Estudio pre factibilidad generacion energia zonas aisladas remotas

Page 1

ENERGY SYSTEMS ZPEC 590 MAJOR ASSIGNMENT 2 HYBRID WIND AND PV RAPS

MASSEY UNIVERSITY EDGAR E. SACAYON 14029583

2014

Energy Systems Hybrid Wind and Solar RAPS System Design

Edgar Eduardo Sacayon Madrigal Postgraduate of the Master of Environmental Management 9/24/2014


ENERGY SYSTEMS ZPEC 590 MAJOR ASSIGNMENT 2 HYBRID WIND AND PV RAPS

MASSEY UNIVERSITY EDGAR E. SACAYON 14029583

Contents 1.

Wind Resources .............................................................................................................................. 2

2.

Solar Resources ............................................................................................................................... 3

3.

Average Daily Load.......................................................................................................................... 3

4.

Average Daily Output ...................................................................................................................... 4

5.

Inverter ........................................................................................................................................... 4

6.

Battery Bank.................................................................................................................................... 5

7.

6.1

System under consideration ............................................................................................... 5

6.2

Required Power Capacity .................................................................................................... 5

6.3

Required Ah capacity .......................................................................................................... 5

6.4

Typical Current Draw .......................................................................................................... 5

6.5

Configuration of Battery Bank Solar Block SB12/185 ......................................................... 6

6.6

Average Depth of Discharge Analysis ................................................................................. 6

PV Array .......................................................................................................................................... 8 7.3

Sun Peak Hours ................................................................................................................... 8

7.4

Derated factor for January temperature ftemp.................................................................. 8

7.5

Derated output of module Pmod........................................................................................ 8

7.6

Number of modules in the array ......................................................................................... 9

7.7

Array Size and configuration ............................................................................................. 12

8 Ah Method ......................................................................................................................................... 14 9 Capital Costs of Hybrid Wind and Solar RAPS System ....................................................................... 15 9.1 Costs Reduction ...................................................................................................................... 15 10. References ...................................................................................................................................... 17 Appendix 1 Battery Manufacture Data ................................................................................................. 18 Appendix 2 MSX-64 Specs Sheet........................................................................................................... 19 Appendix 3 BP275 Specs Sheet ............................................................................................................. 20


ENERGY SYSTEMS ZPEC 590 MAJOR ASSIGNMENT 2 HYBRID WIND AND PV RAPS

MASSEY UNIVERSITY EDGAR E. SACAYON 14029583

1. Wind Resources The average wind speed for the site is 7.86 m/s. The average daily wind speed for one year shows that during the day wind speed oscillate between 7.5 m/s and 8.15 m/s. The average monthly wind speed for a year shows that December and January are the months with lowest wind speeds 6.73 m/s and 5.89 m/s respectively. However from February to November wind speed range in values of 7.62 – 9.61 m/s. These wind values are within wind classes 4 – 7 assuming that they were measured at an anemometer height of 30 m above ground. Wind classes 4 to 7 are considered to have wind power densities ranging from 400 W/m2 to 1600 W/m2 respectively (Kothari & Umashankar, 2013). Therefore the site is considered appropriate for wind turbine sitting.

Figure 1. Average daily wind speed for one year assuming anemometer height of 30 meters above ground.

Figure 2. Average monthly wind speed for one year assuming an anemometer height of 30m above ground.


ENERGY SYSTEMS ZPEC 590 MAJOR ASSIGNMENT 2 HYBRID WIND AND PV RAPS

MASSEY UNIVERSITY EDGAR E. SACAYON 14029583

2. Solar Resources The data for the average solar radiation for the site shows that from April to October there is a reduction in solar radiation under 20 MJ/m2/day. While from November to March the average solar radiation is above 20 MJ/m2/day. Based on these values it appears that the site is located in the southern hemisphere. Comparing this information with the average monthly wind speed it can be seen that the highest wind speeds are expected in the lowest solar radiation months. It is expected that these resources will complement each other fairly well.

Figure 3. Average annual solar radiation of four tilted surfaces 20,30,40,50 degrees tilt respectively.

3. Average Daily Load The questionnaire sheet with the information on appliances and usage throughout the day shows that the average daily load is 6.45 kWh every day. Table 1 Average Daily Load

Appliance Kitchen Lights Fridge Microwave Toaster Lights Steam Iron Washing Machine Lounge Lights Television Video recorder Stereo Vacuum Cleaner Bedroom 1 Lights Bedroom 2 Lights Bedroom 3 Lights Peak Load Total Daily Load

Average Power Draw (Watts)

H/day Watt H used

80.00

4.00

1,000.00 1,500.00 40.00 2,000.00 750.00

0.25 0.25 1.00 0.50 0.50

320.00 2,200.00 250.00 375.00 40.00 1,000.00 375.00

120.00 150.00 50.00 50.00 1,100.00

3.50 4.50 0.50 2.00 0.25

420.00 675.00 25.00 100.00 275.00

60.00

1.50

90.00

60.00

2.50

150.00

60.00

2.50

150.00

5,600.00 6,445 Watt hour 6.45 kWh/day


ENERGY SYSTEMS ZPEC 590 MAJOR ASSIGNMENT 2 HYBRID WIND AND PV RAPS

MASSEY UNIVERSITY EDGAR E. SACAYON 14029583

4. Average Daily Output Average Daily Output required from the Wind Turbine and Solar Array with MPPT and Battery bank.

đ??źđ?‘›đ?‘Łđ?‘’đ?‘&#x;đ?‘Ąđ?‘’đ?‘&#x; đ?‘’đ?‘“đ?‘“ =

6.45đ?‘˜đ?‘Šâ„Ž = 7.52 đ?‘˜đ?‘Šâ„Ž 0.82

đ??ľđ?‘Žđ?‘Ąđ?‘Ąđ?‘’đ?‘&#x;đ?‘Ś đ?‘’đ?‘“đ?‘“ =

7.52 đ?‘˜đ?‘Šâ„Ž = 9.84 đ?‘˜đ?‘Šâ„Ž 0.80

đ?‘¨đ?’—đ?’†đ?’“đ?’‚đ?’ˆđ?’† đ?‘Ťđ?’‚đ?’Šđ?’?đ?’š đ?‘śđ?’–đ?’•đ?’‘đ?’–đ?’• = đ?&#x;—. đ?&#x;–đ?&#x;’ đ?’Œđ?‘žđ?’‰

Assumptions  The wind turbine supplies energy to the battery.  The Switch controller for the Wind Turbine has no derating effect on the energy flow through the system, i.e. efficiency = 1.  There are no losses due to cables and wires and all energy flows through the system.  The PV Array has a Maximum Power Point Tracker.

