Download ebooks file Affine algebraic geometry: geometry of polynomial rings 1st edition masayoshi m

Page 1


Polynomial Rings 1st Edition

Masayoshi Miyanishi

Visit to download the full and correct content document: https://ebookmass.com/product/affine-algebraic-geometry-geometry-of-polynomial-rin gs-1st-edition-masayoshi-miyanishi/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Roads to Geometry, Third Edition 3rd

https://ebookmass.com/product/roads-to-geometry-thirdedition-3rd/

Analytic Projective Geometry John Bamberg

https://ebookmass.com/product/analytic-projective-geometry-johnbamberg/

Geometry for Naval Architects Adrian Biran

https://ebookmass.com/product/geometry-for-naval-architectsadrian-biran/

Must Know High School Geometry, 2nd Edition Amber Kuang

https://ebookmass.com/product/must-know-high-school-geometry-2ndedition-amber-kuang/

Coordinate Geometry for JEE (Advanced), 3rd edition G. Tewani

https://ebookmass.com/product/coordinate-geometry-for-jeeadvanced-3rd-edition-g-tewani/

Elementary Geometry for College Students 7th Edition

Daniel C. Alexander

https://ebookmass.com/product/elementary-geometry-for-collegestudents-7th-edition-daniel-c-alexander/

The Plurality Trilemma: A Geometry of Global Legal Thought 1st Edition David Roth-Isigkeit (Auth.)

https://ebookmass.com/product/the-plurality-trilemma-a-geometryof-global-legal-thought-1st-edition-david-roth-isigkeit-auth/

Vectors and 3D Geometry for JEE (Advanced) 3rd Edition

G. Tewani

https://ebookmass.com/product/vectors-and-3d-geometry-for-jeeadvanced-3rd-edition-g-tewani/

Geometry and Physics: A Festschrift in Honour of Nigel Hitchin, Volume II Andersen

https://ebookmass.com/product/geometry-and-physics-a-festschriftin-honour-of-nigel-hitchin-volume-ii-andersen/

Affine Algebraic Geometry

Geometry of Polynomial Rings

SERIES ON UNIVERSITY MATHEMATICS

ISSN: 1793-1193

Editors:

Wu-Yi Hsiang University of California, Berkeley, USA/ Hong Kong University of Science and Technology, Hong Kong

Tzuong-Tsieng Moh Purdue University, USA

Ming-Chang Kang National Taiwan University, Taiwan (ROC)

S S Ding Peking University, China

M Miyanishi University of Osaka, Japan

Published

Vol. 11 Affine Algebraic Geometry: Geometry of Polynomial Rings by M Miyanishi

Vol. 10 Linear Algebra and Its Applications by T-T Moh

Vol. 9 Lectures on Lie Groups (Second Edition) by W-Y Hsiang

Vol. 8 Analytical Geometry by Izu Vaisman

Vol. 7 Number Theory with Applications by W C Winnie Li

Vol. 6 A Concise Introduction to Calculus by W-Y Hsiang

Vol. 5 Algebra by T-T Moh

Vol. 2 Lectures on Lie Groups by W-Y Hsiang

Vol. 1 Lectures on Differential Geometry by S S Chern, W H Chen and K S Lam

Series on University Mathematics – Vol. 11

Affine Algebraic Geometry

Geometry of Polynomial Rings

Masayoshi Miyanishi

Osaka University, Japan & Kwansei Gakuin University, Japan

Published by

World Scientific Publishing Co. Pte. Ltd.

5 Toh Tuck Link, Singapore 596224

USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601

UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

Library of Congress Cataloging-in-Publication Data

Names: Miyanishi, Masayoshi, 1940– author.

Title: Affine algebraic geometry : geometry of polynomial rings / Masayoshi Miyanishi, Osaka University, Japan & Kwansei Gakuin University, Japan.

Description: New Jersey : World Scientific, [2024] | Series: Series on university mathematics, 1793-1193 ; vol. 11 | Includes bibliographical references and index.

Identifiers: LCCN 2023031983 | ISBN 9789811280085 (hardcover) | ISBN 9789811280092 (ebook for institutions) | ISBN 9789811280108 (ebook for individuals)

Subjects: LCSH: Polynomial rings--Textbooks. | Geometry, Affine--Textbooks. | Geometry, Algebraic--Textbooks.

Classification: LCC QA251.3 .M593 2024 | DDC 516/.4--dc23/eng/20231016

LC record available at https://lccn.loc.gov/2023031983

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Copyright © 2024 by World Scientific Publishing Co. Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher.

For any available supplementary material, please visit https://www.worldscientific.com/worldscibooks/10.1142/13510#t=suppl

Printed in Singapore

TothelateProfessorMasayoshiNagata

This page intentionally left blank

Preface

OneoftheinnovationsbroughtintoalgebraicgeometrybyA.Grothendieck throughhispublicationsincluding ´ El´ementsdeG´eom´etrieAlg´ebrique is theestablishmentofabijectivecorrespondencebetweenaffineschemesand commutativerings,bywhichonecanintroducealgebro-geometricmethodstocommutativealgebraandcreateviceversaanewfieldinalgebraic geometrywhereonestudiesgeometryofaffinedomainsoverafield.

Anaffinedomain A overafield k isthequotientringofapolynomialring k[x1,...,xn]byanideal I.Ageometricapproachtostudyanaffinevariety X =Spec A withcoordinatering A isconsideredtostudygeometricallya big ringlike A whichisnotafiniteunionoflocalrings.1

StudyofpolynomialringshasbeenanimportantsubjectinMathematics,andtherearevariousapproachesdependingonwhichareaofMathematicspolynomialsorpolynomialringsareconsideredin.Franklyspeaking, whatisdecisivelyunderstoodaboutpolynomialsinalgebraicgeometryis limitedtothecaseofonevariable.Manypartialresultsareobtainedinthe caseofmanyvariables,butcomprehensiveunderstandingisnotdecisive.

