№Бе
Dur aGal design capacity tables for steel hollow sections
MARCH 2002
DCTDHS/06 MARCH 2002
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
i
This publication, the DuraGal design capacity tables for hollow sections, is also available on CD, as part of the OneSteel Structural Products catalogue, and on our web site at www.onesteel.com Other OneSteel Pipe & Tube technical publications and design aids that are available are:
•
DuraGal design capacity tables for structural steel angles, channels & flats
•
Technical Information – DuraGal Profiles, angles, channels & flats, Technical Specification TS100 (There is no Australian Standard for these products, TS100 details technical requirements for manufacture & supply)
•
Technical Information – Structural Cold Formed Hollow Sections and Profiles (Product information, specifications, dimensions and properties and product availability)
•
CAD Files – DFX Format Files for OneSteel Market Mills Pipe & Tube structural steel sections, both hollows and profiles, available only from the web site (www.onesteel.com)
•
DuraGal Easy Welding Guide
•
DuraGal Easy Painting & Corrosion Protection Guide
•
DuraGal & Galtube Plus Powder Coating Guide
•
Product Guide (a list of all OneSteel Market Mills Pipe & Tube products)
•
DuraGal Flooring System (A bearer, joist and height adjustable pier system using DuraGal RHS)
•
DuraGal Mezzanine Flooring System for commercial storage and industrial applications.
•
DuraGal Post – The low maintenance steel verandah post
•
DuraGal Verandah beam spanning tables
•
DuraGal Plus for Lintels
For further information contact OneSteel Direct: Freecall
1800 1 STEEL (1800 1 78335)
Freefax
1800 101 141
onesteeldirect@onesteel.com
Or visit web site at www.onesteel.com and print and download the section you need.
This publication has been prepared by OneSteel Market Mills an operating business group of which OneSteel Trading Pty Limited ABN 59 000 010 873 is a part of. Please note that the specifications and technical data are subject to change without notice and to ensure accuracy and adequacy users of this publication are requested to check the information to satisfy themselves and not to rely on the information without first doing so. Unless required by law, the company cannot accept any responsibility for any loss, damage or consequence resulting from the use of this publication. Photographs shown are representative only of typical applications, current at March 13 2002. This brochure is not an offer to trade and shall not form any part of the trading terms in any transaction. ©Copyright 2002. OneSteel Trading Pty Limited ABN 59 000 010 873 Registered Trademarks of OneSteel Trading Pty Limited ABN 59 000 010 873: DuraGal , Family of DuraGal Products Issue (6) March 2002. Printed March 13 2002
ii
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
DCTDHS/06 MARCH 2002
CONTENTS Page Foreword ............................................................................................................................. iv Acknowledgements ............................................................................................................. iv Preface ................................................................................................................................. v INTRODUCTION ................................................................................................................ vi GRADE .............................................................................................................................. vii LIMIT STATES DESIGN USING THESE TABLES .............................................................. xi GENERAL NOTES ON THE TABLES ............................................................................... xii CONVERSION TO SAFE WORKING LOADS .................................................................. xiii LIST OF PRINCIPAL SYMBOLS USED IN THE TABLES ................................................ xiv PART 1:
SECTION PROPERTIES ............................................................................... D1-1
PART 2:
Determination of DESIGN EFFECTS ........................................................... D2-1
PART 3:
SECTION CAPACITIES ................................................................................. D3-1
PART 4:
Members Subject to BENDING .................................................................... D4-1
PART 5:
Members Subject to AXIAL COMPRESSION .............................................. D5-1
PART 6:
Members Subject to AXIAL TENSION ......................................................... D6-1
PART 7:
Members subject to COMBINED ACTIONS ................................................ D7-1
PART 8:
MAXIMUM DESIGN LOADS for Beams ....................................................... D8-1
DCTDHS/06 MARCH 2002
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
iii
FOREWORD DuraGal C450L0 Rectangular Hollow Sections offer significant benefits in the design of tubular structures of all kinds. The high strength characteristics of DuraGal make the product design efficient in terms of mass reduction and therefore improve the economy of tubular structures. It is strongly recommended that DuraGal hollow sections manufactured by OneSteel be specified for use when any of the design information in these design capacity tables are used. The calculations including product tolerances, mechanical properties and chemical composition have been validated by testing using only OneSteel products. To ensure that the designers intentions are met, it is recommended that a note to this effect is included on any design documentation.
ACKNOWLEDGMENTS OneSteel Market Mills Pipe & Tube wish to acknowledge the cooperation of the Australian Institute of Steel Construction in allowing some data from their publication “Design Capacity Tables for Structural Steel Hollow Sections” to be included in this publication. Recognition and thanks are also due to:
•
AISC Technical Services staff
in the calculation and compilation of the technical text and design capacity tables. Acknowledgment is also made of Standards of Australia permission to reprint a table from AS 4100-1998.
PREVIOUS ISSUES June 1994 June 1996 September 1999 September 2000 July 2001 (electronic format only)
iv
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
DCTDHS/06 MARCH 2002
PREFACE DuraGal RHS is manufactured to meet the requirements of AS 1163 Grade C450L0. The companion is necessary as the DuraGal DCT’s include some research that was not available to The AISC and some design aids that were not incorparated in the AISC DCT’s. The Differences are :-
•
Dramatically increased segment length for full lateral restraint (FLR)[6].
•
Maximum design loads for continuous, fixed end and cantilever beams.
•
Elastic buckling loads (Nom) for various effective lengths.
DCTDHS/06 MARCH 2002
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
v
INTRODUCTION DESIGN CAP ACITY TABLES CAPACITY The DuraGal Design Capacity Tables have been prepared in accordance with AS 4100-1998 - Steel Structures. Research was undertaken at the Centre for Advanced Structural Engineering, The University of Sydney[1,2] to confirm the application of those member design rules in AS 4100 applicable to the design of coldformed sections for the determination of DuraGal Design Capacities. The tables in this publication use the method recommended in [6] for calculating the segment length for full lateral restraint (FLR) of Rectangular Hollow Sections (RHS). OneSteel Market Mills Pipe & Tube commissioned the Centre for Advanced Structural Engineering, Civil Engineering, The University of Sydney to undertake an analytical study of the lateral buckling of RHS. The study was conducted as RHS sections rarely buckle laterally, yet AS 4100-1990 Steel Structures required a reduction in the section capacity to account for lateral buckling in RHS members with comparatively closely spaced braces. The results of the study are contained in [6] and show that the rules in AS 4100 give conservative values of FLR for RHS. The results of the analytical investigation have been confirmed by a testing program. [8] Design capacity tables have been included for the 2.3 and 2.8 mm thick C450L0 material produced by OneSteel and are headed Non-Standard thickness. These tables are provided to allow designers to select an equivalent capacity section when converting to a OneSteel standard DuraGal section. Design capacities for sizes in thicknesses 1.6 to 6 mm are contained in tables headed Standard Thickness.
CONNECTIONS A research program[7] has been completed at the Centre for Advanced Structural Engineering, The University of Sydney, to develop rules for the design of connections in cold-formed steel hollow sections manufactured by OneSteel. The program included DuraGal and also covered sections less than 3.0 mm thick. Standards Australia, Amendment No. 3 to AS 4100-1990 Steel Structures, incorporated this research work and allowed the use of hollow sections to AS 1163, thinner than 3mm thick.
PLASTIC DESIGN Another research program[10] completed at the Centre for Advanced Structural Engineering, The University of Sydney, has shown that plastic design methods can be used in the design of portal frames using DuraGal hollow sections. Typically a 15% increase in strength design capacity can result. This increase can be of most benefit in rigid frames, ie low rise portal frames such as those used in commercial/ industrial sheds, garages, farm buildings, etc, where deflection due to design loads is not a critical limit state. The research was partially funded by CIDECT, an international committee for the development and study of tubular structures, and will eventually be incorporated in their series of design aids. OneSteel is developing a range of proprietary fittings suitable for use in the above types of buildings. For more information ring Freecall 1800 1 STEEL (1800 1 78335) or Freefax on 1800 101 141.
vi
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
DCTDHS/06 MARCH 2002
GRADE DuraGal RHS is manufactured by a unique cold forming process which ensures that it complies with the requirements of AS 1163 to both Grade C350L0 and Grade C450L0.
Grade and Mechanical Properties Grade
C350L0/C450L0
Minimum Yield Stress fy MPa
Minimum Tensile Strength fu MPa
Minimum elongation as a proportion of gauge length of 5.65√So
450
500
16
%
L0 indicates that DuraGal has Charpy V-notch impact properties as specified in AS 1163-1991. AS4100 - 1998 Steel Structures, in section 10, permits L0 grades to have the following minimum service temperature:
Thickness - mm
Lowest One Day Mean Ambient Temperature - oC
t< 6
-30
SURFACE FINISH External In-line Hot dip galvanizes over a prepared metal surface to produce a fully bonded coating with a minimum average coating mass of 100 g/m2 or approximately 14.3 microns thick, in accordance with AS/NZS 4792:1999, Hot-dip galvanized (zinc) coatings on ferrous hollow sections, applied by a continuous or a specialized process. A surface conversion coating is applied to protect the galvanizing prior to fabrication. Internal Black steel surface.
SIZE RANGE
DCTDHS/06 MARCH 2002
Square
Rectangle
20 x 20 to 100 x 100
50 x 20 to 150 x 50
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
vii
LENGTH RANGE DuraGal is stocked by distributors in the following lengths. Size
Standard Length - m
Non-Standard Lengths* - m
20 x 20 to 30 x 30
6.5
4.5 to 8.0
35 x 35 to 100 x 100 50 x 20 to 150 x 50
8.0
4.5 to 13.0
* Non-standard Lengths - Minimum order quantities and/or price extras may apply.
CHEMISTRY Chemical Composition (Cast or Product), % max. C
Si
Mn
P
S
Al
CE
0.20
0.05
1.60
0.040
0.030
0.10
0.39
The carbon equivalent (CE) in the above is calculated for an actual composition using the following equation: CE = C +
Mn Cr + Mo + V Ni + Cu + + 6 5 15
This value is used in AS/NZS 1554.1:2000 Structural steel welding - Welding of steel structures, to determine the welding preheat required. Steels with CE of less than 0.39 in general, do not require preheat.
TOLERANCES Cross Section Outside Dimension d or b mm
Maximum permissible Variation from specified outside dimension (mm)
< 50 > 50
Maximum permissible out-of-square at corners (degree)
± 0.5 ± 0.01d or ± 0.01b
1
d = outside depth of section b = outside breadth of section
Thickness
±10% of nominal
Mass
Not less than 0.96 times nominal
Straightness
Specified length 500
Twist
viii
2 mm plus 0.5 mm per metre of length
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
DCTDHS/06 MARCH 2002
Length Size
Mill Cut Length Tolerance*
20 x 20 to 30 x 30
- 0 + 25mm
35 x 35 to 100 x 100 50 x 20 to 150 x 50
- 0 + 50mm
* Exact lengths, subject to enquiry.
Corner Radii Size
Typical external corner radii
Typical angle of arc
t < 3mm t > 3mm
2.0t 2.5t
75ο 75o
t = section thickness
WELDING DuraGal is readily welded. Its thin, evenly applied galvanized coating ensures minimal welding fumes. However, the ventilation recommendations given in WTIA (Welding Technology Institute of Australia) Technical Note 7, July 1989 Table 17.2 should be observed. Mechanical dilution ventilation is advised for open work space and mechanical ventilation by local exhaust system for limited work space and confined space. DuraGal’s carbon equivalent of less than 0.39 allows it to be welded without preheat, in accordance with AS/NZS 1554.1:2000 Structural steel welding - Welding of steel structures. The following are recommended consumables. Process
Recommended Consumables
Manual Metal-Arc (AS/NZS 1553.1)
E48XX (Grade 2)
Gas-Metal-Arc (AS/NZS 2717.1)
W502
Submerged Arc (AS 1858.1)
W502Y
Flux-Cored Arc (AS 2203.1)
W502X.X
For more advice reference should be made to the DuraGal Easy Welding Guide available from OneSteel. Further research [5], [7] has shown that the mechanical properties of cold-formed hollow sections are not reduced by a wide range of welding operations. The grade designations of cold-formed hollow sections based on yield strength are also not affected by hot dip galvanising.
PAINTING DuraGal’s unique surface preparation and protective coating means painting and powder coating are easy and economical, and the result is a smooth attractive surface. Refer to the DuraGal Painting and Corrosion Protection Guide for more detailed information.
POWDER COATING A degrease and zinc phosphate pretreatment prior to applying the powder coating is recommended. Refer to the OneSteel Powder Coating Guide for more detailed recommendations. DCTDHS/06 MARCH 2002
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
ix
WHITE RUST If white rust is present, this should be removed before painting. Refer to the DuraGal Easy Painting Guide for information on the removal of white rust.
PROTECTION OF WELD AFFECTED AREAS See the DuraGal Easy Painting & Corrosion Protection Guide for information. Copies of the painting guide can be obtained by contacting OneSteel Direct Freecall
1800 1 STEEL (1800 1 78335)
Freefax
1800 101 141
onesteeldirect@onesteel.com
REFERENCES [1]
Centre for Advanced Structural Engineering, The University of Sydney, “Tests to Determine the Reliability of Stub Columns of DuraGal RHS”, Investigation Report S916, August 1992.
[2]
Centre for Advanced Structural Engineering, The University of Sydney, “Tests to Determine the Reliability of Beams of DuraGal RHS”, Investigation Report S917, August 1992.
[3]
Hasan, S.W., Hancock, G.J., “Plastic Bending Tests of Cold-Formed Rectangular Hollow Sections”, Steel Construction, AISC, Vol.23, No.4 1989.
[4]
Key, P.W., Hasan, S.W., Hancock, G.J., “Column Behaviour of Cold-Formed Hollow Sections”, Journal of Structural Engineering, ASCE, Vol. 114, No. 2, 1988.
[5]
HERA, “Investigation of the Brittle Fracture Resistance of Cold-Formed Rectangular Hollow section. (Part 2)”, HERA Report R4-39, Auckland Industrial Development Division Department of Scientific and Industrial Research, 1987.
[6]
Centre For Advanced Structural Engineering, Civil Engineering, The University of Sydney, “Inelastic Buckling Strength of RHS’s”, Investigation Report S941, May 1993.
[7]
Centre For Advanced Structural Engineering, School of Civil and Mining Engineering, The University of Sydney, “Tests and Design of Butt Welds and Fillet Welds in DuraGal RHS Members”, Research Report No. R702, November 1994.
[8]
Zhao, X-L, Hancock, G.J., and Trahair, N.S., “Lateral-BuckIing Tests of Cold-Formed RHS Beams”, Journal of Structural Engineering, ASCE, Vol. 121, No. 11, 1995.
[9]
Centre for Advanced Structural Engineering, School of Civil and Mining Engineering, The University of Sydney, “Behaviour of Cold-Formed Slender SHS Beam Columns”, Research Report No. R707, September 1995.
[10]
Centre for Advanced Structural Engineering, School of Civil and Mining Engineering, The University of Sydney, “Plastic Design of Cold-Formed RHS”, CIDECT Project 2S-5-98, Final Report.
x
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
DCTDHS/06 MARCH 2002
LIMIT ST ATES DESIGN USING STA THESE T ABLES TABLES Definition of limit states - When a structure or part of a structure is rendered unfit for use it reaches a ‘limit state’. In this state it ceases to perform the functions or to satisfy the conditions for which it was designed. Relevant limit states for structural steel include strength, serviceability, stability, fatigue, brittle fracture, fire and earthquake. Only two limit states for structural steel are considered in these tables - strength limit state, and where applicable, serviceability limit state. Australian Standard AS 4100-1998 Steel Structures introduced a limit states approach to structural steel design within Australia. The code follows a semi-probabilistic limit states basis presented in a deterministic format. Limit states design requires structural members and connections to be proportioned such that the design capacity effect (S *) resulting from the design action (W *), is less than or equal to the design capacity (φRu) i.e. S * < φRu Design action or design load (W*) is the combination of the nominal actions or loads (e.g. transverse loads on a beam) imposed upon the structure, multiplied by the appropriate load factors as specified in AS 1170. These design actions/loads are identified by a superscript (*) after the appropriate action/load (e.g. W *L describes the design transverse load on a beam). Design action effects (S *) are the actions (e.g. design bending moments, shear forces, axial loads) computed from the design actions or design loads using an acceptable method of analysis. These effects are identified by a superscript (*) after the appropriate action effect (e.g. M * describes the design bending moment). Design capacity (fRu ) is the product of the nominal capacity (Ru) and the appropriate capacity factor (f) found in Table 3.4 of AS 4100. Ru is determined from Sections 5 to 8 as appropriate, in AS 4100. For example, consider the strength limit state design of a simply supported beam subject to a total transverse design load (W *L) distributed uniformly along the beam with full lateral restraint. The corresponding design action effect (S *) is the design bending moment (M *) which is determined by:
where
L =
span of the beam
In this case the design capacity (φRu) is equal to the design section moment capacity (φMs), which is given by:
where
φ = fy = Ze =
DCTDHS/06 MARCH 2002
the capacity factor yield stress used in design effective section modulus
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
xi
To satisfy the requirement for strength limit state design the following relationship must be satisfied: M * < φMs The maximum design bending moment is therefore equal to the design section moment capacity (M * < φMs), and the maximum design load is that design load (W *L) which corresponds to the maximum design bending moment. It should be noted that in this instance the bending capacity of the beam may not be the only criteria in the strength limit state which needs to be considered. (eg. shear capacity, bearing capacity). The DCTDHS gives values of design capacity (φRu) and maximum design load (W *), where applicable, determined in accordance with AS 4100. When using these tables, the designer must determine the relevant strength limit state design action (W *) and/or the corresponding design action effects (S *) to ensure the strength limit state requirements of AS 4100 are satisfied. Other limit states (e.g. serviceability, fatigue) must also be considered by the designer. Section 8 of the tables contains design aids for checking the serviceability limit state for some specific beam load and support configurations.
GENERAL NOTES ON THE TABLES CONTENTS AND USAGE For the commonly available Australian structural steel hollow sections, tables are provided for: (i)
(ii)
section dimensions and section properties, i.e: - Dimensions and Properties
(PART 1)
- Surface Areas
(PART 1)
- Properties for Assessing Section Capacity to AS 4100
(PART 1)
- Properties for Fire Design
(PART 1)
- Telescoping Sections
(PART 1)
design capacity (φRu) for: - Section Capacities
(PART 3)
- Members Subject to Bending
(PART 4)
- Members Subject to Axial Compression
(PART 5)
- Members Subject to Axial Tension
(PART 6)
(iii)
elastic buckling load (Nom)
(PART 7)
(iv)
maximum design load (W *) for: - Strength Limit State (W *L) for Beams
(PART 8)
(PART 8) - Serviceability Limit State (W *S) for Beams (simply supported, continuous, fixed end and cantilever beams) Acceptable methods of analysis for determining the design action effects are described in Section 4 of AS 4100 and PART 2 of this publication. Information relevant to such methods of analysis is presented briefly in PART 7 of this publication. The above recommendations apply to predominantly statically loaded structures but also in broad principle to dynamically loaded structures subject to moderate cyclic loads, as specified in AS 4100 Section 1, Fatigue.
xii
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
DCTDHS/06 MARCH 2002
PROPERTIES OF STEEL The properties of steel adopted in these tables are listed below: Property
Symbol
Value
Elastic Modulus
E
200 x 103 MPa
Shear Modulus
G
80 x 103 MPa
Density
ρ
7850 kg/m3
Poisson’s Ratio
ν
0.25
Coefficient of Thermal Expansion
αT
11.7 x 10-6 per oC
VALUES PUBLISHED IN TABLES The design capacities given in these tables are limit states design capacities calculated in accordance with AS 4100, and must be equal to or greater than the design action effect (eg. bending moment, shear force, axial force) resulting from the design loads. These design loads are not working loads, but are obtained by factoring the nominal (working) loads applied to the structure in accordance with the loading code AS 1170.
DCTDHS/06 MARCH 2002
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
xiii
LIST OF PRINCIPAL SYMBOLS USED IN THE TABLES Ae
effective area of a cross-section
Ag
gross area of a cross-section
An
net area of a cross-section
b
width of a section
be
effective width of a plate element
bb, bbf, bbw, bs
bearing widths defined in Section D4.3.2
C
torsional section modulus
Cm
factor for unequal moments
d
depth of a section
de
effective outside diameter of a circular hollow section
do
outside diameter of a circular hollow section
dw
depth of web
d1
clear depth between flanges
E
Youngâ&#x20AC;&#x2122;s modulus of elasticity
fu
tensile strength used in design
fy
yield stress used in design
f *va
average design shear stress in the web
f *vm
maximum design shear stress in the web
G
shear modulus of elasticity; or nominal dead load
I
second moment of area of a cross-section
Iw
warping section constant
Ix
I about the cross-sectional major principal x-axis
Iy
I about the cross-sectional minor principal y-axis
J
torsional section constant
ke
member effective length factor
kf
form factor for members subject to axial compression
kl
load height effective length factor
kr
effective length factor for restraint against lateral rotation
ksm
exposed surface area to mass ratio
kt
correction factor for distribution of forces in a tension member; or twist restraint effective length factor
L
span or member length; or segment or sub-segment length
Le
effective length of a compression member; or effective length of a laterally unsupported flexural member
Mb
nominal member moment capacity
Mbx
Mb about major principal x-axis
Mix
nominal in-plane member moment capacity about major principal x-axis
Miy
nominal in-plane member moment capacity about minor principal y-axis
Mo
reference elastic buckling moment for a member subject to bending
Moa
amended elastic buckling moment for a member subject to bending
Mox
nominal out-of-plane member moment capacity about major principal x-axis
Mrx
Ms about major principal x-axis reduced by axial force
xiv
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
DCTDHS/06 MARCH 2002
Mry
Ms about minor principal y-axis reduced by axial force
Ms
nominal section moment capacity
Msx
Ms about major principal x-axis
Msy
Ms about minor principal y-axis
Mz
nominal torsional moment section capacity
M*
design bending moment
M *m
maximum calculated design bending moment along the length of a member or in a segment
M *x
design bending moment about major principal x-axis
M *y
design bending moment about minor principal y-axis
M *z
design torsional moment
Nc
nominal member capacity in compression
Ncx
Nc for member buckling about major principal x-axis
Ncy
Nc for member buckling about minor principal y-axis
Nom
elastic flexural buckling load of a member
Nomb
Nom for a braced member
Nomx
Nomy
Ď&#x20AC; 2El x
(k e L ) 2 Ď&#x20AC; 2El x
(k e L )
2
Nom about major principal x-axis
Nom about minor principal y-axis
Ns
nominal section capacity of a concentrically loaded compression member
Nt
nominal section capacity in tension
N*
design axial force, tensile or compressive
P
applied load
Rb
nominal bearing capacity of a web
R bb
nominal bearing buckling capacity
Rby
nominal bearing yield capacity
Ru
nominal capacity
r
radius of gyration
rext
external corner radius
rx
radius of gyration about major principal x-axis
ry
radius of gyration about minor principal y-axis
R*
design bearing force
S
plastic section modulus
Sx
S about major principal x-axis
Sy
S about minor principal y-axis
S*
design action effect
t
thickness of a section
tf
thickness of a flange
tw
thickness of a web
DCTDHS/06 MARCH 2002
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
xv
Vu
nominal shear capacity of a web with a uniform shear stress distribution
Vv
nominal shear capacity of a web
Vvx
Vv of a member in the major principal x-axis direction
Vvy
Vv of a member in the minor principal y-axis direction
V*
design shear force
W
applied load
W*
design action
W *L
strength limit state maximum design load
W *S
serviceability limit state maximum design load
Z
elastic section modulus
Ze
effective section modulus
Zex
Ze for bending about major principal x-axis
Zey
Ze for bending about minor principal y-axis
Zn
Z for bending about n-axis
Zx
Z for bending about major principal x-axis
Zy
Z for bending about minor principal y-axis
aa
compression member factor (as defined in Clause 6.3.3 of AS 4100)
ab
compression member section constant (as defined in Clause 6.3.3 of AS 4100)
ac
compression member slenderness reduction factor
am
moment modification factor for bending
α sh
modified slenderness reduction factor
αT
coefficient of thermal expansion for steel
βm
ratio of smaller to larger bending moments at the ends of a member
∆
deflection of a member
δb
moment amplification factor for a braced member
δm
moment amplification factor, taken as the greater of δb and δs
δs
moment amplification factor for a sway member
η
compression member imperfection factor (as defined in Clause 6.3.3 of AS 4100)
θ
angle of twist per unit length slenderness ratio
λc
elastic buckling load factor
λe
plate element slenderness
λed
plate element deformation slenderness limit
λep
plate element plasticity slenderness limit
λey
plate element yield slenderness limit
λn
modified compression member slenderness
ν
Poisson’s ratio
ξ
compression member factor (as defined in Clause 6.3.3 of AS 4100)
π
pi ( ≈ 3.14159)
ρ
density of a material
φ
capacity factor
xvi
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
DCTDHS/06 MARCH 2002
PART 1 SECTION PROPERTIES
1 1 PAGE
D1.1
INTRODUCTION ............................................................................................................ D1-2
D1.2
SECTION PROPERTY TABLES .................................................................................... D1-2
D1.2.1
Dimensions and Properties ............................................................................................ D1-2
D1.2.1.1
Torsion Constants ........................................................................................................... D1-3
D1.2.1.2
Corner Radii ................................................................................................................... D1-4
D1.2.2
Surface Areas ................................................................................................................. D1-4
D1.2.3
Properties for Assessing Section Capacities .................................................................. D1-4
D1.2.3.1
Compactness .................................................................................................................. D1-5
D1.2.3.2
Effective Section Modulus............................................................................................... D1-5
D1.2.3.3
Form Factor .................................................................................................................... D1-6
D1.3
PROPERTIES FOR FIRE DESIGN ................................................................................ D1-7
D1.4
TELESCOPING SECTIONS ........................................................................................... D1-8
D1.4.1
Scope ............................................................................................................................. D1-8
D1.4.2
Method ............................................................................................................................ D1-8
TABLES TABLES D1.2-1 to D1.2-4 Dimensions and Properties/Properties for Assessing Section Capacity ...................... D1.11 TABLES D1.3-1 to D1.3-4 Properties for Fire Design ............................................................................................. D1-17 TABLES D1.4-1 to D1.4-2 Telescoping Information ................................................................................................ D1-22
NOTE: SEE PAGE vii FOR THE SPECIFIC MATERIAL STANDARD REFERRED TO BY THE SECTION TYPE AND STEEL GRADE IN THESE TABLES.
DCTDHS/06 MARCH 2002
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
D1-1
PART 1 SECTION PROPERTIES D1.1
INTRODUCTION
The section property tables include all relevant section dimensions and properties necessary for assessing ‘DuraGal’ tubular steel structures in accordance with AS 4100 - 1998.
D1.2
SECTION PROPERTY TABLES
For each group of structural hollow section the tables include:
•
Dimensions and Properties
•
Properties for Assessing Section Capacity to AS 4100.
D1.2.1 Dimensions and Properties The tables give standard dimensions and properties for DuraGal structural steel hollow sections. The second moments of area are required for serviceability calculations and the radii of gyration are required for assessing member stability. The elastic and plastic section moduli for bending about the various axes are also tabulated. These are utilised in an intermediate step to determine the effective section modulus for flexural design to AS 4100. The elastic section moduli are also used in the determination of elastic stresses where design for fatigue must be considered, or where the stress state at serviceability loads may need to be checked. The torsion constants are used in determining the torsional moment and angle of twist per unit length.
D1-2
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
DCTDHS/06 MARCH 2002
D 1.2.1.1 Torsion Constants The torsional inertia constant (J) and the torsional modulus constant (C) for square and rectangular hollow sections are defined as follows: h J = t 3 + 2kAh 3
3 h + 2kAh t = 3 k t + t
=
Ro + Ri 2
h
=
2[(b - t) + (d - t)] - 2Rc(4 - π)
Ah
=
(b - t)(d - t) - Rc2 (4 - π)
k
=
t
=
specified thickness of section
b
=
width of section
d
=
depth of section
Ro
=
outer corner radius
Ri
=
inner corner radius
Rc
=
mean corner radius
h
=
length of the mid-contour
Ah
=
area enclosed by h
k
=
integration constant
where Rc
and
2Aht h
as shown in Figure D1.2.1.1
Figure D1.2.1.1: Parameters for Calculation of Torsion Constants
The information contained in Section D1.2.1.1 was extracted from:
•
International Standard ISO 657/XIV, “Hot-rolled steel sections - Part XIV : Hot-finished structural hollow sections - Dimensions and sectional properties”, 1977.
DCTDHS/06 MARCH 2002
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
D1-3
D 1.2.1.2 Corner Radii The section properties presented in this publication are calculated in accordance with AS 1163. Figure D1.2.1.2 shows the corner radii detail used in determining section properties. However it should be noted that the actual corner geometry may vary from that shown.
a) thickness 3.0 mm and less
b) thickness greater than 3.0 mm
Figure D1.2.1.2: Corner Geometry for Determining Section Properties
D1.2.2 Surface Areas Surface area data may be used in estimating quantities of protective coatings. Tables D1.2-1 to D1.2-6 include values of external surface area per metre and external surface area per tonne.
D1.2.3 Properties for Assessing Section Capacities These properties are necessary for calculating the section capacities of the structural hollow sections in accordance with AS 4100. The effective section moduli, â&#x20AC;&#x153;compactnessâ&#x20AC;? of section, and the form factor are tabulated according to steel grade.
D1-4
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
DCTDHS/06 MARCH 2002
D 1.2.3.1 Compactness In Clauses 5.2.3, 5.2.4, and 5.2.5 of AS 4100, sections are described as compact, non-compact or slender. This type of categorisation provides a measure of the relative importance of yielding and local buckling on the effective section modulus. The tables include a column headed “compactness” where the compactness or otherwise of the sections is indicated for a given axis of bending as follows: C compact N non-compact S slender These terms are important with respect to selecting the methods of analysis that may be used to determine the design action effects (see Clause 4.5 of AS 4100) or in using the provisions of Section 8 of AS 4100 for designing members subject to combined actions. Clause 4.5 of AS 4100 does not currently permit plastic analysis when designing with structural hollow sections. Research has shown that most DuraGal hollow sections are suitable for design by plastic analysis and AS 4100 will be revised as soon as possible. In the interim, for details of the research in a case study phone OneSteel Direct on Freecall 1800 1 STEEL (1800 1 78335) or Freefax 1800 101 141.
D 1.2.3.2 Effective Section Modulus Subsequent to the evaluation of “compactness” the effective section modulus (Ze) is also tabulated. Ze is determined by the requirements of Clauses 5.2.2 to 5.2.5 inclusive, of AS 4100 and is used in the calculation of the nominal section moment capacity (Ms) as defined in Clause 5.2.1 of AS 4100. Table D1.2.3.2 gives values of plate element slenderness limits for structural hollow sections used in the determination of Ze in Tables D1.2-1 to D1.2-4. It should be noted that the deformation limit (λed) is only exceeded for one of the hollow sections manufactured in accordance with AS 1163 and listed in this manual. Therefore noticeable deformations (local buckling) will not occur under service loadings except for 150x50x2.0 product bent about the weak y-axis (λey = 97.9). Section
RHS,SHS
Element
Residual Stresses
Plasticity Limit λ ep
Yield Limit λ ey
Deformation Limit λ ed
Compression Flange
CF
30
40
90
Web
CF
82
115
-
Table D1.2.3.2: Plate Element Slenderness Limits for Members Subject to Bending The CF residual stress classification is used as DuraGal is manufactured in Australia by the cold forming process.
DCTDHS/06 MARCH 2002
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
D1-5
D 1.2.3.3 Form Factor The form factor (kf) determined in accordance with Clause 6.2.2 of AS 4100 is given by: kf =
where
Ae Ag
Ag = gross cross-sectional area Ae = effective area
Ae was calculated by summing the effective areas of the individual elements whose effective widths are specified: for RHS and SHS by
b
be = b − 2t
gFGH λλ IJK ≤ bb − 2t g ey e
where be =
effective width of section (Clause 6.2.4 of AS 4100)
b =
full width of section
t =
thickness of section
λey = yield slenderness limit (see Table D1.2.3.3) λe = plate element slenderness (see Table D1.2.3.3)
Table D1.2.3.3: Plate Element Slenderness Limits for Members Subject to Axial Compression
Section
RHS, SHS
Residual Stresses
CF
Yield Slenderness Limit
λ ey
40
Plate Element Slenderness
λe
bb − 2t g FG f IJ t H 250 K y
kf must be known in order to determine the nominal section capacity of a concentrically loaded compression member (Ns) as defined in Clause 6.2.1 of AS 4100. The calculation of kf indicates the degree to which the column section will buckle locally before squashing (i.e. kf = 1.0 signifies a column section which will yield rather than buckle locally in a short or stub column test). A knowledge of kf is also important when using the provisions of Section 8 of AS 4100 for designing members subject to combined actions.
D1-6
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
DCTDHS/06 MARCH 2002
D1.3
PROPERTIES FOR FIRE DESIGN
To assist in the design of ‘DuraGal’ sections for fire resistance in accordance with Section 12 of AS 4100, values of the exposed surface area to mass ratio (ksm) are tabulated for the various cases shown in Figure D1.3. For unprotected structural hollow sections the values of ksm corresponding to four- and three- sided exposure should be taken as those corresponding to Cases 1 and 4 respectively. In these instances fire protection is necessary where a fire rating is required. For members requiring the addition of fire protection materials, the “Handbook of Fire Protection Materials for Structural Steel” published by AISC [1] may be consulted to determine the thickness of proprietary materials required for a given value of ksm and Fire-Resistance Level (FRL). In the AISC Handbook, the exposed surface area to mass ratio (E) may be taken as equivalent to ksm. (See also references[3][4]) Figure D1.3: Cases for Calculation of Exposed Surface Area to Mass Ratio
Cases of fire exposure considered: 1 = Profile-protected 2 = Total Perimeter, Box-protected, No Gap 3 = Total Perimeter, Box-protected, 25 mm Gap 4 = Top Flange Excluded, Profile-protected 5 = Top Flange Excluded, Box-protected, No Gap 6 = Top Flange Excluded, Box-protected, 25 mm Gap Suggested references for Fire Design: [1]
Proe, D.J., Bennetts, I.D., Thomas, I.R., Szeto, W.T., “Handbook of Fire Protection Materials for Structural Steel”, Australian Institute of Steel Construction, 1990.
[2]
Bennetts, I.D., Proe, D.J., Thomas, I.R., “Guidelines for Assessment of Fire Resistance of Structural Steel Members”, Australian Institute of Steel Construction, 1987.
[3]
Thomas, I.R Bennetts, I.D and Proe, D.J., “Design of Steel Structures for Fire Resistance in Accordance with AS 4100”, Steel Construction, Australian Institute of Steel Construction, Vol 26, No 3, 1992.
[4]
O’Meagher, A.J., Bennetts, I.D., Dayawansa, P.H. and Thomas, I.R., “Design of Single Storey Industrial Buildings for Fire Resistance”, Steel Construction, Australian Institute of Steel Construction, Vol 26, No2, 1992.
DCTDHS/06 MARCH 2002
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
D1-7
D1.4
TELESCOPING SECTIONS
D1.4.1 Scope The tables of telescoping sections provided can be used to determine hollow sections which are suitable for telescoping.
D1.4.2 Method Total available clearance is tabulated to allow designers to select sections with suitable clearance for the type of fit required. Sections with clearances less than 2.0 mm are shown bold in the tables. Figure D1.4.2 shows typical telescoping data required to select appropriate sections. All calculations used in preparation of the tables are based on the nominal dimensions of hollow sections and manufacturing tolerances specified in AS 1163. Owing to dimensional tolerances permitted within that standard actual clearances of sections manufactured to this specification will vary marginally from the values tabulated. For tight fits, varying corner radii and internal weld heights can affect telescoping of sections and it is recommended that some form of testing is carried out prior to committing material. Where telescoping over some length is required, additional clearance may be needed to allow for straightness of the section. Telescoping of SHS and RHS where the female (outer) has a larger wall thickness requires careful consideration of corner clearances due to the larger corner radii of the thicker section. Typical corner geometry may differ from that used for calculation of section properties and reference should be made to individual manufacturers.
D1-8
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
DCTDHS/06 MARCH 2002
Figure D1.4.2: Telescoping Data
DCTDHS/06 MARCH 2002
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
D1-9
[ BLANK ]
D1-10
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
DCTDHS/06 MARCH 2002
DCTDHS/06 MARCH 2002
TABLE D1.2-1(1)
DIMENSIONS AND PROPERTIES DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness
DIMENSIONS AND RATIOS Designation
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
d
b
mm
mm
Mass per m
t
External Surface Area
PROPERTIES
b-2t
d-2t
t
t
mmkg/m
m2/m
Gross
m2/t
mm 2
About x-axis
Section Area
Ag
per m per t
PROPERTIES FOR DESIGN TO AS 4100
Ix
Zx
106mm4 103mm 3 103mm3
Sx
rx
Iy
mm 106mm4 103mm3
Zy
Sy
103mm 3
Torsion
Form
Constant Modulus
Factor
Torsion
About y-axis
ry
J
C
mm 106mm4 103mm3
kf
About x-axis
位ex
Compact- Z ex ness 103mm 3
(C,N,S)
About y-axis
位ey
Compactness
Zey
103mm3
(C,N,S)
150 x 50 x 6.0 RHS 16.7 5.0 RHS 14.2 4.0 RHS 11.6 3.0 RHS 8.96 2.5 RHS 7.53 2.0 RHS 6.07
0.374 0.379 0.383 0.390 0.391 0.393
22.4 26.6 32.9 43.5 52.0 64.7
6.33 8.00 10.5 14.7 18.0 23.0
23.0 28.0 35.5 48.0 58.0 73.0
2130 1810 1480 1140 959 774
5.06 4.44 3.74 2.99 2.54 2.08
67.5 59.2 49.8 39.8 33.9 27.7
91.2 78.9 65.4 51.4 43.5 35.3
48.7 49.5 50.2 51.2 51.5 51.8
0.860 0.765 0.653 0.526 0.452 0.372
34.4 30.6 26.1 21.1 18.1 14.9
40.9 35.7 29.8 23.5 19.9 16.3
20.1 20.5 21.0 21.5 21.7 21.9
2.63 2.30 1.93 1.50 1.28 1.04
64.3 56.8 48.2 38.3 32.8 26.9
1.00 1.00 0.887 0.713 0.633 0.553
8.50 10.7 14.1 19.7 24.1 30.9
C C C C C N
91.2 78.9 65.4 51.4 43.5 31.6
30.9 37.6 47.6 64.4 77.8 97.9
N N S S S S
40.4 31.8 22.7 14.5 10.9 7.64
125 x 75 x 6.0 RHS 16.7 5.0 RHS 14.2 4.0 RHS 11.6 3.0 RHS 8.96 2.5 RHS 7.53 2.0 RHS 6.07
0.374 0.379 0.383 0.390 0.391 0.393
22.4 26.6 32.9 43.5 52.0 64.7
10.5 13.0 16.8 23.0 28.0 35.5
18.8 23.0 29.3 39.7 48.0 60.5
2130 1810 1480 1140 959 774
4.16 3.64 3.05 2.43 2.07 1.69
66.6 58.3 48.9 38.9 33.0 27.0
84.2 72.7 60.3 47.3 40.0 32.5
44.2 44.8 45.4 46.1 46.4 46.7
1.87 1.65 1.39 1.11 0.942 0.771
50.0 43.9 37.0 29.5 25.1 20.6
59.1 51.1 42.4 33.3 28.2 22.9
29.6 30.1 30.6 31.1 31.4 31.6
4.44 3.83 3.16 2.43 2.05 1.67
86.2 75.3 63.0 49.5 42.1 34.4
1.00 1.00 1.00 0.845 0.763 0.624
14.1 17.4 22.5 30.9 37.6 47.6
C C C N N S
84.2 72.7 60.3 46.5 34.7 24.8
25.3 30.9 39.2 53.2 64.4 81.2
C N N S S S
59.1 50.5 37.4 24.2 18.2 13.0
100 x 50 x 6.0 RHS 12.0 5.0 RHS 10.3 4.0 RHS 8.49 3.5 RHS 7.53 3.0 RHS 6.60 2.5 RHS 5.56 2.0 RHS 4.50 1.6 RHS 3.64
0.274 0.279 0.283 0.285 0.290 0.291 0.293 0.295
22.8 27.0 33.3 37.9 43.9 52.4 65.1 81.0
6.33 8.00 10.5 12.3 14.7 18.0 23.0 29.3
14.7 1530 18.0 1310 23.0 1080 26.6 959 31.3 841 38.0 709 48.0 574 60.5 463
1.71 1.53 1.31 1.18 1.06 0.912 0.750 0.613
34.2 30.6 26.1 23.6 21.3 18.2 15.0 12.3
45.3 39.8 33.4 29.9 26.7 22.7 18.5 15.0
33.4 34.1 34.8 35.1 35.6 35.9 36.2 36.4
0.567 0.511 0.441 0.400 0.361 0.311 0.257 0.211
22.7 20.4 17.6 16.0 14.4 12.4 10.3 8.43
27.7 24.4 20.6 18.5 16.4 14.0 11.5 9.33
19.2 19.7 20.2 20.4 20.7 20.9 21.2 21.3
1.53 1.35 1.13 1.01 0.886 0.754 0.616 0.501
40.9 36.5 31.2 28.2 25.0 21.5 17.7 14.5
1.00 1.00 1.00 1.00 0.967 0.856 0.746 0.661
8.50 10.7 14.1 16.5 19.7 24.1 30.9 39.2
C C C C C C N N
45.3 39.8 33.4 29.9 26.7 22.7 18.2 12.5
19.7 24.1 30.9 35.6 42.0 51.0 64.4 81.2
C C N N S S S S
27.7 24.4 20.3 17.1 13.9 10.4 7.33 5.19
Notes:
1.
D1-11
2. 3.
For Grade C450L0 fy=450 MPa and fu =500 MPa. fy = yield stress used in design; fu = tensile strength used in design; as defined in AS 4100. Grade C450L0 to AS 1163 is cold-formed and therefore is allocated the CF residual stresses classification in AS 4100. C =Compact Section; N = Non-compact Section; S =Slender Section; as defined in AS 4100.
D1-12
TABLE D1.2-1(2)
DIMENSIONS AND PROPERTIES DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness
DIMENSIONS AND RATIOS Designation
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
d
b
mm
mm
Mass per m
t
External Surface Area
PROPERTIES
b-2t
d-2t
t
t
mmkg/m
75 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
m2/m
m2/t
9.67 8.35 6.92 5.42 4.58 3.72 3.01
0.224 0.229 0.233 0.240 0.241 0.243 0.245
mm 2
23.2 27.4 33.7 44.2 52.7 65.4 81.3
Gross
6.33 8.00 10.5 14.7 18.0 23.0 29.3
About x-axis
Section Area
Ag
per m per t
PROPERTIES FOR DESIGN TO AS 4100
Ix
Zx
106mm4 103mm 3 103mm3
10.5 1230 13.0 1060 16.8 881 23.0 691 28.0 584 35.5 474 44.9 383
Sx
rx
Iy
mm 106mm4 103mm3
Zy
Sy
103mm 3
Torsion
Form
Constant Modulus
Factor
Torsion
About y-axis
ry
J
C
mm 106mm4 103mm3
0.800 0.726 0.630 0.522 0.450 0.372 0.305
21.3 19.4 16.8 13.9 12.0 9.91 8.14
28.1 24.9 21.1 17.1 14.6 12.0 9.75
25.5 26.1 26.7 27.5 27.7 28.0 28.2
0.421 0.384 0.335 0.278 0.240 0.199 0.164
16.9 15.4 13.4 11.1 9.60 7.96 6.56
21.1 18.8 16.0 12.9 11.0 9.06 7.40
18.5 19.0 19.5 20.0 20.3 20.5 20.7
1.01 0.891 0.754 0.593 0.505 0.414 0.337
kf
About x-axis
位ex
103mm 3
(C,N,S)
29.3 26.4 22.7 18.4 15.9 13.1 10.8
Compact- Z ex ness
About y-axis
位ey
Compactness
Zey
103mm3
(C,N,S)
1.00 1.00 1.00 1.00 1.00 0.904 0.799
8.50 10.7 14.1 19.7 24.1 30.9 39.2
C C C C C N N
28.1 24.9 21.1 17.1 14.6 11.8 8.26
14.1 17.4 22.5 30.9 37.6 47.6 60.2
C C C N N S S
21.1 18.8 16.0 12.8 9.95 7.07 5.01
75 x 25 x 2.5 RHS 3.60 2.0 RHS 2.93 1.6 RHS 2.38
0.191 53.1 0.193 65.8 0.195 81.7
8.00 28.0 10.5 35.5 13.6 44.9
459 374 303
0.285 0.238 0.197
7.60 6.36 5.26
10.1 8.31 6.81
24.9 25.3 25.5
0.0487 0.0414 0.0347
3.89 3.31 2.78
4.53 3.77 3.11
10.3 10.5 10.7
0.144 0.120 0.0993
7.14 6.04 5.05
1.00 0.878 0.746
10.7 14.1 18.3
C C C
10.1 8.31 6.81
37.6 47.6 60.2
N S S
4.05 2.88 2.02
65 x 35 x 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS
5.35 4.25 3.60 2.93
0.183 0.190 0.191 0.193
34.2 44.7 53.1 65.8
6.75 9.67 12.0 15.5
14.3 19.7 24.0 30.5
681 541 459 374
0.328 0.281 0.244 0.204
10.1 8.65 7.52 6.28
13.3 11.0 9.45 7.80
22.0 22.8 23.1 23.4
0.123 0.106 0.0926 0.0778
7.03 6.04 5.29 4.44
8.58 7.11 6.13 5.07
13.4 14.0 14.2 14.4
0.320 0.259 0.223 0.184
12.5 10.4 9.10 7.62
1.00 1.00 1.00 0.985
9.06 13.0 16.1 20.8
C C C C
13.3 11.0 9.45 7.80
19.1 26.4 32.2 40.9
C C N S
8.58 7.11 5.95 4.37
50 x 25 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
3.07 2.62 2.15 1.75
0.140 0.141 0.143 0.145
45.5 54.0 66.6 82.5
6.33 8.00 10.5 13.6
14.7 18.0 23.0 29.3
391 334 274 223
0.112 0.0989 0.0838 0.0702
4.47 3.95 3.35 2.81
5.86 5.11 4.26 3.53
16.9 17.2 17.5 17.7
0.0367 0.0328 0.0281 0.0237
2.93 2.62 2.25 1.90
3.56 3.12 2.62 2.17
9.69 9.91 10.1 10.3
0.0964 0.0843 0.0706 0.0585
5.18 4.60 3.92 3.29
1.00 1.00 1.00 1.00
8.50 10.7 14.1 18.3
C C C C
5.86 5.11 4.26 3.53
19.7 24.1 30.9 39.2
C C N N
3.56 3.12 2.58 1.92
50 x 20 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
2.83 2.42 1.99 1.63
0.130 0.131 0.133 0.135
45.8 54.2 66.8 82.7
4.67 6.00 8.00 10.5
14.7 18.0 23.0 29.3
361 309 254 207
0.0951 0.0848 0.0723 0.0608
3.81 3.39 2.89 2.43
5.16 4.51 3.78 3.14
16.2 16.6 16.9 17.1
0.0212 0.0192 0.0167 0.0142
2.12 1.92 1.67 1.42
2.63 2.32 1.96 1.63
7.67 7.89 8.11 8.29
0.0620 0.0550 0.0466 0.0389
3.88 3.49 3.00 2.55
1.00 1.00 1.00 1.00
6.26 8.05 10.7 14.1
C C C C
5.16 4.51 3.78 3.14
19.7 24.1 30.9 39.2
C C N N
2.63 2.32 1.93 1.44
Notes:
1.
DCTDHS/06 MARCH 2002
2. 3.
For Grade C450L0 fy=450 MPa and fu =500 MPa. fy = yield stress used in design; fu = tensile strength used in design; as defined in AS 4100. Grade C450L0 to AS 1163 is cold-formed and therefore is allocated the CF residual stresses classification in AS 4100. C =Compact Section; N = Non-compact Section; S =Slender Section; as defined in AS 4100.
DCTDHS/06 MARCH 2002
TABLE D1.2-2
DIMENSIONS AND PROPERTIES DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
DIMENSIONS AND RATIOS Designation
d
b
mm
mm
Mass per m
t mmkg/m
External Surface Area
b-2t
PROPERTIES d-2t
t
t
m2/m
Gross
m2/t
mm 2
About x-axis
Section Area
Ag
per m per t
PROPERTIES FOR DESIGN TO AS 4100
Ix
Zx
106mm4 103mm 3 103mm3
Sx
rx
Iy
mm 106mm4 103mm3
Zy 103mm 3
Sy
Torsion
Form
Constant Modulus
Factor
Torsion
About y-axis
ry
J
C
mm 106mm4 103mm3
kf
About x-axis
位ex
Compact- Z ex ness 103mm 3
(C,N,S)
About y-axis
位ey
Compactness
Zey
103mm3
(C,N,S)
125 x 75 x 2.8 RHS 8.39 2.3 RHS 6.95
0.390 46.5 0.392 56.4
24.8 30.6
42.6 1070 52.3 885
2.29 1.92
36.6 30.6
44.4 37.0
46.2 46.5
1.04 0.875
27.8 23.3
31.3 26.1
31.2 31.4
2.28 1.90
46.6 39.1
0.812 0.721
33.3 41.1
N S
41.8 30.2
57.2 70.2
S S
21.7 16.1
100 x 50 x 2.8 RHS 6.19 2.3 RHS 5.14
0.290 46.9 0.292 56.8
15.9 19.7
33.7 41.5
788 655
1.00 0.848
20.1 17.0
25.1 21.0
35.7 36.0
0.341 0.290
13.6 11.6
15.5 13.0
20.8 21.0
0.834 0.699
23.6 20.0
0.922 0.812
21.3 26.5
C C
25.1 21.0
45.2 55.6
S S
12.5 9.12
75 x 50 x 2.8 RHS 5.09 2.3 RHS 4.24
0.240 47.2 0.242 57.1
15.9 19.7
24.8 30.6
648 540
0.493 0.419
13.2 11.2
16.1 13.6
27.6 27.9
0.263 0.224
10.5 8.96
12.2 10.3
20.1 20.4
0.558 0.469
17.4 14.8
1.00 0.984
21.3 26.5
C C
16.1 13.6
33.3 41.1
N S
11.6 8.80
65 x 35 x 2.8 RHS 3.99 2.3 RHS 3.34
0.190 47.7 0.192 57.6
10.5 13.2
21.2 26.3
508 425
0.267 0.229
8.21 7.04
10.4 8.81
22.9 23.2
0.101 0.0869
5.75 4.96
6.73 5.72
14.1 14.3
0.245 0.208
9.92 8.53
1.00 1.00
14.1 17.7
C C
10.4 8.81
28.5 35.2
C N
6.73 5.32
50 x 25 x 2.8 RHS 2.89 2.3 RHS 2.44
0.140 48.5 0.142 58.4
6.93 15.9 8.87 19.7
368 310
0.107 0.0931
4.27 3.72
5.57 4.78
17.0 17.3
0.0352 0.0310
2.82 2.48
3.39 2.92
9.78 0.0917 10.0 0.0790
4.96 4.34
1.00 1.00
9.30 11.9
C C
5.57 4.78
21.3 26.5
C C
3.39 2.92
50 x 20 x 2.8 RHS 2.67 2.3 RHS 2.25
0.130 48.8 0.132 58.6
5.14 15.9 6.70 19.7
340 287
0.0912 0.0800
3.65 3.20
4.91 4.23
16.4 16.7
0.0205 0.0183
2.05 1.83
2.51 7,76 0.0594 2.18 7.98 0.0518
3.73 3.31
1.00 1 .00
6.90 8.98
C C
4.91 4.23
21.3 26.5
C C
2.51 2.18
Notes:
1. 2. 3.
For Grade C450L0 fy=450 MPa and fu =500 MPa. fy = yield stress used in design; fu = tensile strength used in design; as defined in AS 4100. Grade C450L0 to AS 1163 is cold-formed and therefore is allocated the CF residual stresses classification in AS 4100. C =Compact Section; N = Non-compact Section; S =Slender Section; as defined in AS 4100.
D1-13
D1-14
TABLE D1.2-3(1)
DIMENSIONS AND PROPERTIES DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness
DIMENSIONS AND RATIOS Designation
Mass per m
External Surface Area
PROPERTIES b-2t t
Gross
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002
b
t
per m
per t
Ag
mm
mm
mm
kg/m
m2/m
mm 2
16.7 14.2 11.6 8.96 7.53 6.07
0.374 0.379 0.383 0.390 0.391 0.393
22.4 26.6 32.9 43.5 52.0 64.7
14.7 18.0 23.0 31.3 38.0 48.0
SHS SHS SHS SHS
8.01 6.74 5.45 4.39
0.350 0.351 0.353 0.355
43.6 52.1 64.8 80.8
89 x 89 x 6.0 SHS 5.0 SHS 3.5 SHS
14.6 12.5 9.06
0.330 0.334 0.341
75 x 75 x 6.0 5.0 4.0 3.5 3.0 2.5 2.0
SHS SHS SHS SHS SHS SHS SHS
12.0 10.3 8.49 7.53 6.60 5.56 4.50
65 x 65 x 6.0 5.0 4.0 3.0 2.5 2.0 1.6
SHS SHS SHS SHS SHS SHS SHS
10.1 8.75 7.23 5.66 4.78 3.88 3.13
90 x 90 x 3.0 2.5 2.0 1.6
Notes:
1. 2. 3.
About x-, y- and n-axis
Section Area
d
100 x100 x 6.0 SHS 5.0 SHS 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS
PROPERTIES FOR DESIGN TO AS 4100
Ix
Torsion
Torsion
Form
Constant
Modulus
Factor
kf
位e
Compactness
Ze
(C,N,S)
103mm3
19.7 24.1 30.9 42.0 51.0 64.4
C C N S S S
73.5 63.5 51.9 34.4 26.2 19.0
1.00 0.878 0.696 0.553
37.6 45.6 57.7 72.8
N S S S
29.4 22.3 16.1 11.6
71.6 62.7 47.1
1.00 1.00 1.00
17.2 21.2 31.4
C C N
56.6 49.1 35.7
2.04 1.77 1.48 1.32 1.15 0.971 0.790
48.2 42.6 36.1 32.5 28.7 24.6 20.2
1.00 1.00 1.00 1.00 1.00 1.00 0.841
14.1 17.4 22.5 26.1 30.9 37.6 47.6
C C C C N N S
38.4 33.6 28.2 25.3 22.2 17.0 12.2
1.27 1.12 0.939 0.733 0.624 0.509 0.414
34.2 30.6 26.2 21.0 18.1 14.9 12.2
1.00 1.00 1.00 1.00 1.00 0.978 0.774
11.9 14.8 19.1 26.4 32.2 40.9 51.8
C C C C N S S
27.5 24.3 20.6 16.6 13.7 9.80 7.03
Zx
Zn
Sx
rx
J
C
106mm 4
103mm 3
103mm3
103mm3
mm
106mm4
103mm3
2130 1810 1480 1140 959 774
3.04 2.66 2.23 1.77 1.51 1.23
60.7 53.1 44.6 35.4 30.1 24.6
47.1 40.5 33.5 26.0 21.9 17.8
73.5 63.5 52.6 41.2 34.9 28.3
37.7 38.3 38.8 39.4 39.6 39.9
5.15 4.42 3.63 2.79 2.35 1.91
93.6 81.4 68.0 53.2 45.2 36.9
1.00 1.00 1.00 0.952 0.787 0.624
28.0 34.0 43.0 54.3
1020 859 694 559
1.27 1.09 0.889 0.724
28.3 24.1 19.7 16.1
20.8 17.6 14.3 11.6
33.0 28.0 22.8 18.5
35.3 35.6 35.8 36.0
2.01 1.70 1.38 1.12
42.5 36.2 29.6 24.1
22.5 26.7 37.6
12.8 15.8 23.4
1870 1590 1150
2.06 1.81 1.37
46.2 40.7 30.9
36.3 31.4 23.2
56.6 49.1 36.5
33.2 33.7 34.5
3.54 3.05 2.24
0.274 0.279 0.283 0.285 0.290 0.291 0.293
22.8 27.0 33.3 37.9 43.9 52.4 65.1
10.5 13.0 16.8 19.4 23.0 28.0 35.5
1530 1310 1080 959 841 709 574
1.16 1.03 0.882 0.797 0.716 0.614 0.505
30.9 27.5 23.5 21.3 19.1 16.4 13.5
24.7 21.6 18.0 16.1 14.2 12.0 9.83
38.4 33.6 28.2 25.3 22.5 19.1 15.6
27.5 28.0 28.6 28.8 29.2 29.4 29.7
0.234 0.239 0.243 0.250 0.251 0.253 0.255
23.1 27.3 33.6 44.1 52.6 65.3 81.2
8.83 11.0 14.3 19.7 24.0 30.5 38.6
1290 1110 921 721 609 494 399
0.706 0.638 0.552 0.454 0.391 0.323 0.265
21.7 19.6 17.0 14.0 12.0 9.94 8.16
17.8 15.6 13.2 10.4 8.91 7.29 5.94
27.5 24.3 20.6 16.6 14.1 11.6 9.44
23.4 23.9 24.5 25.1 25.3 25.6 25.8
For Grade C450L0 fy=450 MPa and fu =500 MPa. fy = yield stress used in design; fu = tensile strength used in design; as defined in AS 4100. Grade C450L0 to AS 1163 is cold-formed and therefore is allocated the CF residual stresses classification in AS 4100. C =Compact Section; N = Non-compact Section; S =Slender Section; as defined in AS 4100.
About x- and y-axis
DCTDHS/06 MARCH 2002
TABLE D1.2-3(2)
DIMENSIONS AND PROPERTIES DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness
DIMENSIONS AND RATIOS Designation
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
d
b
mm
mm
Mass per m
t mm
50 x 50 x 5.0 4.0 3.0 2.5 2.0 1.6
External Surface Area per m
per t
kg/m
2
m /m
PROPERTIES b-2t t
PROPERTIES FOR DESIGN TO AS 4100
Gross
About x-, y- and n-axis
Section Area
Ag mm
Ix 2
6
10 mm
Zx 4
3
10 mm
Zn 3
3
10 mm
Sx 3
3
10 mm
Torsion
Torsion
Form
Constant
Modulus
Factor
J
C
kf
rx 3
6
mm
10 mm
4
3
10 mm
About x- and y-axis
位e
3
Compactness
Ze
(C,N,S)
103mm3
SHS SHS SHS SHS SHS SHS
6.39 5.35 4.25 3.60 2.93 2.38
0.179 0.183 0.190 0.191 0.193 0.195
27.9 34.2 44.7 53.1 65.8 81.7
8.00 10.5 14.7 18.0 23.0 29.3
814 681 541 459 374 303
0.257 0.229 0.195 0.169 0.141 0.117
10.3 9.15 7.79 6.78 5.66 4.68
8.51 7.33 5.92 5.09 4.20 3.44
13.2 11.4 9.39 8.07 6.66 5.46
17.8 18.3 19.0 19.2 19.5 19.6
0.469 0.403 0.321 0.275 0.226 0.185
16.3 14.3 11.8 10.2 8.51 7.03
1.00 1.00 1.00 1.00 1.00 1.00
10.7 14.1 19.7 24.1 30.9 39.2
C C C C N N
13.2 11.4 9.39 8.07 6.58 4.74
40 x 40 x 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS
4.09 3.30 2.82 2.31 1.88
0.143 0.150 0.151 0.153 0.155
34.9 45.3 53.7 66.4 82.3
8.00 11.3 14.0 18.0 23.0
521 421 359 294 239
0.105 0.0932 0.0822 0.0694 0.0579
5.26 4.66 4.11 3.47 2.90
4.36 3.61 3.13 2.61 2.15
6.74 5.72 4.97 4.13 3.41
14.2 14.9 15.1 15.4 15.6
0.192 0.158 0.136 0.113 0.0927
8.33 7.07 6.21 5.23 4.36
1.00 1.00 1.00 1.00 1.00
10.7 15.2 18.8 24.1 30.9
C C C C N
6.74 5.72 4.97 4.13 3.37
35 x 35 x 3.0 2.5 2.0 1.6
SHS SHS SHS SHS
2.83 2.42 1.99 1.63
0.130 0.131 0.133 0.135
45.8 54.2 66.8 82.7
9.67 12.0 15.5 19.9
361 309 254 207
0.0595 0.0529 0.0451 0.0379
3.40 3.02 2.58 2.16
2.67 2.33 1.95 1.62
4.23 3.69 3.09 2.57
12.8 13.1 13.3 13.5
0.102 0.0889 0.0741 0.0611
5.18 4.58 3.89 3.26
1.00 1.00 1.00 1.00
13.0 16.1 20.8 26.7
C C C C
4.23 3.69 3.09 2.57
30 x 30 x 2.0 SHS 1.6 SHS
1.68 1.38
0.113 0.115
67.4 83.3
13.0 16.8
214 175
0.0272 0.0231
1.81 1.54
1.39 1.16
2.21 1.84
11.3 11.5
0.0454 0.0377
2.75 2.32
1.00 1.00
17.4 22.5
C C
2.21 1.84
25 x 25 x 2.5 SHS 2.0 SHS 1.6 SHS
1.64 1.36 1.12
0.0914 0.0931 0.0945
55.7 68.3 84.1
8.00 10.5 13.6
209 174 143
0.0169 0.0148 0.0128
1.35 1.19 1.02
1.08 0.926 0.780
1.71 1.47 1.24
8.99 9.24 9.44
0.0297 0.0253 0.0212
2.07 1.80 1.54
1.00 1.00 1.00
10.7 14.1 18.3
C C C
1.71 1.47 1.24
20 x 20 x 1.6 SHS
0.873
0.0745
85.4
10.5
111
0.00608
0.608
0.474
0.751
7.39
0.0103
0.924
1.00
14.1
C
0.751
Notes:
1.
D1-15
2. 3.
For Grade C450L0 fy=450 MPa and fu =500 MPa. fy = yield stress used in design; fu = tensile strength used in design; as defined in AS 4100. Grade C450L0 to AS 1163 is cold-formed and therefore is allocated the CF residual stresses classification in AS 4100. C =Compact Section; N = Non-compact Section; S =Slender Section; as defined in AS 4100.