Pv Array

Output

1

Switched Charged Controller MPPT

Inverter Dc/AC

n reg = 0.95

Load

n inv. = 0.82

Wind Turbine Switch n=1 Output

Battery Bank

1 n batt. = 0.8

Figure 4. System under consideration.

5. Inverter To size the inverter a worst case scenario was assumed selecting the four higher consuming appliances. These appliances shown in red in Table 1 all sum up to 5,600 Watt or 5.6 kW. In this case a large residential inverter in the range of 6 kW can be used 6 kW Inverter


ENERGY SYSTEMS ZPEC 590 MAJOR ASSIGNMENT 2 HYBRID WIND AND PV RAPS

MASSEY UNIVERSITY EDGAR E. SACAYON 14029583

6. Battery Bank For the Battery Bank the Sonnenschein Solar Block (Sealed Gel Cel) batteries were chosen based on analysis of the 3 brands and the fact that these are maintenance free. The wet cell batteries require maintenance, (battery fluid) which requires someone on site. 6.1 System under consideration

ADL = 6.45 kWh n = 3 Days DoDallowed = 60 % npc = 0.82 System Voltage = 48V

Pv Array

Output

1

Switched Charged Controller MPPT

Inverter Dc/AC

n reg = 0.95

n inv. = 0.82

Wind Turbine Switch Battery Bank

n=1 Output

1 n batt. = 0.8

6.2 Required Power Capacity đ??ľđ?‘Žđ?‘Ąđ?‘Ąđ?‘’đ?‘&#x;đ?‘Ś đ?‘?đ?‘Žđ?‘?đ?‘Žđ?‘?đ?‘–đ?‘Ąđ?‘Ś đ?‘–đ?‘› đ?‘˜đ?‘Šâ„Ž =

đ?‘› đ?‘Ľ đ??´đ??ˇđ??ż đ??ˇđ?‘‚đ??ˇđ?‘Žđ?‘™đ?‘™đ?‘œđ?‘¤đ?‘’ đ?‘Ľ ď ¨đ?‘?đ?‘?

đ??ľđ?‘Žđ?‘Ąđ?‘Ąđ?‘’đ?‘&#x;đ?‘Ś đ?‘?đ?‘Žđ?‘?đ?‘Žđ?‘?đ?‘–đ?‘Ąđ?‘Ś đ?‘–đ?‘› đ?‘˜đ?‘Šâ„Ž =

3 đ?‘Ľ 6.45 đ?‘˜đ?‘Šâ„Ž 0.50 đ?‘Ľ 0.82

đ??ľđ?‘Žđ?‘Ąđ?‘Ąđ?‘’đ?‘&#x;đ?‘Ś đ?‘?đ?‘Žđ?‘?đ?‘Žđ?‘?đ?‘–đ?‘Ąđ?‘Ś đ?‘–đ?‘› đ?‘˜đ?‘Šâ„Ž = đ?&#x;’đ?&#x;•. đ?&#x;?đ?&#x;Ž đ?’Œđ?‘žđ?’‰ 6.3 Required Ah capacity 47.20 đ?‘Ľ 1000 = 39,330 đ?‘Šđ?‘Žđ?‘Ąđ?‘Ąđ?‘ 47,200 đ?‘Š = đ?&#x;—đ?&#x;–đ?&#x;‘. đ?&#x;‘đ?&#x;‘ đ?‘¨đ?’‰ 48đ?‘‰ 6.4 Typical Current Draw 6.45 đ?‘˜đ?‘Šâ„Ž = 0.268 đ?‘˜đ?‘Š = 268.75 đ?‘Šđ?‘Žđ?‘Ąđ?‘Ą 24

268.75 đ?‘Šđ?‘Žđ?‘Ąđ?‘Ą = 327.74 đ?‘Šđ?‘Žđ?‘Ąđ?‘Ą 0.82

Load


ENERGY SYSTEMS ZPEC 590 MAJOR ASSIGNMENT 2 HYBRID WIND AND PV RAPS

MASSEY UNIVERSITY EDGAR E. SACAYON 14029583

327.74 = 6.8 đ??´ 48đ?‘‰ Estimating for low load periods 6.8 đ?‘Ľ 2 = 13.6 ď € đ?&#x;?đ?&#x;’ đ?‘¨ 6.5 Configuration of Battery Bank Solar Block SB12/185 983.33 đ??´â„Ž = 5.31 ď € 6 đ?‘ đ?‘Ąđ?‘&#x;đ?‘–đ?‘›đ?‘”đ?‘ 185đ??´â„Ž Number of batteries in each string 48đ?‘‰ =4 12đ?‘‰ Total number of batteries 6 đ?‘Ľ 4 = đ?&#x;?đ?&#x;’ đ?‘Šđ?’‚đ?’•đ?’•đ?’†đ?’“đ?’Šđ?’†đ?’” The configuration of this battery bank would be 4 Solar Block SB12/185 batteries in series (string) to provide 48V and 6 strings in parallel, to provide 165 x 6 = 990 Ah. Total 24 Batteries at C20 rating providing a discharge current of 6 x 2.33 = 13.8 Amps. The nominal A current for this battery is 8.25 at a C20 rating. 6.6 Average Depth of Discharge Analysis From the battery manufacture data (appendix 1) the graph shows that for a life cycle of 8 years that means 8x365 = 2920 cycles are required. The graph in figure 5 shows that a 18% DoD the battery is guaranteed to provide 3000 cycles which is enough for the requirements of this system.