Duringthesameperiod,butawayfrominfluencesofA.Grothendieck, mathematiciansincludingM.Nagata,Sh.Abhyankar,T.T.Moh,M.Suzuki andothershavestartedtheirownstudyofpolynomialsintwovariablesover thecomplexnumberfield C throughpreciseanalysisofhowtheaffineplane curvedefinedbyapolynomialbehavesatinfinity,i.e.,outoftheaffineplane. Theircontributionculminatedin Abhyankar-Moh-Suzukitheorem,which statesthatapolynomial f (x,y)whosezerolocus {f =0} isisomorphicto anaffinelinecanbetakenasoneofcoordinates,i.e., C[x,y]= C[f,g]for somepolynomial g(x,y).Thisresultrevivedinterestintheautomorphism

1Wewouldliketocallthem globalrings iftherearenofearofmisunderstandings.

theoremof C[x,y]byJung-VanderKulkandgeometricproblemsonaffine surfacesincludingthe CancellationProblem. 2 Thishappenedfromthelate 1960stotheearly1970s.

AroundthesameperiodtherewasalsoaworldwiderevivalofinteresttowardtheEnriques-Kodairaclassificationofalgebraicsurfaces.In themid-1970s,S.Iitakaintroducedthe logarithmicKodairadimension of noncompletealgebraicvarietiesandproposedaprojectofclassifyingnoncompletesurfaceswithexpectationsthatlogarithmicKodairadimension shouldworkasKodairadimensiondidintheclassificationofsmoothprojectivesurfaces.Iitaka’sstudentsincludingS.TsunodaandY.Kawamata, andthepeopleincludingT.FujitaandtheauthorshowedthatIitaka’sexpectationdidworktoacertaindegreeandbringsomeresultsbeyondthe expectation.3 Theirapproachisnowdevelopedinto logarithmicgeometry, whichisastudyofpairs(V,D)ofacompletevariety V andaneffective divisor D.Inmostcases,byHironaka’sresolutionofsingularities, V is madetobesmoothand D adivisorwithsimplenormalcrossings.The studysofarshowsthatgeometrychangesaccordingtowhatkindofsingularitiesisadmittedon V and D.Foranaffinevariety X,wefindeasilysuch apair(V,D)byembedding X intoaprojectivespaceviatheembedding X → An → Pn andtakingtheclosure X as V and D = V \ X.Bythis approach,oneisabletoobservethegeometricbehaviorof X atinfinity, i.e.,on D ornear D 4

Thereisthefamous JacobianConjecture whichassertsthatifpolynomials f1,...,fn ∈ C[x1,...,xn]haveanonzeroconstantastheJacobian determinant

∂(f1,...,fn)

∂(x1,...,xn) then C[x1,...,xn]= C[f1,...,fn].Underthisassumption,themapping

φ : An → An , (x1,...,xn) → (f1,...,fn) inducesalocalanalyticisomorphismbetweeneverypointoftheorigin An anditsimageofthetarget An.So,theconjectureasksiftheselocalanalytic isomorphismsareinducedbyapolynomialisomorphism.Unfortunately,

2Itisalsocalledthe Zariski’sProblem

3Seetheauthor’sbookon Openalgebraicsurfaces [59].

4Thisapproachwasandhopefullystillissuccessfulasexemplifiedbyasolutiondueto M.KorasandK.Palkaofthelong-standingCoolidge-Nagataconjecturewhichasserts thatacomplexirreduciblecurveon P2 homeomorphictoaline P1 ismappedtoaline byabirationalautomorphismof P2 (see[47]).

theconjectureisnotverifiedeveninthecase n =2.Aformal(oranalytic) inversemappingof φ israthereasytoconstruct,butitisverydifficultto showthattheinversemappingisapolynomialmapping.Thisispartlydue tothefactthattotal(orwhatever)degreeofpolynomialsarenotreliable asameasuretocontrolthebehaviorofpolynomialsbecausethedegree changeseasilyasthesetofcoordinates {x1,...,xn} isreplacedbyanother onehavingchangesofnonlinearterms.Itisnotclearifthereexistsa geometricapproachwhichenablestoreplacethismethodofformalinverse mapping,thoughsomesuccessisobtainedbysuchapproaches.Onehonest impressiontheauthorhadthroughvariousgeometricchallengesisthatthe affinespace(eventheaffineplane)issoimmaculatethatonecannotfind cluestogetageometricstudystartedwith.

Affinealgebraicgeometryemergedfromthesebackgroundsandproblems.Thesubjectswetreatthereinareprobablymorebiasedontheaffine spacesandpolynomialrings,butnothingmorethannoncompletevarieties treatedinstandardalgebraicgeometry.Aslongaswewanttousegeometric approachwecannotavoidaminimumbackgroundofalgebraicgeometry. Hencethisvolumebeginswithanintroductiontoalgebraicgeometry.

Thepresentauthortriedtostartexplanationsfromthebeginningwithoutomissionofproofssothatthereaderswithknowledgeofalgebraand geometrytaughtatthethirdyearleveloftheundergraduatestudycan understand,thoughsomeimportantresultsarenotgivenproofswhichare mostlyinvolvedandtheauthorexpectsareprovidedbymoreadvanced textbookswithestablishedreputation.Precisereferencesaregivenwith fewexceptionsinsuchcases.

ThefirstchapterofthepresentvolumeisbasedonthelecturesonalgebraicgeometrywhichtheauthorgaveatKwanseiGakuinUniversityfor graduatecoursesoverseveralyears.Somepartsaretakenfromtheauthor’sbooksonhigheralgebraandalgebraicgeometrywhicharewritten inJapaneseandhaveneverbeentranslatedintoforeignlanguages[60, 78]. Onecanconsiderthefirstchapterasaquickintroductiontoalgebraicgeometryandcommutativealgebra,andskipitifonehassomebackgroundon thesubject.Enriques-Kodairaclassificationofprojectivealgebraicsurfaces aswellasthetheoryoflogarithmicKodairadimensionisexplainedin[59], althoughthereferredbookisanadvancedoneforspecialistsandgraduate students(perhapsPh.Dstudents).Weareremindedtomakethisvolume asaccessibleaspossibleforthebeginningstudentsinalgebraicgeometry. So,wetriednottomakeheavyuseofadvancedresults.

