Instant download Back-of-the-envelope quantum mechanics: with extensions to many-body systems and in

Page 1


Back-Of-The-Envelope Quantum Mechanics: with Extensions to Many-Body Systems and Integrable Pdes 2nd Edition Maxim Olshanii

Visit to download the full and correct content document: https://ebookmass.com/product/back-of-the-envelope-quantum-mechanics-with-exten sions-to-many-body-systems-and-integrable-pdes-2nd-edition-maxim-olshanii/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Integrable Systems 1st Edition Ahmed Lesfari

https://ebookmass.com/product/integrable-systems-1st-editionahmed-lesfari/

Integrable Systems 1st Edition Ahmed Lesfari

https://ebookmass.com/product/integrable-systems-1st-editionahmed-lesfari-2/

Consciousness and Quantum Mechanics 1st Edition Shan Gao (Editor)

https://ebookmass.com/product/consciousness-and-quantummechanics-1st-edition-shan-gao-editor/

Introduction to Quantum Mechanics John Dirk Walecka

https://ebookmass.com/product/introduction-to-quantum-mechanicsjohn-dirk-walecka/

Quantum Mechanics 3rd Edition Nouredine Zettili

https://ebookmass.com/product/quantum-mechanics-3rd-editionnouredine-zettili/

The Historical and Physical Foundations of Quantum Mechanics

Robert Golub

https://ebookmass.com/product/the-historical-and-physicalfoundations-of-quantum-mechanics-robert-golub/

A Middle Way: A Non-Fundamental Approach to Many-Body Physics Batterman

https://ebookmass.com/product/a-middle-way-a-non-fundamentalapproach-to-many-body-physics-batterman/

Identity and Indiscernibility in Quantum Mechanics

Tomasz Bigaj

https://ebookmass.com/product/identity-and-indiscernibility-inquantum-mechanics-tomasz-bigaj/

Introduction to Quantum Field Theory with Applications to Quantum Gravity 1st Edition Iosif L. Buchbinder

https://ebookmass.com/product/introduction-to-quantum-fieldtheory-with-applications-to-quantum-gravity-1st-edition-iosif-lbuchbinder/

This page intentionally left blank

Published by

World Scientific Publishing Co. Pte. Ltd.

5 Toh Tuck Link, Singapore 596224

USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601

UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

Library of Congress Control Number: 2023952220

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

BACK-OF-THE-ENVELOPE QUANTUM MECHANICS

With Extensions to Many-Body Systems, Integrable PDEs, and Rare and Exotic Methods

Second Edition

Copyright © 2024 by World Scientific Publishing Co. Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher.

ISBN 978-981-12-8637-7 (hardcover)

ISBN 978-981-12-8638-4 (ebook for institutions)

ISBN 978-981-12-8639-1 (ebook for individuals)

For any available supplementary material, please visit https://www.worldscientific.com/worldscibooks/10.1142/13680#t=suppl

Typeset by Stallion Press

Email: enquiries@stallionpress.com

Printed in Singapore

ToDimitri,Mark,Laura,Sophia,Milena,andtomyFather

This page intentionally left blank

Preface

AsInowrealizeit,thisbookwasuniquelyinspiredbyProfessorKrainov’s courseonqualitativemethodsinphysicalkineticsthatIattendedatthe MoscowEngineeringPhysicsInstitute(NationalResearchNuclearUniversityMEPhInowadays)thirtyyearsago.Aswestudentswouldlearnin amorerigorousclasstofollow,inphysicalkinetics,eventhemostbasic resultsrequirelaboriousmulti-pagederivations.ButKrainov’scourseand hisbookpublishedlaterbytheAmericanInstituteofPhysicstaughtus thatifoneis not interestedintheexactvaluesofprefactors,thentenpages ofcalculationscanbereplacedbytwoshortlinesonthe backofanenvelope; andinsomecases,evenapostalstampwouldsuffice.

Thebookyouareabouttoreadisbasedontheproblemsassigned inagraduatecourseinquantummechanicsthatIhavebeenteachingat theUniversityofMassachusettsBostonformanyyears.Similarlytothe physicalkineticsclassesIattendedattheMEPhI,thediscussiononany newtopicinmyclasswouldinvariablystartfromaseriesofqualitative problems.WhenIrealizedIhadmorethanfiftyofthem,Idecidedto assembletheminabook.