Figure 5. SB12/185 Cycle Life vs DoD Graph


ENERGY SYSTEMS ZPEC 590 MAJOR ASSIGNMENT 2 HYBRID WIND AND PV RAPS

MASSEY UNIVERSITY EDGAR E. SACAYON 14029583

The graph on figure 5 also show that the average daily DoD in the system could not increase beyond 18% to guarantee the period of 8 years. Table 2 shows the effect of variations in maximum DoD, these do not have any improvements on the system, as changes in maximum DoD increase battery numbers or reduce life cycle. Average Daily Depth of Discharge đ??´đ?‘Łđ?‘’đ?‘&#x;đ?‘Žđ?‘”đ?‘’ đ??ˇđ?‘Žđ?‘–đ?‘™đ?‘Ś đ??ˇđ?‘œđ??ˇ =

đ??¸đ?‘Ľđ?‘?đ?‘’đ?‘?đ?‘Ąđ?‘’đ?‘‘ đ??´đ?‘Łđ?‘’đ?‘&#x;đ?‘Žđ?‘”đ?‘’ đ?‘ƒđ?‘œđ?‘¤đ?‘’đ?‘&#x; đ??ˇđ?‘&#x;đ?‘Žđ?‘¤ đ??ľđ?‘Žđ?‘Ąđ?‘Ąđ?‘’đ?‘&#x;đ?‘Ś đ?‘…đ?‘Žđ?‘Ąđ?‘’đ?‘‘ đ?‘ƒđ?‘œđ?‘¤đ?‘’đ?‘&#x;

Considering the inverter: 6.45 = 7.86 đ?‘˜đ?‘Šâ„Ž 0.82 đ??´đ?‘Łđ?‘’đ?‘&#x;đ?‘Žđ?‘”đ?‘’ đ??ˇđ?‘Žđ?‘–đ?‘™đ?‘Ś đ??ˇđ?‘œđ??ˇ =

7.86 = 0.165 ď‚ť đ?&#x;?đ?&#x;•% 47.52

Table 2 Effect of variation of DoD on the System

Sonnenschein Solar Block (Sealed Gel) SB12/185 Row Labels 10 Dod 20 DoD 30 DoD 40 DoD 50 DoD 60 DoD 70 DoD 80 Dod 90 DoD

Required Capacity Strings No.Batt Amps/string Batt.Cap. kWh Average DoD 235.98 27 108 0.52 213.84 4% 117.99 14 56 1.00 110.88 7% 235.98 27 108 0.52 213.84 4% 58.99 7 28 2.00 55.44 14% 47.20 6 24 2.33 47.52 17% 39.33 5 20 2.80 39.6 20% 33.71 4 16 3.50 31.68 25% 29.50 4 16 3.50 31.68 25% 26.22 3 12 4.67 23.76 33% đ?‘› đ?‘Ľ đ??´đ??ˇđ??ż đ?‘Žđ?‘™đ?‘™đ?‘œđ?‘¤đ?‘’ đ?‘Ľ ď ¨đ?‘?đ?‘?

đ?‘…đ?‘’đ?‘žđ?‘˘đ?‘–đ?‘&#x;đ?‘’đ?‘‘ đ??śđ?‘Žđ?‘?đ?‘Žđ?‘?đ?‘–đ?‘Ąđ?‘Ś = đ??ˇđ?‘‚đ??ˇ

=

3đ?‘Ľ6.45 = 47.20 0.5đ?‘Ľ0.82 Strings = Ah required capacity / Battery Ah at Cn rating Strings = 47200/48 = 983.33/185 = 5.31 ď‚ť 6 No. Batt = Strings x 4 No. Batt = 6 x 4 = 24 Amps/string = Typical current draw/ Strings Amps/string = 14 / 6 = 2.33 Batt.Cap. kWh = Ah rating x 48V x No. strings Batt Cap. 165 Ah = 165 x 48 x 6 = 47,520 W = 47.52 kWh


ENERGY SYSTEMS ZPEC 590 MAJOR ASSIGNMENT 2 HYBRID WIND AND PV RAPS

MASSEY UNIVERSITY EDGAR E. SACAYON 14029583

7. PV Array 7.1 Expected Output from PV Array MSX-64 To size the PV array we first found the average energy needed by the solar component for each month of the year. This was done using the average daily load of 9.84 kWh. The wind turbine output for the month of January is 5.18 kWh. The expected load to be provided by the Pv component is đ??˝đ?‘Žđ?‘›đ?‘˘đ?‘Žđ?‘&#x;đ?‘Ś = 9.84 − 5.18 = đ?&#x;’. đ?&#x;”đ?&#x;“ đ?’Œđ?‘žđ?’‰

7.2 Total Load expected from PV Array The total load expected from the PV array at the inverter is Load 4.65 = = 5.67 đ?‘˜đ?‘Šâ„Ž = 5670 đ?‘Šđ?‘Žđ?‘Ąđ?‘Ąđ?‘ ď ¨đ??źđ?‘›đ?‘Ł 0.82

đ??¸đ?‘‡đ?‘œđ?‘Ą =

7.3 Sun Peak Hours To find the Solar Radiation (Htilt) for January in sun peak hours for a 20o tilt we use: đ??ťđ?‘‡đ?‘–đ?‘™đ?‘Ą = đ??˝đ?‘Žđ?‘›đ?‘˘đ?‘Žđ?‘&#x;đ?‘Ś đ??ťđ?‘‡đ?‘–đ?‘™đ?‘Ą =

đ?‘€đ??˝ 1đ?‘˜đ?‘Šâ„Ž đ?‘Ľ = đ?‘˜đ?‘Šâ„Ž/đ?‘š2 đ?‘š2 3.6 đ?‘€đ??˝

27đ?‘€đ??˝ 1đ?‘˜đ?‘Šâ„Ž đ?‘˜đ?‘Šâ„Ž đ?‘Ľ = 7.5 2 = đ?&#x;•. đ?&#x;“ đ?‘ˇđ?’†đ?’‚đ?’Œ đ?’”đ?’–đ?’? đ?’‰đ?’?đ?’–đ?’“đ?’” đ?‘š2 3.6 đ?‘€đ??˝ đ?‘š