TopicsspecializedinaffinealgebraicgeometrybeginfromChapter2

onward.ThefirsttopicisaproofoftheAMStheoremwhichusesthe linearpencilofcurvesontheprojectiveplane P2 andtheeliminationof basepoints.Infact,theseresultssymbolizethedawnofaffinealgebraic geometry.WethenexplaingeneralizationsoftheJacobianconjectureindimensiontwo.Thereaderswillseehoweffectivelyaffinealgebraicgeometry isusedtothisconjecture.Thereisalsoawishoftheauthortorevealcontributionsofhiddenramificationattheinfinityto(notnecessarily)finite ´etalecoveringsofnoncompletevarieties.

Thepresentationofsection1.4,subsections1.8.4and1.8.5isbasedon thecontentsof[78].Theauthorwouldliketoexpresshisbelatedthanks tolateProfessorsMasayoshiNagataandMasakiMaruyamaforthejoint authorshipofthebook.ThepresentbookisdedicatedtoProfessorNagata, whoisoneofthefoundersoftheresearchareaofstudyinggeometryof rationalsurfacesandpolynomials.ThecontentsofChapters2and3are partlybasedontheauthor’slecturenotes[58]and[62].Lastbutnot theleast,theauthorwouldliketoexpresshisindebtednesstotheeditor Ms.KwongLaiFunofWorldScientificPubl.Co.fortheopportunityto writeabookonaffinealgebraicgeometryandconstantencouragement duringthewritingofthisbook.

June,2023

M.Miyanishi

1.1Reviewonbasicresultsincommutativealgebra...... 1

1.1.1Ringofquotientsandlocalring.......... 1

1.1.2SpectrumofaringandZariskitopology...... 3

1.1.3Irreducibledecompositionofatopologicalspace. 5

1.1.4Primeidealdecompositionofradicalideals.... 7

1.1.5Genericpoint,closedpointandKrulldimension. 9

1.1.6Hilbertbasistheorem................ 11

1.1.7IntegralextensionandNoethernormalizationlemma 12

1.1.8Lying-overtheoremandGoing-uptheorem.... 16

1.1.9Krulldimensionofaffinedomains......... 19

1.2Reviewonfinitelygeneratedfieldextensions........ 20

1.2.1Transcendencebasisandtranscendencedegree.. 20

1.2.2Regularextensionandseparableextension.... 24

1.3Schemesandvarieties.................... 27

1.3.1Affineschemesoffinitetypeandaffinevarieties. 27

1.3.1.1Irreducibledecompositionofanaffine schemeoffinitetype........... 27

1.3.1.2Densityofthesetofclosedpoints.... 28

1.3.1.3Affinevarietiesandfunctionfields.... 30

1.3.1.4Structuresheaves............. 31

1.3.2Morphismsofaffineschemes............ 33

1.3.2.1Intersectionofaffineopensets......

1.3.2.2Openimmersionandclosedimmersion. 35

1.3.2.3Behaviorofstructuresheavesundera morphism.................

1.3.3.1Definitionandexamplesofschemes...

1.3.3.3Fiberproductsofschemes........

1.3.3.4Separatedschemes............

1.3.3.5Rationalmapsofalgebraicvarieties...

1.4.1Gradedringsandprojectivespectrums......

1.4.2.2Projectivevarieties............

1.4.2.3Projectiveclosureofanaffinevariety..

1.5Normalvarieties.......................

1.5.1Discretevaluationringsandnormalrings.....

1.5.2Normalizationofaffinedomains..........

1.5.4Uniquefactorizationdomains............

1.5.5Weildivisorsanddivisorclassgroup........

1.6.1Systemofparametersandregularlocalring....

1.6.2Regularsequenceanddepthofalocalring....

1.6.4Sheafofdifferential1-formsandcanonicalsheaf.

1.7.2Cartierdivisors....................

1.7.3Linearsystems....................

1.7.4 D-dimension,Kodairadimensionandlogarithmic Kodairadimension..................

1.8Algebraiccurvesandsurfaces................

1.8.1SerredualityandEuler-Poincar´echaracteristic..

1.8.3Algebraiccurves...................

1.8.4Intersectiontheoryonalgebraicsurfaces......

1.8.5Riemann-Rochtheoremforsurfaces........

1.8.6Fibrationsandrelativelyminimalmodelsof

1.9.3Inductivelimitsandprojectivelimits.......

1.9.3.1Inductivelimits..............

Cechcohomologyofsheavesofabeliangroups..

1.9.6.2Coherentsheafcohomologiesover

2.2.1Euclideantransformationassociatedwith admissibledata...................

2.2.2(e,i)-transformationassociatedwithadmissible data..........................

2.2.3Irreducibleaffinecurveswithone-placeatinfinity

2.2.4Abhyankar-Moh-Suzukitheorem..........

2.2.5TheoremofGutwirthandpathological

2.3.1Linearpencilsofrationalcurvesandfield generators......................

2.3.2ProofofautomorphismtheorembyJungandvan derKulk.......................

2.4Algebraicgroupactionsontheaffineplane.........

2.4.1Algebraicgroups,actionsandquotientspaces..

2.4.2FinitesubgroupsofAut k[x,y]...........

2.4.3Finitegroupactionsandinvariants........

2.4.4Quotientsingularitiesonsurfaces.........

2.5Birationalautomorphismsofrationalsurfaces.......

2.5.1Noetherfactorizationtheorem...........