Inthisbook,Iclearly distinguishbetweenthedimensionalandtheorderof-magnitudeestimates.Dimensionalanalysisisapowerfulmethodto analyzenewunexploredequations,butitfailswhentherearetoomany dimensionlessparametersinvolved.Inanorder-of-magnitudeestimate— acalculationwhereallanglesare 90◦,allnumbersareunity,andallintegralsarejust“heighttimeswidth”—oneneedstounderstandthephysics behindtheprocessreallywell;asareward,themethodisnearlyuniversal.

Approximatelyhalfofthebookisdevotedtotheestimatesbased oneithersemi-classicalapproximationoronperturbationtheoryexpansionsin elementaryquantummechanics.Thankstoareducednumberof

viii Back-of-the-EnvelopeQuantumMechanics

independentdimensionfulparametersinthedomainsofapplicabilityof thesetheories,bothdimensionalandorder-of-magnitudeapproachesare ideallysuitedthere.

Asequenceofvariationalproblemsisalsoincluded.Thebreadthand eleganceofvariationalreasoningmakesitavaluabletoolinapreliminary analysisofaproblem;determinationoftheparityofthegroundstateina wellisagoodexample.Furthermore,eventhequantitativeresultsobtained fromsimpleone-parametricvariationalansatzesstillfitonanenvelope.

Similarly,Icouldnotresistincludingseveralpowerfulresultsproduced byapplyingtheHellmann-Feynmantheoremto integrablemany-bodyquantumsystems.Unlikeothermethodsconsidered,itproducesexactanswers; thosecanalsobeobtainedinafewlines.

The integrablepartialdifferentialequations serveasanexampleofafield wheretherearenoinnatemeasurementunits,andyetdimensionalanalysis canbedeployed;thedependenceofthesizeofaKoteweg-deVriessoliton onitsspeedisatypicalapplicationofthemethod.

Thisbookcontainsbothsolvedproblemsandexercises.Theorderofthe solvedproblemsisimportant:thesequencegraduallypreparesthereader fortheproblemswithoutsolutions.Minimaltheoreticalbackgroundisprovidedaswell.Severallesserknowntheoreticalfactsareattachedtotherespective“Background”sectionsas“Problemslinkedtothe‘Background’”. Variousapproximateandqualitativemethodsarecomparedinthreecase studies:ofahybrid,harmonic-quarticoscillator,ofa“halved”harmonic oscillator,andofagravitationalwell.

Thisbookwouldnothavebeenpossiblewithoutinputfromallthe studentsIhavetaughtinmyquantummechanicscoursesatUMassBoston andattheUniversityofSouthernCaliforniabeforeit.Specialthanksto VladimirPavlovichKrainovforintroducingmetoqualitativemethods,first asaprofessorand,lateron,asmyfirstresearchprojectadviser.Further interactionswithmymentors,VladimirMinoginandYvanCastin,inspired manynewproblemsforthebookandshapeditsstructure.

AgoodhalfofthisbookwascompiledduringquietMediterranean nights,profitingfromthefreeinternetinthelobbyoftheGalilHotelin Netanya,Israel.Manythankstoitsstuffforthecookiestheywere incessantlyfeedingmethroughoutthosenights.

Thisisanappropriateplacetothankmyfriends—VincentLorent,Lana Jitomirskaya,VanjaDunjko,LenaDotsenko,andPaulGron—forstanding bymysideingoodandinbadtimes.

IamimmenselygratefultoZaijongHwangandVanjaDunjkofora thoroughcriticalreadingofthemanuscript.

Finally,IwouldliketothankmywifeMilenaGueorguievaforcorrecting commas,articles,andawkwardsentencesandmysonMarkOlchanyifor producingthecoverart.

MaximOlshanii

Boston,Massachusetts January14,2013

SecondEdition:anupdate. MisprintsoftheFirstEditionhavebeencorrected.IamespeciallygratefultoRobertBarrandMaryFriesforspotting mostofthem.

Iamindebtedtoallthestudentsinmy EstimatesinPhysics class,at UMassBoston:theywerethefirstreadersandthefirstcriticsofalmostall thenewproblems.

Again,IamimmenselygratefultoZaijongHwangandVanjaDunjko forathoroughcriticalreadingofthemanuscript,botheditions.