7.4 Derated factor for January temperature ftemp đ?‘“đ?‘Ąđ?‘’đ?‘šđ?‘? = 1 − (ď § (đ?‘‡đ??śđ?‘’đ?‘™đ?‘™ đ??¸đ?‘“đ?‘“. − đ?‘‡đ?‘†đ?‘‡đ??ś ) đ?‘‡đ??śđ?‘’đ?‘™đ?‘™ đ??¸đ?‘“đ?‘“.đ??˝đ?‘Žđ?‘› = đ?‘‡đ?‘Ž,đ?‘‘đ?‘Žđ?‘Ś + 25 đ?‘œđ??ś đ?‘‡đ??śđ?‘’đ?‘™đ?‘™ đ??¸đ?‘“đ?‘“.đ??˝đ?‘Žđ?‘› = 25.8 + 25 đ?‘œđ??ś = 50.8 đ?‘œđ??ś đ?‘“đ?‘Ąđ?‘’đ?‘šđ?‘? = 1 − (0.0038 (50.8 − 25) = đ?&#x;Ž. đ?&#x;—đ?&#x;Ž 7.5 Derated output of module Pmod To find the derated output of the module Pmod for January the derating factors for dirt was assumed to be 0.97 and the derating factor from manufactured was estimated by using the minimum guaranteed by manufacturer / maximum rated output = 62/64 watts = 0.97 . đ?‘ƒđ?‘šđ?‘œđ?‘‘ = đ?‘ƒđ?‘†đ?‘‡đ??ś đ?‘Ľ đ?‘“đ?‘šđ?‘Žđ?‘› đ?‘Ľ đ?‘“đ?‘Ąđ?‘’đ?‘šđ?‘? đ?‘Ľ đ?‘“đ?‘‘đ?‘–đ?‘&#x;đ?‘Ą đ?‘ƒđ?‘šđ?‘œđ?‘‘ đ??˝đ?‘Žđ?‘› = 64 đ?‘Ľ 0.97 đ?‘Ľ 0.90 đ?‘Ľ 0.97 = đ?&#x;“đ?&#x;’. đ?&#x;?đ?&#x;Ž đ?‘žđ?’‚đ?’•đ?’•đ?’”


ENERGY SYSTEMS ZPEC 590 MAJOR ASSIGNMENT 2 HYBRID WIND AND PV RAPS

MASSEY UNIVERSITY EDGAR E. SACAYON 14029583

7.6 Number of modules in the array For our system we have all the data inputs and we assume that there are no losses due to cables and wires. Because we have an alternate wind generator we also assume an oversupply coefficient fo=1. The analysis was conducted for the 2 highest output modules, the MSX-64 (64W) and the BP275 (75W). The module specs sheets which provided the data inputs for other variables are in Appendix 2 and 3, respectively Data Inputs MSx-64 ADL = 6.45 kWh Ninv = 0.82 Etot = 6.17/0.82 = 7.52 đ?‘“đ?‘œ = 1 Pstc = 64 W đ?‘“đ?‘‘đ?‘–đ?‘&#x;đ?‘Ą = 0.97 Nreg = 0.95 Nbatt = 0.8 đ?‘“đ?‘šđ?‘Žđ?‘› = 62/64=0.97 ď § = 0.38% = 0.0038 ď ¨đ?‘?đ?‘Łâˆ’đ?‘?đ?‘Žđ?‘Ąđ?‘Ą = 1

Pv Array

Output

Switched Charged Controller MPPT

Inverter Dc/AC

n reg = 0.95

Load

n inv. = 0.82

Wind Turbine Switch n=1

Battery Bank

Output n batt. = 0.8

The formula for the number of modules in the array is: đ?‘ = đ?‘ đ?‘ đ?‘Ľ đ?‘ đ?‘? =

đ??¸đ?‘‡đ?‘œđ?‘Ą đ?‘Ľ đ?‘“đ?‘œ đ?‘ƒđ?‘šđ?‘œđ?‘‘ đ?‘Ľ đ??ťđ?‘‡đ?‘–đ?‘™đ?‘Ą đ?‘Ľ ď ¨đ?‘?đ?‘Łâˆ’đ?‘?đ?‘Žđ?‘Ąđ?‘Ą đ?‘Ľ ď ¨đ?‘&#x;đ?‘’đ?‘” đ?‘Ľ ď ¨đ?‘?đ?‘Žđ?‘Ąđ?‘Ą

We then input our values into the formula: đ?‘ = đ?‘ đ?‘ đ?‘Ľ đ?‘ đ?‘? =

5670 đ?‘Ľ 1 = 18.3 ď‚ť 20 54.2 Watts đ?‘Ľ7.5 PSH đ?‘Ľ 1 đ?‘Ľ0.95đ?‘Ľ 0.8

We use an approximation for a fraction of 4 because it is assumed that the system voltage is 48V, this provides a value of 20 modules for the month of January.


ENERGY SYSTEMS ZPEC 590 MAJOR ASSIGNMENT 2 HYBRID WIND AND PV RAPS

MASSEY UNIVERSITY EDGAR E. SACAYON 14029583

Table 3 Analysis Results for MSX-64 MSX-64 Solar Pannels Energy Required by PV Array Wind Turbine Output kWh Load (Batt&Inv) Expected Output from PV Etot = L/ninv Surface tilt in Degrees

