D4.1.3 of these tables for explanation) = Segment length for full lateral restraint (φMbx = φMsx) = 0.9 = 1.0

4. 5. 6.

αs W *L1 W *L2

= = =

1.0 8 φ Ms /L 1.6 φ Vv


DCTDHS/06 MARCH 2002

TABLE D8.2-1(2)(B)

SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS CONTINUOUS BEAMS DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250

Designation d

b

W*S1 (kN)

Mass per m

Span of Beam (L) in metres

t

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

kg/m

0.5

D8-25

0.75

1.0

1.25

1.5

1.75

2.0

2.5

3.0

3.5

4.0

4.5

5.0

6.0

100 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.5 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

12.0 10.3 8.49 7.53 6.60 5.56 4.50 3.64

1010 904 774 699 630 540 444 363

450 402 344 311 280 240 197 161

253 226 193 175 158 135 111 90.7

162 145 124 112 101 86.4 71.0 58.1

112 100 86.0 77.7 70.0 60.0 49.3 40.3

82.6 73.8 63.2 57.1 51.4 44.1 36.2 29.6

63.3 56.5 48.4 43.7 39.4 33.7 27.7 22.7

40.5 36.2 30.9 28.0 25.2 21.6 17.8 14.5

28.1 25.1 21.5 19.4 17.5 15.0 12.3 10.1

20.7 18.5 15.8 14.3 12.9 11.0 9.06 7.41

15.8 14.1 12.1 10.9 9.85 8.44 6.94 5.67

12.5 11.2 9.55 8.63 7.78 6.67 5.48 4.48

10.1 9.04 7.74 6.99 6.30 5.40 4.44 3.63

7.03 6.28 5.37 4.86 4.38 3.75 3.08 2.52

75 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

9.67 8.35 6.92 5.42 4.58 3.72 3.01

474 430 373 309 266 220 181

210 191 166 137 118 97.8 80.3

118 107 93.3 77.2 66.5 55.0 45.2

75.8 68.8 59.7 49.4 42.6 35.2 28.9

52.6 47.8 41.4 34.3 29.6 24.4 20.1

38.7 35.1 30.4 25.2 21.7 18.0 14.7

29.6 26.9 23.3 19.3 16.6 13.8 11.3

18.9 17.2 14.9 12.4 10.6 8.80 7.23

13.2 11.9 10.4 8.58 7.39 6.11 5.02

9.66 8.77 7.61 6.30 5.43 4.49 3.69

7.40 6.72 5.83 4.83 4.16 3.44 2.82

5.85 5.31 4.61 3.81 3.29 2.72 2.23

4.74 4.30 3.73 3.09 2.66 2.20 1.81

3.29 2.98 2.59 2.14 1.85 1.53 1.25

75 x 25 x 2.5 RHS 2.0 RHS 1.6 RHS

3.60 2.93 2.38

169 141 117

75.0 62.7 51.9

42.2 35.3 29.2

27.0 22.6 18.7

18.8 15.7 13.0

13.8 11.5 9.54

10.6 8.82 7.30

6.75 5.64 4.67

4.69 3.92 3.25

3.45 2.88 2.38

2.64 2.20 1.83

2.08 1.74 1.44

1.69 1.41 1.17

1.17 0.980 0.811

65 x 35 x 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS

5.35 4.25 3.60 2.93

194 166 145 121

86.4 73.9 64.3 53.7

48.6 41.6 36.2 30.2

31.1 26.6 23.2 19.3

21.6 18.5 16.1 13.4

15.9 13.6 11.8 9.86

12.1 10.4 9.05 7.55

7.77 6.65 5.79 4.83

5.40 4.62 4.02 3.35

3.97 3.40 2.95 2.46

3.04 2.60 2.26 1.89

2.40 2.05 1.79 1.49

1.94 1.66 1.45 1.21

1.35 1.16 1.01 0.839

50 x 25 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

3.07 2.62 2.15 1.75

66.1 58.5 49.6 41.5

29.4 26.0 22.1 18.5

16.5 14.6 12.4 10.4

10.6 9.36 7.94 6.65

7.35 6.50 5.51 4.62

5.40 4.78 4.05 3.39

4.13 3.66 3.10 2.60

2.65 2.34 1.99 1.66

1.84 1.63 1.38 1.15

1.35 1.19 1.01 0.848

1.03 0.915 0.775 0.649

0.817 0.723 0.613 0.513

0.661 0.585 0.496 0.415

0.459 0.406 0.345 0.289

50 x 20 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

2.83 2.42 1.99 1.63

56.3 50.2 42.8 36.0

25.0 22.3 19.0 16.0

14.1 12.5 10.7 9.00

9.01 8.03 6.85 5.76

6.26 5.57 4.76 4.00

4.60 4.10 3.49 2.94

3.52 3.14 2.68 2.25

2.25 2.01 1.71 1.44

1.56 1.39 1.19 1.00

1.15 1.02 0.874 0.735

0.880 0.784 0.669 0.562

0.695 0.619 0.528 0.444

0.563 0.502 0.428 0.360

0.391 0.348 0.297 0.250

mm mm mm

Note:

1.

Serviceabilty Load W *S1 =185EI / (250L2)


D8-26 TABLE D8.2-2(A)

STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS CONTINUOUS BEAMS WITH FULL LATERAL RESTRAINT DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness bending about x-axis DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

W *L1 = Maximum Design Load based on Design Moment Capacity W *L2 = Maximum Design Load based on Design Shear Capacity Maximum Design Load W *L is LESSER of W *L1 and W *L2

Designation d

b

W*L1 (kN)

Mass per m kg/m

0.5

0.75

1.0

125 x 75 x 2.8 RHS 2.3 RHS

8.39 6.95

271 196

181 131

136 98.0

100 x 50 x 2.8 RHS 2.3 RHS

6.19 5.14

163 136

108 90.8

75 x 50 x 2.8 RHS 2.3 RHS

5.09 4.24

104 87.8

65 x 35 x 2.8 RHS 2.3 RHS

3.99 3.34

50 x 25 x 2.8 RHS 2.3 RHS 50 x 20 x 2.8 RHS 2.3 RHS 1.

DCTDHS/06 MARCH 2002

2. 3. 4. 5. 6.

FLR

Span of Beam (L) in metres

t

mm mm mm

Notes:

W*L2

FLR FLR φ αm αs W *L1 W *L2

= = = = = = =

1.25

1.5

1.75

2.0

2.5

3.0

3.5

4.0

4.5

5.0

6.0

kN

m

108 78.4

90.4 65.3

77.4 56.0

67.8 49.0

54.2 39.2

45.2 32.7

38.7 28.0

33.9 24.5

30.1 21.8

27.1 19.6

22.6 16.3

250 207

58.8 68.1

81.3 68.1

65.0 54.5

54.2 45.4

46.4 38.9

40.6 34.1

32.5 27.3

27.1 22.7

23.2 19.5

20.3 17.0

18.1 15.1

16.3 13.6

13.5 11.4

196 162

34.0 34.2

69.6 58.6

52.2 43.9

41.7 35.1

34.8 29.3

29.8 25.1

26.1 22.0

20.9 17.6

17.4 14.6

14.9 12.5

13.0 11.0

11.6 9.76

10.4 8.78

8.70 7.32

146 122

38.0 38.2

67.3 57.1

44.9 38.0

33.7 28.5

26.9 22.8

22.4 19.0

19.2 16.3

16.8 14.3

13.5 11.4

11.2 9.51

9.62 8.15

8.42 7.13

7.48 6.34

6.73 5.71

5.61 4.76

124 103

24.1 24.4

2.89 2.44

36.1 31.0

24.1 20.6

18.0 15.5

14.4 12.4

12.0 10.3

10.3 8.85

9.02 7.74

7.22 6.19

6.02 5.16

5.16 4.42

4.51 3.87

4.01 3.44

3.61 3.10

3.01 2.58

92.1 77.3

16.3 16.5

2.67 2.25

31.8 27.4

21.2 18.3

15.9 13.7

12.7 11.0

10.6 9.14

9.09 7.83

7.95 6.85

6.36 5.48

5.30 4.57

4.54 3.92

3.98 3.43

3.53 3.05

3.18 2.74

2.65 2.28

90.9 76.3

11.3 11.6

1.809 (π2 E Iy G J / M2SX)0.5 (See Section D4.1.3 of these tables for explanation) Segment length for full lateral restraint (φMbx = φMsx) 0.9 1.0 1.0 8 φ Ms/L 1.6 φ Vv


DCTDHS/06 MARCH 2002

TABLE D8.2-2(B)

SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS CONTINUOUS BEAMS DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness bending about x-axis DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250

Designation d

b

W*S1 (kN)

Mass per m

Span of Beam (L) in metres

t

mm mm mm

kg/m

0.5

0.75

1.0

1.25

1.5

1.75

2.0

2.5

3.0

3.5

4.0

4.5

5.0

6.0

125 x 75 x 2.8 RHS 2.3 RHS

8.39 6.95

1350 1130

601 504

338 283

216 181

150 126

110 92.6

84.5 70.9

54.1 45.4

37.6 31.5

27.6 23.1

21.1 17.7

16.7 14.0

13.5 11.3

9.39 7.87

100 x 50 x 2.8 RHS 2.3 RHS

6.19 5.14

595 502

264 223

149 126

16.5 14.0

12.1 10.2

75 x 50 x 2.8 RHS 2.3 RHS

5.09 4.24

292 248

130 110

65 x 35 x 2.8 RHS 2.3 RHS

3.99 3.34

158 135

50 x 25 x 2.8 RHS 2.3 RHS

2.89 2.44

50 x 20 x 2.8 RHS 2.3 RHS

2.67 2.25

Note:

1.

95.2 80.4

66.1 55.8

48.6 41.0

37.2 31.4

23.8 20.1

73.0 62.0

46.7 39.7

32.5 27.6

23.8 20.3

18.3 15.5

11.7 9.92

8.12 6.89

70.2 60.2

39.5 33.9

25.3 21.7

17.6 15.0

12.9 11.1

9.87 8.46

6.32 5.42

63.2 55.1

28.1 24.5

15.8 13.8

10.1 8.82

7.03 6.13

5.16 4.50

3.95 3.45

54.0 47.4

24.0 21.1

13.5 11.8

8.64 7.58

6.00 5.26

4.41 3.87

3.38 2.96

Serviceabilty Load W *S1 = 185EI / (250L2)

9.29 7.85

7.34 6.20

5.95 5.02

4.13 3.49

5.96 5.06

4.56 3.88

3.61 3.06

2.92 2.48

2.03 1.72

4.39 3.76

3.22 2.76

2.47 2.12

1.95 1.67

1.58 1.35

1.10 0.940

2.53 2.21

1.76 1.53

1.29 1.13

0.988 0.861

0.781 0.681

0.632 0.551

0.439 0.383

2.16 1.90

1.50 1.32

1.10 0.967

0.844 0.740

0.667 0.585

0.540 0.474

0.375 0.329

D8-27


D8-28

TABLE D8.2-3(1)(A)

STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS CONTINUOUS BEAMS WITH FULL LATERAL RESTRAINT DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis W *L1 = Maximum Design Load based on Design Moment Capacity W *L2 = Maximum Design Load based on Design Shear Capacity Maximum Design Load W *L is LESSER of W *L1 and W *L2

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

Designation d

b

W*L1 (kN)

Mass per m

W*L2 Span of Beam (L) in metres

t

mm mm mm

kg/m

100 x 100 x 6.0 SHS 16.7 5.0 SHS 14.2 4.0 SHS 11.6 3.0 SHS 8.96 2.5 SHS 7.53 2.0 SHS 6.07 90 x 90 x 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS

8.01 6.74 5.45 4.39

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

13.0

14.0

kN

238 206 168 120 91.0 65.1

119 103 84.1 60.1 45.5 32.5

79.4 68.6 56.1 40.1 30.3 21.7

59.6 51.4 42.1 30.1 22.7 16.3

47.7 41.2 33.6 24.1 18.2 13.0

39.7 34.3 28.0 20.0 15.2 10.8

34.0 29.4 24.0 17.2 13.0 9.30

29.8 25.7 21.0 15.0 11.4 8.13

26.5 22.9 18.7 13.4 10.1 7.23

23.8 20.6 16.8 12.0 9.10 6.51

21.7 18.7 15.3 10.9 8.27 5.92

19.9 17.1 14.0 10.0 7.58 5.42

18.3 15.8 12.9 9.25 7.00 5.01

17.0 14.7 12.0 8.59 6.50 4.65

406 346 283 217 182 147

95.4 77.9 55.5 39.9

47.7 38.9 27.8 19.9

31.8 26.0 18.5 13.3

23.8 19.5 13.9 9.97

19.1 15.6 11.1 7.98

15.9 13.0 9.25 6.65

13.6 11.1 7.93 5.70

11.9 9.74 6.94 4.98

10.6 8.65 6.17 4.43

9.54 7.79 5.55 3.99

8.67 7.08 5.05 3.63

7.95 6.49 4.63 3.32

7.34 5.99 4.27 3.07

6.81 5.56 3.96 2.85

194 163 132 107

89 x 89 x 6.0 SHS 9.06 5.0 SHS 12.5 3.5 SHS 14.6

116 159 183

57.8 79.5 91.6

38.5 53.0 61.1

28.9 39.8 `45.8

23.1 31.8 36.6

19.3 26.5 30.5

16.5 22.7 26.2

14.5 19.9 22.9

12.8 17.7 20.4

11.6 15.9 18.3

10.5 14.5 16.7

9.64 13.3 15.3

8.89 12.2 14.1

8.26 11.4 13.1

220 303 354

75 x 75 x 6.0 SHS 12.0 5.0 SHS 10.3 4.0 SHS 8.49 3.5 SHS 7.53 3.0 SHS 6.60 2.5 SHS 5.56 2.0 SHS 4.50

124 109 91.5 82.0 71.9 55.2 42.3

62.2 54.5 45.8 41.0 36.0 27.6 21.2

41.5 36.3 30.5 27.3 24.0 18.4 14.1

31.1 27.3 22.9 20.5 18.0 13.8 10.6

24.9 21.8 18.3 16.4 14.4 11.0 8.47

20.7 18.2 15.3 13.7 12.0 9.20 7.06

17.8 15.6 13.1 11.7 10.3 7.89 6.05

15.6 13.6 11.4 10.2 8.99 6.90 5.29

13.8 12.1 10.2 9.11 7.99 6.13 4.70

12.4 10.9 9.15 8.20 7.19 5.52 4.23

11.3 9.91 8.32 7.45 6.54 5.02 3.85

10.4 9.08 7.63 6.83 5.99 4.60 3.53

9.57 8.39 7.04 6.31 5.53 4.25 3.26

8.89 7.79 6.54 5.86 5.14 3.94 3.02

290 250 206 183 159 134 109

Notes:

DCTDHS/06 MARCH 2002

1. 2. 3. 4. 5.

φ αm αs W *L1 W *L2

= = = = =

0.9 1.0 1.0 8 φ Ms/L 1.6 φ Vv


DCTDHS/06 MARCH 2002

TABLE D8.2-3(1)(B)

SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS CONTINUOUS BEAMS DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250

Designation d

b

W*S1 (kN)

Mass per m

Span of Beam (L) in metres

t kg/m

1.0

2.0

3.0

4.0

5.0

100 x 100 x 6.0 SHS 16.7 5.0 SHS 14.2 4.0 SHS 11.6 3.0 SHS 8.96 2.5 SHS 7.53 2.0 SHS 6.07

449 393 330 262 223 182

112 98.3 82.5 65.5 55.7 45.5

49.9 43.7 36.7 29.1 24.8 20.2

28.1 24.6 20.6 16.4 13.9 11.4

8.01 6.74 5.45 4.39

188 161 132 107

47.1 40.2 32.9 26.8

20.9 17.9 14.6 11.9

89 x 89 x 6.0 SHS 9.06 5.0 SHS 12.5 3.5 SHS 14.6

203 268 304

50.8 67.0 76.1

75 x 75 x 6.0 SHS 12.0 5.0 SHS 10.3 4.0 SHS 8.49 3.5 SHS 7.53 3.0 SHS 6.60 2.5 SHS 5.56 2.0 SHS 4.50

171 153 131 118 106 90.8 74.7

42.8 38.2 32.6 29.5 26.5 22.7 18.7

mm

mm mm

90 x 90 x 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS

D8-29

Note:

1.