TheSecondEditionfeaturestwonewChapters:Chapter2, AdimensionalestimateforPlanck’senergy:aCaseStudy andChapter12, Rare andexoticmethodsinelementaryquantummechanicsandbeyond Chapter2complementstheChapter1;thecombinationofthetwo servesasanintroductiontovariostypesofestimates.ThenewChapteris alsointendedtodemonstratethatunlikeforanyothermethodinphysics, dimensionalanalysisdoesnotrequireanyknowledgeinthefieldtowhich themethodisapplied.

TheFirstEditionofthebookwasdevotedtothe generallyapplicable shortcutsthatallowonetobypasssolvingdifferentialequations,computing complicatedintegrals,anddiagonalizinginfinite-sizematrices.Theseshortcutsincluded:order-of-magnitudeestimates,dimensionalanalysis,and variationalmethods.TheChapter12,whichmakesitsfirstappearance intheSecondEdition,complementsthislist:itfocussesonthemethods whose applicabilityislimited toanarrowclassofproblems.

MaximOlshanii

Boston,Massachusetts March15,2023

This page intentionally left blank

Preface vii

1.GroundStateEnergyofaHybridHarmonic-Quartic Oscillator:aCaseStudy1

1.1Solvedproblems........................1

1.1.1Dimensionalanalysisandwhyitfails inthiscase......................1

1.1.1.1Sidecomment:dimensionalanalysis andapproximations............6

1.1.1.2Sidecomment:howtorecastinput equationsinadimensionlessform....7

1.1.2Dimensionalanalysis:theharmonicoscillator alone.........................9

1.1.3Order-of-magnitudeestimate:fullsolution....10

1.1.3.1Order-of-magnitudeestimatesvis-a-vis dimensionalanalysis...........10

1.1.3.2Harmonicvs.quarticregimes......11

1.1.3.3Theharmonicoscillatoralone......12

1.1.3.4Thequarticoscillatoralone.......12

1.1.3.5Theboundarybetweentheregimesand thefinalresult...............13

1.1.4Anafterthought:boundarybetweenregimesfrom dimensionalconsiderations.............13

1.1.5AGaussianvariationalsolution..........14

2.AdimensionalestimateforthePlancktemperature: aCaseStudy 17

2.1Solvedproblems........................17

2.1.1EstimatingthePlancktemperature........17

3.Bohr-SommerfeldQuantization 25

3.1Solvedproblems........................25

3.1.1Groundstateenergyofaharmonicoscillator...25

3.1.2Spectrumofaharmonicoscillator.........26

3.1.3WKBtreatmentofa“straightened”harmonic oscillator.......................28

3.1.4Groundstateenergyofpower-lawpotentials...30

3.1.5Spectrumofpower-lawpotentials.........31

3.1.6Thenumberofboundstatesofadiatomic molecule.......................32

3.1.7Coulombproblematzeroangularmomentum..34

3.1.8Quantizationofangularmomentum fromWKB......................38

3.1.9FromWKBquantizationof4Dangularmomentum toquantizationoftheCoulombproblem......39

3.1.10Groundstateenergyofalogarithmicpotential,a WKBanalysis....................41

3.2Problemswithoutprovidedsolutions............42

3.2.1SizeofaneutralmesoninSchwinger’stoymodel ofquarkconfinement................42

3.2.2Bohr-Sommerfeldquantizationforperiodic boundaryconditions.................43

3.2.3Groundstateenergyofmulti-dimensional power-lawpotentials.................43

3.2.41Dboxasalimitofpower-lawpotentials.....43

3.2.5Groundstateenergyofalogarithmicpotential, anestimate......................44

3.2.6Spectrumofalogarithmicpotential........45

3.2.7Closestapproachtoalogarithmichillandto power-lawhills....................45

3.2.8Spin-1/2 inthefieldofawire............46

3.2.9Dimensionalanalysisofthetime-dependent Schrödingerequationforahybrid harmonic-quarticoscillator.............46

3.3Background..........................47

3.3.1Bohr-Sommerfeldquantization...........47

3.3.2Multi-dimensionalWKB..............48

3.4Problemslinkedtothe“Background”............49

3.4.1Bohr-Sommerfeldquantizationforonesoftturning pointandahardwall................49