A.D. Output kWh/day kWh/day kWh/day

Jan 5.18 9.83 4.65 5.67

Feb 6.64 9.83 3.19 3.89

Mar 7.18 9.83 2.65 3.23

Apr 7.86 9.83 1.97 2.41

May 7.09 9.83 2.74 3.34

Jun 6.36 9.83 3.47 4.23

Jul 8.09 9.83 1.74 2.12

Aug 7.00 9.83 2.83 3.45

Sep 6.95 9.83 2.88 3.52

Oct 6.73 9.83 3.10 3.78

Nov 7.00 9.83 2.83 3.45

Dec 5.82 9.83 4.01 4.89

Annual 6.83 9.83 3.00 3.66

Solar Radiation

20o

MJ/m2/day

27.0

25.9

22.8

17.0

14.7

14.1

13.4

15.9

19.0

21.4

25.5

26.9

20.3

30o

MJ/m2/day

25.6

25.1

23.0

17.7

15.9

15.7

14.5

16.2

19.3

21.0

24.3

25.3

20.3

40o

MJ/m2/day

23.8

23.9

22.6

18.1

16.7

17.0

15.4

16.8

19.2

20.1

22.8

23.3

20.0

50o Sun Peak Hours

MJ/m2/day

21.5

22.2

21.8

18.1

17.1

17.9

16.0

16.9

18.7

19.0

20.9

21.0

19.3

20o

SPH

7.50

7.19

6.33

4.72

4.08

3.92

3.72

4.42

5.28

5.94

7.08

7.47

5.64

30o

SPH

7.11

6.97

6.39

4.92

4.42

4.36

4.03

4.50

5.36

5.83

6.75

7.03

5.64

40o

SPH

6.61

6.64

6.28

5.03

4.64

4.72

4.28

4.67

5.33

5.58

6.33

6.47

5.55

50o

SPH

5.97

6.17

6.06

5.03

4.75

4.97

4.44

4.69

5.19

5.28

5.81

5.83

5.35

o

25.8

26.9

24.7

21.6

18.7

16.5

16.2

15.6

17.3

18.6

20.7

23.8

20.53

o

50.8 0.90

51.9 0.90

49.7 0.91

46.6 0.92

43.7 0.93

41.5 0.94

41.2 0.94

40.6 0.94

42.3 0.93

43.6 0.93

45.7 0.92

48.8 0.91

45.53 0.92

Derating factor for temperature Ta,day Tcell.eff. Ftemp

Derated Output of Module Pstc

C C

64

64

64

64

64

64

64

64

64

64

64

64

64

fman

0.97

0.97

0.97

0.97

0.97

0.97

0.97

0.97

0.97

0.97

0.97

0.97

0.97

ftemp

0.90

0.90

0.91

0.92

0.93

0.94

0.94

0.94

0.93

0.93

0.92

0.91

0.92

Fdirt Pmod

0.97 54.24

0.97 53.99

0.97 54.50

0.97 55.20

0.97 55.87

0.97 56.37

0.97 56.44

0.97 56.57

0.97 56.19

0.97 55.89

0.97 55.41

0.97 54.70

0.97 55.45

5,674 54.24

3,893 3,235 53.99 54.50

Number of Modules Etot Pmod HTilt

Watts

Watts

Watt hour Watt

2,405 3,344 55.20 55.87

4,235 56.37

2,125 3,454 3,515 3,783 3,454 4,893 56.44 56.57 56.19 55.89 55.41 54.70

3,661 55.45

20o

SPH

7.50

7.19

6.33

4.72

4.08

3.92

3.72

4.42

5.28

5.94

7.08

7.47

5.64

30o

SPH

7.11

6.97

6.39

4.92

4.42

4.36

4.03

4.50

5.36

5.83

6.75

7.03

5.64

40o

SPH

6.61

6.64

6.28

5.03

4.64

4.72

4.28

4.67

5.33

5.58

6.33

6.47

5.55

50o N

SPH

5.97

6.17

6.06

5.03

4.75

4.97

4.44

4.69

5.19

5.28

5.81

5.83

5.35

20o

n

18.3

13.2

12.3

12.1

19.3

25.2

13.3

18.2

15.6

15.0

11.6

15.8

20.9

30o

n

19.4

13.6

12.2

11.7

17.8

22.7

12.3

17.9

15.4

15.3

12.2

16.7

20.9

40o

n

20.8

14.3

12.4

11.4

17.0

20.9

11.6

17.2

15.4

16.0

13.0

18.2

21.2

50o Corrected number of PV modules

n

23.0

15.4

12.9

11.4

16.6

19.9

11.1

17.1

15.8

16.9

14.1

20.2

22.0

20o

n

20

12

12

12

20

24

12

16

14

16

12

16

20

30o

n

20

12

12

12

16

20

12

16

16

16

12

16

20

40o

n

20

16

12

12

16

20

12

16

16

16

12

20

24

50o

n

24

16

12

12

16

20

12

16

16

16

12

20

24

Apr May 7.86 7.09 4,219 3,939 4.22 3.94 1.97 2.74

Jun 6.36 4,046 4.05 3.47

Energy Output of PV Array Wind Turbine Output kWh E out 40 Degree MSX-64 Output 40 Degree Tilt PV Expected Load

Jan 5.18 5,451 5.45 4.65

Feb Mar 6.64 7.18 5,448 5,200 5.45 5.20 3.19 2.65

Jul Aug Sep Oct Nov Dec Annual 8.09 7.00 6.95 6.73 7.00 5.82 6.83 3,670 4,013 4,555 4,743 5,334 5,381 4,676 3.67 4.01 4.55 4.74 5.33 5.38 4.68 1.74 2.83 2.88 3.10 2.83 4.01 3.00


ENERGY SYSTEMS ZPEC 590 MAJOR ASSIGNMENT 2 HYBRID WIND AND PV RAPS

MASSEY UNIVERSITY EDGAR E. SACAYON 14029583

Table 4 BP275 Analysis Results BP 275 Solar Panels Average Daily Output Turbine Output Daily Average Load (Batt&Inv) Load from PV array Etot = L/ninv