D1-16 TABLE D1.2-4
DIMENSIONS AND PROPERTIES DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
DIMENSIONS AND RATIOS Designation
Mass per m
External Surface Area
PROPERTIES b-2t t
PROPERTIES FOR DESIGN TO AS 4100
Gross
About x-, y- and n-axis
Section Area
d
b
t
per m
per t
Ag
mm
mm
mm
kg/m
m2/m
mm 2
Ix 106mm 4
Torsion
Torsion
Form
Constant
Modulus
Factor
kf
Zx
Zn
Sx
rx
J
C
103mm 3
103mm3
103mm3
mm
106mm4
103mm3
About x- and y-axis
位e
Compactness
Ze
(C,N,S)
103mm3
100 x 100 x 2.8 SHS 2.3 SHS
8.39 6.95
0.390 0.392
46.5 56.4
33.7 41.5
1070 885
1.67 1.40
33.3 27.9
24.4 20.3
38.7 32.3
39.5 39.7
2.61 2.17
50.0 41.9
0.886 0.721
45.2 55.6
S S
31.0 23.1
75 x 75 x 2.8 SHS 2.3 SHS
6.19 5.14
0.290 0.292
46.9 56.8
24.8 30.6
788 655
0.676 0.571
18.0 15.2
13.3 11.2
21.2 17.7
29.3 29.5
1.08 0.900
27.1 22.9
1.00 0.974
33.3 41.1
N S
20.1 15.0
65 x 65 x 2.3 SHS
4.42
0.252
57.0
26.3
563
0.364
11.2
13.1
25.4
0.579
16.9
1.00
35.2
N
12.1
50 x 50 x 2.8 SHS 2.3 SHS
3.99 3.34
0.190 0.192
47.7 57.6
15.9 19.7
508 425
0.185 0.159
7.40 6.34
5.60 4.74
8.87 7.52
19.1 19.3
0.303 0.256
11.2 9.55
1.00 1.00
21.3 26.5
C C
8.87 7.52
40 x 40 x 2.8 SHS 2.3 SHS
3.11 2.62
0.150 0.152
48.3 58.1
12.3 15.4
396 333
0.0890 0.0773
4.45 3.86
3.43 2.93
5.43 4.64
15.0 15.2
0.149 0.127
6.74 5.83
1.00 1.00
16.5 20.6
C C
5.43 4.64
35 x 35 x 2.8 SHS 2.3 SHS
2.67 2.25
0.130 0.132
48.8 58.6
10.5 13.2
340 287
0.0570 0.0499
3.26 2.85
2.54 2.19
4.02 3.46
12.9 13.2
0.0970 0.0831
4.95 4.32
1.00 1.00
14.1 17.7
C C
4.02 3.46
Notes:
1. 2. 3.
8.27
For Grade C450L0 fy=450 MPa and fu =500 MPa. fy = yield stress used in design; fu = tensile strength used in design; as defined in AS 4100. Grade C450L0 to AS 1163 is cold-formed and therefore is allocated the CF residual stresses classification in AS 4100. C =Compact Section; N = Non-compact Section; S =Slender Section; as defined in AS 4100.
DCTDHS/06 MARCH 2002
TABLE D1.3-1(A)
FIRE ENGINEERING DESIGN EXPOSED SURFACE AREA TO MASS RATIO (m2/t) DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness about x-axis
1 = TOTAL PERIMETER, PROFILE-PROTECTED 2 = TOTAL PERIMETER, BOX-PROTECTED, NO GAP 3 = TOTAL PERIMETER, BOX-PROTECTED, 25mm GAP 4 = TOP FLANGE EXCLUDED, PROFILE-PROTECTED 5 = TOP FLANGE EXCLUDED, BOX-PROTECTED, NO GAP 6 = TOP FLANGE EXCLUDED, BOX PROTECTED, 25mm GAP
Designation d b t mm
mm
mm
Mass per m
1
2
3
4
5
6
kg/m
150 x 50 x
6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS
16.7 14.2 11.6 8.96 7.53 6.07
22.4 26.6 32.9 43.5 52.0 64.7
23.9 28.1 34.4 44.7 53.1 65.9
35.8 42.1 51.6 67.0 79.7 98.8
21.2 24.8 30.3 39.3 46.7 57.8
20.9 24.6 30.1 39.1 46.5 57.6
26.9 31.6 38.7 50.2 59.8 74.1
125 x 75 x
6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS
16.7 14.2 11.6 8.96 7.53 6.07
22.4 26.6 32.9 43.5 52.0 64.7
23.9 28.1 34.4 44.7 53.1 65.9
35.8 42.1 51.6 67.0 79.7 98.8
19.7 23.1 28.2 36.5 43.4 53.7
19.4 22.8 28.0 36.3 43.2 53.5
25.4 29.8 36.6 47.5 56.5 70.0
100 x 50 x
6.0 RHS 5.0 RHS 4.0 RHS 3.5 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
12.0 10.3 8.49 7.53 6.60 5.56 4.50 3.64
22.8 27.0 33.3 37.9 43.9 52.4 65.1 81.0
24.9 29.1 35.4 39.9 45.5 53.9 66.6 82.5
41.6 48.5 58.9 66.4 75.8 89.8 111 138
21.1 24.6 29.8 33.5 38.1 45.2 55.8 69.0
20.8 24.2 29.5 33.2 37.9 44.9 55.5 68.8
29.1 33.9 41.2 46.5 53.0 62.9 77.7 96.3
75 x 50 x
6.0 RHS 5.0 RHS 4.0 RHS 3 0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
9.67 8.35 6.92 5.42 4.58 3.72 3.01
23.2 27.4 33.7 44.2 52.7 65.4 81.3
25.8 29.9 36.1 46.1 54.5 67.2 83.1
46.5 53.9 65.1 83.0 98.2 121 150
21.1 24.4 29.3 37.2 43.9 54.1 66.8
20.7 23.9 28.9 36.9 43.6 53.8 66.5
31.0 35.9 43.4 55.3 65.4 80.7 99.7
75 x 25 x
2.5 RHS 2.0 RHS 1.6 RHS
3.60 2.93 2.38
53.1 65.8 81.7
55.5 68.2 84.0
111 136 168
49.0 60.0 73.9
48.6 59.7 73.5
76.3 93.7 116
65 x 35 x
4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS
5.35 4.25 3.60 2.93
34.2 44.7 53.1 65.8
37.4 47.1 55.5 68.2
74.8 94.2 111 136
31.4 39.3 46.2 56.6
30.9 38.9 45.8 56.2
49.6 62.4 73.6 90.3
50 x 25 x
3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
3.07 2.62 2.15 1.75
45.5 54.0 66.6 82.5
48.9 57.2 69.8 85.6
114 134 163 200
41.3 48.2 58.7 71.9
40.7 47.7 58.2 71.4
73.3 85.8 105 128
50 x 20 x
3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
2.83 2.42 1.99 1.63
45.8 54.2 66.8 82.7
49.4 57.7 70.3 86.1
120 140 171 209
43.0 50.1 60.8 74.3
42.4 49.5 60.3 73.8
77.7 90.7 110 135
See page D1-7 for details of the cases of fire exposure considered.
DCTDHS/06 MARCH 2002
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
D1-17
TABLE D1.3-1(B)
FIRE ENGINEERING DESIGN EXPOSED SURFACE AREA TO MASS RATIO (m2/t) DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness about y-axis
1 = TOTAL PERIMETER, PROFILE-PROTECTED 2 = TOTAL PERIMETER, BOX-PROTECTED, NO GAP 3 = TOTAL PERIMETER, BOX-PROTECTED, 25mm GAP 4 = TOP FLANGE EXCLUDED, PROFILE-PROTECTED 5 = TOP FLANGE EXCLUDED, BOX-PROTECTED, NO GAP 6 = TOP FLANGE EXCLUDED, BOX PROTECTED, 25mm GAP
Designation d b t mm
mm
mm
Mass per m
1
2
3
4
5
6
kg/m
150 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS
16.7 14.2 11.6 8.96 7.53 6.07
22.4 26.6 32.9 43.5 52.0 64.7
23.9 28.1 34.4 44.7 53.1 65.9
35.8 42.1 51.6 67.0 79.7 98.8
15.2 17.8 21.7 28.1 33.4 41.3
14.9 17.6 21.5 27.9 33.2 41.2
20.9 24.6 30.1 39.1 46.5 57.6
125 x 75 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS
16.7 14.2 11.6 8.96 7.53 6.07
22.4 26.6 32.9 43.5 52.0 64.7
23.9 28.1 34.4 44.7 53.1 65.9
35.8 42.1 51.6 67.0 79.7 98.8
16.7 19.6 23.9 30.9 36.7 45.5
16.4 19.3 23.7 30.7 36.5 45.3
22.4 26.3 32.3 41.9 49.8 61.7
100 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.5 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
12.0 10.3 8.49 7.53 6.60 5.56 4.50 3.64
22.8 27.0 33.3 37.9 43.9 52.4 65.1 81.0
24.9 29.1 35.4 39.9 45.5 53.9 66.6 82.5
41.6 48.5 58.9 66.4 75.8 89.8 111 138
17.0 19.7 23.9 26.9 30.6 36.2 44.7 55.3
16.6 19.4 23.6 26.6 30.3 35.9 44.4 55.0
24.9 29.1 35.4 39.9 45.5 53.9 66.6 82.5
75 x 50 x
6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
9.67 8.35 6.92 5.42 4.58 3.72 3.01
23.2 27.4 33.7 44.2 52.7 65.4 81.3
25.8 29.9 36.1 46.1 54.5 67.2 83.1
46.5 53.9 65.1 83.0 98.2 121 150
18.5 21.4 25.7 32.6 38.5 47.4 58.5
18.1 20.9 25.3 32.3 38.2 47.1 58.2
28.4 32.9 39.8 50.7 60.0 74.0 91.4
75 x 25 x
2.5 RHS 2.0 RHS 1.6 RHS
3.60 2.93 2.38
53.1 65.8 81.7
55.5 68.2 84.0
111 136 168
35.1 43.0 52.9
34.7 42.6 52.5
62.5 76.7 94.5
65 x 35 x
4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS
5.35 4.25 3.60 2.93
34.2 44.7 53.1 65.8
37.4 47.1 55.5 68.2
74.8 94.2 111 136
25.8 32.2 37.9 46.4
25.3 31.8 37.5 46.0
44.0 55.4 65.2 80.1
50 x 25 x
3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
3.07 2.62 2.15 1.75
45.5 54.0 66.6 82.5
48.9 57.2 69.8 85.6
114 134 163 200
33.1 38.7 47.1 57.6
32.6 38.2 46.5 57.1
65.2 76.3 93.1 114
50 x 20 x
3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
2.83 2.42 1.99 1.63
45.8 54.2 66.8 82.7
49.4 57.7 70.3 86.1
120 140 171 209
32.4 37.7 45.8 55.9
31.8 37.1 45.2 55.3
67.1 78.4 95.4 117
See page D1-7 for details of the cases of fire exposure considered.
D1-18
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
DCTDHS/06 MARCH 2002
TABLE D1.3-2(A)
FIRE ENGINEERING DESIGN EXPOSED SURFACE AREA TO MASS RATIO (m2/t) DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness about x-axis
1 = TOTAL PERIMETER, PROFILE-PROTECTED 2 = TOTAL PERIMETER, BOX-PROTECTED, NO GAP 3 = TOTAL PERIMETER, BOX-PROTECTED, 25mm GAP 4 = TOP FLANGE EXCLUDED, PROFILE-PROTECTED 5 = TOP FLANGE EXCLUDED, BOX-PROTECTED, NO GAP 6 = TOP FLANGE EXCLUDED, BOX PROTECTED, 25mm GAP
Designation d b t
Mass per m
mm
kg/m
mm
mm
1
2
3
4
5
6
125 x 75 x 2.8 RHS 2.3 RHS
8.39 6.95
46.5 56.4
47.7 57.6
71.5 86.3
38.9 47.0
38.7 46.8
50.7 61.2
100 x 50 x 2.8 RHS 2.3 RHS
6.19 5.14
46.9 56.8
48.5 58.3
80.8 97.2
40.6 48.9
40.4 48.6
56.5 68.0
75 x 50 x 2.8 RHS 2.3 RHS
5.09 4.24
47.2 57.1
49.1 59.0
88.4 106
39.6 47.5
39.3 47.2
58.9 70.7
65 x 35 x 2.8 RHS 2.3 RHS
3.99 3.34
47.7 57.6
50.1 59.9
100 120
41.7 49.8
41.3 49.4
66.4 79.4
50 x 25 x 2.8 RHS 2.3 RHS
2.89 2.44
48.5 58.4
51.9 61.6
121 144
43.8 51.9
43.2 51.3
77.8 92.4
50 x 20 x 2.8 RHS 2.3 RHS
2.67 2.25
48.8 58.6
52.4 62.1
127 151
45.5 53.8
44.9 53.2
82.3 97.6
See page D1-7 for details of the cases of fire exposure considered.
TABLE D1.3-2(B)
FIRE ENGINEERING DESIGN EXPOSED SURFACE AREA TO MASS RATIO (m2/t) DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness about y-axis
1 = TOTAL PERIMETER, PROFILE-PROTECTED 2 = TOTAL PERIMETER, BOX-PROTECTED, NO GAP 3 = TOTAL PERIMETER, BOX-PROTECTED, 25mm GAP 4 = TOP FLANGE EXCLUDED, PROFILE-PROTECTED 5 = TOP FLANGE EXCLUDED, BOX-PROTECTED, NO GAP 6 = TOP FLANGE EXCLUDED, BOX PROTECTED, 25mm GAP
Designation d b t
Mass per m
mm
kg/m
mm
mm
1
2
3
4
5
6
125 x 75 x 2.8 RHS 2.3 RHS
8.39 6.95
46.5 56.4
47.7 57.6
71.5 86.3
33.0 39.8
32.8 39.6
44.7 54.0
100 x 50 x 2.8 RHS 2.3 RHS
6.19 5.14
46.9 56.8
48.5 58.3
80.8 97.2
32.6 39.1
32.3 38.9
48.5 58.3
75 x 50 x 2.8 RHS 2.3 RHS
5.09 4.24
47.2 57.1
49.1 59.0
88.4 106
34.7 41.6
34.4 41.3
54.0 64.8
65 x 35 x 2.8 RHS 2.3 RHS
3.99 3.34
47.7 57.6
50.1 59.9
100 120
34.2 40.8
33.8 40.4
58.9 70.4
50 x 25 x 2.8 RHS 2.3 RHS
2.89 2.44
48.5 58.4
51.9 61.6
121 144
35.1 41.6
34.6 41.1
69.1 82.1
50 x 20 x 2.8 RHS 2.3 RHS
2.67 2.25
48.8 58.6
52.4 62.1
127 151
34.3 40.5
33.7 39.9
71.1 84.3
See page D1-7 for details of the cases of fire exposure considered.
DCTDHS/06 MARCH 2002
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
D1-19
TABLE D1.3-3
FIRE ENGINEERING DESIGN EXPOSED SURFACE AREA TO MASS RATIO (m2/t) DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness about x- and y-axis
1 = TOTAL PERIMETER, PROFILE-PROTECTED 2 = TOTAL PERIMETER, BOX-PROTECTED, NO GAP 3 = TOTAL PERIMETER, BOX-PROTECTED, 25mm GAP 4 = TOP FLANGE EXCLUDED, PROFILE-PROTECTED 5 = TOP FLANGE EXCLUDED, BOX-PROTECTED, NO GAP 6 = TOP FLANGE EXCLUDED, BOX PROTECTED, 25mm GAP
Designation d b t mm
mm
Mass per m
mm
1
2
3
4
5
6
kg/m
100 x 100 x 6.0 5.0 4.0 3.0 2.5 2.0
SHS SHS SHS SHS SHS SHS
16.7 14.2 11.6 8.96 7.53 6.07
22.4 26.6 32.9 43.5 52.0 64.7
23.9 28.1 34.4 44.7 53.1 65.9
35.8 42.1 51.6 67.0 79.7 98.8
18.2 21.3 26.0 33.7 40.0 49.6
17.9 21.1 25.8 33.5 39.9 49.4
23.9 28.1 34.4 44.7 53.1 65.9
90 x 90 x 3.0 2.5 2.0 1.6
SHS SHS SHS SHS
8.01 6.74 5.45 4.39
43.6 52.1 64.8 80.8
44.9 53.4 66.1 82.0
69.9 83.1 103 128
33.9 40.3 49.8 61.7
33.7 40.0 49.6 61.5
46.2 54.9 67.9 84.3
89 x 89 x 6.0 SHS 5.0 SHS 3.5 SHS
14.6 12.5 9.06
22.5 26.7 37.6
24.3 28.5 39.3
37.9 44.5 61.4
18.5 21.6 29.7
18.2 21.3 29.5
25.0 29.3 40.5
75 x 75 x 6.0 5.0 4.0 3.5 3.0 2.5 2.0
SHS SHS SHS SHS SHS SHS SHS
12.0 10.3 8.49 7.53 6.60 5.56 4.50
22.8 27.0 33.3 37.9 43.9 52.4 65.1
24.9 29.1 35.4 39.9 45.5 53.9 66.6
41.6 48.5 58.9 66.4 75.8 89.8 111
19.1 22.2 26.8 30.2 34.3 40.7 50.2
18.7 21.8 26.5 29.9 34.1 40.4 50.0
27.0 31.5 38.3 43.2 49.2 58.4 72.2
65 x 65 x 6.0 5.0 4.0 3.0 2.5 2.0 1.6
SHS SHS SHS SHS SHS SHS SHS
10.1 8.75 7.23 5.66 4.78 3.88 3.13
23.1 27.3 33.6 44.1 52.6 65.3 81.2
25.6 29.7 36.0 45.9 54.4 67.1 83.0
45.3 52.6 63.6 81.3 96.2 119 147
19.6 22.7 27.4 34.8 41.1 50.6 62.5
19.2 22.3 27.0 34.5 40.8 50.3 62.2
29.1 33.7 40.8 52.1 61.7 76.1 94.1
50 x 50 x 5.0 4.0 3.0 2.5 2.0 1.6
SHS SHS SHS SHS SHS SHS
6.39 5.35 4.25 3.60 2.93 2.38
27.9 34.2 44.7 53.1 65.8 81.7
31.3 37.4 47.1 55.5 68.2 84.0
62.6 74.8 94.2 111 136 168
24.0 28.6 35.7 42.0 51.5 63.4
23.5 28.1 35.3 41.6 51.1 63.0
39.1 46.8 58.9 69.4 85.2 105
40 x 40 x 4.0 3.0 2.5 2.0 1.6
SHS SHS SHS SHS SHS
4.09 3.30 2.82 2.31 1.88
34.9 45.3 53.7 66.4 82.3
39.1 48.4 56.8 69.4 85.2
88.0 109 128 156 192
30.0 36.8 43.1 52.5 64.4
29.3 36.3 42.6 52.0 63.9
53.8 66.6 78.1 95.4 117
35 x 35 x 3.0 2.5 2.0 1.6
SHS SHS SHS SHS
2.83 2.42 1.99 1.63
45.8 54.2 66.8 82.7
49.4 57.7 70.3 86.1
120 140 171 209
37.7 43.9 53.3 65.1
37.1 43.3 52.7 64.6
72.4 84.5 103 126
30 x 30 x 2.0 SHS 1.6 SHS
1.68 1.38
67.4 83.3
71.5 87.3
191 233
54.3 66.1
53.7 65.5
113 138
25 x 25 x 2.5 SHS 2.0 SHS 1.6 SHS
1.64 1.36 1.12
55.7 68.3 84.1
61.0 73.3 89.0
183 220 267
46.6 55.8 67.5
45.7 55.0 66.7
107 128 156
20 x 20 x 1.6 SHS
0.873
85.4
91.7
321
69.8
68.8
183
See page D1-7 for details of the cases of fire exposure considered.
D1-20
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
DCTDHS/06 MARCH 2002
TABLE D1.3-4
FIRE ENGINEERING DESIGN EXPOSED SURFACE AREA TO MASS RATIO (m2/t) DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness about x- and y-axis
1 = TOTAL PERIMETER, PROFILE-PROTECTED 2 = TOTAL PERIMETER, BOX-PROTECTED, NO GAP 3 = TOTAL PERIMETER, BOX-PROTECTED, 25mm GAP 4 = TOP FLANGE EXCLUDED, PROFILE-PROTECTED 5 = TOP FLANGE EXCLUDED, BOX-PROTECTED, NO GAP 6 = TOP FLANGE EXCLUDED, BOX PROTECTED, 25mm GAP
Designation d b t
Mass per m
mm
kg/m
mm
mm
1
2
3
4
5
6
100 x 100 x 2.8 SHS 2.3 SHS
8.39 6.95
46.5 56.4
47.7 57.6
71.5 86.3
36.0 43.4
35.8 43.2
47.7 57.6
75 x 75 x 2.8 SHS 2.3 SHS
6.19 5.14
46.9 56.8
48.5 58.3
80.8 97.2
36.6 44.0
36.4 43.7
52.5 63.2
65 x 65 x 2.3 SHS
4.42
57.0
58.8
104
44.4
44.1
66.7
50 x 50 x 2.8 SHS 2.3 SHS
3.99 3.34
47.7 57.6
50.1 59.9
100 120
38.0 45.3
37.6 44.9
62.6 74.9
40 x 40 x 2.8 SHS 2.3 SHS
3.11 2.62
48.3 58.1
51.4 61.2
116 138
39.1 46.4
38.6 45.9
70.7 84.1
35 x 35 x 2.8 SHS 2.3 SHS
2.67 2.25
48.8 58.6
52.4 62.1
127 151
39.9 47.1
39.3 46.6
76.7 90.9
See page D1-7 for details of the cases of fire exposure considered.
DCTDHS/06 MARCH 2002
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
D1-21
TABLE D1.4-1
DuraGal TELESCOPING INFORMATION RECTANGULAR HOLLOW SECTIONS
Female (outer)
Nominal Clearance
Male (inner)
Female (outer)
Nominal Clearance
Male (inner)
d mm
b mm
t mm
Top mm
Side mm
d mm
b mm
d mm
b mm
t mm
Top mm
Side mm
d mm
b mm
125 125 125 125 125 125 125 125
75 75 75 75 75 75 75 75
6.0 5.0 4.0 3.0 2.8* 2.5 2.3* 2.0
13.0 15.0 17.0 19.0 19.4 20.0 20.4 21.0
13.0 15.0 17.0 19.0 19.4 20.0 20.4 21.0
100 100 100 100 100 100 100 100
50 50 50 50 50 50 50 50
75 75 75
25 25 25
2.5 2.0 1.6
20.0 21.0 21.8
0.0 1.0 1.8
50 50 50
20 20 20
100 100 100 100 100 100 100 100 100 100
50 50 50 50 50 50 50 50 50 50
6.0 5.0 4.0 3.5 3.0 2.8* 2.5 2.3* 2.0 1.6
23.0 25.0 27.0 28.0 29.0 29.4 30.0 30.4 31.0 31.8
3.0 5.0 7.0 8.0 9.0 9.4 10.0 10.4 11.0 11.8
65 65 65 65 65 65 65 65 65 65
35 35 35 35 35 35 35 35 35 35
65 65 65 65 65 65
35 35 35 35 35 35
4.0 3.0 2.8* 2.5 2.3* 2.0
7.0 9.0 9.4 10.0 10.4 11.0
2.0 4.0 4.4 5.0 5.4 6.0
50 50 50 50 50 50
25 25 25 25 25 25
50 50 50 50 50 50
25 25 25 25 25 25
3.0 2.8* 2.5 2.3* 2.0 1.6
NO SECTION AVAILABLE
100 100 100 100 100 100 100 100 100 100
50 50 50 50 50 50 50 50 50 50
6.0 5.0 4.0 3.5 3.0 2.8* 2.5 2.3* 2.0 1.6
13.0 15.0 17.0 18.0 19.0 19.4 20.0 20.4 21.0 21.8
13.0 15.0 17.0 18.0 19.0 19.4 20.0 20.4 21.0 21.8
75 75 75 75 75 75 75 75 75 75
25 25 25 25 25 25 25 25 25 25
50 50 50 50 50
20 20 20 20 20
3.0 2.8* 2.5 2.3* 2.0
NO SECTION AVAILABLE
75 75 75 75 75 75 75 75 75
50 50 50 50 50 50 50 50 50
6.0 5.0 4.0 3.0 2.8* 2.5 2.3* 2.0 1.6
13.0 0.0 2.0 4.0 4.4 5.0 5.4 6.0 6.8
13.0 5.0 7.0 9.0 9.4 10.0 10.4 11.0 11.8
50 65 65 65 65 65 65 65 65
25 35 35 35 35 35 35 35 35
* Non-Standard thickness
Note: RHS is not a precision tube and all dimensions in this chart, although in accordance with the specifications, may vary marginally. Varying corner radii and the internal weld bead may need to be considered when a closer fit is required. SIZES WITH A CLEARANCE LESS THAN 2.0 mm ARE SHOWN BOLDER IN THE CHARTS. For tight fits it is recommended that some form of testing is carried out prior to committing material. Where telescoping over some length is required, additional allowance may be needed for straightness.
HOW TO USE THIS CHART 1. Select the size of Female (or outer) member closest to your requirements from the left hand column. 2. Depending on the application select the clearance required between the two members. Members may need to slide freely inside each other, or be locked with a pin, spot welded or fixed with wedges. This means, in some cases, a 'sloppy' fit may be suitable, while for others the tightest fit possible may be more appropriate. 3. Having selected the most suitable clearance for your application, take the appropriate size of the Male (inner) section from the right hand column, eg. Female Section
Clearance
(outer)
mm
Male Section (inner)
75 x 50 x 3.0
4.0 x 9.0
65 x 35
Note that the clearance is total available difference between member dimensions, not the gap on both sides.
4. Where two telescoping sections are being used, thickness should be similar and will be determined by normal structural requirements. If a third section is to be used consideration of both clearance and thickness within the size list available may be required. 5. RHS has the obvious advantage that its shape prevents rotation of the section. 6. Press Fit: for short pieces with no need for separation or sliding an interference fit can be achieved using the ductility of the steel. Sizes where clearance is shown as 0.0 may occasionally require press fit.
D1-22
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
DCTDHS/06 MARCH 2002
TABLE D1.4-2
DuraGal TELESCOPING INFORMATION SQUARE HOLLOW SECTIONS
Female (outer)
Nominal Clearance
Male (inner)
Female (outer)
Nominal Clearance
Male (inner)
b mm
d mm
b mm
t mm
Top mm
Side mm
d mm
b mm
d mm
b mm
t mm
Top mm
Side mm
d mm
100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100
6.0 5.0 4.0 3.0 2.8* 2.5 2.3* 2.0
13.0 15.0 17.0 19.0 19.4 20.0 20.4 21.0
13.0 15.0 17.0 19.0 19.4 20.0 20.4 21.0
75 75 75 75 75 75 75 75
75 75 75 75 75 75 75 75
50 50 50 50 50 50 50 50
50 50 50 50 50 50 50 50
5.0 4.0 3.0 2.8* 2.5 2.3* 2.0 1.6
0.0 2.0 4.0 4.4 5.0 5.4 6.0 6.8
0.0 2.0 4.0 4.4 5.0 5.4 6.0 6.8
40 40 40 40 40 40 40 40
40 40 40 40 40 40 40 40
100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100
6.0 5.0 4.0 3.0 2.8* 2.5 2.3* 2.0
13.0 0.0 2.0 3.0 4.4 5.0 5.4 6.0
13.0 0.0 2.0 3.0 4.4 5.0 5.4 6.0
75 90 90 90 90 90 90 90
75 90 90 90 90 90 90 90
40 40 40 40 40 40 40
40 40 40 40 40 40 40
4.0 3.0 2.8* 2.5 2.3* 2.0 1.6
2.0 4.0 4.4 0.0 0.4 1.0 1.8
2.0 4.0 4.4 0.0 0.4 1.0 1.8
30 30 30 35 35 35 35
30 30 30 35 35 35 35
90 90 90 90
90 90 90 90
3.0 2.5 2.0 1.6
9.0 10.0 11.0 11.8
9.0 10.0 11.0 11.8
75 75 75 75
75 75 75 75
89 89 89
89 89 89
6.0 5.0 3.5
1.9 3.9 6.9
1.9 3.9 6.9
75 75 75
75 75 75
35 35 35 35 35 35
35 35 35 35 35 35
3.0 2.8* 2.5 2.3* 2.0 1.6
4.0 4.4 0.0 0.4 1.0 1.8
4.0 4.4 0.0 0.4 1.0 1.8
25 25 30 30 30 30
25 25 30 30 30 30
30 30
30 30
2.0 1.6
1.0 1.8
1.0 1.8
25 25
25 25
75 75 75 75 75 75 75 75 75
75 75 75 75 75 75 75 75 75
6.0 5.0 4.0 3.5 3.0 2.8* 2.5 2.3* 2.0
13.0 0.0 2.0 3.0 4.0 4.4 5.0 5.4 6.0
13.0 0.0 2.0 3.0 4.0 4.4 5.0 5.4 6.0
50 65 65 65 65 65 65 65 65
50 65 65 65 65 65 65 65 65
25 25 25
25 25 25
2.5 2.0 1.6
0.0 1.0 1.8
0.0 1.0 1.8
20 20 20
20 20 20
20
20
1.6
1.8
1.8
15
15
65 65 65 65 65 65 65 65
65 65 65 65 65 65 65 65
6.0 5.0 4.0 3.0 2.5 2.3* 2.0 1.6
3.0 5.0 7.0 9.0 10.0 10.4 11.0 11.8
3.0 5.0 7.0 9.0 10.0 10.4 11.0 11.8
50 50 50 50 50 50 50 50
50 50 50 50 50 50 50 50
* Non-Standard thickness Note: RHS is not a precision tube and all dimensions in this chart, although in accordance with the specifications, may vary marginally. Varying corner radii and the internal weld bead may need to be considered when a closer fit is required. SIZES WITH A CLEARANCE LESS THAN 2.0 mm ARE SHOWN BOLDER IN THE CHARTS. For tight fits it is recommended that some form of testing is carried out prior to committing material. Where telescoping over some length is required, additional allowance may be needed for straightness.
HOW TO USE THIS CHART 1. Select the size of Female (or outer) member closest to your requirements from the left hand column. 2. Depending on the application select the clearance required between the two members. Members may need to slide freely inside each other, or be locked with a pin, spot welded or fixed with wedges. This means, in some cases, a 'sloppy' fit may be suitable, while for others the tightest fit possible may be more appropriate. 3. Having selected the most suitable clearance for your application, take the appropriate size of the Male (inner) section from the right hand column, eg. Female Section
Clearance
(outer)
mm
Male Section (inner)
75 x 75 x 3.0
4.0 x 4.0
65 x 65
Note that the clearance is total available difference between member dimensions, not the gap on both sides.
4. Where two telescoping sections are being used, thickness should be similar and will be determined by normal structural requirements. If a third section is to be used consideration of both clearance and thickness within the size list available may be required. 5. RHS has the obvious advantage that its shape prevents rotation of the section. 6. Press Fit: for short pieces with no need for separation or sliding an interference fit can be achieved using the ductility of the steel. Sizes where clearance is shown as 0.0 may occasionally require press fit.
DCTDHS/06 MARCH 2002
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
D1-23
[ BLANK ]
D1-24
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
DCTDHS/06 MARCH 2002
PART 2 DETERMINATION OF DESIGN ACTION EFFECTS
2 PAGE
D2.1
METHODS OF ANALYSIS............................................................................................ D2-2
D2.2
SECOND-ORDER EFFECTS ....................................................................................... D2-2
D2.3
USE OF TABLES .......................................................................................................... D2-2
D2.4
USE OF ANALYSIS METHODS ................................................................................... D2-3
D2.4.1
First-Order Elastic Analysis ........................................................................................... D2-3
D2.4.2
First-Order Elastic Analysis with Moment Amplification ................................................. D2-4
D2.4.3
Second-Order Elastic Analysis in Accordance with Appendix E of AS 4100 ................ D2-4
DCTDHS/06 MARCH 2002
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
D2-1
PART 2 DETERMINATION OF DESIGN ACTION EFFECTS D2.1
METHODS OF ANALYSIS
The methods of structural analysis that are recognised in AS 4100 and most likely to be used for structural hollow sections are: a) First-order elastic analysis b) First-order elastic analysis with moment amplification (Clause 4.4.2 of AS 4100) c) Second-order elastic analysis in accordance with Appendix E of AS 4100 Plastic analysis is currently not permitted by AS 4100 for structural steel hollow sections, although research [1] has already been performed to establish the suitability of square and rectangular hollow sections.
D2.2
SECOND-ORDER EFFECTS
When combined bending and axial compression forces are present in members, SECOND-ORDER EFFECTS must be considered. Second-order bending moments are often classified as P∆ which arise from the relative end displacements (∆), or as Pδ which arise from the member deflecting (δ) from a straight line joining the member’s ends (Figure D2.2). In braced frames the relative member end displacements (δ) are small, and consideration is only given to the Pδ effects. In sway frames the P∆ effects are often more significant than the Pd effects.
D2.3
USE OF TABLES
The tabulated values in PARTS 4, 5 and 6 may be used for design in those cases where second-order effects:
•
can be neglected
•
are accounted for using moment amplification factors in conjunction with a first-order elastic analysis
•
are accounted for in a second-order elastic analysis
______________________ [1]
Centre for Advanced Structural Engineering, School of Civil and Mining Engineering, The University of Sydney, “Plastic Design of Cold-Formed RHS”, CIDECT Project 2S-5-98, Final Report.
D2-2
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
DCTDHS/06 MARCH 2002
Figure D2.2: First-order Analysis and Second-order Behaviour
D2.4
USE OF ANALYSIS METHODS
D2.4.1 First-order Elastic Analysis This method can be used to analyse members which do not have second-order effects. They are members with:
•
bending moments only
•
axial tension force only
•
combined bending moments and tension force
DCTDHS/06 MARCH 2002
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
D2-3
D2.4.2 First-order Elastic Analysis with Moment Amplification This method can be used to analyse members with combined bending and axial compression and when the moment amplification factors δb or δs (see Clauses 4.4.2.2 and 4.4.2.3 of AS 4100) are less than 1.4 (i.e. when second-order effects are less than 40%). The maximum moment in the member M*m as determined by the first-order elastic analysis, is multiplied by the moment amplification factor δb or δs. See PART 7, Figures D7.3(1) and D7.3(2) for the determination of δb and δs respectively.
D2.4.3 Second-order Elastic Analysis in Accordance with Appendix E of AS 4100 This method can be used to analyse members with combined bending and axial compression and must be used when the moment amplification factors δb or δs are greater than 1.4 (i.e. when second-order effects are greater than 40%). A suitable computer analysis program is normally used due to the iterative nature of this analysis.
D2-4
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
DCTDHS/06 MARCH 2002
PART 3 SECTION CAPACITIES
3 PAGE
D3.1
SCOPE ........................................................................................................................... D3-2
D3.2
METHOD ........................................................................................................................ D3-2
D3.2.1
Design Section Capacity for Axial Tension .................................................................... D3-2
D3.2.2
Design Section Capacity for Axial Compression ........................................................... D3-2
D3.2.3
Design Moment Section Capacity .................................................................................. D3-3
D3.2.4
Design Shear Capacity of a Web ................................................................................... D3-3
D3.2.5
Design Torsional Moment Section Capacity ................................................................... D3-4
D3.2.5.1
Introduction ..................................................................................................................... D3-4
D3.2.5.2
Method ............................................................................................................................ D3-4
TABLES TABLES D3.1-1 to D3.1-4 Design Section Capacities (φNt, φNs, φMs, φVv, φMz) ................................................... D3-6
NOTE: SEE PAGE vii FOR THE SPECIFIC MATERIAL STANDARD REFERRED TO BY THE SECTION TYPE AND STEEL GRADE IN THESE TABLES.
DCTDHS/06 MARCH 2002
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
D3-1
PART 3 SECTION CAPACITIES D3.1
SCOPE
The following tables give values of design section capacities for axial tension (φNt), axial compression (φNs), moment (φMs), shear (φVv) and torsional moment (φMz).
D3.2
METHOD
The determination of each of the design section capacities (Tables D3.1-1 to D3.1-4) is detailed in Sections D3.2.1 to D3.2.5. PART 3 of the Tables contains design section capacities whilst PART 4 to PART 6 contain design member capacities. Section capacities give the maximum capacity of a section subjected to design action effects. Member capacities are determined by reducing the section capacities by factors accounting for restraints and loading conditions.
D3.2.1 Design Section Capacity for Axial Tension The design section capacity for axial tension (φNt) is determined from Clauses 7.1 and 7.2 of AS 4100 as the lesser of: φNt = φ Ag fy and where
φ Ag fy Kt An
= = = = = = =
fu =
φNt = φ 0.85 Kt An fu
0.9 (Table 3.4 of AS 4100) gross cross-sectional area yield stress used in design 1.0 net section area Ag gross cross-sectional area (assuming full perimeter welded connections with no penetrations or holes) tensile strength used in design
D3.2.2 Design Section Capacity for Axial Compression The design section capacity for axial compression (φNs) is determined from Clauses 6.1 and 6.2 of AS 4100 as: φNs = φ kf An fy where
φ = kf = An = = = fy =
D3-2
0.9 (Table 3.4 of AS 4100) Ae / Ag (see section D1.2.3.3 and Tables D1.2-1 to D1.2-4) net section area Ag gross cross-sectional area (assuming no penetrations or holes) yield stress used in design
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
DCTDHS/06 MARCH 2002
D3.2.3 Design Moment Section Capacity The design moment section capacity (φMs) is determined from Clauses 5.1 and 5.2.1 of AS 4100 as: φ Ms = φ fy Ze where
φ = fy = Ze =
0.9 (Table 3.4 of AS 4100) yield stress used in design effective section modulus (see Section D1.2.3.2 and Tables D1.2-1 to D1.2-4).
Values of the design section moment capacity (φMs) can be found in the tables for members bent about either principal x- or y-axis. It should be noted that the design member capacity in the minor principal y-axis is the design section capacity (φMs). For members which are fully restrained against flexural buckling the design member moment capacity equals the full section moment capacity (φMs).
D3.2.4 Design Shear Capacity of a Web The design shear capacity of a web (φVv) is determined from Clauses 5.11.3 and 5.11.4 of AS 4100, for RHS and SHS and as the lesser of:φVv = 0.6 φ fy (d - 2t) 2t
φVv = and
φ fy d t Vu f *va f *vm
where
= = = = = = =
2φVu f∗ 0.9 + vm f ∗va
(Clause 5.11.4 of AS 4100)
(Clause 5.11.3 of AS 4100)
0.9 (Table 3.4 of AS 4100) yield stress used in design full depth thickness of section 0.6 fy (d-2t) 2t average design shear stress in the web maximum design shear stress in the web
The ratio of maximum to average design shear stress in the web (f *vm /f *va) for bending about the x-axis is calculated [1] using:
b b
f *vm 3 2b + d = f * va 2 3b + d where
d = b =
g g
full depth of section full width of section
Note: for bending about the y-axis, b and d are interchanged in the calculation of the maximum to average design web shear stress ratio. Non-uniform shear stress governs when d / b > 0.75. For calculating the web area, the web depth has been taken as the clear depth between flanges (d1) for RHS and SHS.
[1]
Bridge, R.Q., Trahair, N.S., “Thin Walls Beams”, Steel Construction, AISC, Vol. 15, No.1, 1981.
DCTDHS/06 MARCH 2002
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
D3-3
D3.2.5 Design Torsional Moment Section Capacity The design torsional moment section capacity (φMz ) is determined in accordance with Sections D3.2.5.1 and D3.2.5.2.
D 3.2.5.1 Introduction Although AS 4100 makes no provision for the design of members subject to torsion it is nevertheless considered appropriate to supply torsional capabilities for hollow sections in the tables. Hollow sections perform particularly well in torsion and their behaviour under torsional loading is readily analysed by simple procedures. An explanation of torsional effects is provided in the references listed in Section D3.2.5.2. The general theory of torsion established by Saint-Venant is based on uniform torsion. The theory assumes that all cross-sections rotate as a body around the centre of torsion. When the torsional moment that is applied is non-uniform, such as when the torsional load is applied midspan between rigid supports or when the free warping of the sections is restricted, then the torsional load is shared between uniform and non-uniform torsion or warping. However in the case of hollow sections the contribution of non-uniform torsion is negligible and sections can be treated as subject to uniform torsion without any significant loss of precision.
D 3.2.5.2 Method For hollow sections, torsional actions can be considered using the following formulae: M *z < φMz φM *z = φ 0.6 fy C M *z = design torsional moment φ = 0.9 (Table 3.4 of AS 4100) φM z = design torsional moment section capacity fy = yield stress used in design C = torsional section modulus Note: The angle of twist per unit length θ (radians) can be determined using the following formula: where
φ = where
M ∗z GJ
M *z = design torsional moment for serviceability limit state G = 80 x 103 MPa J = torsional section constant
The method for determining the torsion sections constants C and J is detailed in Section D1.2.1.1.
Suggested references for design for torsion: [1]
“AS 4100 Supplement 1-1990: Steel Structures Commentary (Supplementary to AS 4100-1990)”, Standards Australia, Section C8.5.
[2]
Trahair, N.S.,Bradford, M.A., “The Behaviour and Design of Steel Structures”, 2nd ed., Chapman and Hall, London, 1998.
D3-4
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
DCTDHS/06 MARCH 2002
[ BLANK ]
DCTDHS/06 MARCH 2002
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
D3-5
TABLE D3.1-1
DESIGN SECTION CAPACITIES DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness about x- and y-axis
Designation
d
b
Mass
Axial
Axial
per m
Tension
Compression
x-axis
y-axis
x-axis
φNt
φNs
φMsx
φMsy
φVvx
t
Bending
Shear
Torsion
y-axis
φVvy
φMz
mm mm mm
kg/m
kN
kN
kNm
kNm
kN
150 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS
16.7 14.2 11.6 8.96 7.53 6.07
816 694 567 436 367 296
F F F F F F
864 735 526 329 246 173
36.9 31.9 26.5 20.8 17.6 12.8
16.4 12.9 9.19 5.89 4.40 3.10
374 316 257 195 164 92.5
N N N N N B
111 97.2 81.6 64.2 54.7 44.7
U U U U U U
15.6 13.8 11.7 9.30 7.97 6.55
125 x 75 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS
16.7 14.2 11.6 8.96 7.53 6.07
816 694 567 436 367 296
F F F F F F
864 735 600 390 296 196
34.1 29.5 24.4 18.8 14.1 10.0
23.9 20.5 15.1 9.80 7.39 5.27
317 269 219 167 140 113
N N N N N N
184 158 130 101 85.1 69.0
U U U U U U
21.0 18.3 15.3 12.0 10.2 8.36
100 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.5 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
12.0 10.3 8.49 7.53 6.60 5.56 4.50 3.64
586 503 414 367 322 271 219 177
F F F F F F F F
621 532 438 388 329 246 173 124
18.4 16.1 13.5 12.1 10.8 9.18 7.37 5.05
11.2 9.88 8.23 6.92 5.63 4.22 2.97 2.10
244 208 170 151 131 110 88.9 71.7
N N N N N N N N
111 97.2 81.6 73.1 64.2 54.7 44.7 36.4
U U U U U U U U
9.94 8.87 7.58 6.85 6.08 5.22 4.31 3.53
75 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
9.67 8.35 6.92 5.42 4.58 3.72 3.01
471 407 337 264 223 181 147
F F F F F F F
499 431 357 280 236 173 124
11.4 10.1 8.56 6.92 5.91 4.77 3.34
8.56 7.61 6.47 5.17 4.03 2.86 2.03
178 153 126 97.4 82.3 66.8 54.0
N N N N N N N
111 97.2 81.6 64.2 54.7 44.7 36.4
U U U U U U U
7.11 6.41 5.52 4.47 3.85 3.19 2.62
75 x 25 x 2.5 RHS 2.0 RHS 1.6 RHS
3.60 2.93 2.38
176 143 116
F F F
186 133 91.6
4.07 3.36 2.76
1.64 1.17 0.816
79.1 N 64.2 N 51.9 N
24.3 20.4 17.0
U U U
1.73 1.47 1.23
65 x 35 x 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS
5.35 4.25 3.60 2.93
261 207 176 143
F F F F
276 219 186 149
5.38 4.45 3.83 3.16
3.48 2.88 2.41 1.77
106 82.3 69.7 56.7
N N N N
52.5 42.3 36.5 30.1
U U U U
3.05 2.54 2.21 1.85
50 x 25 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
3.07 2.62 2.15 1.75
149 128 105 85.4
F F F F
158 135 111 90.4
2.37 2.07 1.73 1.43
1.44 1.26 1.05 0.777
61.1 52.1 42.6 34.7
N N N N
27.7 24.3 20.4 17.0
U U U U
1.26 1.12 0.952 0.800
50 x 20 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
2.83 2.42 1.99 1.63
138 118 97.0 79.2
F F F F
146 125 103 83.9
2.09 1.83 1.53 1.27
1.06 0.938 0.783 0.582
60.3 51.4 42.0 34.2
N N N N
20.4 18.2 15.6 13.1
U U U U
0.942 0.847 0.730 0.619
Notes : 1. 2. 3. 4. 5. 6.
D3-6
φ Nt Nt Ns Ms Mz U
= = = = = = =
N
=
B
=
kN
kNm
0.9 A g fy indicated by suffix Y (Clause 7.2 of AS 4100) 0.85 Ag fu indicated by suffix F (Clause 7.2 of AS 4100) kf Ag fy (Clause 6.2.1 of AS 4100) f y Ze (Clause 5.2.1 of AS 4100) 0.6 fy C (See Section D3.2.5) approximately uniform shear stress distribution. Design shear capacity calculated in accordance with clause 5.11.4 of AS 4100. Vv = Vu = Vw = 0.6 fy Aw non-uniform shear stress distribution. Design shear capacity calculated in accordance with clause 5.11.3 of AS 4100. Vv = 2Vu / (0.9 + (f *vm / f *va)) ≤ Vu shear bulckling failure mode. Design shear capacity calculated in accordance with clause 5.11.5 of AS 4100. Vv = Vb = αvVw ≤ Vw
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
DCTDHS/06 MARCH 2002
TABLE D3.1-2
DESIGN SECTION CAPACITIES DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness
Designation
Mass
Axial
Axial
per m
Tension
Compression
Bending
Shear
Torsion
φNt
φNs
φMs
φVv
φMz
kg/m
kN
kN
kNm
kN
kNm
100 x 100 x 6.0 SHS 5.0 SHS 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS
16.7 14.2 11.6 8.96 7.53 6.07
816 694 567 436 367 296
F F F F F F
864 735 600 440 305 196
29.8 25.7 21.0 13.9 10.6 7.63
253 216 177 135 114 92.2
N N N N N N
22.7 19.8 16.5 12.9 11.0 8.97
90 x 90 x 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS
8.01 6.74 5.45 4.39
390 329 265 214
F F F F
413 305 196 125
11.9 9.03 6.48 4.70
121 102 82.6 66.7
N N N N
10.3 8.80 7.20 5.87
89 x 89 x 6.0 SHS 5.0 SHS 3.5 SHS
14.6 12.5 9.06
714 609 441
F F F
756 645 467
22.9 19.9 14.5
221 189 138
N N N
17.4 15.2 11.4
75 x 75 x 6.0 SHS 5.0 SHS 4.0 SHS 3.5 SHS 3.0 SHS 2.5 SHS 2.0 SHS
12.0 10.3 8.49 7.53 6.60 5.56 4.50
586 503 414 367 322 271 219
F F F F F F F
621 532 438 388 341 287 196
15.6 13.6 11.4 10.2 8.99 6.90 4.91
181 156 129 114 99.4 84.0 68.2
N N N N N N N
11.7 10.4 8.78 7.90 6.98 5.98 4.91
65 x 65 x 6.0 SHS 5.0 SHS 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS
10.1 8.75 7.23 5.66 4.78 3.88 3.13
494 426 352 276 233 189 153
F F F F F F F
523 451 373 292 247 196 125
11.1 9.85 8.34 6.71 5.54 3.97 2.84
153 132 109 85.0 72.0 58.6 47.5
N N N N N N N
8.31 7.43 6.36 5.11 4.40 3.63 2.98
50 x 50 x 5.0 SHS 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS
6.39 5.35 4.25 3.60 2.93 2.38
311 261 207 176 143 116
F F F F F F
330 276 219 186 151 123
5.33 4.61 3.80 3.27 2.66 1.92
96.0 80.6 63.4 54.0 44.2 35.9
N N N N N N
3.95 3.47 2.86 2.48 2.07 1.71
40 x 40 x 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS
4.09 3.30 2.82 2.31 1.88
199 161 137 112 91.5
F F F F F
211 170 145 119 96.9
2.73 2.32 2.01 1.67 1.36
61.4 49.0 42.0 34.6 28.3
N N N N N
2.02 1.72 1.51 1.27 1.06
35 x 35 x 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS
2.83 2.42 1.99 1.63
138 118 97.0 79.2
F F F F
146 125 103 83.9
1.71 1.50 1.25 1.04
41.8 36.0 29.8 24.4
N N N N
1.26 1.11 0.945 0.792
30 x 30 x 2.0 SHS 1.6 SHS
1.68 1.38
81.7 67.0
F F
86.5 70.9
0.893 0.746
25.0 20.6
N N
0.667 0.564
25 x 25 x 2.5 SHS 2.0 SHS 1.6 SHS
1.64 1.36 1.12
79.9 66.4 54.8
F F F
84.6 70.3 58.0
0.694 0.594 0.500
24.0 20.2 16.7
N N N
0.503 0.438 0.375
20 x 20 x 1.6 SHS
0.873
42.5
F
45.0
0.304
12.9
N
0.224
d mm
b
t
mm mm
Notes : 1. 2. 3. 4. 5. 6.
DCTDHS/06 MARCH 2002
φ Nt Nt Ns Ms Mz U
= = = = = = =
N
=
0.9 A g fy indicated by suffix Y (Clause 7.2 of AS 4100) 0.85 Ag fu indicated by suffix F (Clause 7.2 of AS 4100) kf Ag fy (Clause 6.2.1 of AS 4100) f y Ze (Clause 5.2.1 of AS 4100) 0.6 fy C (See Section D3.2.5) approximately uniform shear stress distribution. Design shear capacity calculated in accordance with clause 5.11.4 of AS 4100. Vv = Vu = Vw = 0.6 fy Aw non-uniform shear stress distribution. Design shear capacity calculated in accordance with clause 5.11.3 of AS 4100. Vv = 2Vu / (0.9 + (f *vm / f *va)) ≤ Vu
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
D3-7
TABLE D3.1-3
DESIGN SECTION CAPACITIES DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness about x- and y-axis
Designation
d
b
Mass
Axial
Axial
per m
Tension
Compression
x-axis
y-axis
x-axis
φNt
φNs
φMsx
φMsy
φVvx
t
mm mm mm
Bending
Shear
Torsion
y-axis
φVvy
φMz
kg/m
kN
kN
kNm
kNm
kN
125 x 75 x 2.8 RHS 2.3 RHS
8.39 6.95
409 339
F F
351 259
16.9 12.3
8.80 6.50
156 129
N N
94.4 78.7
U U
11.3 9.50
100 x 50 x 2.8 RHS 2.3 RHS
6.19 5.14
302 251
F F
295 215
10.2 8.52
5.05 3.70
122 102
N N
60.4 50.7
U U
5.74 4.86
75 x 50 x 2.8 RHS 2.3 RHS
5.09 4.24
248 207
F F
263 215
6.52 5.49
4.71 3.56
91.4 76.2
N N
60.4 50.7
U U
4.23 3.59
65 x 35 x 2.8 RHS 2.3 RHS
3.99 3.34
194 163
F F
206 172
4.21 3.57
2.72 2.16
77.3 64.6
N N
40.0 34.0
U U
2.41 2.07
50 x 25 x 2.8 RHS 2.3 RHS
2.89 2.44
141 119
F F
149 126
2.26 1.94
1.37 1.18
57.5 48.3
N N
26.4 22.8
U U
1.21 1.05
50 x 20 x 2.8 RHS 2.3 RHS
2.67 2.25
130 110
F F
138 116
1.99 1.71
1.02 0.882
56.8 47.7
N N
19.6 17.2
U U
0.907 0.803
Notes : 1. 2. 3. 4. 5. 6.
φ Nt Nt Ns Ms Mz U
= = = = = = =
N
=
kN
kNm
0.9 A g fy indicated by suffix Y (Clause 7.2 of AS 4100) 0.85 Ag fu indicated by suffix F (Clause 7.2 of AS 4100) kf Ag fy (Clause 6.2.1 of AS 4100) f y Ze (Clause 5.2.1 of AS 4100) 0.6 fy C (See Section D3.2.5) approximately uniform shear stress distribution. Design shear capacity calculated in accordance with clause 5.11.4 of AS 4100. Vv = Vu = Vw = 0.6 fy Aw non-uniform shear stress distribution. Design shear capacity calculated in accordance with clause 5.11.3 of AS 4100. Vv = 2Vu / (0.9 + (f *vm / f *va)) ≤ Vu
TABLE D3.1-2
DESIGN SECTION CAPACITIES DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness
Designation
d mm
b
Mass
Axial
Axial
per m
Tension
Compression
φNt
t
mm mm
Bending
Shear
Torsion
φNs
φMs
φVv
φM z
kg/m
kN
kN
kNm
kN
100 x 100 x 2.8 SHS 2.3 SHS
8.39 6.95
409 339
F F
383 259
12.5 9.35
127 105
kNm
75 x 75 x 2.8 SHS 2.3 SHS
6.19 5.14
302 251
F F
319 259
8.16 6.07
93.3 77.7
N N
6.59 5.56
65 x 65 x 2.3 SHS
4.42
215
F
228
4.91
66.7
N
4.10
50 x 50 x 2.8 SHS 2.3 SHS
3.99 3.34
194 163
F F
206 172
3.59 3.05
59.7 50.1
N N
2.71 2.32
40 x 40 x 2.8 SHS 2.3 SHS
3.11 2.62
152 127
F F
161 135
2.20 1.88
46.2 39.1
N N
1.64 1.42
35 x 35 x 2.8 SHS 2.3 SHS
2.67 2.25
130 110
F F
138 116
1.63 1.40
39.5 33.6
N N
1.20 1.05
N N
12.2 10.2
Notes : Refer to TABLE D3.1-3
D3-8
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
DCTDHS/06 MARCH 2002
PART 4 MEMBERS SUBECT TO BENDING
4 PAGE
D4.1
DESIGN MOMENT CAPACITY FOR MEMBERS WITHOUT FULL LATERAL RESTRAINT .................................................................................................................. D4-2
D4.1.1
Scope ............................................................................................................................. D4-2
D4.1.2
Method ............................................................................................................................ D4-2
D4.1.3
Segment Length for Full Lateral Restraint ...................................................................... D4-3
D4.1.4
Effective Length .............................................................................................................. D4-3
D4.1.5
Other Loading and Restraint Conditions ......................................................................... D4-4
D4.1.6
Examples ........................................................................................................................ D4-6
D4.2
DESIGN SHEAR CAPACITY ......................................................................................... D4.8
D4.2.1
Scope ............................................................................................................................. D4-8
D4.2.2
Method ............................................................................................................................ D4-8
D4.2.3
Interaction of Shearing and Bending ............................................................................... D4-8
D4.2.4
Examples ........................................................................................................................ D4-8
D4.3
DESIGN WEB BEARING CAPACITY ......................................................................... D4-10
D4.3.1
Scope ........................................................................................................................... D4-10
D4.3.2
Method .......................................................................................................................... D4-10
D4.3.3
Example ........................................................................................................................ D4-12
D4.4
BENDING AND BEARING INTERACTION ................................................................ D4-13
D4.4.1
Method .......................................................................................................................... D4-13
D4.4.2
Example ........................................................................................................................ D4-14
D4.5
CALCULATION OF BEAM DEFLECTIONS ............................................................... D4-15
TABLES TABLES D4.1-1 to D4.1-2 Design Moment Capacities for Members Without Full Lateral Restraint (φMb) ............ D4-16 TABLES D4.3-1 to D4.3-4 Design Web Capacities of Beams (φRbb/bb, φRby/bb, φVv) .......................................... D4-19
NOTE: SEE PAGE vii FOR THE SPECIFIC MATERIAL STANDARD REFERRED TO BY THE SECTION TYPE AND STEEL GRADE IN THESE TABLES.
DCTDHS/06 MARCH 2002
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
D4-1
D4.1
DESIGN MOMENT CAPACITY FOR MEMBERS WITHOUT FULL LATERAL RESTRAINT
D4.1.1 Scope These tables for RHS bending about the x-axis, without full lateral restraint, have been prepared in accordance with Section 5 of AS 4100 and [1]. Values of design moment capacity (φMb) are given for various values of effective length (Le). SHS are not included in these tables as they are not susceptible to lateral buckling. The design member moment capacity (φMb) always equals the design section moment capacity (φMs), as given in Tables D3.1-2 to D3.1-4 for SHS, except for the extreme case when the load acts far above the shear centre (Clause C5.6.1.4 of the Commentary to AS 4100).
D4.1.2 Method The values of design moment capacity (φMb) are determined in accordance with AS 4100 and [1] as: φMb = φ αm αsh Ms φ
where
=
αm =
0.9 (Table 3.4 of AS 4100) 1.0 (Table 5.6.1 of AS 4100 corresponding to the case of uniform moment over the effective length (Le))
for Le £ FLR αsh =
(FLR = maximum segment length for full lateral restraint as determined in Section D4.1.3) 1.0
for Le > FLR
RSL dM TMN
h
2
OP Q
+ 2.7 − Mpx / M yz
UV W
αsh =
0.7
M px = Myz =
Msx Moa - amended elastic buckling moment for a member subject to bending
=
px
/ M yz
Mo - reference buckling moment
from
[1]
(Clause 5.6.1.1(a)(iv) of AS 4100)
F π El I GJ GH L JK (Equation 5.6.1.1(3) of AS 4100) 2
=
y
2
e
E
[1]
=
200 x 103 MPa
ly =
second moment of area about the minor principal y-axis (Tables D1.2-1 to D1.2-4)
G
=
80 X 103 MPa
J
=
torsional section constant
Le =
effective length
Ms =
fy Ze
(see Section D1.2.1.1 and Tables D1.2-1 to D1.2-4)
(see Section D4.1.3)
(see Section D3.2.3 and Tables D3.1-1 to D3.1-4
fy =
yield stress used in design
Ze =
effective section modulus
(see Section D1.2.3.2 and Tables D1.2-1 to D1.2-4)
Centre For Advanced Structural Engineering, Civil Engineering, The University of Sydney, “Inelastic Buckling Strength of RHS’s”, Investigation Report S941, May 1993.
D4-2
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
DCTDHS/06 MARCH 2002
D4.1.3 Segment Length for Full Lateral Restraint FLR is the length of a member between braces for which: Mbx = Msx OneSteel Pipe & Tube commissioned the Centre for Advanced Structural Engineering, Civil Engineering, The University of Sydney, to undertake an analytical study of the lateral buckling of Rectangular Hollow Sections (RHS). The study was conducted although RHS sections rarely buckle laterally, yet AS 4100-1990 Steel Structures, incorporating Amendment 2, in clauses 5.3.2.4 and 5.6.1.4 required reductions to be made below the section capacity to account for lateral buckling in RHS members with comparatively closely spaced braces. The results of the study are contained in [1] which recommends the following method for calculating the FLR values for RHS members loaded through their shear centre.
FLR =
FM I GH M JK yz
where
Msx =
Ď&#x20AC; 2 El yGJ
sx
FLR
2 M sx
nominal section moment capacity about major principal x-axis
(Msx/Myz)FLR =
see Table D4.1.5(1)
E =
Youngâ&#x20AC;&#x2122;s modulus of elasticity, 200 x 103 MPa
Iy =
second moment of area about the cross-section minor principal y-axis
G
shear modulus of elasticity, 80 x 103 MPa
=
The FLR values listed in Tables D4.1-1(1) to D4.1-1(2) and Tables D8.1-1(1)(A) to D8.4-4(A) have been calculated using the above approach.
D4.1.4 Effective Length Before using these tables it is necessary to determine the effective length (Le), which depends on the restraint against twisting and lateral rotation, and the load height. Le is determined in accordance with Clause 5.6.3 of AS 4100 and given by: Le = kt kl kr L where k t = kl =
twist restraint factor load height factor
(Table D4.1.4(1)) (Table D4.1.4(2))
kr =
lateral rotation restraint factor
(Table D4.1.4(3))
L =
length of segment Table D4.1.4(1): Twist Restraint Factors (kt) Restraint Arrangement
Factor, (kt)
FF,FL,LL,FU FP,PL,PU
1.0
LMF d I F t MNGH L JK GH 2t 1+ 1
IJ K
f w
3
OP PQ
IJ K
3
nw
PP
LM F d I F t MN2GH L JK GH 2t 1+ 1
f w
OP PQ
nw
DCTDHS/06 MARCH 2002
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
D4-3
Table D4.1.4(2): Load Height Factors (kl) for Gravity Loads
Longitudinal load position
Restraint arrangement
Load height position Shear
Top Flange
Within segment
FF, FP, FL, PP, PL, LL FU, PU
1.0 1.0
1.4 2.0
At segment end
FF, FP, FL, PP, PL, LL FU, PU
1.0 1.0
1.0 2.0
Table D4.1.4(3): Lateral Rotation Restraint Factors(kr) Restraint arrangement
Ends with lateral rotation restraints
Factor (kr)
Any None One Both
1.0 1.0 0.85 0.70
FU, PU FF, FP, FL, PP, PL, LL FF, FP, PP FF, FP, PP where
d1 = clear depth between flanges ignoring fillets or welds nw = number of webs =thickness of critical flange tf =thickness of web tw F ≡fully restrained L ≡laterally restrained P ≡partially restrained U ≡unrestrained and two of the symbols F, L, P, U are used to indicate the conditions at the ends of the segment. Restraint requirements are detailed in Clause 5.4.3 of AS 4100.
D4.1.5 Other Loading and Restraint Conditions The design moment capacities presented in these tables can be used for other restraints and loading conditions. For these situations the effective length (Le) corresponding to the relevant conditions must be assessed and the relevant value of αm determined in accordance with Clause 5.6.1.1(a) of AS 4100 and [1] . The design moment capacity (φMb) can then be determined as the lesser of: φMsx = φ Ze fy φMbx = φ αm αsh Ze fy
and where φ φMsx φM bx αm
= = = = ≤
αsh =
0.9 (Table 3.4 of AS 4100) the design section moment capacity (Tables D3.1-1 to D3.1-4) αm times the value of (φMb = φ αs Ze fy) given in Tables D4.1-1 to D4.1-2 moment modification factor 1 α
sh
slenderness reduction factor
(see Section D4.1.2)
It should be noted that: αm ≤ 1.0 for SHS as they are not susceptible to lateral buckling and αsh = 1.0
• •
generally αm ≤ 1.0 for RHS, as these sections (with the exception of 150 x 50 and 75 x 25) are only susceptible to lateral buckling at larger spans (ie. αsh < 1.0).
D4-4
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
DCTDHS/06 MARCH 2002
Table D4.1.5(1) Values of (Msx/Myz)FLR
DCTDHS/06 MARCH 2002
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
D4-5
D4.1.6 Examples 1.
A simply supported beam shown below has two concentrated loads applied in such a way that full restraint is provided at the location of the loads. The calculated design load at each point is 9 kN. What size beam is required to support these loads?