3.4.2Bohr-Sommerfeldquantizationfortwo hardwalls......................51

4.“Halved”HarmonicOscillator:aCaseStudy53

4.1Solvedproblems........................54

4.1.1Dimensionalanalysis................54

4.1.2Order-of-magnitudeestimate............54

4.1.3Anotherorder-of-magnitudeestimate.......55

4.1.4StraightforwardWKB................56

4.1.5Exactsolution....................56

5.Semi-ClassicalMatrixElementsofObservablesand PerturbationTheory

5.1Solvedproblems........................59

5.1.1Quantumexpectationvalueof x6 inaharmonic oscillator.......................59

5.1.2Expectationvalueof r2 foracircular Coulomborbit....................60

5.1.3WKBapproximationforsomeintegralsinvolving sphericalharmonics.................62

5.1.4Groundstatewavefunctionofa one-dimensionalbox.................64

5.1.5Eigenstatesoftheharmonicoscillatorattheorigin: howafactoroftwocanrestoreaquantum-classical correspondence...................65

5.1.6Probabilitydensitydistributionina“straightened” harmonicoscillator.................68

5.1.7Eigenstatesofaquarticpotentialattheorigin..70

5.1.8Perturbationtheorywithexactandsemi-classical matrixelementsforaharmonicoscillator perturbedbyaquarticcorrectionor.......71

5.1.9...orbyacubiccorrection.............73

5.1.10Shiftoftheenergyofthefirstexcitedstate....75

5.1.11Impossiblepotentials................76

5.1.12Correctiontothefrequencyofaharmonicoscillator asaperturbation..................79

5.1.13Outerorbitalofsodiumatom............82

5.1.14Relativecontributionsoftheexpectationvaluesof theunperturbedHamiltonianandtheperturbation tothefirstandthesecondorderperturbation theorycorrectiontoenergy.............86

5.2Problemswithoutprovidedsolutions............88

5.2.1Aperturbationtheoryestimate...........88

5.2.2Eigenstatesofatwo-dimensionalharmonic oscillatorattheorigin................89

5.2.3ApproximateWKBexpressionsformatrix elementsofobservablesinaharmonic oscillator.......................91

5.2.4Off-diagonalmatrixelementsofthespatial coordinateforaparticleinabox..........91

5.2.5Harmonicoscillatorperturbedbya δ-potential,...91

5.2.6...andbyauniformfield..............91

5.2.7Perturbativeexpansionoftheexpectationvalueof theperturbationitselfandthevirialtheorem...92

5.2.8Alittletheorem...................93

5.3Background..........................93

5.3.1MatrixelementsofoperatorsintheWKB approximation....................93

5.3.2Perturbationtheory:abriefsummary.......96

5.3.3Non-positivityofthesecondorderperturbation theoryshiftofthegroundstateenergy......97

6.VariationalProblems99

6.1Solvedproblems........................99

6.1.1Insertingawall...................99

6.1.2Parityoftheeigenstates...............100

6.1.3Simplevariationalestimateforthegroundstate energyofaharmonicoscillator...........100

6.1.4Apropertyofvariationalestimates........101

6.1.5Absenceofnodesinthegroundstate.......103

6.1.6Absenceofdegeneracyofthegroundstate energylevel......................105

6.2Problemswithoutprovidedsolutions............106

6.2.1Dostrongerpotentialsalwaysleadtohigher groundstateenergies?................106

6.2.2Variationalanalysismeetsperturbationtheory..106

6.2.3Anothervariationalestimateforthegroundstate energyofaharmonicoscillator............106

6.2.4...andyetanother..................106

6.2.5Gaussian-andwedge-variationalgroundstate energyofaquarticoscillator............107

6.3Background..........................107

6.3.1Variationalanalysis.................107

6.4Problemslinkedtothe“Background”............109

6.4.1Complexvs.realvariationalspaces........109

6.4.2Aproofthatthe (ψ )2 energyfunctionaldoesnot haveminimawithdiscontinuousderivatives....111

7.GravitationalWell:aCaseStudy113

7.1Solvedproblems........................113

7.1.1Bohr-Sommerfeldquantization...........113

7.1.2AWKB-basedorder-of-magnitudeestimateforthe spectrum.......................114

7.1.3AWKB-baseddimensionalestimate forthespectrum...................115

7.1.4Aperturbativecalculationoftheshiftofthe energylevelsunderasmallchangeinthe couplingconstant.Thefirstorder.........116

7.1.5Adimensionalestimatefortheperturbative correctiontothespectrum.............117

7.1.6Aperturbativecalculationoftheshiftofthe energylevelsunderasmallchangeinthe couplingconstant.Thesecondorder........119