2.6Boundarydivisorsofaffinesurfaces.............

2.6.1QuantitativecriterionofSNCdivisors.......

2.6.2Shifttransformationontheboundarydivisor...

2.6.3TheoremofRamanujam-Morrow..........

2.7AppendixtoChapter2....................

2.7.1Unramifiedmorphism................

2.7.2 ´ Etalecoverings....................

2.7.3Riemann-Hurwitzformulaforcurves........

2.7.4Inverseanddirectimagesofdivisorsandthe projectionformula..................

2.7.5Amalgamatedproductoftwogroups........

2.7.6Quotientvarietiesbyfinitegroupactionsand ramificationofthequotientmorphism.......

2.8ProblemstoChapter2....................

3.GeometryandTopologyofPolynomialRings—

3.1Plane-likeaffinesurfaces...................

3.1.1Simplyconnectedalgebraicvarieties........

3.1.2Unitgroup,unitrankandindependenceof boundarydivisors..................

3.1.3Gizatullinsurfacesandaffinepseudo-planes....

3.1.4Affinepseudo-planes—moreproperties......

3.1.5tomDieckconstructionofaffinepseudo-planes..

3.1.6Platonic A1 ∗-fiberspaces...............

3.1.7Homologyplanes...................

3.2Jacobianconjectureandrelatedresults...........

3.2.1Jacobianconjectureanditsvariants........

3.2.2Partialaffirmativeanswers.............

3.3GeneralizedJacobianconjecture—affirmativecases...

3.3.1Resultsinarbitrarydimension...........

3.3.2Resultsforsurfaces.................

3.3.2.1Surfaceshaving A1-fibrations......

3.4GeneralizedJacobianconjectureforvariouscases.....

3.4.1Caseof Q-homologyplanesof κ

3.4.2Counterexamples...................

3.5AppendixtoChapter3....................

3.5.1Makar-Limanovinvariant..............

3.5.2Thefundamentalgroupatinfinity.........

3.5.3AlgebraicsurfacesandlogKodairadimension..

3.5.4Logarithmicramificationformula..........

4.3Cancellationproblems....................

This page intentionally left blank

Chapter1

IntroductiontoAlgebraicGeometry

1.1Reviewonbasicresultsincommutativealgebra

Allringstreatedinthisbookarecommutativeandunitaryunlessotherwise specified.

1.1.1 Ringofquotientsandlocalring

Aring R is noetherian ifeveryascendingchainofideals

I0 ⊆ I1 ⊆···⊆ In ⊆ In+1 ⊆···

ceasestoincrease.Namely,thereexistsaninteger N suchthat In = In+1 forevery n ≥ N .Thisconditioniscalledthe ascendingchainconditionfor ideals (ACC,forshort).TheACCisequivalenttotheconditionthatevery idealisfinitelygenerated.

An R-module M issaidtobe finitelygenerated over R,orsimplya finite R-moduleif M = Rm1 + ··· + Rmn forafinitesetofgenerators {m1,...,mn}.Thequotientmodule M/N ofafinite R-module M byan R-submodule N isafinite R-module,andasubmodule N isalsofiniteif R isnoetherian(seeLemma 1.1.11).Conversely,ifan R-submodule N of M andthequotientmodule M/N arefinite,thensoisthe R-module M . Asubset S ofaring R isa multiplicativeset (ora multiplicativelyclosed set)if

(i) 0 ̸∈ S, 1 ∈ S,and (ii) s,t ∈ S implies st ∈ S

If p isaprimeidealof R,thenthecomplement S := R \p isamultiplicative set.Infact,thedefinitionofprimeidealimplies,bycontrapositive, ab ̸∈ p if a ̸∈ p and b ̸∈ p.If S isamultiplicativesetof R,the ringofquotients

(or ringoffractions) S 1R isdefinedastheset

S 1R = a s | a ∈ R,s ∈ S , where a/s denotestheequivalenceclassintheproduct R × S underthe equivalencerelation

(a,s) ∼ (b,t)ifandonlyif u(at bs)=0forsome u ∈ S.

Hence a/s isconsideredasausualfractionwhosenumeratorisanarbitrary element a ∈ R andwhosedenominatorisanelement s ∈ S.But a/s = b/t if(a,s) ∼ (b,t).If R isanintegraldomain,theaboveequivalencerelation holdsifandonlyif at = bs.Theset S 1R hasaringstructureforwhich additionandmultiplicationaredefinedrespectivelyby

Thereisanaturalringhomomorphism i : R → S 1R definedby i(a)= a/1.

Thekernelof i isanideal

I0 = {a ∈ R | as =0forsome s ∈ S}.

Withthisringhomomorphism i,thereisabijectivecorrespondencebetween theideals I of R suchthat I ⊇ I0 and I ∩ S = ∅ andthesetofidealsof S 1R.Hereweconsideronly proper ideals,where I isa proper idealof R if I ⫋ R.Thebijectivecorrespondenceisgivenby

I → I(S 1R)= a s | a ∈ I,s ∈ S ,J → i 1(J).

Thiscorrespondencerestrictstoabijectionbetween

{p | aprimeidealof R suchthat p ∩ S = ∅} and

{P | aprimeidealof S 1R}.

Wedenotetheideal i 1(J)by J ∩ R byabuseofnotation.Thisobservation impliesthat S 1R isnoetherianifsois R

Forexample,let S = R \ p foraprimeideal p of R.Wedenote(S 1R) by Rp and p(S 1R)by pRp.Then pRp isthebiggestprimeidealwith respecttoinclusion.Hence pRp isaunique maximal ideal1 of Rp.Aring R iscalleda localring ifitcontainsauniquemaximalideal m inthesense thatanyproperideal I of R iscontainedin m.Bythenotation(R, m)we

1Anideal m of R isa maximal idealif I isaproperidealof R suchthat I ⊇ m then I = m

meanthat R isalocalringwithmaximalideal m.Amaximalideal m is aprimeideal.Infact,supposethat ab ∈ m.Let I = m + aR,whichisan idealsuchthat I ⊇ m.Henceeither I = R or I = m.If I = m then a ∈ m. Supposethat I = R.Then1= ax + z with z ∈ m.Then b = abx + bz ∈ m. So, a ∈ m or b ∈ m.