Bending Moment Diagram Design Data: Design bending moment
M * = 18 kNm
Solution: For beam segment 2: End restraint condition = FF
(fully restrained at both ends of the segment)
Twist restraint factor
k t = 1.0
(Table D4.1.4(1))
Load Height Factor
k I = 1.0
(Table D4.1.4(2))
(For loading at segment end and top flange loading) Lateral rotation restraint factor
kr = 0.7
â&#x2C6;´ Effective length
Le = kt kI kr L
(Table D4.1.4(3))
= 1.0 x 1.0 x 0.7 x 4.0 = 2.8 m
D4-6
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
DCTDHS/06 MARCH 2002
A rectangular hollow section is the most efficient and most practical hollow section for this application. As a uniform bending moment is applied to segment 2, αm = 1.0 (Table 5.6.1 of AS 4100). Thus alternatives can be read directly from Table D4.1-1(1) for a uniform bending moment of 18 kNm on segment 2 with an effective length (Le = 2.8 m). They are: 150 x 50 x 3.0 DuraGal RHS Grade C450L0 (8.96 kg/m) φMb = 20.8 kNm > M * (Table D4.1-1)(1) 125 x 75 x 3.0 DuraGal RHS Grade C450L0 (8.96 kg/m) φMb = 18.8 kNm > M * (Table D4.1-1)(1) As both sections have the same mass select the stronger 150 x 50 x 3.0 DuraGal RHS Grade C450L0 (8.96 kg/m). The extra depth will provide increased stiffness which may be important. Additional design checks which should be performed are:
• • • • • •
Additional design bending moment due to self-weight Shear (Section D4.2) Interaction of Shear and Bending (Section D4.2.3) Bearing (Section D4.3) Bearing and Bending Interaction (Section D4.4) Deflection (Section D4.5)
Beam segments 1 and 3 do not have to be checked because they have the same design bending moment and end restraints with a shorter effective length. 2.
A free standing sign post which is securely concreted into the ground is required to resist a calculated horizontal design force of 0.8 kN at a height of 3 m. What size SHS is required?
Bending Moment Diagram Design Data: Design bending moment
M * = 2.4 kNm
Solution: The appropriate size of SHS may be selected from the section capacity tables in PART 3.The alternatives are: 40 x 40 x 4.0 DuraGal SHS Grade C450L0 (4.09 kg/m) φMs = 2.73 kNm > M * 50 x 50 x 2.0 DuraGal SHS Grade C450L0 (2.93 kg/m) φMs = 2.66 kNm > M *
(Table D3.1-2) (Table D3.1-2)
Based on mass select 50 x 50 x 2.0 DuraGal SHS Grade C450L0 (2.93 kg/m). Additional design checks which should be performed are:
• • •
Shear Interaction of Shear and Bending Deflection
DCTDHS/06 MARCH 2002
(Section D4.2) (Section D4.2.3) (Section D4.5) if it is critical for this type of application
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
D4-7
D4.2
DESIGN SHEAR CAPACITY
D4.2.1 Scope The section capacity tables (Tables D3.1-1 to D3.1-4) include values of design web shear capacity for bending about the x- and y-axis.
D4.2.2 Method The design shear capacity of a web (φVv) is determined from the lesser of Clauses 5.11.3 and 5.11.4 of AS 4100 for RHS and SHS as described in Section D3.2.4.
D4.2.3 Interaction of Shear and Bending The design web shear capacity determined in Section D4.2.2 of the Tables may be significantly reduced when the section is subject to a large bending moment at the same location. The reduced shear capacity (φVvm) is determined in accordance with Clause 5.12.3 of AS 4100 as follows: φVvm = or
=
φV v
for
M * ≤ 0.75 φMs
16 . M∗ φVv 2.2 − φM s
for
0.75 φMs ≤ M * ≤ φMs
where φ V v
=
design web shear capacity
M*
=
design moment capacity
φMs
=
design section moment capacity
(Section D4.2.2)
(Section D3.2.3)
Note: If V * < 0.6 φVv or if M * < 0.75 φMs then no check on the interaction of shear and bending is necessary.
D4.2.4 1.
Examples
Check the shear capacity of the 150 x 50 x 3.0 DuraGal RHS Grade C450L0 beam in Example 1 from Section D4.1.6.
Design Data: Design shear force
V * = 9 kN
Solution: Design shear capacity of the section φVvx = 195 kN (Table D3.1-1) >V* Therefore the 150 x 50 x 3.0 DuraGal RHS Grade C450L0 is satisfactory.
D4-8
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
DCTDHS/06 MARCH 2002
2.
Check the shear capacity of the 50 x 50 x 2.0 DuraGal SHS Grade C450L0 beam in Example 2 from Section D4.1.6.
Design Data: Design shear force V * = 0.8 kN Solution: Design shear capacity of the section φV v
= >
44.2 kN V*
(Table D3.1-2)
Therefore the 50 x 50 x 2.0 DuraGal SHS Grade C450L0 is satisfactory.
3.
Check the 150 x 50 x 3.0 DuraGal RHS Grade C450L0 beam in Example 1 from Section D4.1.6 for the interaction of shear and bending.
Design Data: V* =
Design shear force Design shear capacity Design bending moment Design member moment capacity
9 kN
φV vx =
195 kN
M* =
18 kNm
φMsx =
(Table D3.1-1)
20.8 kNm
(Table D3.1-1)
Solution: 0.75 φMsx = then M * >
therefore φVvm =
0.75 x 20.8 = 15.6 kNm 0.75 φMsx 16 . M∗ φVv 2.2 − φM sx
LM N
=
195 2.2 −
=
159 kN
therefore V * =
FG 16. x18 IJ OP H 20.8 K Q
9 kN < φVvm =159 kN
Therefore the 150 x 50 x 3.0 DuraGal RHS Grade C450L0 is satisfactory.
DCTDHS/06 MARCH 2002
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
D4-9
D4.3
DESIGN WEB BEARING CAPACITY
D4.3.1 Scope The tables give values of design web bearing capacity per unit length (φRby/bb) and the design web bearing buckling per unit length (φRbb/bb) for SHS and RHS for - interior bearing, and - end bearing.
D4.3.2 Method The design web bearing capacity (φRb) has been determined from Clause 5.13 of AS 4100, and taken as the lesser of: φRby = φ 2 αp bb t fy and φRbb = φ 2 αc bb t fy
where
φ
=
0.9
(Table 3.4 of AS 4100)
φR bb =
design web bearing buckling capacity
(Clause 5.13.4 of AS 4100)
φR by =
design web bearing yield capacity
(Clause 5.13.3 of AS 4100)
t = fy =
thickness of section yield stress used in design
Interior bearing for bd > 1.5d5 bb =
bs + 5rext + d5
bs =
actual length of bearing
(see Figure D4.3.2(b))
d5 =
flat width of web
(see Figure D4.3.2(a))
rext =
outside corner radius
αp =
0.5 k 0.25 2 2 1 + 1 − α pm 1 + s − 1 − α pm ky ks k v2
LM MN d
α pm =
1 0.5 + ks k v
ks =
2rext −1 t
kv =
d5 t
αc =
D4-10
iFGH
d
i
I OP JK PQ
member slenderness reduction factor determined in accordance with Section D5.3 of these Tables using kf = 1.0 and αb = 0.5, and modified slenderness ratio (Le/r = 3.5 d5/t)
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
DCTDHS/06 MARCH 2002
End bearing for bd < 1.5d5 bb
=
bs + 2.5rext +
αp
=
2 + k s2 − k s
αc
=
d5 2
member slenderness reduction factor determined in accordance with Section D5.3 of these Tables using kf = 1.0 and αb = 0.5, and modified slenderness ratio (Le/r = 3.8 d5/t)
Figure D4.3.2: Dispersions of Force Through Flange, Radius and Web
DCTDHS/06 MARCH 2002
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
D4-11
D4.3.3 Example 1.
The design concentrated force of 9 kN on the 150 x 50 x 3.0 DuraGal RHS Grade C450L0 beam in Example 1 of Section D4.1.6 is applied over the full width of the RHS and for a length of 50 mm along the RHS. Check the bearing capacity of the beam.
Design Data: Design bearing force
R* =
Stiff bearing length
9 kN
bs = 5rext = bbw =
50 mm 30.0 mm 69.0 mm
bbf =
bs + 5rext
= =
50 + 30.0 80 mm
bb =
bbf + 2bbw
(Table D4.3-1(A)) (Table D4.3-1(A))
Solution: Bearing length at the edge of the corner radius
Bearing length at the centre of the web
=
80 + (2 x 69.0)
=
218 mm
The web bearing capacity (φRb) is the lesser of φRby and φRbb From Table D4.3-1(A): φRby
Design web yield capacity
bb φRbb bb
Design web buckling capacity
=
0.785 kN/mm
=
0.357 kN/mm
φRby bb
>
φRbb bb
Therefore web buckling will govern. Design web bearing capacity φRb
=
φR bb
=
0.357 x 218
=
77.8 kN (> R*)
Therefore the 150 x 50 x 3.0 DuraGal RHS Grade C450L0 is satisfactory.
D4-12
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
DCTDHS/06 MARCH 2002
D4.4
BENDING AND BEARING INTERACTION
D4.4.1 Method The design web bearing capacity determined in Section D4.3 of the Tables may be significantly reduced when the section is subject to a large bending moment at the same location. The effect of this interaction of bending and bearing force in hollow sections is not addressed by AS 4100, but suitable interaction equations have been developed from research. [1],[2] The bending and bearing interaction is dependent on the ratio of bearing length to the width of bearing bs/b and the web slenderness (d1/t). The interaction equation for bs/b > 1.0 and (d1/t) < 30 is:
FG R * IJ + FG M * IJ ≤ 15. H φR K H φM K
12 .
b
s
or
0.8
FG R * IJ + FG M * IJ ≤ 10. H φR K H φM K b
where bs = b = (d1/t) = d1 = t = R* = φ
=
stiff bearing length
Otherwise
s
(see Figure D4.3.2)
width of section web slenderness clear depth between flanges thickness of section maximum design bearing force 0.9
(Table 3.4 of AS 4100)
φR b =
design web bearing capacity
M* =
maximum design bending moment
φMs =
design section moment capacity
Note: these formulae only apply to bearing across the full width of section. Design aids have not been produced for this interaction because of the numerous bearing lengths which may occur for each section size.
[1]
Zhao, X.L., Hancock, G.J., “Square and Rectangular Hollow Sections Subject to Combined Actions”, Journal of Structural Engineering, ASCE, Vol 118, No. 3, pp 648-668, 1992.
[2]
Zhao, X.L., Hancock, G.J., “Design Formulae for Web Crippling of Rectangular Hollow Sections”, Proceedings, Third Pacific Structural Steel Conference, Tokyo, Japan, 1992.
DCTDHS/06 MARCH 2002
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
D4-13
D4.4.2 Example 1.
Considering further Example 1 of Section D4.1.6 and Example 1 of Section D4.3.3 the interaction of bending and bearing is checked for the 150 x 50 x 3.0 DuraGal RHS Grade C450L0 beam.
Design Data: R* =
Design bearing force Design web bearing capacity Design bending moment Design section moment capacity Stiff bearing length Web slenderness
9 kN
(Section D4.1.6)
φR b =
77.8 kN
(Section D4.3.3)
M* =
18 kNm
(Section D4.1.6)
20.8 kNm
(Table D3.1-1)
50 mm
(Section D4.3.3)
48
(Table D1.2-1 (1))
φMs = bs = d1/t =
Solution: bs b
=
50 50
= 1.0 > 1.0 d1/t = >
48 30
∴ the interaction equation is
R* M * 0.8 + ≤ 1.0 φRb φMs 9 1.8 0.8 + = 0.958 77.8 20.8 ≤ 1.0 Therefore the 150 x 50 x 3.0 DuraGal RHS Grade C450L0 is satisfactory
D4-14
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
DCTDHS/06 MARCH 2002
D4.5
CALCULATION OF BEAM DEFLECTIONS
Common methods for calculating the elastic deflection of a beam include: (i) (ii) (iii) (iv) (v)
integration of M/EI diagram moment area slope deflection published solutions for particular cases approximate or numerical methods (eg. finite elements)
Table D4.5 gives the more commonly used beam deflection formulae. Due to the large range of loading configurations and support conditions considered for beams in design, a more comprehensive set of beam deflection formulae are published in the AISC technical journal “Steel Construction”, Volume 26 No. 1 (February 1992). Table D4.5: Beam Deflection Formulae
Where: ∆ W L E I
DCTDHS/06 MARCH 2002
= = = = =
maximum deflection total load on beam span of beam Young’s modulus of elasticity second moment of area of cross-section
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
D4-15
D4-16
TABLE D4.1-1(1)
DESIGN MOMENT CAPACITIES FOR MEMBERS WITHOUT FULL LATERAL RESTRAINT DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis Designation d
b
Design Moment Capacities φMb (kNm)
Mass per m
t
FLR
Effective Length (Le) in metres
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
mm mm mm
kg/m
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
13.0
14.0
m
150 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS
16.7 14.2 11.6 8.96 7.53 6.07
36.9 31.9 26.5 20.8 17.6 12.8
36.9 31.9 26.5 20.8 17.6 12.8
36.9 31.9 26.5 20.8 17.6 12.8
36.0 31.2 26.0 20.4 17.3 12.8
34.5 30.0 25.0 19.7 16.7 12.4
33.1 28.8 24.0 18.9 16.0 12.0
31.8 27.7 23.1 18.2 15.4 11.6
30.6 26.6 22.2 17.5 14.9 11.2
29.4 25.6 21.4 16.9 14.3 10.8
28.3 24.7 20.6 16.2 13.8 10.5
27.2 23.7 19.8 15.7 13.3 10.1
26.2 22.9 19.1 15.1 12.8 9.79
25.3 22.1 18.5 14.6 12.4 9.48
24.4 21.3 17.8 14.1 12.0 9.19
3.37 3.43 3.50 3.53 3.56 4.01
125 x 75 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS
16.7 14.2 11.6 8.96 7.53 6.07
34.1 29.5 24.4 18.8 14.1 10.0
34.1 29.5 24.4 18.8 14.1 10.0
34.1 29.5 24.4 18.8 14.1 10.0
34.1 29.5 24.4 18.8 14.1 10.0
34.1 29.5 24.4 18.8 14.1 10.0
34.1 29.5 24.4 18.8 14.1 10.0
34.1 29.5 24.4 18.8 14.1 10.0
33.4 28.9 24.0 18.5 14.1 10.0
32.8 28.3 23.5 18.2 13.9 10.0
32.1 27.8 23.1 17.8 13.6 9.95
31.5 27.3 22.6 17.5 13.4 9.80
30.9 26.7 22.2 17.2 13.2 9.65
30.3 26.2 21.8 16.9 13.0 9.51
29.7 25.7 21.3 16.5 12.7 9.37
6.99 7.04 7.08 7.18 8.17 9.32
100 x 50 x6.0 RHS 5.0 RHS 4.0 RHS 3.5 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
12.0 10.3 8.49 7.53 6.60 5.56 4.50 3.64
18.4 16.1 13.5 12.1 10.8 9.18 7.37 5.05
18.4 16.1 13.5 12.1 10.8 9.18 7.37 5.05
18.4 16.1 13.5 12.1 10.8 9.18 7.37 5.05
18.4 16.1 13.5 12.1 10.8 9.18 7.37 5.05
17.9 15.7 13.2 11.9 10.6 8.99 7.25 5.05
17.3 15.2 12.8 11.5 10.2 8.71 7.03 4.96
16.7 14.7 12.4 11.1 9.91 8.44 6.81 4.83
16.2 14.3 12.0 10.8 9.60 8.18 6.61 4.71
15.7 13.8 11.7 10.5 9.31 7.93 6.41 4.59
15.2 13.4 11.3 10.1 9.02 7.69 6.22 4.47
14.7 13.0 11.0 9.84 8.75 7.46 6.03 4.36
14.3 12.6 10.6 9.54 8.49 7.23 5.86 4.25
13.8 12.2 10.3 9.26 8.23 7.02 5.69 4.15
13.4 11.8 10.0 8.99 7.99 6.82 5.52 4.04
4.19 4.26 4.31 4.34 4.32 4.35 4.46 5.32
Notes:
1. 2. 3. 4. 5.
φ = 0.9 FLR - segment length for Full Lateral Restraint (φMbx = φMsx) for simply supported beams with uniform moment. FLR = 0.231 (π2 E /y G J / Msx2)0.5 (See Section D4.1.3 of these tables for explanation) Values to the left of the solid line are segment lengths with full lateral restraint. αsh = 0.7(((Msx / Moa)2 + 2.7))0.5 - Ms/Moa ) (See Section D4.1.2 of these tables for explanation) αm = 1.0
DCTDHS/06 MARCH 2002
DCTDHS/06 MARCH 2002
TABLE D4.1-1(2)
DESIGN MOMENT CAPACITIES FOR MEMBERS WITHOUT FULL LATERAL RESTRAINT DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis Designation d
b
Design Moment Capacities φMb (kNm)
Mass per m
t
FLR
Effective Length (L e) in metres kg/m
0.5
0.75
1.0
1.25
1.5
1.75
2.0
2.5
3.0
3.5
4.0
4.5
5.0
6.0
m
100 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.5 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
12.0 10.3 8.49 7.53 6.60 5.56 4.50 3.64
18.4 16.1 13.5 12.1 10.8 9.18 7.37 5.05
18.4 16.1 13.5 12.1 10.8 9.18 7.37 5.05
18.4 16.1 13.5 12.1 10.8 9.18 7.37 5.05
18.4 16.1 13.5 12.1 10.8 9.18 7.37 5.05
18.4 16.1 13.5 12.1 10.8 9.18 7.37 5.05
18.4 16.1 13.5 12.1 10.8 9.18 7.37 5.05
18.4 16.1 13.5 12.1 10.8 9.18 7.37 5.05
18.4 16.1 13.5 12.1 10.8 9.18 7.37 5.05
18.4 16.1 13.5 12.1 10.8 9.18 7.37 5.05
18.4 16.1 13.5 12.1 10.8 9.18 7.37 5.05
18.4 16.1 13.5 12.1 10.8 9.18 7.37 5.05
18.2 16.0 13.4 12.1 10.7 9.14 7.36 5.05
17.9 15.7 13.2 11.9 10.6 8.99 7.25 5.05
17.3 15.2 12.8 11.5 10.2 8.71 7.03 4.96
4.19 4.26 4.31 4.34 4.32 4.35 4.46 5.32
75 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
9.67 8.35 6.92 5.42 4.58 3.72 3.01
11.4 10.1 8.56 6.92 5.91 4.77 3.34
11.4 10.1 8.56 6.92 5.91 4.77 3.34
11.4 10.1 8.56 6.92 5.91 4.77 3.34
11.4 10.1 8.56 6.92 5.91 4.77 3.34
11.4 10.1 8.56 6.92 5.91 4.77 3.34
11.4 10.1 8.56 6.92 5.91 4.77 3.34
11.4 10.1 8.56 6.92 5.91 4.77 3.34
11.4 10.1 8.56 6.92 5.91 4.77 3.34
11.4 10.1 8.56 6.92 5.91 4.77 3.34
11.4 10.1 8.56 6.92 5.91 4.77 3.34
11.4 10.1 8.56 6.92 5.91 4.77 3.34
11.4 10.1 8.56 6.92 5.91 4.77 3.34
11.3 10.0 8.52 6.89 5.89 4.77 3.34
10.9 9.73 8.28 6.69 5.72 4.64 3.33
4.73 4.79 4.85 4.84 4.87 4.97 5.80
75 x 25 x 2.5 RHS 2.0 RHS 1.6 RHS
3.60 2.93 2.38
4.07 3.36 2.76
4.07 3.36 2.76
4.07 3.36 2.76
4.07 3.36 2.76
4.07 3.36 2.76
4.06 3.36 2.76
3.97 3.29 2.71
3.81 3.16 2.60
3.66 3.04 2.50
3.52 2.92 2.41
3.38 2.81 2.32
3.25 2.71 2.23
3.13 2.61 2.15
2.90 2.42 2.00
1.70 1.73 1.76
65 x 35 x 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS
5.35 4.25 3.60 2.93
5.38 4.45 3.83 3.16
5.38 4.45 3.83 3.16
5.38 4.45 3.83 3.16
5.38 4.45 3.83 3.16
5.38 4.45 3.83 3.16
5.38 4.45 3.83 3.16
5.38 4.45 3.83 3.16
5.38 4.45 3.83 3.16
5.38 4.45 3.83 3.16
5.27 4.37 3.76 3.11
5.15 4.27 3.68 3.04
5.03 4.17 3.60 2.97
4.92 4.08 3.52 2.91
4.71 3.90 3.37 2.78
3.05 3.07 3.10 3.13
50 x 25 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
3.07 2.62 2.15 1.75
2.37 2.07 1.73 1.43
2.37 2.07 1.73 1.43
2.37 2.07 1.73 1.43
2.37 2.07 1.73 1.43
2.37 2.07 1.73 1.43
2.37 2.07 1.73 1.43
2.37 2.07 1.73 1.43
2.31 2.01 1.69 1.40
2.23 1.95 1.63 1.35
2.16 1.89 1.58 1.31
2.09 1.83 1.53 1.27
2.02 1.77 1.48 1.23
1.96 1.71 1.44 1.19
1.84 1.61 1.35 1.12
2.07 2.10 2.13 2.16
50 x 20 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
2.83 2.42 1.99 1.63
2.09 1.83 1.53 1.27
2.09 1.83 1.53 1.27
2.09 1.83 1.53 1.27
2.09 1.83 1.53 1.27
2.08 1.82 1.53 1.27
2.03 1.78 1.50 1.25
1.98 1.74 1.46 1.22
1.89 1.66 1.40 1.16
1.80 1.58 1.34 1.11
1.72 1.51 1.28 1.07
1.64 1.45 1.22 1.02
1.57 1.38 1.17 0.977
1.50 1.32 1.12 0.937
1.37 1.22 1.03 0.863
1.44 1.47 1.50 1.53
mm mm mm
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
D4-17
Notes:
φ = 0.9 FLR - segment length for Full Lateral Restraint (φMbx = φMsx) for simply supported beams with uniform moment. FLR = 0.231 (π2 E /y G J / Msx2)0.5 (See Section D4.1.3 of these tables for explanation) 3. Values to the left of the solid line are segment lengths with full lateral restraint. 1. 2.
2
0.5
4. αsh = 0.7(((Msx / Moa) + 2.7)) for explanation) 5. αm= 1.0
- Ms/Moa ) (See Section D4.1.2 of these tables
D4-18
TABLE D4.1-2
DESIGN MOMENT CAPACITIES FOR MEMBERS WITHOUT FULL LATERAL RESTRAINT DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness bending about x-axis Designation d
b
Design Moment Capacities φMb (kNm)
Mass per m
t
FLR
Effective Length (L e) in metres
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
kg/m
0.5
0.75
1.0
1.25
1.5
1.75
2.0
2.5
3.0
3.5
4.0
4.5
5.0
6.0
m
125 x 75 x 2.8 RHS 2.3 RHS
8.39 6.95
16.9 12.3
16.9 12.3
16.9 12.3
16.9 12.3
16.9 12.3
16.9 12.3
16.9 12.3
16.9 12.3
16.9 12.3
16.9 12.3
16.9 12.3
16.9 12.3
16.9 12.3
16.9 12.3
7.51 8.69
100 x 50 x 2.8 RHS 2.3 RHS
6.19 5.14
10.2 8.52
10.2 8.52
10.2 8.52
10.2 8.52
10.2 8.52
10.2 8.52
10.2 8.52
10.2 8.52
10.2 8.52
10.2 8.52
10.2 8.52
10.1 8.48
9.94 8.34
9.63 8.08
4.34 4.37
75 x 50 x 2.8 RHS 2.3 RHS
5.09 4.24
6.52 5.49
6.52 5.49
6.52 5.49
6.52 5.49
6.52 5.49
6.52 5.49
6.52 5.49
6.52 5.49
6.52 5.49
6.52 5.49
6.52 5.49
6.52 5.49
6.49 5.47
6.31 5.32
4.85 4.88
65 x 35 x 2.8 RHS 2.3 RHS
3.99 3.34
4.21 3.57
4.21 3.57
4.21 3.57
4.21 3.57
4.21 3.57
4.21 3.57
4.21 3.57
4.21 3.57
4.21 3.57
4.13 3.50
4.04 3.43
3.95 3.35
3.86 3.28
3.69 3.14
3.08 3.11
50 x 25 x 2.8 RHS 2.3 RHS
2.89 2.44
2.26 1.94
2.26 1.94
2.26 1.94
2.26 1.94
2.26 1.94
2.26 1.94
2.26 1.94
2.19 1.89
2.12 1.83
2.05 1.77
1.99 1.71
1.92 1.66
1.86 1.61
1.75 1.51
2.08 2.11
50 x 20 x 2.8 RHS 2.3 RHS
2.67 2.25
1.99 1.71
1.99 1.71
1.99 1.71
1.99 1.71
1.98 1.71
1.93 1.67
1.89 1.63
1.80 1.56
1.72 1.49
1.64 1.42
1.57 1.36
1.50 1.30
1.43 1.25
1.31 1.15
1.45 1.48
mm mm mm
Notes:
1. 2. 3. 4. 5.
φ = 0.9 FLR - segment length for Full Lateral Restraint (φMbx = φMsx) for simply supported beams with uniform moment. FLR = 0.231 (π2 E /y G J / Msx2)0.5 (See Section D4.1.3 of these tables for explanation) Values to the left of the solid line are segment lengths with full lateral restraint. αsh = 0.7(((Msx / Moa)2 + 2.7))0.5 - Ms/Moa ) (See Section D4.1.2 of these tables for explanation) αm = 1.0
DCTDHS/06 MARCH 2002
TABLE D4.3-1(A)
DESIGN WEB CAPACITIES OF BEAMS DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness about x-axis
Interior Bearing Designation d
b
Mass per m
t
mm mm mm
φVv
kg/m
kN
150 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS
16.7 14.2 11.6 8.96 7.53 6.07
374 316 257 195 164 92.5
125 x 75 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS
16.7 14.2 11.6 8.96 7.53 6.07
100 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.5 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
φRby
φRbb
bb
bb
End Bearing Useful Parameters 5rext
bbw
Le/r
φRby
φRbb
bb
bb
bbw
L e/r
mm
mm
mm
kN/mm
kN/mm
mm
mm
mm
N N N N N B
1.28 1.05 0.828 0.785 0.651 0.519
2.54 1.60 0.860 0.357 0.208 0.107
75.0 62.5 50.0 30.0 25.0 20.0
60.0 62.5 65.0 69.0 70.0 71.0
70.0 87.5 114 161 196 249
1.18 0.983 0.786 0.769 0.641 0.513
2.30 1.42 0.752 0.308 0.179 0.0918
37.5 31.3 25.0 15.0 12.5 10.0
60.0 62.5 65.0 69.0 70.0 71.0
76.0 95.0 124 175 213 270
317 269 219 167 140 113
N N N N N N
1.31 1.07 0.838 0.790 0.654 0.521
3.16 2.11 1.19 0.506 0.298 0.154
75.0 62.5 50.0 30.0 25.0 20.0
47.5 50.0 52.5 56.5 57.5 58.5
55.4 70.0 91.9 132 161 205
1.18 0.983 0.786 0.769 0.641 0.513
2.95 1.92 1.06 0.439 0.257 0.132
37.5 31.3 25.0 15.0 12.5 10.0
47.5 50.0 52.5 56.5 57.5 58.5
60.2 76.0 99.8 143 175 222
12.0 10.3 8.49 7.53 6.60 5.56 4.50 3.64
244 208 170 151 131 110 88.9 71.7
N N N N N N N N
1.35 1.10 0.854 0.738 0.797 0.659 0.524 0.417
3.79 2.74 1.69 1.21 0.758 0.455 0.238 0.123
75.0 62.5 50.0 43.8 30.0 25.0 20.0 16.0
35.0 37.5 40.0 41.3 44.0 45.0 46.0 46.8
40.8 52.5 70.0 82.5 103 126 161 205
1.18 0.983 0.786 0.688 0.769 0.641 0.513 0.410
3.64 2.58 1.54 1.08 0.667 0.396 0.205 0.106
37.5 31.3 25.0 21.9 15.0 12.5 10.0 8.00
35.0 37.5 40.0 41.3 44.0 45.0 46.0 46.8
44.3 57.0 76.0 89.6 111 137 175 222
75 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
9.67 8.35 6.92 5.42 4.58 3.72 3.01
178 153 126 97.4 82.3 66.8 54.0
N N N N N N N
1.44 1.15 0.884 0.809 0.667 0.528 0.420
4.33 3.34 2.32 1.20 0.756 0.410 0.216
75.0 62.5 50.0 30.0 25.0 20.0 16.0
22.5 25.0 27.5 31.5 32.5 33.5 34.3
26.3 35.0 48.1 73.5 91.0 117 150
1.18 0.983 0.786 0.769 0.641 0.513 0.410
4.25 3.25 2.20 1.08 0.670 0.358 0.186
37.5 31.3 25.0 15.0 12.5 10.0 8.00
22.5 25.0 27.5 31.5 32.5 33.5 34.3
28.5 38.0 52.3 79.8 98.8 127 163
75 x 25 x 2.5 RHS 2.0 RHS 1.6 RHS
3.60 2.93 2.38
79.1 64.2 51.9
N N N
0.667 0.528 0.420
0.756 0.410 0.216
25.0 20.0 16.0
32.5 33.5 34.3
91.0 117 150
0.641 0.513 0.410
0.670 0.358 0.186
12.5 10.0 8.00
32.5 33.5 34.3
98.8 127 163
65 x 35 x 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS
5.35 4.25 3.60 2.93
106 82.3 69.7 56.7
N N N N
0.906 0.817 0.672 0.532
2.56 1.44 0.945 0.528
50.0 30.0 25.0 20.0
22.5 26.5 27.5 28.5
39.4 61.8 77.0 99.8
0.786 0.769 0.641 0.513
2.47 1.33 0.850 0.465
25.0 15.0 12.5 10.0
22.5 26.5 27.5 28.5
42.8 67.1 83.6 108
50 x 25 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
3.07 2.62 2.15 1.75
61.1 52.1 42.6 34.7
N N N N
0.836 0.685 0.539 0.426
1.82 1.31 0.800 0.452
30.0 25.0 20.0 16.0
19.0 20.0 21.0 21.8
44.3 56.0 73.5 95.4
0.769 0.641 0.513 0.410
1.74 1.22 0.723 0.399
15.0 12.5 10.0 8.00
19.0 20.0 21.0 21.8
48.1 60.8 79.8 104
50 x 20 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
2.83 2.42 1.99 1.63
60.3 51.4 42.0 34.2
N N N N
0.836 0.685 0.539 0.426
1.82 1.31 0.800 0.452
30.0 25.0 20.0 16.0
19.0 20.0 21.0 21.8
44.3 56.0 73.5 95.4
0.769 0.641 0.513 0.410
1.74 1.22 0.723 0.399
15.0 12.5 10.0 8.00
19.0 20.0 21.0 21.8
48.1 60.8 79.8 104
Notes : 1. 2. 3. 4. 5. 6. 7.
φ Le/r φRby φRbb αb kf U N B
DCTDHS/06 MARCH 2002
kN/mm kN/mm
Useful Parameters 2.5rext
= 0.9 = 3.5 d5 /t for interior bearing or Le/r = 3.8 d5/t for end bearing = 2φ αp bb t fy = 2φ αc bb t fy = 0.5 = 1.0 = approximately uniform shear stress distribution. Design shear capacity calculated in accordance with clause 5.11.4 of AS 4100. Vv = Vu = Vw = 0.6 fy Aw = non-uniform shear stress distribution. Design shear capacity calculated in accordance with clause 5.11.3 of AS 4100. Vv = 2Vu / (0.9 + (f *vm/f *va)) ≤ Vu = shear buckling failure mode. Design shear capacity calculated in accordance with clause 5.11.5 of AS 4100. Vv = Vb = αvVw ≤ Vw
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
D4-19
TABLE D4.3-1(B)
DESIGN WEB CAPACITIES OF BEAMS DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness about y-axis
Interior Bearing Designation d
b
Mass per m
t
mm mm mm
kg/m
φVv kN
φRby
φR bb
bb
bb
End Bearing φRby
φRbb
5rext
b bw
L e/r
bb
bb
Useful Parameters
Useful Parameters 2.5rext
b bw
Le/r
kN/mm
kN/mm
mm
mm
mm
kN/mm
kN/mm
mm
mm
mm
150 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS
16.7 14.2 11.6 8.96 7.53 6.07
111 97.2 81.6 64.2 54.7 44.7
U U U U U U
1.72 1.30 0.962 0.836 0.685 0.539
4.81 3.85 2.88 1.82 1.31 0.800
75.0 62.5 50.0 30.0 25.0 20.0
10.0 12.5 15.0 19.0 20.0 21.0
11.7 17.5 26.3 43.9 56.0 73.5
1.18 0.983 0.786 0.769 0.641 0.513
4.77 3.81 2.83 1.74 1.22 0.723
37.5 31.3 25.0 15.0 12.5 10.0
10.0 12.5 15.0 19.0 20.0 21.0
12.7 19.0 28.5 48.1 60.8 79.8
125 x 75 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS
16.7 14.2 11.6 8.96 7.53 6.07
184 158 130 101 85.1 69.0
U U U U U U
1.44 1.15 0.884 0.809 0.667 0.528
4.33 3.34 2.32 1.20 0.756 0.410
75.0 62.5 50.0 30.0 25.0 20.0
22.5 25.0 27.5 31.5 32.5 33.5
26.3 35.0 48.1 73.5 91.0 117
1.18 0.983 0.786 0.769 0.641 0.513
4.25 3.25 2.20 1.08 0.670 0.358
37.5 31.3 25.0 15.0 12.5 10.0
22.5 25.0 27.5 31.5 32.5 33.5
28.5 38.0 52.3 79.8 98.8 127
100 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.5 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
12.0 10.3 8.49 7.53 6.60 5.56 4.50 3.64
111 97.2 81.6 73.1 64.2 54.7 44.7 36.4
U U U U U U U U
1.72 1.30 0.962 0.814 0.836 0.685 0.539 0.426
4.81 3.85 2.88 2.39 1.82 1.31 0.800 0.452
75.0 62.5 50.0 43.8 30.0 25.0 20.0 16.0
10.0 12.5 15.0 16.3 19.0 20.0 21.0 21.8
11.7 17.5 26.3 32.5 44.3 56.0 73.5 95.4
1.18 0.983 0.786 0.688 0.769 0.641 0.513 0.410
4.77 3.81 2.83 2.33 1.74 1.22 0.723 0.399
37.5 31.3 25.0 21.9 15.0 12.5 10.0 8.00
10.0 12.5 15.0 16.3 19.0 20.0 21.0 21.8
12.7 19.0 28.5 35.3 48.1 60.8 79.8 104
75 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
9.67 8.35 6.92 5.42 4.58 3.72 3.01
111 97.2 81.6 64.2 54.7 44.7 36.4
U U U U U U U
1.72 1.30 0.962 0.836 0.685 0.539 0.426
4.81 3.85 2.88 1.82 1.31 0.800 0.452
75.0 62.5 50.0 30.0 25.0 20.0 16.0
10.0 12.5 15.0 19.0 20.0 21.0 21.8
11.7 17.5 26.3 44.3 56.0 73.5 95.4
1.18 0.983 0.786 0.769 0.641 0.513 0.410
4.77 3.81 2.83 1.74 1.22 0.723 0.399
37.5 31.3 25.0 15.0 12.5 10.0 8.00
10.0 12.5 15.0 19.0 20.0 21.0 21.8
12.7 19.0 28.5 48.1 60.8 79.8 104
75 x 25 x 2.5 RHS 2.0 RHS 1.6 RHS
3.60 2.93 2.38
24.3 20.4 17.0
U U U
0.754 0.578 0.449
1.88 1.40 1.01
25.0 20.0 16.0
7.50 8.50 9.30
21.0 29.8 40.7
0.641 0.513 0.410
1.85 1.37 0.973
12.5 10.0 8.00
7.50 8.50 9.30
22.8 32.3 44.2
65 x 35 x 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS
5.35 4.25 3.60 2.93
52.5 42.3 36.5 30.1
U U U U
1.11 0.878 0.711 0.554
3.17 2.15 1.67 1.17
50.0 30.0 25.0 20.0
7.50 11.5 12.5 13.5
13.1 26.8 35.0 47.3
0.786 0.769 0.641 0.513
3.15 2.11 1.62 1.11
25.0 15.0 12.5 10.0
7.50 11.5 12.5 13.5
14.3 29.1 38.0 51.3
50 x 25 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
3.07 2.62 2.15 1.75
27.7 24.3 20.4 17.0
U U U U
0.949 0.754 0.578 0.449
2.35 1.88 1.40 1.01
30.0 25.0 20.0 16.0
6.50 7.50 8.50 9.30
15.2 21.0 29.8 40.7
0.769 0.641 0.513 0.410
2.33 1.85 1.37 0.973
15.0 12.5 10.0 8.00
6.50 7.50 8.50 9.30
16.5 22.8 32.3 44.2
50 x 20 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
2.83 2.42 1.99 1.63
20.4 18.2 15.6 13.1
U U U U
1.02 0.801 0.603 0.463
2.43 1.97 1.50 1.12
30.0 25.0 20.0 16.0
4.00 5.00 6.00 6.80
9.33 14.0 21.0 29.8
0.769 0.641 0.513 0.410
2.43 1.95 1.48 1.10
15.0 12.5 10.0 8.00
4.00 5.00 6.00 6.80
10.1 15.2 22.8 32.3
Notes : 1. 2. 3. 4. 5. 6. 7.
φ Le/r φRby φRbb αb kf U N
D4-20
= 0.9 = 3.5 d5/t for interior bearing or Le/r = 3.8 d5/t for end bearing = 2φ αp bb t fy = 2φ αc bb t fy = 0.5 = 1.0 = approximately uniform shear stress distribution. Design shear capacity calculated in accordance with clause 5.11.4 of AS 4100. Vv = Vu = Vw = 0.6 fy Aw = non-uniform shear stress distribution. Design shear capacity calculated in accordance with clause 5.11.3 of AS 4100. Vv = 2Vu / (0.9 + (f *vm /f *va)) ≤ Vu
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
DCTDHS/06 MARCH 2002
TABLE D4.3-2(A)
DESIGN WEB CAPACITIES OF BEAMS DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness about x-axis Interior Bearing Designation d
b
Mass per m
t
mm mm mm 125 x 75 x 2.8 RHS 2.3 RHS 100 x 50 x 2.8 RHS 2.3 RHS
kg/m 8.39 6.95 6.19 5.14
75 x 50 x 2.8 RHS 2.3 RHS
5.09 4.24
65 x 35 x 2.8 RHS 2.3 RHS
φVv
φRbb
bb
bb
Useful Parameters 5rext
bbw
Le/r
φRby
φRbb
bb
bb
bbw
L e/r
mm 14.0 11.5 14.0 11.5
mm 56.9 57.9 44.4 45.4
mm 154 191 121 150
kN/mm 0.735 0.601 0.741 0.605
kN/mm 0.414 0.233 0.626 0.358
mm 28.0 23.0 28.0 23.0
mm 56.9 57.9 44.4 45.4
mm 142 176 111 138
91.4 76.2
N N
0.752 0.611
1.01 0.604
28.0 23.0
31.9 32.9
79.8 100
0.718 0.590
0.908 0.532
14.0 11.5
31.9 32.9
86.6 109
3.99 3.34
77.3 64.6
N N
0.758 0.616
1.24 0.766
28.0 23.0
26.9 27.9
67.3 84.9
0.718 0.590
1.13 0.683
14.0 11.5
26.9 27.9
73.0 92.2
50 x 25 x 2.8 RHS 2.3 RHS
2.89 2.44
57.5 48.3
N N
0.775 0.626
1.62 1.10
28.0 23.0
19.4 20.4
48.5 62.1
0.718 0.590
1.53 1.01
14.0 11.5
19.4 20.4
52.7 67.4
50 x 20 x 2.8 RHS 2.3 RHS
2.67 2.25
56.8 47.7
N N
0.775 0.626
1.62 1.10
28.0 23.0
19.4 20.4
48.5 62.1
0.718 0.590
1.53 1.01
14.0 11.5
19.4 20.4
52.7 67.4
φ Le/r φRby φRbb αb kf U N
kN/mm kN/mm 0.718 0.359 0.590 0.200 0.718 0.548 0.590 0.310
Useful Parameters 2.5rext
N N N N
Notes : 1. 2. 3. 4. 5. 6. 7.
kN 156 129 122 102
φRby
End Bearing
= 0.9 = 3.5 d5 /t for interior bearing or Le/r = 3.8 d5/t for end bearing = 2φ αp bb t fy = 2φ αc bb t fy = 0.5 = 1.0 = approximately uniform shear stress distribution. Design shear capacity calculated in accordance with clause 5.11.4 of AS 4100. Vv = Vu = Vw = 0.6 fy Aw = non-uniform shear stress distribution. Design shear capacity calculated in accordance with clause 5.11.3 of AS 4100. Vv = 2Vu / (0.9 + (f *vm/f *va)) ≤ Vu
TABLE D4.3-2(B)
DESIGN WEB CAPACITIES OF BEAMS DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness about y-axis Interior Bearing Designation d
b
Mass per m
t
φVv
φRby
φRbb
bb
bb
End Bearing Useful Parameters 5rext
bbw
Le/r
φRby
φRbb
bb
bb
bbw
L e/r
mm mm mm
kg/m
kN
kN/mm
kN/mm
mm
mm
mm
mm
mm
mm
125 x 75 x 2.8 RHS 2.3 RHS
8.39 6.95
94.4 78.7
U U
0.752 0.611
1.01 0.609
28.0 23.0
31.9 32.9
79.8 100
0.718 0.590
0.908 0.532
14.0 11.5
31.9 32.9
86.6 109
100 x 50 x 2.8 RHS 2.3 RHS
6.19 5.14
60.4 50.7
U U
0.775 0.626
1.62 1.10
28.0 23.0
19.4 20.4
48.5 62.1
0.718 0.590
1.53 1.01
14.0 11.5
19.4 20.4
52.7 67.4
75 x 50 x 2.8 RHS 2.3 RHS
5.09 4.24
60.4 50.7
U U
0.775 0.626
1.62 1.10
28.0 23.0
19.4 20.4
48.5 62.1
0.718 0.590
1.53 1.01
14.0 11.5
19.4 20.4
52.7 67.4
65 x 35 x 2.8 RHS 2.3 RHS
3.99 3.34
40.0 34.0
U U
0.810 0.647
1.96 1.48
28.0 23.0
11.9 12.9
29.8 39.3
0.718 0.590
1.92 1.42
14.0 11.5
11.9 12.9
32.3 42.6
50 x 25 x 2.8 RHS 2.3 RHS
2.89 2.44
26.4 22.8
U U
0.869 0.682
2.16 1.69
28.0 23.0
6.90 7.90
17.3 24.0
0.718 0.590
2.14 1.66
14.0 11.5
6.90 7.90
18.7 26.1
50 x 20 x 2.8 RHS 2.3 RHS
2.67 2.25
19.6 17.2
U U
0.932 0.719
2.25 1.78
28.0 23.0
4.40 5.40
11.0 16.4
0.718 0.590
2.24 1.77
14.0 11.5
4.40 5.40
11.9 17.8
Notes : 1. 2. 3. 4. 5. 6. 7.
φ Le/r φRby φRbb αb kf U N
DCTDHS/06 MARCH 2002
kN/mm kN/mm
Useful Parameters 2.5rext
= 0.9 = 3.5 d5/t for interior bearing or Le/r = 3.8 d5/t for end bearing = 2φ αp bb t fy = 2φ αc bb t fy = 0.5 = 1.0 = approximately uniform shear stress distribution. Design shear capacity calculated in accordance with clause 5.11.4 of AS 4100. Vv = Vu = Vw = 0.6 fy Aw = non-uniform shear stress distribution. Design shear capacity calculated in accordance with clause 5.11.3 of AS 4100. Vv = 2Vu / (0.9 + (f *vm /f *va)) ≤ Vu
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
D4-21
TABLE D4.3-3
DESIGN WEB CAPACITIES OF BEAMS DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness about x- and y-axis
Interior Bearing Designation d
b
Mass per m
t
mm mm mm
φVv
kg/m
kN
100 x 100 x 6.0 SHS 5.0 SHS 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS
16.7 14.2 11.6 8.96 7.53 6.07
253 216 177 135 114 92.2
90 x 90 x 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS
8.01 6.74 5.45 4.39
89 x 89 x 6.0 SHS 5.0 SHS 3.5 SHS
φRby
φR bb
bb
bb
End Bearing φRby
φRbb
5rext
b bw
L e/r
bb
bb
Useful Parameters
Useful Parameters 2.5rext
b bw
Le/r
kN/mm
kN/mm
mm
mm
mm
kN/mm
kN/mm
mm
mm
mm
N N N N N N
1.35 1.10 0.854 0.797 0.659 0.524
3.79 2.74 1.69 0.758 0.455 0.238
75.0 62.5 50.0 30.0 25.0 20.0
35.0 37.5 40.0 44.0 45.0 46.0
40.8 52.5 70.0 103 126 161
1.18 0.983 0.786 0.769 0.641 0.513
3.64 2.58 1.54 0.667 0.396 0.205
37.5 31.3 25.0 15.0 12.5 10.0
35.0 37.5 40.0 44.0 45.0 46.0
44.3 57.0 76.0 111 137 175
121 102 82.6 66.7
N N N N
0.800 0.662 0.525 0.418
0.907 0.551 0.291 0.151
30.0 25.0 20.0 16.0
39.0 40.0 41.0 41.8
91.0 112 144 183
0.769 0.641 0.513 0.410
0.804 0.482 0.252 0.130
15.0 12.5 10.0 8.00
39.0 40.0 41.0 41.8
98.8 122 156 199
14.6 12.5 9.06
221 189 138
N N N
1.38 1.11 0.746
4.04 3.02 1.45
75.0 62.5 43.8
29.5 32.0 35.7
34.4 44.7 71.4
1.18 0.983 0.688
3.93 2.89 1.31
37.5 31.3 21.9
29.5 32.0 35.7
37.3 48.6 77.5
75 x 75 x 6.0 SHS 5.0 SHS 4.0 SHS 3.5 SHS 3.0 SHS 2.5 SHS 2.0 SHS
12.0 10.3 8.49 7.53 6.60 5.56 4.50
181 156 129 114 99.4 84.0 68.2
N N N N N N N
1.44 1.15 0.884 0.760 0.809 0.667 0.528
4.33 3.34 2.32 1.79 1.20 0.756 0.410
75.0 62.5 50.0 43.8 30.0 25.0 20.0
22.5 25.0 27.5 28.8 31.5 32.5 33.5
26.3 35.0 48.1 57.5 73.5 91.0 117
1.18 0.983 0.786 0.688 0.769 0.641 0.513
4.25 3.25 2.20 1.66 1.08 0.670 0.358
37.5 31.3 25.0 21.9 15.0 12.5 10.0
22.5 25.0 27.5 28.8 31.5 32.5 33.5
28.5 38.0 52.3 62.4 79.8 98.8 127
65 x 65 x 6.0 SHS 5.0 SHS 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS
10.1 8.75 7.23 5.66 4.78 3.88 3.13
153 132 109 85.0 72.0 58.6 47.5
N N N N N N N
1.51 1.19 0.906 0.817 0.672 0.532 0.422
4.52 3.55 2.56 1.44 0.945 0.528 0.283
75.0 62.5 50.0 30.0 25.0 20.0 16.0
17.5 20.0 22.5 26.5 27.5 28.5 29.3
20.4 28.0 39.4 61.8 77.0 99.8 128
1.18 0.983 0.786 0.769 0.641 0.513 0.410
4.46 3.48 2.47 1.33 0.850 0.465 0.246
37.5 31.3 25.0 15.0 12.5 10.0 8.00
17.5 20.0 22.5 26.5 27.5 28.5 29.3
22.2 30.4 42.8 67.1 83.6 108 139
50 x 50 x 5.0 SHS 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS
6.39 5.35 4.25 3.60 2.93 2.38
96.0 80.6 63.4 54.0 44.2 35.9
N N N N N N
1.30 0.962 0.836 0.685 0.539 0.426
3.85 2.88 1.82 1.31 0.800 0.452
62.5 50.0 30.0 25.0 20.0 16.0
12.5 15.0 19.0 20.0 21.0 21.8
17.5 26.3 44.3 56.0 73.5 95.4
0.983 0.786 0.769 0.641 0.513 0.410
3.81 2.83 1.74 1.22 0.723 0.399
31.3 25.0 15.0 12.5 10.0 8.00
12.5 15.0 19.0 20.0 21.0 21.8
19.0 28.5 48.1 60.8 79.8 104
40 x 40 x 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS
4.09 3.30 2.82 2.31 1.88
61.4 49.0 42.0 34.6 28.3
N N N N N
1.04 0.859 0.700 0.548 0.431
3.08 2.05 1.56 1.05 0.640
50.0 30.0 25.0 20.0 16.0
10.0 14.0 15.0 16.0 16.8
17.5 32.7 42.0 56.0 73.5
0.786 0.769 0.641 0.513 0.410
3.05 2.00 1.50 0.975 0.578
25.0 15.0 12.5 10.0 8.00
10.0 14.0 15.0 16.0 16.8
19.0 35.5 45.6 60.8 79.8
35 x 35 x 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS
2.83 2.42 1.99 1.63
41.8 36.0 29.8 24.4
N N N N
0.878 0.711 0.554 0.435
2.15 1.67 1.17 0.760
30.0 25.0 20.0 16.0
11.5 12.5 13.5 14.3
26.8 35.0 47.3 62.6
0.769 0.641 0.513 0.410
2.11 1.62 1.11 0.699
15.0 12.5 10.0 8.00
11.5 12.5 13.5 14.3
29.1 38.0 51.3 67.9
30 x 30 x 2.0 SHS 1.6 SHS
1.68 1.38
25.0 20.6
N N
0.564 0.441
1.29 0.888
20.0 16.0
11.0 11.8
38.5 51.6
0.513 0.410
1.25 0.836
10.0 8.00
11.0 11.8
41.8 56.1
25 x 25 x 2.5 SHS 2.0 SHS 1.6 SHS
1.64 1.36 1.12
24.0 20.2 16.7
N N N
0.754 0.578 0.449
1.88 1.40 1.01
25.0 20.0 16.0
7.50 8.50 9.30
21.0 29.8 40.7
0.641 0.513 0.410
1.85 1.37 0.973
12.5 10.0 8.00
7.50 8.50 9.30
22.8 32.3 44.2
20 x 20 x 1.6 SHS
0.873
12.9
N
0.463
1.12
16.0
6.80
29.8
0.410
1.10
8.00
6.80
32.3
Notes : 1. 2. 3. 4. 5. 6. 7.
φ Le/r φRby φRbb αb kf U N
D4-22
= 0.9 = 3.5 d5 /t for interior bearing or Le/r = 3.8 d5/t for end bearing = 2φ αp bb t fy = 2φ αc bb t fy = 0.5 = 1.0 = approximately uniform shear stress distribution. Design shear capacity calculated in accordance with clause 5.11.4 of AS 4100. Vv = Vu = Vw = 0.6 fy Aw = non-uniform shear stress distribution. Design shear capacity calculated in accordance with clause 5.11.3 of AS 4100. Vv = 2Vu / (0.9 + (f *vm/f *va)) ≤ Vu
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
DCTDHS/06 MARCH 2002
TABLE D4.3-4
DESIGN WEB CAPACITIES OF BEAMS DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness about x- and y-axis
Interior Bearing Designation d
b
Mass per m
t
mm mm mm
φVv
kg/m
kN
100 x 100 x 2.8 SHS 2.3 SHS
8.39 6.95
127 105
75 x 75 x 2.8 SHS 2.3 SHS
6.19 5.14
65 x 65 x 2.3 SHS 50 x 50 x 2.8 SHS 2.3 SHS 40 x 40 x 2.8 SHS 2.3 SHS 35 x 35 x 2.8 SHS 2.3 SHS Notes : 1. 2. 3. 4. 5. 6. 7.
φ Le/r φRby φRbb αb kf U N
DCTDHS/06 MARCH 2002
= = = = = = = Vv =
φRby
φRbb
bb
bb
End Bearing Useful Parameters 5rext
bbw
Le/r mm
φRby
φRbb
bb
bb
kN/mm kN/mm
Useful Parameters 2.5rext
bbw
L e/r
kN/mm
kN/mm
mm
mm
mm
mm
N N
0.741 0.605
0.626 0.358
28.0 23.0
44.4 45.4
111 138
0.718 0.590
0.548 0.310
14.0 11.5
44.4 45.4
121 150
mm
93.3 77.7
N N
0.752 0.611
1.01 0.604
28.0 23.0
31.9 32.9
79.8 100
0.718 0.590
0.908 0.532
14.0 11.5
31.9 32.9
86.6 109
4.42
66.7
N
0.616
0.766
23.0
27.9
84.9
0.590
0.683
11.5
27.9
92.2
3.99 3.34
59.7 50.1
N N
0.775 0.626
1.62 1.10
28.0 23.0
19.4 20.4
48.5 62.1
0.718 0.590
1.53 1.01
14.0 11.5
19.4 20.4
52.7 67.4
3.11 2.62
46.2 39.1
N N
0.794 0.638
1.86 1.36
28.0 23.0
14.4 15.4
36.0 46.9
0.718 0.590
1.80 1.29
14.0 11.5
14.4 15.4
39.1 50.9
2.67 2.25
39.5 33.6
N N
0.810 0.647
1.96 1.48
28.0 23.0
11.9 12.9
29.8 39.3
0.718 0.590
1.92 1.42
14.0 11.5
11.9 12.9
32.3 42.6
0.9 3.5 d5/t for interior bearing or Le/r = 3.8 d5/t for end bearing 2φ αp bb t fy 2φ αc bb t fy 0.5 1.0 approximately uniform shear stress distribution. Design shear capacity calculated in accordance with clause 5.11.4 of AS 4100. = Vu = Vw = 0.6 fy Aw non-uniform shear stress distribution. Design shear capacity calculated in accordance with clause 5.11.3 of AS 4100. Vv = 2Vu / (0.9 + (f *vm/f *va)) ≤ Vu
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
D4-23
[ BLANK ]
D4-24
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
DCTDHS/06 MARCH 2002
PART 5 MEMBERS SUBECT TO AXIAL COMPRESSION
5 PAGE
D5.1
SCOPE ........................................................................................................................... D5-2
D5.2
DESIGN CAPACITY FOR MEMBERS SUBJECT TO AXIAL COMPRESSION ........ D5-2
D5.3
METHOD ....................................................................................................................... D5-2
D5.4
EFFECTIVE LENGTH ................................................................................................... D5-4
D5.5
MODES OF BUCKLING ............................................................................................... D5-6
D5.6
EXAMPLE ...................................................................................................................... D5-6
TABLES TABLES D5.2-1 to D5.2-4 Design Capacities for Members Subject to Axial Compression (φNc) Buckling About Principal Axis .......................................................................................... D5-8
NOTE: SEE PAGE vii FOR THE SPECIFIC MATERIAL STANDARD REFERRED TO BY THE SECTION TYPE AND STEEL GRADE IN THESE TABLES.
DCTDHS/06 MARCH 2002
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
D5-1
PART 5 MEMBERS SUBECT TO AXIAL COMPRESSION D5.1
SCOPE
The following tables give values of design axial compression capacity for various effective lengths and have been determined using Section 6 of AS 4100. All loads are assumed to be applied through the centroid of the section and the column capacity is assumed to be associated with flexural buckling about either the x- or y-axis.
D5.2
DESIGN CAPACITY FOR MEMBERS SUBJECT TO AXIAL COMPRESSION
Values of the design capacity for axial compression (φNc) for buckling about both principal axes, based on the appropriate effective length (Le), are given in Tables D5.2-1 to D5.2-4. The tables in this section have been grouped into two series for rectangular hollow sections:
•
the (A) series (e.g. Table D5.2-1(1)(A)) for the member buckling about the x-axis, and
•
the (B) series (e.g. Table D5.2-1(1)(B)) for the member buckling about the y-axis.
The (A) series tables are immediately followed by the (B) series tables.
D5.3
METHOD
The design axial compression member capacity is obtained from Clauses 6.3 of AS 4100 and is given by: φNc = φ αc Ns ≤ φNs where
φ φN s kf An
fy αc
D5-2
= = = = = = = =
0.9 (Table 3.4 of AS 4100) φ kf An fy (see Section D3.2.2 and Tables D3.1-1 to D3.1-4) Ae /Ag (see Section D1.2.3.3 and Clause 6.2.2 of AS 4100) net section area Ag gross cross-sectional area (assumed no penetrations or holes) yield stress used in design member slenderness reduction factor
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
DCTDHS/06 MARCH 2002
According to Clause 6.3.3 of AS 4100, αc depends on the modified slenderness reduction factor (λn) and the member section constant (αb). The member slenderness reduction factor (αc) is determined from Clause 6.3.3 of AS 4100 and taken as:
R| S| T
αc = ξ 1−
LM1 − F 90 I MN GH ξλ JK
2
OP U| PQ V|W
FG λ IJ + 1 + η H 90 K FλI 2G J H 90 K 2
ξ
where
=
2
λ = λn + αa αb η = 0.00326(λ -13.5) >0 λn =
αa =
FG L IJ bk g FG f IJ HrK H 250 K 2100bλ − 13 .5g f
λ n 2 − 15 .3λ n + 2050
α a = -0.5
FG L IJ HrK e
Le r kf fy
y
e
(Table D5.3)
= geometrical slenderness ratio = = = =
effective length of a compression member (see Section D5.4) radius of gyration (see Tables D1.2-1 to D1.2-4) form factor (see Section D1.2.3.3 and Tables D1.2-1 to D1.2-4) yield stress used in design
Note that the member capacity equals the section capacity (φNc = φNs ) when the effective length Le = 0. The residual stress classification used in determining kf is shown in Table D5.3 and is described in Section D1.2.3.3 of the Tables.
Table D5.3 Section
RHS, SHS
DCTDHS/06 MARCH 2002
Residual
Yield Slenderness
Stresses
Limit
CF
αb
λey
kf = 1.0
kf < 1.0
40
- 0.5
- 0.5
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
D5-3
D5.4
EFFECTIVE LENGTH
Before using these tables and graphs it is necessary to determine the effective length, which depends on the rotational and translational restraints at the ends of the member and is determined using the following formula: Le = ke L The member effective length factor (ke) (Clause 6.3.2 of AS 4100) can be determined using Clause 4.6.3 of AS 4100 or by a rational frame buckling analysis as described in Clause 4.7 of AS 4100. Information relevant to assessing ke, for members in frames using Clause 4.6 of AS 4100, is reproduced in Part 7 of this publication. For members with idealised end restraints ke is given in Table D5.4. Table D5.4: Effective Length Factors for Members for Idealised Conditions of End Restraint
Note: This table reproduced from AS 4100 -1998 by kind permission of Standards Australia.
Advice on the determination of effective lengths of members in trusses and girders is not covered in AS 4100, but suitable equations have been developed in [1]. The following equations are applicable for:
•
welded joints with gap or partial overlap
•
bracing members welded along the full perimeter
•
no cropping or flattening of the ends of the bracings
D5-4
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
DCTDHS/06 MARCH 2002
In all cases Le / L > 0.5 (i)
Chord: Bracing:
square circular
d12 Le = 2.35 L Lbo (ii)
Chord: Bracing:
2 b = 2.30 1 Lb o L
= = = = =
≤ 0.75
square square
Le
where Le L d1 bo b1
0 .25
0.25
≤ 0.75
effective length of a compression member distance between intersection points of chord and web centre lines (see Figure D5.4) outside diameter of a circular bracing member external width of a square chord member external width of a square bracing member
The effective length of members in a pitched roof can be determined from the reference[2] below.
Figure D5.4
[1]
Rondal, J., “Effective Lengths of Tubular Lattice Girder Members Statistical Tests”, CIDECT Report 3 K - 90/3 Final Report, University of Liege, 1990.
[2]
Fraser, D.J., “Stability of Pitched Roof Frames”, Transaction of The Institution of Engineers Australia, Civil Engineering, Vol. CE28, No. 1, 1986.
DCTDHS/06 MARCH 2002
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
D5-5
D5.5
MODES OF BUCKLING
Although it is also possible for some doubly symmetric sections to buckle in a torsional mode, this is not the governing buckling mode for hollow sections.
D5.6 1.
EXAMPLE
A compression member in a truss, shown below, is to resist a concentrically applied axial compression force of 250 kN. End connections are full perimeter welded gap joints, with chord and web members being the same size DuraGal SHS.
Design Data: N*
= 250 kN
Solution:
From Section 5.4
Le L bI
Le L Trial Le
For
Le L bo
=
Fb I 2.30G H Lb JK 2 1
0 .25
≤ 0.75
For SHS chord and bracing
0
= bo
For same size chord and bracing 0 .25
=
Fb I 2.30G J HLK
= =
0.75 x 4.0 m 3.0 m
≤ 0.75
o
(Section D5.4)
= 0.75 = 0.113 L = 45 mm
=
0.113 x 4
- Selecting the DuraGal section with the least mass from Table D5.2-3(1): 100 x 100 x 3.0 SHS Grade C450L0 (8.96 kg/m) As bo
Le L
=
100 mm > 45 mm
=
2.30
FG 100 IJ H 4000 K
φNc = 265 > N*
(Table D5.2-3(1))
∴ section is satisfactory
0 .25
= 0.914 > 0.75
∴ The assumption that Le = 0.75L was correct
D5-6
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
DCTDHS/06 MARCH 2002
[ BLANK ]
DCTDHS/06 MARCH 2002
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
D5-7
D5-8
TABLE D5.2-1(1)(A)
DESIGN CAPACITIES FOR MEMBERS SUBJECT TO AXIAL COMPRESSION DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness buckling about x-axis Designation d
b
Design Capacities for Axial Compression φNc (kN)
Mass per m
t
Effective Length (Le) in metres
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
mm mm mm
kg/m
0.0
1.0
1.5
2.0
2.5
3.0
3.5
4.0
5.0
6.0
7.0
8.0
150 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS
16.7 14.2 11.6 8.96 7.53 6.07
864 735 526 329 246 173
841 716 515 324 243 172
808 689 499 316 237 168
764 653 476 305 230 164
704 604 447 291 221 158
629 541 410 273 209 151
542 469 364 251 195 143
455 396 316 226 178 133
318 278 228 172 141 109
228 200 166 129 107 85.1
171 150 125 98.1 82.4 66.1
125 x 75 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS
16.7 14.2 11.6 8.96 7.53 6.07
864 735 600 390 296 196
835 711 581 381 290 192
796 679 556 367 280 187
741 634 520 348 268 180
668 573 471 323 251 171
576 497 411 291 229 160
479 415 345 253 203 147
392 341 285 215 176 131
267 233 195 151 126 98.7
190 166 139 109 91.9 73.3
100 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.5 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
12.0 10.3 8.49 7.53 6.60 5.56 4.50 3.64
621 532 438 388 329 246 173 124
583 502 414 367 313 235 167 120
534 461 382 340 291 221 158 115
462 402 335 299 258 200 146 107
371 326 274 246 216 172 129 96.6
286 253 214 193 171 141 109 83.7
220 196 167 150 134 112 89.0 69.9
173 154 131 119 106 89.6 72.1 57.5
114 101 86.5 78.1 70.2 59.7 48.5 39.2
80.0 71.4 61.0 55.1 49.5 42.2 34.5 28.0
0.9 φ αc Ns - 0.5
(Clause 6.3.3 of AS 4100) (Table 6.3.3 of AS 4100)
Notes : 1. 2. 3.