7.1.7Asimplevariationaltreatmentofthegroundstate ofagravitationalwell................121

8.Miscellaneous123

8.1Solvedproblems........................123

8.1.1Adimensionalapproachtothequestionofthe numberofboundstatesin δ-potentialwell.....123

8.1.2...andinaPöschl-Tellerpotential.........124

8.1.3Existenceoflosslesseigenstatesinthe 1/x2-potential....................125

8.1.4Ontheabsenceoftheunitarylimitintwo dimensions......................126

9.TheHellmann-FeynmanTheorem129

9.1Solvedproblems........................129

9.1.1Lieb-Linigermodel..................129

9.1.2Expectationvaluesof 1/r2 and 1/r inthe Coulombproblem,usingtheHellmann-Feynman theorem........................131

9.1.3Expectationvalueofthetrappingenergyinthe groundstateoftheCalogerosystem........133

9.1.4VirialtheoremfromtheHellmann-Feynman theorem........................134

9.2Problemswithoutprovidedsolutions............136

9.2.1Virialtheoremforthelogarithmicpotentialandits corollaries.......................136

9.3Background..........................137

9.3.1TheHellmann-Feynmantheorem..........137

10.LocalDensityApproximationTheories139

10.1Solvedproblems........................139

10.1.1AThomas-Fermiestimatefortheatomsizeand totalionizationenergy................139

10.1.2Thesizeofanion..................140

10.1.3Time-dependentThomas-Fermimodelfor coldbosons......................142

10.2Problemswithoutprovidedsolutions............144

10.2.1Thequantumdot..................144

10.2.2Dimensionalanalysisofanatombeyondthe Thomas-Fermimodel................144

11.IntegrablePartialDifferentialEquations 145

11.1Solvedproblems........................145

11.1.1SolitonsoftheKorteweg-deVriesequation....145

11.1.2BreathersofthenonlinearSchrödinger equation.......................147

11.1.3Healinglength....................148

11.1.4Dimensionalanalysisoftheprojectile problemasapreludetoadiscussiononthe Kadomtsev-Petviashvilisolitons..........150

11.1.5Kadomtsev-Petviashviliequation..........152

11.1.6Thenonlineartransportequation.........154

11.1.7Burgersequation...................157

11.2Problemswithoutprovidedsolutions............161

11.2.1StationarysolitonsoftheBurgersequation....161

11.2.2StationarysolitonsofthenonlinearSchrödinger equation.......................161

11.2.3Solitonsofthesine-Gordonequation........162

12.Rareandexoticmethodsinelementaryquantum mechanicsandbeyond 163

12.1Solvedproblems........................163

12.1.1Quantum-mechanicalsupersymmetry (QM-SUSY):Pöschl-Tellerasanexample.....163

12.1.2Whatthesupersymmetricstructurealoneimplies forthescatteringstatesofthePöschl-Teller potential.......................165

12.1.3Power-indexmethod.Exampleofthenonlinear Schrödingerequation,withthePöschl-Teller problemasabyproduct...............166

12.1.4Astationary-kinksolutionoftheBurgersequation throughthepower-indexmethod..........169

12.1.5Scaleinvariance:quantumCalogeropotentialas anexample......................169

12.1.6ClassicalCalogeropotential:aposteriori manifestationsofthescaleinvariance.......172

12.1.7ClassicalCalogeropotential:apriorimanifestationsofscaleinvarianceattheMaupertuis-Jacobi level.Findingthezero-energyorbit from symmetriesalone ..................175

12.1.8Circleinversion,quantum:zero-energyeigenstates ina 1/r4 potential..................177

12.1.9Self-similartilings:momentofinertiaofan equilateraltriangleasaparadigm.........179

12.1.10Propertiesofthespectrumofanequilateral triangularquantumbilliardsthatfollowfromthe tilingself-similarity.................181

12.1.11Centerofmassofafilled“goldenb”shape,through self-similartilings..................182

12.2Problemswithoutprovidedsolutions............186

12.2.1Power-indexmethodappliedtothePöschl-Teller problemdirectly...................186

12.2.2Quasi-integrability:theoverallideaandthe exampleofthesixticoscillator...........186

12.2.3Aquasi-integrableinstanceoftwononlinearly coupledoscillators..................187

12.2.4Momentofinertiaofafilled“goldenb”shape, throughtheself-similartilings...........188 12.3Background..........................188

12.3.1Quasi-integrability:theoverallideaandthe exampleofthesixticoscillator...........188

12.3.2Relationshipbetweenvariousmethods.......190

12.3.3Furtherreading:Betheansatz...........192

Somenotations

[a] Unitsinwhichanobservable a ismeasured

[L], [T ], [M], [E ],...Unitsoflength,time,mass,energy,...