Let R beanintegraldomain.Then S := R \{0} isamultiplicative set.Theringofquotients S 1R isnowafield,whichwecallthe fieldof quotients orthe fieldoffractions anddenoteby Q(R).

Let I beanidealof R.Anidealofthequotientring(ortheresidue ring) R = R/I iswritteninaform J/I,where J isanidealof R suchthat J ⊇ I.If R isnoetherian,soisthering R.

1.1.2 SpectrumofaringandZariskitopology

Let R bearing.Thesetofprimeidealsof R iscalledthe spectrum (spec, forshort)of R anddenotedby

Spec R = {p | aprimeidealof R}

Givenaring R,thespectrumSpec R isalsocalledan affinescheme with the coordinatering R.Wecandefineatopology,calledthe Zariskitopology, inSpec R byassigningclosedsetssatisfyingaxiomsoftopology.Aclosed setis V (I)foranideal I of R,where

V (I)= {p ∈ Spec R | p ⊇ I}.

Axiomsoftopologyforclosedsetsrequire

(i) Spec R and ∅ areclosedsets.

(ii) λ∈Λ V (Iλ)isaclosedset,where {Iλ | λ ∈ Λ} ispossiblyaninfinite set.

(iii) Afiniteunion j∈J V (Ij )isaclosedset.

For(i),wehaveSpec R = V ((0))and ∅ = V (R),where(0)isthezero ideal.For(ii),wehave λ∈Λ V (Iλ)= V ( λ∈Λ Iλ).For(iii),itsufficesto showthat

V (I1) ∪ V (I2)= V (I1I2)= V (I1 ∩ I2), where I1I2 istheidealof R generatedby {a1a2 | a1 ∈ I1,a2 ∈ I2}.Since I1 ∩ I2 ⊇ I1I2 andsince p ⊇ I1I2 implieseither p ⊇ I1 or p ⊇ I2,wehave V (I1) ∪ V (I2) ⊇ V (I1I2) ⊇ V (I1 ∩ I2) ⊇ V (I1) ∪ V (I2), whichprovestheassertion.TheZariskitopologyis T0,butnotnecessarily T1.Namely,iftwodistinctprimeideals p, q aregiven,thereisaclosedset

V (I)whichcontainseitheroneof p or q butnottheother.Onecannot choose p or q.Infact, p ⊂ q ifandonlyif p ∈ V (I)alwaysimply q ∈ V (I) foraclosedset V (I).

Foranideal I,definethe radical of I,denotedby √I,by √I = {a ∈ R | an ∈ I forsome n> 0}

Anideal I isa radicalideal if √I = I.Thenwehavethefollowingtheorem.

Theorem1.1.1. Foranideal I of R wehave

√I = p∈V (I) p.

Proof. If p ∈ V (I)then p ⊃ √I,whence p∈V (I) p ⊇ √I.Weshowthe oppositeinclusion.Ifthereexistsanelement s ∈ ( p∈V (I) p) \ √I,then S = {sn | n ≥ 0} isamultiplicativesetof R suchthat S ∩ I = ∅.Hence I(S 1R)isaproperidealof S 1R.ByZorn’slemma(seeCorollary 1.1.4 below)thereexistsamaximalideal M of S 1R suchthat I(S 1R) ⊂ M.

Let m = R ∩ M(= i 1(M)).Then m isaprimeidealof R suchthat m ⊃ I and m ∩ S = ∅.Namely m ∈ V (I)and m ⊃ p∈V (I) p,whence s ∈ m.This contradicts m ∩ S = ∅.

Corollary1.1.2. Forideals I,J of R, V (I)= V (J) ifandonlyif √I = √J.

Proof. ByTheorem 1.1.1, √I = √J followsif V (I)= V (J).Theconverse isclearbecause V (I)= V (√I)and V (J)= V (√J).

Let S beapartiallyorderedset.Itiscalledan inductiveset ifevery totallyorderedsubsethasanupperbound.Thefollowingresultiscalled Zorn’slemma

Lemma1.1.3. Let S beaninductiveset.Then S hasamaximalelement. Thisresultyieldsanimportantresult.

Corollary1.1.4. Let I beaproperidealofaring R.Thenthereexists amaximalideal m suchthat m ⊇ I.Further,amaximalidealisaprime ideal.

Proof. Let S bethesetofproperidealsof R containing I anddefinea partialorderin S bysetting

J1 ≥ J2 ifandonlyif J1 ⊇ J2

Let J1 ≤ J2 ≤···≤ Jn ≤ Jn+1 ≤··· beatotallyorderedsubsetof S.Set J = n≥1 Jn.Then J isaproperidealof R containing I,and J isclearly anupperboundofthetotallyorderedsubset.Hence S isaninductiveset, and S hasamaximalelement m,whichisamaximalidealof R suchthat m ⊇ I.

Let m beamaximalideal.Supposethat ab ∈ m with a,b ∈ R.Then aR + m isanidealcontaining m.Hence aR + m = m or aR + m = R.If aR + m = m then a ∈ m.If aR + m = R then ax + m =1for x ∈ R and m ∈ m.Then b = b(ax + m)= abx + bm ∈ m.So,either a ∈ m or b ∈ m. Thisimpliesthat m isaprimeideal.

