[Ebooks PDF] download Point-set topology with topics: basic general topology for graduate studies ro

Page 1


Visit to download the full and correct content document: https://ebookmass.com/product/point-set-topology-with-topics-basic-general-topologyfor-graduate-studies-robert-andre/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Topology 2nd Edition James Munkres

https://ebookmass.com/product/topology-2nd-edition-james-munkres/

Topology, 2/E James Munkres

https://ebookmass.com/product/topology-2-e-james-munkres/

Multiscale Structural Topology Optimization 1st Edition Liang Xia

https://ebookmass.com/product/multiscale-structural-topologyoptimization-1st-edition-liang-xia/

Advances in Quantum Chemical Topology Beyond QTAIM Juan I. Rodriguez

https://ebookmass.com/product/advances-in-quantum-chemicaltopology-beyond-qtaim-juan-i-rodriguez/

General Studies for Civil Services Preliminary Examination 2018 6 Volume Set Edgar Thorpe

https://ebookmass.com/product/general-studies-for-civil-servicespreliminary-examination-2018-6-volume-set-edgar-thorpe/

Topology Optimization in Engineering Structure Design 1st Edition Edition Weihong Zhang

https://ebookmass.com/product/topology-optimization-inengineering-structure-design-1st-edition-edition-weihong-zhang/

10 Mathematical Essays on Approximation in Analysis and Topology J. Ferrera

https://ebookmass.com/product/10-mathematical-essays-onapproximation-in-analysis-and-topology-j-ferrera/

Core Topics in General & Emergency Surgery Simon Paterson-Brown

https://ebookmass.com/product/core-topics-in-general-emergencysurgery-simon-paterson-brown/

General Studies for Civil Services Preliminary Examination - Vol IV General Science Paper I Edgar Thorpe

https://ebookmass.com/product/general-studies-for-civil-servicespreliminary-examination-vol-iv-general-science-paper-i-edgarthorpe/

Point-Set

Topology with Topics

Basic General Topology for Graduate Studies

This page intentionally left blank

Point-Set Topology with Topics

Basic General Topology for Graduate Studies

Robert André

University of Waterloo, Canada

Published by

World Scientific Publishing Co. Pte. Ltd.

5 Toh Tuck Link, Singapore 596224

USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601

UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

Library of Congress Cataloging-in-Publication Data

Names: André, Robert (Mathematician), author.

Title: Point-set topology with topics : basic general topology for graduate studies / Robert André, University of Waterloo, Canada.

Description: New Jersey : World Scientific, [2024] | Includes bibliographical references and index.

Identifiers: LCCN 2023021913 | ISBN 9789811277337 (hardcover) | ISBN 9789811277344 (ebook for institutions) | ISBN 9789811277351 (ebook for individuals)

Subjects: LCSH: Topology--Textbooks. | Point set theory--Textbooks.

Classification: LCC QA611 .A537 2024 | DDC 514/.322--dc23/eng20230819

LC record available at https://lccn.loc.gov/2023021913

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Copyright © 2024 by World Scientific Publishing Co. Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher.

For any available supplementary material, please visit https://www.worldscientific.com/worldscibooks/10.1142/13439#t=suppl

Desk Editors: Logeshwaran Arumugam/Rosie Williamson

Typeset by Stallion Press

Email: enquiries@stallionpress.com

Printed in Singapore

JemeplaisoissurtoutauxMath´ematiques`acausedela certitudeetdel’´evidencedeleursraisons.Maisjene remarquoispointencoreleurvrayusage.

Ren´eDescartes DiscoursdelaM´ethode(1637)

Forthoughweloveboththetruthandourfriends,piety requiresustohonorthetruthfirst.

Aristotle NicomacheanEthics(350BC)

∼ tion ∼

Ilikeitwhenthelongingbecomesbelonging,danceofpolaritiesultimatelybecomesunion,feelingtheotherlikethelost partofoneself. So...union becomes “ tion.”