Serviceabilty Load W *S1 = 185EI / (250L2)

6.0

7.0

8.0

9.0

10.0

11.0

12.0

13.0

14.0

18.0 15.7 13.2 10.5 8.92 7.28

12.5 10.9 9.16 7.28 6.19 5.06

9.17 8.02 6.73 5.35 4.55 3.72

7.02 6.14 5.15 4.09 3.48 2.84

5.55 4.85 4.07 3.23 2.75 2.25

4.49 3.93 3.30 2.62 2.23 1.82

3.71 3.25 2.73 2.17 1.84 1.50

3.12 2.73 2.29 1.82 1.55 1.26

2.66 2.33 1.95 1.55 1.32 1.08

2.29 2.01 1.68 1.34 1.14 0.929

11.8 10.0 8.22 6.70

7.54 6.43 5.26 4.29

5.23 4.46 3.65 2.98

3.84 3.28 2.68 2.19

2.94 2.51 2.05 1.67

2.33 1.98 1.62 1.32

1.88 1.61 1.32 1.07

1.56 1.33 1.09 0.885

1.31 1.12 0.913 0.744

1.11 0.951 0.778 0.634

0.961 0.820 0.671 0.547

22.6 29.8 33.8

12.7 16.8 19.0

8.14 10.7 12.2

5.65 7.45 8.45

4.15 5.47 6.21

3.18 4.19 4.75

2.51 3.31 3.76

2.03 2.68 3.04

1.68 2.22 2.51

1.41 1.86 2.11

1.20 1.59 1.80

1.04 1.37 1.55

19.0 17.0 14.5 13.1 11.8 10.1 8.30

10.7 9.55 8.16 7.37 6.62 5.68 4.67

6.85 6.11 5.22 4.72 4.24 3.63 2.99

4.76 4.25 3.63 3.28 2.94 2.52 2.08

3.50 3.12 2.67 2.41 2.16 1.85 1.52

2.68 2.39 2.04 1.84 1.66 1.42 1.17

2.12 1.89 1.61 1.46 1.31 1.12 0.923

1.71 1.53 1.31 1.18 1.06 0.908 0.747

1.42 1.26 1.08 0.975 0.876 0.751 0.618

1.19 1.06 0.907 0.819 0.736 0.631 0.519

1.01 0.904 0.773 0.698 0.627 0.538 0.442

0.874 0.780 0.666 0.602 0.541 0.463 0.381


TABLE D8.2-3(2)(A)

D8-30

STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS CONTINUOUS BEAMS WITH FULL LATERAL RESTRAINT DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis = Maximum Design Load based on Design Moment Capacity

W *L1 W *L2 = Maximum Design Load based on Design Shear Capacity Maximum Design Load W *L is LESSER of W *L1 and W *L2

Designation d

b

W*L1 (kN)

Mass per m

W*L2 Span of Beam (L) in metres

t

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002

mm mm mm

kg/m

0.5

0.75

1.0

1.25

1.5

1.75

2.0

2.5

3.0

3.5

4.0

75 x 75 x 6.0 SHS 5.0 SHS 4.0 SHS 3.5 SHS 3.0 SHS 2.5 SHS 2.0 SHS 65 x 65 x 6.0 SHS 5.0 SHS 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 50 x 50 x 5.0 SHS 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 40 x 40 x 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 35 x 35 x 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 30 x 30 x 2.0 SHS 1.6 SHS 25 x 25 x 2.5 SHS 2.0 SHS 1.6 SHS 20 x 20 x 1.6 SHS

12.0 10.3 8.49 7.53 6.60 5.56 4.50 10.1 8.75 7.23 5.66 4.78 3.88 3.13 6.39 5.35 4.25 3.60 2.93 2.38 4.09 3.30 2.82 2.31 1.88 2.83 2.42 1.99 1.63 1.68 1.38 1.64 1.36 1.12 0.873

249 218 183 164 144 110 78.6 178 158 133 107 88.6 63.5 45.4 85.3 73.8 60.8 52.3 42.6 30.7 43.6 37.1 32.2 26.8 21.8 27.4 23.9 20.1 16.6 14.3 11.9 11.1 9.50 8.01 4.86

166 145 122 109 95.9 73.6 52.4 119 105 89.0 71.6 59.1 42.4 30.3 56.8 49.2 40.6 34.9 28.4 20.5 29.1 24.7 21.5 17.9 14.5 18.3 16.0 13.4 11.1 9.53 7.95 7.40 6.33 5.34 3.24

124 109 91.5 82.0 71.9 55.2 39.3 89.1 78.8 66.7 53.7 44.3 31.8 22.7 42.6 36.9 30.4 26.2 21.3 15.4 21.8 18.5 16.1 13.4 10.9 13.7 12.0 10.0 8.31 7.15 5.96 5.55 4.75 4.00 2.43

99.6 87.2 73.2 65.6 57.5 44.2 31.4 71.3 63.1 53.4 43.0 35.5 25.4 18.2 34.1 29.5 24.3 20.9 17.0 12.3 17.5 14.8 12.9 10.7 8.73 11.0 9.58 8.02 6.65 5.72 4.77 4.44 3.80 3.20 1.95

83.0 72.7 61.0 54.7 47.9 36.8 26.2 59.4 52.5 44.5 35.8 29.5 21.2 15.1 28.4 24.6 20.3 17.4 14.2 10.2 14.5 12.4 10.7 8.93 7.27 9.13 7.98 6.68 5.54 4.76 3.98 3.70 3.17 2.67 1.62

71.1 62.3 52.3 46.8 41.1 31.5 22.5 50.9 45.0 38.1 30.7 25.3 18.2 13.0 24.4 21.1 17.4 14.9 12.2 8.78 12.5 10.6 9.20 7.65 6.23 7.83 6.84 5.73 4.75 4.08 3.41 3.17 2.71 2.29 1.39

62.2 54.5 45.8 41.0 36.0 27.6 19.7 44.6 39.4 33.4 26.8 22.2 15.9 11.4 21.3 18.4 15.2 13.1 10.7 7.68 10.9 9.27 8.05 6.70 5.45 6.85 5.99 5.01 4.16 3.57 2.98 2.77 2.38 2.00 1.22

49.8 43.6 36.6 32.8 28.8 22.1 15.7 35.7 31.5 26.7 21.5 17.7 12.7 9.08 17.1 14.8 12.2 10.5 8.52 6.14 8.73 7.42 6.44 5.36 4.36 5.48 4.79 4.01 3.33 2.86 2.39 2.22 1.90 1.60 0.973

41.5 36.3 30.5 27.3 24.0 18.4 13.1 29.7 26.3 22.2 17.9 14.8 10.6 7.57 14.2 12.3 10.1 8.72 7.10 5.12 7.27 6.18 5.36 4.46 3.64 4.57 3.99 3.34 2.77 2.38 1.99 1.85 1.58 1.33 0.811

35.6 31.1 26.1 23.4 20.5 15.8 11.2 25.5 22.5 19.1 15.3 12.7 9.08 6.49 12.2 10.5 8.69 7.47 6.09 4.39 6.24 5.30 4.60 3.83 3.12 3.91 3.42 2.86 2.38 2.04 1.70 1.59 1.36 1.14 0.695

31.1 27.3 22.9 20.5 18.0 13.8 9.83 22.3 19.7 16.7 13.4 11.1 7.94 5.68 10.7 9.22 7.60 6.54 5.33 3.84 5.46 4.64 4.02 3.35 2.73 3.43 2.99 2.51 2.08 1.79 1.49 1.39 1.19 1.00 0.608

Notes:

1.

φ

=

0.9

2.

αm

=

1.0

3.

αs

=

1.0

4.

W *L1

=

8 φ Ms/L

5. W *L2 =

1.6 φ Vv

4.5 27.7 24.2 20.3 18.2 16.0 12.3 8.74 19.8 17.5 14.8 11.9 9.85 7.06 5.05 9.47 8.19 6.76 5.81 4.73 3.41 4.85 4.12 3.58 2.98 2.42 3.04 2.66 2.23 1.85 1.59 1.33 1.23 1.06 0.890 0.540

5.0 24.9 21.8 18.3 16.4 14.4 11.0 7.86 17.8 15.8 13.3 10.7 8.86 6.35 4.54 8.53 7.38 6.08 5.23 4.26 3.07 4.36 3.71 3.22 2.68 2.18 2.74 2.39 2.01 1.66 1.43 1.19 1.11 0.950 0.801 0.486

6.0 20.7 18.2 15.3 13.7 12.0 9.20 6.55 14.9 13.1 11.1 8.95 7.39 5.29 3.78 7.10 6.15 5.07 4.36 3.55 2.56 3.64 3.09 2.68 2.23 1.82 2.28 2.00 1.67 1.39 1.19 0.994 0.925 0.792 0.667 0.405

kN 290 250 206 183 159 134 109 244 211 175 136 115 93.7 75.9 154 129 101 86.4 70.7 57.5 98.3 78.3 67.2 55.3 45.2 66.8 57.6 47.6 39.1 39.9 32.9 38.4 32.3 26.8 20.6


DCTDHS/06 MARCH 2002

TABLE D8.2-3(2)(B)

SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS CONTINUOUS BEAMS DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250

Designation d

b

W*S1 (kN)

Mass per m

Span of Beam (L) in metres

t

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

D8-31

mm mm mm

kg/m

0.5

0.75

1.0

1.25

1.5

75 x 75 x 6.0 SHS 5.0 SHS 4.0 SHS 3.5 SHS 3.0 SHS 2.5 SHS 2.0 SHS 65 x 65 x 6.0 SHS 5.0 SHS 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 50 x 50 x 5.0 SHS 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 40 x 40 x 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 35 x 35 x 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 30 x 30 x 2.0 SHS 1.6 SHS 25 x 25 x 2.5 SHS 2.0 SHS 1.6 SHS 20 x 20 x 1.6 SHS

12.0 10.3 8.49 7.53 6.60 5.56 4.50 10.1 8.75 7.23 5.66 4.78 3.88 3.13 6.39 5.35 4.25 3.60 2.93 2.38 4.09 3.30 2.82 2.31 1.88 2.83 2.42 1.99 1.63 1.68 1.38 1.64 1.36 1.12 0.873

685 611 522 472 424 363 299 418 378 327 269 232 191 157 152 135 115 100 83.8 69.3 62.3 55.2 48.6 41.1 34.3 35.2 31.3 26.7 22.4 16.1 13.7 10.0 8.78 7.55 3.60

305 272 232 210 188 162 133 186 168 145 119 103 85.0 69.8 67.6 60.2 51.2 44.6 37.2 30.8 27.7 24.5 21.6 18.3 15.2 15.7 13.9 11.9 9.97 7.16 6.07 4.45 3.90 3.36 1.60

171 153 131 118 106 90.8 74.7 105 94.5 81.7 67.2 57.9 47.8 39.2 38.0 33.8 28.8 25.1 20.9 17.3 15.6 13.8 12.2 10.3 8.58 8.80 7.83 6.67 5.61 4.03 3.42 2.50 2.20 1.89 0.899

110 97.8 83.6 75.5 67.8 58.1 47.8 66.9 60.4 52.3 43.0 37.0 30.6 25.1 24.3 21.7 18.4 16.0 13.4 11.1 9.97 8.83 7.78 6.57 5.49 5.63 5.01 4.27 3.59 2.58 2.19 1.60 1.41 1.21 0.576

76.2 67.9 58.0 52.4 47.1 40.4 33.2 46.5 42.0 36.3 29.9 25.7 21.3 17.4 16.9 15.0 12.8 11.1 9.31 7.70 6.92 6.13 5.40 4.57 3.81 3.91 3.48 2.96 2.49 1.79 1.52 1.11 0.976 0.839 0.400

Note:

1.

Serviceabilty Load W *S1 = 185EI / (250L2)

1.75 56.0 49.9 42.6 38.5 34.6 29.7 24.4 34.1 30.8 26.7 21.9 18.9 15.6 12.8 12.4 11.1 9.41 8.19 6.84 5.66 5.09 4.51 3.97 3.35 2.80 2.87 2.56 2.18 1.83 1.32 1.12 0.817 0.717 0.616 0.294

2.0 42.8 38.2 32.6 29.5 26.5 22.7 18.7 26.1 23.6 20.4 16.8 14.5 12.0 9.81 9.51 8.46 7.20 6.27 5.23 4.33 3.89 3.45 3.04 2.57 2.14 2.20 1.96 1.67 1.40 1.01 0.854 0.625 0.549 0.472 0.225

2.5 27.4 24.5 20.9 18.9 17.0 14.5 12.0 16.7 15.1 13.1 10.8 9.26 7.65 6.28 6.08 5.42 4.61 4.01 3.35 2.77 2.49 2.21 1.95 1.64 1.37 1.41 1.25 1.07 0.897 0.645 0.547 0.400 0.351 0.302 0.144

3.0

3.5

4.0

19.0 14.0 10.7 17.0 12.5 9.55 14.5 10.7 8.16 13.1 9.63 7.37 11.8 8.65 6.62 10.1 7.42 5.68 8.30 6.10 4.67 11.6 8.53 6.53 10.5 7.71 5.90 9.07 6.67 5.10 7.47 5.49 4.20 6.43 4.72 3.62 5.31 3.90 2.99 4.36 3.20 2.45 4.22 3.10 2.38 3.76 2.76 2.12 3.20 2.35 1.80 2.79 2.05 1.57 2.33 1.71 1.31 1.92 1.41 1.08 1.73 1.27 0.973 1.53 1.13 0.862 1.35 0.993 0.760 1.14 0.838 0.642 0.953 0.700 0.536 0.978 0.719 0.550 0.870 0.639 0.489 0.741 0.545 0.417 0.623 0.458 0.350 0.448 0.329 0.252 0.380 0.279 0.214 0.278 0.204 0.156 0.244 0.179 0.137 0.210 0.154 0.118 0.0999 0.0734 0.0562

4.5

5.0

6.0

8.46 7.55 6.45 5.83 5.23 4.49 3.69 5.16 4.66 4.03 3.32 2.86 2.36 1.94 1.88 1.67 1.42 1.24 1.03 0.855 0.769 0.681 0.600 0.507 0.424 0.435 0.387 0.329 0.277 0.199 0.169 0.124 0.108 0.0932 0.0444

6.85 6.11 5.22 4.72 4.24 3.63 2.99 4.18 3.78 3.27 2.69 2.32 1.91 1.57 1.52 1.35 1.15 1.00 0.838 0.693 0.623 0.552 0.486 0.411 0.343 0.352 0.313 0.267 0.224 0.161 0.137 0.100 0.0878 0.0755 0.0360

4.76 4.25 3.63 3.28 2.94 2.52 2.08 2.90 2.62 2.27 1.87 1.61 1.33 1.09 1.06 0.940 0.800 0.697 0.582 0.481 0.433 0.383 0.338 0.285 0.238 0.245 0.217 0.185 0.156 0.112 0.0949 0.0695 0.0610 0.0524 0.0250


D8-32 TABLE D8.2-4(A)

STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

CONTINUOUS BEAMS WITH FULL LATERAL RESTRAINT DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness bending about x-axis W *L1 = Maximum Design Load based on Design Moment Capacity W *L2 = Maximum Design Load based on Design Shear Capacity Maximum Design Load W *L is LESSER of W *L1 and W *L2

Designation d

b

W*L1 (kN)

Mass per m

W*L2 Span of Beam (L) in metres

t

mm mm mm

kg/m

0.5

0.75

1.0

1.25

1.5

1.75

2.0

2.5

3.0

3.5

4.0

4.5

5.0

6.0

kN

100 x 100 x 2.8 SHS 2.3 SHS

8.39 6.95

201 150

134 99.7

100 74.8

80.2 59.8

66.9 49.8

57.3 42.7

50.1 37.4

40.1 29.9

33.4 24.9

28.7 21.4

25.1 18.7

22.3 16.6

20.1 15.0

16.7 12.5

203 169

75 x 75 x 2.8 SHS 2.3 SHS

6.19 5.14

131 97.1

87.0 64.7

65.3 48.6

52.2 38.8

43.5 32.4

37.3 27.7

32.6 24.3

26.1 19.4

21.8 16.2

18.6 13.9

16.3 12.1

14.5 10.8

13.1 9.71

10.9 8.09

149 124

13.1

11.2

107

65 x 65 x 2.3 SHS

4.42

78.6

52.4

39.3

31.4

26.2

22.5

19.6

15.7

9.82

8.73

7.86

6.55

50 x 50 x 2.8 SHS 2.3 SHS

3.99 3.34

57.5 48.7

38.3 32.5

28.8 24.4

23.0 19.5

19.2 16.2

16.4 13.9

14.4 12.2

11.5 9.75

9.58 8.12

8.21 6.96

7.19 6.09

6.39 5.42

5.75 4.87

4.79 4.06

95.5 80.2

40 x 40 x 2.8 SHS 2.3 SHS

3.11 2.62

35.2 30.1

23.5 20.1

17.6 15.0

14.1 12.0

11.7 10.0

10.1 8.60

8.80 7.52

7.04 6.02

5.86 5.01

5.03 4.30

4.40 3.76

3.91 3.34

3.52 3.01

2.93 2.51

74.0 62.5

35 x 35 x 2.8 SHS 2.3 SHS

2.67 2.25

26.1 22.4

17.4 15.0

13.0 11.2

10.4 8.98

7.45 6.41

6.52 5.61

5.21 4.49

4.34 3.74

3.72 3.21

3.26 2.80

2.90 2.49

2.61 2.24

2.17 1.87

63.2 53.7

Notes:

1. 2. 3. 4. 5.