φ φ Nc αb
= = =
10.0
12.0
132 116 97.0 76.5 64.6 52.1
85.9 75.4 63.1 50.0 42.3 34.3
60.3 52.9 44.3 35.1 29.8 24.2
142 124 104 81.8 69.1 55.6
110 95.8 80.3 63.4 53.6 43.3
71.1 62.1 52.1 41.2 34.9 28.3
49.8 43.5 36.5 28.9 24.5 19.9
59.3 53.0 45.3 40.9 36.8 31.4 25.7 20.9
45.7 40.8 34.9 31.5 28.4 24.2 19.8 16.1
29.6 26.4 22.6 20.4 18.4 15.7 12.8 10.5
20.7 18.5 15.8 14.3 12.8 11.0 8.99 7.33
DCTDHS/06 MARCH 2002
DCTDHS/06 MARCH 2002
TABLE D5.2-1(2)(A)
DESIGN CAPACITIES FOR MEMBERS SUBJECT TO AXIAL COMPRESSION DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness Buckling about x-axis Designation d
b
Design Capacities for Axial Compression φNc (kN)
Mass per m
t
Effective Length (Le) in metres
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
D5-9
mm mm mm
kg/m
0.0
0.25
0.5
0.75
1.0
1.25
1.5
1.75
2.0
2.5
3.0
3.5
4.0
5.0
100 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.5 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
12.0 10.3 8.49 7.53 6.60 5.56 4.50 3.64
621 532 438 388 329 246 173 124
621 532 438 388 329 246 173 124
614 527 434 385 327 244 173 124
600 516 425 377 321 240 170 122
583 502 414 367 313 235 167 120
561 484 399 355 303 228 163 117
534 461 382 340 291 221 158 115
501 434 360 321 276 211 153 111
462 402 335 299 258 200 146 107
371 326 274 246 216 172 129 96.6
286 253 214 193 171 141 109 83.7
220 196 167 150 134 112 89.0 69.9
173 154 131 119 106 89.6 72.1 57.5
114 101 86.5 78.1 70.2 59.7 48.5 39.2
75 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
9.67 8.35 6.92 5.42 4.58 3.72 3.01
499 431 357 280 236 173 124
499 431 357 280 236 173 124
487 421 349 274 232 171 122
470 407 338 266 225 166 119
447 388 323 255 216 160 116
416 362 303 240 203 152 111
376 330 277 221 188 142 105
329 291 247 198 169 130 97.0
280 250 213 173 148 116 88.2
198 179 154 126 108 87.1 68.8
143 130 112 92.3 79.4 64.7 52.0
108 97.4 84.3 69.5 59.8 49.0 39.8
83.4 75.5 65.4 54.0 46.5 38.2 31.1
54.2 49.1 42.6 35.2 30.3 24.9 20.4
75 x 25 x 2.5 RHS 2.0 RHS 1.6 RHS
3.60 2.93 2.38
186 133 91.6
186 133 91.6
181 130 90.1
175 126 87.7
165 120 84.4
153 113 80.3
138 104 75.1
120 92.5 68.6
101 80.2 61.2
71.2 58.1 46.2
51.3 42.3 34.3
38.4 31.9 26.0
29.8 24.7 20.3
19.4 16.1 13.2
65 x 35 x 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS
5.35 4.25 3.60 2.93
276 219 186 149
275 219 186 149
267 212 180 145
254 203 173 139
236 190 162 131
212 173 147 120
183 151 129 106
152 127 109 89.8
124 105 90.5 74.8
84.3 71.7 62.2 51.7
60.0 51.2 44.5 37.0
44.8 38.2 33.2 27.7
34.6 29.5 25.7 21.4
22.4 19.2 16.7 13.9
50 x 25 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
3.07 2.62 2.15 1.75
158 135 111 90.4
157 134 110 89.6
149 128 105 85.6
137 118 96.9 79.3
119 103 85.2 70.0
96.0 83.7 70.0 57.9
74.3 65.2 54.9 45.6
57.4 50.6 42.7 35.6
45.1 39.8 33.7 28.1
29.7 26.2 22.2 18.6
20.9 18.5 15.6 13.1
15.5 13.7 11.6 9.71
12.0 10.6 8.95 7.49
7.73 6.83 5.79 4.84
50 x 20 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
2.83 2.42 1.99 1.63
146 125 103 83.9
144 124 102 83.0
137 117 96.7 79.1
125 107 88.8 72.8
106 92.5 77.0 63.5
84.2 74.0 62.2 51.7
64.3 56.8 48.1 40.2
49.3 43.8 37.2 31.1
38.7 34.3 29.2 24.5
25.4 22.5 19.2 16.1
17.8 15.9 13.5 11.4
13.2 11.8 10.0 8.43
10.2 9.08 7.74 6.50
6.59 5.87 5.00 4.20
Notes : 1. 2. 3.
φ φ Nc αb
= = =
0.9 φ αc Ns - 0.5
(Clause 6.3.3 of AS 4100) (Table 6.3.3 of AS 4100)
D5-10
TABLE D5.2-1(1)(B)
DESIGN CAPACITIES FOR MEMBERS SUBJECT TO AXIAL COMPRESSION DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness buckling about y-axis Designation d
b
Design Capacities for Axial Compression φNc (kN)
Mass per m
t
Effective Length (L e) in metres
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
mm mm mm
kg/m
0.0
1.0
1.5
2.0
2.5
3.0
3.5
4.0
5.0
6.0
7.0
8.0
10.0
12.0
150 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS
16.7 14.2 11.6 8.96 7.53 6.07
864 735 526 329 246 173
714 614 454 295 223 160
517 452 356 248 193 142
335 296 245 185 151 116
224 199 167 131 110 87.2
159 141 119 94.5 80.0 64.8
118 105 88.9 70.8 60.3 49.1
91.1 81.0 68.7 54.9 46.8 38.3
59.0 52.5 44.6 35.7 30.5 25.0
41.3 36.7 31.2 25.0 21.4 17.5
30.5 27.2 23.1 18.5 15.8 13.0
23.5 20.9 17.8 14.3 12.2 10.0
15.1 13.5 11.5 9.20 7.88 6.47
10.6 9.40 8.00 6.43 5.50 4.52
125 x 75 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS
16.7 14.2 11.6 8.96 7.53 6.07
864 735 600 390 296 196
797 680 556 367 281 187
709 608 500 337 261 177
579 501 415 293 231 161
438 382 319 237 192 141
326 285 239 184 152 116
247 217 182 142 119 93.7
193 169 142 112 94.2 75.2
126 110 92.8 73.4 62.2 50.3
88.3 77.5 65.3 51.7 43.9 35.6
65.4 57.5 48.4 38.3 32.6 26.5
50.4 44.3 37.3 29.6 25.1 20.4
32.6 28.6 24.1 19.1 16.3 13.2
22.8 20.0 16.8 13.4 11.4 9.27
100 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.5 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
12.0 10.3 8.49 7.53 6.60 5.56 4.50 3.64
621 532 438 388 329 246 173 124
503 437 363 324 278 213 154 112
352 311 264 237 209 168 127 95.2
223 200 171 155 138 116 92.1 72.4
149 133 115 104 93.3 79.3 64.4 51.8
105 94.5 81.3 73.8 66.3 56.6 46.3 37.6
78.1 70.2 60.5 54.9 49.3 42.2 34.7 28.3
60.3 54.2 46.7 42.4 38.1 32.7 26.9 21.9
39.0 35.1 30.2 27.4 24.7 21.2 17.4 14.3
27.3 24.6 21.2 19.2 17.3 14.8 12.2 10.0
20.2 18.2 15.7 14.2 12.3 11.0 9.05 7.41
15.5 14.0 12.0 10.9 9.84 8.45 6.97 5.70
10.0 9.01 7.76 7.05 6.34 5.45 4.49 3.68
6.98 6.29 5.42 4.92 4.43 3.81 3.14 2.57
Notes :
1. 2. 3.
φ φ Nc αb
= = =
0.9 φ αc Ns - 0.5
(Clause 6.3.3 of AS 4100) (Table 6.3.3 of AS 4100)
DCTDHS/06 MARCH 2002
DCTDHS/06 MARCH 2002
TABLE D5.2-1(2)(B)
DESIGN CAPACITIES FOR MEMBERS SUBJECT TO AXIAL COMPRESSION DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness buckling about y-axis Designation d
b
Design Capacities for Axial Compression φNc (kN)
Mass per m
t
Effective Length (L e) in metres
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
D5-11
mm mm mm
kg/m
0.0
0.25
0.5
0.75
1.0
1.25
1.5
1.75
2.0
2.5
3.0
3.5
4.0
5.0
100 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.5 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
12.0 10.3 8.49 7.53 6.60 5.56 4.50 3.64
621 532 438 388 329 246 173 124
617 529 436 387 328 245 173 124
593 510 420 373 317 238 169 121
556 480 397 353 301 227 162 117
503 437 363 324 278 213 154 112
432 378 317 284 247 193 142 104
352 311 264 237 209 168 127 95.2
280 250 213 192 171 141 109 84.1
223 200 171 155 138 116 92.1 72.4
149 133 115 104 93.3 79.3 64.4 51.8
105 94.5 81.3 73.8 66.3 56.6 46.3 37.6
78.1 70.2 60.5 54.9 49.3 42.2 34.7 28.3
60.3 54.2 46.7 42.4 38.1 32.7 26.9 21.9
39.0 35.1 30.2 27.4 24.7 21.2 17.4 14.3
75 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
9.67 8.35 6.92 5.42 4.58 3.72 3.01
499 431 357 280 236 173 124
495 428 355 278 235 173 124
475 411 341 268 227 167 120
443 385 321 253 214 159 115
396 347 291 231 196 148 108
334 296 251 202 172 132 98.5
268 240 206 167 143 113 86.4
211 190 164 135 116 93.0 73.1
167 152 131 108 93.2 75.8 60.6
111 101 87.5 72.3 62.4 51.3 41.7
78.3 72.1 62.0 51.3 44.3 36.5 29.8
58.2 52.9 46.0 38.1 32.9 27.2 22.3
44.9 40.8 35.5 29.4 25.4 21.0 17.2
29.0 26.4 23.0 19.1 16.5 13.6 11.2
75 x 25 x 2.5 RHS 2.0 RHS 1.6 RHS
3.60 2.93 2.38
186 133 91.6
179 129 89.2
155 115 81.3
115 90.0 67.5
75.2 62.0 49.5
50.5 42.3 34.7
35.8 30.2 25.0
26.7 22.5 18.7
20.6 17.4 14.5
13.3 11.3 9.42
65 x 35 x 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS
5.35 4.25 3.60 2.93
276 219 186 149
270 215 183 147
250 200 170 137
215 175 149 121
166 138 119 98.1
120 102 88.3 73.4
87.5 74.5 65.0 54.4
65.8 56.2 49.1 41.2
51.1 43.7 38.2 32.0
33.2 28.5 24.9 20.9
50 x 25 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
3.07 2.62 2.15 1.75
158 135 111 90.4
151 130 106 86.9
129 111 92.0 75.6
90.5 79.6 67.1 55.9
57.7 51.2 43.6 36.7
38.4 34.2 29.2 24.6
27.2 24.2 20.7 17.5
20.2 18.0 15.4 13.0
15.6 13.9 11.9 10.0
10.1 9.01 7.71 6.50
7.06 6.31 5.40 4.55
50 x 20 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
2.83 2.42 1.99 1.63
146 125 103 83.9
136 117 96.2 78.8
101 88.9 74.7 62.0
58.5 52.5 45.1 38.1
34.8 31.4 27.1 23.1
22.7 20.5 17.8 15.1
16.0 14.4 12.5 10.7
11.8 10.7 9.28 7.90
5.90 5.33 4.62 3.94
4.12 3.73 3.23 2.75
Notes : 1. 2. 3.
φ φ Nc αb
= = =
0.9 φ αc Ns - 0.5
(Clause 6.3.3 of AS 4100) (Table 6.3.3 of AS 4100)
9.13 8.25 7.15 6.09
9.35 7.91 6.60 23.3 20.0 17.5 14.7
6.91 5.85 4.89
5.32 4.50 3.76
3.43 2.90 2.43
13.3 11.4 9.98 8.38
8.59 7.37 6.45 5.41
5.22 4.66 3.99 3.37
4.01 3.59 3.07 2.59
2.59 2.31 1.98 1.67
3.04 2.75 2.39 2.03
2.34 2.12 1.84 1.56
1.51 1.36 1.18 1.01
17.3 14.8 13.0 10.9
D5-12
DESIGN CAPACITIES FOR MEMBERS SUBJECT TO AXIAL COMPRESSION DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness TABLE D5.2-2(A) buckling about x-axis Designation d
b
Design Capacities for Axial Compression φNc (kN)
Mass per m
t
Effective Length (Le) in metres
kg/m
0.0
0.25
0.5
0.75
1.0
1.25
1.5
1.75
2.0
2.5
125 x 75 x 2.8 RHS 2.3 RHS
8.39 6.95
351 259
351 259
351 259
348 256
343 253
338 250
331 246
324 241
315 235
293 221
266 204
233 183
100 x 50 x 2.8 RHS 2.3 RHS
6.19 5.14
295 215
295 215
292 214
287 211
280 206
272 201
262 195
249 187
235 178
198 155
159 128
126 103
75 x 50 x 2.8 RHS 2.3 RHS
5.09 4.24
263 215
263 215
258 211
250 205
239 197
225 186
208 172
187 155
163 136
119 100
65 x 35 x 2.8 RHS 2.3 RHS
3.99 3.34
206 172
206 172
200 167
191 160
179 150
163 137
142 120
120 102
50 x 25 x 2.8 RHS 2.3 RHS
2.89 2.44
149 126
148 124
141 119
129 109
113 95.9
91.3 78.4
70.8 61.2
50 x 20 x 2.8 RHS 2.3 RHS
2.67 2.25
138 116
136 115
129 109
118 100
101 86.5
80.3 69.4
61.4 53.5
mm mm mm
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
Notes : 1.
φ = 0.9
2.
φ Nc = φ αc Ns
(Clause 6.3.3 of AS 4100)
3.
αb = - 0.5
3.0
3.5
4.0 199 159
5.0 141 116
99.7 82.7
66.1 55.3
87.2 73.8
65.8 55.7
51.1 43.3
33.3 28.2 18.2 15.6
99.1 84.5
68.0 58.1
48.6 41.6
36.3 31.1
28.0 24.0
54.8 47.5
43.1 37.5
28.4 24.7
20.0 17.4
14.8 12.9
11.4 9.95
7.39 6.43
47.2 41.2
37.0 32.4
24.3 21.3
17.1 15.0
12.7 11.1
9.77 8.57
6.32 5.54
(Table 6.3.3 of AS 4100)
TABLE D5.2-2(B) buckling about y-axis Designation d
b
Design Capacities for Axial Compression φNc (kN)
Mass per m
t
Effective Length (Le) in metres
kg/m
0.0
0.25
0.5
0.75
1.0
1.25
1.5
1.75
2.0
2.5
125 x 75 x 2.8 RHS 2.3 RHS
8.39 6.95
351 259
348 259
348 257
341 252
332 246
320 239
306 229
289 219
268 205
219 173
100 x 50 x 2.8 RHS 2.3 RHS
6.19 5.14
295 215
294 215
284 209
271 200
251 188
225 172
192 151
159 128
130 107
87.8 73.5
62.5 52.6
75 x 50 x 2.8 RHS 2.3 RHS
5.09 4.24
263 215
261 214
252 207
238 196
217 180
190 158
158 132
127 107
102 86.7
68.5 58.2
65 x 35 x 2.8 RHS 2.3 RHS
3.99 3.34
206 172
202 169
188 158
165 139
131 111
27.1 23.4
50 x 25 x 2.8 RHS 2.3 RHS
2.89 2.44
149 126
143 120
122 104
50 x 20 x 2.8 RHS 2.3 RHS
2.67 2.25
138 116
128 109
mm mm mm
DCTDHS/06 MARCH 2002
Notes : 1.
φ = 0.9
2.
φ Nc = φ αc Ns
96.6 83.5
96.4 82.6
70.9 60.9
53.5 46.1
41.6 35.9 14.9 13.1
86.4 74.8
55.2 48.4
36.8 32.3
26.1 22.9
19.4 17.0
56.2 49.7
33.5 29.8
21.9 19.5
15.4 13.7
11.4 10.2
(Clause 6.3.3 of AS 4100)
3.
αb = - 0.5
(Table 6.3.3 of AS 4100)
8.80 7.84
3.0
4.0
5.0
105 86.9
69.0 57.6
46.6 39.3
36.0 30.4
23.3 19.7
48.5 41.3
36.1 30.7
27.9 23.7
18.0 15.4
19.0 16.4
14.1 12.2
10.9 9.37
7.01 6.05
171 139
3.5 133 109
9.68 8.51
6.78 5.96
5.01 4.41
3.85 3.39
2.48 2.19
5.69 5.07
3.98 3.54
2.94 2.62
2.26 2.01
1.45 1.30
DCTDHS/06 MARCH 2002
TABLE D5.2-3(1)
DESIGN CAPACITIES FOR MEMBERS SUBJECT TO AXIAL COMPRESSION DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness buckling about x- and y-axis Designation d
b
Design Capacities for Axial Compression φNc (kN)
Mass per m
t
Effective Length (Le) in metres
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
mm mm mm
kg/m
0.0
1.0
1.5
2.0
2.5
3.0
3.5
4.0
5.0
6.0
7.0
8.0
10.0
12.0
100 x 100 x 6.0 SHS 5.0 SHS 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS
16.7 14.2 11.6 8.96 7.53 6.07
864 735 600 440 305 196
823 701 573 422 296 191
770 658 539 399 282 184
693 594 488 365 263 175
590 508 420 319 238 162
477 413 344 265 206 146
377 328 274 214 172 128
300 262 219 172 141 108
199 174 146 115 96.4 76.5
141 123 103 81.7 68.8 55.2
105 91.5 76.7 60.7 51.3 41.4
80.7 70.6 59.2 46.9 39.6 32.1
52.3 45.7 38.3 30.4 25.7 20.9
36.6 32.0 26.8 21.3 18.0 14.6
90 x 90 x 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS
8.01 6.74 5.45 4.39
413 305 196 125
391 291 189 122
362 273 179 117
319 246 166 110
264 210 148 102
207 170 126 90.6
162 135 104 77.9
128 107 84.7 65.4
84.1 71.2 57.3 45.5
59.3 50.3 40.7 32.7
44.0 37.4 30.3 24.5
34.0 28.9 23.4 18.9
22.0 18.7 15.2 12.3
15.4 13.1 10.6 8.62
89 x 89 x 6.0 SHS 5.0 SHS 3.5 SHS
14.6 12.5 9.06
756 645 467
710 607 441
649 557 406
559 483 356
448 390 290
344 301 226
265 233 176
208 183 138
137 120 91.1
96.2 84.7 64.2
71.4 62.8 47.6
55.0 48.4 36.7
35.6 31.3 23.7
24.9 21.9 16.6
75 x 75 x 6.0 SHS 5.0 SHS 4.0 SHS 3.5 SHS 3.0 SHS 2.5 SHS 2.0 SHS
12.0 10.3 8.49 7.53 6.60 5.56 4.50
621 532 438 388 341 287 196
565 486 401 357 313 265 183
490 425 353 315 278 235 166
384 337 283 253 225 191 142
280 248 210 189 169 144 112
205 182 155 140 125 107 85.4
154 137 117 106 94.7 81.0 65.5
120 107 91.0 82.2 73.7 63.1 51.3
78.1 69.6 59.4 53.6 48.1 41.2 33.6
54.8 48.8 41.7 37.6 33.8 29.0 23.7
40.6 36.2 30.9 27.9 25.0 21.4 17.6
31.3 27.9 23.8 21.5 19.3 16.5 13.5
20.2 18.0 15.4 13.9 12.5 10.7 8.75
14.1 12.6 10.7 9.70 8.71 7.46 6.12
0.9 φ αc Ns - 0.5
(Clause 6.3.3 of AS 4100) (Table 6.3.3 of AS 4100)
Notes : 1. 2. 3.
φ φ Nc αb
= = =
D5-13
TABLE D5.2-3(2)
D5-14
DESIGN CAPACITIES FOR MEMBERS SUBJECT TO AXIAL COMPRESSION DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness buckling about x- and y-axis Designation d
b
t
Design Capacities for Axial Compression φNc (kN)
Mass per m
Effective Length (L e) in metres
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002
mm mm mm
kg/m
0.0
0.25
0.5
0.75
1.0
1.25
1.5
1.75
2.0
2.5
3.0
3.5
4.0
5.0
75 x 75 x 6.0 SHS 5.0 SHS 4.0 SHS 3.5 SHS 3.0 SHS 2.5 SHS 2.0 SHS
12.0 10.3 8.49 7.53 6.60 5.56 4.50
621 532 438 388 341 287 196
621 532 438 388 341 287 196
608 522 430 382 335 282 193
590 507 418 371 326 275 189
565 486 401 357 313 265 183
532 459 380 338 298 252 176
490 425 353 315 278 235 166
440 383 320 286 253 215 155
384 337 283 253 225 191 142
280 248 210 189 169 144 112
205 182 155 140 125 107 85.4
154 137 117 106 94.7 81.0 65.5
120 107 91.0 82.2 73.7 63.1 51.3
78.1 69.6 59.4 53.6 48.1 41.2 33.6
65 x 65 x 6.0 SHS 5.0 SHS 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS
10.1 8.75 7.23 5.66 4.78 3.88 3.13
523 451 373 292 247 196 125
523 451 373 292 247 196 125
508 439 363 285 241 191 123
487 421 349 274 232 184 120
458 397 330 260 220 176 115
418 365 305 241 205 164 109
368 324 273 217 185 149 102
313 277 235 189 162 131 93.2
260 232 198 161 137 112 83.0
179 161 138 113 97.2 79.8 62.3
128 116 99.6 81.7 70.2 57.8 46.2
95.8 86.4 74.5 61.2 52.6 43.4 35.0
74.1 66.9 57.7 47.4 40.8 33.6 27.3
48.1 43.4 37.5 30.8 26.5 21.9 17.8
50 x 50 x 5.0 SHS 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS
6.39 5.35 4.25 3.60 2.93 2.38
330 276 219 186 151 123
327 274 218 185 150 122
312 262 209 178 145 118
289 244 196 167 136 111
256 218 176 151 123 101
212 183 150 129 106 87.0
167 146 122 105 87.0 71.5
130 115 96.6 83.6 69.5 57.3
103 91.0 76.9 66.7 55.5 45.8
67.9 60.2 51.1 44.4 37.0 30.6
47.9 42.5 36.1 31.4 26.2 21.6
35.5 31.6 26.8 23.3 19.5 16.1
27.4 24.4 20.7 18.0 15.0 12.4
17.7 15.8 13.4 11.7 9.72 8.04
40 x 40 x 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS
4.09 3.30 2.82 2.31 1.88
211 170 145 119 96.9
207 168 143 117 95.5
193 157 135 110 90.1
170 140 120 99.3 81.2
135 115 99.5 82.6 68.1
100 87.0 76.0 63.6 52.7
73.9 64.7 56.8 47.8 39.7
55.9 49.1 43.2 36.4 30.3
43.5 38.3 33.7 28.4 23.7
28.3 25.0 22.0 18.6 15.5
19.9 17.6 15.5 13.1 10.9
14.7 13.0 11.5 9.68 8.08
11.3 10.0 8.83 7.46 6.22
7.33 6.48 5.71 4.82 4.02
35 x 35 x 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS
2.83 2.42 1.99 1.63
146 125 103 83.9
143 122 101 82.2
131 113 92.9 76.1
111 95.9 79.7 65.7
82.9 72.8 61.2 50.9
58.9 52.1 44.1 36.9
42.6 37.8 32.1 26.9
32.0 28.4 24.1 20.2
24.8 22.0 18.7 15.7
16.1 14.3 12.2 10.2
11.3 10.0 8.55 7.18
8.37 7.43 6.33 5.32
6.44 5.72 4.87 4.09
4.16 3.70 3.15 2.64
30 x 30 x 2.0 SHS 1.6 SHS
1.68 1.38
86.5 70.9
83.8 68.8
74.8 61.7
58.9 49.1
40.7 34.3
27.8 23.5
19.9 16.8
14.8 12.5
11.5 9.70
7.43 6.30
5.21 4.41
3.85 3.26
2.96 2.51
1.91 1.62
25 x 25 x 2.5 SHS 2.0 SHS 1.6 SHS
1.64 1.36 1.12
84.6 70.3 58.0
80.2 66.9 55.3
66.1 55.8 46.5
43.6 37.7 32.0
27.0 23.6 20.2
17.8 15.6 13.4
12.6 11.0 9.46
9.34 8.19 7.03
7.21 6.32 5.42
4.66 4.09 3.51
3.26 2.86 2.46
2.41 2.11 1.82
1.85 1.63 1.40
1.19 1.05 0.900
20 x 20 x 1.6 SHS
0.873
45.0
41.5
30.1
16.9
4.58
3.40
2.62
1.69
1.18
0.872
0.671
0.432
Notes : 1.
φ = 0.9
2.
φ Nc = φ αc Ns
(Clause 6.3.3 of AS 4100)
9.99 3.
αb = - 0.5
6.52
(Table 6.3.3 of AS 4100)
DCTDHS/06 MARCH 2002
TABLE D5.2-4
DESIGN CAPACITIES FOR MEMBERS SUBJECT TO AXIAL COMPRESSION DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness buckling about x- and y-axis Designation d
b
Design Capacities for Axial Compression φNc (kN)
Mass per m
t
Effective Length (Le) in metres
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
kg/m
0.0
0.25
0.50
0.75
1.0
1.25
1.5
1.75
2.0
2.5
3.0
100 x 100 x 2.8 SHS 2.3 RHS
8.39 6.95
383 259
383 259
382 258
376 255
369 251
360 246
350 241
337 234
323 226
286 207
242 182
75 x 75 x 2.8 SHS 2.3 SHS
6.19 5.14
319 259
319 259
314 255
305 248
294 239
279 228
261 213
238 195
212 175
159 133
118 99.0
65 x 65 x 2.3 SHS
4.42
228
228
223
215
204
190
172
150
128
90.5
65.4
49.0
38.0
24.7
50 x 50 x 2.8 SHS 2.3 SHS
3.99 3.34
206 172
205 171
197 165
184 154
166 140
142 120
115 98.1
91.5 78.1
73.0 62.4
48.5 41.5
34.3 29.4
25.5 21.8
19.7 16.8
12.7 10.9
40 x 40 x 2.8 SHS 2.3 SHS
3.11 2.62
161 135
158 133
148 125
133 112
109 92.9
82.7 71.2
61.7 53.3
46.9 40.6
36.5 31.7
23.9 20.7
16.8 14.5
12.4 10.8
35 x 35 x 2.8 SHS 2.3 SHS
2.67 2.25
138 116
135 114
124 105
105 89.6
79.0 68.3
56.3 49.0
40.8 35.6
30.6 26.8
23.7 20.8
15.4 13.5
10.8 9.47
mm mm mm
Notes : 1. 2. 3.
φ φ Nc αb
= = =
0.9 φ αc Ns - 0.5
(Clause 6.3.3 of AS 4100) (Table 6.3.3 of AS 4100)
3.5 198 155 89.3 75.2
8.01 7.01
4.0 160 128 69.6 58.6
5.0 108 88.6 45.4 38.3
9.58 8.31
6.19 5.37
6.17 5.40
3.98 3.49
D5-15
[ BLANK ]
D5-16
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
DCTDHS/06 MARCH 2002
PART 6 MEMBERS SUBJECT TO AXIAL TENSION
6 PAGE
D6.1
SCOPE ........................................................................................................................... D6-2
D6.2
METHOD ....................................................................................................................... D6-2
D6.3
EXAMPLE ...................................................................................................................... D6-3
TABLES TABLES D6.1-1 to D6.1-4 Design Capacities for Members Subject to Axial Tension (φNt) ..................................... D6-4
NOTE: SEE PAGE vii FOR THE SPECIFIC MATERIAL STANDARD REFERRED TO BY THE SECTION TYPE AND STEEL GRADE IN THESE TABLES.
DCTDHS/06 MARCH 2002
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
D6-1
PART 6 MEMBERS SUBJECT TO AXIAL TENSION D6.1
SCOPE
Tables D6.1-1 to D6.1-4 give values of design section capacity for axial tension determined in accordance with Section 7 of AS 4100. The tables give values of design capacity for DuraGal structural steel hollow sections with full perimeter welded connections.
D6.2
METHOD
The design section capacity for axial tension (φNt) has been determined from Clause 7.2 of AS 4100 and taken as the lesser o : φNt = φ Ag fy φNt = φ (0.85) kt An fu
and φ
where
=
fy = An =
0.9
(Table 3.4 of AS 4100)
yield stress used in design net section area
=
Ag
=
gross cross-sectional area (for full perimeter welded connections)
fu =
ultimate strength used in design
kt =
tension correction factor
=
1.0
(Clause 7.3.1 of AS 4100)
The lesser value of φNt = φ Ag fy and φNt = φ (0.85) Ag fu is highlighted in bold type in the tables. φNt = φ (0.85) Ag fu is the lesser value of φNt.
Note: for Grade C450L0
For sections reduced by penetrations or holes, the value of φNt can be determined from the tables as the lesser value of:
and where An =
φN t =
φ Ag fy
φN t =
φ (0.85) Ag fu (An / Ag)
net section area
Values of Ag are tabulated in Tables D6.1-1 to D6.1-4. Note that all the values in Tables D6.1-1 to D6.1-4 assume kt = 1.0.
D6-2
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
DCTDHS/06 MARCH 2002
D6.3 1.
EXAMPLE
A tension member with a full perimeter welded connection is subjected to an axial tension force of 150 kN. Design a suitable DuraGal RHS tension member.
Design Data: N* = 150 kN kt
= 1.0 (for a full perimeter welded connection)
Solution: Select a suitable DuraGal member from Tables D6.1-1 and D6.1-3. The alternatives are: 65 x 35 x 2.5 DuraGal RHS Grade C450L0 (3.60 kg/m) φNt = 176 > N* 65 x 65 x 1.6 DuraGal SHS Grade C450L0 (3.13 kg/m) φNt = 153 > N* Choose 65 x 65 x 1.6 RHS Grade C450L0 (3.13 kg/m) because it is more economical based on mass.
DCTDHS/06 MARCH 2002
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
D6-3
TABLE D6.1-1
TABLE D6.1-2
DESIGN CAPACITIES FOR MEMBERS DESIGN CAPACITIES FOR MEMBERS SUBJECT TO AXIAL TENSION SUBJECT TO AXIAL TENSION DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness
Mass per m
Designation d
b
t
Axial Tension φ Nt φNt (1) φ Nt (2)
DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness
Gross Section Area Ag
d
b
t
Axial Tension φN t φ Nt (1) φNt (2)
Gross Section Area Ag
mm mm mm
kg/m
kN
kN
mm
mm mm mm
kg/m
kN
kN
mm2
150 x 50 x 6 0 RHS 5 0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS
16.7 14.2 11.6 8.96 7.53 6.07
864 735 600 462 388 313
816 694 567 436 367 296
2130 1810 1480 1140 959 774
125 x 75 x 2.8 RHS 2.3 RHS
8.39 6.95
433 359
409 339
1070 885
100 x 50 x 2.8 RHS 2.3 RHS
6.19 5.14
319 265
302 251
788 655
75 x 50 x 2.8 RHS 2.3 RHS
5.09 4.24
263 219
248 207
648 540
125 x 75 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS
16.7 14.2 11.6 8.96 7.53 6.07
864 735 600 462 388 313
816 694 567 436 367 296
2130 1810 1480 1140 959 774
65 x 35 x 2.8 RHS 2.3 RHS
3.99 3.34
206 172
194 163
508 425
50 x 25 x 2.8 RHS 2.3 RHS
2.89 2.44
149 126
141 119
368 310
50 x 20 x 2.8 RHS 2.3 RHS
2.67 2.25
138 116
130 110
340 287
100 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.5 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
12.0 10.3 8.49 7.53 6.60 5.56 4.50 3.64
621 532 438 388 341 287 232 188
586 503 414 367 322 271 219 177
1530 1310 1080 959 841 709 574 463
75 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
9.67 8.35 6.92 5.42 4.58 3.72 3.01
499 431 357 280 236 192 155
471 407 337 264 223 181 147
1230 1060 881 691 584 474 383
75 x 25 x 2.5 RHS 2.0 RHS 1.6 RHS
3.60 2.93 2.38
186 151 123
176 143 116
459 374 303
65 x 35 x 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS
5.35 4.25 3.60 2.93
276 219 186 151
261 207 176 143
681 541 459 374
50 x 25 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
3.07 2.62 2.15 1.75
158 135 111 90.4
149 128 105 85.4
391 334 274 223
50 x 20 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
2.83 2.42 1.99 1.63
146 125 103 83.9
138 118 97.0 79.2
361 309 254 207
Notes:
1. 2.
φ φ Nt (1)
3.
φ Nt (2) =
D6-4
= =
2
Mass per m
Designation
0.9 φ Ag fy
(Clause 7.2 of AS 4100)
φ 0.85 Ag fu
(Clause 7.2 of AS 4100)
Notes:
1. 2.
φ φ Nt (1)
3.
φ Nt (2) =
= =
0.9 φ Ag fy
(Clause 7.2 of AS 4100)
φ 0.85 Ag fu
(Clause 7.2 of AS 4100)
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
DCTDHS/06 MARCH 2002
TABLE D6.1-3
TABLE D6.1-4
DESIGN CAPACITIES FOR MEMBERS SUBJECT TO AXIAL TENSION
DESIGN CAPACITIES FOR MEMBERS SUBJECT TO AXIAL TENSION
DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness
DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness
Mass per m
Designation d
b
t
Axial Tension φN t φNt (1) φNt (2)
Gross Section Area Ag
d
b
t
Axial Tension φ Nt φNt (1) φ Nt (2)
Gross Section Area Ag
mm mm mm
kg/m
kN
kN
mm
mm mm mm
kg/m
kN
kN
mm2
100 x 100 x 6.0 SHS 5.0 SHS 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS
16.7 14.2 11.6 8.96 7.53 6.07
864 735 600 462 388 313
816 694 567 436 367 296
2130 1810 1480 1140 959 774
100 x l00 x 2.8 SHS 2.3 RHS
8.39 6.95
433 359
409 339
1070 885
75 x 75 x 2.8 SHS 2.3 SHS
6.19 5.14
319 265
302 251
788 655
65 x 65 x 2.3 SHS
4.42
228
215
563
90 x 90 x 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS
8.01 6.74 5.45 4.39
413 348 281 226
390 329 265 214
1020 859 694 559
50 x 50 x 2.8 SHS 2.3 SHS
3.99 3.34
206 172
194 163
508 425
40 x 40 x 2.8 SHS 2.3 SHS
3.11 2.62
161 135
152 127
396 333
89 x 89 x 6.0 SHS 5.0 SHS 3.5 SHS
14.6 12.5 9.06
756 645 467
714 609 441
1870 1590 1150
35 x 35 x 2.8 SHS 2.3 SHS
2.67 2.25
138 116
130 110
340 287
75 x 75 x 6.0 SHS 5.0 SHS 4.0 SHS 3.5 SHS 3.0 SHS 2.5 SHS 2.0 SHS
12.0 10.3 8.49 7.53 6.60 5.56 4.50
621 532 438 388 341 287 232
586 503 414 367 322 271 219
1530 1310 1080 959 841 709 574
65 x 65 x 6.0 SHS 5.0 SHS 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS
10.1 8.75 7.23 5.66 4.78 3.88 3.13
523 451 373 292 247 200 162
494 426 352 276 233 189 153
1290 1110 921 721 609 494 399
50 x 50 x 5.0 SHS 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS
6.39 5.35 4.25 3.60 2.93 2.38
330 276 219 186 151 123
311 261 207 176 143 116
814 681 541 459 374 303
40 x 40 x 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS
4.09 3.30 2.82 2.31 1.88
211 170 145 119 96.9
199 161 137 112 91.5
521 421 359 294 239
35 x 35 x 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS
2.83 2.42 1.99 1.63
146 125 103 83.9
138 118 97.0 79.2
361 309 254 207
30 x 30 x 2.0 SHS 1.6 SHS
1.68 1.38
86.5 70.9
81.7 67.0
214 175
25 x 25 x 2.5 SHS 2.0 SHS 1.6 SHS
1.64 1.36 1.12
84.6 70.3 58.0
79.9 66.4 54.8
209 174 143
20 x 20 x 1.6 SHS
0.873
45.0
42.5
111
Notes:
2
Mass per m
Designation
1.
φ
=
0.9
2.
φ Nt (1)
=
φ Ag fy
(Clause 7.2 of AS 4100)
3.
φ Nt (2) =
φ 0.85 Ag fu
(Clause 7.2 of AS 4100)
DCTDHS/06 MARCH 2002
Notes:
1.
φ
=
0.9
2.
φ Nt (1)
=
φ Ag fy
(Clause 7.2 of AS 4100)
3.
φ Nt (2) =
φ 0.85 Ag fu
(Clause 7.2 of AS 4100)
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
D6-5
[ BLANK ]
D6-6
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
DCTDHS/06 MARCH 2002
PART 7 MEMBERS SUBJECT TO COMBINED ACTIONS .
7 PAGE
D7.1
SCOPE ........................................................................................................................... D7-2
D7.2
METHOD ........................................................................................................................ D7-2
D7.3
MOMENT AMPLIFICATION .......................................................................................... D7-2
D7.3.1 D7.3.2
Values of cm .................................................................................................................... D7-3 Elastic Buckling Load ..................................................................................................... D7-3
D7.4
COMBINED BENDING AND AXIAL COMPRESSION ............................................... D7-7
D7.4.1 D7.4.1.1 D7.4.1.2
Uniaxial Bending - About the Major Principal x-axis ................................................ D7-7 Section Capacity............................................................................................................. D7-7 Member Capacity ............................................................................................................ D7-8
D7.4.2 D7.4.2.1 D7.4.2.2
Uniaxial Bending - About the Minor Principal y-axis ................................................ D7-9 Section Capacity ............................................................................................................ D7-9 Member Capacity ......................................................................................................... D7-10
D7.4.3 D7.4.3.1 D7.4.3.2
Biaxial Bending........................................................................................................... D7-10 Section Capacity .......................................................................................................... D7-10 Member Capacity ......................................................................................................... D7-11
D7.5
COMBINED BENDING AND AXIAL TENSION ......................................................... D7-11
D7.5.1 D7.5.1.1 D7.5.1.2
Uniaxial Bending - About the Major Principal x-axis .............................................. D7-11 Section Capacity .......................................................................................................... D7-12 Member Capacity ......................................................................................................... D7-12
D7.5.2
Uniaxial Bending - About the Minor Principal y-axis .............................................. D7-12
D7.5.2.1
Section Capacity .......................................................................................................... D7-13
D7.5.3 D7.5.3.1 D7.5.3.2
Biaxial Bending........................................................................................................... D7-13 Section Capacity .......................................................................................................... D7-13 Member Capacity ......................................................................................................... D7-14
D7.6
BIAXIAL BENDING ..................................................................................................... D7-15
D7.6.1 D7.6.2
Section Capacity .......................................................................................................... D7-15 Member Capacity ......................................................................................................... D7-15
D7.7
EXAMPLES ................................................................................................................. D7-16
TABLES TABLES D7.3.2-1 to D7.3.2-4 Elastic Buckling Loads (Nom) ........................................................................................ D7-23
NOTE: SEE PAGE vii FOR THE SPECIFIC MATERIAL STANDARD REFERRED TO BY THE SECTION TYPE AND STEEL GRADE IN THESE TABLES.
DCTDHS/06 MARCH 2002
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
D7-1
PART 7 D7.1
MEMBERS SUBJECT TO COMBINED ACTIONS
SCOPE
This part of the Tables contains the interaction formulae which must be used to design members subject to combined actions in accordance with Section 8 of AS 4100.The table below provides the location of design capacities and reference points within this publication for checking interaction effects on member capacities. Design Capacity Nomx Nomy φNc φNs φNt φMs φMsx, φMsy φMrx (comp) φMrx (tens) φMry φMr (comp) φMr (tens) φMb φVv φVvx φVvy φMz
D7.2
Description Elastic flexural buckling load of a member, about the principal x- axis Elastic flexural buckling load of a member, about the principal y- axis Nominal member capacity in compression Design section capacity in axial compression Design section capacity in axial tension Design section moment capacity (SHS) φMs about x- and y- axes (RHS) φMsx reduced by axial compression force (RHS) φMsx reduced by axial tension force (RHS) φMsy reduced by axial force (RHS) φMs about a principal axis reduced by axial compression force φMs about a principal axis reduced by axial tension force Design moment capacity (RHS) Design shear capacity of a web (SHS) φVv for bending about x- axis (RHS) φVv for bending about y- axis (RHS) Design torsional section moment capacity
Reference Tables 7.3.2-1 to D7.3.2-4 Tables 7.3.2-1 to D7.3.2-4 Tables D5.2-1(A) to D5.2-4 Tables D3.1-1 to D3.1-4 Tables D3.1-1 to D3.1-4 Tables D3.1-1 to D3.1-4 Tables D3.1-1 & D3.1-3 Section D7.4.1.1 Section D7.5.1.1 Section D7.4.2.1 & D7.5.2.1 Section D7.4.1.1 Section D7.5.1.1 Tables D4.1-1 to D4.1-2 Table D3.1-2 & D3.1-4 Table D3.1-1 & D3.1-3 Table D3.1-1 & D3.1-3 Tables D3.1-1 to D3.1-4
METHOD
Section D7.3 describes the use and determination of moment amplification factors and the determination of the elastic buckling load for braced or sway members. The elastic buckling load required for combined bending and axial compression when the moment is amplified by the moment amplification factors δb and δ s. Sections D7.4 and D7.5 give the interaction formulae for combined bending and axial compression and combined bending and axial tension respectively. Each section describes the method for uniaxial bending about the major principal x-axis, for uniaxial bending about the minor principal y-axis, and for biaxial bending. Section D7.6 gives the interaction formulae for biaxial bending without axial forces. In every case both the section capacity and the member capacity must be checked.
D7.3
MOMENT AMPLIFICATION
For a member subjected to combined bending and axial compression force, irrespective of whether that member is an isolated statically determinate member or part of a statically indeterminate frame the bending moments will be amplified by the presence of axial compression force. Such amplification can be accounted for by a variety of means and these are now considered in relation to braced and sway members. Braced Member - the member is braced such that its ends cannot move relative to one another. If a first order elastic analysis is conducted then δb (Clause 4.4.2.2 of AS 4100) must be used to amplify the design action effects between the ends of the member. However, when the moment amplification factor is greater than 1.4, a second order elastic analysis must be carried out (see Appendix E of AS 4100).
D7-2
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
DCTDHS/06 MARCH 2002
If an appropriate second order elastic analysis is carried out, such that the design action effects at sufficient number of locations between the ends of the member are determined, then there is no need to modify the design action effects in the member using δb. The moment amplification factor (δb) must be calculated using the procedure shown in Figure D7.3(1). Sway Member - the ends of the member are permitted to move relative to one another. If a first order elastic analysis is carried out then the design action effects must be modified using the moment amplification factor (δm), which is the greater of δb and δs (see Clause 4.4.2.3 of AS 4100). However, when the moment amplification factor is greater than 1.4, a second order elastic analysis must be carried out (see Appendix E of AS 4100). If an appropriate second order elastic analysis is carried out, such that the design action effects at a sufficient number of locations along the length of the member are determined, then there is no need to modify the design action effects using δm. If this is not the situation, then the design action effects obtained from the second order elastic analysis may need to be modified using δb, as described in Appendix E of AS 4100. The moment amplification factors (δb and δs) must be calculated using the procedure shown in Figures D7.3(1) and D7.3(2).
D7.3.1 Values of cm The value of cm is specified in Clause 4.4.2.2 of AS 4100 as: cm = 0.6 - 0.4 βm ≤ 1.0 where βm is the ratio of the smaller to the larger bending moments at the ends of the member, taken as positive when the member is bent in reverse curvature. Where the member is subjected to transverse loading, βm may be taken as described in Clauses 4.4.2.2(a), (b) and (c) of AS 4100. Table D7.3.1 gives values of cm for a range of βm values for single and reverse curvature bending.
D7.3.2 Elastic Buckling Load Values of elastic buckling load (Nom) for various effective lengths (Le) are given in Tables D7.3.2-1 to D7.3.2-4. Nom values are determined in accordance with Clause 4.6.2 of AS 4100 as: π 2 EI
Nom = where E = I = ke L =
bk L g
2
e
200 x 103 MPa second moment of area effective length (Section 5.4 of these tables)
"Nom x-axis" indicates Nom for the member buckling about the x-axis. "Nom y-axis" indicates Nom for the member buckling about the y-axis.
DCTDHS/06 MARCH 2002
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
D7-3
Determination of δb
Members with Idealised End Restraints; Clause 4.6.3.2 of AS 4100
Members in Frames; Clause 4.6.3.3 of AS 4100
Calculate Member Effective Length keL; Figure 4.6.3.2 of AS 4100 or Table D5.4 of this publication
Calculate Member Effective Length keL; Clauses 4.6.3.3, 4.6.3.4 and Figure 4.6.3.3(a) of AS 4100
Compute Nomb from Clause 4.6.2 of AS 4100 or Tables D7.3.2-1 to D7.3.2-4 of this publication
Compute cm from Clause 4.6.2.2 of AS 4100 or Table D7.3.1 of this publication
δb =
cm
≥1 F N* I 1- G H N JK omb
Figure D7.3(1): Flow Chart for Determination of δb
D7-4
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
DCTDHS/06 MARCH 2002
Determination of δs
Members with Idealised End Restraints; Clause 4.6.3.2 of AS 4100
Members in Frames; Clause 4.6.3.3 of AS 4100
Rectangular Frames with Negligible Axial Forces in the Beams; Clause 4.4.2.3(a) of AS4100
Calculate Member Effective Length keL; Figure 4.6.3.2 of AS 4100 or Table D5.4 of this publication
Calculate Member Effective Length keL; 4.6.3.3, 4.6.3.4 and Figure 4.6.3.3(b) of AS 4100
Compute Nomb from Clause 4.6.2 of AS 4100 or Tables D7.3.2-1 to D7.3.2-4 of this publication
Non-Rectangular Frames; Clause 4.4.2.3(b) of AS4100
“P-δ” Analysis; Clause 4.4.2.3(a)(i) of AS 4100
1
δs = 1-
FG ∆ Hh
s s
ΣN * ΣV *
IJ K
Calculate λc from Rational Buckling Analysis
1
δs = 1-
FG 1 IJ Hλ K c
Compute λms from Clause 4.7.2.2 of AS 4100
δs =
1 1 1− λms Figure D7.3(2): Flow Chart for Determination of δs
DCTDHS/06 MARCH 2002
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
D7-5
Table D7.3.1: Values of cm for Braced Members
βm
cm
βm
cm
βm
cm
βm
cm
-1.00
1.00
-0.50
0.80
+0.05
0.58
+0.55
0.38
-0.95
0.98
-0.45
0.78
+0.10
0.56
+0.60
0.36
-0.90
0.96
-0.40
0.76
+0.15
0.54
+0.65
0.34
-0.85
0.94
-0.35
0.74
+0.20
0.52
+0.70
0.32
-0.80
0.92
-0.30
0.72
+0.25
0.50
+0.75
0.30
-0.75
0.90
-0.25
0.70
+0.30
0.48
+0.80
0.28
-0.70
0.88
-0.20
0.68
+0.35
0.46
+0.85
0.26
-0.65
0.86
-0.15
0.66
+0.40
0.44
+0.90
0.24
-0.60
0.84
-0.10
0.64
+0.45
0.42
+0.95
0.22
-0.55
0.82
-0.05
0.62
+0.50
0.40
+1.00
0.20
0.00
0.60
β m is negative for single curvature bending:
D7-6
βm is positive for reverse curvature bending:
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
DCTDHS/06 MARCH 2002
D7.4
COMBINED BENDING AND AXIAL COMPRESSION
In this section: φ
=
0.9 (Table 3.4 of AS 4100)
φMsx =
design section moment capacity for bending about the major principal x-axis (see Section D3.2.3 and Tables D3.1-1 to D3.1-4)
φMsy =
design section moment capacity for bending about the minor principal y-axis (see Section D3.2.3 and Tables D3.1-1 to D3.1-4)
N* = φN s =
design axial compressive force design section capacity of a compression member (see Section D3.2.2 and Tables D3.1-1 to D3.1-4)
φN cx =
design member capacity in compression, buckling about the x-axis (see Section D5.3 and Tables D5.2-1 to D5.2-4)
φN cy =
design member capacity in compression, buckling about the y-axis (see Section D5.3 and Tables D5.2-1 to D5.2-4)
φNy the effective length factor (ke) should equal 1.0 for In the determination of φNcx and φ both braced and sway members unless a lower value is calculated for braced members.
Note:
D7.4.1 Uniaxial Bending - about the major principal x-axis For a member subject to uniaxial bending about the major principal x-axis and axial compression, the following condition must be satisfied: M *x ≤ where
φ
=
min.[φMrx ; φMix ; φMox] 0.90 (Table 3.4 of AS 4100)
M *x =
design bending moment about the major principal x-axis
φMrx =
design section moment capacity (φMs) for bending about the major principal x-axis reduced by axial force (see Section D7.4.1.1)
φMix =
design in-plane member moment capacity (φMi) for bending about the major principal x-axis (see Section D7.4.1.2(a))
φMox =
design out-of-plane member moment capacity (φMo) for bending about the major principal x-axis (see Section D7.4.1.2(b))
D 7.4.1.1 Section Capacity The value of φMrx must be determined at all points along the member and the minimum value used to satisfy Section D7.4.1. φMrx
=
F GH
φMsx 1−
N* φNs
I JK
(Clause 8.3.2 of AS 4100)
Note: N * ≤ φNs Alternatively, For RHS & SHS to AS 1163, which are compact about the x- axis, φMrx may be calculated by one of the following:
DCTDHS/06 MARCH 2002
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
D7-7
(a)
For compression members where k f = 1.0, subject to bending φMrx
(b)
= 1.18
F GH
φMsx 1−
N* φNs
I JK
≤ Msx
(Clause 8.3.2 of AS 4100)
For compression members where k f is < 1.0, subject to bending
82 − λ w N* φMrx = φMsx 1 − 1 + 0 . 18 82 − λ ≤ φMsx φN s wy λ w = λ e for the element slenderness of the web
where
= d − 2t
t
(Clause 8.3.2 of AS 4100)
(Clause 6.2.3 of AS 4100)
fy 250
λ wy = 40 for DuraGal RHS and SHS
(Table 6.2.4 of AS 4100)
D 7.4.1.2 Member Capacity This section only applies to members analysed using an elastic method of analysis. Where there is sufficient restraint to prevent lateral buckling, only the in-plane requirements of Sections D7.4.1.1 and D7.4.1.2 need to be satisfied. If there is insufficient restraint to prevent lateral buckling, then both the in-plane and out-of-plane requirements of Sections D7.4.1.1 and D7.4.1.2 need to be satisfied. (a)
In-plane capacity φMix
=
FG H
φMsx 1−
N* φNcx
IJ K
(Clause 8.4.2.2 of AS 4100)
Note: N * ≤ φNcx where φNcx is determined in accordance with Clause 6.3 for buckling about the same principal axis, with an effective length factor (kex) taken as 1.0 for braced and sway members, unless a lower value of (kex) is calculated for braced members (Clause 4.6.3 of AS 4100) Alternatively, For RHS & SHS to AS 1163, which are compact as defined in Clause 5.2.3 of AS 4100, and where the form factor (kf) determined in accordance with Clause 6.2.2 is unity, φMix may be calculated as per Clause 8.4.2.2 of AS 4100. 3 1 + βm 3 N * N* 1 + βm + − 1 18 φMix = φMsx 1 − . 1 1− φNcx ≤ φM rx 2 2 φNcx
Where
βm
Mrx
D7-8
=
the ratio of the smaller to the larger end bearing moment, taken as positive when the member is
=
bent in reverse curvature for members without transverse load, or the value determined in accordance with Clause 4.4.2.2 of AS 4100 for members with transverse load.
=
the nominal section moment capacity about the appropriate principal axis determined in accordance with Clause 8.3 of AS 4100.
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
DCTDHS/06 MARCH 2002
(b)
Out-of-plane capacity
φMox where φMbx = Note:
=
N* φMbx 1 − φNcy
(Clause 8.4.4.1 of AS 4100)
design member moment capacity for bending about the major principal x-axis (see Section D4.1.2 and Tables D4.1-1 to D4.1-2)
N * ≤ φNcy
D7.4.2 Uniaxial Bending - about the minor principal y-axis For a member subject to uniaxial bending about the minor principal y-axis and axial compression, the following condition must be satisfied: M *y ≤ min.[φMry ; φMiy ]
where M *y = φ
=
design bending moment about the minor principal y-axis 0.9 (Table 3.4 of AS 4100)
φMry =
design section moment capacity (φMs) about the minor principal y-axis reduced by axial force (see Section D7.4.2.1)
φMiy =
nominal in-plane member moment capacity (φMi) about the minor principal y-axis (see Section D7.4.2.2)
D 7.4.2.1 Section Capacity The value of φMry must be determined at all points along the member and the minimum value is used to satisfy Section D7.4.2.
F GH
φMry = φMsy 1−
N* φNs
I JK
(Clause 8.3.3 of AS 4100)
Note: N * ≤ φNs Alternatively, for RHS and SHS to AS 1163, which are compact about the y-axis subject to bending and compression:
N* φMry = 118 . φMsy 1 − ≤ φMsy φN s
DCTDHS/06 MARCH 2002
(Clause 8.3.3 of AS 4100)
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
D7-9
D7.4.2.2
Member Capacity
This section applies only to members analysed using an elastic method of analysis. For bending about the minor principal y-axis only the in-plane requirements need to be satisfied. In-plane capacity φMiy
=
N* φMsy 1− φN cy
(Clause 8.4.2.2 of AS 4100)
Note: N * ≤ φNcy φNcy is determined in accordance with Clause 6.3 for buckling about the same principal axis, with an effective length factor (key) taken as 1.0 for braced and sway members, unless a lower value of (key) is calculated for braced members (refer 4.6.3 of AS 4100)
where
Alternatively, For RHS & SHS to AS 1163, which are compact as defined in Clause 5.2.3 of AS 4100, and where the form factor (kf) determined in accordance with Clause 6.2.2 is unity, φMiy may be calculated as per Clause 8.4.2.2 of AS 4100. 3 1 + βmy 3 N* N * 1 + βmy − − + φMiy = φMsy 1 − 1 1 . 18 1 2 φNcy ≤ φM ry 2 φNcy
Where βm
=
the ratio of the smaller to the larger end bearing moment, taken as positive when the member is bent in reverse curvature for members without transverse load, or
=
the value determined in accordance with Clause 4.4.2.2 of AS 4100 for members with transverse load.
Mry
=
the nominal section moment capacity about the appropriate principal axis determined in accordance with Clause 8.3 of AS 4100.
D7.4.3
Biaxial Bending and Axial Compression
For a member subject to biaxial bending and axial compression, both the conditions defined in Sections D7.4.3.1 and D7.4.3.2 must be satisfied.
D 7.4.3.1 Section Capacity N* M *x M *y + + ≤1 φNs φM sx φM sy
(Clause 8.3.4 of AS 4100)
Alternatively, for RHS and SHS to AS 1163, which are compact about both the x- and y- axes: γ
γ
M x* M y* ≤1 + φMrx φMry
(Clause 8.3.4 of AS 4100)
where
N* γ = 1.4 + ≤ 2.0 φN s where φMrx and φMry are calculated in accordance with Clauses 8.3.2 and 8.3.3 of AS 4100
D7-10
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
DCTDHS/06 MARCH 2002
D 7.4.3.2 Member Capacity
M x* φMcx
where M *x = φMcx =
1. 4
M y* + φMiy
1. 4
≤1
(Clause 8.4.5.1 of AS 4100)
design bending moment about the major principal x-axis lesser of the design in-plane member moment capacity (φMix) and the design out-ofplane member moment capacity (φMox) for bending about the major principal x-axis, determined in accordance with Sections D7.4.1.2(a) and (b) respectively
M *y =
design bending moment about the minor principal y-axis
φMiy =
design in-plane member moment capacity determined in accordance with Section D7.4.2.2
Note: M *x ≤ φMcx M *y ≤ φMiy
D7.5
COMBINED BENDING AND AXIAL TENSION
In this section: φ
=
0.9 (Table D3.4 of AS 4100)
φMsx =
design section moment capacity for bending about the major principal x-axis (see Section 3.2.3 and Tables D3.1-1 to D3.1-4)
φMsy =
design section moment capacity for bending about the minor principal y-axis(see Section 3.2.3 and Tables D3.1-1 to D3.1-4)
N* =
design axial compressive force
φNt =
design member capacity in tension (see Section D6.2 and Tables D6.1-1 to D6.1-4)
D7.5.1 Uniaxial Bending - about the major principal x-axis For a member subject to uniaxial bending about the major principal x-axis and axial tension, the following condition must be satisfied: M *x ≤ min.[φMrx ; φMox] where φ
=
0.9 (Table 3.4 of AS 4100)
M *x =
design bending moment about the major principal x-axis
φMrx =
design section moment capacity (φMs) for bending about the major principal x-axis reduced by axial force (see section D7.5.1.1)
φMox =
design out-of-plane member moment capacity (φMo) for bending about the major principal x-axis(see section D7.5.1.2)
DCTDHS/06 MARCH 2002
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
D7-11
D 7.5.1.1 Section Capacity The value of φMrx must be determined at all points along the member and the minimum value is used to satisfy Section D7.5.1. φMrx
where φN t =
=
FG H
φMsx 1−
N* φN t
IJ K
(Clause 8.3.2 of AS 4100)
design section capacity in tension (see Section D3.2.1 and Tables D3.1-1 to D3.1-4)
N * ≤ φNt
Note:
Alternatively, for RHS and SHS to AS 1163, which are compact about the x-axis subject to bending and tension:
N* φMrx = 118 . φMsx 1 − ≤ φMsx φNt
(Clause 8.3.2 of AS 4100)
D 7.5.1.2 Member Capacity This section only applies to members analysed using an elastic method of analysis. Only the out-of-plane capacity needs to be considered. Out-of-plane capacity φMox = φMbx
FG1 + N * IJ H φN K
≤ φMrx
(Clause 8.4.4.2 of AS 4100)
t
where φMbx = φN t =
design member moment capacity for bending about the major principal x-axis (see Section D4.1.2 and Tables D4.1-1 to D4.1-2) design member capacity in tension (see Section D6.2 and Tables D6.1-1 to D6.1-4)
N * ≤ φNt
Note:
D7.5.2 Uniaxial Bending - about the minor principal y-axis For a member subject to uniaxial bending about the minor principal y-axis and axial tension, the following condition must be satisfied: M *y < φMry
where
φ =
0.9 (Table 3.4 of AS 4100)
M *y =
design bending moment about the minor principal y-axis
φMry =
design section moment capacity (φMs) for bending about the minor principal y-axis reduced by axial force
D7-12
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
DCTDHS/06 MARCH 2002
D 7.5.2.1 Section Capacity For The value of φMry must be determined at all points along the member and the following condition must be satisfied: φMry = φMsy
FG1 − N * IJ H φN K
(Clause 8.3.3 of AS 4100)
t
φN t = Note:
design section capacity in tension (see Section D3.2.1 and Tables D3.1-1 to D3.1-4)
N * ≤ φNt
Alternatively, for RHS and SHS to AS 1163, which are compact about the y-axis subject to bending and tension:
N * . φMsy1 − φMry = 118 ≤ φMsy φNt
D7.5.3
(Clause 8.3.3 of AS 4100)
Biaxial Bending and Axial Tension
For a member subject to biaxial bending and axial tension both the conditions defined in Sections D7.5.3.1 and D7.5.3.2 must be satisfied.
D 7.5.3.1 Section Capacity N * M * x M *y + + ≤1 φNt φM sx φM sy
where φN t =
(Clause 8.3.4 of AS 4100)
design section capacity in tension (see Section D3.2.1 and Tables D3.1-1 to D3.1-4)
M *x =
design bending moment about the major principal x-axis
M *y =
design bending moment about the minor principal y-axis
Note: N * M *x M *y
≤ ≤ ≤
φN t φM sx φM sy
Alternatively, for RHS and SHS to AS 1163, which are compact about both the x- and y- axes: γ
γ
M x* M y* ≤1 + φMrx φMry where
N* γ = 1.4 + ≤ 2.0 φNt where φMrx and φMry are calculated using the alternatives presented in Section 8.4.1.1 and 8.4.2.1 of AS 4100.
DCTDHS/06 MARCH 2002
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
D7-13
D 7.5.3.2 Member Capacity
M x* φMtx where M *x = φMtx =
M *y = φMry = Note: M *x M *y
D7-14
≤ ≤
1. 4
M y* + φMry
1. 4
≤1
(Clause 8.4.5.2 of AS 4100)
design bending moment about the major principal x-axis lesser of the design section moment capacity (φMrx) reduced by axial tension and the design out-of-plane member moment capacity (φMox) for bending about the major principal x-axis, determined in accordance with Sections D7.5.1.1 and D7.5.1.2 respectively design bending moment about the minor principal y-axis design section moment capacity reduced by axial tension, determined in accordance with Section D7.5.2 φM tx φMry
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
DCTDHS/06 MARCH 2002
D7.6
BIAXIAL BENDING
For a member subject to biaxial bending without any axial force both the conditions defined in Sections D7.6.1 and D7.6.2 must be satisfied.
D7.6.1 Section Capacity M y* M x* + ≤ 1.0 φMsx φMsy where M *x = φ
=
φMsx = M *y = φMsy = Note: M *x M *y
≤ ≤
(Clause 8.3.4 of AS 4100)
design bending moment about the major principal x-axis 0.9 (Table 3.4 of AS 4100) design section moment capacity for bending about the major principal x-axis (see Section D3.2.3 and Tables D3.1-1 to D3.1-4) design bending moment about the minor principal y-axis design section moment capacity for bending about the minor principal y-axis (see Section D3.2.3 and Tables D3.1-1 to D3.1-4) φM sx φM sy
Alternatively, for RHS and SHS to AS 1163, which are compact about both the x- and y- axes:
M x* φMsx
1. 4
M y* + φMsy
1. 4
≤1
(Clause 8.3.4 of AS 4100)
≤1
(Clause 8.4.5 of AS 4100)
D7.6.2 Member Capacity
FG M * IJ H φM K x
bx
where M *x = φ
=
φMbx = M *y = φMsy = Note: M *x M *y
DCTDHS/06 MARCH 2002
≤ ≤
1.4
+
F M* I GH φM JK y
1.4
sy
design bending moment about the major principal x-axis 0.9 (Table 3.4 of AS 4100) design section moment capacity for bending about the major principal x-axis (see Section D4.1.2 and Tables D4.1-1 to D4.1-2) design bending moment about the minor principal y-axis design section moment capacity for bending about the minor principal y-axis (see Section D3.2.3 and Tables D3.1-1 to D3.1-4) φMbx φM sy
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
D7-15
D7.7
EXAMPLES
Exampe A. Braced Beam Column Design Data: Section:
125 x 75 x 4.0 DuraGal RHS Grade C450L0 steel
Effective lengths:
Flexural buckling (x-axis) = 4.0 m Flexural buckling (y-axis) = 4.0 m
1.