1.1.3 Irreducibledecompositionofatopologicalspace

Atopologicalspace X is noetherian ifadescendingchainofclosedsets F1 ⊇ F2 ⊇···⊇ Fn ⊇ Fn+1 ⊇··· stopsalwaystodecrease,i.e.,thereexists N> 0suchthat Fn = Fn+1 for every n ≥ N .If R isanoetherianringthen X =Spec R isanoetherian space.Infact,write Fi = V (Ii)with Ii = √Ii = p∈Fi p.Thenthe descendingchainofthe Fi correspondstoanascendingchainofradical idealsof R

I1 ⊆ I2 ⊆···⊆ In ⊆ In+1 ⊆··· andtheterminationoftheidealchainimpliestheterminationofthechain ofclosedsets.

Atopologicalspace X is quasi-compact ifanyopencovering U = {Uλ}λ∈Λ of X hasafiniteopensub-covering X = U1 ∪ U2 ∪···∪ Un, where Ui = Uλi with λi ∈ Λ.

Lemma1.1.5. Anoetheriantopologicalspaceisquasi-compact.

Proof. Let U = {Uλ}λ∈Λ beanopencoveringof X.Wemayassume thatforany µ ∈ Λ, λ∈Λ\{µ} Uλ = X.Considerawell-orderingonΛand supposethat

λ1 <λ2 < <λn <λn+1 < andidentify λi with i ∈ Z.Let

Fn = X \ (U1 ∪ U2 ∪···∪ Un), whichisaclosedsetof X satisfying

F1 ⊃ F2 ⊃···⊃ Fn ⊃ Fn+1 ⊃···

Since X isnoetherian,thedescendingchainofclosedsetsceases,i.e.,there exists N> 0suchthat Fn = Fn+1 forall n ≥ N .Then FN = ∅.Hence X = U1 ∪ U2 ∪···∪ Un.

Atopologicalspace X is reducible ifthereisadecomposition X = F1∪F2 fortwoclosedsets F1,F2 with Fi ⫋ X.Otherwise, X iscalled irreducible. If F isaclosedsubsetof X,wecansaythat F isreducible(orirreducible) withrespecttotheinducedtopologyon F .

Lemma1.1.6. Let F beaclosedsubsetofanoetheriantopologicalspace X.Thenthereexistsafinitesetofirreducibleclosedsubsets F1,...,Fn suchthat F = F1 ∪ F2

Fn,F

Fj forall i = j. Theseclosedsubsets Fi aredeterminedbythesubset F uniquelyuptopermutations.

Theset Fi iscalledthe irreduciblecomponent of F andthedecomposition F = F1 ∪ F2 ∪···∪ Fn iscalledthe irreducibledecomposition

Proof. Weprovefirsttheexistenceofadecomposition.Let S betheset ofclosedsubsets F of X suchthat F isnotafiniteunionofirreducible closedsubsets.Then S isaninductivesetwithrespecttoanorderdefined byreverseinclusionofsubsets.Namely, F ≤ F ′ for F,F ′ ∈ S if F ′ ⊆ F . Givenan(ascending)totallyorderedsubsetof S,thereexistsanupper boundbythenoetherianconditionof X whichceasesdescendingchains ofclosedsubsetsof X.Hence S hasamaximalelement,say F0.Then F0 isreducible.Write F0 = F1 ∪ F2 forproperclosedsubsets F1,F2 of F0.Then F1 >F0 and F2 >F0.Since F0 isamaximalelementof S, F1 and F2 arewrittenasfiniteunionsofirreducibleclosedsubsets.Writethe decompositionsas

F1 = F11 ∪ F12 ∪···∪ F1r F2 = F21 ∪ F22 ∪···∪ F2s, where Fij isirreduciblefor i =1, 2.Thenwehave

F0 = F1 ∪ F2 =(F11 ∪···∪ F1r) ∪ (F21 ∪···∪ F2s), whichisafiniteunionofirreducibleclosedsubsets.Thiscontradictsthe assumptionthat F0 ∈ S Weprovenextthatadecompositionisuniqueuptopermutations.Let F = G1 ∪ G2 ∪···∪ Gm

beanotherirreducibledecompositionofthesamekindasinthestatement. Thenwehave

G1 = G1 ∩ F =(G1 ∩ F1) ∪ (G1 ∩ F2) ∪···∪ (G1 ∩ Fn)

Since G1 isirreducible, G1 = G1 ∩ Fi forsome1 ≤ i ≤ n.Afterapermutationofindices,wemayassumethat i =1.Then G1 ⊆ F1.Similarly,we have F1 =(F1 ∩ G1) ∪···∪ (F1 ∩ Gm).

Hence F1 = F1 ∩ Gj andhence F1 ⊆ Gj .Thisimpliesthat G1 ⊆ Gj , whence j =1.Namely F1 = G1.Wecanargueasabovebyreplacing F1 by Fj ,andshowthat n = m and Fi = Gi afterasuitablepermutationof indices.

1.1.4 Primeidealdecompositionofradicalideals

Lemma1.1.7. Let R beanoetherianringandlet X =Spec R.Let I be aradicalidealof R andlet F = V (I).If F isirreduciblethen I isaprime ideal.Conversely,if I isaprimeidealthen V (I) isirreducible.

Proof. Supposethat ab ∈ I.Then,forany p ∈ F , ab ∈ I ⊆ p.Hence a ∈ p or b ∈ p.Thisimpliesthat F ⊂ V (a) ∪ V (b),where V (a)= V (aR) and V (b)= V (bR),and F =(F ∩ V (a)) ∪ (F ∩ V (b)), where F ∩ V (a)= V (I + aR)and F ∩ V (b)= V (I + bR).Since F is irreducible, F = F ∩ V (a)or F = F ∩ V (b),i.e., F ⊆ V (a)or F ⊆ V (b). Thisimpliesthat aR ⊆ p∈F p = √I = I, or bR ⊆ I.