φ αm αs W *L1 W *L2

= = = = =

0.9 1.0 1.0 8 φ Ms/L 1.6 φ Vv

8.69 7.48

DCTDHS/06 MARCH 2002


DCTDHS/06 MARCH 2002

TABLE D8.2-4(B)

SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS CONTINUOUS BEAMS DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness bending about x-axis DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250

Designation d

b

W*S1 (kN)

Mass per m

Span of Beams (L) in metres

t

kg/m

0.5

0.75

1.0

1.25

1.5

1.75

2.0

2.5

3.0

3.5

4.0

4.5

5.0

6.0

100 x 100 x 2.8 SHS 2.3 SHS

8.39 6.95

986 827

438 368

247 207

158 132

110 91.9

80.5 67.5

61.7 51.7

39.5 33.1

27.4 23.0

20.1 16.9

15.4 12.9

12.2 10.2

9.86 8.27

6.85 5.74

75 x 75 x 2.8 SHS 2.3 SHS

6.19 5.14

400 338

178 150

100 84.5

64.0 54.1

44.5 37.6

32.7 27.6

25.0 21.1

16.0 13.5

11.1 9.39

8.17 6.90

6.25 5.28

4.94 4.17

4.00 3.38

2.78 2.35

65 x 65 x 2.3 SHS

4.42

216

95.9

53.9

34.5

24.0

17.6

13.5

50 x 50 x 2.8 SHS 2.3 SHS

3.99 3.34

109 93.9

48.6 41.7

27.4 23.5

17.5 15.0

12.2 10.4

40 x 40 x 2.8 SHS 2.3 SHS

3.11 2.62

52.7 45.7

23.4 20.3

13.2 11.4

35 x 35 x 2.8 SHS 2.3 SHS

2.67 2.25

33.7 29.6

15.0 13.1

mm

Note:

mm mm

1.

Serviceabilty Load W *S1 = 185EI / (250L2)

8.43 7.39

8.63

5.99

4.40

3.37

2.66

2.16

1.50

8.94 7.66

6.84 5.87

4.38 3.76

3.04 2.61

2.23 1.92

1.71 1.47

1.35 1.16

1.09 0.939

0.760 0.652

8.43 7.32

5.85 5.08

4.30 3.73

3.29 2.86

2.11 1.83

1.46 1.27

1.08 0.933

0.823 0.715

0.650 0.565

0.527 0.457

0.366 0.318

5.40 4.73

3.75 3.28

2.75 2.41

2.11 1.85

1.35 1.18

0.937 0.821

0.689 0.603

0.527 0.462

0.417 0.365

0.337 0.296

0.234 0.205

D8-33


D8-34

TABLE D8.3-1(1)(A)

STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS FIXED END BEAMS WITH FULL LATERAL RESTRAINT DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis W *L1 = Maximum Design Load based on Design Moment Capacity W *L2 = Maximum Design Load based on Design Shear Capacity Maximum Design Load W *L is LESSER of W *L1 and W *L2

Designation DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

d

b

W*L1 (kN)

Mass per m

W*L2

FLR

Span of Beam (L) in metres

t

mm mm mm

kg/m

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

13.0

14.0

kN

m

150 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS

16.7 14.2 11.6 8.96 7.53 6.07

443 383 318 250 212 154

221 192 159 125 106 76.9

148 128 106 83.3 70.5 51.3

111 95.8 79.5 62.5 52.9 38.4

88.6 76.7 63.6 50.0 42.3 30.8

73.8 63.9 53.0 41.7 35.3 25.6

63.3 54.8 45.4 35.7 30.2 22.0

55.4 47.9 39.8 31.2 26.4 19.2

49.2 42.6 35.3 27.8 23.5 17.1

44.3 38.3 31.8 25.0 21.2 15.4

40.3 34.8 28.9 22.7 19.2 14.0

36.9 31.9 26.5 20.8 17.6 12.8

34.1 29.5 24.5 19.2 16.3 11.8

31.6 27.4 22.7 17.9 15.1 11.0

749 633 514 391 328 264

28.7 29.3 29.8 30.1 30.4 34.2

125 x 75 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS

16.7 14.2 11.6 8.96 7.53 6.07

409 354 293 226 169 121

205 177 146 113 84.4 60.3

136 118 97.6 75.4 56.3 40.2

102 88.4 73.2 56.5 42.2 30.1

81.9 70.7 58.6 45.2 33.8 24.1

68.2 58.9 48.8 37.7 28.1 20.1

58.5 50.5 41.8 32.3 24.1 17.2

51.2 44.2 36.6 28.3 21.1 15.1

45.5 39.3 32.5 25.1 18.8 13.4

40.9 35.4 29.3 22.6 16.9 12.1

37.2 32.1 26.6 20.6 15.3 11.0

34.1 29.5 24.4 18.8 14.1 10.0

31.5 27.2 22.5 17.4 13.0 9.28

29.2 25.3 20.9 16.2 12.1 8.61

634 538 438 334 281 226

59.6 60.0 60.4 61.2 69.7 79.5

100 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.5 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

12.0 10.3 8.49 7.53 6.60 5.56 4.50 3.64

220 193 162 145 130 110 88.5 60.6

110 96.6 81.2 72.7 64.8 55.1 44.2 30.3

73.5 64.4 54.1 48.5 43.2 36.7 29.5 20.2

55.1 48.3 40.6 36.4 32.4 27.5 22.1 15.2

44.1 38.6 32.5 29.1 25.9 22.0 17.7 12.1

36.7 32.2 27.1 24.2 21.6 18.4 14.7 10.1

31.5 27.6 23.2 20.8 18.5 15.7 12.6 8.66

27.5 24.2 20.3 18.2 16.2 13.8 11.1 7.58

24.5 21.5 18.0 16.2 14.4 12.2 9.83 6.73

22.0 19.3 16.2 14.5 13.0 11.0 8.85 6.06

20.0 17.6 14.8 13.2 11.8 10.0 8.04 5.51

18.4 16.1 13.5 12.1 10.8 9.18 7.37 5.05

17.0 14.9 12.5 11.2 9.97 8.48 6.81 4.66

15.7 13.8 11.6 10.4 9.25 7.87 6.32 4.33

489 417 341 301 261 220 178 143

35.8 36.3 36.8 37.0 36.9 37.1 38.0 45.3

Notes:

1.

DCTDHS/06 MARCH 2002

2. 3. 4. 5. 6.

FLR FLR φ αm αs W *L1 W *L2

= = = = = = =

1.970 (π2 E Iy G J / M2SX)0.5 (See Section D4.1.3 of these tables for explanation) Segment length for full lateral restraint (φMbx = φMsx) 0.9 1.0 1.0 12 φ Ms/L 2 φ Vv


DCTDHS/06 MARCH 2002

TABLE D8.3-1(1)(B)

SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS FIXED END BEAMS DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250

Designation DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

d

b

W*S1 (kN)

Mass per m

Span of Beam (L) in metres

t

mm mm mm

kg/m

1.0

2.0

150 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS

16.7 14.2 11.6 8.96 7.53 6.07

1550 1360 1150 917 781 638

125 x 75 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS

16.7 14.2 11.6 8.96 7.53 6.07

1280 1120 938 746 634 518

100 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.5 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

12.0 10.3 8.49 7.53 6.60 5.56 4.50 3.64

525 469 401 363 327 280 230 188

Note:

1.

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

13.0

14.0

389 341 287 229 195 159

173 152 128 102 86.7 70.8

97.1 85.3 71.7 57.3 48.8 39.8

62.2 54.6 45.9 36.7 31.2 25.5

43.2 37.9 31.9 25.5 21.7 17.7

31.7 27.8 23.4 18.7 15.9 13.0

24.3 21.3 17.9 14.3 12.2 9.96

19.2 16.8 14.2 11.3 9.64 7.87

15.5 13.6 11.5 9.17 7.81 6.38

12.8 11.3 9.49 7.58 6.45 5.27

10.8 9.47 7.97 6.37 5.42 4.43

9.20 8.07 6.79 5.43 4.62 3.77

7.93 6.96 5.86 4.68 3.98 3.25

320 280 235 187 159 129

142 124 104 82.9 70.5 57.5

79.9 69.9 58.6 46.6 39.7 32.4

51.1 44.7 37.5 29.8 25.4 20.7

35.5 31.1 26.1 20.7 17.6 14.4

26.1 22.8 19.1 15.2 12.9 10.6

20.0 17.5 14.7 11.7 9.91 8.09

15.8 13.8 11.6 9.21 7.83 6.39

12.8 11.2 9.38 7.46 6.34 5.18

10.6 9.24 7.75 6.17 5.24 4.28

8.88 7.77 6.51 5.18 4.41 3.60

7.56 6.62 5.55 4.41 3.75 3.06

6.52 5.71 4.79 3.81 3.24 2.64

58.4 52.1 44.6 40.3 36.3 31.1 25.6 20.9

32.8 29.3 25.1 22.7 20.4 17.5 14.4 11.8

21.0 18.8 16.1 14.5 13.1 11.2 9.21 7.53

14.6 13.0 11.2 10.1 9.08 7.78 6.40 5.23

10.7 9.58 8.19 7.40 6.67 5.72 4.70 3.84

8.21 7.33 6.27 5.67 5.11 4.38 3.60 2.94

6.48 5.79 4.96 4.48 4.04 3.46 2.84 2.32

5.25 4.69 4.01 3.63 3.27 2.80 2.30 1.88

4.34 3.88 3.32 3.00 2.70 2.32 1.90 1.56

3.65 3.26 2.79 2.52 2.27 1.95 1.60 1.31

3.11 2.78 2.38 2.15 1.94 1.66 1.36 1.11

2.68 2.39 2.05 1.85 1.67 1.43 1.18 0.961

131 117 100 90.7 81.8 70.0 57.6 47.1

Serviceabilty Load W *S1 = 384El/(250L2)

D8-35


D8-36

TABLE D8.3-1(2)(A)

STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS FIXED END BEAMS WITH FULL LATERAL RESTRAINT DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness = Maximum Design Load based on Design Moment Capacity bending about x-axis = Maximum Design Load based on Design Shear Capacity

W *L1 W *L2 Maximum Design Load W *L is LESSER of W *L1 and W *L2

Designation d

b

W*L1 (kN)

Mass per m

W*L2

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002

mm mm mm

kg/m

0.5

0.75

1.0

100 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.5 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

12.0 10.3 8.49 7.53 6.60 5.56 4.50 3.64

441 386 325 291 259 220 177 121

294 258 216 194 173 147 118 80.8

220 193 162 145 130 110 88.5 60.6

176 155 130 116 104 88.1 70.8 48.5

147 129 108 97.0 86.4 73.5 59.0 40.4

75 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

9.67 8.35 6.92 5.42 4.58 3.72 3.01

273 242 206 166 142 115 80.3

182 161 137 111 94.6 76.4 53.5

136 121 103 83.0 70.9 57.3 40.1

109 96.8 82.2 66.4 56.7 45.8 32.1

75 x 25 x 2.5 RHS 2.0 RHS 1.6 RHS

3.60 2.93 2.38

97.8 80.8 66.2

65.2 53.8 44.2

48.9 40.4 33.1

65 x 35 x 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS

5.35 4.25 3.60 2.93

129 107 91.9 75.8

86.0 71.2 61.3 50.5

50 x 25 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

3.07 2.62 2.15 1.75

57.0 49.6 41.4 34.3

50 x 20 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

2.83 2.42 1.99 1.63

50.1 43.9 36.8 30.5

Notes:

1. 2. 3.

FLR

Span of Beam (L) in metres

t

FLR FLR φ αm

1.25

1.5

1.75

2.0

2.5

3.0

3.5

4.0

4.5

5.0

6.0

kN

m

126 110 92.8 83.1 74.0 63.0 50.6 34.6

110 96.6 81.2 72.7 64.8 55.1 44.2 30.3

88.1 77.3 64.9 58.2 51.8 44.1 35.4 24.2

73.5 64.4 54.1 48.5 43.2 36.7 29.5 20.2

63.0 55.2 46.4 41.6 37.0 31.5 25.3 17.3

55.1 48.3 40.6 36.4 32.4 27.5 22.1 15.2

49.0 42.9 36.1 32.3 28.8 24.5 19.7 13.5

44.1 38.6 32.5 29.1 25.9 22.0 17.7 12.1

36.7 32.2 27.1 24.2 21.6 18.4 14.7 10.1

489 417 341 301 261 220 178 143

35.8 36.3 36.8 37.0 36.9 37.1 38.0 45.3

90.9 80.7 68.5 55.4 47.3 38.2 26.8

77.9 69.1 58.7 47.4 40.5 32.7 22.9

68.2 60.5 51.4 41.5 35.5 28.6 20.1

54.6 48.4 41.1 33.2 28.4 22.9 16.1

45.5 40.3 34.3 27.7 23.6 19.1 13.4

39.0 34.6 29.4 23.7 20.3 16.4 11.5

34.1 30.2 25.7 20.8 17.7 14.3 10.0

30.3 26.9 22.8 18.5 15.8 12.7 8.92

27.3 24.2 20.6 16.6 14.2 11.5 8.03

22.7 20.2 17.1 13.8 11.8 9.54 6.69

356 306 252 195 165 134 108

40.4 40.9 41.3 41.3 41.5 42.4 49.5

39.1 32.3 26.5

32.6 26.9 22.1

27.9 23.1 18.9

24.4 20.2 16.6

19.6 16.2 13.2

16.3 13.5 11.0

14.0 11.5 9.46

12.2 10.1 8.28

10.9 8.97 7.36

9.78 8.08 6.62

8.15 6.73 5.52

158 128 104

14.5 14.8 15.0

64.5 53.4 45.9 37.9

51.6 42.7 36.8 30.3

43.0 35.6 30.6 25.3

36.9 30.5 26.3 21.7

32.3 26.7 23.0 19.0

25.8 21.4 18.4 15.2

21.5 17.8 15.3 12.6

18.4 15.3 13.1 10.8

16.1 13.4 11.5 9.48

14.3 11.9 10.2 8.42

12.9 10.7 9.19 7.58

10.8 8.90 7.66 6.32

212 165 139 113

26.0 26.2 26.4 26.7

38.0 33.1 27.6 22.8

28.5 24.8 20.7 17.1

22.8 19.8 16.6 13.7

19.0 16.5 13.8 11.4

16.3 14.2 11.8 9.79

14.2 12.4 10.4 8.57

11.4 9.92 8.29 6.85

9.50 8.27 6.91 5.71

8.14 7.09 5.92 4.90

7.12 6.20 5.18 4.28

6.33 5.51 4.60 3.81

5.70 4.96 4.14 3.43

4.75 4.14 3.45 2.86

122 104 85.2 69.3

17.6 17.9 18.2 18.4

33.4 29.2 24.5 20.3

25.1 21.9 18.4 15.3

20.1 17.5 14.7 12.2

16.7 14.6 12.3 10.2

14.3 12.5 10.5 8.72

12.5 11.0 9.19 7.63

10.0 8.77 7.35 6.10

8.36 7.31 6.13 5.08

7.16 6.26 5.25 4.36

6.27 5.48 4.60 3.81

5.57 4.87 4.08 3.39

5.01 4.39 3.68 3.05

4.18 3.65 3.06 2.54

121 103 84.1 68.4

12.2 12.5 12.8 13.0

= 1.970 (π2 E I y G J / M2SX)0.5 (See Section D4.1.3 of these tables for explanation) = Segment length for full lateral restraint (φMbx = φMsx) = 0.9 = 1.0

4. 5. 6.