RobertaColzani (2021)

Preface

Thistextwaspreparedtoserveasanintroductiontothestudyof generaltopology.Moststudentsinmathematicsarerequired,atsome pointintheirstudy,tohaveknowledgeofthefundamentalsofgeneraltopologyandmastertopologicaltechniquesthatmaybeuseful intheirareaofspecialization.“Trustus,notonlywillyoubeglad tobeskilledatusingthesetools,butalotofconceptsyoustudyin yourfieldofinterestwilleventuallybeseenasspecificcasesinvestigatedinamoregeneralcontextingeneraltopology”theyaretold. Itsometimesoccursthatsomestudentsdevelopaparticularfascinationforgeneraltopologyinspiteofitoccasionallybeingdescribed asbeing“nolongerinfashionanymore”.Recallthatmathematicians suchasGeorgeCantorandFelixHausdorff,werealsotoldthatsome ofthemathematicstheyspenttimeinvestigatingwas“notinfashion”.Reasonsforthecontinuedstudyofthistopicoftengobeyond thesimpleperceptionthatitisapracticalorusefultool.Theintricatebeautyofthemathematicalstructuresthatarederivedinthis fieldbecomeitsmainattraction.Thisis,ofcourse,howthiswriter perceivesthesubjectandservedasthemainmotivationtoprepare atextbookthatwillhelpthereaderenjoyitsstudy.Ofcourse,one wouldnaturallyhopethatanauthorwouldwriteabookonlyabout somethingheorshefeelspassionateabout.Ioftenheardsomestudentsdescribegeneraltopologyasbeing“hard”.Well,someofitis. ButIhaveoftenthoughtthatmaybethisperceptionwasdeveloped becausetheydidnotapproachitquiteintherightway.Inthistext, wetrytoimproveonthewaysthatstudentsareintroducedtoit.

Butfirst,Ishouldatleastwriteafewwordsaboutthemathematicalcontentofthistextbook.Thechoiceofcontentaswellas theorderandpaceofthepresentationoftheconceptsfoundinthe textweredevelopedwithseniormathundergraduateormathgraduatestudentsinmind.Thetargetedreaderwillhavebeenexposedto somemathematicalrigortoalevelnormallyfoundinanintroduction tomathematicalanalysistextsoraspresentedinanintroductionto linearalgebraorabstractalgebratexts.ThefirsttwosectionsofPart Iconsistmostlyofareviewintheformofasummarizedpresentation ofverybasicideasonnormedvectorspacesandmetricspaces.These aremeanttoeasethereaderintothemainsubjectmatterofgeneral topology(inChapters3–20ofPartsII–VI).PartsII–VInormally formthecorematerialcontainedinmost,oneortwosemester,Basic GeneralTopologycourse.Oncewehaveworkedthroughthemost fundamentalconceptsoftopologyinChapters 1–20,thereaderwill beexposedtobriefintroductionstomorespecializedoradvanced topics.ThesearepresentedinPartVIIintheformofasequenceof chaptersmanyofwhichcanbereadorstudied,independently,orin shortsequencesoftwoorthreechapters,providedthestudenthas masteredChapters3–20.

Chaptersrelatedtothemorebasicideasofgeneraltopologyare followedbyalistof Conceptreview typequestions.Thesequestions highlightforstudentsthemainideaspresentedinthatsectionand willhelptesttheirunderstandingoftheseconcepts.Theanswers toall Conceptreview questionsareinthemainbodyofthetext. Attemptingtoanswerthesequestionswillhelpthestudentdiscover essentialnotionswhichareoftenoverlookedwhenfirstexposedto theseideas.Readingasectionprovidesacertainlevelofunderstanding,butansweringquestions,evensimpleones,relatedtoits contentrequiresamuchdeeperunderstanding.Theeffortsrequired inansweringcorrectlysuchquestionsleadsthestudenttotheability tosolvemorecomplexproblemsintheExercisesections.Ifthestudentdesiresamorein-depthstudyofatopicinPartVII,thereare manyexcellenttopologybooksthatcansatisfythisneed.

Textbookexampleswillserveassolutionmodelstomostofthe exercisequestionsattheendofeachsection.

Incertainsections,wemakeuseofelementarysettheory.Astudentwhofeelsabitrustywhenfacingtheoccasionalreferencestoset theorynotionsmaywanttoreviewsomeofthese.Forconvenience,

asummaryofthemainsettheoryconceptsappearattheendof thetextintheformofanappendixtothebook.Amoreextensive coverageofnaivesettheoryisofferedinthebook AxiomsandSet Theory bythisauthor.Itishighlyrecommendedandwillserveas anexcellentcompaniontothisbook.

Asweallknow,anytextbook,wheninitiallypublished,willcontainsomeerrors,sometypographical,othersinspellingorinformattingand,whatisevenmoreworrisome,somemathematical.Critical oralertreadersofthetextcanhelpweedoutthemostglaringmistakesbycommunicatingsuggestionsandcommentsdirectlytothe author.Thiswillbemuchappreciatedbythiswriteraswellasby futurereaders.