Hence a ∈ I or b ∈ I.So, I isaprimeideal. Weprovetheconverse.Supposethat V (I)isreducible,andwrite V (I)= V (I1) ∪ V (I2)with V (I1) ⫋ V (I)and V (I2) ⫋ V (I).Since V (I1) ∪ V (I2)= V (I1I2),itfollowsthat I1I2 ⊆ I.Since I isaprime ideal,either I1 ⊆ I or I2 ⊆ I.Theneither V (I) ⊆ V (I1)of V (I) ⊆ V (I2). Thisisacontradiction.

Corollary1.1.8. Let R beanoetherianringandlet F = V (I) fora radicalideal I.Thenthereexistsauniquelydeterminedsetofprimeideals {p1,..., pn} suchthat

(i) I = p1 ∩ p2 ∩···∩ pn,and (ii) pi ̸⊂ pj foranypair (i,j) with i = j.

Theclosedsubsets V (p1),...,V (pn) correspondbijectivelywithirreducible components F1,...,Fn of F = V (I).

Proof. Thereisanirreducibledecompositionof F whichisuniquelydetermineduptopermutationsofcomponents F = F1 ∪···∪ Fn,

where Fi = V (pi)foraprimeideal pi.Thenwehave V (I)= V (p1) ∪···∪ V (pn)= V (p1 ∩···∩ pn),

where p1 ∩···∩ pn isaradicalideal.ThenitfollowsbyCorollary 1.1.2 that I = p1 ∩···∩ pn.

Thedecomposition

I = p1 ∩ p2 ∩···∩ pn

inCorollary 1.1.8 iscalledthe primedecomposition2 oftheradicalideal I. Forafixed1 ≤ i ≤ n,write j=i

and j=i

where ∨ pi showsthattheideal pi isomitted.Then j=i pj ⊆ j=i pj ,and hence j=i pj ̸⊂ pi because pi ̸⊂ pj foranypair(i,j).Let ai beanelement of( j=i pj ) \ pi.Foranelement a ∈ R,thesubset

(I : a)= {x ∈ R | ax ∈ I}

iscalledan idealquotient oftheideal I.Itisanidealof R containing I Fortheidealquotient(I : ai)itholdsthat(I : ai)= pi.Infact,if x ∈ pi then aix ∈ ( j=i pj )bythechoiceof ai and aix ∈ pi because x ∈ pi.Hence aix ∈ I and pi ⊆ (I : ai).Conversely,if x ∈ (I : ai)then aix ∈ I and

2Laterweneedafinerdecompositionofideals,calledthe primarydecomposition of ideals.Wedevelopthetheoryintheappendix.

ai ̸∈ pi.Hence x ∈ pi.Thisshowsthat pi =(I : ai).Furthermore,ifan idealquotient(I : a)isaprimeideal p,then p ⊇ I ⊇ n i=1 pi.

Hence p containssome pi.Wesaythattheidealquotient(I : a)isa prime divisor of I if(I : a)isaprimeideal.Thesetofallprimedivisorsof I is denotedbyAss(R/I).Theneach pi isa minimal amongprimedivisorsof I withrespecttotheinclusionorder.Anon-minimalprimedivisorof I is called embedded.

Theradical n = √0ofthezeroideal(0)of R iscalledthe nilradical. Let n = √0= p1 ∩ p2 ∩···∩ pn betheprimedecomposition.Sinceanyprimeideal p of R contains n,the aboveargumentshowsthat p ⊇ pi forsome1 ≤ i ≤ n.Thisimpliesthat X =Spec R = V (p1) ∪ V (p2) ∪···∪ V (pn) andeach V (pi)isanirreduciblecomponentof X

1.1.5 Genericpoint,closedpointandKrulldimension

Let R beannoetherianringandlet X =Spec R.Wehaveaprimeideal px identifiedwitheachpoint x ∈ X.Forasubset S of X,wedenoteby S theclosureof S withrespecttotheZariskitopology.Apoint x of X isa closedpoint if {x} = {x}.Apoint x isa genericpoint if X = {x}. Lemma1.1.9. Thefollowingassertionshold.

(1) S = V (I(S)),where I(S)= x∈S px.

(2) If S consistsofasinglepoint x thentheclosure {x} isirreducible.We have {x} = {y} ifandonlyif x = y

(3) x isthegenericpointofanirreduciblecomponentof V (I) ifandonly if px isaminimalprimedivisorof √I (4) X isirreducibleifandonlyifthenilradical √0 of R isaprimeideal. (5) x isaclosedpointifandonlyif px isamaximalideal.

Proof. (1)Ifaclosedset V (I)contains S then px ⊇ I forevery x ∈ S.This impliesthat I ⊆ I(S),where I(S)isa radicalideal,i.e., I(S)= I(S). Thisimpliesthat I(S)definesthesmallestclosedsubsetof X whichcontains S,i.e.,theclosureof S

(2)By(1), {x} = V (px)whichisirreduciblebyLemma 1.1.7.Wehave {x} = {y} ifandonlyif V (px)= V (py),whichisequivalentto px = py, i.e., x = y.

(3)and(4)TheassertionfollowsfromCorollary 1.1.8.

(5)If {x} = {x} then px isamaximalidealof R.For,otherwise, thereisamaximalideal m ⫌ px and m ∈ {x}.Theconverseisclearby definition.

Aseriesofirreducibleclosedsubsetsof X =Spec R

correspondstoasequenceofprimeideals

Theindex n iscalledthe length ofthesequence.Ifasequenceofmaximal length(whichcouldbe ∞)exists,thelengthiscalledthe Krulldimension of X (or R)anddenotedbyK-dim X (orK-dim R).Laterwewillsee thatif R isanaffinedomainoverafield k thenK-dim X isequaltothe transcendencedegreetr.degkK,where K = Q(R)isthefieldofquotients of R.

Let p beaprimeidealof R.Weconsider,inparticular,adescending chainofprimeidealswith p asthebeginningterm

Ifthereisafinitechainsuchas(1.1)withmaximallength r,theinteger r iscalledthe height of p anddenotedbyht p.Iftherearechainslike(1.1) oflengtharbitrarilybig,wedefineht p = ∞.