αs W *L1 W *L2

= = =

1.0 12 φ Ms/L 2 φ Vv


DCTDHS/06 MARCH 2002

TABLE D8.3-1(2)(B)

SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS FIXED END BEAMS DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250

Designation d

b

W*S1 (kN)

Mass per m

Span of Beam (L) in metres

t

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

kg/m

0.5

D8-37

0.75

1.0

1.25

1.5

1.75

2.0

2.5

3.0

3.5

4.0

4.5

5.0

6.0

100 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.5 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

12.0 10.3 8.49 7.53 6.60 5.56 4.50 3.64

2100 1880 1610 1450 1310 1120 921 753

934 834 714 645 581 498 409 335

525 469 401 363 327 280 230 188

336 300 257 232 209 179 147 121

233 209 178 161 145 125 102 83.7

171 153 131 118 107 91.5 75.2 61.5

131 117 100 90.7 81.8 70.0 57.6 47.1

84.0 75.1 64.2 58.1 52.3 44.8 36.9 30.1

58.4 52.1 44.6 40.3 36.3 31.1 25.6 20.9

42.9 38.3 32.8 29.6 26.7 22.9 18.8 15.4

32.8 29.3 25.1 22.7 20.4 17.5 14.4 11.8

25.9 23.2 19.8 17.9 16.1 13.8 11.4 9.3

21.0 18.8 16.1 14.5 13.1 11.2 9.21 7.53

14.6 13.0 11.2 10.1 9.08 7.78 6.40 5.23

75 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

9.67 8.35 6.92 5.42 4.58 3.72 3.01

983 892 774 641 552 457 375

437 397 344 285 245 203 167

246 223 194 160 138 114 93.7

157 143 124 103 88.4 73.1 60.0

109 99.1 86.0 71.2 61.4 50.7 41.7

80.2 72.8 63.2 52.3 45.1 37.3 30.6

61.4 55.8 48.4 40.1 34.5 28.5 23.4

39.3 35.7 31.0 25.6 22.1 18.3 15.0

27.3 24.8 21.5 17.8 15.3 12.7 10.4

20.1 18.2 15.8 13.1 11.3 9.32 7.65

15.4 13.9 12.1 10.0 8.63 7.14 5.86

12.1 11.0 9.56 7.91 6.82 5.64 4.63

9.83 8.92 7.74 6.41 5.52 4.57 3.75

6.83 6.20 5.38 4.45 3.84 3.17 2.60

75 x 25 x 2.5 RHS 2.0 RHS 1.6 RHS

3.60 2.93 2.38

350 293 243

156 130 108

87.6 73.2 60.6

56.1 46.9 38.8

38.9 32.5 26.9

28.6 23.9 19.8

21.9 18.3 15.2

14.0 11.7 9.70

9.73 8.14 6.74

7.15 5.98 4.95

5.48 4.58 3.79

4.33 3.62 2.99

3.50 2.93 2.43

2.43 2.03 1.68

65 x 35 x 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS

5.35 4.25 3.60 2.93

403 345 300 251

179 153 134 111

101 86.3 75.1 62.7

64.5 55.3 48.1 40.1

44.8 38.4 33.4 27.9

32.9 28.2 24.5 20.5

25.2 21.6 18.8 15.7

16.1 13.8 12.0 10.0

11.2 9.59 8.35 6.96

8.23 7.05 6.13 5.12

6.30 5.40 4.69 3.92

4.98 4.26 3.71 3.09

4.03 3.45 3.00 2.51

2.80 2.40 2.09 1.74

50 x 25 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

3.07 2.62 2.15 1.75

137 121 103 86.2

61.0 54.0 45.8 38.3

34.3 30.4 25.8 21.6

22.0 19.4 16.5 13.8

15.3 13.5 11.4 9.58

11.2 9.92 8.41 7.04

8.58 7.59 6.44 5.39

5.49 4.86 4.12 3.45

3.81 3.37 2.86 2.40

2.80 2.48 2.10 1.76

2.15 1.90 1.61 1.35

1.69 1.50 1.27 1.06

1.37 1.21 1.03 0.862

0.953 0.844 0.715 0.599

50 x 20 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

2.83 2.42 1.99 1.63

117 104 88.9 74.7

52.0 46.3 39.5 33.2

29.2 26.0 22.2 18.7

18.7 16.7 14.2 12.0

13.0 11.6 9.87 8.30

9.54 8.50 7.25 6.10

7.31 6.51 5.55 4.67

4.68 4.17 3.55 2.99

3.25 2.89 2.47 2.08

2.39 2.13 1.81 1.52

1.83 1.63 1.39 1.17

1.44 1.29 1.10 0.922

1.17 1.04 0.889 0.747

0.812 0.723 0.617 0.519

mm mm mm

Note:

1.

Serviceabilty Load W *S1 =384EI / (250L2)


D8-38 TABLE D8.3-2(A)

STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS FIXED END BEAMS WITH FULL LATERAL RESTRAINT DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness bending about x-axis DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

W *L1 = Maximum Design Load based on Design Moment Capacity W *L2 = Maximum Design Load based on Design Shear Capacity Maximum Design Load W *L is LESSER of W *L1 and W *L2

Designation d

b

W*L1 (kN)

Mass per m

W*L2

FLR

Span of Beam (L) in metres

t

mm mm mm

kg/m

0.5

0.75

1.0

1.25

1.5

1.75

2.0

2.5

3.0

3.5

4.0

4.5

5.0

6.0

kN

m

125 x 75 x 2.8 RHS 2.3 RHS

8.39 6.95

407 294

271 196

203 147

163 118

136 98.0

116 84.0

102 73.5

81.3 58.8

67.8 49.0

58.1 42.0

50.8 36.8

45.2 32.7

40.7 29.4

33.9 24.5

313 259

64.1 74.1

100 x 50 x 2.8 RHS 2.3 RHS

6.19 5.14

244 204

163 136

122 102

97.5 81.8

81.3 68.1

69.7 58.4

61.0 51.1

48.8 40.9

40.6 34.1

34.8 29.2

30.5 25.5

27.1 22.7

24.4 20.4

20.3 17.0

245 203

37.0 37.2

75 x 50 x 2.8 RHS 2.3 RHS

5.09 4.24

157 132

104 87.8

78.3 65.9

62.6 52.7

52.2 43.9

44.7 37.6

39.1 32.9

31.3 26.4

26.1 22.0

22.4 18.8

19.6 16.5

17.4 14.6

15.7 13.2

13.0 11.0

183 152

41.4 41.6

65 x 35 x 2.8 RHS 2.3 RHS

3.99 3.34

101 85.6

67.3 57.1

50.5 42.8

40.4 34.2

33.7 28.5

28.9 24.5

25.2 21.4

20.2 17.1

16.8 14.3

14.4 12.2

12.6 10.7

11.2 9.51

10.1 8.56

8.42 7.13

155 129

26.3 26.5

50 x 25 x 2.8 RHS 2.3 RHS

2.89 2.44

54.1 46.4

36.1 31.0

27.1 23.2

21.7 18.6

18.0 15.5

15.5 13.3

13.5 11.6

10.8 9.29

9.02 7.74

7.73 6.64

6.77 5.81

6.02 5.16

5.41 4.64

4.51 3.87

115 96.7

17.8 18.0

50 x 20 x 2.8 RHS 2.3 RHS

2.67 2.25

47.7 41.1

31.8 27.4

23.9 20.6

19.1 16.4

15.9 13.7

13.6 11.7

11.9 10.3

9.54 8.22

7.95 6.85

6.82 5.87

5.96 5.14

5.30 4.57

4.77 4.11

3.98 3.43

114 95.4

12.4 12.6

Notes:

1. 2. 3. 4. 5. 6.

DCTDHS/06 MARCH 2002

FLR FLR φ αm αs W *L1 W *L2

= = = = = = =

1.970 (π2 E Iy G J / M2SX)0.5 (See Section D4.1.3 of these tables for explanation) Segment length for full lateral restraint (φMbx = φMsx) 0.9 1.0 1.0 12 φ Ms/L 2 φ Vv


DCTDHS/06 MARCH 2002

TABLE D8.3-2(B)

SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS FIXED END BEAMS DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness bending about x-axis DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250

Designation d

b

W*S1 (kN)

Mass per m

Span of Beam (L) in metres

t

mm mm mm

kg/m

0.5

0.75

1.0

1.25

1.5

1.75

2.0

2.5

3.0

3.5

4.0

4.5

5.0

6.0

125 x 75 x 2.8 RHS 2.3 RHS

8.39 6.95

2810 2350

1250 1050

702 588

449 377

312 261

229 192

175 147

112 94.1

78.0 65.4

57.3 48.0

43.9 36.8

34.7 29.1

28.1 23.5

19.5 16.3

100 x 50 x 2.8 RHS 2.3 RHS

6.19 5.14

1230 1040

549 463

309 261

198 167

137 116

101 85.1

77.2 65.2

49.4 41.7

34.3 29.0

25.2 21.3

19.3 16.3

15.2 12.9

12.3 10.4

75 x 50 x 2.8 RHS 2.3 RHS

5.09 4.24

606 515

270 229

152 129

16.8 14.3

12.4 10.5

65 x 35 x 2.8 RHS 2.3 RHS

3.99 3.34

328 281

146 125

50 x 25 x 2.8 RHS 2.3 RHS

2.89 2.44

131 114

50 x 20 x 2.8 RHS 2.3 RHS

2.67 2.25

112 98.3

Note:

1.

97.0 82.4

67.4 57.2

49.5 42.0

37.9 32.2

24.3 20.6

82.0 70.3

52.5 45.0

36.4 31.2

26.8 22.9

20.5 17.6

13.1 11.2

58.3 50.9

32.8 28.6

21.0 18.3

14.6 12.7

10.7 9.34

8.20 7.15

49.8 43.7

28.0 24.6

17.9 15.7

12.5 10.9

9.15 8.03

7.01 6.15

Serviceabilty Load W *S1 = 384EI / (250L2)

8.57 7.24

9.47 8.05

7.49 6.36

6.06 5.15

4.21 3.58

9.11 7.81

6.69 5.74

5.12 4.39

4.05 3.47

3.28 2.81

2.28 1.95

5.25 4.58

3.65 3.18

2.68 2.34

2.05 1.79

1.62 1.41

1.31 1.14

0.912 0.795

4.48 3.93

3.11 2.73

2.29 2.01

1.75 1.54

1.38 1.21

1.12 0.983

0.778 0.683

D8-39


D8-40

TABLE D8.3-3(1)(A)

STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS FIXED END BEAMS WITH FULL LATERAL RESTRAINT DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis W *L1 = Maximum Design Load based on Design Moment Capacity W *L2 = Maximum Design Load based on Design Shear Capacity Maximum Design Load W *L is LESSER of W *L1 and W *L2

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

Designation d

b

W*L1 (kN)

Mass per m

W*L2 Span of Beam (L) in metres

t

mm mm mm

kg/m

100 x 100 x 6.0 SHS 16.7 5.0 SHS 14.2 4.0 SHS 11.6 3.0 SHS 8.96 2.5 SHS 7.53 2.0 SHS 6.07 90 x 90 x 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS

8.01 6.74 5.45 4.39

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

357 309 252 180 136 97.6

179 154 126 90.2 68.2 48.8

119 103 84.1 60.1 45.5 32.5

89.4 77.2 63.1 45.1 34.1 24.4

71.5 61.7 50.5 36.1 27.3 19.5

59.6 51.4 42.1 30.1 22.7 16.3

51.1 44.1 36.0 25.8 19.5 13.9

44.7 38.6 31.5 22.6 17.1 12.2

143 117 83.3 59.8

71.5 58.4 41.6 29.9

47.7 38.9 27.8 19.9

35.8 29.2 20.8 15.0

28.6 23.4 16.7 12.0

23.8 19.5 13.9 9.97

20.4 16.7 11.9 8.55

86.7 119 137

57.8 79.5 91.6

43.4 59.6 68.7

34.7 47.7 55.0

28.9 39.8 45.8

93.3 81.8 68.6 61.5 53.9 41.4 31.8

62.2 54.5 45.8 41.0 36.0 27.6 21.2

46.7 40.9 34.3 30.7 27.0 20.7 15.9

37.3 32.7 27.5 24.6 21.6 16.6 12.7

31.1 27.3 22.9 20.5 18.0 13.8 10.6

89 x 89 x 6.0 SHS 9.06 5.0 SHS 12.5 3.5 SHS 14.6

173 239 275

75 x 75 x 6.0 SHS 12.0 5.0 SHS 10.3 4.0 SHS 8.49 3.5 SHS 7.53 3.0 SHS 6.60 2.5 SHS 5.56 2.0 SHS 4.50

187 164 137 123 108 82.8 63.5

Notes:

DCTDHS/06 MARCH 2002

1. 2. 3. 4. 5.

φ αm αs W *L1 W *L2

= = = = =

0.9 1.0 1.0 12 φ Ms/L 2.0 φ Vv

10.0

11.0

12.0

13.0

14.0

kN

39.7 34.3 28.0 20.0 15.2 10.8

35.7 30.9 25.2 18.0 13.6 9.76

32.5 28.1 22.9 16.4 12.4 8.87

29.8 25.7 21.0 15.0 11.4 8.13

27.5 23.7 19.4 13.9 10.5 7.51

25.5 22.0 18.0 12.9 9.75 6.97

507 432 353 271 228 184

17.9 14.6 10.4 7.48

15.9 13.0 9.25 6.65

14.3 11.7 8.33 5.98

13.0 10.6 7.57 5.44

11.9 9.74 6.94 4.98

11.0 8.99 6.40 4.60

10.2 8.34 5.95 4.27

242 204 165 133

24.8 34.1 39.3

21.7 29.8 34.4

19.3 26.5 30.5

17.3 23.9 27.5

15.8 21.7 25.0

14.5 19.9 22.9

13.3 18.4 21.1

12.4 17.0 19.6

275 379 443

26.7 23.4 19.6 17.6 15.4 11.8 9.07

23.3 20.4 17.2 15.4 13.5 10.4 7.94

20.7 18.2 15.3 13.7 12.0 9.20 7.06

18.7 16.4 13.7 12.3 10.8 8.28 6.35

17.0 14.9 12.5 11.2 9.81 7.53 5.77

15.6 13.6 11.4 10.2 8.99 6.90 5.29

14.4 12.6 10.6 9.46 8.30 6.37 4.89

13.3 11.7 9.80 8.78 7.70 5.91 4.54

363 312 257 228 199 168 136


DCTDHS/06 MARCH 2002

TABLE D8.3-3(1)(B)

SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS FIXED END BEAMS DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250

Designation d

b

W*S1 (kN)

Mass per m

Span of Beam (L) in metres

t kg/m

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

13.0

14.0

100 x 100 x 6.0 SHS 16.7 5.0 SHS 14.2 4.0 SHS 11.6 3.0 SHS 8.96 2.5 SHS 7.53 2.0 SHS 6.07

933 816 685 544 463 378

233 204 171 136 116 94.5

104 90.7 76.1 60.4 51.4 42.0

58.3 51.0 42.8 34.0 28.9 23.6

37.3 32.6 27.4 21.8 18.5 15.1

25.9 22.7 19.0 15.1 12.9 10.5

19.0 16.7 14.0 11.1 9.44 7.71

14.6 12.8 10.7 8.50 7.23 5.90

11.5 10.1 8.45 6.71 5.71 4.67

9.33 8.16 6.85 5.44 4.63 3.78

7.71 6.75 5.66 4.49 3.82 3.12

6.48 5.67 4.76 3.78 3.21 2.62

5.52 4.83 4.05 3.22 2.74 2.24

4.76 4.16 3.49 2.77 2.36 1.93

8.01 6.74 5.45 4.39

391 333 273 222

97.8 83.4 68.2 55.6

43.4 37.1 30.3 24.7

24.4 20.8 17.1 13.9

15.6 13.3 10.9 8.90

10.9 9.26 7.58 6.18

7.98 6.81 5.57 4.54

6.11 5.21 4.27 3.47

4.83 4.12 3.37 2.75

3.91 3.33 2.73 2.22

3.23 2.76 2.26 1.84

2.72 2.32 1.90 1.54

2.31 1.97 1.62 1.32

1.99 1.70 1.39 1.13

89 x 89 x 6.0 SHS 9.06 5.0 SHS 12.5 3.5 SHS 14.6

422 556 631

46.9 61.8 70.2

26.4 34.8 39.5

16.9 22.3 25.3

11.7 15.5 17.5

8.62 11.4 12.9

6.60 8.69 9.87

5.21 6.87 7.80

4.22 5.56 6.31

3.49 4.60 5.22

2.93 3.86 4.39

2.50 3.29 3.74

2.15 2.84 3.22

75 x 75 x 6.0 SHS 12.0 5.0 SHS 10.3 4.0 SHS 8.49 3.5 SHS 7.53 3.0 SHS 6.60 2.5 SHS 5.56 2.0 SHS 4.50

356 317 271 245 220 189 155

39.5 35.3 30.1 27.2 24.4 21.0 17.2

22.2 19.8 16.9 15.3 13.8 11.8 9.69

14.2 12.7 10.8 9.80 8.80 7.54 6.20

7.26 6.48 5.53 5.00 4.49 3.85 3.17

5.56 4.96 4.24 3.83 3.44 2.95 2.42

4.39 3.92 3.35 3.02 2.72 2.33 1.91

3.56 3.17 2.71 2.45 2.20 1.89 1.55

2.94 2.62 2.24 2.02 1.82 1.56 1.28

2.47 2.20 1.88 1.70 1.53 1.31 1.08

2.10 1.88 1.60 1.45 1.30 1.12 0.918

1.81 1.62 1.38 1.25 1.12 0.962 0.791

mm

mm mm

90 x 90 x 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS

D8-41

Note:

1.

106 139 158 88.9 79.3 67.8 61.2 55.0 47.1 38.8

Serviceabilty Load W *S1 = 384EI / (250L2)

9.88 8.81 7.53 6.80 6.11 5.24 4.31


TABLE D8.3-3(2)(A)

D8-42

STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS FIXED END BEAMS WITH FULL LATERAL RESTRAINT DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis = Maximum Design Load based on Design Moment Capacity

W *L1 W *L2 = Maximum Design Load based on Design Shear Capacity Maximum Design Load W *L is LESSER of W *L1 and W *L2

Designation d

b

W*L1 (kN)

Mass per m

W*L2 Span of Beam (L) in metres

t

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002

mm mm mm

kg/m

0.5

75 x 75 x 6.0 SHS 5.0 SHS 4.0 SHS 3.5 SHS 3.0 SHS 2.5 SHS 2.0 SHS 65 x 65 x 6.0 SHS 5.0 SHS 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 50 x 50 x 5.0 SHS 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 40 x 40 x 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 35 x 35 x 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 30 x 30 x 2.0 SHS 1.6 SHS 25 x 25 x 2.5 SHS 2.0 SHS 1.6 SHS 20 x 20 x 1.6 SHS

12.0 10.3 8.49 7.53 6.60 5.56 4.50 10.1 8.75 7.23 5.66 4.78 3.88 3.13 6.39 5.35 4.25 3.60 2.93 2.38 4.09 3.30 2.82 2.31 1.88 2.83 2.42 1.99 1.63 1.68 1.38 1.64 1.36 1.12 0.873

373 327 275 246 216 166 118 267 236 200 161 133 95.3 68.1 128 111 91.2 78.5 63.9 46.1 65.5 55.6 48.3 40.2 32.7 41.1 35.9 30.1 24.9 21.4 17.9 16.6 14.3 12.0 7.30

Notes:

1.