The purpose of this example is to illustrate the calculation of design moments using the amplification factor (δb). This factor is relevant for calculating the design moments as the member is braced against sway.
Solution: N* =
40 kN
Nombx =
377 kN
from Table D7.3.2-1(1)(A) for Lex = 4.0 m
Nomby =
171 kN
from Table D7.3.2-1(1)(B) for Ley = 4.0 m
M *x =
15 kNm
maximum at End A
M *y =
2.0 kNm
maximum at Ends A and B
βmx =
0
βmy
-1
=
cmx =
0.60
from Table D7.3.1 for βmx = 0
cmy =
1.00
from Table D7.3.1 for βmy = -1.0
D7-16
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
DCTDHS/06 MARCH 2002
From Figure D7.3(1) the moment amplification factor (δb) is given by:
δb =
∴
∴
Cm ≥ 1.0 N* 1− Nomb
Considering flexural buckling about x-axis:
δ bx =
0.671
Maximum moment occurs at the ends, ie. at End A
M*x =
15 kNm
Considering flexural buckling about y-axis:
δ by =
1.31
Maximum moment occurs between the ends, ie. in the span
M*y = =
1.31 x 2.0 2.62 kNm
2.
(< 1)
(> 1 and < 1.4)
Considering further Example 1 (Section D7.7), the adequacy of the member under the calculated design action effects is now checked as required by Clauses 8.3 and 8.4 of AS 4100.
Design Data: Section:
125 x 75 x 4.0 DuraGal RHS Grade C450L0
Effective lengths:
Flexural buckling (x-axis)
=
4.0 m
Flexural buckling (y-axis)
=
4.0 m
Lateral buckling
=
6.0 m
Design action effects:
N* =
40 kN
M *x = 15 kNm M *y = Solution:
(i)
2.62 kNm
The example involves biaxial bending and axial compression as defined in Section D7.4.3 of these Tables.
Section Capacity Check (Section D7.4.3.1) From Table D3.1-1 we obtain: φN s = 600 kN φMsx = 24.4 kNm φMsy = 15.1 kNm
Thus,
N* M *x M *y 40 15 2.62 + + = + + φNs φM sx φM sy 600 24.4 15.1
= 0.855 (< 1.0 ∴ O.K.) Note: This interaction formula was used as the section in this example is non-compact about the principal y- axis. For RHS and SHS to AS 1163, which are compact about both the x- and y- axes, as defined by Clause 5.2.2 of AS 4100, the interaction equation given in section D7.4.3.1 should be used . DCTDHS/06 MARCH 2002
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
D7-17
(ii)
Member Capacity Check (Section D7.4.3.2)
FG M * IJ H φM K
1.4
x
cx
FM* I +G H φM JK
1.4
≤1
y
(Clause 8.4.5 of AS 4100)
iy
From the Tables we obtain:
Calculate,
φN cx =
285 kN
(Table D5.2-1(1)(A))
φN cy =
142 kN
(Table D5.2-1(1)(B))
φMbx =
24.4 kNm
(Table D4.1-1(1))
φMsy =
15.1 kNm
(Table D3.1-1)
φMcx =
lesser of
(φMix, φM ox)
φMix
(a)
φM ox
(b)
φMsx
=
FG1 − N * IJ H φN K FG1 − 40 IJ H 285 K
(Clause 8.4.2.2 of AS 4100)
cx
=
24.4
=
21.0 kNm
=
φMbx
F1 − N * I GH φN JK cy
(Clause 8.4.4.1 of AS 4100)
Although αm is given as 1.75 in Table 5.6.1 of AS 4100, φ αm αs Msx must be less than or equal to φMsx, therefore:
therefore:
φM bx =
φ αm αs Msx ≤ φMsx
αs =
1.0 (Le (lateral buckling) < FLR ie, 6 < 7.08 - Table D4.1-1(1))
αm =
1.0 (φMsx = Mbx)
φM ox =
1.0 x 24.4
=
17.5 kNm
FG1 − 40 IJ H 142K
φM cx = =
lesser of (21.0 kNm, 17.5 kNm) 17.5 kNm
φM iy =
φMsy
F1− N * I GH φN JK FG1 − 40 IJ H 142 K cy
=
15.1
=
10.8 kNm
FG M * IJ + F M * I = FG 15 IJ + FG 2.62IJ H φM K GH φM JK H 17.5 K H 10.8K 1.4
14 .
Thus:
x
y
cx
iy
14 .
= 0.944
D7-18
1.4
(<1.0 ∴ O.K.)
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
DCTDHS/06 MARCH 2002
D7.7
EXAMPLES
Example 2.0 Braced Beam Column Design Data: Section:
125 x 75 x 6.0 DuraGal RHS Grade C450L0
Effective lengths:
Flexural buckling (x-axis) = 4.0 m Flexural buckling (y-axis) = 4.0 m Lateral buckling = 6.0 m
(1).
The purpose of this second example is to illustrate the calculation of design moments using the amplification factor (δb), and the alternative methods for calculating Member and Section capacities for Compact Sections as described in Sections D7.4.3.1 and D7.4.3.2. This factor is relevant for calculating the design moments as the member is braced against sway.
Solution: N* =
50 kN
Nombx =
513 kN
from Table D7.3.2-1(1)(A) for Lex = 4.0 m
Nomby =
231 kN
from Table D7.3.2-1(1)(B) for Ley = 4.0 m
M *x =
22 kNm
maximum at End A
M *y =
4.0 kNm
maximum at Ends A and B
βmx = βmy
0
= -1
cmx =
0.60
from Table D7.3.1 for βmx = 0
cmy =
1.00
from Table D7.3.1 for βmy = -1.0
DCTDHS/06 MARCH 2002
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
D7-19
From Figure D7.3(1) the moment amplification factor (δb) is given by:
δb =
∴
∴
Cm ≥ 1.0 N* 1− Nomb
Considering flexural buckling about x-axis:
δ bx =
0.665
Maximum moment occurs at the ends, ie. at End A
M*x =
22 kNm
Considering flexural buckling about y-axis:
δ by =
1.28
Maximum moment occurs between the ends, ie. in the span
M*y = =
1.28 x 4.0 5.12 kNm
(2).
(< 1)
(> 1 and < 1.4)
Considering further Example 1 (Section D7.7), the adequacy of the member under the calculated design action effects is now checked as required by Clauses 8.3 and 8.4 of AS 4100.
Design Data: Section:
125 x 75 x 6.0 DuraGal RHS Grade C450L0 steel
Effective lengths:
Flexural buckling (x-axis)
=
4.0 m
Flexural buckling (y-axis)
=
4.0 m
Lateral buckling
=
6.0 m
Design action effects:
N* =
50 kN
M *x = 22 kNm M *y = Solution:
(i)
5.12 kNm
The example involves biaxial bending and axial compression as defined in Section D7.4.3 of these Tables.
Section Capacity Check (Section D7.4.3.1) From Table D3.1-1 we obtain: φN s = 864 kN φMsx = 34.1 kNm φMsy = 23.9 kNm
As 127 x 75 x 6.0 DuraGal RHS is compact about the x- and y- axis, and kf = 1.0 Then
γ
γ
M x* M y* ≤1 + φMrx φMry
(Clause 8.3.4 of AS AS 4100)
where
N* γ = 1.4 + ≤ 2.0 φNt
D7-20
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
DCTDHS/06 MARCH 2002
Then
N* φMrx = 118 . φMsx 1 − ≤ φMsx φN s
(Clause 8.3.2 of AS 4100)
50 ≤ 34.1 φMrx = 118 . × 34.11 − 864 = 34.1 kNm and
N* φMry = 118 . φMsy 1 − ≤ φMsy φN s
(Clause 8.3.3 of AS 4100)
50 ≤ 23.9 φMry = 118 . × 23.91 − 864 = 23.9 kNm Then
50 ≤ 2.0 γ = 1.4 + 864
22 34.1
1. 46
. 510 + 23.9
γ = 1.46
1. 46
≤1
= 0.633 < 1.0 Member Capacity Check (Section D7.4.3.2) From the Tables we obtain:
Calculate,
φN cx =
392 kN
(Table D5.2-1(1)(A))
φN cy =
193 kN
(Table D5.2-1(1)(B))
φM bx =
34.1 kNm
(Table D4.1-1(1))
φMcx =
lesser of
(φMix, φMox)
(a) (Clause 8.4.2.2 of AS 4100) 3 1 + βm 3 N * N* 1 + βm − + − 1 1 18 φMix = φMsx 1 − . 1 2 φNcx ≤ φM rx 2 φNcx
3 3 1 + 0 50 1 + 0 1 − 50 ≤ 34.1kNm 1 + φMix = 34.11 − − 118 . 2 392 2 392
∴ φMix = 30.7 kNm ≤ φMrx = 34.1kNm
DCTDHS/06 MARCH 2002
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
D7-21
F1− N * I GH φN JK
φMox =φMbx
(b)
(Clause 8.4.4.1 of AS 4100)
cy
50 φMox = 34.11 − 193
= 25.3 kNm therefore:
lesser of (φMix, φMox)
φMcx = =
25.3 kNm (Clause 8.4.2.2 of AS 4100)
3 1 + βmy 3 N* N * 1 + βmy − − + φMiy = φMsy 1 − 1 1 . 18 1 2 φNcy ≤ φM ry 2 φNcy
3 3 1 + ( −1) 50 1 + ( −1) 1 − 50 ≤ 17.7kNm 1 + 118 φMiy = 23.91 − − . 2 193 2 193
∴
φMiy = 17.7 kNm ≤ φMry =
23.9 kNm
Then
M x* φMcx
22 25.3
1. 4
1. 4
M y* + Miy
. 512 + 17.7
= 0.998 < 1
D7-22
1. 4
≤1 (Clause 8.4.5.1 of AS 4100)
1. 4
≤1
Therefore OK
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
DCTDHS/06 MARCH 2002
DCTDHS/06 MARCH 2002
TABLE D7.3.2-1(1)(A)
ELASTIC BUCKLING LOADS DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness buckling about x-axis
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
Designation d
b
Elastic Buckling Loads Nom (MN)
Mass per m
Effective Length (Le) in metres
t
mm mm mm
kg/m
0.0
1.0
1.5
2.0
2.5
3.0
150 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS
16.7 14.2 11.6 8.96 7.53 6.07
∞ ∞ ∞ ∞ ∞ ∞
9.99 8.77 7.37 5.89 5.02 4.10
4.44 3.90 3.28 2.62 2.23 1.82
2.50 2.19 1.84 1.47 1.25 1.02
1.60 1.40 1.18 0.943 0.802 0.655
125 x 75 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS
16.7 14.2 11.6 8.96 7.53 6.07
∞ ∞ ∞ ∞ ∞ ∞
8.21 7.19 6.03 4.79 4.08 3.33
3.65 3.19 2.68 2.13 1.81 1.48
2.05 1.80 1.51 1.20 1.02 0.832
100 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.5 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
12.0 10.3 8.49 7.53 6.60 5.56 4.50 3.64
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
3.37 3.02 2.58 2.33 2.10 1.80 1.48 1.21
1.50 1.34 1.15 1.04 0.934 0.800 0.658 0.538
0.844 0.754 0.645 0.583 0.525 0.450 0.370 0.302
Note:
1.
Nom = π2 EI / Le2 (Clause 4.6.2 of AS 4100)
3.5
4.0
5.0
6.0
1.11 0.974 0.819 0.655 0.557 0.455
0.815 0.716 0.602 0.481 0.409 0.334
0.624 0.548 0.461 0.368 0.313 0.256
0.399 0.351 0.295 0.236 0.201 0.164
0.277 0.244 0.205 0.164 0.139 0.114
1.31 1.15 0.964 0.767 0.652 0.532
0.913 0.798 0.670 0.533 0.453 0.370
0.671 0.587 0.492 0.391 0.333 0.272
0.513 0.449 0.377 0.300 0.255 0.208
0.329 0.287 0.241 0.192 0.163 0.133
0.540 0.483 0.413 0.373 0.336 0.288 0.237 0.194
0.375 0.335 0.287 0.259 0.233 0.200 0.164 0.134
0.275 0.246 0.211 0.190 0.172 0.147 0.121 0.0988
0.211 0.188 0.161 0.146 0.131 0.113 0.0925 0.0756
0.135 0.121 0.103 0.0933 0.0841 0.0720 0.0592 0.0484
7.0
8.0
10.0
12.0
0.204 0.179 0.151 0.120 0.102 0.0836
0.156 0.137 0.115 0.0921 0.0784 0.0640
0.0999 0.0877 0.0737 0.0589 0.0502 0.0410
0.0694 0.0609 0.0512 0.0409 0.0348 0.0284
0.228 0.200 0.167 0.133 0.113 0.0924
0.168 0.147 0.123 0.0978 0.0832 0.0679
0.128 0.112 0.0942 0.0749 0.0637 0.0520
0.0821 0.0719 0.0603 0.0479 0.0408 0.0333
0.0570 0.0499 0.0419 0.0333 0.0283 0.0231
0.0937 0.0838 0.0717 0.0648 0.0584 0.0500 0.0411 0.0336
0.0689 0.0615 0.0526 0.0476 0.0429 0.0367 0.0302 0.0247
0.0527 0.0471 0.0403 0.0364 0.0328 0.0281 0.0231 0.0189
0.0337 0.0302 0.0258 0.0233 0.0210 0.0180 0.0148 0.0121
0.0234 0.0209 0.0179 0.0162 0.0146 0.0125 0.0103 0.00840
D7-23
D7-24
TABLE D7.3.2-1(2)(A)
ELASTIC BUCKLING LOADS DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness buckling about x-axis
Designation d
b
Elastic Buckling Loads Nom (kN)
Mass per m
Effective Length (Le) in metres
t
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
mm mm mm
kg/m
0.0
DCTDHS/06 MARCH 2002
0.25
0.5
0.75
1.0
1.25
1.5
1.75
2.0
2.5
3.0
3.5
4.0
5.0
100 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.5 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
12.0 10.3 8.49 7.53 6.60 5.56 4.50 3.64
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
54000 48300 41300 37300 33600 28800 23700 19400
13500 12100 10300 9330 8410 7200 5920 4840
6000 5360 4590 4140 3740 3200 2630 2150
3370 3020 2580 2330 2100 1800 1480 1210
2160 1930 1650 1490 1340 1150 947 774
1500 1340 1150 1040 934 800 658 538
1100 985 842 761 686 588 483 395
844 754 645 583 525 450 370 302
540 483 413 373 336 288 237 194
375 335 287 259 233 200 164 134
275 246 211 190 172 147 121 98.9
211 188 161 146 131 113 92.5 75.6
135 121 103 93.3 84.1 72.0 59.2 48.4
75 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
9.67 8.35 6.92 5.42 4.58 3.72 3.01
∞ ∞ ∞ ∞ ∞ ∞ ∞
25300 22900 19900 16500 14200 11700 9640
6320 5730 4970 4120 3550 2930 2410
2810 2550 2210 1830 1580 1300 1070
1580 1430 1240 1030 887 734 602
1010 917 796 659 568 469 385
702 637 553 458 394 326 268
516 468 406 336 290 240 197
395 358 311 257 222 183 151
253 229 199 165 142 117 96.4
175 159 138 114 98.6 81.5 66.9
129 117 102 84.1 72.4 59.9 49.2
98.7 89.6 77.7 64.4 55.5 45.8 37.6
63.2 57.3 49.7 41.2 35.5 29.3 24.1
75 x 25 x 2.5 RHS 2.0 RHS 1.6 RHS
3.60 2.93 2.38
∞ ∞ ∞
9010 7530 6230
2250 1880 1560
1000 836 693
563 471 390
360 301 249
250 209 173
184 154 127
141 118 97.4
90.1 75.3 62.3
62.5 52.3 43.3
46.0 38.4 31.8
35.2 29.4 24.3
22.5 18.8 15.6
65 x 35 x 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS
5.35 4.25 3.60 2.93
∞ ∞ ∞ ∞
10400 8880 7720 6440
2590 2220 1930 1610
1150 986 858 716
648 555 483 403
415 355 309 258
288 247 214 179
212 181 158 131
162 139 121 101
104 88.8 77.2 64.4
72.0 61.6 53.6 44.7
52.9 45.3 39.4 32.9
40.5 34.7 30.2 25.2
25.9 22.2 19.3 16.1
50 x 25 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
3.07 2.62 2.15 1.75
∞ ∞ ∞ ∞
3530 3120 2650 2220
882 781 662 554
392 347 294 246
221 195 165 139
141 125 106 88.7
98.0 86.7 73.5 61.6
72.0 63.7 54.0 45.2
55.1 48.8 41.4 34.6
35.3 31.2 26.5 22.2
24.5 21.7 18.4 15.4
18.0 15.9 13.5 11.3
13.8 12.2 10.3 8.66
8.82 7.81 6.62 5.54
50 x 20 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
2.83 2.42 1.99 1.63
∞ ∞ ∞ ∞
3000 2680 2280 1920
751 669 571 480
334 297 254 213
188 167 143 120
120 107 91.3 76.8
83.5 74.4 63.4 53.3
61.3 54.6 46.6 39.2
46.9 41.8 35.7 30.0
30.0 26.8 22.8 19.2
20.9 18.6 15.9 13.3
15.3 13.7 11.7 9.80
11.7 10.5 8.92 7.50
7.51 6.69 5.71 4.80
Note:
1.
Nom = π2 EI / Le2 (Clause 4.6.2 of AS 4100)
DCTDHS/06 MARCH 2002
TABLE D7.3.2-1(1)(B)
ELASTIC BUCKLING LOADS DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness buckling about y-axis
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
Designation d
b
Elastic Buckling Loads Nom (MN)
Mass per m
Effective Length (Le) in metres
t
mm mm mm
kg/m
0.0
0.5
1.0
150 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS
16.7 14.2 11.6 8.96 7.53 6.07
∞ ∞ ∞ ∞ ∞ ∞
6.79 6.04 5.16 4.16 3.57 2.94
125 x 75 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2 5 RHS 2.0 RHS
16.7 14.2 11.6 8.96 7.53 6.07
∞ ∞ ∞ ∞ ∞ ∞
100 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.5 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
12.0 10.3 8.49 7.53 6.60 5.56 4.50 3.64
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
Note:
1.
1.5
2.0
2.5
1.70 1.51 1.29 1.04 0.892 0.734
0.754 0.671 0.573 0.462 0.396 0.326
0.424 0.378 0.322 0.260 0.223 0.184
0.272 0.242 0.206 0.166 0.143 0.117
0.189 0.168 0.143 0.115 0.0991 0.0816
14.8 13.0 11.0 8.73 7.44 6.09
3.70 3.25 2.74 2.18 1.86 1.52
1.64 1.44 1.22 0.970 0.827 0.677
0.925 0.812 0.684 0.545 0.465 0.381
0.592 0.520 0.438 0.349 0.298 0.244
4.48 4.04 3.48 3.16 2.85 2.45 2.03 1.66
1.12 1.01 0.870 0.790 0.712 0.613 0.507 0.416
0.498 0.448 0.387 0.351 0.316 0.272 0.225 0.185
0.280 0.252 0.218 0.197 0.178 0.153 0.127 0.104
0.179 0.161 0.139 0.126 0.114 0.0981 0.0811 0.0666
Nom = π2 EI / Le2 (Clause 4.6.2 of AS 4100)
3.0
3.5
4.0
5.0
6.0
7.0
8.0
10.0
0.139 0.123 0.105 0.0848 0.0728 0.0559
0.106 0.0944 0.0806 0.0650 0.0557 0.0459
0.0679 0.0604 0.0516 0.0416 0.0357 0.0294
0.0471 0.0420 0.0358 0.0289 0.0248 0.0204
0.0346 0.0308 0.0263 0.0212 0.0182 0.0150
0.0265 0.0236 0.0201 0.0162 0.0139 0.0115
0.0170 0.0151 0.0129 0.0104 0.00892 0.00734
0.411 0.361 0.304 0.242 0.207 0.169
0.302 0.265 0.224 0.178 0.152 0.124
0.231 0.203 0.171 0.136 0.116 0.0952
0.148 0.130 0.110 0.0873 0.0744 0.0609
0.103 0.0903 0.0761 0.0606 0.0517 0.0423
0.0755 0.0663 0.0559 0.0445 0.0380 0.0311
0.0578 0.0508 0.0428 0.0341 0.0291 0.0238
0.0370 0.0325 0.0274 0.0218 0.0186 0.0152
0.124 0.112 0.0967 0.0878 0.0791 0.0681 0.0563 0.0462
0.0914 0.0824 0.0710 0.0645 0.0581 0.0500 0.0414 0.0340
0.0700 0.0631 0.0544 0.0494 0.0445 0.0383 0.0317 0.0260
0.0448 0.0404 0.0348 0.0316 0.0285 0.0245 0.0203 0.0166
0.0311 0.0280 0.0242 0.0219 0.0198 0.0170 0.0141 0.0116
0.0229 0.0206 0.0178 0.0161 0.0145 0.0125 0.0103 0.00849
0.0175 0.0158 0.0136 0.0123 0.0111 0.00958 0.00792 0.00650
0.0112 0.0101 0.00870 0.00790 0.00712 0.00613 0.00507 0.00416
D7-25
D7-26
TABLE D7.3.1(2)(B)
ELASTIC BUCKLING LOADS DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness buckling about y-axis
Designation d
b
Elastic Buckling Loads Nom (kN)
Mass per m
Effective Length (Le) in metres
t
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
mm mm mm
kg/m
0.0
DCTDHS/06 MARCH 2002
0.25
0.5
0.75
1.0
1.25
1.5
1.75
2.0
2.5
3.0
3.5
4.0
5.0
100 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.5 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
12.0 10.3 8.49 7.53 6.60 5.56 4.50 3.64
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
17900 16100 13900 12600 11400 9810 8110 6660
4480 4040 3480 3160 2850 2450 2030 1660
1990 1790 1550 1400 1270 1090 901 740
1120 1010 870 790 712 613 507 416
717 646 557 506 456 392 324 266
498 448 387 351 316 272 225 185
366 329 284 258 232 200 165 136
280 252 218 197 178 153 127 104
179 161 139 126 114 98.1 81.1 66.6
124 112 96.7 87.8 79.1 68.1 56.3 46.2
91.4 82.4 71.0 64.5 58.1 50.0 41.4 34.0
70.0 63.1 54.4 49.4 44.5 38.3 31.7 26.0
44.8 40.4 34.8 31.6 28.5 24.5 20.3 16.6
75 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
9.67 8.35 6.92 5.42 4.58 3.72 3.01
∞ ∞ ∞ ∞ ∞ ∞ ∞
13300 12100 10600 8770 7580 6290 5180
3330 3030 2640 2190 1900 1570 1290
1480 1350 1170 974 842 699 575
832 758 661 548 474 393 324
532 485 423 351 303 252 207
370 337 294 244 211 175 144
272 248 216 179 155 128 106
208 189 165 137 118 98.3 80.9
133 121 106 87.7 75.8 62.9 51.8
92.4 84.2 73.4 60.9 52.6 43.7 36.0
67.9 61.9 53.9 44.7 38.7 32.1 26.4
52.0 47.4 41.3 34.3 29.6 24.6 20.2
33.3 30.3 26.4 21.9 19.0 15.7 12.9
75 x 25 x 2.5 RHS 2.0 RHS 1.6 RHS
3.60 2.93 2.38
∞ ∞ ∞
1540 1310 1100
384 326 274
171 145 122
65 x 35 x 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS
5.35 4.25 3.60 2.93
∞ ∞ ∞ ∞
3890 3340 2920 2460
972 835 731 614
432 371 325 273
50 x 25 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
3.07 2.62 2.15 1.75
∞ ∞ ∞ ∞
1160 1040 887 749
290 259 222 187
129 115 98.6 83.2
50 x 20 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
2.83 2.42 1.99 1.63
∞ ∞ ∞ ∞
670 607 527 449
168 152 132 112
74.5 67.5 58.5 49.9
Note:
1.
Nom = π2 EI / Le2 (Clause 4.6.2 of AS 4100)
96.1 81.6 68.5
61.5 52.2 43.8
42.7 36.3 30.4
31.4 26.7 22.4
24.0 20.4 17.1
15.4 13.1 11.0
10.7 9.07 7.61
155 134 117 98.3
108 92.7 81.2 68.2
79.3 68.1 59.7 50.1
60.7 52.2 45.7 38.4
38.9 33.4 29.2 24.6
27.0 23.2 20.3 17.1
72.4 64.7 55.5 46.8
46.3 41.4 35.5 30.0
32.2 28.8 24.6 20.8
23.6 21.1 18.1 15.3
18.1 16.2 13.9 11.7
11.6 10.4 8.87 7.49
8.04 7.19 6.16 5.20
41.9 37.9 32.9 28.1
26.8 24.3 21.1 18.0
18.6 16.9 14.6 12.5
13.7 12.4 10.8 9.17
10.5 9.49 8.23 7.02
6.70 6.07 5.27 4.49
4.66 4.22 3.66 3.12
243 209 183 154
7.84 6.66 5.59
6.00 5.10 4.28
3.84 3.26 2.74
15.2 13.0 11.4 9.60
9.72 8.35 7.31 6.14
5.91 5.28 4.53 3.82
4.52 4.04 3.47 2.93
2.90 2.59 2.22 1.87
3.42 3.10 2.69 2.29
2.62 2.37 2.06 1.75
1.68 1.52 1.32 1.12
19.8 17.0 14.9 12.5
ELASTIC BUCKLING LOADS DCTDHS/06 MARCH 2002
DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness TABLE D7.3.2-2(A) buckling about x-axis Designation d
b
Elastic Buckling Loads Nom (kN)
Mass per m
Effective Length (Le) in metres
t
mm mm mm
kg/m
0.0
0.25
0 .5
0.75
1.0
1.25
1.5
1.75
2.0
2.5
3.0
3.5
4.0
5.0 180 151
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
125 x 75 x 2.8 RHS 2.3 RHS
8.39 6.95
∞ ∞
72200 60500
18000 15100
8020 6720
4510 3780
2890 2420
2000 1680
1470 1230
1130 945
722 605
501 420
368 309
282 236
100 x 50 x 2.8 RHS 2.3 RHS
6.19 5.14
∞ ∞
31700 26800
7930 6700
3530 2980
1980 1670
1270 1070
881 744
648 547
496 419
317 268
220 186
162 137
124 105
75 x 50 x 2.8 RHS 2.3 RHS
5.09 4.24
∞ ∞
15600 13200
3900 3310
1730 1470
974 827
623 529
433 368
318 270
244 207
156 132
108 91.9
79.5 67.5
60.9 51.7
39.0 33.1
65 x 35 x 2.8 RHS 2.3 RHS
3.99 3.34
∞ ∞
8430 7230
2110 1810
937 803
527 452
337 289
234 201
172 147
132 113
84.3 72.3
58.5 50.2
43.0 36.9
32.9 28.2
21.1 18.1
50 x 25 x 2.8 RHS 2.3 RHS
2.89 2.44
∞ ∞
3370 2940
844 735
375 327
211 184
135 118
93.7 81.7
68.9 60.0
52.7 46.0
33.7 29.4
23.4 20.4
17.2 15.0
13.2 11.5
8.44 7.35
50 x 20 x 2.8 RHS 2.3 RHS
2.67 2.25
∞ ∞
2880 2530
720 632
320 281
180 158
115 101
80.0 70.2
58.8 51.6
45.0 39.5
28.8 25.3
20.0 17.6
14.7 12.9
11.3 9.87
7.20 6.32
Note:
1.
Nom = π2 EI / Le2 (Clause 4.6.2 of AS 4100)
Designation d
b
TABLE D7.3.2-2(B) buckling about y-axis Elastic Buckling Loads Nom (kN)
Mass per m
Effective Length (Le) in metres
t
mm mm mm
79.3 67.0
kg/m
0.0
0.25
0 .5
0.75
1.0
1.25
1.5
1.75
2.0
2.5
3.0
3.5
4.0
5.0
228 192
168 141
128 108
82.2 69.1
D7-27
125 x 75 x 2.8 RHS 2.3 RHS
8.39 6.95
∞ ∞
32900 27600
8220 6910
3650 3070
2060 1730
1320 1110
913 768
671 564
514 432
329 276
100 x 50 x 2.8 RHS 2.3 RHS
6.19 5.14
∞ ∞
10800 9140
2690 2290
1200 1020
673 571
431 366
299 254
220 187
168 143
108 91.4
74.8 63.5
55.0 46.7
42.1 35.7
26.9 22.9
75 x 50 x 2.8 RHS 2.3 RHS
5.09 4.24
∞ ∞
8310 7080
2080 1770
923 786
519 442
332 283
231 197
169 144
130 111
83.1 70.8
57.7 49.1
42.4 36.1
32.4 27.6
20.8 17.7
65 x 35 x 2.8 RHS 2.3 RHS
3.99 3.34
∞ ∞
3180 2740
795 686
353 305
199 171
127 110
22.1 19.1
16.2 14.0
12.4 10.7
50 x 25 x 2.8 RHS 2.3 RHS
2.89 2.44
∞ ∞
1110 979
278 245
124 109
50 x 20 x 2.8 RHS 2.3 RHS
2.67 2.25
∞ ∞
647 577
162 144
Note:
1.
Nom = π2 EI / Le2 (Clause 4.6.2 of AS 4100)
71.9 64.1
88.3 76.2
64.9 56.0
49.7 42.9
31.8 27.4
7.95 6.86
69.5 61.2
44.5 39.2
30.9 27.2
22.7 20.0
17.4 15.3
11.1 9.79
7.72 6.80
5.67 5.00
4.34 3.83
2.78 2.45
40.4 36.1
25.9 23.1
18.0 16.0
13.2 11.8
10.1 9.02
6.47 5.77
4.49 4.01
3.30 2.94
2.53 2.25
1.62 1.44
D7-28
TABLE D7.3.2-3(1)
ELASTIC BUCKLING LOADS DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness buckling about x- and y-axis
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
Designation d
b
Elastic Buckling Loads Nom (MN)
Mass per m
Effective Length (Le) in metres
t
mm mm mm
kg/m
0.0
1.0
1.5
2.0
2.5
3.0
3.5
4.0
5.0
6.0
100 x 100 x 6.0 SHS 5.0 SHS 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS
16.7 14.2 11.6 8.96 7.53 6.07
∞ ∞ ∞ ∞ ∞ ∞
5.99 5.24 4.40 3.49 2.97 2.43
2.66 2.33 1.96 1.55 1.32 1.08
1.50 1.31 1.10 0.874 0.743 0.607
0.959 0.839 0.704 0.559 0.476 0.388
0.666 0.583 0.489 0.388 0.330 0.270
0.489 0.428 0.359 0.285 0.243 0.198
0.375 0.328 0.275 0.218 0.186 0.152
0.240 0.210 0.176 0.140 0.119 0.0971
0.167 0.146 0.122 0.0971 0.0826 0.0674
90 x 90 x 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS
8.01 6.74 5.45 4.39
∞ ∞ ∞ ∞
2.51 2.14 1.75 1.43
1.12 0.952 0.780 0.635
0.628 0.536 0.439 0.357
0.402 0.343 0.281 0.229
0.279 0.238 0.195 0.159
0.205 0.175 0.143 0.117
0.157 0.134 0.110 0.839
0.100 0.0857 0.0702 0.0572
89 x 89 x 6.0 SHS 5.0 SHS 3.5 SHS
14.6 12.5 9.06
∞ ∞ ∞
4.06 3.58 2.71
1.80 1.59 1.21
1.01 0.894 0.678
0.649 0.572 0.434
0.451 0.379 0.301
0.331 0.292 0.221
0.254 0.223 0.170
75 x 75 x 6.0 SHS 5.0 SHS 4.0 SHS 3.5 SHS 3.0 SHS 2.5 SHS 2.0 SHS
12.0 10.3 8.49 7.53 6.60 5.56 4.50
∞ ∞ ∞ ∞ ∞ ∞ ∞
2.29 2.04 1.74 1.57 1.41 1.21 0.997
1.02 0.906 0.774 0.699 0.628 0.539 0.443
0.571 0.510 0.435 0.393 0.353 0.303 0.249
0.366 0.326 0.279 0.252 0.226 0.194 0.159
0.254 0.227 0.194 0.175 0.157 0.135 0.111
0.187 0.166 0.142 0.128 0.115 0.0989 0.0814
0.143 0.127 0.109 0.0984 0.0884 0.0757 0.0623
Note:
1.
Nom = π2 EI / Le2 (Clause 4.6.2 of AS 4100)
7.0
8.0
10.0
12.0
0.122 0.107 0.0898 0.0713 0.0607 0.0496
0.0937 0.0819 0.0687 0.0546 0.0465 0.0379
0.0599 0.0524 0.0440 0.0349 0.0297 0.0243
0.0416 0.0364 0.0306 0.0243 0.0206 0.0169
0.0698 0.0595 0.0487 0.0397
0.0513 0.0437 0.0358 0.0292
0.0393 0.0335 0.0274 0.0223
0.0251 0.0214 0.0175 0.0143
0.0174 0.0149 0.0122 0.00992
0.162 0.143 0.109
0.113 0.0993 0.0754
0.0828 0.0730 0.0554
0.0634 0.0559 0.0424
0.0406 0.0358 0.0271
0.0282 0.0248 0.0188
0.0914 0.0815 0.0697 0.0629 0.0565 0.0485 0.0399
0.0635 0.0566 0.0484 0.0437 0.0393 0.0337 0.0277
0.0466 0.0416 0.0355 0.0321 0.0289 0.0247 0.0203
0.0357 0.0319 0.0272 0.0246 0.0221 0.0189 0.0156
0.0229 0.0204 0.0174 0.0157 0.0141 0.0121 0.00997
0.0159 0.0142 0.0121 0.0109 0.00982 0.00841 0.00692
DCTDHS/06 MARCH 2002
DCTDHS/06 MARCH 2002
TABLE D7.3.2-3(2)
ELASTIC BUCKLING LOADS DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness buckling about x- and y-axis Designation d
b
Effective Length (Le) in metres
t
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
D7-29
mm mm mm
kg/m
75 x 75 x 6.0 SHS 5.0 SHS 4.0 SHS 3.5 SHS 3.0 SHS 2.5 SHS 2.0 SHS 65 x 65 x 6.0 SHS 5.0 SHS 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 50 x 50 x 5.0 SHS 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 40 x 40 x 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 35 x 35 x 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 30 x 30 x 2.0 SHS 1.6 SHS 25 x 25 x 2.5 SHS 2.0 SHS 1.6 SHS 20 x 20 x 1.6 SHS
12.0 10.3 8.49 7.53 6.60 5.56 4.50 10.1 8.75 7.23 5.66 4.78 3.88 3.13 6.39 5.35 4.25 3.60 2.93 2.38 4.09 3.30 2.82 2.31 1.88 2.83 2.42 1.99 1.63 1.68 1.38 1.64 1.36 1.12 0.873
Note:
Elastic Buckling Loads Nom (kN)
Mass per m
1.
0.0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
0.25 36600 32600 27900 25200 22600 19400 15900 22300 20200 17400 14300 12400 10200 8370 8110 7220 6150 5350 4470 3700 3320 2940 2590 2190 1830 1880 1670 1420 1200 860 729 534 469 403 192
0.5 9140 8150 6970 6290 5650 4850 3990 5580 5040 4360 3590 3090 2550 2090 2030 1810 1540 1340 1120 924 831 736 649 548 458 470 418 356 299 215 182 133 117 101 48.0
Nom = π2 EI / Le2 (Clause 4.6.2 of AS 4100)
0.75 4060 3620 3100 2800 2510 2150 1770 2480 2240 1940 1590 1370 1130 931 902 803 683 595 496 411 369 327 288 244 203 209 186 158 133 95.5 81.0 59.3 52.1 44.7 21.3
1.0 2290 2040 1740 1570 1410 1210 997 1390 1260 1090 896 772 638 523 507 451 384 334 279 231 208 184 162 137 114 117 104 89.0 74.8 53.7 45.6 33.4 29.3 25.2 12.0
1.25
1.5
1460 1020 1300 906 1110 774 1010 699 905 628 775 539 638 443 892 620 806 560 697 484 574 398 494 343 408 283 335 233 325 225 289 201 246 171 214 149 179 124 148 103 133 92.3 118 81.8 104 72.1 87.7 60.9 73.2 50.8 75.1 52.2 66.8 46.4 56.9 39.5 47.9 33.2 34.4 23.9 29.2 20.3 21.3 14.8 18.7 13.0 16.1 11.2 7.68 5.33
1.75
2.0
2.5
3.0
3.5
4.0
746 666 569 514 462 396 325 455 411 356 293 252 208 171 166 147 125 109 91.2 75.4 67.8 60.1 53.0 44.7 37.3 38.3 34.1 29.1 24.4 17.5 14.9 10.9 9.56 8.22 3.92
571 510 435 393 353 303 249 349 315 272 224 193 159 131 127 113 96.1 83.6 69.8 57.8 51.9 46.0 40.5 34.2 28.6 29.4 26.1 22.2 18.7 13.4 11.4 8.34 7.32 6.29 3.00
366 326 279 252 226 194 159 223 202 174 143 124 102 83.7 81.1 72.2 61.5 53.5 44.7 37.0 33.2 29.4 25.9 21.9 18.3 18.8 16.3 14.2 12.0 8.60 7.29 5.34 4.69 4.03 1.92
254 227 194 175 157 135 111 155 140 121 99.6 85.8 70.9 58.2 56.3 50.2 42.7 37.2 31.0 25.7 23.1 20.4 18.0 15.2 12.7 13.0 11.6 9.89 8.31 5.97 5.06 3.71 3.25 2.80 1.33
187 143 166 127 142 109 128 98.4 115 88.4 98.9 75.7 81.4 62.3 114 87.1 103 78.7 88.9 68.1 73.2 56.0 63.0 48.2 52.1 39.9 42.7 32.7 41.4 31.7 36.9 28.2 31.4 24.0 27.3 20.9 22.8 17.5 18.9 14.4 17.0 13.0 15.0 11.5 13.2 10.1 11.2 8.56 9.34 7.15 9.58 7.34 8.52 6.53 7.26 5.56 6.10 4.67 4.39 3.36 3.72 2.85 2.72 2.08 2.39 1.83 2.05 1.57 0.979 0.750
5.0 91.4 81.5 69.7 62.9 56.5 48.5 39.9 55.8 50.4 43.6 35.9 30.9 25.5 20.9 20.3 18.1 15.4 13.4 11.2 9.24 8.31 7.36 6.49 5.48 4.58 4.70 4.18 3.56 2.99 2.15 1.82 1.33 1.17 1.01 0.480
D7-30 TABLE D7.3.2-4
ELASTIC BUCKLING LOADS DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness buckling about x- and y-axis DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
Designation d
b
Elastic Buckling Loads Nom (kN)
Mass per m
Effective Length (Le) in metres
t
mm mm mm
kg/m
0.0
0.25
0.5
0.75
1.0
1.25
1.5
1.75
2.0
2.5
3.0
3.5
4.0
5.0
206 172
132 110
100 x 100 x 2.8 SHS 2.3 SHS
8.39 6.95
∞ ∞
52600 44100
13200 11000
5850 4900
3290 2760
2100 1770
1460 1230
1070 901
822 690
526 441
365 306
268 225
75 x 75 x 2.8 SHS 2.3 SHS
6.19 5.14
∞ ∞
21400 18000
5340 4510
2370 2000
1330 1130
854 721
593 501
436 368
334 282
214 180
148 125
109 92.0
83.4 70.5
53.4 45.1
65 x 65 x 2.3 SHS
4.42
∞
11500
2880
1280
719
460
320
235
180
115
50 x 50 x 2.8 SHS 2.3 SHS
3.99 3.34
∞ ∞
5840 5010
1460 1250
649 557
365 313
234 200
162 139
119 102
40 x 40 x 2.8 SHS 2.3 SHS
3.11 2.62
∞ ∞
2810 2440
703 610
312 271
176 152
112 97.6
78.1 67.8
35 x 35 x 2.8 SHS 2.3 SHS
2.67 2.25
∞ ∞
1800 1580
450 394
200 175
112 98.5
72.0 63.1
50.0 43.8
Note:
1.
Nom = π2 EI / Le2 (Clause 4.6.2 of AS 4100)
79.9
58.7
45.0
28.8
91.2 78.3
58.4 50.1
40.6 34.8
29.8 25.6
22.8 19.6
14.6 12.5
57.4 49.8
43.9 38.1
28.1 24.4
19.5 16.9
14.3 12.4
11.0 9.53
7.03 6.10
36.7 32.2
28.1 24.6
18.0 15.8
12.5 10.9
7.03 6.16
4.50 3.94
9.18 8.04
DCTDHS/06 MARCH 2002
[ BLANK ]
DCTDHS/06 MARCH 2002
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
D7-31
PART 8 MAXIMUM DESIGN LOADS FOR BEAMS
8 PAGE
D8.1
SCOPE ........................................................................................................................... D8-2
D8.2
METHOD ........................................................................................................................ D8-2
D8.2.1
Strength Limit State Design ............................................................................................ D8-2
D8.2.1.1
W *L1 - Based on Design Moment Capacity ................................................................... D8-3
D8.2.1.2
W *L2 - Based on Shear Moment Capacity ..................................................................... D8-3
D8.2.2
Serviceability Limit State Design .................................................................................... D8-4
D8.3
BEAMS WITH FULL LATERAL RESTRAINT .............................................................. D8-5
D8.4
ADDITIONAL DESIGN CHECKS ................................................................................. D8-5
D8.5
OTHER LOAD CONDITIONS ....................................................................................... D8-6
D8.6
EXAMPLES ................................................................................................................... D8-6
TABLES TABLES D8.1-1 to D8.1-4 Maximum Design Loads for Single Span, Simply Supported Beams - With Full Lateral Restraint - Deflection Limited ....................................................................................................... D8-10 TABLES D8.2-1 to D8.2-4 Maximum Design Loads for Continuous, Two Span, Simply Supported Beams - With Full Lateral Restraint - Deflection Limited ....................................................................................................... D8-22 TABLES D8.3-1 to D8.3-4 Maximum Design Loads for Single Span, Fixed End Beams - With Full Lateral Restraint - Deflection Limited ....................................................................................................... D8-34 TABLES D8.4-1 to D8.4-4 Maximum Design Loads for Cantilever Beams - With Full Lateral Restraint - Deflection Limited ....................................................................................................... D8-46
NOTE: SEE PAGE vii FOR THE SPECIFIC MATERIAL STANDARD REFERRED TO BY THE SECTION TYPE AND STEEL GRADE IN THESE TABLES.
DCTDHS/06 MARCH 2002
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
D8-1
PART 8 MAXIMUM DESIGN LOADS FOR BEAMS D8.1
SCOPE
PART 8 gives values of maximum design loads distributed uniformly along the length of the beam with full lateral restraint for different beam support conditions. Tables D8.1 for single span, simply supported beams Tables D8.2 for continuous, two span, simply supported beams Tables D8.3 for single span, fixed end beams Tables D8.4 for cantilever beams Each group of tables is separated into two series:
•
the (A) series (e.g. Table D8.1-1 (A)) for the strength limit state
•
the (B) series (e.g. Table D8.1-1 (B)) for the serviceability limit state
For each group of tables, the (A) series tables are immediately followed by the (B) series tables. The design load (W * = total design load) is assumed to be uniformly distributed and applied through the shear centre in the direction of the principal y-axis. NOTE - BEAM SELF WEIGHT: For all tables, the self weight of the beam has NOT been deducted. The designer must include the self weight as part of the dead load when determining the maximum design load W *L or W *S.
D8.2
METHOD
The maximum design load is the lesser of the strength limit state design load given in the (A) series tables determined in accordance with Section D8.2.1, and the serviceability limit state design load given in the (B) series tables determined and adjusted if necessary in accordance with Section D8.2.2.
D8.2.1 Strength Limit State Design The value of the maximum design load (W *L) given in the tables is the lesser of the maximum design load (W *L1) associated with the design section moment capacity (φMsx) and the maximum design load (W*L2) associated with the design shear capacity (φVvx). W *L = Min. [W *L1 ; W *L2 ] The method is illustrated in Section D8.2.1.1 for the case of a simply supported beam. Note:
D8-2
the interaction of shear and bending has not been included in the tables. φVv or if M * < 0.75 φMs then no interaction check is necessary. If V * < 0.6 φ Otherwise reference should be made to Section D8.4.
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
DCTDHS/06 MARCH 2002
D 8.2.1.1 W * L1 - Based on Design Moment Capacity (simply supported beam) For a beam with full lateral restraint, the design section moment capacity (φMsx) is used, which for bending about the x-axis is given by: φMsx = φ Zex fy where
φ = Zex = fy =
0.9 (Table 3.4 of AS 4100) effective section modulus (see Section D1.2.3.2) yield stress used in design
For a simply supported beam subject to uniformly distributed loading, the maximum bending moment (Mmax) is given by:
M max =
WL 8
where W = total uniformly distributed load L = length of the beam Therefore, substituting the design moment capacity (φMsx) for beams with full lateral restraint for the maximum bending moment (Mmax) and rearranging the equation gives: Maximum Design Load (W *L1) based on the design moment capacity of the beam bending about the x-axis 8φM sx W * L1 = L The equations for the other support conditions are given in Table D8.2.
D 8.2.1.2 W * L2 - Based on Design Shear Capacity (simply supported beam) The design shear capacity (φVvx) is given in Section D4.2 of the Tables. For a simply supported beam subject to uniformly distributed loading, the maximum shear force (Vmax) is given by:
Vmax = where W
=
W 2
total uniformly distributed load
Therefore, substituting the design shear capacity (φVvx) for the maximum shear force (Vmax) and rearranging the equation gives: Maximum Design Load (W *L2) based on the design bending capacity of the beam bending about the x-axis W *L2 = 2φVvx The equations for the other support conditions are given in Table D8.2.
DCTDHS/06 MARCH 2002
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
D8-3
D8.2.2 Serviceability Limit State Design The value of serviceability load (W *S) given in the tables is the maximum design load which will achieve a calculated total elastic deflection of L/250 (where L is the span of the beam). For deflection limits other than span/250, the value of W *S2 for the alternative deflection limit may be calculated from the tabulated value W *S1 using the formula:
W * S2 = where D
=
250W *S1 D
the denominator value in the deflection limit incorporating the span term (e.g. D = 500 for the L/500 deflection limit)
For sections with a high shape factor (ratio of plastic moment to the yield moment of a beam) it may be possible for the maximum stresses in a member to reach the yield stress at serviceability loads without exceeding the strength limit state. This will invalidate the deflection calculations based on the assumption of elastic behaviour. However it has been found that for the hollow sections contained in these tables, using the load factors in AS 1170 and AS 4100, the strength limit state will always be exceeded before first yield occurs. Therefore values of the load at which first yield occurs have not been included in the tables. The method is illustrated below for the case of a simply supported beam. W *S1 - based on a Deflection Limit of L/250
(simply supported beam)
For a simply supported beam subject to a uniformly distributed load, the maximum deflection (∆max) is given by : 5WL3 ∆ max = 384 El x where W
=
total uniformly distributed load
L =
length of span
E
200 x 103 MPa
=
/x =
second moment of area about the major principal x-axis
Therefore, substituting ∆max = L/250 and rearranging the equation gives the serviceability limit state maximum design load (W *S):
W *S =
D8-4
384El x 1250 L2
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
DCTDHS/06 MARCH 2002
Table D8.2: Summary of Equations for Maximum Design Loads
D8.3
BEAMS WITH FULL LATERAL RESTRAINT
Full lateral restraint may be achieved for a member by: a) continuous lateral restraint, or b) full or partial restraint provided at sufficient locations along the beam. The distance between these locations is termed the segment length and the maximum values of segment length to ensure full lateral restraint are tabulated for each section in the (A) series tables under the column “FLR”. These values of maximum segment length are determined in accordance with the method outlined in section D4.1.3 of these tables. FLR values are not given for SHS as they are not susceptible to lateral buckling.
D8.4 a)
ADDITIONAL DESIGN CHECKS
Interaction of Shear and Bending Where large shear forces are coincident with large bending moments the interaction of shear and bending may govern the design. An interaction check needs to be done if the design shear is greater than 60% of the design shear capacity (V * > 0.6 φVv) or if M * > 0.75 φMs. However for the case of simply supported beams with uniformly distributed loads interaction of shear and bending will not be critical.
b)
Compressive Bearing Action Where loads are transmitted into the webs at supports or at load points, the capacity of the web to resist such forces should be checked in accordance with Section D4.3. Tables D4.3-1 to D4.3-4 may be used to assist with any such assessment.
DCTDHS/06 MARCH 2002
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
D8-5
D8.5
OTHER LOAD CONDITIONS
The values given in Tables D8.1-1 to D8.1-4 are for single span, simply supported beams subject to uniformly distributed loads. However, the information presented in these tables may be used for other loading situations for beams with full lateral restraint and αm = 1.0, using the equivalent uniform design loads given in Table D8.5 and in conjunction with the following procedure: 1)
Calculate equivalent uniformly distributed maximum design load for moment (W *EM) using Table D8.5.
2)
Based on W *EM select a section with an adequate maximum design load (W *L1) associated with the design shear capacity from Tables D8.1-1(A) to D8.1-4(A).
3)
Calculate equivalent uniformly distributed maximum design load for shear (W *EV) using Table D8.5.
4)
Check that the section selected in 2) has an adequate maximum design load (W *L2) associated with the design shear capacity to resist W *EV. If not, select a new section size which can resist W *EV.
5)
Check shear and bending interaction in accordance with Section D4.2.3. A check is not necessary if the design shear is less than 60% of the design shear capacity (V * < 0.6 φVv) or if M * < 0.75 φMs.
6)
Calculate equivalent uniformly distributed serviceability load (W *ES) using Table D8.5.
7)
Check that the section selected in 4) has an adequate maximum serviceability design load (W *S1) to resist W *ES. If not, select a new section size which can resist W *ES.
D8.6 1.
EXAMPLES
A simply supported beam of 4 metres is subjected to uniformly distributed loads of: G (Dead Load) = 4 kN
(total load)
Q (Live Load) = 7 kN
(total load)
The beam has continuous lateral support. The total deflection of the beam under serviceability loads must not exceed L/250. Solution: (a)
Calculation of maximum design loads: Strength limit state
W *L = 1.25G + 1.5Q = 15.5 kN
Serviceability limit state
W *S = G + 0.7Q
(short term live load)
= 8.90 kN
D8-6
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
DCTDHS/06 MARCH 2002
Table D8.5: Table of Equivalent Uniformly Distributed Loads
DCTDHS/06 MARCH 2002
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
D8-7
(b)
Use of the Tables:
Strength Limit State - Select a section with the least mass from the Tables such that the maximum design loads W *L1 and W *L2 are greater than or equal to WL. It can be seen from Table D8.1-1(2)(A) that for a 100 x 50 x 2.5 DuraGal RHS Grade C450L0, the maximum design loads are: W *L1 = 18.4 kN W *L2 = 220 kN â&#x2C6;´
W *L = 18.4 kN (> 15.5 kN)
Therefore, a 100 x 50 x 2.5 DuraGal RHS has adequate strength. Serviceability Limit State - From Table D8.1-1(1)(B) it can be seen that for a 150 x 50 x 2.5 DuraGal RHS Grade C450L0, the serviceability load is: W *S = 9.76 kN (> 8.90 kN) The most efficient and practical hollow sections for this application are RHS and SHS. The alternative sections which satisfy the above strength and serviceability limit states are listed below: 150 x 50 x 2.5 DuraGal RHS Grade C450L0 125 x 75 x 3.0 DuraGal RHS Grade C450L0 100 x 100 x 5.0 DuraGal SHS Grade C450L0
mass per metre = 7.53 kg/m mass per metre = 8.96 kg/m mass per metre = 14.2kg/m
Therefore, based on mass, select 150 x 50 x 2.5 DuraGal RHS Grade C450L0.
2.
A beam which is simply supported has a span of 6.0 metres with full lateral restraint. The beam is subjected to nominal central dead and short term live loads of 1.0 kN and 2.5 kN respectively. Design a suitable DuraGal RHS in Grade C450L0 steel with no limit on deflection.
Solution: (i)
Calculate equivalent uniformly distributed maximum design load for moment (W *EM) From Table D8.5 (W *EM) associated with the central dead and live loads is: W *EM
(ii)
= 2P = 2 (1.25 x 1.0 + 1.5 x 2.5) = 10 kN
Based on W *EM select the least mass section with an adequate maximum design load (W *L1) based on design moment capacity. From Table D8.1-1(1)(A), a 100 x 50 x 2.5 DuraGal RHS Grade C450L0 has adequate maximum design load (W *L1 = 12.2 kN).
(iii)
Calculate equivalent uniformly distributed maximum design load for shear (W *EV). From Table D8.5 the equivalent uniform moment load is: W *EV = P = 1.25 x 1.0 + 1.5 x 2.5 = 5.0 kN
D8-8
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
DCTDHS/06 MARCH 2002
(iv)
Check that the section selected in Step 2 has an adequate maximum design load W *L2 based on shear capacity. From Table D8.1-1(1)(A), a 100 x 50 x 2.5 DuraGal RHS has adequate maximum design load (W *L2 = 220 kN).
(v)
Check if a shear and bending interaction check in accordance with Section D4.2.3 is necessary. From Table D8.1-1(1)(A), W *L2 = 220 kN for a 100 x 50 x 2.5 DuraGal RHS. W *L2 = φV v = 0.6 φVv
= = = >
2 φVv 220 2 110 kN 0.6 x 110 66 kN 5.0 kN (V * = W *EV)
Therefore no shear and bending interaction check in accordance with Section D4.2.3 is necessary. (vi)
Calculate equivalent uniformly distributed serviceability load (W *ES). From Table D8.5 W *ES for the central dead and live loads is: W *ES =
(vii)
8P 5
=
8 (1.0 + 0.7 x 2.5) 5
=
4.4 kN
From Table D8.1-1(1)(B), a 150 x 50 x 3.0 DuraGal RHS is the least mass section with adequate maximum serviceability design load (W *S1 = 5.10 kN) to resist W *ES. ∴ Adopt a 150 x 50 x 3.0 DuraGal Grade C450L0 section.
Note:
In this example the self weight of the beam is not taken into consideration. The calculation should be repeated to include self weight if significant.
References: [1]
Bradford, M.A., Bridge, R.Q., Trahair, N.S., “Worked Examples for Steel Members”, Australian Institute of Steel Construction, 1990.
[2]
“Steel Structures - Commentary (Supplement to AS 4100-1990)”, Standards Australia, 1990.
DCTDHS/06 MARCH 2002
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
D8-9
D8-10
TABLE D8.1-1(1)(A)
STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS SIMPLY SUPPORTED BEAMS WITH FULL LATERAL RESTRAINT DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis W *L1 = Maximum Design Load based on Design Moment Capacity W *L2 = Maximum Design Load based on Design Shear Capacity Maximum Design Load W *L is LESSER of W *L1 and W *L2
Designation DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
d
b
W*L1 (kN)
Mass per m
W*L2
FLR
Span of Beam (L) in metres
t
mm mm mm
kg/m
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
13.0
14.0
kN
m
150 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS
16.7 14.2 11.6 8.96 7.53 6.07
295 256 212 167 141 103
148 128 106 83.3 70.5 51.3
98.4 85.2 70.7 55.5 47.0 34.2
73.8 63.9 53.0 41.7 35.3 25.6
59.1 51.1 42.4 33.3 28.2 20.5
49.2 42.6 35.3 27.8 23.5 17.1
42.2 36.5 30.3 23.8 20.1 14.6
36.9 31.9 26.5 20.8 17.6 12.8
32.8 28.4 23.6 18.5 15.7 11.4
29.5 25.6 21.2 16.7 14.1 10.3
26.8 23.2 19.3 15.1 12.8 9.32
24.6 21.3 17.7 13.9 11.8 8.54
22.7 19.7 16.3 12.8 10.8 7.89
21.1 18.3 15.1 11.9 10.1 7.32
749 633 514 391 328 264
6.35 6.48 6.60 6.66 6.72 7.58
125 x 75 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS
16.7 14.2 11.6 8.96 7.53 6.07
273 236 195 151 113 80.4
136 118 97.6 75.4 56.3 40.2
91.0 78.6 65.1 50.3 37.5 26.8
68.2 58.9 48.8 37.7 28.1 20.1
54.6 47.1 39.1 30.2 22.5 16.1
45.5 39.3 32.5 25.1 18.8 13.4
39.0 33.7 27.9 21.5 16.1 11.5
34.1 29.5 24.4 18.8 14.1 10.0
30.3 26.2 21.7 16.8 12.5 8.93
27.3 23.6 19.5 15.1 11.3 8.04
24.8 21.4 17.8 13.7 10.2 7.31
22.7 19.6 16.3 12.6 9.38 6.70
21.0 18.1 15.0 11.6 8.66 6.18
19.5 16.8 13.9 10.8 8.04 5.74
634 538 438 334 281 226
13.2 13.3 13.4 13.6 15.4 17.6
100 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.5 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
12.0 10.3 8.49 7.53 6.60 5.56 4.50 3.64
147 129 108 97.0 86.4 73.5 59.0 40.4
73.5 64.4 54.1 48.5 43.2 38.7 29.5 20.2
49.0 42.9 36.1 32.3 28.8 24.5 19.7 13.5
36.7 32.2 27.1 24.2 21.6 18.4 14.7 10.1
29.4 25.8 21.6 19.4 17.3 14.7 11.8 8.08
24.5 21.5 18.0 16.2 14.4 12.2 9.83 6.73
21.0 18.4 15.5 13.9 12.3 10.5 8.43 5.77
18.4 16.1 13.5 12.1 10.8 9.18 7.37 5.05
16.3 14.3 12.0 10.8 9.60 8.16 6.55 4.49
14.7 12.9 10.8 9.70 8.64 7.35 5.90 4.04
13.4 11.7 9.84 8.82 7.85 6.68 5.36 3.67
12.2 10.7 9.02 8.08 7.20 6.12 4.92 3.37
11.3 9.91 8.33 7.46 6.64 5.65 4.54 3.11
10.5 9.20 7.73 6.93 6.17 5.25 4.21 2.89
489 417 341 301 261 220 178 143
7.92 8.03 8.14 8.19 8.16 8.22 8.41 10.0
Notes:
1.
DCTDHS/06 MARCH 2002
2. 3. 4. 5. 6.
FLR FLR φ αm αs W *L1 W *L2
= = = = = = =
0.436 (π2 E Iy G J / M2SX)0.5 (See Section D4.1.3 of these tables for explanation) Segment length for full lateral restraint (φMbx = φMsx) 0.9 1.0 1.0 8 φ Ms/L 2 φ Vv
DCTDHS/06 MARCH 2002
TABLE D8.1-1(1)(B)
SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS SIMPLY SUPPORTED BEAMS DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
Designation d
b
W*S1 (kN)
Mass per m
Span of Beam (L) in metres
t
mm mm mm
kg/m
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
13.0
14.0
150 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS
16.7 14.2 11.6 8.96 7.53 6.07
311 273 230 183 156 128
77.7 68.2 57.4 45.9 39.0 31.9
34.5 30.3 25.5 20.4 17.3 14.2
19.4 17.1 14.3 11.5 9.76 7.97
12.4 10.9 9.18 7.34 6.24 5.10
8.63 7.58 6.38 5.10 4.34 3.54
6.34 5.57 4.68 3.74 3.19 2.60
4.86 4.26 3.59 2.87 2.44 1.99
3.84 3.37 2.83 2.26 1.93 1.57
3.11 2.73 2.30 1.83 1.56 1.28
2.57 2.26 1.90 1.52 1.29 1.05
2.16 1.89 1.59 1.27 1.08 0.885
1.84 1.61 1.36 1.09 0.924 0.754
1.59 1.39 1.17 0.936 0.796 0.651
125 x 75 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS
16.7 14.2 11.6 8.96 7.53 6.07
256 224 188 149 127 104
63.9 55.9 46.9 37.3 31.7 25.9
28.4 24.9 20.8 16.6 14.1 11.5
16.0 14.0 11.7 9.33 7.93 6.47
10.2 8.95 7.50 5.97 5.08 4.14
7.10 6.21 5.21 4.14 3.52 2.88
5.22 4.56 3.83 3.05 2.59 2.11
3.99 3.50 2.93 2.33 1.98 1.62
3.16 2.76 2.32 1.84 1.57 1.28
2.56 2.24 1.88 1.49 1.27 1.04
2.11 1.85 1.55 1.23 1.05 0.856
1.78 1.55 1.30 1.04 0.881 0.719
1.51 1.32 1.11 0.883 0.751 0.613
1.30 1.14 0.957 0.761 0.647 0.528
100 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.5 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
12.0 10.3 8.49 7.53 6.60 5.56 4.50 3.64
105 93.9 80.3 72.6 65.4 56.0 46.1 37.7
26.3 23.5 20.1 18.1 16.4 14.0 11.5 9.41
11.7 10.4 8.92 8.06 7.27 6.23 5.12 4.18
6.56 5.87 5.02 4.54 4.09 3.50 2.88 2.35
4.20 3.75 3.21 2.90 2.62 2.24 1.84 1.51
2.92 2.61 2.23 2.02 1.82 1.56 1.28 1.05
2.14 1.92 1.64 1.48 1.33 1.14 0.940 0.769
1.64 1.47 1.25 1.13 1.02 0.876 0.720 0.588
1.30 1.16 0.991 0.896 0.807 0.692 0.569 0.465
1.05 0.939 0.803 0.726 0.654 0.560 0.461 0.377
0.868 0.776 0.664 0.600 0.541 0.463 0.381 0.311
0.729 0.652 0.558 0.504 0.454 0.389 0.320 0.262
0.622 0.555 0.475 0.429 0.387 0.332 0.273 0.223
0.536 0.479 0.410 0.370 0.334 0.286 0.235 0.192
Note:
1.