Let I beanidealof R andlet √I = p1 ∩ p2 ∩···∩ pm beaprimedecompositionof √I.Thenwedefinetheheightof I by ht I =min 1≤i≤m ht pi.

LetΩ(R)denotethesetofallmaximalidealsof R.Wedefinethe dimension of R (or X =Spec R)by

dim R =dim X =max M∈Ω(R) ht(M)

Let I beanidealdefiningaclosedsubset V (I)of X,wedefinethe codimension of V (I)by

codim V (I)=ht I.

1.1.6 Hilbertbasistheorem

Thefollowingresultiscalled Hilbertbasistheorem.

Theorem1.1.10. Let R beanoetherianringandlet A = R[x1,...,xn] be apolynomialringin n variablesover R.Then A isalsoanoetherianring.

Proof. Itsufficestoprovetheassertioninthecase n =1.Let I bean idealof R[x]andlet

a = {a ∈ R | thereexists f (x)= axn +(termsoflowerdegree)in I}.

Then a isanidealof R.Write a = r i=1 aiR.Choose fi ∈ I sothat

fi = aixni +(termsoflowerdegree)

andlet m =max{ni | 1 ≤ i ≤ r}.Wemayassumethat n1 = ··· = nr = m.

Let M = R · 1+ R · x + ··· + R · xm 1,whichisan R-submoduleof A, and N = I ∩ M .Then N isan R-submoduleof M .Since M isafinite R-module,sois N byLemma 1.1.11 below.Write N = s j=1 Rgj .Then weclaimthat

Since fi,gj ∈ I,oneinclusion ⊇ isclear.Weprovethereverseone.

Let f ∈ I.Write f = axn +(termsoflowerdegree) ∈ I.Then a ∈ a. Hence a = r i=1 aibi.If n ≥ m,let

Thendeg f ′ <n.Byinductionondeg f wecanwrite f = r i=1 fihi + g,g ∈ M.

Since g ∈ I,wehave g ∈ N .Hence g = s j=1 cj gj with cj ∈ R.So,we have

Lemma1.1.11. Let R beanoetherianringandlet M beafinite R-module. Thenan R-submodule N of M isfinite.

AffineAlgebraicGeometry

Proof. Write M = Rm1 + ··· + Rmr withgenerators m1,...,mr.We provetheassertionbyinductiononthenumber r ofgenerators.Suppose r =1.Then M = Rm1.Let a1 = {a ∈ R | am1 ∈ N }.Then a1 is anidealof R.Since R isnoetherian,wecanwrite a1 = r1 i=1 Ra1i.Let ni = a1im1 ∈ N .Take z ∈ N andwriteitas z = am1.Then a ∈ a1 and hence a = r1 i=1 b1ia1i.Then z = r1 i=1 b1ini.Hence N = r1 i=1 Rni. Supposethat r> 1.Let M2 = Rm2 + ··· + Rmr and N2 = M2 ∩ N .

Let a = {a ∈ R | thereexistsanelement u = am1 + a2m2 + + armr ∈ N }

Then a isanidealof R.Hence a = s i=1 Rci.Let ui beanelementof N suchthat ui =

Let z ∈ M andwrite z = am1 + a2m2 + + armr,a = s i=1 bici

Then z s i=1 biui ∈ M2 ∩ N = N2.

Byinductionhypothesis,wecanwrite N2 = t j=1 Rvj .Then N = s i=1 Rui + t j=1 Rvj

Let k beafield.Afinitelygenerated k-algebraisthequotientring A = k[x1,...,xn]/I ofapolynomialring k[x1,...,xn].If A isfurtheran integraldomain,i.e., I isaprimeideal,wecall A an affinedomain over k orsimplyan affine k-domain.

Corollary1.1.12. Let A beafinitelygenerated k-algebraoverafield k. Then A isnoetherian.

1.1.7 IntegralextensionandNoethernormalizationlemma

Let R bearingand S asubringof R.Anelement a ∈ R is integral over S if a isarootofanequation f (x)=0fora monic polynomial f (x)= xn + b1xn 1 + + bn ∈ S[x] (1.2)

Lemma1.1.13. Thefollowingconditionsforanelement a of R areequivalent.

(1) a isintegralover S. (2) Thesubring S[a] of R generatedby a over S isafinite S-module. (3) Thereisasubring T of R suchthat S ⊂ T ⊂ R, a ∈ T and T isa finite S-module.

Proof. (1) ⇒ (2).If r ≥ n with n =deg f (x)intheequation f (a)=0 (see(1.2)), ar isalinearcombinationof1,a,...,an 1 withcoefficientsin S.So, S[a]isgeneratedby1,a,...,an 1 over S.Hencethe S-algebra S[a] of R isafinite S-module.

(2) ⇒ (3).Take T = S[a].

(3) ⇒ (1).Write T = Sm1 + Sm2 + + Smn.Since a ∈ T and T is an S-algebra,wehave ami = bi1m1 + bi2m2 + + binmn,bij ∈ S.

Let B bean(n × n)-matrix(bij )1≤i,j≤n .Thenwehave

=0, (1.3)

where En =(δij )1≤i,j≤n isthe(n × n)identitymatrixwiththeKronecker delta δij .Let D = aEn B andlet D∗ bethecofactormatrixof D.Asan importantresultinlinearalgebra,wehaveequalities D∗D = DD∗ = dEn, where d =det D.Then,bymultiplying D∗ tobothhandsidesofthe equality(1.3)fromtheleft,wehave dm1 = dm2 = ··· = dmn =0.

Sincewehave c1m1 + c2m2 + ··· + cnmn =1,ci ∈ S, wehave d = c1dm1 + c2dm2 + + cndmn =0

Hencewehave d = a b11 bji . bij a bnn = an tr(B)an 1 + +( 1)n det B =0

Namely, a isintegralover S

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.