φ

=

0.9

2.

0.75

αm

249 218 183 164 144 110 78.6 178 158 133 107 88.6 63.5 45.4 85.3 73.8 60.8 52.3 42.6 30.7 43.6 37.1 32.2 26.8 21.8 27.4 23.9 20.1 16.6 14.3 11.9 11.1 9.50 8.01 4.86 =

1.0

1.0

1.25

1.5

1.75

2.0

2.5

3.0

3.5

4.0

187 164 137 123 108 82.8 59.0 134 118 100 80.5 66.5 47.6 34.1 63.9 55.3 45.6 39.2 32.0 23.0 32.7 27.8 24.1 20.1 16.4 20.6 18.0 15.0 12.5 10.7 8.95 8.32 7.13 6.01 3.65

149 131 110 98.4 86.3 66.2 47.2 107 94.6 80.1 64.4 53.2 38.1 27.2 51.2 44.3 36.5 31.4 25.6 18.4 26.2 22.3 19.3 16.1 13.1 16.4 14.4 12.0 9.98 8.57 7.16 6.66 5.70 4.80 2.92

124 109 91.5 82.0 71.9 55.2 39.3 89.1 78.8 66.7 53.7 44.3 31.8 22.7 42.6 36.9 30.4 26.2 21.3 15.4 21.8 18.5 16.1 13.4 10.9 13.7 12.0 10.0 8.31 7.15 5.96 5.55 4.75 4.00 2.43

107 93.4 78.4 70.3 61.6 47.3 33.7 76.4 67.6 57.2 46.0 38.0 27.2 19.5 36.5 31.6 26.1 22.4 18.3 13.2 18.7 15.9 13.8 11.5 9.35 11.7 10.3 8.59 7.13 6.12 5.11 4.76 4.07 3.43 2.08

93.3 81.8 68.6 61.5 53.9 41.4 29.5 66.8 59.1 50.1 40.3 33.2 23.8 17.0 32.0 27.7 22.8 19.6 16.0 11.5 16.4 13.9 12.1 10.0 8.18 10.3 8.98 7.52 6.24 5.36 4.47 4.16 3.56 3.00 1.82

74.7 65.4 54.9 49.2 43.1 33.1 23.6 53.5 47.3 40.0 32.2 26.6 19.1 13.6 25.6 22.1 18.2 15.7 12.8 9.22 13.1 11.1 9.66 8.04 6.55 8.22 7.18 6.02 4.99 4.29 3.58 3.33 2.85 2.40 1.46

62.2 54.5 45.8 41.0 36.0 27.6 19.7 44.6 39.4 33.4 26.8 22.2 15.9 11.4 21.3 18.4 15.2 13.1 10.7 7.68 10.9 9.27 8.05 6.70 5.45 6.85 5.99 5.01 4.16 3.57 2.98 2.77 2.38 2.00 1.22

53.3 46.7 39.2 35.1 30.8 23.7 16.8 38.2 33.8 28.6 23.0 19.0 13.6 9.73 18.3 15.8 13.0 11.2 9.13 6.58 9.35 7.95 6.90 5.74 4.68 5.87 5.13 4.30 3.56 3.06 2.56 2.38 2.04 1.72 1.04

46.7 40.9 34.3 30.7 27.0 20.7 14.7 33.4 29.6 25.0 20.1 16.6 11.9 8.51 16.0 13.8 11.4 9.81 7.99 5.76 8.18 6.95 6.03 5.02 4.09 5.14 4.49 3.76 3.12 2.68 2.24 2.08 1.78 1.50 0.912

5. W *L2 =

2 φ Vv

3.

αs

=

1.0

4.

W *L1

=

12 φ Ms/L

4.5 41.5 36.3 30.5 27.3 24.0 18.4 13.1 29.7 26.3 22.2 17.9 14.8 10.6 7.57 14.2 12.3 10.1 8.72 7.10 5.12 7.27 6.18 5.36 4.46 3.64 4.57 3.99 3.34 2.77 2.38 1.99 1.85 1.58 1.33 0.811

5.0 37.3 32.7 27.5 24.6 21.6 16.6 11.8 26.7 23.6 20.0 16.1 13.3 9.53 6.81 12.8 11.1 9.12 7.85 6.39 4.61 6.55 5.56 4.83 4.02 3.27 4.11 3.59 3.01 2.49 2.14 1.79 1.66 1.43 1.20 0.730

6.0 31.1 27.3 22.9 20.5 18.0 13.8 9.83 22.3 19.7 16.7 13.4 11.1 7.94 5.68 10.7 9.22 7.60 6.54 5.33 3.84 5.46 4.64 4.02 3.35 2.73 3.43 2.99 2.51 2.08 1.79 1.49 1.39 1.19 1.00 0.608

kN 363 312 257 228 199 168 136 305 264 219 170 144 117 94.9 192 161 127 108 88.3 71.9 123 97.9 84.0 69.1 56.5 83.5 72.0 59.5 48.8 49.9 41.2 48.0 40.3 33.5 25.8


TABLE D8.3-3(2)(B) DCTDHS/06 MARCH 2002

SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS FIXED END BEAMS DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250

Designation d

b

Span of Beam (L) in metres

t

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

D8-43

mm mm mm

kg/m

75 x 75 x 6.0 SHS 5.0 SHS 4.0 SHS 3.5 SHS 3.0 SHS 2.5 SHS 2.0 SHS 65 x 65 x 6.0 SHS 5.0 SHS 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 50 x 50 x 5.0 SHS 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 40 x 40 x 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 35 x 35 x 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 30 x 30 x 2.0 SHS 1.6 SHS 25 x 25 x 2.5 SHS 2.0 SHS 1.6 SHS 20 x 20 x 1.6 SHS

12.0 10.3 8.49 7.53 6.60 5.56 4.50 10.1 8.75 7.23 5.66 4.78 3.88 3.13 6.39 5.35 4.25 3.60 2.93 2.38 4.09 3.30 2.82 2.31 1.88 2.83 2.42 1.99 1.63 1.68 1.38 1.64 1.36 1.12 0.873

Note:

W*S1 (kN)

Mass per m

1.

0.5 1420 1270 1080 980 880 754 620 868 784 678 558 481 397 326 316 281 239 208 174 144 129 115 101 85.3 71.2 73.1 65.0 55.4 46.6 33.4 28.4 20.8 18.2 15.7 7.47

0.75

1.0

1.25

1.5

632 564 482 435 391 335 276 386 349 301 248 214 176 145 140 125 106 92.5 77.3 63.9 57.5 50.9 44.9 37.9 31.6 32.5 28.9 24.6 20.7 14.9 12.6 9.23 8.10 6.96 3.32

356 317 271 245 220 189 155 217 196 170 140 120 99.3 81.5 78.9 70.3 59.8 52.1 43.5 36.0 32.3 28.6 25.2 21.3 17.8 18.3 16.2 13.8 11.6 8.36 7.09 5.19 4.56 3.92 1.87

228 203 173 157 141 121 99.3 139 125 108 89.3 76.9 63.5 52.1 50.5 45.0 38.3 33.3 27.8 23.0 20.7 18.3 16.2 13.6 11.4 11.7 10.4 8.86 7.45 5.35 4.54 3.32 2.92 2.51 1.19

158 116 141 104 120 88.5 109 80.0 97.8 71.8 83.8 61.6 68.9 50.6 96.4 70.8 87.1 64.0 75.3 55.3 62.0 45.6 53.4 39.2 44.1 32.4 36.2 26.6 35.1 25.8 31.2 22.9 26.6 19.5 23.1 17.0 19.3 14.2 16.0 11.7 14.4 10.6 12.7 9.35 11.2 8.24 9.48 6.96 7.91 5.81 8.12 5.97 7.22 5.31 6.15 4.52 5.17 3.80 3.72 2.73 3.15 2.32 2.31 1.70 2.03 1.49 1.74 1.28 0.830 0.610

Serviceabilty Load W *S1 = 384EI / (250L2)

1.75

2.0 88.9 79.3 67.8 61.2 55.0 47.1 38.8 54.2 49.0 42.4 34.9 30.0 24.8 20.4 19.7 17.6 15.0 13.0 10.9 8.99 8.08 7.16 6.31 5.33 4.45 4.57 4.06 3.46 2.91 2.09 1.77 1.30 1.14 0.979 0.467

2.5 56.9 50.8 43.4 39.2 35.2 30.2 24.8 34.7 31.4 27.1 22.3 19.2 15.9 13.0 12.6 11.2 9.57 8.33 6.95 5.75 5.17 4.58 4.04 3.41 2.85 2.92 2.60 2.22 1.86 1.34 1.13 0.831 0.729 0.627 0.299

3.0 39.5 35.3 30.1 27.2 24.4 21.0 17.2 24.1 21.8 18.8 15.5 13.3 11.0 9.05 8.77 7.81 6.64 5.78 4.83 4.00 3.59 3.18 2.80 2.37 1.98 2.03 1.81 1.54 1.29 0.929 0.788 0.577 0.506 0.435 0.207

3.5 29.0 25.9 22.1 20.0 18.0 15.4 12.7 17.7 16.0 13.8 11.4 9.81 8.10 6.65 6.44 5.74 4.88 4.25 3.55 2.94 2.64 2.34 2.06 1.74 1.45 1.49 1.33 1.13 0.950 0.683 0.579 0.424 0.372 0.320 0.152

4.0 22.2 19.8 16.9 15.3 13.8 11.8 9.69 13.6 12.3 10.6 8.72 7.51 6.20 5.09 4.93 4.39 3.74 3.25 2.72 2.25 2.02 1.79 1.58 1.33 1.11 1.14 1.02 0.865 0.727 0.523 0.443 0.324 0.285 0.245 0.117

4.5

5.0

17.6 14.2 15.7 12.7 13.4 10.8 12.1 9.80 10.9 8.80 9.31 7.54 7.66 6.20 10.7 8.68 9.68 7.84 8.37 6.78 6.89 5.58 5.93 4.81 4.90 3.97 4.02 3.26 3.90 3.16 3.47 2.81 2.95 2.39 2.57 2.08 2.15 1.74 1.78 1.44 1.60 1.29 1.41 1.15 1.25 1.01 1.05 0.853 0.879 0.712 0.902 0.731 0.802 0.650 0.684 0.554 0.575 0.466 0.413 0.334 0.350 0.284 0.256 0.208 0.225 0.182 0.193 0.157 0.0922 0.0747

6.0 9.88 8.81 7.53 6.80 6.11 5.24 4.31 6.03 5.45 4.71 3.88 3.34 2.76 2.26 2.19 1.95 1.66 1.45 1.21 0.999 0.898 0.796 0.701 0.592 0.494 0.508 0.451 0.385 0.323 0.232 0.197 0.144 0.127 0.109 0.0519


D8-44 TABLE D8.3-4(A)

STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS FIXED END BEAMS WITH FULL LATERAL RESTRAINT DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness bending about x-axis DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

W *L1 = Maximum Design Load based on Design Moment Capacity W *L2 = Maximum Design Load based on Design Shear Capacity Maximum Design Load W*L is LESSER of W*L1 and W*L2

Designation d

b

W*L1 (kN)

Mass per m

W*L2 Span of Beam (L) in metres

t

mm mm mm

kg/m

0.5

0.75

1.0

1.25

1.5

1.75

2.0

2.5

3.0

3.5

4.0

4.5

5.0

6.0

kN

100 x 100 x 2.8 SHS 2.3 SHS

8.39 6.95

301 224

201 150

150 112

120 89.7

100 74.8

86.0 64.1

75.2 56.1

60.2 44.9

50.1 37.4

43.0 32.0

37.6 28.0

33.4 24.9

30.1 22.4

25.1 18.7

254 211

75 x 75 x 2.8 SHS 2.3 SHS

6.19 5.14

196 146

131 97.1

97.9 72.8

78.3 58.3

65.3 48.6

55.9 41.6

48.9 36.4

39.2 29.1

32.6 24.3

28.0 20.8

24.5 18.2

21.8 16.2

19.6 14.6

16.3 12.1

187 155

118

13.1

11.8

65 x 65 x 2.3 SHS

4.42

78.6

58.9

47.2

39.3

33.7

29.5

23.6

19.6

16.8

14.7

9.82

133

50 x 50 x 2.8 SHS 2.3 SHS

3.99 3.34

86.3 73.1

57.5 48.7

43.1 36.6

34.5 29.2

28.8 24.4

24.6 20.9

21.6 18.3

17.3 14.6

14.4 12.2

12.3 10.4

10.8 9.14

9.58 8.12

8.63 7.31

7.19 6.09

119 100

40 x 40 x 2.8 SHS 2.3 SHS

3.11 2.62

52.8 45.1

35.2 30.1

26.4 22.6

21.1 18.1

17.6 15.0

15.1 12.9

13.2 11.3

10.6 9.03

8.80 7.52

7.54 6.45

6.60 5.64

5.86 5.01

5.28 4.51

4.40 3.76

92.5 78.2

35 x 35 x 2.8 SHS 2.3 SHS

2.67 2.25

39.1 33.7

26.1 22.4

19.6 16.8

15.6 13.5

13.0 11.2

11.2 9.62

7.82 6.73

6.52 5.61

5.59 4.81

4.89 4.21

4.34 3.74

3.91 3.37

3.26 2.80

79.0 67.1

Notes:

1. 2. 3. 4. 5.

φ αm αs W *L1 W *L2

= = = = =

0.9 1.0 1.0 12 φ Ms/L 2 φ Vv

9.78 8.41

DCTDHS/06 MARCH 2002


DCTDHS/06 MARCH 2002

TABLE D8.3-4(B)

SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS FIXED END BEAMS DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness bending about x-axis W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

Designation d

b

W*S1 (kN)

Mass per m

Span of Beam (L) in metres

t

kg/m

0.5

0.75

1.0

1.25

1.5

1.75

2.0

2.5

3.0

3.5

4.0

4.5

5.0

6.0

100 x 100 x 2.8 SHS 2.3 SHS

8.39 6.95

2050 1720

910 763

512 429

328 275

227 191

167 140

128 107

81.9 68.7

56.9 47.7

41.8 35.0

32.0 26.8

25.3 21.2

20.5 17.2

14.2 11.9

75 x 75 x 2.8 SHS 2.3 SHS

6.19 5.14

831 702

369 312

208 175

133 112

17.0 14.3

13.0 11.0

10.3 8.66

8.31 7.02

5.77 4.87

112

mm

mm mm

92.3 78.0

67.8 57.3

51.9 43.9

33.2 28.1

23.1 19.5

17.9

12.4

65 x 65 x 2.3 SHS

4.42

448

199

71.7

49.8

36.6

28.0

50 x 50 x 2.8 SHS 2.3 SHS

3.99 3.34

227 195

101 86.6

56.8 48.7

36.4 31.2

25.2 21.7

18.5 15.9

14.2 12.2

40 x 40 x 2.8 SHS 2.3 SHS

3.11 2.62

109 94.9

48.6 42.2

27.3 23.7

17.5 15.2

12.2 10.5

35 x 35 x 2.8 SHS 2.3 SHS

2.67 2.25

70.0 61.3

31.1 27.3

17.5 15.3

11.2 9.81

Note:

1.

Serviceabilty Load W *S1 = 384EI / (250L2)

7.78 6.82

9.14

7.00

5.53

4.48

3.11

9.09 7.79

6.31 5.41

4.64 3.98

3.55 3.04

2.80 2.41

2.27 1.95

1.58 1.35

8.93 7.75

6.83 5.93

4.37 3.80

3.04 2.64

2.23 1.94

1.71 1.48

1.35 1.17

1.09 0.949

0.759 0.659

5.72 5.01

4.38 3.83

2.80 2.45

1.95 1.70

1.43 1.25

1.09 0.958

0.865 0.757

0.700 0.613

0.486 0.426

D8-45


D8-46

TABLE D8.4-1(1)(A)

STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS CANTILEVER BEAMS WITH FULL LATERAL RESTRAINT DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis W *L1 = Maximum Design Load based on Design Moment Capacity W *L2 = Maximum Design Load based on Design Shear Capacity Maximum Design Load W *L is LESSER of W *L1 and W *L2

Designation DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

d

b

W*L1 (kN)

Mass per m

mm mm mm

kg/m

1.0

2.0

3.0

4.0

5.0

6.0

150 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS

16.7 14.2 11.6 8.96 7.53 6.07

73.8 63.9 53.0 41.7 35.3 25.6

36.9 31.9 26.5 20.8 17.6 12.8

24.6 21.3 17.7 13.9 11.8 8.54

18.5 16.0 13.3 10.4 8.81 6.41

14.8 12.8 10.6 8.33 7.05 5.13

125 x 75 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS

16.7 14.2 11.6 8.96 7.53 6.07

68.2 58.9 48.8 37.7 28.1 20.1

34.1 29.5 24.4 18.8 14.1 10.0

22.7 19.6 16.3 12.6 9.38 6.70

17.1 14.7 12.2 9.42 7.03 5.02

100 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.5 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

12.0 10.3 8.49 7.53 6.60 5.56 4.50 3.64

36.7 32.2 27.1 24.2 21.6 18.4 14.7 10.1

18.4 16.1 13.5 12.1 10.8 9.18 7.37 5.05

12.2 10.7 9.02 8.08 7.20 6.12 4.92 3.37

9.18 8.05 6.77 6.06 5.40 4.59 3.69 2.53

Notes:

1.