L, T , M, E,...Lengthscale,timescale,massscale,energyscale,...

P1, P2,...Independentdimensionlessparametersofagivenproblem

A[ψ( )] Afunctional A actingonawavefunction ψ(x) V Avariationalspace V

This page intentionally left blank

Chapter1

GroundStateEnergyofaHybrid Harmonic-QuarticOscillator: aCaseStudy

Introduction

ConsidertheSchrödingerequationforaone-dimensionalparticlemovingin acombinationofharmonicpotentialoffrequency ω andaquarticpotential ofstrength β:

where m istheparticle’smass.Wewillbemainlyinterestedindetermining thegroundstateenergy.TheEq.(1.1)doesnotallowforanexactsolution. However,themajorfeaturesofthedependenceofthegroundstateenergy onthesystemparameterscanbedeterminedviaelementarymethods,such asdimensionalanalysis,order-of-magnitudeestimates,andsimplevariationalbounds.ThegoalofthisChapteristoillustratetheapplicationof thesemethodsusingthegroundstateproblem(1.1)asanexample.

1.1Solvedproblems

1.1.1 Dimensionalanalysisandwhyitfailsinthiscase

Theassignmentis:performdimensionalanalysisoftheproblemandshow thatfromadimensionalpointofviewtheproblemisunderdetermined:no estimateforthegroundstateenergycanbeproduced.However,someinformationaboutthestructureoftheexpressionforthegroundstateenergy canstillbeextracted,onpurelydimensionalgrounds.

Solution: Thedimensionalprocedureforfindingthegroundstateenergy Eg.s. (orassessingtheimpossibilityofacompletedimensionalsolution)is asfollows:

Back-of-the-EnvelopeQuantumMechanics

–Beginbyidentifyingthe principalunits ofmeasurementforthe problem,i.e.theminimalsetofunitssufficienttodescribeallinputparametersoftheproblem.Forstationaryproblemsinquantummechanics,theunitsoflength, [L],andenergy, [E ],havebeen proventoprovideahandyset;

–Identifythe inputparameters andunitsusedtomeasurethem; –Determinethe maximalsetofindependentdimensionlessparameters:thesetwillincludeonlytheparametersthataregenerally eithermuchgreaterormuchlessthanunity.Theseincludeboth thedimensionlessparameterspresentintheproblemapriori(such asthequantumnumber n),andthedimensionlesscombinations ofthedimensionfulinputparameters.Ifthesetisempty,theunknownquantitiescanbedeterminedalmostcompletely,i.e.upto anumericalprefactoroftheorderofunity.Ifsomedimensionless parametersarepresent,theclassofpossiblerelationshipsbetween theunknownsandtheinputparameterscanbenarroweddown, buttheorderofmagnitudeoftheunknownquantitiescannotbe determined.

–Foreachoftheprincipalunits,choosea scale:acombinationof theinputparametersmeasuredusingtheunitinquestion;

–Expresstheunknownquantitiesasamulti-power-lawofprincipal scales,timesanarbitraryfunctionofalldimensionlessparameters, ifany.Ifnodimensionlessparametersarepresent,thearbitrary functionisreplacedbyanarbitraryconstant,presumedtobeof theorderofunity.

Inourcase,theaboveproceduregives:

–Theprincipalunits—theunitsoflengthandtheunitsofenergy : [L] , [E ];

–Theinputparametersandtheirunits : [η]=[L]2 [E ] [Υ]=[L] 2 [E ] [β]=[L] 4 [E ] , where η ≡ 2/m,and Υ ≡ mω2; –Thesetofindependentdimensionlessparameters =

GroundStateEnergyofaHybridHarmonic-QuarticOscillator:aCaseStudy 3

Itisrepresentedbyasingleelement.Letusprovethat.First,there arenoaprioridimensionlessparametersinthisproblem.Assume nowthat P isadimensionlessparameterthatisderivedfromthe dimensionfulinputparameters.Itmustberepresentedasamultipowerlawoftheinputparameters:

Unitsfor P aregivenby

Ontheotherhand, P issupposedtobedimensionless:

Thus,thepowers

mustobeythefollowingsystemoflinear homogeneousalgebraicequations:

Thenumberofindependentdimensionlessparameterswillbegiven by (#ofindependentdimensionlessparameters) =(#ofindependent a-priori-dimensionlessparameters)

+(#ofindependentdimensionfulparameters)

Thedimensionlessparameter P1 canbefoundbysolvingthesystem (1.3).Itgives

leadingto

Back-of-the-EnvelopeQuantumMechanics

–Theprincipalscales—thelengthscaleandtheenergyscale, examplesof :

Theprincipalscalesabovearedefinedasexamplesofobservables measuredinprincipalunits, [L] and [E ] inourcase.Toderivethe aboveexpressionforthelengthscale,letusrepresentthisscaleas

Thecorrespondingunitsarerelatedas

Thepowers

obviouslyobeyasystemoflinearinhomogeneousalgebraicequationsgivenby

where M isgivenbytheexpression(1.4).Anyparticularsolution ofEq.1.6(andinthisparticularcasewehaveaone-dimensional familyofthem)canbechosentorepresentalengthscale;this choiceisamatterofconvenience.Wechoosethescaleassociated uniquelywiththeharmonicoscillator,

or,forexample,

GroundStateEnergyofaHybridHarmonic-QuarticOscillator:aCaseStudy 5

Theenergyscale E,givenbytheexpression(1.6),canbeobtained thesameway.Theonlydifferenceistherighthandsideofequation (1.6):itshouldread 1 0 ; –Solutionfortheunknown :

Thissolutiondoesnarrowtheclassofpossibleexpressionsfortheground stateenergy,butdoesnotallowonetodetermineit,notevenitsorderof magnitude.

Ifneeded,analogousexpressionsforotherobservablescanbereadily obtained.Fortheobservablesmeasuredincombinationsofprincipalunits only,oneshouldcombinetheprincipalscalestoformascalefortheobservableofinterest.Thefulldimensionalpredictionforthisobservablewillbe given,asbefore,asaproductofanarbitraryfunctionofalldimensionless parametersandthescale.Forexample,ther.m.s.(rootmeansquare)force actingonourparticleinthegroundstatewillbegivenby

istheforcescale,and Φ2(P )isanotherarbitraryfunction.

Fortheobservablesmeasuredinunitsthatdonotbelongtotheprincipal set(theminimalsetofunitstodescribeallinputparameters),otherscales mustbeinventedifneeded.Forexample,theinverseharmonicfrequency, 1/ω,providesausefultimescale:

Back-of-the-EnvelopeQuantumMechanics

Inmechanicsproblems,bothclassicalandquantum,nomorethanthree independentscalesareevernecessary.Forexample,ther.m.s.(rootmean square)groundstatevelocityisgivenby

with

beingthevelocityscale.

1.1.1.1

Sidecomment:dimensionalanalysisandapproximations

Often,whenanexacttheoryisreplacedbyanapproximateone,thenumber ofindependentdimensionfulparametersdecreases,thusshiftingthecounting(1.5)infavorofaccurateup-to-a-prefactordimensinalpredictions.In whatfollows,wewillencounterseveralexamplesofsuchreduction.For example,insemi-classicaltheory,consideredinChapter3,thePlankconstant andthelevelindex n fuseintoasingleentity,theclassicalcanonical action ˜

Thisreductionisaconsequenceoftheabsenceofthequantizationofactioninclassicalmechanics.AnotherexampleistheThomas-Fermitheory, Chapter10.There,thenumberofelectrons Z andtheelectroncharge |e| uniteandformatotalcharge Q,neverappearingseparately:

Thephysicalreasonforsuchamergeristhatinmean-fieldtheories—suchas theThomas-Fermitheory—thenumberofelectronsisnolongerquantized,

GroundStateEnergyofaHybridHarmonic-QuarticOscillator:aCaseStudy 7

andacontinuousfieldofelectronnumberdensity n(r) isusedinsteadofthe individualelectronpositions.Asimilarreductionhappenswhensolutionsof amany-bodySchrödingerequationforanensembleofbosonicparticlesare approximatedusingsolutionsofaone-bodynonlinearSchrödingerequation (SeeProblem11.1.3).