A.D. Output Jan kWh/day kWh/day kWh/day kWh/day

Surface tilt in Degrees

Solar radiation

20o 30o

5.18 9.83 4.65 5.67

6.64 9.83 3.19 3.89

7.18 9.83 2.65 3.23

7.86 9.83 1.97 2.41

7.09 9.83 2.74 3.34

6.36 9.83 3.47 4.23

8.09 9.83 1.74 2.12

7.00 9.83 2.83 3.45

6.95 9.83 2.88 3.52

6.73 9.83 3.10 3.78

7.00 9.83 2.83 3.45

5.82 9.83 4.01 4.89

Annual 6.83 9.83 3.00 3.66

MJ/m2/day

27.0

25.9

22.8

17.0

14.7

14.1

13.4

15.9

19.0

21.4

25.5

26.9

20.3

MJ/m2/day

25.6

25.1

23.0

17.7

15.9

15.7

14.5

16.2

19.3

21.0

24.3

25.3

20.3

40o

MJ/m2/day

23.8

23.9

22.6

18.1

16.7

17.0

15.4

16.8

19.2

20.1

22.8

23.3

20.0

50o Sun Peak Hours

MJ/m2/day

21.5

22.2

21.8

18.1

17.1

17.9

16.0

16.9

18.7

19.0

20.9

21.0

19.3

20o

7.50

7.19

6.33

4.72

4.08

3.92

3.72

4.42

5.28

5.94

7.08

7.47

5.64

30o

7.11

6.97

6.39

4.92

4.42

4.36

4.03

4.50

5.36

5.83

6.75

7.03

5.64

40o

6.61

6.64

6.28

5.03

4.64

4.72

4.28

4.67

5.33

5.58

6.33

6.47

5.55

50o

5.97

6.17

6.06

5.03

4.75

4.97

4.44

4.69

5.19

5.28

5.81

5.83

5.35

o

25.8

26.9

24.7

21.6

18.7

16.5

16.2

15.6

17.3

18.6

20.7

23.8

20.53

o

50.8 0.87

51.9 0.87

49.7 0.88

46.6 0.89

43.7 0.91

41.5 0.92

41.2 0.92

40.6 0.92

42.3 0.91

43.6 0.91

45.7 0.90

48.8 0.88

45.53 0.90

Derating factor for temperature Ta,day

C

Tcell.eff. Ftemp

Derated Output of Module Pstc

C

Watts

Feb

Mar

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec

75

75

75

75

75

75

75

75

75

75

75

75

75

fman

0.93

0.93

0.93

0.93

0.93

0.93

0.93

0.93

0.93

0.93

0.93

0.93

0.93

ftemp

0.87

0.87

0.88

0.89

0.91

0.92

0.92

0.92

0.91

0.91

0.90

0.88

0.90

Fdirt Pmod

0.97 58.93

0.97 58.56

0.97 59.30

0.97 60.35

0.97 61.33

0.97 62.08

0.97 62.18

0.97 62.38

0.97 61.81

0.97 61.37

0.97 60.65

0.97 59.61

0.97 60.71

5,674 58.93

3,893 58.56

3,235 59.30

2,405 60.35

3,344 61.33

4,235 62.08

2,125 62.18

3,454 62.38

3,515 61.81

3,783 61.37

3,454 60.65

4,893 59.61

3,661 60.71

Watts

Number of Modules Etot Pmod HTilt

Watt hour Watt

20o

SPH

7.50

7.19

6.33

4.72

4.08

3.92

3.72

4.42

5.28

5.94

7.08

7.47

5.64

30o

SPH

7.11

6.97

6.39

4.92

4.42

4.36

4.03

4.50

5.36

5.83

6.75

7.03

5.64

40o

SPH

6.61

6.64

6.28

5.03

4.64

4.72

4.28

4.67

5.33

5.58

6.33

6.47

5.55

50o N

SPH

5.97

6.17

6.06

5.03

4.75

4.97

4.44

4.69

5.19

5.28

5.81

5.83

5.35

o

20

n

16.9

12.2

11.3

11.1

17.6

22.9

12.1

16.5

14.2

13.6

10.6

14.5

14.1

30o

n

17.8

12.5

11.2

10.7

16.2

20.6

11.2

16.2

14.0

13.9

11.1

15.4

14.1

40o

n

19.2

13.2

11.4

10.4

15.5

19.0

10.5

15.6

14.0

14.5

11.8

16.7

14.3

50o n Corrected number of PV modules

21.2

14.2

11.9

10.4

15.1

18.1

10.1

15.5

14.4

15.4

12.9

18.5

14.8

20o

n

16

12

12

12

20

24

12

16

16

16

12

16

16

30o

n

20

12

12

12

16

20

12

16

16

16

12

16

16

40o

n

20

12

12

12

16

20

12

16

16

16

12

16

16

50o

n

24

16

12

12

16

20

12

16

16

16

12

20

16

Energy Output of PV Array Wind Turbine Output kWh E out Bp 275 PV Expected Load

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual 5.18 6.64 7.18 7.86 7.09 6.36 8.09 7.00 6.95 6.73 7.00 5.82 6.83 4,856 4,845 4,640 3,782 3,546 3,654 3,315 3,628 4,108 4,270 4,788 4,808 4,199 4.86 4.85 4.64 3.78 3.55 3.65 3.32 3.63 4.11 4.27 4.79 4.81 4.20 4.65 3.19 2.65 1.97 2.74 3.47 1.74 2.83 2.88 3.10 2.83 4.01 3.00


ENERGY SYSTEMS ZPEC 590 MAJOR ASSIGNMENT 2 HYBRID WIND AND PV RAPS

MASSEY UNIVERSITY EDGAR E. SACAYON 14029583

7.7 Array Size and configuration To select the PV array size, the solar radiation tilt was chosen. It was decided that a 40 o tilt surface provides a midpoint between the best and worst months of sun peak hours throughout the year. (Figure 3). Based on that assumption we then consider the number of PV modules from both models (MSX-64 and BP275) using a 40o tilt angle. The corrected number of N was used to estimate the average number of PV modules between the higher and lower values. It is important to note that the best and worst months of solar radiation are also affected by the wind power output and those it would not make sense to assess the number of PV modules based on a best or worst case solar radiation scenario. For the purpose of this system the number of 20 PV modules was selected. To test if this number of modules could provide enough power we calculated the expected power of the PV Array Expected output of the Array đ??¸đ?‘œđ?‘˘đ?‘Ą = đ?‘ƒđ?‘&#x; đ?‘Ľ đ?‘“đ?‘Ąđ?‘’đ?‘šđ?‘? đ?‘Ľ đ?‘“đ?‘šđ?‘Žđ?‘› đ?‘Ľ đ?‘“đ?‘‘đ?‘–đ?‘&#x;đ?‘Ą đ?‘Ľ đ??ťđ?‘Ąđ?‘–đ?‘™đ?‘Ą đ?‘Ľ đ?‘›đ?‘?đ?‘Łâˆ’đ?‘?đ?‘Žđ?‘Ąđ?‘Ą đ?‘Ľ đ?‘›đ?‘–đ?‘›đ?‘Ł đ?‘Ľ đ?‘›đ?‘?đ?‘Žđ?‘Ą đ?‘Ľ đ?‘›đ?‘&#x;đ?‘’đ?‘” The expected output of the Array was then plotted against the output of the wind turbine and the expected load from the PV array.