DCTDHS/06 MARCH 2002

2. 3. 4. 5. 6.

W*L2

FLR

Span of Beam (L) in metres

t

FLR FLR φ αm αs W *L1 W *L2

= = = = = = =

7.0

8.0

9.0

12.3 10.6 8.83 6.94 5.83 4.27

10.5 9.13 7.57 5.95 5.04 3.66

9.23 7.98 6.63 5.21 4.41 3.20

13.6 11.8 9.76 7.54 5.63 4.02

11.4 9.82 8.14 6.28 4.69 3.35

9.75 8.42 6.97 5.38 4.02 2.87

7.35 6.44 5.41 4.85 4.32 3.67 2.95 2.02

6.12 5.37 4.51 4.04 3.60 3.06 2.46 1.68

5.25 4.60 3.87 3.46 3.08 2.62 2.11 1.44

1.809 (π2 E Iy G J / M2SX)0.5 (See Section D4.1.3 of these tables for explanation) Segment length for full lateral restraint (φMbx = φMsx) 0.9 1.0 1.0 2 φ Ms/L φ Vv

10.0

11.0

12.0

13.0

14.0

kN

m

8.20 7.10 5.89 4.63 3.92 2.85

7.38 6.39 5.30 4.17 3.53 2.56

6.71 5.81 4.82 3.79 3.20 2.33

6.15 5.32 4.42 3.47 2.94 2.14

5.68 4.91 4.08 3.20 2.71 1.97

5.27 4.56 3.79 2.98 2.52 1.83

374 316 257 195 164 132

26.4 26.9 27.4 27.6 27.9 31.4

8.53 7.37 6.10 4.71 3.52 2.51

7.58 6.55 5.42 4.19 3.13 2.23

6.82 5.89 4.88 3.77 2.81 2.01

6.20 5.36 4.44 3.43 2.56 1.83

5.68 4.91 4.07 3.14 2.34 1.67

5.25 4.53 3.76 2.90 2.16 1.55

4.87 4.21 3.49 2.69 2.01 1.44

317 269 219 167 140 113

54.7 55.1 55.5 56.2 64.0 73.0

4.59 4.03 3.38 3.03 2.70 2.30 1.84 1.26

4.08 3.58 3.01 2.69 2.40 2.04 1.64 1.12

3.67 3.22 2.71 2.42 2.16 1.84 1.47 1.01

3.34 2.93 2.46 2.20 1.96 1.67 1.34 0.918

3.06 2.68 2.26 2.02 1.80 1.53 1.23 0.842

2.83 2.48 2.08 1.87 1.66 1.41 1.13 0.777

2.62 2.30 1.93 1.73 1.54 1.31 1.05 0.721

244 208 170 151 131 110 88.9 71.7

32.8 33.3 33.8 34.0 33.9 34.1 34.9 41.6


DCTDHS/06 MARCH 2002

TABLE D8.4-1(1)(B)

SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS CANTILEVER BEAMS DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250

Designation DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

d

b

W*S1 (kN)

Mass per m

Span of Beam (L) in metres

t

mm mm mm

kg/m

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

13.0

14.0

150 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS

16.7 14.2 11.6 8.96 7.53 6.07

32.4 28.4 23.9 19.1 16.3 13.3

8.10 7.11 5.98 4.78 4.07 3.32

3.60 3.16 2.66 2.12 1.81 1.48

2.02 1.78 1.49 1.19 1.02 0.830

1.30 1.14 0.956 0.764 0.650 0.531

0.899 0.790 0.664 0.531 0.452 0.369

0.661 0.580 0.488 0.390 0.332 0.271

0.506 0.444 0.374 0.299 0.254 0.208

0.400 0.351 0.295 0.236 0.201 0.164

0.324 0.284 0.239 0.191 0.163 0.133

0.268 0.235 0.198 0.158 0.134 0.110

0.225 0.197 0.166 0.133 0.113 0.0922

0.192 0.168 0.141 0.113 0.0962 0.0786

0.165 0.145 0.122 0.0975 0.0830 0.0678

125 x 75 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS

16.7 14.2 11.6 8.96 7.53 6.07

26.6 23.3 19.5 15.5 13.2 10.8

6.66 5.83 4.89 3.89 3.30 2.70

2.96 2.59 2.17 1.73 1.47 1.20

1.66 1.46 1.22 0.971 0.826 0.674

1.07 0.932 0.782 0.622 0.529 0.431

0.740 0.647 0.543 0.432 0.367 0.300

0.544 0.476 0.399 0.317 0.270 0.220

0.416 0.364 0.305 0.243 0.207 0.169

0.329 0.288 0.241 0.192 0.163 0.133

0.266 0.233 0.195 0.155 0.132 0.108

0.220 0.193 0.162 0.128 0.109 0.0892

0.185 0.162 0.136 0.108 0.0918 0.0749

0.158 0.138 0.116 0.0920 0.0782 0.0638

0.136 0.119 0.0997 0.0793 0.0674 0.0550

100 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.5 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

12.0 10.3 8.49 7.53 6.60 5.56 4.50 3.64

10.9 9.78 8.36 7.56 6.81 5.84 4.80 3.92

2.74 2.44 2.09 1.89 1.70 1.46 1.20 0.981

1.22 1.09 0.929 0.840 0.757 0.649 0.533 0.436

0.684 0.611 0.523 0.472 0.426 0.365 0.300 0.245

0.438 0.391 0.335 0.302 0.273 0.233 0.192 0.157

0.304 0.272 0.232 0.210 0.189 0.162 0.133 0.109

0.223 0.200 0.171 0.154 0.139 0.119 0.0979 0.0801

0.171 0.153 0.131 0.118 0.106 0.0912 0.0750 0.0613

0.135 0.121 0.103 0.0933 0.0841 0.0721 0.0592 0.0484

0.109 0.0978 0.0836 0.0756 0.0681 0.0584 0.0480 0.0392

0.0904 0.0808 0.0691 0.0625 0.0563 0.0482 0.0397 0.0324

0.0760 0.0679 0.0581 0.0525 0.0473 0.0405 0.0333 0.0272

0.0647 0.0579 0.0495 0.0447 0.0403 0.0345 0.0284 0.0232

0.0558 0.0499 0.0427 0.0386 0.0348 0.0298 0.0245 0.0200

Note:

1.

Serviceabilty Load W *S1 = 8El/(250L2)

D8-47


D8-48

TABLE D8.4-1(2)(A)

STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS CANTILEVER BEAMS WITH FULL LATERAL RESTRAINT DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness = Maximum Design Load based on Design Moment Capacity bending about x-axis = Maximum Design Load based on Design Shear Capacity

W *L1 W *L2 Maximum Design Load W*L is LESSER of W*L1 and W*L2

Designation d

b

W*L1 (kN)

Mass per m

W*L2

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002

mm mm mm

kg/m

0.5

0.75

1.0

1.25

1.5

1.75

2.0

2.5

3.0

100 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.5 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

12.0 10.3 8.49 7.53 6.60 5.56 4.50 3.64

73.5 64.4 54.1 48.5 43.2 36.7 29.5 20.2

49.0 42.9 36.1 32.3 28.8 24.5 19.7 13.5

36.7 32.2 27.1 24.2 21.6 18.4 14.7 10.1

29.4 25.8 21.6 19.4 17.3 14.7 11.8 8.08

24.5 21.5 18.0 16.2 14.4 12.2 9.83 6.73

21.0 18.4 15.5 13.9 12.3 10.5 8.43 5.77

18.4 16.1 13.5 12.1 10.8 9.18 7.37 5.05

14.7 12.9 10.8 9.70 8.64 7.35 5.90 4.04

75 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

9.67 8.35 6.92 5.42 4.58 3.72 3.01

45.5 40.3 34.3 27.7 23.6 19.1 13.4

30.3 26.9 22.8 18.5 15.8 12.7 8.92

22.7 20.2 17.1 13.8 11.8 9.54 6.69

18.2 16.1 13.7 11.1 9.46 7.64 5.35

15.2 13.4 11.4 9.23 7.88 6.36 4.46

13.0 11.5 9.79 7.91 6.75 5.45 3.82

11.4 10.1 8.56 6.92 5.91 4.77 3.34

75 x 25 x 2.5 RHS 2.0 RHS 1.6 RHS

3.60 2.93 2.38

16.3 13.5 11.0

10.9 8.97 7.36

8.15 6.73 5.52

6.52 5.38 4.42

5.43 4.49 3.68

4.66 3.85 3.15

65 x 35 x 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS

5.35 4.25 3.60 2.93

21.5 17.8 15.3 12.6

14.3 11.9 10.2 8.42

10.8 8.90 7.66 6.32

8.60 7.12 6.13 5.05

7.17 5.94 5.10 4.21

50 x 25 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

3.07 2.62 2.15 1.75

9.50 8.27 6.91 5.71

6.33 5.51 4.60 3.81

4.75 4.14 3.45 2.86

3.80 3.31 2.76 2.28

50 x 20 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

2.83 2.42 1.99 1.63

8.36 7.31 6.13 5.08

5.57 4.87 4.08 3.39

4.18 3.65 3.06 2.54

3.34 2.92 2.45 2.03

Notes:

1. 2. 3.

FLR

Span of Beam (L) in metres

t

FLR FLR φ αm

3.5

4.0

4.5

5.0

6.0

kN

m

12.2 10.7 9.02 8.08 7.20 6.12 4.92 3.37

10.5 9.20 7.73 6.93 6.17 5.25 4.21 2.89

9.18 8.05 6.77 6.06 5.40 4.59 3.69 2.53

8.16 7.16 6.01 5.39 4.80 4.08 3.28 2.24

7.35 6.44 5.41 4.85 4.32 3.67 2.95 2.02

6.12 5.37 4.51 4.04 3.60 3.06 2.46 1.68

244 208 170 151 131 110 88.9 71.7

32.8 33.3 33.8 34.0 33.9 34.1 34.9 41.6

9.09 8.07 6.85 5.54 4.73 3.82 2.68

7.58 6.72 5.71 4.61 3.94 3.18 2.23

6.49 5.76 4.89 3.95 3.38 2.73 1.91

5.68 5.04 4.28 3.46 2.95 2.39 1.67

5.05 4.48 3.81 3.08 2.63 2.12 1.49

4.55 4.03 3.43 2.77 2.36 1.91 1.34

3.79 3.36 2.85 2.31 1.97 1.59 1.11

178 153 126 97.4 82.3 66.8 54.0

37.1 37.5 38.0 37.9 38.1 38.9 45.4

4.07 3.36 2.76

3.26 2.69 2.21

2.72 2.24 1.84

2.33 1.92 1.58

2.04 1.68 1.38

1.81 1.50 1.23

1.63 1.35 1.10

1.36 1.12 0.920

79.1 64.2 51.9

13.3 13.5 13.8

6.15 5.09 4.38 3.61

5.38 4.45 3.83 3.16

4.30 3.56 3.06 2.53

3.59 2.97 2.55 2.11

3.07 2.54 2.19 1.81

2.69 2.23 1.91 1.58

2.39 1.98 1.70 1.40

2.15 1.78 1.53 1.26

1.79 1.48 1.28 1.05

106 82.3 69.7 56.7

23.9 24.1 24.3 24.5

3.17 2.76 2.30 1.90

2.71 2.36 1.97 1.63

2.37 2.07 1.73 1.43

1.90 1.65 1.38 1.14

1.58 1.38 1.15 0.952

1.36 1.18 0.986 0.816

1.19 1.03 0.863 0.714

1.06 0.919 0.767 0.635

0.950 0.827 0.691 0.571

0.791 0.689 0.575 0.476

61.1 52.1 42.6 34.7

16.2 16.4 16.7 16.9

2.79 2.44 2.04 1.69

2.39 2.09 1.75 1.45

2.09 1.83 1.53 1.27

1.67 1.46 1.23 1.02

1.39 1.22 1.02 0.847

1.19 1.04 0.875 0.726

1.04 0.914 0.766 0.635

0.928 0.812 0.681 0.565

0.836 0.731 0.613 0.508

0.696 0.609 0.511 0.424

60.3 51.4 42.0 34.2

11.2 11.5 11.8 12.0

= 1.809 (π2 E I y G J / M2SX)0.5 (See Section D4.1.3 of these tables for explanation) = Segment length for full lateral restraint (φMbx = φMsx) = 0.9 = 1.0

4. 5. 6.

αs W *L1 W *L2

= = =

1.0 2 φ Ms /L φ Vv


DCTDHS/06 MARCH 2002

TABLE D8.4-1(2)(B)

SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS CANTILEVER BEAMS DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250

Designation d

b

W*S1 (kN)

Mass per m

Span of Beam (L) in metres

t

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

mm mm mm

kg/m

0.5

0.75

1.0

1.25

1.5

1.75

2.0

2.5

3.0

3.5

4.0

4.5

5.0

6.0

D8-49

100x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.5 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

12.0 10.3 8.49 7.53 6.60 5.56 4.50 3.64

43.8 39.1 33.5 30.2 27.3 23.3 19.2 15.7

19.5 17.4 14.9 13.4 12.1 10.4 8.53 6.97

10.9 9.78 8.36 7.56 6.81 5.84 4.80 3.92

7.00 6.26 5.35 4.84 4.36 3.74 3.07 2.51

4.86 4.35 3.72 3.36 3.03 2.59 2.13 1.74

3.57 3.19 2.73 2.47 2.22 1.91 1.57 1.28

2.74 2.44 2.09 1.89 1.70 1.46 1.20 0.981

1.75 1.56 1.34 1.21 1.09 0.934 0.768 0.628

1.22 1.09 0.929 0.840 0.757 0.649 0.533 0.436

0.893 0.798 0.683 0.617 0.556 0.476 0.392 0.320

0.684 0.611 0.523 0.472 0.426 0.365 0.300 0.245

0.540 0.483 0.413 0.373 0.336 0.288 0.237 0.194

0.438 0.391 0.335 0.302 0.273 0.233 0.192 0.157

0.304 0.272 0.232 0.210 0.189 0.162 0.133 0.109

75 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

9.67 8.35 6.92 5.42 4.58 3.72 3.01

20.5 18.6 16.1 13.4 11.5 9.51 7.81

9.10 8.26 7.17 5.94 5.11 4.23 3.47

5.12 4.65 4.03 3.34 2.88 2.38 1.95

3.28 2.97 2.58 2.14 1.84 1.52 1.25

2.28 2.07 1.79 1.48 1.28 1.06 0.868

1.67 1.52 1.32 1.09 0.939 0.777 0.638

1.28 1.16 1.01 0.835 0.719 0.595 0.488

0.819 0.743 0.645 0.534 0.460 0.381 0.312

0.569 0.516 0.448 0.371 0.320 0.264 0.217

0.418 0.379 0.329 0.273 0.235 0.194 0.159

0.320 0.290 0.252 0.209 0.180 0.149 0.122

0.253 0.229 0.199 0.165 0.142 0.117 0.0964

0.205 0.186 0.161 0.134 0.115 0.0951 0.0781

0.142 0.129 0.112 0.0927 0.0799 0.0661 0.0542

75 x 25 x 2.5 RHS 2.0 RHS 1.6 RHS

3.60 2.93 2.38

7.30 6.10 5.05

3.24 2.71 2.25

1.83 1.53 1.26

1.17 0.976 0.808

0.811 0.678 0.561

0.596 0.498 0.412

0.456 0.381 0.316

0.292 0.244 0.202

0.203 0.170 0.140

0.149 0.125 0.103

0.114 0.0953 0.0789

0.0901 0.0753 0.0624

0.0730 0.0610 0.0505

0.0507 0.0424 0.0351

65 x 35 x 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS

5.35 4.25 3.60 2.93

8.40 7.19 6.26 5.22

3.73 3.20 2.78 2.32

2.10 1.80 1.56 1.31

1.34 1.15 1.00 0.836

0.934 0.799 0.695 0.580

0.686 0.587 0.511 0.426

0.525 0.450 0.391 0.326

0.336 0.288 0.250 0.209

0.233 0.200 0.174 0.145

0.171 0.147 0.128 0.107

0.131 0.112 0.0978 0.0816

0.104 0.0888 0.0773 0.0645

0.0840 0.0719 0.0626 0.0522

0.0583 0.0500 0.0435 0.0363

50 x 25 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

3.07 2.62 2.15 1.75

2.86 2.53 2.15 1.80

1.27 1.12 0.954 0.799

0.715 0.633 0.537 0.449

0.458 0.405 0.343 0.287

0.318 0.281 0.238 0.200

0.233 0.207 0.175 0.147

0.179 0.158 0.134 0.112

0.114 0.101 0.0858 0.0719

0.0794 0.0703 0.0596 0.0499

0.0584 0.0517 0.0438 0.0367

0.0447 0.0395 0.0335 0.0281

0.0353 0.0312 0.0265 0.0222

0.0286 0.0253 0.0215 0.0180

0.0199 0.0176 0.0149 0.0125

50 x 20 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS

2.83 2.42 1.99 1.63

2.44 2.17 1.85 1.56

1.08 0.964 0.823 0.692

0.609 0.542 0.463 0.389

0.390 0.347 0.296 0.249

0.271 0.241 0.206 0.173

0.199 0.177 0.151 0.127

0.152 0.136 0.116 0.0973

0.0974 0.0868 0.0740 0.0623

0.0676 0.0603 0.0514 0.0432

0.0497 0.0443 0.0378 0.0318

0.0381 0.0339 0.0289 0.0243

0.0301 0.0268 0.0229 0.0192

0.0244 0.0217 0.0185 0.0156

0.0169 0.0151 0.0129 0.0108

Note:

1.