Serviceabilty Load W *S1 = 384EI / [5(250L2)]
D8-11
D8-12
TABLE D8.1-1(2)(A)
STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS SIMPLY SUPPORTED BEAMS WITH FULL LATERAL RESTRAINT DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness W * = Maximum Design Load based on Design Moment Capacity W * = Maximum Design Load based on Design Shear Capacity bending about x-axis Maximum Design Load W * is LESSER of W * and W * L1
L2
L
Designation d
b
L1
L2
W*L1 (kN)
Mass per m
W*L2
FLR
Span of Beam (L) in metres
t
0.5
0.75
1.0
1.25
1.5
1.75
2.0
2.5
3.0
3.5
4.0
4.5
5.0
6.0
kN
100 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.5 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
12.0 10.3 8.49 7.53 6.60 5.56 4.50 3.64
294 258 216 194 173 147 118 80.8
196 172 144 129 115 97.9 78.6 53.9
147 129 108 97.0 86.4 73.5 59.0 40.4
118 103 86.6 77.6 69.1 58.8 47.2 32.3
97.9 85.9 72.2 64.7 57.6 49.0 39.3 26.9
83.9 73.6 61.9 55.4 49.4 42.0 33.7 23.1
73.5 64.4 54.1 48.5 43.2 36.7 29.5 20.2
58.8 51.5 43.3 38.8 34.5 29.4 23.6 16.2
49.0 42.9 36.1 32.3 28.8 24.5 19.7 13.5
42.0 36.8 30.9 27.7 24.7 21.0 16.9 11.5
36.7 32.2 27.1 24.2 21.6 18.4 14.7 10.1
32.6 28.6 24.1 21.6 19.2 16.3 13.1 8.98
29.4 25.8 21.6 19.4 17.3 14.7 11.8 8.08
24.5 21.5 18.0 16.2 14.4 12.2 9.83 6.73
489 417 341 301 261 220 178 143
7.92 8.03 8.14 8.19 8.16 8.22 8.41 10.0
75 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
9.67 8.35 6.92 5.42 4.58 3.72 3.01
182 161 137 111 94.6 76.4 53.5
121 108 91.3 73.8 63.0 50.9 35.7
90.9 80.7 68.5 55.4 47.3 38.2 26.8
72.7 64.5 54.8 44.3 37.8 30.5 21.4
60.6 53.8 45.7 36.9 31.5 25.5 17.8
52.0 46.1 39.1 31.6 27.0 21.8 15.3
45.5 40.3 34.3 27.7 23.6 19.1 13.4
36.4 32.3 27.4 22.1 18.9 15.3 10.7
30.3 26.9 22.8 18.5 15.8 12.7 8.92
26.0 23.0 19.6 15.8 13.5 10.9 7.65
22.7 20.2 17.1 13.8 11.8 9.54 6.69
20.2 17.9 15.2 12.3 10.5 8.48 5.95
18.2 16.1 13.7 11.1 9.46 7.64 5.35
15.2 13.4 11.4 9.23 7.88 6.36 4.46
356 306 252 195 165 134 108
8.93 9.05 9.15 9.14 9.19 9.38 11.0
75 x 25 x 2.5 RHS 2.0 RHS 1.6 RHS
3.60 2.93 2.38
65.2 53.8 44.2
43.5 35.9 29.4
32.6 26.9 22.1
26.1 21.5 17.7
21.7 17.9 14.7
18.6 15.4 12.6
16.3 13.5 11.0
13.0 10.8 8.83
10.9 8.97 7.36
9.31 7.69 6.31
8.15 6.73 5.52
7.24 5.98 4.91
6.52 5.38 4.42
5.43 4.49 3.68
158 128 104
3.20 3.27 3.32
65 x 35 x 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS
5.35 4.25 3.60 2.93
86.0 71.2 61.3 50.5
57.4 47.5 40.8 33.7
43.0 35.6 30.6 25.3
34.4 28.5 24.5 20.2
28.7 23.7 20.4 16.8
24.6 20.3 17.5 14.4
21.5 17.8 15.3 12.6
17.2 14.2 12.3 10.1
14.3 11.9 10.2 8.42
12.3 10.2 8.75 7.22
10.8 8.90 7.66 6.32
9.56 7.91 6.81 5.62
8.60 7.12 6.13 5.05
7.17 5.94 5.10 4.21
212 165 139 113
5.76 5.80 5.85 5.91
50 x 25 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
3.07 2.62 2.15 1.75
38.0 33.1 27.6 22.8
25.3 22.1 18.4 15.2
19.0 16.5 13.8 11.4
15.2 13.2 11.0 9.14
12.7 11.0 9.21 7.61
10.9 9.45 7.89 6.53
9.50 8.27 6.91 5.71
7.60 6.62 5.52 4.57
6.33 5.51 4.60 3.81
5.43 4.73 3.95 3.26
4.75 4.14 3.45 2.86
4.22 3.68 3.07 2.54
3.80 3.31 2.76 2.28
3.17 2.76 2.30 1.90
122 104 85.2 69.3
3.90 3.96 4.02 4.07
50 x 20 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
2.83 2.42 1.99 1.63
33.4 29.2 24.5 20.3
22.3 19.5 16.3 13.6
16.7 14.6 12.3 10.2
13.4 11.7 9.80 8.13
11.1 9.74 8.17 6.78
9.55 8.35 7.00 5.81
8.36 7.31 6.13 5.08
6.68 5.85 4.90 4.07
5.57 4.87 4.08 3.39
4.77 4.18 3.50 2.91
4.18 3.65 3.06 2.54
3.71 3.25 2.72 2.26
3.34 2.92 2.45 2.03
2.79 2.44 2.04 1.69
121 103 84.1 68.4
2.71 2.77 2.84 2.89
mm mm mm
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002
Notes:
1. 2. 3.
FLR FLR φ αm
kg/m
= 0.436 (π2 E I y G J / M2SX)0.5 (See Section D4.1.3 of these tables for explanation) = Segment length for full lateral restraint (φMbx = φMsx) = 0.9 = 1.0
4. 5. 6.
αs W*L1 W*L2
= = =
1.0 8 φ Ms /L 2 φ Vv
m
DCTDHS/06 MARCH 2002
TABLE D8.1-1(2)(B)
SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS SIMPLY SUPPORTED BEAMS DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250
Designation d
b
W*S1 (kN)
Mass per m
Span of Beam (L) in metres
t
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
D8-13
kg/m
0.5
0.75
1.0
1.25
1.5
1.75
2.0
2.5
3.0
3.5
4.0
4.5
5.0
6.0
100 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.5 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
12.0 10.3 8.49 7.53 6.60 5.56 4.50 3.64
420 375 321 290 262 224 184 151
187 167 143 129 116 99.6 81.9 66.9
105 93.9 80.3 72.6 65.4 56.0 46.1 37.7
67.2 60.1 51.4 46.4 41.9 35.9 29.5 24.1
46.7 41.7 35.7 32.3 29.1 24.9 20.5 16.7
34.3 30.6 26.2 23.7 21.4 18.3 15.0 12.3
26.3 23.5 20.1 18.1 16.4 14.0 11.5 9.41
16.8 15.0 12.8 11.6 10.5 8.97 7.37 6.03
11.7 10.4 8.92 8.06 7.27 6.23 5.12 4.18
8.57 7.66 6.55 5.92 5.34 4.57 3.76 3.07
6.56 5.87 5.02 4.54 4.09 3.50 2.88 2.35
5.19 4.64 3.96 3.58 3.23 2.77 2.27 1.86
4.20 3.75 3.21 2.90 2.62 2.24 1.84 1.51
2.92 2.61 2.23 2.02 1.82 1.56 1.28 1.05
75 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
9.67 8.35 6.92 5.42 4.58 3.72 3.01
197 178 155 128 110 91.3 75.0
87.4 79.3 68.8 57.0 49.1 40.6 33.3
49.1 44.6 38.7 32.1 27.6 22.8 18.7
31.5 28.5 24.8 20.5 17.7 14.6 12.0
21.8 19.8 17.2 14.2 12.3 10.1 8.33
16.0 14.6 12.6 10.5 9.02 7.46 6.12
12.3 11.2 9.68 8.01 6.90 5.71 4.69
7.86 7.14 6.19 5.13 4.42 3.65 3.00
5.46 4.96 4.30 3.56 3.07 2.54 2.08
4.01 3.64 3.16 2.62 2.25 1.86 1.53
3.07 2.79 2.42 2.00 1.73 1.43 1.17
2.43 2.20 1.91 1.58 1.36 1.13 0.926
1.97 1.78 1.55 1.28 1.10 0.913 0.750
1.37 1.24 1.08 0.890 0.767 0.634 0.521
75 x 25 x 2.5 RHS 2.0 RHS 1.6 RHS
3.60 2.93 2.38
70.1 58.6 48.5
31.1 26.0 21.6
17.5 14.6 12.1
11.2 9.37 7.76
7.79 6.51 5.39
5.72 4.78 3.96
4.38 3.66 3.03
2.80 2.34 1.94
1.95 1.63 1.35
1.43 1.20 0.990
1.10 0.915 0.758
0.865 0.723 0.599
0.701 0.586 0.485
0.487 0.407 0.337
65 x 35 x 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS
5.35 4.25 3.60 2.93
80.7 69.1 60.1 50.1
35.8 30.7 26.7 22.3
20.2 17.3 15.0 12.5
12.9 11.1 9.61 8.02
8.96 7.67 6.68 5.57
6.58 5.64 4.90 4.09
5.04 4.32 3.76 3.13
3.23 2.76 2.40 2.01
2.24 1.92 1.67 1.39
1.65 1.41 1.23 1.02
1.26 1.08 0.939 0.783
0.996 0.853 0.742 0.619
0.807 0.691 0.601 0.501
0.560 0.480 0.417 0.348
50 x 25 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
3.07 2.62 2.15 1.75
27.5 24.3 20.6 17.2
12.2 10.8 9.16 7.67
6.86 6.07 5.15 4.31
4.39 3.89 3.30 2.76
3.05 2.70 2.29 1.92
2.24 1.98 1.68 1.41
1.72 1.52 1.29 1.08
1.10 0.972 0.824 0.690
0.763 0.675 0.572 0.479
0.560 0.496 0.420 0.352
0.429 0.380 0.322 0.269
0.339 0.300 0.254 0.213
0.275 0.243 0.206 0.172
0.191 0.169 0.143 0.120
50 x 20 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
2.83 2.42 1.99 1.63
23.4 20.8 17.8 14.9
10.4 9.26 7.90 6.64
5.84 5.21 4.44 3.74
3.74 3.33 2.84 2.39
2.60 2.31 1.97 1.66
1.91 1.70 1.45 1.22
1.46 1.30 1.11 0.934
0.935 0.833 0.711 0.598
0.649 0.579 0.494 0.415
0.477 0.425 0.363 0.305
0.365 0.325 0.278 0.234
0.289 0.257 0.219 0.184
0.234 0.208 0.178 0.149
0.162 0.145 0.123 0.104
mm mm mm
Note:
1.
Serviceabilty Load W *S1 = 384EI / [5(250L2)]
D8-14 TABLE D8.1-2(A)
STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS SIMPLY SUPPORTED BEAMS WITH FULL LATERAL RESTRAINT DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness bending about x-axis DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
W *L1 = Maximum Design Load based on Design Moment Capacity W *L2 = Maximum Design Load based on Design Shear Capacity Maximum Design Load W *L is LESSER of W *L1 and W *L2
Designation d
b
W*L1 (kN)
Mass per m
W*L2
FLR
Span of Beam (L) in metres
t
kg/m
0.5
0.75
1.0
1.25
1.5
1.75
2.0
2.5
3.0
3.5
4.0
4.5
5.0
6.0
kN
m
125 x 75 x 2.8 RHS 2.3 RHS
8.39 6.95
271 196
181 131
136 98.0
108 78.4
90.4 65.3
77.4 56.0
67.8 49.0
54.2 39.2
45.2 32.7
38.7 28.0
33.9 24.5
30.1 21.8
27.1 19.6
22.6 16.3
313 259
14.2 16.4
100 x 50 x 2.8 RHS 2.3 RHS
6.19 5.14
163 136
108 90.8
81.3 68.1
65.0 54.5
54.2 45.4
46.4 38.9
40.6 34.1
32.5 27.3
27.1 22.7
23.2 19.5
20.3 17.0
18.1 15.1
16.3 13.6
13.5 11.4
245 203
8.18 8.24
75 x 50 x 2.8 RHS 2.3 RHS
5.09 4.24
104 87.8
69.6 58.6
52.2 43.9
41.7 35.1
34.8 29.3
29.8 25.1
26.1 22.0
20.9 17.6
17.4 14.6
14.9 12.5
13.0 11.0
11.6 9.76
10.4 8.78
8.70 7.32
183 152
9.16 9.21
65 x 35 x 2.8 RHS 2.3 RHS
3.99 3.34
67.3 57.1
44.9 38.0
33.7 28.5
26.9 22.8
22.4 19.0
19.2 16.3
16.8 14.3
13.5 11.4
11.2 9.51
9.62 8.15
8.42 7.13
7.48 6.34
6.73 5.71
5.61 4.76
155 129
5.82 5.88
50 x 25 x 2.8 RHS 2.3 RHS
2.89 2.44
36.1 31.0
24.1 20.6
18.0 15.5
14.4 12.4
12.0 10.3
10.3 8.85
9.02 7.74
7.22 6.19
6.02 5.16
5.16 4.42
4.51 3.87
4.01 3.44
3.61 3.10
3.01 2.58
115 96.7
3.93 3.99
50 x 20 x 2.8 RHS 2.3 RHS
2.67 2.25
31.8 27.4
21.2 18.3
15.9 13.7
12.7 11.0
10.6 9.14
9.09 7.83
7.95 6.85
6.36 5.48
5.30 4.57
4.54 3.92
3.98 3.43
3.53 3.05
3.18 2.74
2.65 2.28
114 95.4
2.74 2.80
mm mm mm
Notes:
1. 2. 3. 4. 5. 6.
FLR FLR φ αm αs W *L1 W *L2
= = = = = = =
0.436 (π2 E Iy G J / M2SX)0.5 (See Section D4.1.3 of these tables for explanation) Segment length for full lateral restraint (φMbx = φMsx) 0.9 1.0 1.0 8 φ Ms/L 2 φ Vv
DCTDHS/06 MARCH 2002
DCTDHS/06 MARCH 2002
TABLE D8.1-2(B)
SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
SIMPLY SUPPORTED BEAMS DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness bending about x-axis W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250
Designation d
b
W*S1 (kN)
Mass per m
Span of Beam (L) in metres
t
mm mm mm
kg/m
0.5
0.75
1.0
1.25
1.5
1.75
2.0
2.5
3.0
3.5
4.0
4.5
5.0
6.0
125 x 75 x 2.8 RHS 2.3 RHS
8.39 6.95
562 471
250 209
140 118
89.9 75.3
62.4 52.3
45.8 38.4
35.1 29.4
22.5 18.8
15.6 13.1
11.5 9.61
8.77 7.35
6.93 5.81
5.62 4.71
3.90 3.27
100 x 50 x 2.8 RHS 2.3 RHS
6.19 5.14
247 208
110 92.7
61.7 52.1
39.5 33.4
27.4 23.2
20.2 17.0
15.4 13.0
75 x 50 x 2.8 RHS 2.3 RHS
5.09 4.24
121 103
53.9 45.8
30.3 25.7
19.4 16.5
13.5 11.4
65 x 35 x 2.8 RHS 2.3 RHS
3.99 3.34
65.6 56.2
29.2 25.0
16.4 14.1
10.5 9.00
50 x 25 x 2.8 RHS 2.3 RHS
2.89 2.44
26.3 22.9
11.7 10.2
6.56 5.72
50 x 20 x 2.8 RHS 2.3 RHS
2.67 2.25
22.4 19.7
5.60 4.92
Note:
1.
9.96 8.74
Serviceabilty Load W *S1 = 384EI / [5(250L2)]
9.88 8.34
6.86 5.79
5.04 4.25
3.86 3.26
3.05 2.57
2.47 2.08
1.71 1.45
9.90 8.41
7.58 6.44
4.85 4.12
3.37 2.86
2.48 2.10
1.89 1.61
1.50 1.27
1.21 1.03
0.842 0.715
7.29 6.25
5.35 4.59
4.10 3.51
2.62 2.25
1.82 1.56
1.34 1.15
1.02 0.878
0.810 0.694
0.656 0.562
0.455 0.390
4.20 3.66
2.92 2.54
2.14 1.87
1.64 1.43
1.05 0.915
0.729 0.636
0.536 0.467
0.410 0.358
0.324 0.283
0.263 0.229
0.182 0.159
3.59 3.15
2.49 2.19
1.83 1.61
1.40 1.23
0.897 0.787
0.623 0.546
0.458 0.401
0.350 0.307
0.277 0.243
0.224 0.197
0.156 0.137
D8-15
D8-16
TABLE D8.1-3(1)(A)
STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS SIMPLY SUPPORTED BEAMS WITH FULL LATERAL RESTRAINT DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis W *L1 = Maximum Design Load based on Design Moment Capacity W *L2 = Maximum Design Load based on Design Shear Capacity Maximum Design Load W *L is LESSER of W *L1 and W *L2
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
Designation d
b
W*L1 (kN)
Mass per m
W*L2 Span of Beam (L) in metres
t
mm mm mm
kg/m
100 x 100 x 6.0 SHS 16.7 5.0 SHS 14.2 4.0 SHS 11.6 3.0 SHS 8.96 2.5 SHS 7.53 2.0 SHS 6.07 90 x 90 x 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS
8.01 6.74 5.45 4.39
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
13.0
14.0
kN
238 206 168 120 91.0 65.1
119 103 84.1 60.1 45.5 32.5
79.4 68.6 56.1 40.1 30.3 21.7
59.6 51.4 42.1 30.1 22.7 16.3
47.7 41.2 33.6 24.1 18.2 13.0
39.7 34.3 28.0 20.0 15.2 10.8
34.0 29.4 24.0 17.2 13.0 9.30
29.8 25.7 21.0 15.0 11.4 8.13
26.5 22.9 18.7 13.4 10.1 7.23
23.8 20.6 16.8 12.0 9.10 6.51
21.7 18.7 15.3 10.9 8.27 5.92
19.9 17.1 14.0 10.0 7.58 5.42
18.3 15.8 12.9 9.25 7.00 5.01
17.0 14.7 12.0 8.59 6.50 4.65
507 432 353 271 228 184
95.4 77.9 55.5 39.9
47.7 38.9 27.8 19.9
31.8 26.0 18.5 13.3
23.8 19.5 13.9 9.97
19.1 15.6 11.1 7.98
15.9 13.0 9.25 6.65
13.6 11.1 7.93 5.70
11.9 9.74 6.94 4.98
10.6 8.65 6.17 4.43
9.54 7.79 5.55 3.99
8.67 7.08 5.05 3.63
7.95 6.49 4.63 3.32
7.34 5.99 4.27 3.07
6.81 5.56 3.96 2.85
242 204 165 133
89 x 89 x 6.0 SHS 9.06 5.0 SHS 12.5 3.5 SHS 14.6
116 159 183
57.8 79.5 91.6
38.5 53.0 61.1
28.9 39.8 45.8
23.1 31.8 36.6
19.3 26.5 30.5
16.5 22.7 26.2
14.5 19.9 22.9
12.8 17.7 20.4
11.6 15.9 18.3
10.5 14.5 16.7
9.64 13.3 15.3
8.89 12.2 14.1
8.26 11.4 13.1
275 379 443
75 x 75 x 6.0 SHS 12.0 5.0 SHS 10.3 4.0 SHS 8.49 3.5 SHS 7.53 3.0 SHS 6.60 2.5 SHS 5.56 2.0 SHS 4.50
124 109 91.5 82.0 71.9 55.2 42.3
62.2 54.5 45.8 41.0 36.0 27.6 21.2
41.5 36.3 30.5 27.3 24.0 18.4 14.1
31.1 27.3 22.9 20.5 18.0 13.8 10.6
24.9 21.8 18.3 16.4 14.4 11.0 8.47
20.7 18.2 15.3 13.7 12.0 9.20 7.06
17.8 15.6 13.1 11.7 10.3 7.89 6.05
15.6 13.6 11.4 10.2 8.99 6.90 5.29
13.8 12.1 10.2 9.11 7.99 6.13 4.70
12.4 10.9 9.15 8.20 7.19 5.52 4.23
11.3 9.91 8.32 7.45 6.54 5.02 3.85
10.4 9.08 7.63 6.83 5.99 4.60 3.53
9.57 8.39 7.04 6.31 5.53 4.25 3.26
8.89 7.79 6.54 5.86 5.14 3.94 3.02
363 312 257 228 199 168 136
Notes:
DCTDHS/06 MARCH 2002
1. 2. 3. 4. 5.
φ αm αs W *L1 W *L2
= = = = =
0.9 1.0 1.0 8 φ Ms/L 2 φ Vv
DCTDHS/06 MARCH 2002
TABLE D8.1-3(1)(B)
SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS SIMPLY SUPPORTED BEAMS DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250
Designation d
b
W*S1 (kN)
Mass per m
Span of Beam (L) in metres
t
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
187 163 137 109 92.5 75.6
46.6 40.8 34.2 27.2 23.1 18.9
20.7 18.1 15.2 12.1 10.3 8.40
11.7 10.2 8.56 6.80 5.78 4.72
7.46 6.53 5.48 4.35 3.70 3.02
5.18 4.53 3.80 3.02 2.57 2.10
3.81 3.33 2.79 2.22 1.89 1.54
2.92 2.55 2.14 1.70 1.45 1.18
2.30 2.02 1.69 1.34 1.14 0.933
1.87 1.63 1.37 1.09 0.925 0.756
1.54 1.35 1.13 0.899 0.765 0.625
8.01 6.74 5.45 4.39
78.2 66.7 54.6 44.5
19.6 16.7 13.6 11.1
8.69 7.41 6.07 4.94
4.89 4.17 3.41 2.78
3.13 2.67 2.18 1.78
2.17 1.85 1.52 1.24
1.60 1.36 1.11 0.908
1.22 1.04 0.853 0.695
0.965 0.823 0.674 0.549
0.782 0.667 0.546 0.445
89 x 89 x 6.0 SHS 9.06 5.0 SHS 12.5 3.5 SHS 14.6
84.4 111 126
21.1 27.8 31.6
9.38 12.4 14.0
5.28 6.95 7.89
3.38 4.45 5.05
2.35 3.09 3.51
1.72 2.27 2.58
1.32 1.74 1.97
1.04 1.37 1.56
75 x 75 x 6.0 SHS 12.0 5.0 SHS 10.3 4.0 SHS 8.49 3.5 SHS 7.53 3.0 SHS 6.60 2.5 SHS 5.56 2.0 SHS 4.50
71.1 63.5 54.2 49.0 44.0 37.7 31.0
17.8 15.9 13.6 12.2 11.0 9.43 7.76
7.90 7.05 6.02 5.44 4.89 4.19 3.45
4.45 3.97 3.39 3.06 2.75 2.36 1.94
2.85 2.54 2.17 1.96 1.76 1.51 1.24
1.98 1.76 1.51 1.36 1.22 1.05 0.862
1.45 1.30 1.11 1.00 0.898 0.770 0.633
1.11 0.992 0.847 0.765 0.688 0.589 0.485
0.878 0.783 0.669 0.605 0.543 0.466 0.383
mm
mm mm
kg/m
100 x 100 x 6.0 SHS 16.7 5.0 SHS 14.2 4.0 SHS 11.6 3.0 SHS 8.96 2.5 SHS 7.53 2.0 SHS 6.07 90 x 90 x 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS
D8-17
Note:
1.
1.0
Serviceabilty Load W *S1 = 384EI / [5(250L2)]
12.0
13.0
14.0
1.30 1.13 0.951 0.755 0.643 0.525
1.10 0.966 0.810 0.644 0.548 0.447
0.952 0.833 0.699 0.555 0.472 0.386
0.646 0.551 0.451 0.368
0.543 0.463 0.379 0.309
0.463 0.395 0.323 0.263
0.399 0.340 0.279 0.227
0.844 1.11 1.26
0.698 0.920 1.04
0.586 0.773 0.877
0.500 0.658 0.747
0.431 0.568 0.644
0.711 0.635 0.542 0.490 0.440 0.377 0.310
0.588 0.524 0.448 0.405 0.364 0.312 0.256
0.494 0.441 0.376 0.340 0.306 0.262 0.215
0.421 0.375 0.321 0.290 0.260 0.223 0.184
0.363 0.324 0.277 0.250 0.225 0.192 0.158
TABLE D8.1-3(2)(A)
D8-18
STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS SIMPLY SUPPORTED BEAMS WITH FULL LATERAL RESTRAINT DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis = Maximum Design Load based on Design Moment Capacity
W *L1 W *L2 = Maximum Design Load based on Design Shear Capacity Maximum Design Load W *L is LESSER of W *L1 and W *L2
Designation d
b
W*L1 (kN)
Mass per m
W*L2 Span of Beam (L) in metres
t
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002
mm mm mm
kg/m
0.5
0.75
1.0
1.25
1.5
1.75
2.0
2.5
3.0
3.5
4.0
75 x 75 x 6.0 SHS 5.0 SHS 4.0 SHS 3.5 SHS 3.0 SHS 2.5 SHS 2.0 SHS 65 x 65 x 6.0 SHS 5.0 SHS 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 50 x 50 x 5.0 SHS 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 40 x 40 x 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 35 x 35 x 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 30 x 30 x 2.0 SHS 1.6 SHS 25 x 25 x 2.5 SHS 2.0 SHS 1.6 SHS 20 x 20 x 1.6 SHS
12.0 10.3 8.49 7.53 6.60 5.56 4.50 10.1 8.75 7.23 5.66 4.78 3.88 3.13 6.39 5.35 4.25 3.60 2.93 2.38 4.09 3.30 2.82 2.31 1.88 2.83 2.42 1.99 1.63 1.68 1.38 1.64 1.36 1.12 0.873
249 218 183 164 144 110 78.6 178 158 133 107 88.6 63.5 45.4 85.3 73.8 60.8 52.3 42.6 30.7 43.6 37.1 32.2 26.8 21.8 27.4 23.9 20.1 16.6 14.3 11.9 11.1 9.50 8.01 4.86
166 145 122 109 95.9 73.6 52.4 119 105 89.0 71.6 59.1 42.4 30.3 56.8 49.2 40.6 34.9 28.4 20.5 29.1 24.7 21.5 17.9 14.5 18.3 16.0 13.4 11.1 9.53 7.95 7.40 6.33 5.34 3.24
124 109 91.5 82.0 71.9 55.2 39.3 89.1 78.8 66.7 53.7 44.3 31.8 22.7 42.6 36.9 30.4 26.2 21.3 15.4 21.8 18.5 16.1 13.4 10.9 13.7 12.0 10.0 8.31 7.15 5.96 5.55 4.75 4.00 2.43
99.6 87.2 73.2 65.6 57.5 44.2 31.4 71.3 63.1 53.4 43.0 35.5 25.4 18.2 34.1 29.5 24.3 20.9 17.0 12.3 17.5 14.8 12.9 10.7 8.73 11.0 9.58 8.02 6.65 5.72 4.77 4.44 3.80 3.20 1.95
83.0 72.7 61.0 54.7 47.9 36.8 26.2 59.4 52.5 44.5 35.8 29.5 21.2 15.1 28.4 24.6 20.3 17.4 14.2 10.2 14.5 12.4 10.7 8.93 7.27 9.13 7.98 6.68 5.54 4.76 3.98 3.70 3.17 2.67 1.62
71.1 62.3 52.3 46.8 41.1 31.5 22.5 50.9 45.0 38.1 30.7 25.3 18.2 13.0 24.4 21.1 17.4 14.9 12.2 8.78 12.5 10.6 9.20 7.65 6.23 7.83 6.84 5.73 4.75 4.08 3.41 3.17 2.71 2.29 1.39
62.2 54.5 45.8 41.0 36.0 27.6 19.7 44.6 39.4 33.4 26.8 22.2 15.9 11.4 21.3 18.4 15.2 13.1 10.7 7.68 10.9 9.27 8.05 6.70 5.45 6.85 5.99 5.01 4.16 3.57 2.98 2.77 2.38 2.00 1.22
49.8 43.6 36.6 32.8 28.8 22.1 15.7 35.7 31.5 26.7 21.5 17.7 12.7 9.08 17.1 14.8 12.2 10.5 8.52 6.14 8.73 7.42 6.44 5.36 4.36 5.48 4.79 4.01 3.33 2.86 2.39 2.22 1.90 1.60 0.973
41.5 36.3 30.5 27.3 24.0 18.4 13.1 29.7 26.3 22.2 17.9 14.8 10.6 7.57 14.2 12.3 10.1 8.72 7.10 5.12 7.27 6.18 5.36 4.46 3.64 4.57 3.99 3.34 2.77 2.38 1.99 1.85 1.58 1.33 0.811
35.6 31.1 26.1 23.4 20.5 15.8 11.2 25.5 22.5 19.1 15.3 12.7 9.08 6.49 12.2 10.5 8.69 7.47 6.09 4.39 6.24 5.30 4.60 3.83 3.12 3.91 3.42 2.86 2.38 2.04 1.70 1.59 1.36 1.14 0.695
31.1 27.3 22.9 20.5 18.0 13.8 9.83 22.3 19.7 16.7 13.4 11.1 7.94 5.68 10.7 9.22 7.60 6.54 5.33 3.84 5.46 4.64 4.02 3.35 2.73 3.43 2.99 2.51 2.08 1.79 1.49 1.39 1.19 1.00 0.608
Notes:
1.
φ
=
0.9
2.
αm
=
1.0
3.
αs
=
1.0
4.
W *L1
=
8 φ Ms/L
5. W *L2 =
2 φ Vv
4.5 27.7 24.2 20.3 18.2 16.0 12.3 8.74 19.8 17.5 14.8 11.9 9.85 7.06 5.05 9.47 8.19 6.76 5.81 4.73 3.41 4.85 4.12 3.58 2.98 2.42 3.04 2.66 2.23 1.85 1.59 1.33 1.23 1.06 0.890 0.540
5.0 24.9 21.8 18.3 16.4 14.4 11.0 7.86 17.8 15.8 13.3 10.7 8.86 6.35 4.54 8.53 7.38 6.08 5.23 4.26 3.07 4.36 3.71 3.22 2.68 2.18 2.74 2.39 2.01 1.66 1.43 1.19 1.11 0.950 0.801 0.486
6.0 20.7 18.2 15.3 13.7 12.0 9.20 6.55 14.9 13.1 11.1 8.95 7.39 5.29 3.78 7.10 6.15 5.07 4.36 3.55 2.56 3.64 3.09 2.68 2.23 1.82 2.28 2.00 1.67 1.39 1.19 0.994 0.925 0.792 0.667 0.405
kN 363 312 257 228 199 168 136 305 264 219 170 144 117 94.9 192 161 127 108 88.3 71.9 123 97.9 84.0 69.1 56.5 83.5 72.0 59.5 48.8 49.9 41.2 48.0 40.3 33.5 25.8
TABLE D8.1-3(2)(B) DCTDHS/06 MARCH 2002
SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS SIMPLY SUPPORTED BEAMS DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250
Designation d
b
W*S1 (kN)
Mass per m
Span of Beam (L) in metres
t
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
D8-19
mm mm mm
kg/m
0.5
75 x 75 x 6.0 SHS 5.0 SHS 4.0 SHS 3.5 SHS 3.0 SHS 2.5 SHS 2.0 SHS 65 x 65 x 6.0 SHS 5.0 SHS 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 50 x 50 x 5.0 SHS 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 40 x 40 x 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 35 x 35 x 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 30 x 30 x 2.0 SHS 1.6 SHS 25 x 25 x 2.5 SHS 2.0 SHS 1.6 SHS 20 x 20 x 1.6 SHS
12.0 10.3 8.49 7.53 6.60 5.56 4.50 10.1 8.75 7.23 5.66 4.78 3.88 3.13 6.39 5.35 4.25 3.60 2.93 2.38 4.09 3.30 2.82 2.31 1.88 2.83 2.42 1.99 1.63 1.68 1.38 1.64 1.36 1.12 0.873
285 126 254 113 217 96.4 196 87.1 176 78.2 151 67.0 124 55.1 174 77.1 157 69.7 136 60.3 112 49.6 96.1 42.7 79.4 35.3 65.2 29.0 63.1 28.1 56.2 25.0 47.8 21.3 41.6 18.5 34.8 15.5 28.8 12.8 25.9 11.5 22.9 10.2 20.2 8.97 17.1 7.58 14.2 6.33 14.6 6.50 13.0 5.78 11.1 4.92 9.31 4.14 6.69 2.97 5.67 2.52 4.15 1.85 3.65 1.62 3.13 1.39 1.49 0.664
Note:
1.
0.75
1.0
1.25
1.5
1.75
2.0
71.1 63.5 54.2 49.0 44.0 37.7 31.0 43.4 39.2 33.9 27.9 24.0 19.9 16.3 15.8 14.1 12.0 10.4 8.69 7.19 6.47 5.73 5.05 4.26 3.56 3.65 3.25 2.77 2.33 1.67 1.42 1.04 0.911 0.783 0.373
45.5 40.6 34.7 31.3 28.2 24.1 19.9 27.8 25.1 21.7 17.9 15.4 12.7 10.4 10.1 8.99 7.65 6.66 5.56 4.60 4.14 3.67 3.23 2.73 2.28 2.34 2.08 1.77 1.49 1.07 0.908 0.664 0.583 0.501 0.239
31.6 28.2 24.1 21.8 19.6 16.8 13.8 19.3 17.4 15.1 12.4 10.7 8.82 7.24 7.02 6.25 5.32 4.63 3.86 3.20 2.87 2.55 2.24 1.90 1.58 1.62 1.44 1.23 1.03 0.743 0.630 0.461 0.405 0.348 0.166
23.2 20.7 17.7 16.0 14.4 12.3 10.1 14.2 12.8 11.1 9.11 7.85 6.48 5.32 5.15 4.59 3.91 3.40 2.84 2.35 2.11 1.87 1.65 1.39 1.16 1.19 1.06 0.904 0.760 0.546 0.463 0.339 0.298 0.256 0.122
17.8 11.4 15.9 10.2 13.6 8.67 12.2 7.84 11.0 7.04 9.43 6.03 7.76 4.96 10.8 6.94 9.80 6.27 8.48 5.42 6.98 4.46 6.01 3.84 4.96 3.18 4.07 2.61 3.95 2.53 3.51 2.25 2.99 1.91 2.60 1.67 2.17 1.39 1.80 1.15 1.62 1.03 1.43 0.917 1.26 0.808 1.07 0.682 0.890 0.570 0.914 0.585 0.812 0.520 0.692 0.443 0.582 0.372 0.418 0.268 0.355 0.227 0.260 0.166 0.228 0.146 0.196 0.125 0.0933 0.0597
Serviceabilty Load W *S1 = 384EI / [5(250L2)]
2.5
3.0
3.5
4.0
4.5
5.0
6.0
7.90 7.05 6.02 5.44 4.89 4.19 3.45 4.82 4.36 3.77 3.10 2.67 2.21 1.81 1.75 1.56 1.33 1.16 0.966 0.799 0.718 0.636 0.561 0.474 0.396 0.406 0.361 0.308 0.259 0.186 0.158 0.115 0.101 0.0870 0.0415
5.81 5.18 4.43 4.00 3.59 3.08 2.53 3.54 3.20 2.77 2.28 1.96 1.62 1.33 1.29 1.15 0.976 0.850 0.710 0.587 0.528 0.468 0.412 0.348 0.291 0.298 0.265 0.226 0.190 0.137 0.116 0.0848 0.0744 0.0640 0.0305
4.45 3.97 3.39 3.06 2.75 2.36 1.94 2.71 2.45 2.12 1.74 1.50 1.24 1.02 0.987 0.878 0.748 0.651 0.543 0.449 0.404 0.358 0.315 0.267 0.223 0.228 0.203 0.173 0.145 0.105 0.0887 0.0649 0.0570 0.0490 0.0233
3.51 3.13 2.68 2.42 2.17 1.86 1.53 2.14 1.94 1.67 1.38 1.19 0.980 0.805 0.780 0.694 0.591 0.514 0.429 0.355 0.319 0.283 0.249 0.211 0.176 0.180 0.160 0.137 0.115 0.0826 0.0701 0.0513 0.0450 0.0387 0.0184
2.85 2.54 2.17 1.96 1.76 1.51 1.24 1.74 1.57 1.36 1.12 0.961 0.794 0.652 0.631 0.562 0.478 0.416 0.348 0.288 0.259 0.229 0.202 0.171 0.142 0.146 0.130 0.111 0.0931 0.0669 0.0567 0.0415 0.0365 0.0313 0.0149
1.98 1.76 1.51 1.36 1.22 1.05 0.862 1.21 1.09 0.942 0.775 0.667 0.551 0.453 0.438 0.390 0.332 0.289 0.241 0.200 0.180 0.159 0.140 0.118 0.0989 0.102 0.0903 0.0769 0.0647 0.0465 0.0394 0.0288 0.0253 0.0218 0.0104
D8-20 TABLE D8.1-4(A)
STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
SIMPLY SUPPORTED BEAMS WITH FULL LATERAL RESTRAINT DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness bending about x-axis W *L1 = Maximum Design Load based on Design Moment Capacity W *L2 = Maximum Design Load based on Design Shear Capacity Maximum Design Load W *L is LESSER of W *L1 and W *L2
Designation d
b
W*L1 (kN)
Mass per m
W*L2 Span of Beam (L) in metres
t
mm mm mm
kg/m
0.5
0.75
1.0
1.25
1.5
1.75
2.0
2.5
3.0
3.5
4.0
4.5
5.0
6.0
kN
100 x 100 x 2.8 SHS 2.3 SHS
8.39 6.95
201 150
134 99.7
100 74.8
80.2 59.8
66.9 49.8
57.3 42.7
50.1 37.4
40.1 29.9
33.4 24.9
28.7 21.4
25.1 18.7
22.3 16.6
20.1 15.0
16.7 12.5
254 211
75 x 75 x 2.8 SHS 2.3 SHS
6.19 5.14
131 97.1
87.0 64.7
65.3 48.6
52.2 38.8
43.5 32.4
37.3 27.7
32.6 24.3
26.1 19.4
21.8 16.2
18.6 13.9
16.3 12.1
14.5 10.8
13.1 9.71
10.9 8.09
187 155
65 x 65 x 2.3 SHS
4.42
78.6
52.4
39.3
31.4
26.2
22.5
19.6
15.7
13.1
11.2
9.82
8.73
7.86
6.55
133
50 x 50 x 2.8 SHS 2.3 SHS
3.99 3.34
57.5 48.7
38.3 32.5
28.8 24.4
23.0 19.5
19.2 16.2
16.4 13.9
14.4 12.2
11.5 9.75
9.58 8.12
8.21 6.96
7.19 6.09
6.39 5.42
5.75 4.87
4.79 4.06
119 100
40 x 40 x 2.8 SHS 2.3 SHS
3.11 2.62
35.2 30.1
23.5 20.1
17.6 15.0
14.1 12.0
11.7 10.0
10.1 8.60
8.80 7.52
7.04 6.02
5.86 5.01
5.03 4.30
4.40 3.76
3.91 3.34
3.52 3.01
2.93 2.51
92.5 78.2
35 x 35 x 2.8 SHS 2.3 SHS
2.67 2.25
26.1 22.4
17.4 15.0
13.0 11.2
10.4 8.98
7.45 6.41
6.52 5.61
5.21 4.49
4.34 3.74
3.72 3.21
3.26 2.80
2.90 2.49
2.61 2.24
2.17 1.87
79.0 67.1
Notes:
1. 2. 3. 4. 5.
φ αm αs W *L1 W *L2
= = = = =
0.9 1.0 1.0 8 φ Ms/L 2 φ Vv
8.69 7.48
DCTDHS/06 MARCH 2002
DCTDHS/06 MARCH 2002
TABLE D8.1-4(B)
SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS SIMPLY SUPPORTED BEAMS DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness bending about x-axis
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250
Designation d
b
W*S1 (kN)
Mass per m
Span of Beam (L) in metres
t
mm mm mm
kg/m
0.5
0.75
1.0
100 x 100 x 2.8 SHS 2.3 SHS
8.39 6.95
409 343
182 153
75 x 75 x 2.8 SHS 2.3 SHS
6.19 5.14
166 140
65 x 65 x 2.3 SHS
4.42
50 x 50 x 2.8 SHS 2.3 SHS
3.99 3.34
40 x 40 x 2.8 SHS 2.3 SHS
3.11 2.62
21.9 19.0
35 x 35 x 2.8 SHS 2.3 SHS
2.67 2.25
14.0 12.3
Note:
1.
1.25
1.5
1.75
2.0
2.5
3.0
3.5
4.0
4.5
5.0
6.0
102 85.8
65.5 54.9
45.5 38.2
33.4 28.0
25.6 21.5
16.4 13.7
11.4 9.54
8.36 7.01
6.40 5.37
5.06 4.24
4.09 3.43
2.84 2.38
73.8 62.4
41.5 35.1
26.6 22.5
18.5 15.6
13.6 11.5
10.4 8.77
6.65 5.61
4.61 3.90
3.39 2.86
2.60 2.19
2.05 1.73
1.66 1.40
1.15 0.975
89.6
39.8
22.4
14.3
9.95
7.31
5.60
3.58
2.49
1.83
1.40
1.11
0.896
0.622
45.4 39.0
20.2 17.3
11.4 9.74
7.27 6.24
5.05 4.33
3.71 3.18
2.84 2.44
1.82 1.56
1.26 1.08
0.927 0.795
0.710 0.609
0.561 0.481
0.454 0.390
0.316 0.271
9.72 8.44
5.47 4.75
3.50 3.04
2.43 2.11
1.79 1.55
1.37 1.19
0.875 0.759
0.608 0.527
0.446 0.387
0.342 0.297
0.270 0.234
0.219 0.190
0.152 0.132
6.22 5.45
3.50 3.07
2.24 1.96
1.56 1.36
1.14 1.00
0.875 0.767
0.560 0.491
0.389 0.341
0.286 0.250
0.219 0.192
0.173 0.151
0.140 0.123
0.0973 0.0852
Serviceabilty Load W *S1 = 384EI / [5(250L2)]
D8-21
D8-22
TABLE D8.2-1(1)(A)
STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS CONTINUOUS BEAMS WITH FULL LATERAL RESTRAINT DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis W *L1 = Maximum Design Load based on Design Moment Capacity W *L2 = Maximum Design Load based on Design Shear Capacity Maximum Design Load W *L is LESSER of W *L1 and W *L2
Designation DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
d
b
W*L1 (kN)
Mass per m
W*L2
FLR
Span of Beam (L) in metres
t
mm mm mm
kg/m
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
13.0
14.0
kN
m
150 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS
16.7 14.2 11.6 8.96 7.53 6.07
295 256 212 167 141 103
148 128 106 83.3 70.5 51.3
98.4 85.2 70.7 55.5 47.0 34.2
73.8 63.9 53.0 41.7 35.3 25.6
59.1 51.1 42.4 33.3 28.2 20.5
49.2 42.6 35.3 27.8 23.5 17.1
42.2 36.5 30.3 23.8 20.1 14.6
36.9 31.9 26.5 20.8 17.6 12.8
32.8 28.4 23.6 18.5 15.7 11.4
29.5 25.6 21.2 16.7 14.1 10.3
26.8 23.2 19.3 15.1 12.8 9.32
24.6 21.3 17.7 13.9 11.8 8.54
22.7 19.7 16.3 12.8 10.8 7.89
21.1 18.3 15.1 11.9 10.1 7.32
599 506 411 312 262 211
26.4 26.9 27.4 27.6 27.9 31.4
125 x 75 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS
16.7 14.2 11.6 8.96 7.53 6.07
273 236 195 151 113 80.4
136 118 97.6 75.4 56.3 40.2
91.0 78.6 65.1 50.3 37.5 26.8
68.2 58.9 48.8 37.7 28.1 20.1
54.6 47.1 39.1 30.2 22.5 16.1
45.5 39.3 32.5 25.1 18.8 13.4
39.0 33.7 27.9 21.5 16.1 11.5
34.1 29.5 24.4 18.8 14.1 10.0
30.3 26.2 21.7 16.8 12.5 8.93
27.3 23.6 19.5 15.1 11.3 8.04
24.8 21.4 17.8 13.7 10.2 7.31
22.7 19.6 16.3 12.6 9.38 6.70
21.0 18.1 15.0 11.6 8.66 6.18
19.5 16.8 13.9 10.8 8.04 5.74
507 430 350 267 224 181
54.7 55.1 55.5 56.2 64.0 73.0
100 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.5 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
12.0 10.3 8.49 7.53 6.60 5.56 4.50 3.64
147 129 108 97.0 86.4 73.5 59.0 40.4
73.5 64.4 54.1 48.5 43.2 36.7 29.5 20.2
49.0 42.9 36.1 32.3 28.8 24.5 19.7 13.5
36.7 32.2 27.1 24.2 21.6 18.4 14.7 10.1
29.4 25.8 21.6 19.4 17.3 14.7 11.8 8.08
24.5 21.5 18.0 16.2 14.4 12.2 9.83 6.73
21.0 18.4 15.5 13.9 12.3 10.5 8.43 5.77
18.4 16.1 13.5 12.1 10.8 9.18 7.37 5.05
16.3 14.3 12.0 10.8 9.60 8.16 6.55 4.49
14.7 12.9 10.8 9.70 8.64 7.35 5.90 4.04
13.4 11.7 9.84 8.82 7.85 6.68 5.36 3.67
12.2 10.7 9.02 8.08 7.20 6.12 4.92 3.37
11.3 9.91 8.33 7.46 6.64 5.65 4.54 3.11
10.5 9.20 7.73 6.93 6.17 5.25 4.21 2.89
391 333 273 241 209 176 142 115
32.8 33.3 33.8 34.0 33.9 34.1 34.9 41.6
Notes:
1.
DCTDHS/06 MARCH 2002
2. 3. 4. 5. 6.
FLR FLR φ αm αs W *L1 W *L2
= = = = = = =
1.809 (π2 E Iy G J / M2SX)0.5 (See Section D4.1.3 of these tables for explanation) Segment length for full lateral restraint (φMbx = φMsx) 0.9 1.0 1.0 8 φ Ms/L 1.6 φ Vv
DCTDHS/06 MARCH 2002
TABLE D8.2-1(1)(B)
SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS CONTINUOUS BEAMS DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250
Designation d
b
W*S1 (kN)
Mass per m
Span of Beam (L) in metres
t
mm mm mm
kg/m
1.0
2.0
3.0
4.0
5.0
6.0
150 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS
16.7 14.2 11.6 8.96 7.53 6.07
749 657 553 442 376 307
187 164 138 110 94.0 76.8
83.2 73.0 61.4 49.1 41.8 34.1
46.8 41.1 34.6 27.6 23.5 19.2
30.0 26.3 22.1 17.7 15.0 12.3
125 x 75 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS
16.7 14.2 11.6 8.96 7.53 6.07
616 539 452 359 306 249
154 135 113 89.9 76.4 62.4
68.4 59.9 50.2 39.9 34.0 27.7
38.5 33.7 28.2 22.5 19.1 15.6
100 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.5 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
12.0 10.3 8.49 7.53 6.60 5.56 4.50 3.64
253 226 193 175 158 135 111 90.7
63.3 56.5 48.4 43.7 39.4 33.7 27.7 22.7
28.1 25.1 21.5 19.4 17.5 15.0 12.3 10.1
15.8 14.1 12.1 10.9 9.85 8.44 6.94 5.67
D8-23
Note:
1.
Serviceabilty Load W *S1 = 185El/(250L2)
7.0
8.0
9.0
10.0
11.0
12.0
13.0
14.0
20.8 18.3 15.4 12.3 10.4 8.53
15.3 13.4 11.3 9.02 7.67 6.27
11.7 10.3 8.64 6.90 5.88 4.80
9.24 8.11 6.83 5.45 4.64 3.79
7.49 6.57 5.53 4.42 3.76 3.07
6.19 5.43 4.57 3.65 3.11 2.54
5.20 4.56 3.84 3.07 2.61 2.13
4.43 3.89 3.27 2.61 2.23 1.82
3.82 3.35 2.82 2.25 1.92 1.57
24.6 21.6 18.1 14.4 12.2 9.98
17.1 15.0 12.6 9.98 8.49 6.93
12.6 11.0 9.22 7.33 6.24 5.09
9.62 8.42 7.06 5.62 4.78 3.90
7.60 6.65 5.58 4.44 3.77 3.08
6.16 5.39 4.52 3.59 3.06 2.49
5.09 4.45 3.74 2.97 2.53 2.06
4.28 3.74 3.14 2.50 2.12 1.73
3.64 3.19 2.67 2.13 1.81 1.48
3.14 2.75 2.31 1.83 1.56 1.27
10.1 9.04 7.74 6.99 6.30 5.40 4.44 3.63
7.03 6.28 5.37 4.86 4.38 3.75 3.08 2.52
5.16 4.61 3.95 3.57 3.22 2.75 2.26 1.85
3.95 3.53 3.02 2.73 2.46 2.11 1.73 1.42
3.12 2.79 2.39 2.16 1.95 1.67 1.37 1.12
2.53 2.26 1.93 1.75 1.58 1.35 1.11 0.907
2.09 1.87 1.60 1.44 1.30 1.12 0.917 0.750
1.76 1.57 1.34 1.21 1.09 0.937 0.771 0.630
1.50 1.34 1.14 1.03 0.932 0.799 0.657 0.537
1.29 1.15 0.987 0.892 0.804 0.689 0.566 0.463
D8-24
TABLE D8.2-1(2)(A)
STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS CONTINUOUS BEAMS WITH FULL LATERAL RESTRAINT DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness = Maximum Design Load based on Design Moment Capacity bending about x-axis = Maximum Design Load based on Design Shear Capacity
W *L1 W *L2 Maximum Design Load W *L is LESSER of W *L1 and W *L2
Designation d
b
W*L1 (kN)
Mass per m
W*L2
FLR
Span of Beam (L) in metres
t
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
mm mm mm
kg/m
0.5
0.75
1.0
1.25
1.5
1.75
2.0
2.5
3.0
3.5
4.0
4.5
5.0
6.0
kN
m
DCTDHS/06 MARCH 2002
100 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.5 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
12.0 10.3 8.49 7.53 6.60 5.56 4.50 3.64
294 258 216 194 173 147 118 80.8
196 172 144 129 115 97.9 78.6 53.6
147 129 108 97.0 86.4 73.5 59.0 40.4
118 103 86.6 77.6 69.1 58.8 47.2 32.3
97.9 85.9 72.2 64.7 57.6 49.0 39.3 26.9
83.9 73.6 61.9 55.4 49.4 42.0 33.7 23.1
73.5 64.4 54.1 48.5 43.2 36.7 29.5 20.2
58.8 51.5 43.3 38.8 34.5 29.4 23.6 16.2
49.0 42.9 36.1 32.3 28.8 24.5 19.7 13.5
42.0 36.8 30.9 27.7 24.7 21.0 16.9 11.5
36.7 32.2 27.1 24.2 21.6 18.4 14.7 10.1
32.6 28.6 24.1 21.6 19.2 16.3 13.1 8.96
29.4 25.8 21.6 19.4 17.3 14.7 11.8 8.08
24.5 21.5 18.0 16.2 14.4 12.2 9.83 6.73
391 333 273 241 209 176 142 115
32.8 33.3 33.8 34.0 33.9 34.1 34.9 41.6
75 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
9.67 8.35 6.92 5.42 4.58 3.72 3.01
182 161 137 111 94.6 76.4 53.5
121 108 91.3 73.8 63.0 50.9 35.7
90.9 80.7 68.5 55.4 47.3 38.2 26.8
72.7 64.5 54.8 44.3 37.8 30.5 21.4
60.6 53.8 45.7 36.9 31.5 25.5 17.8
52.0 46.1 39.1 31.6 27.0 21.8 15.3
45.5 40.3 34.3 27.7 23.6 19.1 13.4
36.4 32.3 27.4 22.1 18.9 15.3 10.7
30.3 26.9 22.8 18.5 15.8 12.7 8.92
26.0 23.0 19.6 15.8 13.5 10.9 7.65
22.7 20.2 17.1 13.8 11.8 9.54 6.69
20.2 17.9 15.2 12.3 10.5 8.48 5.95
18.2 16.1 13.7 11.1 9.46 7.64 5.35
15.2 13.4 11.4 9.23 7.88 6.36 4.46
284 245 202 156 132 107 86.4
37.1 37.5 38.0 37.9 38.1 38.9 45.4
75 x 25 x 2.5 RHS 2.0 RHS 1.6 RHS
3.60 2.93 2.38
65.2 53.8 44.2
43.5 35.9 29.4
32.6 26.9 22.1
26.1 21.5 17.7
21.7 17.9 14.7
18.6 15.4 12.6
16.3 13.5 11.0
13.0 10.8 8.83
10.9 8.97 7.36
9.31 7.69 6.31
8.15 6.73 5.52
7.24 5.98 4.91
6.52 5.38 4.42
5.43 4.49 3.68
127 103 83.1
13.3 13.5 13.8
65 x 35 x 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS
5.35 4.25 3.60 2.93
86.0 71.2 61.3 50.5
57.4 47.5 40.8 33.7
43.0 35.6 30.6 25.3
34.4 28.5 24.5 20.2
28.7 23.7 20.4 16.8
24.6 20.3 17.5 14.4
21.5 17.8 15.3 12.6
17.2 14.2 12.3 10.1
14.3 11.9 10.2 8.42
12.3 10.2 8.75 7.22
10.8 8.90 7.66 6.32
9.56 7.91 6.81 5.62
8.60 7.12 6.13 5.05
7.17 5.94 5.10 4.21
170 132 112 90.7
23.9 24.1 24.3 24.5
50 x 25 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
3.07 2.62 2.15 1.75
38.0 33.1 27.6 22.8
25.3 22.1 18.4 15.2
19.0 16.5 13.8 11.4
15.2 13.2 11.0 9.14
12.7 11.0 9.21 7.61
10.9 9.45 7.89 6.53
9.50 8.27 6.91 5.71
7.60 6.62 5.52 4.57
6.33 5.51 4.60 3.81
5.43 4.73 3.95 3.26
4.75 4.14 3.45 2.86
4.22 3.68 3.07 2.54
3.80 3.31 2.76 2.28
3.17 2.76 2.30 1.90
97.8 83.3 68.1 55.5
16.2 16.4 16.7 16.9
50 x 20 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
2.83 2.42 1.99 1.63
33.4 29.2 24.5 20.3
22.3 19.5 16.3 13.6
16.7 14.6 12.3 10.2
13.4 11.7 9.80 8.13
11.1 9.74 8.17 6.78
9.55 8.35 7.00 5.81
8.36 7.31 6.13 5.08
6.68 5.85 4.90 4.07
5.57 4.87 4.08 3.39
4.77 4.18 3.50 2.91
4.18 3.65 3.06 2.54
3.71 3.25 2.72 2.26
3.34 2.92 2.45 2.03
2.79 2.44 2.04 1.69
96.5 82.2 67.3 54.7
11.2 11.5 11.8 12.0
Notes:
1. 2. 3.
FLR FLR φ αm
= 1.809 (π2 E I y G J / M2SX)0.5 (See Section D4.1.3 of these tables for explanation) = Segment length for full lateral restraint (φMbx = φMsx) = 0.9 = 1.0
4. 5. 6.
αs W *L1 W *L2
= = =
1.0 8 φ Ms /L 1.6 φ Vv
DCTDHS/06 MARCH 2002
TABLE D8.2-1(2)(B)
SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS CONTINUOUS BEAMS DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250
Designation d
b
W*S1 (kN)
Mass per m
Span of Beam (L) in metres
t
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
kg/m
0.5
D8-25
0.75
1.0
1.25
1.5
1.75
2.0
2.5
3.0
3.5
4.0
4.5
5.0
6.0
100 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.5 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
12.0 10.3 8.49 7.53 6.60 5.56 4.50 3.64
1010 904 774 699 630 540 444 363
450 402 344 311 280 240 197 161
253 226 193 175 158 135 111 90.7
162 145 124 112 101 86.4 71.0 58.1
112 100 86.0 77.7 70.0 60.0 49.3 40.3
82.6 73.8 63.2 57.1 51.4 44.1 36.2 29.6
63.3 56.5 48.4 43.7 39.4 33.7 27.7 22.7
40.5 36.2 30.9 28.0 25.2 21.6 17.8 14.5
28.1 25.1 21.5 19.4 17.5 15.0 12.3 10.1
20.7 18.5 15.8 14.3 12.9 11.0 9.06 7.41
15.8 14.1 12.1 10.9 9.85 8.44 6.94 5.67
12.5 11.2 9.55 8.63 7.78 6.67 5.48 4.48
10.1 9.04 7.74 6.99 6.30 5.40 4.44 3.63
7.03 6.28 5.37 4.86 4.38 3.75 3.08 2.52
75 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
9.67 8.35 6.92 5.42 4.58 3.72 3.01
474 430 373 309 266 220 181
210 191 166 137 118 97.8 80.3
118 107 93.3 77.2 66.5 55.0 45.2
75.8 68.8 59.7 49.4 42.6 35.2 28.9
52.6 47.8 41.4 34.3 29.6 24.4 20.1
38.7 35.1 30.4 25.2 21.7 18.0 14.7
29.6 26.9 23.3 19.3 16.6 13.8 11.3
18.9 17.2 14.9 12.4 10.6 8.80 7.23
13.2 11.9 10.4 8.58 7.39 6.11 5.02
9.66 8.77 7.61 6.30 5.43 4.49 3.69
7.40 6.72 5.83 4.83 4.16 3.44 2.82
5.85 5.31 4.61 3.81 3.29 2.72 2.23
4.74 4.30 3.73 3.09 2.66 2.20 1.81
3.29 2.98 2.59 2.14 1.85 1.53 1.25
75 x 25 x 2.5 RHS 2.0 RHS 1.6 RHS
3.60 2.93 2.38
169 141 117
75.0 62.7 51.9
42.2 35.3 29.2
27.0 22.6 18.7
18.8 15.7 13.0
13.8 11.5 9.54
10.6 8.82 7.30
6.75 5.64 4.67
4.69 3.92 3.25
3.45 2.88 2.38
2.64 2.20 1.83
2.08 1.74 1.44
1.69 1.41 1.17
1.17 0.980 0.811
65 x 35 x 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS
5.35 4.25 3.60 2.93
194 166 145 121
86.4 73.9 64.3 53.7
48.6 41.6 36.2 30.2
31.1 26.6 23.2 19.3
21.6 18.5 16.1 13.4
15.9 13.6 11.8 9.86
12.1 10.4 9.05 7.55
7.77 6.65 5.79 4.83
5.40 4.62 4.02 3.35
3.97 3.40 2.95 2.46
3.04 2.60 2.26 1.89
2.40 2.05 1.79 1.49
1.94 1.66 1.45 1.21
1.35 1.16 1.01 0.839
50 x 25 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
3.07 2.62 2.15 1.75
66.1 58.5 49.6 41.5
29.4 26.0 22.1 18.5
16.5 14.6 12.4 10.4
10.6 9.36 7.94 6.65
7.35 6.50 5.51 4.62
5.40 4.78 4.05 3.39
4.13 3.66 3.10 2.60
2.65 2.34 1.99 1.66
1.84 1.63 1.38 1.15
1.35 1.19 1.01 0.848
1.03 0.915 0.775 0.649
0.817 0.723 0.613 0.513
0.661 0.585 0.496 0.415
0.459 0.406 0.345 0.289
50 x 20 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
2.83 2.42 1.99 1.63
56.3 50.2 42.8 36.0
25.0 22.3 19.0 16.0
14.1 12.5 10.7 9.00
9.01 8.03 6.85 5.76
6.26 5.57 4.76 4.00
4.60 4.10 3.49 2.94
3.52 3.14 2.68 2.25
2.25 2.01 1.71 1.44
1.56 1.39 1.19 1.00
1.15 1.02 0.874 0.735
0.880 0.784 0.669 0.562
0.695 0.619 0.528 0.444
0.563 0.502 0.428 0.360
0.391 0.348 0.297 0.250
mm mm mm
Note:
1.
Serviceabilty Load W *S1 =185EI / (250L2)
D8-26 TABLE D8.2-2(A)
STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS CONTINUOUS BEAMS WITH FULL LATERAL RESTRAINT DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness bending about x-axis DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
W *L1 = Maximum Design Load based on Design Moment Capacity W *L2 = Maximum Design Load based on Design Shear Capacity Maximum Design Load W *L is LESSER of W *L1 and W *L2
Designation d
b
W*L1 (kN)
Mass per m kg/m
0.5
0.75
1.0
125 x 75 x 2.8 RHS 2.3 RHS
8.39 6.95
271 196
181 131
136 98.0
100 x 50 x 2.8 RHS 2.3 RHS
6.19 5.14
163 136
108 90.8
75 x 50 x 2.8 RHS 2.3 RHS
5.09 4.24
104 87.8
65 x 35 x 2.8 RHS 2.3 RHS
3.99 3.34
50 x 25 x 2.8 RHS 2.3 RHS 50 x 20 x 2.8 RHS 2.3 RHS 1.
DCTDHS/06 MARCH 2002
2. 3. 4. 5. 6.
FLR
Span of Beam (L) in metres
t
mm mm mm
Notes:
W*L2
FLR FLR φ αm αs W *L1 W *L2
= = = = = = =
1.25
1.5
1.75
2.0
2.5
3.0
3.5
4.0
4.5
5.0
6.0
kN
m
108 78.4
90.4 65.3
77.4 56.0
67.8 49.0
54.2 39.2
45.2 32.7
38.7 28.0
33.9 24.5
30.1 21.8
27.1 19.6
22.6 16.3
250 207
58.8 68.1
81.3 68.1
65.0 54.5
54.2 45.4
46.4 38.9
40.6 34.1
32.5 27.3
27.1 22.7
23.2 19.5
20.3 17.0
18.1 15.1
16.3 13.6
13.5 11.4
196 162
34.0 34.2
69.6 58.6
52.2 43.9
41.7 35.1
34.8 29.3
29.8 25.1
26.1 22.0
20.9 17.6
17.4 14.6
14.9 12.5
13.0 11.0
11.6 9.76
10.4 8.78
8.70 7.32
146 122
38.0 38.2
67.3 57.1
44.9 38.0
33.7 28.5
26.9 22.8
22.4 19.0
19.2 16.3
16.8 14.3
13.5 11.4
11.2 9.51
9.62 8.15
8.42 7.13
7.48 6.34
6.73 5.71
5.61 4.76
124 103
24.1 24.4
2.89 2.44
36.1 31.0
24.1 20.6
18.0 15.5
14.4 12.4
12.0 10.3
10.3 8.85
9.02 7.74
7.22 6.19
6.02 5.16
5.16 4.42
4.51 3.87
4.01 3.44
3.61 3.10
3.01 2.58
92.1 77.3
16.3 16.5
2.67 2.25
31.8 27.4
21.2 18.3
15.9 13.7
12.7 11.0
10.6 9.14
9.09 7.83
7.95 6.85
6.36 5.48
5.30 4.57
4.54 3.92
3.98 3.43
3.53 3.05
3.18 2.74
2.65 2.28
90.9 76.3
11.3 11.6
1.809 (π2 E Iy G J / M2SX)0.5 (See Section D4.1.3 of these tables for explanation) Segment length for full lateral restraint (φMbx = φMsx) 0.9 1.0 1.0 8 φ Ms/L 1.6 φ Vv
DCTDHS/06 MARCH 2002
TABLE D8.2-2(B)
SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS CONTINUOUS BEAMS DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness bending about x-axis DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250
Designation d
b
W*S1 (kN)
Mass per m
Span of Beam (L) in metres
t
mm mm mm
kg/m
0.5
0.75
1.0
1.25
1.5
1.75
2.0
2.5
3.0
3.5
4.0
4.5
5.0
6.0
125 x 75 x 2.8 RHS 2.3 RHS
8.39 6.95
1350 1130
601 504
338 283
216 181
150 126
110 92.6
84.5 70.9
54.1 45.4
37.6 31.5
27.6 23.1
21.1 17.7
16.7 14.0
13.5 11.3
9.39 7.87
100 x 50 x 2.8 RHS 2.3 RHS
6.19 5.14
595 502
264 223
149 126
16.5 14.0
12.1 10.2
75 x 50 x 2.8 RHS 2.3 RHS
5.09 4.24
292 248
130 110
65 x 35 x 2.8 RHS 2.3 RHS
3.99 3.34
158 135
50 x 25 x 2.8 RHS 2.3 RHS
2.89 2.44
50 x 20 x 2.8 RHS 2.3 RHS
2.67 2.25
Note:
1.