Figure 6 Expected output from the MSX-64 Array using 20 PV modules arranged in 5 parallel series of 4 modules.


ENERGY SYSTEMS ZPEC 590 MAJOR ASSIGNMENT 2 HYBRID WIND AND PV RAPS

MASSEY UNIVERSITY EDGAR E. SACAYON 14029583

Figure 7 Expected output from the BP275 Array using 20 PV modules arranged in 5 parallel series of 4 modules.

Figures 6 and 7 show that in overall the MSX-64 PV array meets the expected load better than the BP275 array. The final arrangement of the PV Array using the MSX-64 model is 20 PV modules (4 modules in series to get a 48V and 5 parallel arrays) Figure 8 shows the PV array.

48V

48V

48V

48V

48V

Figure 8 Array configuration


ENERGY SYSTEMS ZPEC 590 MAJOR ASSIGNMENT 2 HYBRID WIND AND PV RAPS

MASSEY UNIVERSITY EDGAR E. SACAYON 14029583

8 Ah Method For the Ah method it is assumed that there is no MPPT, and the currents are traced through the system. The steps required to calculate are as follows i.

Estimate the Load required from the array in Ah

ii.

Using the IV curve from the manufacturer specification, estimate the derated output current of the PV module đ??źđ?‘šđ?‘œđ?‘‘ = đ??źđ?‘Ą,đ?‘Ł đ?‘Ľ đ?‘“đ?‘šđ?‘Žđ?‘› đ?‘Ľ đ?‘“đ?‘‘đ?‘–đ?‘&#x;đ?‘Ą

iii.

With the derated output current we can estimate the Average Daily Output Current of a PV array. đ?‘„đ?‘Žđ?‘&#x;đ?‘&#x;đ?‘Žđ?‘Ś = đ??źđ?‘šđ?‘œđ?‘‘ đ?‘Ľ đ??ťđ?‘Ąđ?‘–đ?‘™đ?‘Ą đ?‘Ľ đ?‘ đ?‘?

iv.

Finally to find Np = number of parallel strings of modules in the array we divide the total load required in Ah by the Q array.

đ?‘ đ?‘? =

Figure 9. IV Curve.

đ??żđ?‘œđ?‘Žđ?‘‘ đ??´â„Ž đ?‘‡đ?‘œđ?‘Ąđ?‘Žđ?‘™ đ?‘„đ?‘Žđ?‘&#x;đ?‘&#x;đ?‘Žđ?‘Ś

We can also use the formula provided by the AS4509.2 standard đ?‘ đ?‘? =

v.

đ??¸đ?‘Ąđ?‘œđ?‘Ą đ?‘Ľ đ?‘“đ?‘œ đ?‘‰đ?‘‘đ?‘? đ?‘Ľđ??źđ?‘šđ?‘œđ?‘‘ đ?‘Ľ đ??ťđ?‘Ąđ?‘–đ?‘™đ?‘Ą đ?‘Ľ ď ¨đ?‘?đ?‘œđ?‘˘đ?‘™

After we found the number of parallel strings we can multiply by the number of modules per string, in the case of a 48 V system this NS would be 4. đ?‘ = đ?‘ đ?‘ đ?‘Ľ đ?‘ đ?‘?

We can also use the formula from AS4509.2 standard đ??śâ„Žđ?‘Žđ?‘&#x;đ?‘”đ?‘’ đ?‘œđ?‘˘đ?‘Ąđ?‘?đ?‘˘đ?‘Ą đ?‘&#x;đ?‘’đ?‘žđ?‘˘đ?‘–đ?‘&#x;đ?‘’đ?‘‘ đ?‘“đ?‘&#x;đ?‘œđ?‘š đ?‘ƒđ?‘‰ đ?‘Žđ?‘&#x;đ?‘&#x;đ?‘Žđ?‘Ś =

đ??¸đ?‘Ąđ?‘œđ?‘Ą đ?‘Ľ đ?‘“đ?‘œ đ?‘‰đ?‘‘đ?‘? đ?‘Ľ ď ¨đ?‘?đ?‘œđ?‘˘đ?‘™


ENERGY SYSTEMS ZPEC 590 MAJOR ASSIGNMENT 2 HYBRID WIND AND PV RAPS

MASSEY UNIVERSITY EDGAR E. SACAYON 14029583

9 Capital Costs of Hybrid Wind and Solar RAPS System The capital costs for the system were estimated at $ 47,492.00. This was obtained by using the specifications from the data provided and the following Batteries SB12/185 at a C20 rating 165 Ah x 48V x 6 strings = 47520 kWh. Support structure 20 PV modules x 64 W rated power = 1280 Watts.

Table 5 Initial Capital Costs of the Hybrid Wind and Solar RAPS System

Components Wind Turbine A, Supports and charge controller MSX-64 Solar PV Modules MPPT Inverter Sonnenschein Solar Block (Sealed Gel) SB12/185 Support Structure Total

Costs per unit $ $ $ $

13,000.00 635.00 1,100.00 1,500.00

$ $

350.00 2.00

Units

Total Costs 1 20 1 1

$ $ $ $

13,000.00 12,700.00 1,100.00 1,500.00

47.52 kWh $ 1280 Watts $ $

16,632.00 2,560.00 47,492.00

9.1 Costs Reduction

To reduce costs the MSX60 module can be used. The analysis shows that the expected output from the smaller PV modules is enough to meet the expected required load. Figure

Figure 10. MSX-60 Expected Output.