Serviceabilty Load W *S1 =8EI / (250L2)


D8-50 TABLE D8.4-2(A)

STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS CANTILEVER BEAMS WITH FULL LATERAL RESTRAINT DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness bending about x-axis DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

W *L1 = Maximum Design Load based on Design Moment Capacity W *L2 = Maximum Design Load based on Design Shear Capacity Maximum Design Load W *L is LESSER of W *L1 and W *L2

Designation d

b

W*L1 (kN)

Mass per m

W*L2

FLR

Span of Beam (L) in metres

t

mm mm mm

kg/m

0.5

0.75

1.0

1.25

1.5

1.75

2.0

2.5

3.0

3.5

4.0

4.5

5.0

6.0

kN

m

125 x 75 x 2.8 RHS 2.3 RHS

8.39 6.95

67.8 49.0

45.2 32.7

33.9 24.5

27.1 19.6

22.6 16.3

19.4 14.0

16.9 12.3

13.6 9.80

11.3 8.17

9.68 7.00

8.47 6.13

7.53 5.44

6.78 4.90

5.65 4.08

156 129

58.8 68.1

100 x 50 x 2.8 RHS 2.3 RHS

6.19 5.14

40.6 34.1

27.1 22.7

20.3 17.0

16.3 13.6

13.5 11.4

11.6 9.73

10.2 8.52

8.13 6.81

6.77 5.68

5.81 4.87

5.08 4.26

4.52 3.78

4.06 3.41

3.39 2.84

122 102

34.0 34.2

75 x 50 x 2.8 RHS 2.3 RHS

5.09 4.24

26.1 22.0

17.4 14.6

13.0 11.0

10.4 8.78

8.70 7.32

7.45 6.27

6.52 5.49

5.22 4.39

4.35 3.66

3.73 3.14

3.26 2.74

2.90 2.44

2.61 2.20

2.17 1.83

91.4 76.2

38.0 38.2

65 x 35 x 2.8 RHS 2.3 RHS

3.99 3.34

16.8 14.3

11.2 9.51

8.42 7.13

6.73 5.71

5.61 4.76

4.81 4.08

4.21 3.57

3.37 2.85

2.81 2.38

2.40 2.04

2.10 1.78

1.87 1.59

1.68 1.43

1.40 1.19

77.3 64.6

24.1 24.4

50 x 25 x 2.8 RHS 2.3 RHS

2.89 2.44

9.02 7.74

6.02 5.16

4.51 3.87

3.61 3.10

3.01 2.58

2.58 2.21

2.26 1.94

1.80 1.55

1.50 1.29

1.29 1.11

1.13 0.968

1.00 0.860

0.902 0.774

0.752 0.645

57.5 48.3

16.3 16.5

50 x 20 x 2.8 RHS 2.3 RHS

2.67 2.25

7.95 6.85

5.30 4.57

3.98 3.43

3.18 2.74

2.65 2.28

2.27 1.96

1.99 1.71

1.59 1.37

1.33 1.14

1.14 0.979

0.994 0.857

0.884 0.761

0.795 0.685

0.663 0.571

56.8 47.7

11.3 11.6

Notes:

1.

DCTDHS/06 MARCH 2002

2. 3. 4. 5. 6.

FLR FLR φ αm αs W *L1 W *L2

= = = = = = =

1.809 (π2 E Iy G J / M2SX)0.5 (See Section D4.1.3 of these tables for explanation) Segment length for full lateral restraint (φMbx = φMsx) 0.9 1.0 1.0 2 φ Ms/L φ Vv


DCTDHS/06 MARCH 2002

TABLE D8.4-2(B)

SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS CANTILEVER BEAMS DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness bending about x-axis DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250

Designation d

b

W*S1 (kN)

Mass per m

Span of Beam (L) in metres

t

mm mm mm

kg/m

0.5

0.75

1.0

125 x 75 x 2.8 RHS 2.3 RHS

8.39 6.95

58.5 49.0

26.0 21.8

14.6 12.3

100 x 50 x 2.8 RHS 2.3 RHS

6.19 5.14

25.7 21.7

11.4 9.65

75 x 50 x 2.8 RHS 2.3 RHS

5.09 4.24

12.6 10.7

65 x 35 x 2.8 RHS 2.3 RHS

3.99 3.34

50 x 25 x 2.8 RHS 2.3 RHS 50 x 20 x 2.8 RHS 2.3 RHS Note:

1.

1.25

1.5

1.75

2.0

2.5

3.0

3.5

4.0

4.5

5.0

9.36 7.84

6.50 5.45

4.78 4.00

3.66 3.06

2.34 1.96

1.62 1.36

1.19 1.00

0.914 0.766

0.722 0.605

0.585 0.490

0.406 0.340

6.43 5.43

4.12 3.47

2.86 2.41

2.10 1.77

1.61 1.36

1.03 0.869

0.714 0.603

0.525 0.443

0.402 0.339

0.318 0.268

0.257 0.217

0.179 0.151

5.61 4.77

3.16 2.68

2.02 1.72

1.40 1.19

1.03 0.876

0.790 0.670

0.505 0.429

0.351 0.298

0.258 0.219

0.197 0.168

0.156 0.132

0.126 0.107

0.0877 0.0745

6.83 5.86

3.04 2.60

1.71 1.46

1.09 0.937

0.759 0.651

0.558 0.478

0.427 0.366

0.273 0.234

0.190 0.163

0.139 0.120

0.107 0.0915

0.0843 0.0723

0.0683 0.0586

0.0474 0.0407

2.89 2.44

2.73 2.38

1.22 1.06

0.684 0.596

0.438 0.381

0.304 0.265

0.223 0.195

0.171 0.149

0.109 0.0954

0.0760 0.0662

0.0558 0.0487

0.0427 0.0372

0.0338 0.0294

0.0273 0.0238

0.0190 0.0166

2.67 2.25

2.34 2.05

1.04 0.911

0.584 0.512

0.374 0.328

0.259 0.228

0.191 0.167

0.146 0.128

0.0934 0.0819

0.0649 0.0569

0.0477 0.0418

0.0365 0.0320

0.0288 0.0253

0.0234 0.0205

0.0162 0.0142

Serviceabilty Load W *S1 =8EI / (250L2)

6.0

D8-51


D8-52

TABLE D8.4-3(1)(A)

STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS CANTILEVER BEAMS WITH FULL LATERAL RESTRAINT DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis W *L1 = Maximum Design Load based on Design Moment Capacity W *L2 = Maximum Design Load based on Design Shear Capacity Maximum Design Load W *L is LESSER of W *L1 and W *L2

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

Designation d

b

W*L1 (kN)

Mass per m

W*L2 Span of Beam (L) in metres

t

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

13.0

14.0

kN

59.6 51.4 42.1 30.1 22.7 16.3

29.8 25.7 21.0 15.0 11.4 8.13

19.9 17.1 14.0 10.0 7.58 5.42

14.9 12.9 10.5 7.52 5.69 4.07

11.9 10.3 8.41 6.01 4.55 3.25

9.93 8.57 7.01 5.01 3.79 2.71

8.51 7.35 6.01 4.30 3.25 2.32

7.45 6.43 5.26 3.76 2.84 2.03

6.62 5.72 4.67 3.34 2.53 1.81

5.96 5.14 4.21 3.01 2.27 1.63

5.42 4.68 3.82 2.73 2.07 1.48

4.96 4.29 3.50 2.51 1.90 1.36

4.58 3.96 3.23 2.31 1.75 1.25

4.25 3.67 3.00 2.15 1.62 1.16

253 216 177 135 114 92.2

23.8 19.5 13.9 9.97

11.9 9.74 6.94 4.98

7.95 6.49 4.63 3.32

5.96 4.87 3.47 2.49

4.77 3.89 2.78 1.99

3.97 3.25 2.31 1.66

3.41 2.78 1.98 1.42

2.98 2.43 1.73 1.25

2.65 2.16 1.54 1.11

2.38 1.95 1.39 0.997

2.17 1.77 1.26 0.906

1.99 1.62 1.16 0.831

1.83 1.50 1.07 0.767

1.70 1.39 0.991 0.712

121 102 82.6 66.7

89 x 89 x 6.0 SHS 9.06 5.0 SHS 12.5 3.5 SHS 14.6

28.9 39.8 45.8

14.5 19.9 22.9

9.64 13.3 15.3

7.23 9.94 11.5

5.78 7.95 9.16

4.82 6.63 7.63

4.13 5.68 6.54

3.61 4.97 5.73

3.21 4.42 5.09

2.89 3.98 4.58

2.63 3.62 4.16

2.41 3.31 3.82

2.22 3.06 3.52

2.06 2.84 3.27

138 189 221

75 x 75 x 6.0 SHS 12.0 5.0 SHS 10.3 4.0 SHS 8.49 3.5 SHS 7.53 3.0 SHS 6.60 2.5 SHS 5.56 2.0 SHS 4.50

31.1 27.3 22.9 20.5 18.0 13.8 10.6

15.6 13.6 11.4 10.2 8.99 6.90 5.29

10.4 9.08 7.63 6.83 5.99 4.60 3.53

7.78 6.81 5.72 5.12 4.49 3.45 2.65

6.22 5.45 4.58 4.10 3.60 2.76 2.12

5.19 4.54 3.81 3.42 3.00 2.30 1.76

4.44 3.89 3.27 2.93 2.57 1.97 1.51

3.89 3.41 2.86 2.56 2.25 1.73 1.32

3.46 3.03 2.54 2.28 2.00 1.53 1.18

3.11 2.73 2.29 2.05 1.80 1.38 1.06

2.83 2.48 2.08 1.86 1.63 1.25 0.962

2.59 2.27 1.91 1.71 1.50 1.15 0.882

2.39 2.10 1.76 1.58 1.38 1.06 0.814

2.22 1.95 1.63 1.46 1.28 0.986 0.756

181 156 129 114 99.4 84.0 68.2

mm mm mm

kg/m

100 x 100 x 6.0 SHS 16.7 5.0 SHS 14.2 4.0 SHS 11.6 3.0 SHS 8.96 2.5 SHS 7.53 2.0 SHS 6.07 90 x 90 x 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS

Notes:

DCTDHS/06 MARCH 2002

1. 2. 3. 4. 5.

φ αm αs W *L1 W *L2

= = = = =

8.01 6.74 5.45 4.39

0.9 1.0 1.0 2 φ Ms/L φ Vv


DCTDHS/06 MARCH 2002

TABLE D8.4-3(1)(B)

SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS CANTILEVER BEAMS DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250

Designation d mm

b

W*S1 (kN)

Mass per m

Span of Beam (L) in metres

t

mm mm

kg/m

100 x 100 x 6.0 SHS 16.7 5.0 SHS 14.2 4.0 SHS 11.6 3.0 SHS 8.96 2.5 SHS 7.53 2.0 SHS 6.07

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

13.0

14.0

19.4 17.0 14.3 11.3 9.64 7.87

4.86 4.25 3.57 2.83 2.41 1.97

2.16 1.89 1.59 1.26 1.07 0.875

1.21 1.06 0.892 0.708 0.603 0.492

0.777 0.680 0.571 0.453 0.386 0.315

0.540 0.472 0.396 0.315 0.268 0.219

0.397 0.347 0.291 0.231 0.197 0.161

0.304 0.266 0.223 0.177 0.151 0.123

0.240 0.210 0.176 0.140 0.119 0.0972

0.194 0.170 0.143 0.113 0.0964 0.0787

0.161 0.141 0.118 0.0936 0.0797 0.0651

0.135 0.118 0.0991 0.0787 0.0669 0.0547

0.115 0.101 0.0844 0.0670 0.0570 0.0466

0.0992 0.0868 0.0728 0.0578 0.0492 0.0402

8.01 6.74 5.45 4.39

8.15 6.95 5.69 4.63

2.04 1.74 1.42 1.16

0.905 0.772 0.632 0.515

0.509 0.434 0.355 0.290

0.326 0.278 0.227 0.185

0.226 0.193 0.158 0.129

0.166 0.142 0.116 0.0946

0.127 0.109 0.0889 0.0724

0.101 0.0858 0.0702 0.0572

0.0815 0.0695 0.0569 0.0463

0.0673 0.0574 0.0470 0.0383

0.0566 0.0482 0.0395 0.0322

0.0482 0.0411 0.0337 0.0274

0.0416 0.0354 0.0290 0.0236

89 x 89 x 6.0 SHS 9.06 5.0 SHS 12.5 3.5 SHS 14.6

8.80 11.6 13.2

2.20 2.90 3.29

0.977 1.29 1.46

0.550 0.724 0.822

0.352 0.464 0.526

0.244 0.322 0.365

0.180 0.237 0.268

0.137 0.181 0.206

0.109 0.143 0.162

0.0880 0.116 0.132

0.0727 0.0958 0.109

0.0611 0.0805 0.0914

0.0520 0.0686 0.0778

0.0449 0.0591 0.0671

75 x 75 x 6.0 SHS 12.0 5.0 SHS 10.3 4.0 SHS 8.49 3.5 SHS 7.53 3.0 SHS 6.60 2.5 SHS 5.56 2.0 SHS 4.50

7.41 6.61 5.65 5.10 4.58 3.93 3.23

1.85 1.65 1.41 1.28 1.15 0.982 0.808

0.823 0.734 0.627 0.567 0.509 0.436 0.359

0.463 0.413 0.353 0.319 0.286 0.246 0.202

0.296 0.264 0.226 0.204 0.183 0.157 0.129

0.206 0.184 0.157 0.142 0.127 0.109 0.0898

0.151 0.135 0.115 0.104 0.0935 0.0802 0.0659

0.116 0.103 0.0882 0.0797 0.0716 0.0614 0.0505

0.0915 0.0816 0.0697 0.0630 0.0566 0.0485 0.0399

0.0741 0.0661 0.0565 0.0510 0.0458 0.0393 0.0323

0.0612 0.0546 0.0467 0.0422 0.0379 0.0325 0.0267

0.0515 0.0459 0.0392 0.0354 0.0318 0.0273 0.0224

0.0438 0.0391 0.0334 0.0302 0.0271 0.0232 0.0191

0.0378 0.0337 0.0288 0.0260 0.0234 0.0200 0.0165

90 x 90 x 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS

D8-53

Note:

1.

Serviceabilty Load W *S1 =8EI / (250L2)


TABLE D8.4-3(2)(A)

STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS

D8-54

CANTILEVER BEAMS WITH FULL LATERAL RESTRAINT DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis = Maximum Design Load based on Design Moment Capacity

W *L1 W *L2 = Maximum Design Load based on Design Shear Capacity Maximum Design Load W *L is LESSER of W *L1 and W *L2

Designation d

b

W*L1 (kN)

Mass per m

W*L2 Span of Beam (L) in metres

t

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002

mm mm mm

kg/m

0.5

0.75

1.0

1.25

1.5

75 x 75 x 6.0 SHS 5.0 SHS 4.0 SHS 3.5 SHS 3.0 SHS 2.5 SHS 2.0 SHS 65 x 65 x 6.0 SHS 5.0 SHS 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 50 x 50 x 5.0 SHS 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 40 x 40 x 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 35 x 35 x 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 30 x 30 x 2.0 SHS 1.6 SHS 25 x 25 x 2.5 SHS 2.0 SHS 1.6 SHS 20 x 20 x 1.6 SHS

12.0 10.3 8.49 7.53 6.60 5.56 4.50 10.1 8.75 7.23 5.66 4.78 3.88 3.13 6.39 5.35 4.25 3.60 2.93 2.38 4.09 3.30 2.82 2.31 1.88 2.83 2.42 1.99 1.63 1.68 1.38 1.64 1.36 1.12 0.873

62.2 54.5 45.8 41.0 36.0 27.6 19.7 44.6 39.4 33.4 26.8 22.2 15.9 11.4 21.3 18.4 15.2 13.1 10.7 7.68 10.9 9.27 8.05 6.70 5.45 6.85 5.99 5.01 4.16 3.57 2.98 2.77 2.38 2.00 1.22

41.5 36.3 30.5 27.3 24.0 18.4 13.1 29.7 26.3 22.2 17.9 14.8 10.6 7.57 14.2 12.3 10.1 8.72 7.10 5.12 7.27 6.18 5.36 4.46 3.64 4.57 3.99 3.34 2.77 2.38 1.99 1.85 1.58 1.33 0.811

31.1 27.3 22.9 20.5 18.0 13.8 9.83 22.3 19.7 16.7 13.4 11.1 7.94 5.68 10.7 9.22 7.60 6.54 5.33 3.84 5.46 4.64 4.02 3.35 2.73 3.43 2.99 2.51 2.08 1.79 1.49 1.39 1.19 1.00 0.608

24.9 21.8 18.3 16.4 14.4 11.0 7.86 17.8 15.8 13.3 10.7 8.86 6.35 4.54 8.53 7.38 6.08 5.23 4.26 3.07 4.36 3.71 3.22 2.68 2.18 2.74 2.39 2.01 1.66 1.43 1.19 1.11 0.950 0.801 0.486

20.7 18.2 15.3 13.7 12.0 9.20 6.55 14.9 13.1 11.1 8.95 7.39 5.29 3.78 7.10 6.15 5.07 4.36 3.55 2.56 3.64 3.09 2.68 2.23 1.82 2.28 2.00 1.67 1.39 1.19 0.994 0.925 0.792 0.667 0.405

Notes:

1.