95.2 80.4
66.1 55.8
48.6 41.0
37.2 31.4
23.8 20.1
73.0 62.0
46.7 39.7
32.5 27.6
23.8 20.3
18.3 15.5
11.7 9.92
8.12 6.89
70.2 60.2
39.5 33.9
25.3 21.7
17.6 15.0
12.9 11.1
9.87 8.46
6.32 5.42
63.2 55.1
28.1 24.5
15.8 13.8
10.1 8.82
7.03 6.13
5.16 4.50
3.95 3.45
54.0 47.4
24.0 21.1
13.5 11.8
8.64 7.58
6.00 5.26
4.41 3.87
3.38 2.96
Serviceabilty Load W *S1 = 185EI / (250L2)
9.29 7.85
7.34 6.20
5.95 5.02
4.13 3.49
5.96 5.06
4.56 3.88
3.61 3.06
2.92 2.48
2.03 1.72
4.39 3.76
3.22 2.76
2.47 2.12
1.95 1.67
1.58 1.35
1.10 0.940
2.53 2.21
1.76 1.53
1.29 1.13
0.988 0.861
0.781 0.681
0.632 0.551
0.439 0.383
2.16 1.90
1.50 1.32
1.10 0.967
0.844 0.740
0.667 0.585
0.540 0.474
0.375 0.329
D8-27
D8-28
TABLE D8.2-3(1)(A)
STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS CONTINUOUS BEAMS WITH FULL LATERAL RESTRAINT DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis W *L1 = Maximum Design Load based on Design Moment Capacity W *L2 = Maximum Design Load based on Design Shear Capacity Maximum Design Load W *L is LESSER of W *L1 and W *L2
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
Designation d
b
W*L1 (kN)
Mass per m
W*L2 Span of Beam (L) in metres
t
mm mm mm
kg/m
100 x 100 x 6.0 SHS 16.7 5.0 SHS 14.2 4.0 SHS 11.6 3.0 SHS 8.96 2.5 SHS 7.53 2.0 SHS 6.07 90 x 90 x 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS
8.01 6.74 5.45 4.39
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
13.0
14.0
kN
238 206 168 120 91.0 65.1
119 103 84.1 60.1 45.5 32.5
79.4 68.6 56.1 40.1 30.3 21.7
59.6 51.4 42.1 30.1 22.7 16.3
47.7 41.2 33.6 24.1 18.2 13.0
39.7 34.3 28.0 20.0 15.2 10.8
34.0 29.4 24.0 17.2 13.0 9.30
29.8 25.7 21.0 15.0 11.4 8.13
26.5 22.9 18.7 13.4 10.1 7.23
23.8 20.6 16.8 12.0 9.10 6.51
21.7 18.7 15.3 10.9 8.27 5.92
19.9 17.1 14.0 10.0 7.58 5.42
18.3 15.8 12.9 9.25 7.00 5.01
17.0 14.7 12.0 8.59 6.50 4.65
406 346 283 217 182 147
95.4 77.9 55.5 39.9
47.7 38.9 27.8 19.9
31.8 26.0 18.5 13.3
23.8 19.5 13.9 9.97
19.1 15.6 11.1 7.98
15.9 13.0 9.25 6.65
13.6 11.1 7.93 5.70
11.9 9.74 6.94 4.98
10.6 8.65 6.17 4.43
9.54 7.79 5.55 3.99
8.67 7.08 5.05 3.63
7.95 6.49 4.63 3.32
7.34 5.99 4.27 3.07
6.81 5.56 3.96 2.85
194 163 132 107
89 x 89 x 6.0 SHS 9.06 5.0 SHS 12.5 3.5 SHS 14.6
116 159 183
57.8 79.5 91.6
38.5 53.0 61.1
28.9 39.8 `45.8
23.1 31.8 36.6
19.3 26.5 30.5
16.5 22.7 26.2
14.5 19.9 22.9
12.8 17.7 20.4
11.6 15.9 18.3
10.5 14.5 16.7
9.64 13.3 15.3
8.89 12.2 14.1
8.26 11.4 13.1
220 303 354
75 x 75 x 6.0 SHS 12.0 5.0 SHS 10.3 4.0 SHS 8.49 3.5 SHS 7.53 3.0 SHS 6.60 2.5 SHS 5.56 2.0 SHS 4.50
124 109 91.5 82.0 71.9 55.2 42.3
62.2 54.5 45.8 41.0 36.0 27.6 21.2
41.5 36.3 30.5 27.3 24.0 18.4 14.1
31.1 27.3 22.9 20.5 18.0 13.8 10.6
24.9 21.8 18.3 16.4 14.4 11.0 8.47
20.7 18.2 15.3 13.7 12.0 9.20 7.06
17.8 15.6 13.1 11.7 10.3 7.89 6.05
15.6 13.6 11.4 10.2 8.99 6.90 5.29
13.8 12.1 10.2 9.11 7.99 6.13 4.70
12.4 10.9 9.15 8.20 7.19 5.52 4.23
11.3 9.91 8.32 7.45 6.54 5.02 3.85
10.4 9.08 7.63 6.83 5.99 4.60 3.53
9.57 8.39 7.04 6.31 5.53 4.25 3.26
8.89 7.79 6.54 5.86 5.14 3.94 3.02
290 250 206 183 159 134 109
Notes:
DCTDHS/06 MARCH 2002
1. 2. 3. 4. 5.
φ αm αs W *L1 W *L2
= = = = =
0.9 1.0 1.0 8 φ Ms/L 1.6 φ Vv
DCTDHS/06 MARCH 2002
TABLE D8.2-3(1)(B)
SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS CONTINUOUS BEAMS DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250
Designation d
b
W*S1 (kN)
Mass per m
Span of Beam (L) in metres
t kg/m
1.0
2.0
3.0
4.0
5.0
100 x 100 x 6.0 SHS 16.7 5.0 SHS 14.2 4.0 SHS 11.6 3.0 SHS 8.96 2.5 SHS 7.53 2.0 SHS 6.07
449 393 330 262 223 182
112 98.3 82.5 65.5 55.7 45.5
49.9 43.7 36.7 29.1 24.8 20.2
28.1 24.6 20.6 16.4 13.9 11.4
8.01 6.74 5.45 4.39
188 161 132 107
47.1 40.2 32.9 26.8
20.9 17.9 14.6 11.9
89 x 89 x 6.0 SHS 9.06 5.0 SHS 12.5 3.5 SHS 14.6
203 268 304
50.8 67.0 76.1
75 x 75 x 6.0 SHS 12.0 5.0 SHS 10.3 4.0 SHS 8.49 3.5 SHS 7.53 3.0 SHS 6.60 2.5 SHS 5.56 2.0 SHS 4.50
171 153 131 118 106 90.8 74.7
42.8 38.2 32.6 29.5 26.5 22.7 18.7
mm
mm mm
90 x 90 x 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS
D8-29
Note:
1.
Serviceabilty Load W *S1 = 185EI / (250L2)
6.0
7.0
8.0
9.0
10.0
11.0
12.0
13.0
14.0
18.0 15.7 13.2 10.5 8.92 7.28
12.5 10.9 9.16 7.28 6.19 5.06
9.17 8.02 6.73 5.35 4.55 3.72
7.02 6.14 5.15 4.09 3.48 2.84
5.55 4.85 4.07 3.23 2.75 2.25
4.49 3.93 3.30 2.62 2.23 1.82
3.71 3.25 2.73 2.17 1.84 1.50
3.12 2.73 2.29 1.82 1.55 1.26
2.66 2.33 1.95 1.55 1.32 1.08
2.29 2.01 1.68 1.34 1.14 0.929
11.8 10.0 8.22 6.70
7.54 6.43 5.26 4.29
5.23 4.46 3.65 2.98
3.84 3.28 2.68 2.19
2.94 2.51 2.05 1.67
2.33 1.98 1.62 1.32
1.88 1.61 1.32 1.07
1.56 1.33 1.09 0.885
1.31 1.12 0.913 0.744
1.11 0.951 0.778 0.634
0.961 0.820 0.671 0.547
22.6 29.8 33.8
12.7 16.8 19.0
8.14 10.7 12.2
5.65 7.45 8.45
4.15 5.47 6.21
3.18 4.19 4.75
2.51 3.31 3.76
2.03 2.68 3.04
1.68 2.22 2.51
1.41 1.86 2.11
1.20 1.59 1.80
1.04 1.37 1.55
19.0 17.0 14.5 13.1 11.8 10.1 8.30
10.7 9.55 8.16 7.37 6.62 5.68 4.67
6.85 6.11 5.22 4.72 4.24 3.63 2.99
4.76 4.25 3.63 3.28 2.94 2.52 2.08
3.50 3.12 2.67 2.41 2.16 1.85 1.52
2.68 2.39 2.04 1.84 1.66 1.42 1.17
2.12 1.89 1.61 1.46 1.31 1.12 0.923
1.71 1.53 1.31 1.18 1.06 0.908 0.747
1.42 1.26 1.08 0.975 0.876 0.751 0.618
1.19 1.06 0.907 0.819 0.736 0.631 0.519
1.01 0.904 0.773 0.698 0.627 0.538 0.442
0.874 0.780 0.666 0.602 0.541 0.463 0.381
TABLE D8.2-3(2)(A)
D8-30
STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS CONTINUOUS BEAMS WITH FULL LATERAL RESTRAINT DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis = Maximum Design Load based on Design Moment Capacity
W *L1 W *L2 = Maximum Design Load based on Design Shear Capacity Maximum Design Load W *L is LESSER of W *L1 and W *L2
Designation d
b
W*L1 (kN)
Mass per m
W*L2 Span of Beam (L) in metres
t
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002
mm mm mm
kg/m
0.5
0.75
1.0
1.25
1.5
1.75
2.0
2.5
3.0
3.5
4.0
75 x 75 x 6.0 SHS 5.0 SHS 4.0 SHS 3.5 SHS 3.0 SHS 2.5 SHS 2.0 SHS 65 x 65 x 6.0 SHS 5.0 SHS 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 50 x 50 x 5.0 SHS 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 40 x 40 x 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 35 x 35 x 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 30 x 30 x 2.0 SHS 1.6 SHS 25 x 25 x 2.5 SHS 2.0 SHS 1.6 SHS 20 x 20 x 1.6 SHS
12.0 10.3 8.49 7.53 6.60 5.56 4.50 10.1 8.75 7.23 5.66 4.78 3.88 3.13 6.39 5.35 4.25 3.60 2.93 2.38 4.09 3.30 2.82 2.31 1.88 2.83 2.42 1.99 1.63 1.68 1.38 1.64 1.36 1.12 0.873
249 218 183 164 144 110 78.6 178 158 133 107 88.6 63.5 45.4 85.3 73.8 60.8 52.3 42.6 30.7 43.6 37.1 32.2 26.8 21.8 27.4 23.9 20.1 16.6 14.3 11.9 11.1 9.50 8.01 4.86
166 145 122 109 95.9 73.6 52.4 119 105 89.0 71.6 59.1 42.4 30.3 56.8 49.2 40.6 34.9 28.4 20.5 29.1 24.7 21.5 17.9 14.5 18.3 16.0 13.4 11.1 9.53 7.95 7.40 6.33 5.34 3.24
124 109 91.5 82.0 71.9 55.2 39.3 89.1 78.8 66.7 53.7 44.3 31.8 22.7 42.6 36.9 30.4 26.2 21.3 15.4 21.8 18.5 16.1 13.4 10.9 13.7 12.0 10.0 8.31 7.15 5.96 5.55 4.75 4.00 2.43
99.6 87.2 73.2 65.6 57.5 44.2 31.4 71.3 63.1 53.4 43.0 35.5 25.4 18.2 34.1 29.5 24.3 20.9 17.0 12.3 17.5 14.8 12.9 10.7 8.73 11.0 9.58 8.02 6.65 5.72 4.77 4.44 3.80 3.20 1.95
83.0 72.7 61.0 54.7 47.9 36.8 26.2 59.4 52.5 44.5 35.8 29.5 21.2 15.1 28.4 24.6 20.3 17.4 14.2 10.2 14.5 12.4 10.7 8.93 7.27 9.13 7.98 6.68 5.54 4.76 3.98 3.70 3.17 2.67 1.62
71.1 62.3 52.3 46.8 41.1 31.5 22.5 50.9 45.0 38.1 30.7 25.3 18.2 13.0 24.4 21.1 17.4 14.9 12.2 8.78 12.5 10.6 9.20 7.65 6.23 7.83 6.84 5.73 4.75 4.08 3.41 3.17 2.71 2.29 1.39
62.2 54.5 45.8 41.0 36.0 27.6 19.7 44.6 39.4 33.4 26.8 22.2 15.9 11.4 21.3 18.4 15.2 13.1 10.7 7.68 10.9 9.27 8.05 6.70 5.45 6.85 5.99 5.01 4.16 3.57 2.98 2.77 2.38 2.00 1.22
49.8 43.6 36.6 32.8 28.8 22.1 15.7 35.7 31.5 26.7 21.5 17.7 12.7 9.08 17.1 14.8 12.2 10.5 8.52 6.14 8.73 7.42 6.44 5.36 4.36 5.48 4.79 4.01 3.33 2.86 2.39 2.22 1.90 1.60 0.973
41.5 36.3 30.5 27.3 24.0 18.4 13.1 29.7 26.3 22.2 17.9 14.8 10.6 7.57 14.2 12.3 10.1 8.72 7.10 5.12 7.27 6.18 5.36 4.46 3.64 4.57 3.99 3.34 2.77 2.38 1.99 1.85 1.58 1.33 0.811
35.6 31.1 26.1 23.4 20.5 15.8 11.2 25.5 22.5 19.1 15.3 12.7 9.08 6.49 12.2 10.5 8.69 7.47 6.09 4.39 6.24 5.30 4.60 3.83 3.12 3.91 3.42 2.86 2.38 2.04 1.70 1.59 1.36 1.14 0.695
31.1 27.3 22.9 20.5 18.0 13.8 9.83 22.3 19.7 16.7 13.4 11.1 7.94 5.68 10.7 9.22 7.60 6.54 5.33 3.84 5.46 4.64 4.02 3.35 2.73 3.43 2.99 2.51 2.08 1.79 1.49 1.39 1.19 1.00 0.608
Notes:
1.
φ
=
0.9
2.
αm
=
1.0
3.
αs
=
1.0
4.
W *L1
=
8 φ Ms/L
5. W *L2 =
1.6 φ Vv
4.5 27.7 24.2 20.3 18.2 16.0 12.3 8.74 19.8 17.5 14.8 11.9 9.85 7.06 5.05 9.47 8.19 6.76 5.81 4.73 3.41 4.85 4.12 3.58 2.98 2.42 3.04 2.66 2.23 1.85 1.59 1.33 1.23 1.06 0.890 0.540
5.0 24.9 21.8 18.3 16.4 14.4 11.0 7.86 17.8 15.8 13.3 10.7 8.86 6.35 4.54 8.53 7.38 6.08 5.23 4.26 3.07 4.36 3.71 3.22 2.68 2.18 2.74 2.39 2.01 1.66 1.43 1.19 1.11 0.950 0.801 0.486
6.0 20.7 18.2 15.3 13.7 12.0 9.20 6.55 14.9 13.1 11.1 8.95 7.39 5.29 3.78 7.10 6.15 5.07 4.36 3.55 2.56 3.64 3.09 2.68 2.23 1.82 2.28 2.00 1.67 1.39 1.19 0.994 0.925 0.792 0.667 0.405
kN 290 250 206 183 159 134 109 244 211 175 136 115 93.7 75.9 154 129 101 86.4 70.7 57.5 98.3 78.3 67.2 55.3 45.2 66.8 57.6 47.6 39.1 39.9 32.9 38.4 32.3 26.8 20.6
DCTDHS/06 MARCH 2002
TABLE D8.2-3(2)(B)
SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS CONTINUOUS BEAMS DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250
Designation d
b
W*S1 (kN)
Mass per m
Span of Beam (L) in metres
t
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
D8-31
mm mm mm
kg/m
0.5
0.75
1.0
1.25
1.5
75 x 75 x 6.0 SHS 5.0 SHS 4.0 SHS 3.5 SHS 3.0 SHS 2.5 SHS 2.0 SHS 65 x 65 x 6.0 SHS 5.0 SHS 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 50 x 50 x 5.0 SHS 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 40 x 40 x 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 35 x 35 x 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 30 x 30 x 2.0 SHS 1.6 SHS 25 x 25 x 2.5 SHS 2.0 SHS 1.6 SHS 20 x 20 x 1.6 SHS
12.0 10.3 8.49 7.53 6.60 5.56 4.50 10.1 8.75 7.23 5.66 4.78 3.88 3.13 6.39 5.35 4.25 3.60 2.93 2.38 4.09 3.30 2.82 2.31 1.88 2.83 2.42 1.99 1.63 1.68 1.38 1.64 1.36 1.12 0.873
685 611 522 472 424 363 299 418 378 327 269 232 191 157 152 135 115 100 83.8 69.3 62.3 55.2 48.6 41.1 34.3 35.2 31.3 26.7 22.4 16.1 13.7 10.0 8.78 7.55 3.60
305 272 232 210 188 162 133 186 168 145 119 103 85.0 69.8 67.6 60.2 51.2 44.6 37.2 30.8 27.7 24.5 21.6 18.3 15.2 15.7 13.9 11.9 9.97 7.16 6.07 4.45 3.90 3.36 1.60
171 153 131 118 106 90.8 74.7 105 94.5 81.7 67.2 57.9 47.8 39.2 38.0 33.8 28.8 25.1 20.9 17.3 15.6 13.8 12.2 10.3 8.58 8.80 7.83 6.67 5.61 4.03 3.42 2.50 2.20 1.89 0.899
110 97.8 83.6 75.5 67.8 58.1 47.8 66.9 60.4 52.3 43.0 37.0 30.6 25.1 24.3 21.7 18.4 16.0 13.4 11.1 9.97 8.83 7.78 6.57 5.49 5.63 5.01 4.27 3.59 2.58 2.19 1.60 1.41 1.21 0.576
76.2 67.9 58.0 52.4 47.1 40.4 33.2 46.5 42.0 36.3 29.9 25.7 21.3 17.4 16.9 15.0 12.8 11.1 9.31 7.70 6.92 6.13 5.40 4.57 3.81 3.91 3.48 2.96 2.49 1.79 1.52 1.11 0.976 0.839 0.400
Note:
1.
Serviceabilty Load W *S1 = 185EI / (250L2)
1.75 56.0 49.9 42.6 38.5 34.6 29.7 24.4 34.1 30.8 26.7 21.9 18.9 15.6 12.8 12.4 11.1 9.41 8.19 6.84 5.66 5.09 4.51 3.97 3.35 2.80 2.87 2.56 2.18 1.83 1.32 1.12 0.817 0.717 0.616 0.294
2.0 42.8 38.2 32.6 29.5 26.5 22.7 18.7 26.1 23.6 20.4 16.8 14.5 12.0 9.81 9.51 8.46 7.20 6.27 5.23 4.33 3.89 3.45 3.04 2.57 2.14 2.20 1.96 1.67 1.40 1.01 0.854 0.625 0.549 0.472 0.225
2.5 27.4 24.5 20.9 18.9 17.0 14.5 12.0 16.7 15.1 13.1 10.8 9.26 7.65 6.28 6.08 5.42 4.61 4.01 3.35 2.77 2.49 2.21 1.95 1.64 1.37 1.41 1.25 1.07 0.897 0.645 0.547 0.400 0.351 0.302 0.144
3.0
3.5
4.0
19.0 14.0 10.7 17.0 12.5 9.55 14.5 10.7 8.16 13.1 9.63 7.37 11.8 8.65 6.62 10.1 7.42 5.68 8.30 6.10 4.67 11.6 8.53 6.53 10.5 7.71 5.90 9.07 6.67 5.10 7.47 5.49 4.20 6.43 4.72 3.62 5.31 3.90 2.99 4.36 3.20 2.45 4.22 3.10 2.38 3.76 2.76 2.12 3.20 2.35 1.80 2.79 2.05 1.57 2.33 1.71 1.31 1.92 1.41 1.08 1.73 1.27 0.973 1.53 1.13 0.862 1.35 0.993 0.760 1.14 0.838 0.642 0.953 0.700 0.536 0.978 0.719 0.550 0.870 0.639 0.489 0.741 0.545 0.417 0.623 0.458 0.350 0.448 0.329 0.252 0.380 0.279 0.214 0.278 0.204 0.156 0.244 0.179 0.137 0.210 0.154 0.118 0.0999 0.0734 0.0562
4.5
5.0
6.0
8.46 7.55 6.45 5.83 5.23 4.49 3.69 5.16 4.66 4.03 3.32 2.86 2.36 1.94 1.88 1.67 1.42 1.24 1.03 0.855 0.769 0.681 0.600 0.507 0.424 0.435 0.387 0.329 0.277 0.199 0.169 0.124 0.108 0.0932 0.0444
6.85 6.11 5.22 4.72 4.24 3.63 2.99 4.18 3.78 3.27 2.69 2.32 1.91 1.57 1.52 1.35 1.15 1.00 0.838 0.693 0.623 0.552 0.486 0.411 0.343 0.352 0.313 0.267 0.224 0.161 0.137 0.100 0.0878 0.0755 0.0360
4.76 4.25 3.63 3.28 2.94 2.52 2.08 2.90 2.62 2.27 1.87 1.61 1.33 1.09 1.06 0.940 0.800 0.697 0.582 0.481 0.433 0.383 0.338 0.285 0.238 0.245 0.217 0.185 0.156 0.112 0.0949 0.0695 0.0610 0.0524 0.0250
D8-32 TABLE D8.2-4(A)
STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
CONTINUOUS BEAMS WITH FULL LATERAL RESTRAINT DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness bending about x-axis W *L1 = Maximum Design Load based on Design Moment Capacity W *L2 = Maximum Design Load based on Design Shear Capacity Maximum Design Load W *L is LESSER of W *L1 and W *L2
Designation d
b
W*L1 (kN)
Mass per m
W*L2 Span of Beam (L) in metres
t
mm mm mm
kg/m
0.5
0.75
1.0
1.25
1.5
1.75
2.0
2.5
3.0
3.5
4.0
4.5
5.0
6.0
kN
100 x 100 x 2.8 SHS 2.3 SHS
8.39 6.95
201 150
134 99.7
100 74.8
80.2 59.8
66.9 49.8
57.3 42.7
50.1 37.4
40.1 29.9
33.4 24.9
28.7 21.4
25.1 18.7
22.3 16.6
20.1 15.0
16.7 12.5
203 169
75 x 75 x 2.8 SHS 2.3 SHS
6.19 5.14
131 97.1
87.0 64.7
65.3 48.6
52.2 38.8
43.5 32.4
37.3 27.7
32.6 24.3
26.1 19.4
21.8 16.2
18.6 13.9
16.3 12.1
14.5 10.8
13.1 9.71
10.9 8.09
149 124
13.1
11.2
107
65 x 65 x 2.3 SHS
4.42
78.6
52.4
39.3
31.4
26.2
22.5
19.6
15.7
9.82
8.73
7.86
6.55
50 x 50 x 2.8 SHS 2.3 SHS
3.99 3.34
57.5 48.7
38.3 32.5
28.8 24.4
23.0 19.5
19.2 16.2
16.4 13.9
14.4 12.2
11.5 9.75
9.58 8.12
8.21 6.96
7.19 6.09
6.39 5.42
5.75 4.87
4.79 4.06
95.5 80.2
40 x 40 x 2.8 SHS 2.3 SHS
3.11 2.62
35.2 30.1
23.5 20.1
17.6 15.0
14.1 12.0
11.7 10.0
10.1 8.60
8.80 7.52
7.04 6.02
5.86 5.01
5.03 4.30
4.40 3.76
3.91 3.34
3.52 3.01
2.93 2.51
74.0 62.5
35 x 35 x 2.8 SHS 2.3 SHS
2.67 2.25
26.1 22.4
17.4 15.0
13.0 11.2
10.4 8.98
7.45 6.41
6.52 5.61
5.21 4.49
4.34 3.74
3.72 3.21
3.26 2.80
2.90 2.49
2.61 2.24
2.17 1.87
63.2 53.7
Notes:
1. 2. 3. 4. 5.
φ αm αs W *L1 W *L2
= = = = =
0.9 1.0 1.0 8 φ Ms/L 1.6 φ Vv
8.69 7.48
DCTDHS/06 MARCH 2002
DCTDHS/06 MARCH 2002
TABLE D8.2-4(B)
SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS CONTINUOUS BEAMS DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness bending about x-axis DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250
Designation d
b
W*S1 (kN)
Mass per m
Span of Beams (L) in metres
t
kg/m
0.5
0.75
1.0
1.25
1.5
1.75
2.0
2.5
3.0
3.5
4.0
4.5
5.0
6.0
100 x 100 x 2.8 SHS 2.3 SHS
8.39 6.95
986 827
438 368
247 207
158 132
110 91.9
80.5 67.5
61.7 51.7
39.5 33.1
27.4 23.0
20.1 16.9
15.4 12.9
12.2 10.2
9.86 8.27
6.85 5.74
75 x 75 x 2.8 SHS 2.3 SHS
6.19 5.14
400 338
178 150
100 84.5
64.0 54.1
44.5 37.6
32.7 27.6
25.0 21.1
16.0 13.5
11.1 9.39
8.17 6.90
6.25 5.28
4.94 4.17
4.00 3.38
2.78 2.35
65 x 65 x 2.3 SHS
4.42
216
95.9
53.9
34.5
24.0
17.6
13.5
50 x 50 x 2.8 SHS 2.3 SHS
3.99 3.34
109 93.9
48.6 41.7
27.4 23.5
17.5 15.0
12.2 10.4
40 x 40 x 2.8 SHS 2.3 SHS
3.11 2.62
52.7 45.7
23.4 20.3
13.2 11.4
35 x 35 x 2.8 SHS 2.3 SHS
2.67 2.25
33.7 29.6
15.0 13.1
mm
Note:
mm mm
1.
Serviceabilty Load W *S1 = 185EI / (250L2)
8.43 7.39
8.63
5.99
4.40
3.37
2.66
2.16
1.50
8.94 7.66
6.84 5.87
4.38 3.76
3.04 2.61
2.23 1.92
1.71 1.47
1.35 1.16
1.09 0.939
0.760 0.652
8.43 7.32
5.85 5.08
4.30 3.73
3.29 2.86
2.11 1.83
1.46 1.27
1.08 0.933
0.823 0.715
0.650 0.565
0.527 0.457
0.366 0.318
5.40 4.73
3.75 3.28
2.75 2.41
2.11 1.85
1.35 1.18
0.937 0.821
0.689 0.603
0.527 0.462
0.417 0.365
0.337 0.296
0.234 0.205
D8-33
D8-34
TABLE D8.3-1(1)(A)
STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS FIXED END BEAMS WITH FULL LATERAL RESTRAINT DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis W *L1 = Maximum Design Load based on Design Moment Capacity W *L2 = Maximum Design Load based on Design Shear Capacity Maximum Design Load W *L is LESSER of W *L1 and W *L2
Designation DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
d
b
W*L1 (kN)
Mass per m
W*L2
FLR
Span of Beam (L) in metres
t
mm mm mm
kg/m
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
13.0
14.0
kN
m
150 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS
16.7 14.2 11.6 8.96 7.53 6.07
443 383 318 250 212 154
221 192 159 125 106 76.9
148 128 106 83.3 70.5 51.3
111 95.8 79.5 62.5 52.9 38.4
88.6 76.7 63.6 50.0 42.3 30.8
73.8 63.9 53.0 41.7 35.3 25.6
63.3 54.8 45.4 35.7 30.2 22.0
55.4 47.9 39.8 31.2 26.4 19.2
49.2 42.6 35.3 27.8 23.5 17.1
44.3 38.3 31.8 25.0 21.2 15.4
40.3 34.8 28.9 22.7 19.2 14.0
36.9 31.9 26.5 20.8 17.6 12.8
34.1 29.5 24.5 19.2 16.3 11.8
31.6 27.4 22.7 17.9 15.1 11.0
749 633 514 391 328 264
28.7 29.3 29.8 30.1 30.4 34.2
125 x 75 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS
16.7 14.2 11.6 8.96 7.53 6.07
409 354 293 226 169 121
205 177 146 113 84.4 60.3
136 118 97.6 75.4 56.3 40.2
102 88.4 73.2 56.5 42.2 30.1
81.9 70.7 58.6 45.2 33.8 24.1
68.2 58.9 48.8 37.7 28.1 20.1
58.5 50.5 41.8 32.3 24.1 17.2
51.2 44.2 36.6 28.3 21.1 15.1
45.5 39.3 32.5 25.1 18.8 13.4
40.9 35.4 29.3 22.6 16.9 12.1
37.2 32.1 26.6 20.6 15.3 11.0
34.1 29.5 24.4 18.8 14.1 10.0
31.5 27.2 22.5 17.4 13.0 9.28
29.2 25.3 20.9 16.2 12.1 8.61
634 538 438 334 281 226
59.6 60.0 60.4 61.2 69.7 79.5
100 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.5 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
12.0 10.3 8.49 7.53 6.60 5.56 4.50 3.64
220 193 162 145 130 110 88.5 60.6
110 96.6 81.2 72.7 64.8 55.1 44.2 30.3
73.5 64.4 54.1 48.5 43.2 36.7 29.5 20.2
55.1 48.3 40.6 36.4 32.4 27.5 22.1 15.2
44.1 38.6 32.5 29.1 25.9 22.0 17.7 12.1
36.7 32.2 27.1 24.2 21.6 18.4 14.7 10.1
31.5 27.6 23.2 20.8 18.5 15.7 12.6 8.66
27.5 24.2 20.3 18.2 16.2 13.8 11.1 7.58
24.5 21.5 18.0 16.2 14.4 12.2 9.83 6.73
22.0 19.3 16.2 14.5 13.0 11.0 8.85 6.06
20.0 17.6 14.8 13.2 11.8 10.0 8.04 5.51
18.4 16.1 13.5 12.1 10.8 9.18 7.37 5.05
17.0 14.9 12.5 11.2 9.97 8.48 6.81 4.66
15.7 13.8 11.6 10.4 9.25 7.87 6.32 4.33
489 417 341 301 261 220 178 143
35.8 36.3 36.8 37.0 36.9 37.1 38.0 45.3
Notes:
1.
DCTDHS/06 MARCH 2002
2. 3. 4. 5. 6.
FLR FLR φ αm αs W *L1 W *L2
= = = = = = =
1.970 (π2 E Iy G J / M2SX)0.5 (See Section D4.1.3 of these tables for explanation) Segment length for full lateral restraint (φMbx = φMsx) 0.9 1.0 1.0 12 φ Ms/L 2 φ Vv
DCTDHS/06 MARCH 2002
TABLE D8.3-1(1)(B)
SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS FIXED END BEAMS DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250
Designation DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
d
b
W*S1 (kN)
Mass per m
Span of Beam (L) in metres
t
mm mm mm
kg/m
1.0
2.0
150 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS
16.7 14.2 11.6 8.96 7.53 6.07
1550 1360 1150 917 781 638
125 x 75 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS
16.7 14.2 11.6 8.96 7.53 6.07
1280 1120 938 746 634 518
100 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.5 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
12.0 10.3 8.49 7.53 6.60 5.56 4.50 3.64
525 469 401 363 327 280 230 188
Note:
1.
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
13.0
14.0
389 341 287 229 195 159
173 152 128 102 86.7 70.8
97.1 85.3 71.7 57.3 48.8 39.8
62.2 54.6 45.9 36.7 31.2 25.5
43.2 37.9 31.9 25.5 21.7 17.7
31.7 27.8 23.4 18.7 15.9 13.0
24.3 21.3 17.9 14.3 12.2 9.96
19.2 16.8 14.2 11.3 9.64 7.87
15.5 13.6 11.5 9.17 7.81 6.38
12.8 11.3 9.49 7.58 6.45 5.27
10.8 9.47 7.97 6.37 5.42 4.43
9.20 8.07 6.79 5.43 4.62 3.77
7.93 6.96 5.86 4.68 3.98 3.25
320 280 235 187 159 129
142 124 104 82.9 70.5 57.5
79.9 69.9 58.6 46.6 39.7 32.4
51.1 44.7 37.5 29.8 25.4 20.7
35.5 31.1 26.1 20.7 17.6 14.4
26.1 22.8 19.1 15.2 12.9 10.6
20.0 17.5 14.7 11.7 9.91 8.09
15.8 13.8 11.6 9.21 7.83 6.39
12.8 11.2 9.38 7.46 6.34 5.18
10.6 9.24 7.75 6.17 5.24 4.28
8.88 7.77 6.51 5.18 4.41 3.60
7.56 6.62 5.55 4.41 3.75 3.06
6.52 5.71 4.79 3.81 3.24 2.64
58.4 52.1 44.6 40.3 36.3 31.1 25.6 20.9
32.8 29.3 25.1 22.7 20.4 17.5 14.4 11.8
21.0 18.8 16.1 14.5 13.1 11.2 9.21 7.53
14.6 13.0 11.2 10.1 9.08 7.78 6.40 5.23
10.7 9.58 8.19 7.40 6.67 5.72 4.70 3.84
8.21 7.33 6.27 5.67 5.11 4.38 3.60 2.94
6.48 5.79 4.96 4.48 4.04 3.46 2.84 2.32
5.25 4.69 4.01 3.63 3.27 2.80 2.30 1.88
4.34 3.88 3.32 3.00 2.70 2.32 1.90 1.56
3.65 3.26 2.79 2.52 2.27 1.95 1.60 1.31
3.11 2.78 2.38 2.15 1.94 1.66 1.36 1.11
2.68 2.39 2.05 1.85 1.67 1.43 1.18 0.961
131 117 100 90.7 81.8 70.0 57.6 47.1
Serviceabilty Load W *S1 = 384El/(250L2)
D8-35
D8-36
TABLE D8.3-1(2)(A)
STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS FIXED END BEAMS WITH FULL LATERAL RESTRAINT DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness = Maximum Design Load based on Design Moment Capacity bending about x-axis = Maximum Design Load based on Design Shear Capacity
W *L1 W *L2 Maximum Design Load W *L is LESSER of W *L1 and W *L2
Designation d
b
W*L1 (kN)
Mass per m
W*L2
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002
mm mm mm
kg/m
0.5
0.75
1.0
100 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.5 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
12.0 10.3 8.49 7.53 6.60 5.56 4.50 3.64
441 386 325 291 259 220 177 121
294 258 216 194 173 147 118 80.8
220 193 162 145 130 110 88.5 60.6
176 155 130 116 104 88.1 70.8 48.5
147 129 108 97.0 86.4 73.5 59.0 40.4
75 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
9.67 8.35 6.92 5.42 4.58 3.72 3.01
273 242 206 166 142 115 80.3
182 161 137 111 94.6 76.4 53.5
136 121 103 83.0 70.9 57.3 40.1
109 96.8 82.2 66.4 56.7 45.8 32.1
75 x 25 x 2.5 RHS 2.0 RHS 1.6 RHS
3.60 2.93 2.38
97.8 80.8 66.2
65.2 53.8 44.2
48.9 40.4 33.1
65 x 35 x 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS
5.35 4.25 3.60 2.93
129 107 91.9 75.8
86.0 71.2 61.3 50.5
50 x 25 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
3.07 2.62 2.15 1.75
57.0 49.6 41.4 34.3
50 x 20 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
2.83 2.42 1.99 1.63
50.1 43.9 36.8 30.5
Notes:
1. 2. 3.
FLR
Span of Beam (L) in metres
t
FLR FLR φ αm
1.25
1.5
1.75
2.0
2.5
3.0
3.5
4.0
4.5
5.0
6.0
kN
m
126 110 92.8 83.1 74.0 63.0 50.6 34.6
110 96.6 81.2 72.7 64.8 55.1 44.2 30.3
88.1 77.3 64.9 58.2 51.8 44.1 35.4 24.2
73.5 64.4 54.1 48.5 43.2 36.7 29.5 20.2
63.0 55.2 46.4 41.6 37.0 31.5 25.3 17.3
55.1 48.3 40.6 36.4 32.4 27.5 22.1 15.2
49.0 42.9 36.1 32.3 28.8 24.5 19.7 13.5
44.1 38.6 32.5 29.1 25.9 22.0 17.7 12.1
36.7 32.2 27.1 24.2 21.6 18.4 14.7 10.1
489 417 341 301 261 220 178 143
35.8 36.3 36.8 37.0 36.9 37.1 38.0 45.3
90.9 80.7 68.5 55.4 47.3 38.2 26.8
77.9 69.1 58.7 47.4 40.5 32.7 22.9
68.2 60.5 51.4 41.5 35.5 28.6 20.1
54.6 48.4 41.1 33.2 28.4 22.9 16.1
45.5 40.3 34.3 27.7 23.6 19.1 13.4
39.0 34.6 29.4 23.7 20.3 16.4 11.5
34.1 30.2 25.7 20.8 17.7 14.3 10.0
30.3 26.9 22.8 18.5 15.8 12.7 8.92
27.3 24.2 20.6 16.6 14.2 11.5 8.03
22.7 20.2 17.1 13.8 11.8 9.54 6.69
356 306 252 195 165 134 108
40.4 40.9 41.3 41.3 41.5 42.4 49.5
39.1 32.3 26.5
32.6 26.9 22.1
27.9 23.1 18.9
24.4 20.2 16.6
19.6 16.2 13.2
16.3 13.5 11.0
14.0 11.5 9.46
12.2 10.1 8.28
10.9 8.97 7.36
9.78 8.08 6.62
8.15 6.73 5.52
158 128 104
14.5 14.8 15.0
64.5 53.4 45.9 37.9
51.6 42.7 36.8 30.3
43.0 35.6 30.6 25.3
36.9 30.5 26.3 21.7
32.3 26.7 23.0 19.0
25.8 21.4 18.4 15.2
21.5 17.8 15.3 12.6
18.4 15.3 13.1 10.8
16.1 13.4 11.5 9.48
14.3 11.9 10.2 8.42
12.9 10.7 9.19 7.58
10.8 8.90 7.66 6.32
212 165 139 113
26.0 26.2 26.4 26.7
38.0 33.1 27.6 22.8
28.5 24.8 20.7 17.1
22.8 19.8 16.6 13.7
19.0 16.5 13.8 11.4
16.3 14.2 11.8 9.79
14.2 12.4 10.4 8.57
11.4 9.92 8.29 6.85
9.50 8.27 6.91 5.71
8.14 7.09 5.92 4.90
7.12 6.20 5.18 4.28
6.33 5.51 4.60 3.81
5.70 4.96 4.14 3.43
4.75 4.14 3.45 2.86
122 104 85.2 69.3
17.6 17.9 18.2 18.4
33.4 29.2 24.5 20.3
25.1 21.9 18.4 15.3
20.1 17.5 14.7 12.2
16.7 14.6 12.3 10.2
14.3 12.5 10.5 8.72
12.5 11.0 9.19 7.63
10.0 8.77 7.35 6.10
8.36 7.31 6.13 5.08
7.16 6.26 5.25 4.36
6.27 5.48 4.60 3.81
5.57 4.87 4.08 3.39
5.01 4.39 3.68 3.05
4.18 3.65 3.06 2.54
121 103 84.1 68.4
12.2 12.5 12.8 13.0
= 1.970 (π2 E I y G J / M2SX)0.5 (See Section D4.1.3 of these tables for explanation) = Segment length for full lateral restraint (φMbx = φMsx) = 0.9 = 1.0
4. 5. 6.
αs W *L1 W *L2
= = =
1.0 12 φ Ms/L 2 φ Vv
DCTDHS/06 MARCH 2002
TABLE D8.3-1(2)(B)
SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS FIXED END BEAMS DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250
Designation d
b
W*S1 (kN)
Mass per m
Span of Beam (L) in metres
t
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
kg/m
0.5
D8-37
0.75
1.0
1.25
1.5
1.75
2.0
2.5
3.0
3.5
4.0
4.5
5.0
6.0
100 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.5 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
12.0 10.3 8.49 7.53 6.60 5.56 4.50 3.64
2100 1880 1610 1450 1310 1120 921 753
934 834 714 645 581 498 409 335
525 469 401 363 327 280 230 188
336 300 257 232 209 179 147 121
233 209 178 161 145 125 102 83.7
171 153 131 118 107 91.5 75.2 61.5
131 117 100 90.7 81.8 70.0 57.6 47.1
84.0 75.1 64.2 58.1 52.3 44.8 36.9 30.1
58.4 52.1 44.6 40.3 36.3 31.1 25.6 20.9
42.9 38.3 32.8 29.6 26.7 22.9 18.8 15.4
32.8 29.3 25.1 22.7 20.4 17.5 14.4 11.8
25.9 23.2 19.8 17.9 16.1 13.8 11.4 9.3
21.0 18.8 16.1 14.5 13.1 11.2 9.21 7.53
14.6 13.0 11.2 10.1 9.08 7.78 6.40 5.23
75 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
9.67 8.35 6.92 5.42 4.58 3.72 3.01
983 892 774 641 552 457 375
437 397 344 285 245 203 167
246 223 194 160 138 114 93.7
157 143 124 103 88.4 73.1 60.0
109 99.1 86.0 71.2 61.4 50.7 41.7
80.2 72.8 63.2 52.3 45.1 37.3 30.6
61.4 55.8 48.4 40.1 34.5 28.5 23.4
39.3 35.7 31.0 25.6 22.1 18.3 15.0
27.3 24.8 21.5 17.8 15.3 12.7 10.4
20.1 18.2 15.8 13.1 11.3 9.32 7.65
15.4 13.9 12.1 10.0 8.63 7.14 5.86
12.1 11.0 9.56 7.91 6.82 5.64 4.63
9.83 8.92 7.74 6.41 5.52 4.57 3.75
6.83 6.20 5.38 4.45 3.84 3.17 2.60
75 x 25 x 2.5 RHS 2.0 RHS 1.6 RHS
3.60 2.93 2.38
350 293 243
156 130 108
87.6 73.2 60.6
56.1 46.9 38.8
38.9 32.5 26.9
28.6 23.9 19.8
21.9 18.3 15.2
14.0 11.7 9.70
9.73 8.14 6.74
7.15 5.98 4.95
5.48 4.58 3.79
4.33 3.62 2.99
3.50 2.93 2.43
2.43 2.03 1.68
65 x 35 x 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS
5.35 4.25 3.60 2.93
403 345 300 251
179 153 134 111
101 86.3 75.1 62.7
64.5 55.3 48.1 40.1
44.8 38.4 33.4 27.9
32.9 28.2 24.5 20.5
25.2 21.6 18.8 15.7
16.1 13.8 12.0 10.0
11.2 9.59 8.35 6.96
8.23 7.05 6.13 5.12
6.30 5.40 4.69 3.92
4.98 4.26 3.71 3.09
4.03 3.45 3.00 2.51
2.80 2.40 2.09 1.74
50 x 25 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
3.07 2.62 2.15 1.75
137 121 103 86.2
61.0 54.0 45.8 38.3
34.3 30.4 25.8 21.6
22.0 19.4 16.5 13.8
15.3 13.5 11.4 9.58
11.2 9.92 8.41 7.04
8.58 7.59 6.44 5.39
5.49 4.86 4.12 3.45
3.81 3.37 2.86 2.40
2.80 2.48 2.10 1.76
2.15 1.90 1.61 1.35
1.69 1.50 1.27 1.06
1.37 1.21 1.03 0.862
0.953 0.844 0.715 0.599
50 x 20 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
2.83 2.42 1.99 1.63
117 104 88.9 74.7
52.0 46.3 39.5 33.2
29.2 26.0 22.2 18.7
18.7 16.7 14.2 12.0
13.0 11.6 9.87 8.30
9.54 8.50 7.25 6.10
7.31 6.51 5.55 4.67
4.68 4.17 3.55 2.99
3.25 2.89 2.47 2.08
2.39 2.13 1.81 1.52
1.83 1.63 1.39 1.17
1.44 1.29 1.10 0.922
1.17 1.04 0.889 0.747
0.812 0.723 0.617 0.519
mm mm mm
Note:
1.
Serviceabilty Load W *S1 =384EI / (250L2)
D8-38 TABLE D8.3-2(A)
STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS FIXED END BEAMS WITH FULL LATERAL RESTRAINT DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness bending about x-axis DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
W *L1 = Maximum Design Load based on Design Moment Capacity W *L2 = Maximum Design Load based on Design Shear Capacity Maximum Design Load W *L is LESSER of W *L1 and W *L2
Designation d
b
W*L1 (kN)
Mass per m
W*L2
FLR
Span of Beam (L) in metres
t
mm mm mm
kg/m
0.5
0.75
1.0
1.25
1.5
1.75
2.0
2.5
3.0
3.5
4.0
4.5
5.0
6.0
kN
m
125 x 75 x 2.8 RHS 2.3 RHS
8.39 6.95
407 294
271 196
203 147
163 118
136 98.0
116 84.0
102 73.5
81.3 58.8
67.8 49.0
58.1 42.0
50.8 36.8
45.2 32.7
40.7 29.4
33.9 24.5
313 259
64.1 74.1
100 x 50 x 2.8 RHS 2.3 RHS
6.19 5.14
244 204
163 136
122 102
97.5 81.8
81.3 68.1
69.7 58.4
61.0 51.1
48.8 40.9
40.6 34.1
34.8 29.2
30.5 25.5
27.1 22.7
24.4 20.4
20.3 17.0
245 203
37.0 37.2
75 x 50 x 2.8 RHS 2.3 RHS
5.09 4.24
157 132
104 87.8
78.3 65.9
62.6 52.7
52.2 43.9
44.7 37.6
39.1 32.9
31.3 26.4
26.1 22.0
22.4 18.8
19.6 16.5
17.4 14.6
15.7 13.2
13.0 11.0
183 152
41.4 41.6
65 x 35 x 2.8 RHS 2.3 RHS
3.99 3.34
101 85.6
67.3 57.1
50.5 42.8
40.4 34.2
33.7 28.5
28.9 24.5
25.2 21.4
20.2 17.1
16.8 14.3
14.4 12.2
12.6 10.7
11.2 9.51
10.1 8.56
8.42 7.13
155 129
26.3 26.5
50 x 25 x 2.8 RHS 2.3 RHS
2.89 2.44
54.1 46.4
36.1 31.0
27.1 23.2
21.7 18.6
18.0 15.5
15.5 13.3
13.5 11.6
10.8 9.29
9.02 7.74
7.73 6.64
6.77 5.81
6.02 5.16
5.41 4.64
4.51 3.87
115 96.7
17.8 18.0
50 x 20 x 2.8 RHS 2.3 RHS
2.67 2.25
47.7 41.1
31.8 27.4
23.9 20.6
19.1 16.4
15.9 13.7
13.6 11.7
11.9 10.3
9.54 8.22
7.95 6.85
6.82 5.87
5.96 5.14
5.30 4.57
4.77 4.11
3.98 3.43
114 95.4
12.4 12.6
Notes:
1. 2. 3. 4. 5. 6.
DCTDHS/06 MARCH 2002
FLR FLR φ αm αs W *L1 W *L2
= = = = = = =
1.970 (π2 E Iy G J / M2SX)0.5 (See Section D4.1.3 of these tables for explanation) Segment length for full lateral restraint (φMbx = φMsx) 0.9 1.0 1.0 12 φ Ms/L 2 φ Vv
DCTDHS/06 MARCH 2002
TABLE D8.3-2(B)
SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS FIXED END BEAMS DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness bending about x-axis DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250
Designation d
b
W*S1 (kN)
Mass per m
Span of Beam (L) in metres
t
mm mm mm
kg/m
0.5
0.75
1.0
1.25
1.5
1.75
2.0
2.5
3.0
3.5
4.0
4.5
5.0
6.0
125 x 75 x 2.8 RHS 2.3 RHS
8.39 6.95
2810 2350
1250 1050
702 588
449 377
312 261
229 192
175 147
112 94.1
78.0 65.4
57.3 48.0
43.9 36.8
34.7 29.1
28.1 23.5
19.5 16.3
100 x 50 x 2.8 RHS 2.3 RHS
6.19 5.14
1230 1040
549 463
309 261
198 167
137 116
101 85.1
77.2 65.2
49.4 41.7
34.3 29.0
25.2 21.3
19.3 16.3
15.2 12.9
12.3 10.4
75 x 50 x 2.8 RHS 2.3 RHS
5.09 4.24
606 515
270 229
152 129
16.8 14.3
12.4 10.5
65 x 35 x 2.8 RHS 2.3 RHS
3.99 3.34
328 281
146 125
50 x 25 x 2.8 RHS 2.3 RHS
2.89 2.44
131 114
50 x 20 x 2.8 RHS 2.3 RHS
2.67 2.25
112 98.3
Note:
1.
97.0 82.4
67.4 57.2
49.5 42.0
37.9 32.2
24.3 20.6
82.0 70.3
52.5 45.0
36.4 31.2
26.8 22.9
20.5 17.6
13.1 11.2
58.3 50.9
32.8 28.6
21.0 18.3
14.6 12.7
10.7 9.34
8.20 7.15
49.8 43.7
28.0 24.6
17.9 15.7
12.5 10.9
9.15 8.03
7.01 6.15
Serviceabilty Load W *S1 = 384EI / (250L2)
8.57 7.24
9.47 8.05
7.49 6.36
6.06 5.15
4.21 3.58
9.11 7.81
6.69 5.74
5.12 4.39
4.05 3.47
3.28 2.81
2.28 1.95
5.25 4.58
3.65 3.18
2.68 2.34
2.05 1.79
1.62 1.41
1.31 1.14
0.912 0.795
4.48 3.93
3.11 2.73
2.29 2.01
1.75 1.54
1.38 1.21
1.12 0.983
0.778 0.683
D8-39
D8-40
TABLE D8.3-3(1)(A)
STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS FIXED END BEAMS WITH FULL LATERAL RESTRAINT DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis W *L1 = Maximum Design Load based on Design Moment Capacity W *L2 = Maximum Design Load based on Design Shear Capacity Maximum Design Load W *L is LESSER of W *L1 and W *L2
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
Designation d
b
W*L1 (kN)
Mass per m
W*L2 Span of Beam (L) in metres
t
mm mm mm
kg/m
100 x 100 x 6.0 SHS 16.7 5.0 SHS 14.2 4.0 SHS 11.6 3.0 SHS 8.96 2.5 SHS 7.53 2.0 SHS 6.07 90 x 90 x 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS
8.01 6.74 5.45 4.39
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
357 309 252 180 136 97.6
179 154 126 90.2 68.2 48.8
119 103 84.1 60.1 45.5 32.5
89.4 77.2 63.1 45.1 34.1 24.4
71.5 61.7 50.5 36.1 27.3 19.5
59.6 51.4 42.1 30.1 22.7 16.3
51.1 44.1 36.0 25.8 19.5 13.9
44.7 38.6 31.5 22.6 17.1 12.2
143 117 83.3 59.8
71.5 58.4 41.6 29.9
47.7 38.9 27.8 19.9
35.8 29.2 20.8 15.0
28.6 23.4 16.7 12.0
23.8 19.5 13.9 9.97
20.4 16.7 11.9 8.55
86.7 119 137
57.8 79.5 91.6
43.4 59.6 68.7
34.7 47.7 55.0
28.9 39.8 45.8
93.3 81.8 68.6 61.5 53.9 41.4 31.8
62.2 54.5 45.8 41.0 36.0 27.6 21.2
46.7 40.9 34.3 30.7 27.0 20.7 15.9
37.3 32.7 27.5 24.6 21.6 16.6 12.7
31.1 27.3 22.9 20.5 18.0 13.8 10.6
89 x 89 x 6.0 SHS 9.06 5.0 SHS 12.5 3.5 SHS 14.6
173 239 275
75 x 75 x 6.0 SHS 12.0 5.0 SHS 10.3 4.0 SHS 8.49 3.5 SHS 7.53 3.0 SHS 6.60 2.5 SHS 5.56 2.0 SHS 4.50
187 164 137 123 108 82.8 63.5
Notes:
DCTDHS/06 MARCH 2002
1. 2. 3. 4. 5.
φ αm αs W *L1 W *L2
= = = = =
0.9 1.0 1.0 12 φ Ms/L 2.0 φ Vv
10.0
11.0
12.0
13.0
14.0
kN
39.7 34.3 28.0 20.0 15.2 10.8
35.7 30.9 25.2 18.0 13.6 9.76
32.5 28.1 22.9 16.4 12.4 8.87
29.8 25.7 21.0 15.0 11.4 8.13
27.5 23.7 19.4 13.9 10.5 7.51
25.5 22.0 18.0 12.9 9.75 6.97
507 432 353 271 228 184
17.9 14.6 10.4 7.48
15.9 13.0 9.25 6.65
14.3 11.7 8.33 5.98
13.0 10.6 7.57 5.44
11.9 9.74 6.94 4.98
11.0 8.99 6.40 4.60
10.2 8.34 5.95 4.27
242 204 165 133
24.8 34.1 39.3
21.7 29.8 34.4
19.3 26.5 30.5
17.3 23.9 27.5
15.8 21.7 25.0
14.5 19.9 22.9
13.3 18.4 21.1
12.4 17.0 19.6
275 379 443
26.7 23.4 19.6 17.6 15.4 11.8 9.07
23.3 20.4 17.2 15.4 13.5 10.4 7.94
20.7 18.2 15.3 13.7 12.0 9.20 7.06
18.7 16.4 13.7 12.3 10.8 8.28 6.35
17.0 14.9 12.5 11.2 9.81 7.53 5.77
15.6 13.6 11.4 10.2 8.99 6.90 5.29
14.4 12.6 10.6 9.46 8.30 6.37 4.89
13.3 11.7 9.80 8.78 7.70 5.91 4.54
363 312 257 228 199 168 136
DCTDHS/06 MARCH 2002
TABLE D8.3-3(1)(B)
SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS FIXED END BEAMS DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250
Designation d
b
W*S1 (kN)
Mass per m
Span of Beam (L) in metres
t kg/m
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
13.0
14.0
100 x 100 x 6.0 SHS 16.7 5.0 SHS 14.2 4.0 SHS 11.6 3.0 SHS 8.96 2.5 SHS 7.53 2.0 SHS 6.07
933 816 685 544 463 378
233 204 171 136 116 94.5
104 90.7 76.1 60.4 51.4 42.0
58.3 51.0 42.8 34.0 28.9 23.6
37.3 32.6 27.4 21.8 18.5 15.1
25.9 22.7 19.0 15.1 12.9 10.5
19.0 16.7 14.0 11.1 9.44 7.71
14.6 12.8 10.7 8.50 7.23 5.90
11.5 10.1 8.45 6.71 5.71 4.67
9.33 8.16 6.85 5.44 4.63 3.78
7.71 6.75 5.66 4.49 3.82 3.12
6.48 5.67 4.76 3.78 3.21 2.62
5.52 4.83 4.05 3.22 2.74 2.24
4.76 4.16 3.49 2.77 2.36 1.93
8.01 6.74 5.45 4.39
391 333 273 222
97.8 83.4 68.2 55.6
43.4 37.1 30.3 24.7
24.4 20.8 17.1 13.9
15.6 13.3 10.9 8.90
10.9 9.26 7.58 6.18
7.98 6.81 5.57 4.54
6.11 5.21 4.27 3.47
4.83 4.12 3.37 2.75
3.91 3.33 2.73 2.22
3.23 2.76 2.26 1.84
2.72 2.32 1.90 1.54
2.31 1.97 1.62 1.32
1.99 1.70 1.39 1.13
89 x 89 x 6.0 SHS 9.06 5.0 SHS 12.5 3.5 SHS 14.6
422 556 631
46.9 61.8 70.2
26.4 34.8 39.5
16.9 22.3 25.3
11.7 15.5 17.5
8.62 11.4 12.9
6.60 8.69 9.87
5.21 6.87 7.80
4.22 5.56 6.31
3.49 4.60 5.22
2.93 3.86 4.39
2.50 3.29 3.74
2.15 2.84 3.22
75 x 75 x 6.0 SHS 12.0 5.0 SHS 10.3 4.0 SHS 8.49 3.5 SHS 7.53 3.0 SHS 6.60 2.5 SHS 5.56 2.0 SHS 4.50
356 317 271 245 220 189 155
39.5 35.3 30.1 27.2 24.4 21.0 17.2
22.2 19.8 16.9 15.3 13.8 11.8 9.69
14.2 12.7 10.8 9.80 8.80 7.54 6.20
7.26 6.48 5.53 5.00 4.49 3.85 3.17
5.56 4.96 4.24 3.83 3.44 2.95 2.42
4.39 3.92 3.35 3.02 2.72 2.33 1.91
3.56 3.17 2.71 2.45 2.20 1.89 1.55
2.94 2.62 2.24 2.02 1.82 1.56 1.28
2.47 2.20 1.88 1.70 1.53 1.31 1.08
2.10 1.88 1.60 1.45 1.30 1.12 0.918
1.81 1.62 1.38 1.25 1.12 0.962 0.791
mm
mm mm
90 x 90 x 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS
D8-41
Note:
1.
106 139 158 88.9 79.3 67.8 61.2 55.0 47.1 38.8
Serviceabilty Load W *S1 = 384EI / (250L2)
9.88 8.81 7.53 6.80 6.11 5.24 4.31
TABLE D8.3-3(2)(A)
D8-42
STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS FIXED END BEAMS WITH FULL LATERAL RESTRAINT DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis = Maximum Design Load based on Design Moment Capacity
W *L1 W *L2 = Maximum Design Load based on Design Shear Capacity Maximum Design Load W *L is LESSER of W *L1 and W *L2
Designation d
b
W*L1 (kN)
Mass per m
W*L2 Span of Beam (L) in metres
t
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002
mm mm mm
kg/m
0.5
75 x 75 x 6.0 SHS 5.0 SHS 4.0 SHS 3.5 SHS 3.0 SHS 2.5 SHS 2.0 SHS 65 x 65 x 6.0 SHS 5.0 SHS 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 50 x 50 x 5.0 SHS 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 40 x 40 x 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 35 x 35 x 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 30 x 30 x 2.0 SHS 1.6 SHS 25 x 25 x 2.5 SHS 2.0 SHS 1.6 SHS 20 x 20 x 1.6 SHS
12.0 10.3 8.49 7.53 6.60 5.56 4.50 10.1 8.75 7.23 5.66 4.78 3.88 3.13 6.39 5.35 4.25 3.60 2.93 2.38 4.09 3.30 2.82 2.31 1.88 2.83 2.42 1.99 1.63 1.68 1.38 1.64 1.36 1.12 0.873
373 327 275 246 216 166 118 267 236 200 161 133 95.3 68.1 128 111 91.2 78.5 63.9 46.1 65.5 55.6 48.3 40.2 32.7 41.1 35.9 30.1 24.9 21.4 17.9 16.6 14.3 12.0 7.30
Notes:
1.
φ
=
0.9
2.
0.75
αm
249 218 183 164 144 110 78.6 178 158 133 107 88.6 63.5 45.4 85.3 73.8 60.8 52.3 42.6 30.7 43.6 37.1 32.2 26.8 21.8 27.4 23.9 20.1 16.6 14.3 11.9 11.1 9.50 8.01 4.86 =
1.0
1.0
1.25
1.5
1.75
2.0
2.5
3.0
3.5
4.0
187 164 137 123 108 82.8 59.0 134 118 100 80.5 66.5 47.6 34.1 63.9 55.3 45.6 39.2 32.0 23.0 32.7 27.8 24.1 20.1 16.4 20.6 18.0 15.0 12.5 10.7 8.95 8.32 7.13 6.01 3.65
149 131 110 98.4 86.3 66.2 47.2 107 94.6 80.1 64.4 53.2 38.1 27.2 51.2 44.3 36.5 31.4 25.6 18.4 26.2 22.3 19.3 16.1 13.1 16.4 14.4 12.0 9.98 8.57 7.16 6.66 5.70 4.80 2.92
124 109 91.5 82.0 71.9 55.2 39.3 89.1 78.8 66.7 53.7 44.3 31.8 22.7 42.6 36.9 30.4 26.2 21.3 15.4 21.8 18.5 16.1 13.4 10.9 13.7 12.0 10.0 8.31 7.15 5.96 5.55 4.75 4.00 2.43
107 93.4 78.4 70.3 61.6 47.3 33.7 76.4 67.6 57.2 46.0 38.0 27.2 19.5 36.5 31.6 26.1 22.4 18.3 13.2 18.7 15.9 13.8 11.5 9.35 11.7 10.3 8.59 7.13 6.12 5.11 4.76 4.07 3.43 2.08
93.3 81.8 68.6 61.5 53.9 41.4 29.5 66.8 59.1 50.1 40.3 33.2 23.8 17.0 32.0 27.7 22.8 19.6 16.0 11.5 16.4 13.9 12.1 10.0 8.18 10.3 8.98 7.52 6.24 5.36 4.47 4.16 3.56 3.00 1.82
74.7 65.4 54.9 49.2 43.1 33.1 23.6 53.5 47.3 40.0 32.2 26.6 19.1 13.6 25.6 22.1 18.2 15.7 12.8 9.22 13.1 11.1 9.66 8.04 6.55 8.22 7.18 6.02 4.99 4.29 3.58 3.33 2.85 2.40 1.46
62.2 54.5 45.8 41.0 36.0 27.6 19.7 44.6 39.4 33.4 26.8 22.2 15.9 11.4 21.3 18.4 15.2 13.1 10.7 7.68 10.9 9.27 8.05 6.70 5.45 6.85 5.99 5.01 4.16 3.57 2.98 2.77 2.38 2.00 1.22
53.3 46.7 39.2 35.1 30.8 23.7 16.8 38.2 33.8 28.6 23.0 19.0 13.6 9.73 18.3 15.8 13.0 11.2 9.13 6.58 9.35 7.95 6.90 5.74 4.68 5.87 5.13 4.30 3.56 3.06 2.56 2.38 2.04 1.72 1.04
46.7 40.9 34.3 30.7 27.0 20.7 14.7 33.4 29.6 25.0 20.1 16.6 11.9 8.51 16.0 13.8 11.4 9.81 7.99 5.76 8.18 6.95 6.03 5.02 4.09 5.14 4.49 3.76 3.12 2.68 2.24 2.08 1.78 1.50 0.912
5. W *L2 =
2 φ Vv
3.
αs
=
1.0
4.