Yetanotherexampleofareductionofthenumberofinputparameters underanapproximationisprovidedbyperturbationtheory(Chapter5). Here,inthe n-thorderofperturbationtheory,thepowerofadimensionful prefactorinfrontoftheperturbationisfixedto n,effectivelyremoving theprefactorfromthelistofindependentparameters.See,specifically, Problems5.1.8and5.1.9.

1.1.1.2 Sidecomment:howtorecastinputequationsin adimensionlessform

Priortoinvolvedanalyticalornumericalcalculations,equationsareoften expressedina“dimensionlessform”,theadvantagebeingareducednumber ofparametersandanabsenceofnumbersthataretoolargeortoosmall. Therecipeisasfollows:

-Severalinputparameters,asmanyasthereareprincipalunits, arereplacedbyunity;

-Theremaininginputparametersretaintheirnotations,buttheir numericaldimensionfulvaluesarereplacedbydimensionlessnumbersgivenbytheratiosbetweentheoriginalvaluesoftheparametersandthecorresponding“scales”;

-Likewise,intheendthenumericalvaluesoftheanswersaremultipliedbythecorrespondingscales.

Awell-definedformalprocedureishiddenbehind.Itconsistsoftwoelements.(a)Theparameterstobesettounityarechosenasprincipalscales; (b)thesescalesandtheirmulti-powercombinationsareusedasnewunits ofmeasurement.

Inourexample,wecanchoose [η] and [Υ] asthe“principalunits”and η and Υ themselvesasthe“principalscales”.Obviously,inthissystem ofunits, η and Υ assumeunitvalues.Also,formoderatevaluesofthe remainingdimensionlessparameters,allanswerswegetbecomeoftheorder ofunity.

Back-of-the-EnvelopeQuantumMechanics

Conventionally,thissystemofunitsisdenotedas

orevenmoreoften

Theappearanceofthreescalesisnotanaccident.Therecipe(1.8)(a)does notleadtoanyambiguitiesintime-independentproblems;(b)allowsone tofixallthescales,notonlytheprincipalones;(c)preparesgroundfor time-dependentproblems.

Accordingtotherecipe(1.8),theoriginalSchrödingerequation(1.1) becomes

Inshort,accordingtothisrecipe,insteadoftheoriginalEq.(1.1)wedeal withitsdimensionlessform(1.9),readyforanalyticornumericalwork:the waytoobtain(1.9)istoreplaceeachoftheparameters 2/m and mω2 by unity,andreplacetheparameter β by β m2ω3 ;thelatterwillfurtherbecome anumber,say 2 74,ifsomenumericalanswersarerequired:

ImaginethatwesolvednumericallytheEq.1.9forsomevalueof β and obtained Eg.s. =1.14 ....Toreturntotheusualsystemofunits,wehaveto simplymultiplythisresultbytheenergyscale ω—i.e.theonlyparameter withunitsofenergythatcanbeconstructedoutof , m,and ω:

Thetruereasonwhythewholeprocedurelooksmysteriousatfirstisthat formallyspeakingitseverelyabusesnotations:forexample, Eg.s. =1 14 and Eg.s. =1 14 × ω shouldbedenotedbydifferentsymbols—butthey are not.Thepracticaladvantagesofthisconvention,however,compensate forthedifficultiesexperiencedatthelearningstage.

GroundStateEnergyofaHybridHarmonic-QuarticOscillator:aCaseStudy 9

1.1.2 Dimensionalanalysis:theharmonicoscillatoralone

Now,letustrytoproduceadimensionalsolutionforthegroundstateenergy oftheharmonicoscillatoralone:

Solution: Theproceduregoesasfollows:

–Theprincipalunits—theunitsoflengthandtheunitsofenergy : [L] , [E ];

–Theinputparametersandtheirunits :

]=[L]2 [E ] [Υ]=[L] 2 [E ] ,

whereagain η ≡ 2/m,and Υ ≡ mω2;

–Thesetofindependentdimensionlessparameters = ∅.Indeed, assumethereexistsadimensionlessparameter P expressedasa productofpowersofprincipalscales:

Itsunitsarenow

TheanalogueofEq.(1.3)is

Now,accordingtotherule(1.5),thisproblemhas nodimensionless parametersatall.Thisisexactlythesituationwheredimensional analysisproducesthemostcompletesolutions,accurateuptoan unknownnumericalprefactor;

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.