φ = 0.9

2. α m = 1.0

3. αs = 1.0

4. W *L1 = 2 φ Ms/L

1.75 17.8 15.6 13.1 11.7 10.3 7.89 5.62 12.7 11.3 9.53 7.67 6.33 4.54 3.24 6.09 5.27 4.35 3.74 3.04 2.19 3.12 2.65 2.30 1.91 1.56 1.96 1.71 1.43 1.19 1.02 0.852 0.793 0.679 0.572 0.347

5. W *L2 = φ Vv

2.0 15.6 13.6 11.4 10.2 8.99 6.90 4.91 11.1 9.85 8.34 6.71 5.54 3.97 2.84 5.33 4.61 3.80 3.27 2.66 1.92 2.73 2.32 2.01 1.67 1.36 1.71 1.50 1.25 1.04 0.893 0.746 0.694 0.594 0.500 0.304

2.5

3.0

3.5

4.0

4.5

5.0

6.0

kN

12.4 10.9 9.15 8.20 7.19 5.52 3.93 8.91 7.88 6.67 5.37 4.43 3.18 2.27 4.26 3.69 3.04 2.62 2.13 1.54 2.18 1.85 1.61 1.34 1.09 1.37 1.20 1.00 0.831 0.715 0.596 0.555 0.475 0.400 0.243

10.4 9.08 7.63 6.83 5.99 4.60 3.28 7.43 6.57 5.56 4.47 3.69 2.65 1.89 3.55 3.07 2.53 2.18 1.78 1.28 1.82 1.55 1.34 1.12 0.909 1.14 0.998 0.836 0.693 0.595 0.497 0.462 0.396 0.334 0.203

8.89 7.79 6.54 5.86 5.14 3.94 2.81 6.37 5.63 4.77 3.84 3.17 2.27 1.62 3.04 2.63 2.17 1.87 1.52 1.10 1.56 1.32 1.15 0.957 0.779 0.979 0.855 0.716 0.594 0.510 0.426 0.396 0.339 0.286 0.174

7.78 6.81 5.72 5.12 4.49 3.45 2.46 5.57 4.93 4.17 3.36 2.77 1.99 1.42 2.66 2.30 1.90 1.63 1.33 0.960 1.36 1.16 1.01 0.837 0.682 0.856 0.748 0.627 0.520 0.447 0.373 0.347 0.297 0.250 0.152

6.91 6.06 5.08 4.55 4.00 3.07 2.18 4.95 4.38 3.71 2.98 2.46 1.76 1.26 2.37 2.05 1.69 1.45 1.18 0.853 1.21 1.03 0.894 0.744 0.606 0.761 0.665 0.557 0.462 0.397 0.331 0.308 0.264 0.222 0.135

6.22 5.45 4.58 4.10 3.60 2.76 1.97 4.46 3.94 3.34 2.68 2.22 1.59 1.14 2.13 1.84 1.52 1.31 1.07 0.768 1.09 0.927 0.805 0.670 0.545 0.685 0.599 0.501 0.416 0.357 0.298 0.277 0.238 0.200 0.122

5.19 4.54 3.81 3.42 3.00 2.30 1.64 3.71 3.28 2.78 2.24 1.85 1.32 0.946 1.78 1.54 1.27 1.09 0.888 0.640 0.909 0.773 0.671 0.558 0.455 0.571 0.499 0.418 0.346 0.298 0.249 0.231 0.198 0.167 0.101

181 156 129 114 99.4 84.0 68.2 153 132 109 85.0 72.0 58.6 47.5 96.0 80.6 63.4 54.0 44.2 35.9 61.4 49.0 42.0 34.6 28.3 41.8 36.0 29.8 24.4 25.0 20.6 24.0 20.2 16.7 12.9


TABLE D8.4-3(2)(B) DCTDHS/06 MARCH 2002

SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS CANTILEVER BEAMS DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250

Designation d

b

W*S1 (kN)

Mass per m

Span of Beam (L) in metres

t

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

D8-55

mm mm mm

kg/m

0.5

75 x 75 x 6.0 SHS 5.0 SHS 4.0 SHS 3.5 SHS 3.0 SHS 2.5 SHS 2.0 SHS 65 x 65 x 6.0 SHS 5.0 SHS 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 50 x 50 x 5.0 SHS 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 40 x 40 x 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 35 x 35 x 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 30 x 30 x 2.0 SHS 1.6 SHS 25 x 25 x 2.5 SHS 2.0 SHS 1.6 SHS 20 x 20 x 1.6 SHS

12.0 10.3 8.49 7.53 6.60 5.56 4.50 10.1 8.75 7.23 5.66 4.78 3.88 3.13 6.39 5.35 4.25 3.60 2.93 2.38 4.09 3.30 2.82 2.31 1.88 2.83 2.42 1.99 1.63 1.68 1.38 1.64 1.36 1.12 0.873

29.6 13.2 26.4 11.8 22.6 10.0 20.4 9.07 18.3 8.15 15.7 6.98 12.9 5.74 18.1 8.04 16.3 7.26 14.1 6.28 11.6 5.17 10.0 4.45 8.27 3.68 6.79 3.02 6.58 2.92 5.86 2.60 4.98 2.21 4.34 1.93 3.62 1.61 3.00 1.33 2.69 1.20 2.39 1.06 2.10 0.935 1.78 0.790 1.48 0.659 1.52 0.677 1.35 0.602 1.15 0.513 0.970 0.431 0.697 0.310 0.591 0.263 0.433 0.192 0.380 0.169 0.326 0.145 0.156 0.0691

Note:

1.

0.75

Serviceabilty Load W *S1 = 8EI / (250L2)

1.0

1.25

1.5

1.75

7.41 6.61 5.65 5.10 4.58 3.93 3.23 4.52 4.08 3.53 2.91 2.50 2.07 1.70 1.64 1.46 1.25 1.08 0.905 0.749 0.674 0.597 0.526 0.444 0.371 0.381 0.339 0.288 0.242 0.174 0.148 0.108 0.0949 0.0816 0.0389

4.74 4.23 3.61 3.27 2.93 2.51 2.07 2.89 2.61 2.26 1.86 1.60 1.32 1.09 1.05 0.937 0.797 0.694 0.579 0.479 0.431 0.382 0.336 0.284 0.237 0.244 0.217 0.185 0.155 0.111 0.0946 0.0692 0.0608 0.0522 0.0249

3.29 2.94 2.51 2.27 2.04 1.75 1.44 2.01 1.82 1.57 1.29 1.11 0.919 0.754 0.731 0.651 0.554 0.482 0.402 0.333 0.299 0.265 0.234 0.197 0.165 0.169 0.150 0.128 0.108 0.0774 0.0657 0.0481 0.0422 0.0363 0.0173

2.42 2.16 1.84 1.67 1.50 1.28 1.06 1.48 1.33 1.15 0.949 0.817 0.675 0.554 0.537 0.478 0.407 0.354 0.296 0.245 0.220 0.195 0.172 0.145 0.121 0.124 0.111 0.0942 0.0792 0.0569 0.0482 0.0353 0.0310 0.0266 0.0127

2.0 1.85 1.65 1.41 1.28 1.15 0.982 0.808 1.13 1.02 0.883 0.727 0.626 0.517 0.424 0.411 0.366 0.311 0.271 0.226 0.187 0.168 0.149 0.131 0.111 0.0927 0.0952 0.0846 0.0721 0.0606 0.0436 0.0369 0.0270 0.0237 0.0204 0.00972

2.5 1.19 1.06 0.904 0.816 0.733 0.629 0.517 0.723 0.654 0.565 0.465 0.400 0.331 0.272 0.263 0.234 0.199 0.174 0.145 0.120 0.108 0.0955 0.0841 0.0711 0.0593 0.0609 0.0542 0.0462 0.0388 0.0279 0.0236 0.0173 0.0152 0.0131 0.00622

3.0 0.823 0.734 0.627 0.567 0.509 0.436 0.359 0.502 0.454 0.392 0.323 0.278 0.230 0.189 0.183 0.163 0.138 0.120 0.101 0.0832 0.0748 0.0663 0.0584 0.0494 0.0412 0.0423 0.0376 0.0321 0.0269 0.0194 0.0164 0.0120 0.0105 0.00907 0.00432

3.5 0.605 0.540 0.461 0.417 0.374 0.321 0.264 0.369 0.333 0.288 0.237 0.204 0.169 0.139 0.134 0.119 0.102 0.0885 0.0739 0.0612 0.0550 0.0487 0.0429 0.0363 0.0303 0.0311 0.0276 0.0235 0.0198 0.0142 0.0121 0.00883 0.00775 0.00666 0.00317

4.0 0.463 0.413 0.353 0.319 0.286 0.246 0.202 0.283 0.255 0.221 0.182 0.156 0.129 0.106 0.103 0.0915 0.0779 0.0678 0.0566 0.0468 0.0421 0.0373 0.0329 0.0278 0.0232 0.0238 0.0212 0.0180 0.0152 0.0109 0.00924 0.00676 0.00593 0.00510 0.00243

4.5

5.0

0.366 0.296 0.326 0.264 0.279 0.226 0.252 0.204 0.226 0.183 0.194 0.157 0.160 0.129 0.223 0.181 0.202 0.163 0.174 0.141 0.144 0.116 0.124 0.100 0.102 0.0827 0.0838 0.0679 0.0812 0.0658 0.0723 0.0586 0.0615 0.0498 0.0536 0.0434 0.0447 0.0362 0.0370 0.0300 0.0333 0.0269 0.0295 0.0239 0.0260 0.0210 0.0219 0.0178 0.0183 0.0148 0.0188 0.0152 0.0167 0.0135 0.0142 0.0115 0.0120 0.00970 0.00860 0.00697 0.00730 0.00591 0.00534 0.00433 0.00469 0.00380 0.00403 0.00326 0.00192 0.00156

6.0 0.206 0.184 0.157 0.142 0.127 0.109 0.0898 0.126 0.113 0.0981 0.0807 0.0695 0.0574 0.0471 0.0457 0.0407 0.0346 0.0301 0.0252 0.0208 0.0187 0.0166 0.0146 0.0123 0.0103 0.0106 0.00940 0.00801 0.00674 0.00484 0.00410 0.00300 0.00264 0.00227 0.00108


D8-56 TABLE D8.4-4(A)

STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS CANTILEVER WITH FULL LATERAL RESTRAINT DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness bending about x-axis DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

W *L1 = Maximum Design Load based on Design Moment Capacity W *L2 = Maximum Design Load based on Design Shear Capacity Maximum Design Load W *L is LESSER of W *L1 and W *L2

Designation d

b

W*L1 (kN)

Mass per m

W*L2 Span of Beams (L) in metres

t

mm mm mm

kg/m

0.5

0.75

1.0

1.25

1.5

1.75

2.0

2.5

3.0

3.5

4.0

4.5

5.0

6.0

kN

100 x 100 x 2.8 SHS 2.3 SHS

8.39 6.95

50.1 37.4

33.4 24.9

25.1 18.7

20.1 15.0

16.7 12.5

14.3 10.7

12.5 9.34

10.0 7.48

8.36 6.23

7.16 5.34

6.27 4.67

5.57 4.15

5.01 3.74

4.18 3.11

127 105

75 x 75 x 2.8 SHS 2.3 SHS

6.19 5.14

32.6 24.3

21.8 16.2

16.3 12.1

13.1 9.71

10.9 8.09

9.32 6.94

8.16 6.07

6.53 4.86

5.44 4.05

4.66 3.47

4.08 3.03

3.63 2.70

3.26 2.43

2.72 2.02

93.3 77.7

13.1

65 x 65 x 2.3 SHS

4.42

19.6

50 x 50 x 2.8 SHS 2.3 SHS

3.99 3.34

14.4 12.2

40 x 40 x 2.8 SHS 2.3 SHS

3.11 2.62

35 x 35 x 2.8 SHS 2.3 SHS

2.67 2.25

Notes:

1. 2. 3. 4. 5.

φ αm αs W *L1 W *L2

= = = = =

0.9 1.0 1.0 2 φ Ms/L φ Vv

9.82

7.86

6.55

5.61

4.91

3.93

3.27

2.81

2.46

2.18

1.96

1.64

66.7

9.58 8.12

7.19 6.09

5.75 4.87

4.79 4.06

4.11 3.48

3.59 3.05

2.88 2.44

2.40 2.03

2.05 1.74

1.80 1.52

1.60 1.35

1.44 1.22

1.20 1.02

59.7 50.1

8.80 7.52

5.86 5.01

4.40 3.76

3.52 3.01

2.93 2.51

2.51 2.15

2.20 1.88

1.76 1.50

1.47 1.25

1.26 1.07

1.10 0.940

0.977 0.836

0.880 0.752

0.733 0.627

46.2 39.1

6.52 5.61

4.34 3.74

3.26 2.80

2.61 2.24

2.17 1.87

1.86 1.60

1.63 1.40

1.30 1.12

1.09 0.935

0.931 0.801

0.815 0.701

0.724 0.623

0.652 0.561

0.543 0.467

39.5 33.6

DCTDHS/06 MARCH 2002


DCTDHS/06 MARCH 2002

TABLE D8.4-4(B)

SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS CANTILEVER BEAMS DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness bending about x-axis W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

Designation d

b

W*S1 (kN)

Mass per m

Span of Beam (L) in metres

t

kg/m

0.5

0.75

1.0

1.25

1.5

1.75

2.0

2.5

3.0

3.5

4.0

4.5

100 x 100 x 2.8 SHS 2.3 SHS

8.39 6.95

42.7 35.8

19.0 15.9

10.7 8.94

6.82 5.72

4.74 3.97

3.48 2.92

2.67 2.24

1.71 1.43

1.18 0.994

0.871 0.730

0.666 0.559

75 x 75 x 2.8 SHS 2.3 SHS

6.19 5.14

17.3 14.6

7.69 6.50

4.33 3.65

2.77 2.34

1.92 1.62

1.41 1.19

1.08 0.914

0.692 0.585

0.481 0.406

0.353 0.298

0.270 0.228

mm

mm mm

5.0

6.0

0.527 0.442

0.427 0.358

0.296 0.248

0.214 0.180

0.173 0.146

0.120 0.102

65 x 65 x 2.3 SHS

4.42

9.33

4.15

2.33

1.49

1.04

0.762

0.583

0.373

0.259

0.190

0.146

0.115

0.0933

0.0648

50 x 50 x 2.8 SHS 2.3 SHS

3.99 3.34

4.73 4.06

2.10 1.80

1.18 1.01

0.757 0.650

0.526 0.451

0.386 0.331

0.296 0.254

0.189 0.162

0.131 0.113

0.0966 0.0829

0.0740 0.0634

0.0584 0.0501

0.0473 0.0406

0.0329 0.0282

40 x 40 x 2.8 SHS 2.3 SHS

3.11 2.62

2.28 1.98

1.01 0.879

0.570 0.494

0.365 0.316

0.253 0.220

0.186 0.161

0.142 0.124

0.0911 0.0791

0.0633 0.0549

0.0465 0.0404

0.0356 0.0309

0.0281 0.0244

0.0228 0.0198

0.0158 0.0137

35 x 35 x 2.8 SHS 2.3 SHS

2.67 2.25

1.46 1.28

0.648 0.568

0.365 0.319

0.233 0.204

0.162 0.142

0.119 0.104

0.0912 0.0799

0.0584 0.0511

0.0405 0.0355

0.0298 0.0261

0.0228 0.0200

0.0180 0.0158

0.0146 0.0128

0.0101 0.00887

Note:

1.

Serviceabilty Load W *S1 = 8EI / (250L2)

D8-57


[ BLANK ]

D8-58

DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS

DCTDHS/06 MARCH 2002


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.