W *L1
=
12 φ Ms/L
4.5 41.5 36.3 30.5 27.3 24.0 18.4 13.1 29.7 26.3 22.2 17.9 14.8 10.6 7.57 14.2 12.3 10.1 8.72 7.10 5.12 7.27 6.18 5.36 4.46 3.64 4.57 3.99 3.34 2.77 2.38 1.99 1.85 1.58 1.33 0.811
5.0 37.3 32.7 27.5 24.6 21.6 16.6 11.8 26.7 23.6 20.0 16.1 13.3 9.53 6.81 12.8 11.1 9.12 7.85 6.39 4.61 6.55 5.56 4.83 4.02 3.27 4.11 3.59 3.01 2.49 2.14 1.79 1.66 1.43 1.20 0.730
6.0 31.1 27.3 22.9 20.5 18.0 13.8 9.83 22.3 19.7 16.7 13.4 11.1 7.94 5.68 10.7 9.22 7.60 6.54 5.33 3.84 5.46 4.64 4.02 3.35 2.73 3.43 2.99 2.51 2.08 1.79 1.49 1.39 1.19 1.00 0.608
kN 363 312 257 228 199 168 136 305 264 219 170 144 117 94.9 192 161 127 108 88.3 71.9 123 97.9 84.0 69.1 56.5 83.5 72.0 59.5 48.8 49.9 41.2 48.0 40.3 33.5 25.8
TABLE D8.3-3(2)(B) DCTDHS/06 MARCH 2002
SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS FIXED END BEAMS DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250
Designation d
b
Span of Beam (L) in metres
t
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
D8-43
mm mm mm
kg/m
75 x 75 x 6.0 SHS 5.0 SHS 4.0 SHS 3.5 SHS 3.0 SHS 2.5 SHS 2.0 SHS 65 x 65 x 6.0 SHS 5.0 SHS 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 50 x 50 x 5.0 SHS 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 40 x 40 x 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 35 x 35 x 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 30 x 30 x 2.0 SHS 1.6 SHS 25 x 25 x 2.5 SHS 2.0 SHS 1.6 SHS 20 x 20 x 1.6 SHS
12.0 10.3 8.49 7.53 6.60 5.56 4.50 10.1 8.75 7.23 5.66 4.78 3.88 3.13 6.39 5.35 4.25 3.60 2.93 2.38 4.09 3.30 2.82 2.31 1.88 2.83 2.42 1.99 1.63 1.68 1.38 1.64 1.36 1.12 0.873
Note:
W*S1 (kN)
Mass per m
1.
0.5 1420 1270 1080 980 880 754 620 868 784 678 558 481 397 326 316 281 239 208 174 144 129 115 101 85.3 71.2 73.1 65.0 55.4 46.6 33.4 28.4 20.8 18.2 15.7 7.47
0.75
1.0
1.25
1.5
632 564 482 435 391 335 276 386 349 301 248 214 176 145 140 125 106 92.5 77.3 63.9 57.5 50.9 44.9 37.9 31.6 32.5 28.9 24.6 20.7 14.9 12.6 9.23 8.10 6.96 3.32
356 317 271 245 220 189 155 217 196 170 140 120 99.3 81.5 78.9 70.3 59.8 52.1 43.5 36.0 32.3 28.6 25.2 21.3 17.8 18.3 16.2 13.8 11.6 8.36 7.09 5.19 4.56 3.92 1.87
228 203 173 157 141 121 99.3 139 125 108 89.3 76.9 63.5 52.1 50.5 45.0 38.3 33.3 27.8 23.0 20.7 18.3 16.2 13.6 11.4 11.7 10.4 8.86 7.45 5.35 4.54 3.32 2.92 2.51 1.19
158 116 141 104 120 88.5 109 80.0 97.8 71.8 83.8 61.6 68.9 50.6 96.4 70.8 87.1 64.0 75.3 55.3 62.0 45.6 53.4 39.2 44.1 32.4 36.2 26.6 35.1 25.8 31.2 22.9 26.6 19.5 23.1 17.0 19.3 14.2 16.0 11.7 14.4 10.6 12.7 9.35 11.2 8.24 9.48 6.96 7.91 5.81 8.12 5.97 7.22 5.31 6.15 4.52 5.17 3.80 3.72 2.73 3.15 2.32 2.31 1.70 2.03 1.49 1.74 1.28 0.830 0.610
Serviceabilty Load W *S1 = 384EI / (250L2)
1.75
2.0 88.9 79.3 67.8 61.2 55.0 47.1 38.8 54.2 49.0 42.4 34.9 30.0 24.8 20.4 19.7 17.6 15.0 13.0 10.9 8.99 8.08 7.16 6.31 5.33 4.45 4.57 4.06 3.46 2.91 2.09 1.77 1.30 1.14 0.979 0.467
2.5 56.9 50.8 43.4 39.2 35.2 30.2 24.8 34.7 31.4 27.1 22.3 19.2 15.9 13.0 12.6 11.2 9.57 8.33 6.95 5.75 5.17 4.58 4.04 3.41 2.85 2.92 2.60 2.22 1.86 1.34 1.13 0.831 0.729 0.627 0.299
3.0 39.5 35.3 30.1 27.2 24.4 21.0 17.2 24.1 21.8 18.8 15.5 13.3 11.0 9.05 8.77 7.81 6.64 5.78 4.83 4.00 3.59 3.18 2.80 2.37 1.98 2.03 1.81 1.54 1.29 0.929 0.788 0.577 0.506 0.435 0.207
3.5 29.0 25.9 22.1 20.0 18.0 15.4 12.7 17.7 16.0 13.8 11.4 9.81 8.10 6.65 6.44 5.74 4.88 4.25 3.55 2.94 2.64 2.34 2.06 1.74 1.45 1.49 1.33 1.13 0.950 0.683 0.579 0.424 0.372 0.320 0.152
4.0 22.2 19.8 16.9 15.3 13.8 11.8 9.69 13.6 12.3 10.6 8.72 7.51 6.20 5.09 4.93 4.39 3.74 3.25 2.72 2.25 2.02 1.79 1.58 1.33 1.11 1.14 1.02 0.865 0.727 0.523 0.443 0.324 0.285 0.245 0.117
4.5
5.0
17.6 14.2 15.7 12.7 13.4 10.8 12.1 9.80 10.9 8.80 9.31 7.54 7.66 6.20 10.7 8.68 9.68 7.84 8.37 6.78 6.89 5.58 5.93 4.81 4.90 3.97 4.02 3.26 3.90 3.16 3.47 2.81 2.95 2.39 2.57 2.08 2.15 1.74 1.78 1.44 1.60 1.29 1.41 1.15 1.25 1.01 1.05 0.853 0.879 0.712 0.902 0.731 0.802 0.650 0.684 0.554 0.575 0.466 0.413 0.334 0.350 0.284 0.256 0.208 0.225 0.182 0.193 0.157 0.0922 0.0747
6.0 9.88 8.81 7.53 6.80 6.11 5.24 4.31 6.03 5.45 4.71 3.88 3.34 2.76 2.26 2.19 1.95 1.66 1.45 1.21 0.999 0.898 0.796 0.701 0.592 0.494 0.508 0.451 0.385 0.323 0.232 0.197 0.144 0.127 0.109 0.0519
D8-44 TABLE D8.3-4(A)
STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS FIXED END BEAMS WITH FULL LATERAL RESTRAINT DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness bending about x-axis DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
W *L1 = Maximum Design Load based on Design Moment Capacity W *L2 = Maximum Design Load based on Design Shear Capacity Maximum Design Load W*L is LESSER of W*L1 and W*L2
Designation d
b
W*L1 (kN)
Mass per m
W*L2 Span of Beam (L) in metres
t
mm mm mm
kg/m
0.5
0.75
1.0
1.25
1.5
1.75
2.0
2.5
3.0
3.5
4.0
4.5
5.0
6.0
kN
100 x 100 x 2.8 SHS 2.3 SHS
8.39 6.95
301 224
201 150
150 112
120 89.7
100 74.8
86.0 64.1
75.2 56.1
60.2 44.9
50.1 37.4
43.0 32.0
37.6 28.0
33.4 24.9
30.1 22.4
25.1 18.7
254 211
75 x 75 x 2.8 SHS 2.3 SHS
6.19 5.14
196 146
131 97.1
97.9 72.8
78.3 58.3
65.3 48.6
55.9 41.6
48.9 36.4
39.2 29.1
32.6 24.3
28.0 20.8
24.5 18.2
21.8 16.2
19.6 14.6
16.3 12.1
187 155
118
13.1
11.8
65 x 65 x 2.3 SHS
4.42
78.6
58.9
47.2
39.3
33.7
29.5
23.6
19.6
16.8
14.7
9.82
133
50 x 50 x 2.8 SHS 2.3 SHS
3.99 3.34
86.3 73.1
57.5 48.7
43.1 36.6
34.5 29.2
28.8 24.4
24.6 20.9
21.6 18.3
17.3 14.6
14.4 12.2
12.3 10.4
10.8 9.14
9.58 8.12
8.63 7.31
7.19 6.09
119 100
40 x 40 x 2.8 SHS 2.3 SHS
3.11 2.62
52.8 45.1
35.2 30.1
26.4 22.6
21.1 18.1
17.6 15.0
15.1 12.9
13.2 11.3
10.6 9.03
8.80 7.52
7.54 6.45
6.60 5.64
5.86 5.01
5.28 4.51
4.40 3.76
92.5 78.2
35 x 35 x 2.8 SHS 2.3 SHS
2.67 2.25
39.1 33.7
26.1 22.4
19.6 16.8
15.6 13.5
13.0 11.2
11.2 9.62
7.82 6.73
6.52 5.61
5.59 4.81
4.89 4.21
4.34 3.74
3.91 3.37
3.26 2.80
79.0 67.1
Notes:
1. 2. 3. 4. 5.
φ αm αs W *L1 W *L2
= = = = =
0.9 1.0 1.0 12 φ Ms/L 2 φ Vv
9.78 8.41
DCTDHS/06 MARCH 2002
DCTDHS/06 MARCH 2002
TABLE D8.3-4(B)
SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS FIXED END BEAMS DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness bending about x-axis W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
Designation d
b
W*S1 (kN)
Mass per m
Span of Beam (L) in metres
t
kg/m
0.5
0.75
1.0
1.25
1.5
1.75
2.0
2.5
3.0
3.5
4.0
4.5
5.0
6.0
100 x 100 x 2.8 SHS 2.3 SHS
8.39 6.95
2050 1720
910 763
512 429
328 275
227 191
167 140
128 107
81.9 68.7
56.9 47.7
41.8 35.0
32.0 26.8
25.3 21.2
20.5 17.2
14.2 11.9
75 x 75 x 2.8 SHS 2.3 SHS
6.19 5.14
831 702
369 312
208 175
133 112
17.0 14.3
13.0 11.0
10.3 8.66
8.31 7.02
5.77 4.87
112
mm
mm mm
92.3 78.0
67.8 57.3
51.9 43.9
33.2 28.1
23.1 19.5
17.9
12.4
65 x 65 x 2.3 SHS
4.42
448
199
71.7
49.8
36.6
28.0
50 x 50 x 2.8 SHS 2.3 SHS
3.99 3.34
227 195
101 86.6
56.8 48.7
36.4 31.2
25.2 21.7
18.5 15.9
14.2 12.2
40 x 40 x 2.8 SHS 2.3 SHS
3.11 2.62
109 94.9
48.6 42.2
27.3 23.7
17.5 15.2
12.2 10.5
35 x 35 x 2.8 SHS 2.3 SHS
2.67 2.25
70.0 61.3
31.1 27.3
17.5 15.3
11.2 9.81
Note:
1.
Serviceabilty Load W *S1 = 384EI / (250L2)
7.78 6.82
9.14
7.00
5.53
4.48
3.11
9.09 7.79
6.31 5.41
4.64 3.98
3.55 3.04
2.80 2.41
2.27 1.95
1.58 1.35
8.93 7.75
6.83 5.93
4.37 3.80
3.04 2.64
2.23 1.94
1.71 1.48
1.35 1.17
1.09 0.949
0.759 0.659
5.72 5.01
4.38 3.83
2.80 2.45
1.95 1.70
1.43 1.25
1.09 0.958
0.865 0.757
0.700 0.613
0.486 0.426
D8-45
D8-46
TABLE D8.4-1(1)(A)
STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS CANTILEVER BEAMS WITH FULL LATERAL RESTRAINT DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis W *L1 = Maximum Design Load based on Design Moment Capacity W *L2 = Maximum Design Load based on Design Shear Capacity Maximum Design Load W *L is LESSER of W *L1 and W *L2
Designation DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
d
b
W*L1 (kN)
Mass per m
mm mm mm
kg/m
1.0
2.0
3.0
4.0
5.0
6.0
150 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS
16.7 14.2 11.6 8.96 7.53 6.07
73.8 63.9 53.0 41.7 35.3 25.6
36.9 31.9 26.5 20.8 17.6 12.8
24.6 21.3 17.7 13.9 11.8 8.54
18.5 16.0 13.3 10.4 8.81 6.41
14.8 12.8 10.6 8.33 7.05 5.13
125 x 75 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS
16.7 14.2 11.6 8.96 7.53 6.07
68.2 58.9 48.8 37.7 28.1 20.1
34.1 29.5 24.4 18.8 14.1 10.0
22.7 19.6 16.3 12.6 9.38 6.70
17.1 14.7 12.2 9.42 7.03 5.02
100 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.5 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
12.0 10.3 8.49 7.53 6.60 5.56 4.50 3.64
36.7 32.2 27.1 24.2 21.6 18.4 14.7 10.1
18.4 16.1 13.5 12.1 10.8 9.18 7.37 5.05
12.2 10.7 9.02 8.08 7.20 6.12 4.92 3.37
9.18 8.05 6.77 6.06 5.40 4.59 3.69 2.53
Notes:
1.
DCTDHS/06 MARCH 2002
2. 3. 4. 5. 6.
W*L2
FLR
Span of Beam (L) in metres
t
FLR FLR φ αm αs W *L1 W *L2
= = = = = = =
7.0
8.0
9.0
12.3 10.6 8.83 6.94 5.83 4.27
10.5 9.13 7.57 5.95 5.04 3.66
9.23 7.98 6.63 5.21 4.41 3.20
13.6 11.8 9.76 7.54 5.63 4.02
11.4 9.82 8.14 6.28 4.69 3.35
9.75 8.42 6.97 5.38 4.02 2.87
7.35 6.44 5.41 4.85 4.32 3.67 2.95 2.02
6.12 5.37 4.51 4.04 3.60 3.06 2.46 1.68
5.25 4.60 3.87 3.46 3.08 2.62 2.11 1.44
1.809 (π2 E Iy G J / M2SX)0.5 (See Section D4.1.3 of these tables for explanation) Segment length for full lateral restraint (φMbx = φMsx) 0.9 1.0 1.0 2 φ Ms/L φ Vv
10.0
11.0
12.0
13.0
14.0
kN
m
8.20 7.10 5.89 4.63 3.92 2.85
7.38 6.39 5.30 4.17 3.53 2.56
6.71 5.81 4.82 3.79 3.20 2.33
6.15 5.32 4.42 3.47 2.94 2.14
5.68 4.91 4.08 3.20 2.71 1.97
5.27 4.56 3.79 2.98 2.52 1.83
374 316 257 195 164 132
26.4 26.9 27.4 27.6 27.9 31.4
8.53 7.37 6.10 4.71 3.52 2.51
7.58 6.55 5.42 4.19 3.13 2.23
6.82 5.89 4.88 3.77 2.81 2.01
6.20 5.36 4.44 3.43 2.56 1.83
5.68 4.91 4.07 3.14 2.34 1.67
5.25 4.53 3.76 2.90 2.16 1.55
4.87 4.21 3.49 2.69 2.01 1.44
317 269 219 167 140 113
54.7 55.1 55.5 56.2 64.0 73.0
4.59 4.03 3.38 3.03 2.70 2.30 1.84 1.26
4.08 3.58 3.01 2.69 2.40 2.04 1.64 1.12
3.67 3.22 2.71 2.42 2.16 1.84 1.47 1.01
3.34 2.93 2.46 2.20 1.96 1.67 1.34 0.918
3.06 2.68 2.26 2.02 1.80 1.53 1.23 0.842
2.83 2.48 2.08 1.87 1.66 1.41 1.13 0.777
2.62 2.30 1.93 1.73 1.54 1.31 1.05 0.721
244 208 170 151 131 110 88.9 71.7
32.8 33.3 33.8 34.0 33.9 34.1 34.9 41.6
DCTDHS/06 MARCH 2002
TABLE D8.4-1(1)(B)
SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS CANTILEVER BEAMS DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250
Designation DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
d
b
W*S1 (kN)
Mass per m
Span of Beam (L) in metres
t
mm mm mm
kg/m
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
13.0
14.0
150 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS
16.7 14.2 11.6 8.96 7.53 6.07
32.4 28.4 23.9 19.1 16.3 13.3
8.10 7.11 5.98 4.78 4.07 3.32
3.60 3.16 2.66 2.12 1.81 1.48
2.02 1.78 1.49 1.19 1.02 0.830
1.30 1.14 0.956 0.764 0.650 0.531
0.899 0.790 0.664 0.531 0.452 0.369
0.661 0.580 0.488 0.390 0.332 0.271
0.506 0.444 0.374 0.299 0.254 0.208
0.400 0.351 0.295 0.236 0.201 0.164
0.324 0.284 0.239 0.191 0.163 0.133
0.268 0.235 0.198 0.158 0.134 0.110
0.225 0.197 0.166 0.133 0.113 0.0922
0.192 0.168 0.141 0.113 0.0962 0.0786
0.165 0.145 0.122 0.0975 0.0830 0.0678
125 x 75 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS
16.7 14.2 11.6 8.96 7.53 6.07
26.6 23.3 19.5 15.5 13.2 10.8
6.66 5.83 4.89 3.89 3.30 2.70
2.96 2.59 2.17 1.73 1.47 1.20
1.66 1.46 1.22 0.971 0.826 0.674
1.07 0.932 0.782 0.622 0.529 0.431
0.740 0.647 0.543 0.432 0.367 0.300
0.544 0.476 0.399 0.317 0.270 0.220
0.416 0.364 0.305 0.243 0.207 0.169
0.329 0.288 0.241 0.192 0.163 0.133
0.266 0.233 0.195 0.155 0.132 0.108
0.220 0.193 0.162 0.128 0.109 0.0892
0.185 0.162 0.136 0.108 0.0918 0.0749
0.158 0.138 0.116 0.0920 0.0782 0.0638
0.136 0.119 0.0997 0.0793 0.0674 0.0550
100 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.5 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
12.0 10.3 8.49 7.53 6.60 5.56 4.50 3.64
10.9 9.78 8.36 7.56 6.81 5.84 4.80 3.92
2.74 2.44 2.09 1.89 1.70 1.46 1.20 0.981
1.22 1.09 0.929 0.840 0.757 0.649 0.533 0.436
0.684 0.611 0.523 0.472 0.426 0.365 0.300 0.245
0.438 0.391 0.335 0.302 0.273 0.233 0.192 0.157
0.304 0.272 0.232 0.210 0.189 0.162 0.133 0.109
0.223 0.200 0.171 0.154 0.139 0.119 0.0979 0.0801
0.171 0.153 0.131 0.118 0.106 0.0912 0.0750 0.0613
0.135 0.121 0.103 0.0933 0.0841 0.0721 0.0592 0.0484
0.109 0.0978 0.0836 0.0756 0.0681 0.0584 0.0480 0.0392
0.0904 0.0808 0.0691 0.0625 0.0563 0.0482 0.0397 0.0324
0.0760 0.0679 0.0581 0.0525 0.0473 0.0405 0.0333 0.0272
0.0647 0.0579 0.0495 0.0447 0.0403 0.0345 0.0284 0.0232
0.0558 0.0499 0.0427 0.0386 0.0348 0.0298 0.0245 0.0200
Note:
1.
Serviceabilty Load W *S1 = 8El/(250L2)
D8-47
D8-48
TABLE D8.4-1(2)(A)
STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS CANTILEVER BEAMS WITH FULL LATERAL RESTRAINT DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness = Maximum Design Load based on Design Moment Capacity bending about x-axis = Maximum Design Load based on Design Shear Capacity
W *L1 W *L2 Maximum Design Load W*L is LESSER of W*L1 and W*L2
Designation d
b
W*L1 (kN)
Mass per m
W*L2
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002
mm mm mm
kg/m
0.5
0.75
1.0
1.25
1.5
1.75
2.0
2.5
3.0
100 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.5 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
12.0 10.3 8.49 7.53 6.60 5.56 4.50 3.64
73.5 64.4 54.1 48.5 43.2 36.7 29.5 20.2
49.0 42.9 36.1 32.3 28.8 24.5 19.7 13.5
36.7 32.2 27.1 24.2 21.6 18.4 14.7 10.1
29.4 25.8 21.6 19.4 17.3 14.7 11.8 8.08
24.5 21.5 18.0 16.2 14.4 12.2 9.83 6.73
21.0 18.4 15.5 13.9 12.3 10.5 8.43 5.77
18.4 16.1 13.5 12.1 10.8 9.18 7.37 5.05
14.7 12.9 10.8 9.70 8.64 7.35 5.90 4.04
75 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
9.67 8.35 6.92 5.42 4.58 3.72 3.01
45.5 40.3 34.3 27.7 23.6 19.1 13.4
30.3 26.9 22.8 18.5 15.8 12.7 8.92
22.7 20.2 17.1 13.8 11.8 9.54 6.69
18.2 16.1 13.7 11.1 9.46 7.64 5.35
15.2 13.4 11.4 9.23 7.88 6.36 4.46
13.0 11.5 9.79 7.91 6.75 5.45 3.82
11.4 10.1 8.56 6.92 5.91 4.77 3.34
75 x 25 x 2.5 RHS 2.0 RHS 1.6 RHS
3.60 2.93 2.38
16.3 13.5 11.0
10.9 8.97 7.36
8.15 6.73 5.52
6.52 5.38 4.42
5.43 4.49 3.68
4.66 3.85 3.15
65 x 35 x 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS
5.35 4.25 3.60 2.93
21.5 17.8 15.3 12.6
14.3 11.9 10.2 8.42
10.8 8.90 7.66 6.32
8.60 7.12 6.13 5.05
7.17 5.94 5.10 4.21
50 x 25 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
3.07 2.62 2.15 1.75
9.50 8.27 6.91 5.71
6.33 5.51 4.60 3.81
4.75 4.14 3.45 2.86
3.80 3.31 2.76 2.28
50 x 20 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
2.83 2.42 1.99 1.63
8.36 7.31 6.13 5.08
5.57 4.87 4.08 3.39
4.18 3.65 3.06 2.54
3.34 2.92 2.45 2.03
Notes:
1. 2. 3.
FLR
Span of Beam (L) in metres
t
FLR FLR φ αm
3.5
4.0
4.5
5.0
6.0
kN
m
12.2 10.7 9.02 8.08 7.20 6.12 4.92 3.37
10.5 9.20 7.73 6.93 6.17 5.25 4.21 2.89
9.18 8.05 6.77 6.06 5.40 4.59 3.69 2.53
8.16 7.16 6.01 5.39 4.80 4.08 3.28 2.24
7.35 6.44 5.41 4.85 4.32 3.67 2.95 2.02
6.12 5.37 4.51 4.04 3.60 3.06 2.46 1.68
244 208 170 151 131 110 88.9 71.7
32.8 33.3 33.8 34.0 33.9 34.1 34.9 41.6
9.09 8.07 6.85 5.54 4.73 3.82 2.68
7.58 6.72 5.71 4.61 3.94 3.18 2.23
6.49 5.76 4.89 3.95 3.38 2.73 1.91
5.68 5.04 4.28 3.46 2.95 2.39 1.67
5.05 4.48 3.81 3.08 2.63 2.12 1.49
4.55 4.03 3.43 2.77 2.36 1.91 1.34
3.79 3.36 2.85 2.31 1.97 1.59 1.11
178 153 126 97.4 82.3 66.8 54.0
37.1 37.5 38.0 37.9 38.1 38.9 45.4
4.07 3.36 2.76
3.26 2.69 2.21
2.72 2.24 1.84
2.33 1.92 1.58
2.04 1.68 1.38
1.81 1.50 1.23
1.63 1.35 1.10
1.36 1.12 0.920
79.1 64.2 51.9
13.3 13.5 13.8
6.15 5.09 4.38 3.61
5.38 4.45 3.83 3.16
4.30 3.56 3.06 2.53
3.59 2.97 2.55 2.11
3.07 2.54 2.19 1.81
2.69 2.23 1.91 1.58
2.39 1.98 1.70 1.40
2.15 1.78 1.53 1.26
1.79 1.48 1.28 1.05
106 82.3 69.7 56.7
23.9 24.1 24.3 24.5
3.17 2.76 2.30 1.90
2.71 2.36 1.97 1.63
2.37 2.07 1.73 1.43
1.90 1.65 1.38 1.14
1.58 1.38 1.15 0.952
1.36 1.18 0.986 0.816
1.19 1.03 0.863 0.714
1.06 0.919 0.767 0.635
0.950 0.827 0.691 0.571
0.791 0.689 0.575 0.476
61.1 52.1 42.6 34.7
16.2 16.4 16.7 16.9
2.79 2.44 2.04 1.69
2.39 2.09 1.75 1.45
2.09 1.83 1.53 1.27
1.67 1.46 1.23 1.02
1.39 1.22 1.02 0.847
1.19 1.04 0.875 0.726
1.04 0.914 0.766 0.635
0.928 0.812 0.681 0.565
0.836 0.731 0.613 0.508
0.696 0.609 0.511 0.424
60.3 51.4 42.0 34.2
11.2 11.5 11.8 12.0
= 1.809 (π2 E I y G J / M2SX)0.5 (See Section D4.1.3 of these tables for explanation) = Segment length for full lateral restraint (φMbx = φMsx) = 0.9 = 1.0
4. 5. 6.
αs W *L1 W *L2
= = =
1.0 2 φ Ms /L φ Vv
DCTDHS/06 MARCH 2002
TABLE D8.4-1(2)(B)
SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS CANTILEVER BEAMS DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250
Designation d
b
W*S1 (kN)
Mass per m
Span of Beam (L) in metres
t
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
mm mm mm
kg/m
0.5
0.75
1.0
1.25
1.5
1.75
2.0
2.5
3.0
3.5
4.0
4.5
5.0
6.0
D8-49
100x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.5 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
12.0 10.3 8.49 7.53 6.60 5.56 4.50 3.64
43.8 39.1 33.5 30.2 27.3 23.3 19.2 15.7
19.5 17.4 14.9 13.4 12.1 10.4 8.53 6.97
10.9 9.78 8.36 7.56 6.81 5.84 4.80 3.92
7.00 6.26 5.35 4.84 4.36 3.74 3.07 2.51
4.86 4.35 3.72 3.36 3.03 2.59 2.13 1.74
3.57 3.19 2.73 2.47 2.22 1.91 1.57 1.28
2.74 2.44 2.09 1.89 1.70 1.46 1.20 0.981
1.75 1.56 1.34 1.21 1.09 0.934 0.768 0.628
1.22 1.09 0.929 0.840 0.757 0.649 0.533 0.436
0.893 0.798 0.683 0.617 0.556 0.476 0.392 0.320
0.684 0.611 0.523 0.472 0.426 0.365 0.300 0.245
0.540 0.483 0.413 0.373 0.336 0.288 0.237 0.194
0.438 0.391 0.335 0.302 0.273 0.233 0.192 0.157
0.304 0.272 0.232 0.210 0.189 0.162 0.133 0.109
75 x 50 x 6.0 RHS 5.0 RHS 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
9.67 8.35 6.92 5.42 4.58 3.72 3.01
20.5 18.6 16.1 13.4 11.5 9.51 7.81
9.10 8.26 7.17 5.94 5.11 4.23 3.47
5.12 4.65 4.03 3.34 2.88 2.38 1.95
3.28 2.97 2.58 2.14 1.84 1.52 1.25
2.28 2.07 1.79 1.48 1.28 1.06 0.868
1.67 1.52 1.32 1.09 0.939 0.777 0.638
1.28 1.16 1.01 0.835 0.719 0.595 0.488
0.819 0.743 0.645 0.534 0.460 0.381 0.312
0.569 0.516 0.448 0.371 0.320 0.264 0.217
0.418 0.379 0.329 0.273 0.235 0.194 0.159
0.320 0.290 0.252 0.209 0.180 0.149 0.122
0.253 0.229 0.199 0.165 0.142 0.117 0.0964
0.205 0.186 0.161 0.134 0.115 0.0951 0.0781
0.142 0.129 0.112 0.0927 0.0799 0.0661 0.0542
75 x 25 x 2.5 RHS 2.0 RHS 1.6 RHS
3.60 2.93 2.38
7.30 6.10 5.05
3.24 2.71 2.25
1.83 1.53 1.26
1.17 0.976 0.808
0.811 0.678 0.561
0.596 0.498 0.412
0.456 0.381 0.316
0.292 0.244 0.202
0.203 0.170 0.140
0.149 0.125 0.103
0.114 0.0953 0.0789
0.0901 0.0753 0.0624
0.0730 0.0610 0.0505
0.0507 0.0424 0.0351
65 x 35 x 4.0 RHS 3.0 RHS 2.5 RHS 2.0 RHS
5.35 4.25 3.60 2.93
8.40 7.19 6.26 5.22
3.73 3.20 2.78 2.32
2.10 1.80 1.56 1.31
1.34 1.15 1.00 0.836
0.934 0.799 0.695 0.580
0.686 0.587 0.511 0.426
0.525 0.450 0.391 0.326
0.336 0.288 0.250 0.209
0.233 0.200 0.174 0.145
0.171 0.147 0.128 0.107
0.131 0.112 0.0978 0.0816
0.104 0.0888 0.0773 0.0645
0.0840 0.0719 0.0626 0.0522
0.0583 0.0500 0.0435 0.0363
50 x 25 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
3.07 2.62 2.15 1.75
2.86 2.53 2.15 1.80
1.27 1.12 0.954 0.799
0.715 0.633 0.537 0.449
0.458 0.405 0.343 0.287
0.318 0.281 0.238 0.200
0.233 0.207 0.175 0.147
0.179 0.158 0.134 0.112
0.114 0.101 0.0858 0.0719
0.0794 0.0703 0.0596 0.0499
0.0584 0.0517 0.0438 0.0367
0.0447 0.0395 0.0335 0.0281
0.0353 0.0312 0.0265 0.0222
0.0286 0.0253 0.0215 0.0180
0.0199 0.0176 0.0149 0.0125
50 x 20 x 3.0 RHS 2.5 RHS 2.0 RHS 1.6 RHS
2.83 2.42 1.99 1.63
2.44 2.17 1.85 1.56
1.08 0.964 0.823 0.692
0.609 0.542 0.463 0.389
0.390 0.347 0.296 0.249
0.271 0.241 0.206 0.173
0.199 0.177 0.151 0.127
0.152 0.136 0.116 0.0973
0.0974 0.0868 0.0740 0.0623
0.0676 0.0603 0.0514 0.0432
0.0497 0.0443 0.0378 0.0318
0.0381 0.0339 0.0289 0.0243
0.0301 0.0268 0.0229 0.0192
0.0244 0.0217 0.0185 0.0156
0.0169 0.0151 0.0129 0.0108
Note:
1.
Serviceabilty Load W *S1 =8EI / (250L2)
D8-50 TABLE D8.4-2(A)
STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS CANTILEVER BEAMS WITH FULL LATERAL RESTRAINT DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness bending about x-axis DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
W *L1 = Maximum Design Load based on Design Moment Capacity W *L2 = Maximum Design Load based on Design Shear Capacity Maximum Design Load W *L is LESSER of W *L1 and W *L2
Designation d
b
W*L1 (kN)
Mass per m
W*L2
FLR
Span of Beam (L) in metres
t
mm mm mm
kg/m
0.5
0.75
1.0
1.25
1.5
1.75
2.0
2.5
3.0
3.5
4.0
4.5
5.0
6.0
kN
m
125 x 75 x 2.8 RHS 2.3 RHS
8.39 6.95
67.8 49.0
45.2 32.7
33.9 24.5
27.1 19.6
22.6 16.3
19.4 14.0
16.9 12.3
13.6 9.80
11.3 8.17
9.68 7.00
8.47 6.13
7.53 5.44
6.78 4.90
5.65 4.08
156 129
58.8 68.1
100 x 50 x 2.8 RHS 2.3 RHS
6.19 5.14
40.6 34.1
27.1 22.7
20.3 17.0
16.3 13.6
13.5 11.4
11.6 9.73
10.2 8.52
8.13 6.81
6.77 5.68
5.81 4.87
5.08 4.26
4.52 3.78
4.06 3.41
3.39 2.84
122 102
34.0 34.2
75 x 50 x 2.8 RHS 2.3 RHS
5.09 4.24
26.1 22.0
17.4 14.6
13.0 11.0
10.4 8.78
8.70 7.32
7.45 6.27
6.52 5.49
5.22 4.39
4.35 3.66
3.73 3.14
3.26 2.74
2.90 2.44
2.61 2.20
2.17 1.83
91.4 76.2
38.0 38.2
65 x 35 x 2.8 RHS 2.3 RHS
3.99 3.34
16.8 14.3
11.2 9.51
8.42 7.13
6.73 5.71
5.61 4.76
4.81 4.08
4.21 3.57
3.37 2.85
2.81 2.38
2.40 2.04
2.10 1.78
1.87 1.59
1.68 1.43
1.40 1.19
77.3 64.6
24.1 24.4
50 x 25 x 2.8 RHS 2.3 RHS
2.89 2.44
9.02 7.74
6.02 5.16
4.51 3.87
3.61 3.10
3.01 2.58
2.58 2.21
2.26 1.94
1.80 1.55
1.50 1.29
1.29 1.11
1.13 0.968
1.00 0.860
0.902 0.774
0.752 0.645
57.5 48.3
16.3 16.5
50 x 20 x 2.8 RHS 2.3 RHS
2.67 2.25
7.95 6.85
5.30 4.57
3.98 3.43
3.18 2.74
2.65 2.28
2.27 1.96
1.99 1.71
1.59 1.37
1.33 1.14
1.14 0.979
0.994 0.857
0.884 0.761
0.795 0.685
0.663 0.571
56.8 47.7
11.3 11.6
Notes:
1.
DCTDHS/06 MARCH 2002
2. 3. 4. 5. 6.
FLR FLR φ αm αs W *L1 W *L2
= = = = = = =
1.809 (π2 E Iy G J / M2SX)0.5 (See Section D4.1.3 of these tables for explanation) Segment length for full lateral restraint (φMbx = φMsx) 0.9 1.0 1.0 2 φ Ms/L φ Vv
DCTDHS/06 MARCH 2002
TABLE D8.4-2(B)
SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS CANTILEVER BEAMS DuraGal RECTANGULAR HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness bending about x-axis DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250
Designation d
b
W*S1 (kN)
Mass per m
Span of Beam (L) in metres
t
mm mm mm
kg/m
0.5
0.75
1.0
125 x 75 x 2.8 RHS 2.3 RHS
8.39 6.95
58.5 49.0
26.0 21.8
14.6 12.3
100 x 50 x 2.8 RHS 2.3 RHS
6.19 5.14
25.7 21.7
11.4 9.65
75 x 50 x 2.8 RHS 2.3 RHS
5.09 4.24
12.6 10.7
65 x 35 x 2.8 RHS 2.3 RHS
3.99 3.34
50 x 25 x 2.8 RHS 2.3 RHS 50 x 20 x 2.8 RHS 2.3 RHS Note:
1.
1.25
1.5
1.75
2.0
2.5
3.0
3.5
4.0
4.5
5.0
9.36 7.84
6.50 5.45
4.78 4.00
3.66 3.06
2.34 1.96
1.62 1.36
1.19 1.00
0.914 0.766
0.722 0.605
0.585 0.490
0.406 0.340
6.43 5.43
4.12 3.47
2.86 2.41
2.10 1.77
1.61 1.36
1.03 0.869
0.714 0.603
0.525 0.443
0.402 0.339
0.318 0.268
0.257 0.217
0.179 0.151
5.61 4.77
3.16 2.68
2.02 1.72
1.40 1.19
1.03 0.876
0.790 0.670
0.505 0.429
0.351 0.298
0.258 0.219
0.197 0.168
0.156 0.132
0.126 0.107
0.0877 0.0745
6.83 5.86
3.04 2.60
1.71 1.46
1.09 0.937
0.759 0.651
0.558 0.478
0.427 0.366
0.273 0.234
0.190 0.163
0.139 0.120
0.107 0.0915
0.0843 0.0723
0.0683 0.0586
0.0474 0.0407
2.89 2.44
2.73 2.38
1.22 1.06
0.684 0.596
0.438 0.381
0.304 0.265
0.223 0.195
0.171 0.149
0.109 0.0954
0.0760 0.0662
0.0558 0.0487
0.0427 0.0372
0.0338 0.0294
0.0273 0.0238
0.0190 0.0166
2.67 2.25
2.34 2.05
1.04 0.911
0.584 0.512
0.374 0.328
0.259 0.228
0.191 0.167
0.146 0.128
0.0934 0.0819
0.0649 0.0569
0.0477 0.0418
0.0365 0.0320
0.0288 0.0253
0.0234 0.0205
0.0162 0.0142
Serviceabilty Load W *S1 =8EI / (250L2)
6.0
D8-51
D8-52
TABLE D8.4-3(1)(A)
STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS CANTILEVER BEAMS WITH FULL LATERAL RESTRAINT DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis W *L1 = Maximum Design Load based on Design Moment Capacity W *L2 = Maximum Design Load based on Design Shear Capacity Maximum Design Load W *L is LESSER of W *L1 and W *L2
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
Designation d
b
W*L1 (kN)
Mass per m
W*L2 Span of Beam (L) in metres
t
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
13.0
14.0
kN
59.6 51.4 42.1 30.1 22.7 16.3
29.8 25.7 21.0 15.0 11.4 8.13
19.9 17.1 14.0 10.0 7.58 5.42
14.9 12.9 10.5 7.52 5.69 4.07
11.9 10.3 8.41 6.01 4.55 3.25
9.93 8.57 7.01 5.01 3.79 2.71
8.51 7.35 6.01 4.30 3.25 2.32
7.45 6.43 5.26 3.76 2.84 2.03
6.62 5.72 4.67 3.34 2.53 1.81
5.96 5.14 4.21 3.01 2.27 1.63
5.42 4.68 3.82 2.73 2.07 1.48
4.96 4.29 3.50 2.51 1.90 1.36
4.58 3.96 3.23 2.31 1.75 1.25
4.25 3.67 3.00 2.15 1.62 1.16
253 216 177 135 114 92.2
23.8 19.5 13.9 9.97
11.9 9.74 6.94 4.98
7.95 6.49 4.63 3.32
5.96 4.87 3.47 2.49
4.77 3.89 2.78 1.99
3.97 3.25 2.31 1.66
3.41 2.78 1.98 1.42
2.98 2.43 1.73 1.25
2.65 2.16 1.54 1.11
2.38 1.95 1.39 0.997
2.17 1.77 1.26 0.906
1.99 1.62 1.16 0.831
1.83 1.50 1.07 0.767
1.70 1.39 0.991 0.712
121 102 82.6 66.7
89 x 89 x 6.0 SHS 9.06 5.0 SHS 12.5 3.5 SHS 14.6
28.9 39.8 45.8
14.5 19.9 22.9
9.64 13.3 15.3
7.23 9.94 11.5
5.78 7.95 9.16
4.82 6.63 7.63
4.13 5.68 6.54
3.61 4.97 5.73
3.21 4.42 5.09
2.89 3.98 4.58
2.63 3.62 4.16
2.41 3.31 3.82
2.22 3.06 3.52
2.06 2.84 3.27
138 189 221
75 x 75 x 6.0 SHS 12.0 5.0 SHS 10.3 4.0 SHS 8.49 3.5 SHS 7.53 3.0 SHS 6.60 2.5 SHS 5.56 2.0 SHS 4.50
31.1 27.3 22.9 20.5 18.0 13.8 10.6
15.6 13.6 11.4 10.2 8.99 6.90 5.29
10.4 9.08 7.63 6.83 5.99 4.60 3.53
7.78 6.81 5.72 5.12 4.49 3.45 2.65
6.22 5.45 4.58 4.10 3.60 2.76 2.12
5.19 4.54 3.81 3.42 3.00 2.30 1.76
4.44 3.89 3.27 2.93 2.57 1.97 1.51
3.89 3.41 2.86 2.56 2.25 1.73 1.32
3.46 3.03 2.54 2.28 2.00 1.53 1.18
3.11 2.73 2.29 2.05 1.80 1.38 1.06
2.83 2.48 2.08 1.86 1.63 1.25 0.962
2.59 2.27 1.91 1.71 1.50 1.15 0.882
2.39 2.10 1.76 1.58 1.38 1.06 0.814
2.22 1.95 1.63 1.46 1.28 0.986 0.756
181 156 129 114 99.4 84.0 68.2
mm mm mm
kg/m
100 x 100 x 6.0 SHS 16.7 5.0 SHS 14.2 4.0 SHS 11.6 3.0 SHS 8.96 2.5 SHS 7.53 2.0 SHS 6.07 90 x 90 x 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS
Notes:
DCTDHS/06 MARCH 2002
1. 2. 3. 4. 5.
φ αm αs W *L1 W *L2
= = = = =
8.01 6.74 5.45 4.39
0.9 1.0 1.0 2 φ Ms/L φ Vv
DCTDHS/06 MARCH 2002
TABLE D8.4-3(1)(B)
SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS CANTILEVER BEAMS DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250
Designation d mm
b
W*S1 (kN)
Mass per m
Span of Beam (L) in metres
t
mm mm
kg/m
100 x 100 x 6.0 SHS 16.7 5.0 SHS 14.2 4.0 SHS 11.6 3.0 SHS 8.96 2.5 SHS 7.53 2.0 SHS 6.07
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
13.0
14.0
19.4 17.0 14.3 11.3 9.64 7.87
4.86 4.25 3.57 2.83 2.41 1.97
2.16 1.89 1.59 1.26 1.07 0.875
1.21 1.06 0.892 0.708 0.603 0.492
0.777 0.680 0.571 0.453 0.386 0.315
0.540 0.472 0.396 0.315 0.268 0.219
0.397 0.347 0.291 0.231 0.197 0.161
0.304 0.266 0.223 0.177 0.151 0.123
0.240 0.210 0.176 0.140 0.119 0.0972
0.194 0.170 0.143 0.113 0.0964 0.0787
0.161 0.141 0.118 0.0936 0.0797 0.0651
0.135 0.118 0.0991 0.0787 0.0669 0.0547
0.115 0.101 0.0844 0.0670 0.0570 0.0466
0.0992 0.0868 0.0728 0.0578 0.0492 0.0402
8.01 6.74 5.45 4.39
8.15 6.95 5.69 4.63
2.04 1.74 1.42 1.16
0.905 0.772 0.632 0.515
0.509 0.434 0.355 0.290
0.326 0.278 0.227 0.185
0.226 0.193 0.158 0.129
0.166 0.142 0.116 0.0946
0.127 0.109 0.0889 0.0724
0.101 0.0858 0.0702 0.0572
0.0815 0.0695 0.0569 0.0463
0.0673 0.0574 0.0470 0.0383
0.0566 0.0482 0.0395 0.0322
0.0482 0.0411 0.0337 0.0274
0.0416 0.0354 0.0290 0.0236
89 x 89 x 6.0 SHS 9.06 5.0 SHS 12.5 3.5 SHS 14.6
8.80 11.6 13.2
2.20 2.90 3.29
0.977 1.29 1.46
0.550 0.724 0.822
0.352 0.464 0.526
0.244 0.322 0.365
0.180 0.237 0.268
0.137 0.181 0.206
0.109 0.143 0.162
0.0880 0.116 0.132
0.0727 0.0958 0.109
0.0611 0.0805 0.0914
0.0520 0.0686 0.0778
0.0449 0.0591 0.0671
75 x 75 x 6.0 SHS 12.0 5.0 SHS 10.3 4.0 SHS 8.49 3.5 SHS 7.53 3.0 SHS 6.60 2.5 SHS 5.56 2.0 SHS 4.50
7.41 6.61 5.65 5.10 4.58 3.93 3.23
1.85 1.65 1.41 1.28 1.15 0.982 0.808
0.823 0.734 0.627 0.567 0.509 0.436 0.359
0.463 0.413 0.353 0.319 0.286 0.246 0.202
0.296 0.264 0.226 0.204 0.183 0.157 0.129
0.206 0.184 0.157 0.142 0.127 0.109 0.0898
0.151 0.135 0.115 0.104 0.0935 0.0802 0.0659
0.116 0.103 0.0882 0.0797 0.0716 0.0614 0.0505
0.0915 0.0816 0.0697 0.0630 0.0566 0.0485 0.0399
0.0741 0.0661 0.0565 0.0510 0.0458 0.0393 0.0323
0.0612 0.0546 0.0467 0.0422 0.0379 0.0325 0.0267
0.0515 0.0459 0.0392 0.0354 0.0318 0.0273 0.0224
0.0438 0.0391 0.0334 0.0302 0.0271 0.0232 0.0191
0.0378 0.0337 0.0288 0.0260 0.0234 0.0200 0.0165
90 x 90 x 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS
D8-53
Note:
1.
Serviceabilty Load W *S1 =8EI / (250L2)
TABLE D8.4-3(2)(A)
STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS
D8-54
CANTILEVER BEAMS WITH FULL LATERAL RESTRAINT DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis = Maximum Design Load based on Design Moment Capacity
W *L1 W *L2 = Maximum Design Load based on Design Shear Capacity Maximum Design Load W *L is LESSER of W *L1 and W *L2
Designation d
b
W*L1 (kN)
Mass per m
W*L2 Span of Beam (L) in metres
t
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS DCTDHS/06 MARCH 2002
mm mm mm
kg/m
0.5
0.75
1.0
1.25
1.5
75 x 75 x 6.0 SHS 5.0 SHS 4.0 SHS 3.5 SHS 3.0 SHS 2.5 SHS 2.0 SHS 65 x 65 x 6.0 SHS 5.0 SHS 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 50 x 50 x 5.0 SHS 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 40 x 40 x 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 35 x 35 x 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 30 x 30 x 2.0 SHS 1.6 SHS 25 x 25 x 2.5 SHS 2.0 SHS 1.6 SHS 20 x 20 x 1.6 SHS
12.0 10.3 8.49 7.53 6.60 5.56 4.50 10.1 8.75 7.23 5.66 4.78 3.88 3.13 6.39 5.35 4.25 3.60 2.93 2.38 4.09 3.30 2.82 2.31 1.88 2.83 2.42 1.99 1.63 1.68 1.38 1.64 1.36 1.12 0.873
62.2 54.5 45.8 41.0 36.0 27.6 19.7 44.6 39.4 33.4 26.8 22.2 15.9 11.4 21.3 18.4 15.2 13.1 10.7 7.68 10.9 9.27 8.05 6.70 5.45 6.85 5.99 5.01 4.16 3.57 2.98 2.77 2.38 2.00 1.22
41.5 36.3 30.5 27.3 24.0 18.4 13.1 29.7 26.3 22.2 17.9 14.8 10.6 7.57 14.2 12.3 10.1 8.72 7.10 5.12 7.27 6.18 5.36 4.46 3.64 4.57 3.99 3.34 2.77 2.38 1.99 1.85 1.58 1.33 0.811
31.1 27.3 22.9 20.5 18.0 13.8 9.83 22.3 19.7 16.7 13.4 11.1 7.94 5.68 10.7 9.22 7.60 6.54 5.33 3.84 5.46 4.64 4.02 3.35 2.73 3.43 2.99 2.51 2.08 1.79 1.49 1.39 1.19 1.00 0.608
24.9 21.8 18.3 16.4 14.4 11.0 7.86 17.8 15.8 13.3 10.7 8.86 6.35 4.54 8.53 7.38 6.08 5.23 4.26 3.07 4.36 3.71 3.22 2.68 2.18 2.74 2.39 2.01 1.66 1.43 1.19 1.11 0.950 0.801 0.486
20.7 18.2 15.3 13.7 12.0 9.20 6.55 14.9 13.1 11.1 8.95 7.39 5.29 3.78 7.10 6.15 5.07 4.36 3.55 2.56 3.64 3.09 2.68 2.23 1.82 2.28 2.00 1.67 1.39 1.19 0.994 0.925 0.792 0.667 0.405
Notes:
1.
φ = 0.9
2. α m = 1.0
3. αs = 1.0
4. W *L1 = 2 φ Ms/L
1.75 17.8 15.6 13.1 11.7 10.3 7.89 5.62 12.7 11.3 9.53 7.67 6.33 4.54 3.24 6.09 5.27 4.35 3.74 3.04 2.19 3.12 2.65 2.30 1.91 1.56 1.96 1.71 1.43 1.19 1.02 0.852 0.793 0.679 0.572 0.347
5. W *L2 = φ Vv
2.0 15.6 13.6 11.4 10.2 8.99 6.90 4.91 11.1 9.85 8.34 6.71 5.54 3.97 2.84 5.33 4.61 3.80 3.27 2.66 1.92 2.73 2.32 2.01 1.67 1.36 1.71 1.50 1.25 1.04 0.893 0.746 0.694 0.594 0.500 0.304
2.5
3.0
3.5
4.0
4.5
5.0
6.0
kN
12.4 10.9 9.15 8.20 7.19 5.52 3.93 8.91 7.88 6.67 5.37 4.43 3.18 2.27 4.26 3.69 3.04 2.62 2.13 1.54 2.18 1.85 1.61 1.34 1.09 1.37 1.20 1.00 0.831 0.715 0.596 0.555 0.475 0.400 0.243
10.4 9.08 7.63 6.83 5.99 4.60 3.28 7.43 6.57 5.56 4.47 3.69 2.65 1.89 3.55 3.07 2.53 2.18 1.78 1.28 1.82 1.55 1.34 1.12 0.909 1.14 0.998 0.836 0.693 0.595 0.497 0.462 0.396 0.334 0.203
8.89 7.79 6.54 5.86 5.14 3.94 2.81 6.37 5.63 4.77 3.84 3.17 2.27 1.62 3.04 2.63 2.17 1.87 1.52 1.10 1.56 1.32 1.15 0.957 0.779 0.979 0.855 0.716 0.594 0.510 0.426 0.396 0.339 0.286 0.174
7.78 6.81 5.72 5.12 4.49 3.45 2.46 5.57 4.93 4.17 3.36 2.77 1.99 1.42 2.66 2.30 1.90 1.63 1.33 0.960 1.36 1.16 1.01 0.837 0.682 0.856 0.748 0.627 0.520 0.447 0.373 0.347 0.297 0.250 0.152
6.91 6.06 5.08 4.55 4.00 3.07 2.18 4.95 4.38 3.71 2.98 2.46 1.76 1.26 2.37 2.05 1.69 1.45 1.18 0.853 1.21 1.03 0.894 0.744 0.606 0.761 0.665 0.557 0.462 0.397 0.331 0.308 0.264 0.222 0.135
6.22 5.45 4.58 4.10 3.60 2.76 1.97 4.46 3.94 3.34 2.68 2.22 1.59 1.14 2.13 1.84 1.52 1.31 1.07 0.768 1.09 0.927 0.805 0.670 0.545 0.685 0.599 0.501 0.416 0.357 0.298 0.277 0.238 0.200 0.122
5.19 4.54 3.81 3.42 3.00 2.30 1.64 3.71 3.28 2.78 2.24 1.85 1.32 0.946 1.78 1.54 1.27 1.09 0.888 0.640 0.909 0.773 0.671 0.558 0.455 0.571 0.499 0.418 0.346 0.298 0.249 0.231 0.198 0.167 0.101
181 156 129 114 99.4 84.0 68.2 153 132 109 85.0 72.0 58.6 47.5 96.0 80.6 63.4 54.0 44.2 35.9 61.4 49.0 42.0 34.6 28.3 41.8 36.0 29.8 24.4 25.0 20.6 24.0 20.2 16.7 12.9
TABLE D8.4-3(2)(B) DCTDHS/06 MARCH 2002
SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS CANTILEVER BEAMS DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Standard Thickness bending about x-axis W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250
Designation d
b
W*S1 (kN)
Mass per m
Span of Beam (L) in metres
t
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
D8-55
mm mm mm
kg/m
0.5
75 x 75 x 6.0 SHS 5.0 SHS 4.0 SHS 3.5 SHS 3.0 SHS 2.5 SHS 2.0 SHS 65 x 65 x 6.0 SHS 5.0 SHS 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 50 x 50 x 5.0 SHS 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 40 x 40 x 4.0 SHS 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 35 x 35 x 3.0 SHS 2.5 SHS 2.0 SHS 1.6 SHS 30 x 30 x 2.0 SHS 1.6 SHS 25 x 25 x 2.5 SHS 2.0 SHS 1.6 SHS 20 x 20 x 1.6 SHS
12.0 10.3 8.49 7.53 6.60 5.56 4.50 10.1 8.75 7.23 5.66 4.78 3.88 3.13 6.39 5.35 4.25 3.60 2.93 2.38 4.09 3.30 2.82 2.31 1.88 2.83 2.42 1.99 1.63 1.68 1.38 1.64 1.36 1.12 0.873
29.6 13.2 26.4 11.8 22.6 10.0 20.4 9.07 18.3 8.15 15.7 6.98 12.9 5.74 18.1 8.04 16.3 7.26 14.1 6.28 11.6 5.17 10.0 4.45 8.27 3.68 6.79 3.02 6.58 2.92 5.86 2.60 4.98 2.21 4.34 1.93 3.62 1.61 3.00 1.33 2.69 1.20 2.39 1.06 2.10 0.935 1.78 0.790 1.48 0.659 1.52 0.677 1.35 0.602 1.15 0.513 0.970 0.431 0.697 0.310 0.591 0.263 0.433 0.192 0.380 0.169 0.326 0.145 0.156 0.0691
Note:
1.
0.75
Serviceabilty Load W *S1 = 8EI / (250L2)
1.0
1.25
1.5
1.75
7.41 6.61 5.65 5.10 4.58 3.93 3.23 4.52 4.08 3.53 2.91 2.50 2.07 1.70 1.64 1.46 1.25 1.08 0.905 0.749 0.674 0.597 0.526 0.444 0.371 0.381 0.339 0.288 0.242 0.174 0.148 0.108 0.0949 0.0816 0.0389
4.74 4.23 3.61 3.27 2.93 2.51 2.07 2.89 2.61 2.26 1.86 1.60 1.32 1.09 1.05 0.937 0.797 0.694 0.579 0.479 0.431 0.382 0.336 0.284 0.237 0.244 0.217 0.185 0.155 0.111 0.0946 0.0692 0.0608 0.0522 0.0249
3.29 2.94 2.51 2.27 2.04 1.75 1.44 2.01 1.82 1.57 1.29 1.11 0.919 0.754 0.731 0.651 0.554 0.482 0.402 0.333 0.299 0.265 0.234 0.197 0.165 0.169 0.150 0.128 0.108 0.0774 0.0657 0.0481 0.0422 0.0363 0.0173
2.42 2.16 1.84 1.67 1.50 1.28 1.06 1.48 1.33 1.15 0.949 0.817 0.675 0.554 0.537 0.478 0.407 0.354 0.296 0.245 0.220 0.195 0.172 0.145 0.121 0.124 0.111 0.0942 0.0792 0.0569 0.0482 0.0353 0.0310 0.0266 0.0127
2.0 1.85 1.65 1.41 1.28 1.15 0.982 0.808 1.13 1.02 0.883 0.727 0.626 0.517 0.424 0.411 0.366 0.311 0.271 0.226 0.187 0.168 0.149 0.131 0.111 0.0927 0.0952 0.0846 0.0721 0.0606 0.0436 0.0369 0.0270 0.0237 0.0204 0.00972
2.5 1.19 1.06 0.904 0.816 0.733 0.629 0.517 0.723 0.654 0.565 0.465 0.400 0.331 0.272 0.263 0.234 0.199 0.174 0.145 0.120 0.108 0.0955 0.0841 0.0711 0.0593 0.0609 0.0542 0.0462 0.0388 0.0279 0.0236 0.0173 0.0152 0.0131 0.00622
3.0 0.823 0.734 0.627 0.567 0.509 0.436 0.359 0.502 0.454 0.392 0.323 0.278 0.230 0.189 0.183 0.163 0.138 0.120 0.101 0.0832 0.0748 0.0663 0.0584 0.0494 0.0412 0.0423 0.0376 0.0321 0.0269 0.0194 0.0164 0.0120 0.0105 0.00907 0.00432
3.5 0.605 0.540 0.461 0.417 0.374 0.321 0.264 0.369 0.333 0.288 0.237 0.204 0.169 0.139 0.134 0.119 0.102 0.0885 0.0739 0.0612 0.0550 0.0487 0.0429 0.0363 0.0303 0.0311 0.0276 0.0235 0.0198 0.0142 0.0121 0.00883 0.00775 0.00666 0.00317
4.0 0.463 0.413 0.353 0.319 0.286 0.246 0.202 0.283 0.255 0.221 0.182 0.156 0.129 0.106 0.103 0.0915 0.0779 0.0678 0.0566 0.0468 0.0421 0.0373 0.0329 0.0278 0.0232 0.0238 0.0212 0.0180 0.0152 0.0109 0.00924 0.00676 0.00593 0.00510 0.00243
4.5
5.0
0.366 0.296 0.326 0.264 0.279 0.226 0.252 0.204 0.226 0.183 0.194 0.157 0.160 0.129 0.223 0.181 0.202 0.163 0.174 0.141 0.144 0.116 0.124 0.100 0.102 0.0827 0.0838 0.0679 0.0812 0.0658 0.0723 0.0586 0.0615 0.0498 0.0536 0.0434 0.0447 0.0362 0.0370 0.0300 0.0333 0.0269 0.0295 0.0239 0.0260 0.0210 0.0219 0.0178 0.0183 0.0148 0.0188 0.0152 0.0167 0.0135 0.0142 0.0115 0.0120 0.00970 0.00860 0.00697 0.00730 0.00591 0.00534 0.00433 0.00469 0.00380 0.00403 0.00326 0.00192 0.00156
6.0 0.206 0.184 0.157 0.142 0.127 0.109 0.0898 0.126 0.113 0.0981 0.0807 0.0695 0.0574 0.0471 0.0457 0.0407 0.0346 0.0301 0.0252 0.0208 0.0187 0.0166 0.0146 0.0123 0.0103 0.0106 0.00940 0.00801 0.00674 0.00484 0.00410 0.00300 0.00264 0.00227 0.00108
D8-56 TABLE D8.4-4(A)
STRENGTH LIMIT STATE MAXIMUM DESIGN LOADS CANTILEVER WITH FULL LATERAL RESTRAINT DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness bending about x-axis DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
W *L1 = Maximum Design Load based on Design Moment Capacity W *L2 = Maximum Design Load based on Design Shear Capacity Maximum Design Load W *L is LESSER of W *L1 and W *L2
Designation d
b
W*L1 (kN)
Mass per m
W*L2 Span of Beams (L) in metres
t
mm mm mm
kg/m
0.5
0.75
1.0
1.25
1.5
1.75
2.0
2.5
3.0
3.5
4.0
4.5
5.0
6.0
kN
100 x 100 x 2.8 SHS 2.3 SHS
8.39 6.95
50.1 37.4
33.4 24.9
25.1 18.7
20.1 15.0
16.7 12.5
14.3 10.7
12.5 9.34
10.0 7.48
8.36 6.23
7.16 5.34
6.27 4.67
5.57 4.15
5.01 3.74
4.18 3.11
127 105
75 x 75 x 2.8 SHS 2.3 SHS
6.19 5.14
32.6 24.3
21.8 16.2
16.3 12.1
13.1 9.71
10.9 8.09
9.32 6.94
8.16 6.07
6.53 4.86
5.44 4.05
4.66 3.47
4.08 3.03
3.63 2.70
3.26 2.43
2.72 2.02
93.3 77.7
13.1
65 x 65 x 2.3 SHS
4.42
19.6
50 x 50 x 2.8 SHS 2.3 SHS
3.99 3.34
14.4 12.2
40 x 40 x 2.8 SHS 2.3 SHS
3.11 2.62
35 x 35 x 2.8 SHS 2.3 SHS
2.67 2.25
Notes:
1. 2. 3. 4. 5.
φ αm αs W *L1 W *L2
= = = = =
0.9 1.0 1.0 2 φ Ms/L φ Vv
9.82
7.86
6.55
5.61
4.91
3.93
3.27
2.81
2.46
2.18
1.96
1.64
66.7
9.58 8.12
7.19 6.09
5.75 4.87
4.79 4.06
4.11 3.48
3.59 3.05
2.88 2.44
2.40 2.03
2.05 1.74
1.80 1.52
1.60 1.35
1.44 1.22
1.20 1.02
59.7 50.1
8.80 7.52
5.86 5.01
4.40 3.76
3.52 3.01
2.93 2.51
2.51 2.15
2.20 1.88
1.76 1.50
1.47 1.25
1.26 1.07
1.10 0.940
0.977 0.836
0.880 0.752
0.733 0.627
46.2 39.1
6.52 5.61
4.34 3.74
3.26 2.80
2.61 2.24
2.17 1.87
1.86 1.60
1.63 1.40
1.30 1.12
1.09 0.935
0.931 0.801
0.815 0.701
0.724 0.623
0.652 0.561
0.543 0.467
39.5 33.6
DCTDHS/06 MARCH 2002
DCTDHS/06 MARCH 2002
TABLE D8.4-4(B)
SERVICEABILITY LIMIT STATE MAXIMUM DESIGN LOADS CANTILEVER BEAMS DuraGal SQUARE HOLLOW SECTIONS: GRADE C450L0 Non-Standard Thickness bending about x-axis W *S1 = Maximum Serviceability Design Load based on Deflection Limit of SPAN / 250
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
Designation d
b
W*S1 (kN)
Mass per m
Span of Beam (L) in metres
t
kg/m
0.5
0.75
1.0
1.25
1.5
1.75
2.0
2.5
3.0
3.5
4.0
4.5
100 x 100 x 2.8 SHS 2.3 SHS
8.39 6.95
42.7 35.8
19.0 15.9
10.7 8.94
6.82 5.72
4.74 3.97
3.48 2.92
2.67 2.24
1.71 1.43
1.18 0.994
0.871 0.730
0.666 0.559
75 x 75 x 2.8 SHS 2.3 SHS
6.19 5.14
17.3 14.6
7.69 6.50
4.33 3.65
2.77 2.34
1.92 1.62
1.41 1.19
1.08 0.914
0.692 0.585
0.481 0.406
0.353 0.298
0.270 0.228
mm
mm mm
5.0
6.0
0.527 0.442
0.427 0.358
0.296 0.248
0.214 0.180
0.173 0.146
0.120 0.102
65 x 65 x 2.3 SHS
4.42
9.33
4.15
2.33
1.49
1.04
0.762
0.583
0.373
0.259
0.190
0.146
0.115
0.0933
0.0648
50 x 50 x 2.8 SHS 2.3 SHS
3.99 3.34
4.73 4.06
2.10 1.80
1.18 1.01
0.757 0.650
0.526 0.451
0.386 0.331
0.296 0.254
0.189 0.162
0.131 0.113
0.0966 0.0829
0.0740 0.0634
0.0584 0.0501
0.0473 0.0406
0.0329 0.0282
40 x 40 x 2.8 SHS 2.3 SHS
3.11 2.62
2.28 1.98
1.01 0.879
0.570 0.494
0.365 0.316
0.253 0.220
0.186 0.161
0.142 0.124
0.0911 0.0791
0.0633 0.0549
0.0465 0.0404
0.0356 0.0309
0.0281 0.0244
0.0228 0.0198
0.0158 0.0137
35 x 35 x 2.8 SHS 2.3 SHS
2.67 2.25
1.46 1.28
0.648 0.568
0.365 0.319
0.233 0.204
0.162 0.142
0.119 0.104
0.0912 0.0799
0.0584 0.0511
0.0405 0.0355
0.0298 0.0261
0.0228 0.0200
0.0180 0.0158
0.0146 0.0128
0.0101 0.00887
Note:
1.
Serviceabilty Load W *S1 = 8EI / (250L2)
D8-57
[ BLANK ]
D8-58
DuraGal DESIGN CAPACITY TABLES for STRUCTURAL STEEL HOLLOW SECTIONS
DCTDHS/06 MARCH 2002