ENERGY SYSTEMS ZPEC 590 MAJOR ASSIGNMENT 2 HYBRID WIND AND PV RAPS

MASSEY UNIVERSITY EDGAR E. SACAYON 14029583

Also the wet cell battery 2P1101 at a C100 could be used. At a C100 rating the 2P1101 has an Ah rated capacity of 1101 Ah, with a discharge current of 11 Amps during 100 hours of operation. This means that for the required battery capacity using a 50% DoD is 6.45 x 3 /0.82 x 0.5 =47.19 kWh or 47190W/48V = 983.125 Ah The typical discharge current experienced by the system is 6.45/24 = 0.269 or 269W/0.82 = 327.7W 327.7/48 = 6.28 A 6.28 x 2 = 13.6 This means that the 2P1101 would meet the required battery capacity of 983 Ah and would have a smaller discharge current than the typical discharge current experienced by the system 13.6. The analysis of depth of discharge vs life cycle shows that the battery would experience

7.86 kWh / 52.8 kWh = 0.148 = 15% DoD

Figure 11 DoD versus Cycle Life for the 2P1101 Wet Cell Battery


ENERGY SYSTEMS ZPEC 590 MAJOR ASSIGNMENT 2 HYBRID WIND AND PV RAPS

MASSEY UNIVERSITY EDGAR E. SACAYON 14029583

With these components the capital costs are reduced and the final price is 40,620 making a reduction of almost $7,000. Batteries A1101 at a C100 rating 1101 Ah x 48V x 1 strings = 52.8 kWh. Support structure 20 PV modules x 60 W rated power = 1280 Watts.

Table 6 Reduced Capital Costs of the Hybrid Wind and Solar RAPS System

Components Wind Turbine A, Supports and charge controller MSX-60 Solar PV Modules MPPT Inverter PV Store (Wet Cell) A1101 Support Structure Total

Costs per unit $ $ $ $ $ $

13,000.00 595.00 1,100.00 1,500.00 200.00 2.00

Units

Total Costs 1 20 1 1 52.8 kWh 1200 Watts

$ $ $ $ $ $ $

13,000.00 11,900.00 1,100.00 1,500.00 10,560.00 2,400.00 40,460.00

10. References Kothari, D. P., & Umashankar, S. (2013). Wind energy : systems and applications / D.P. Kothari, S. Umashankar: Oxford : Alpha Science, c2014.


ENERGY SYSTEMS ZPEC 590 MAJOR ASSIGNMENT 2 HYBRID WIND AND PV RAPS

MASSEY UNIVERSITY EDGAR E. SACAYON 14029583

Appendix 1 Battery Manufacture Data Sonnenschein Solar Block Batteries (Sealed Gel Cel batteries): Model

Volts

Nominal Ah Capacity at 25° C to 1.7 Vpc C1

n

C5

C10

Cycle Life (in cycles) as function of DoD

C20

C100

SB12/60 SB12/75

12 12

1 34.4 48

SB12/100

12

57

84

89

90

100

5200

2800

1000

700

SB12/130

12

77.6

101

105

116

130

5200

2800

1000

700

SB12/185 SB6/200

12 6

103 103.8

150 143

155 161

165 180

185 210

5200 5200

2800 2800

1000 1000

700 700

=

5 45 59.9

10 52 66

20 56 70

100 60 75

10% 5200 5200

20% 2800 2800

50% 1000 1000

80% 700 700

Solarstore Deep Cycle Batteries (Wet cell batteries): Model Volts Nominal Ah Capacity at 25° C to 1.85 Vpc Cycle Life (in cycles) as function of DoD C10 n

1 130 240 395 600 700

=

6A200 2A385 2A600 2A920 2A1040

C20

6 2 2 2 2

C100 20 150 276 454 690 805

C120 100 192 366 576 876 990

120 200 385 600 920 1040

20% 3500 3500 3500 3500 3500

PVSTOR Remote Area Batteries (Wet cell batteries): Model Volts Nominal Ah Capacity at 25° C to 1.8 Vpc C10 6P207 2P425 2P566 2P779 2P1101

6 2 2 2 2

C25 10 124 255 340 467 661

Sonnenschein Solar Block Batteries (Sealed Gel Cel batteries): Model

Discharge Currents in Amps C1

C5

C10

C20

C50 25 150 308 410 565 798

1 34.4 48.0

5 9.0 12.0

10 5.2 6.6

20 2.8 3.5

100 0.6 0.8

SB12/100

57.0

16.8

8.9

4.5

1.0

SB12/130

77.6

20.2

10.5

5.8

1.3

SB12/185 SB6/200

103.0 103.8

30.0 28.6

15.5 16.1

8.3 9.0

1.9 2.1

C120 100 207 425 566 779 1101

10% 7500 7500 7500 7500 7500

120 217 446 594 818 1156

Solarstore Deep Cycle Batteries (Wet cell batteries): Model Discharge currents in Amps

C100

n SB12/60 SB12/75

C10 n 6A200 2A385 2A600 2A920 2A1040

C20 1 130.0 240.0 395.0 600.0 700.0

80% 1300 1300 1300 1300 1300

Cycle Life (in cycles) as function of DoD

C100 50 176 361 481 662 936

50% 2000 2000 2000 2000 2000

C100 20 7.5 13.8 22.7 34.5 40.3

C10

120 1.7 3.2 5.0 7.7 8.7

75% 1500 1500 1500 1500 1500

PVSTOR Remote Area Batteries (Wet cell batteries): Model Discharge Current in Amps

C120 100 1.9 3.7 5.8 8.8 9.9

50% 2500 2500 2500 2500 2500

6P207 2P425 2P566 2P779 2P1101

C25 10 12.4 25.5 34.0 46.7 66.1

C50 25 6.0 12.3 16.4 22.6 31.92

C100 50 3.5 7.2 9.6 13.2 18.7

C120 100 2.1 4.3 5.7 7.8 11.0

120 1.8 3.7 5.0 6.8 9.6


ENERGY SYSTEMS ZPEC 590 MAJOR ASSIGNMENT 2 HYBRID WIND AND PV RAPS

Appendix 2 MSX-64 Specs Sheet

MASSEY UNIVERSITY EDGAR E. SACAYON 14029583


ENERGY SYSTEMS ZPEC 590 MAJOR ASSIGNMENT 2 HYBRID WIND AND PV RAPS

Appendix 3 BP275 Specs Sheet

MASSEY UNIVERSITY EDGAR E. SACAYON 14029583


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.