RobertAndr´ e UniversityofWaterloo,Ontario

This page intentionally left blank

AbouttheAuthor

RobertAndr´ e isaPh.D.graduatefromtheUniversityofManitoba withaspecializationinPoint-Settopologyunderthesupervisionof Dr.R.GrantWoods.HehaslecturedattheUniversityofManitoba andtheUniversityofReginaand17yearsasafacultymemberofthe DepartmentofPureMathematicsattheUniversityofWaterlooin Ontario,Canada.Healsolecturedmathematicsfor13yearsatthe highschoollevelinManitoba,Saskatchewan,andNewBrunswick.

This page intentionally left blank

Preface vii

AbouttheAuthor xi

PartINormsandMetrics1

Chapter1.NormsonVectorSpaces3

Chapter2.MetricsonSets23

PartIITopologicalSpaces:Fundamental Concepts37

Chapter3.ATopologyonaSet39

Chapter4.SetClosures,InteriorsandBoundaries61

Chapter5.BasesofTopologicalSpaces85

Chapter6.ContinuityonTopologicalSpaces117

Chapter7.ProductSpaces143

Chapter8.TheQuotientTopology189

xiv Point-SetTopologywithTopics

PartIIITopologicalSpaces:SeparationAxioms207

Chapter9.SeparationwithOpenSets209

Chapter10.SeparationwithContinuousFunctions237

PartIVLimitPointsinTopologicalSpaces275

Chapter11.LimitPointsinFirstCountableSpaces277

Chapter12.LimitPointsofNets285

Chapter13.LimitPointsofFilters309 PartVCompactSpacesandRelatives335

Chapter14.Compactness:DefinitionandBasicProperties337

Chapter15.CountablyCompactSpaces363

Chapter16.Lindel¨ofSpaces377

Chapter17.SequentiallyandFeeblyCompactSpaces387

Chapter18.LocallyCompactSpaces407

Chapter19.ParacompactTopologicalSpaces423

PartVITheConnectedProperty439

Chapter20.ConnectedSpacesandProperties441 PartVIITopics475

Chapter21.CompactificationsofCompletely RegularSpaces477

Chapter22.SingularSetsandSingularCompactifications515

Chapter23.On C -EmbeddingsandPseudocompactness537

Chapter24.RealcompactSpaces561

Chapter25.PerfectFunctions581

Chapter26.PerfectandFreudenthalCompactifications597

Chapter27.SpacesWhoseElementsAreSequences611

Chapter28.CompletingIncompleteMetricSpaces633

Chapter29.TheUniformSpaceandtheUniform Topology643

Chapter30.TheStone–WeierstrassTheorem669

Chapter31.Metrizability679

Chapter32.TheStoneSpace693

Chapter33.BaireSpaces723

Chapter34.TheClassof F -Spaces735

This page intentionally left blank

PartI

NormsandMetrics

This page intentionally left blank

Chapter1

NormsonVectorSpaces

Abstract

Inthissection,wereviewafewbasicnotionsaboutinnerproductson vectorspacesandhowtheyareusedasamechanismtoconstructa distancemeasuringtoolcalled“norm”Wethendefine“normonan abstractvectorspace”withnoreferencetoaninnerproduct.Weshow howtodistinguishbetweennormsthatareinducedbyaninnerproductandthosethatarenot.Wethenprovideafewexamplesofnorms onvectorsspacesofcontinuousfunctions, C [a,b].Weendthissectionwithaformaldefinitionofthecompactpropertyinnormedvector spaces.

1.1ReviewofInnerProductSpaces

Webeginbyreviewingafewbasicnotionsaboutthosevector spaceswerefertoas innerproductspaces.Recallthattheset Rn = {(x1 ,x2 ,x3 ,...,xn ): xi ∈ R} equippedwithtwooperations, additionandscalarmultiplication,isknowntobea vectorspace.We canalsoequipavectorspacewithathirdoperationcalled“dotproduct”whichmapspairsofvectorsin Rn tosomerealnumber.The dot-productisaspecificreal-valuedoperationon Rn whichbelongs toalargerfamilyofvectorspaceoperationscalled innerproducts Webrieflyremindourselvesofafewfactsaboutinnerproductson abstractvectorspaces.

Definition1.1 Let V beavectorspaceoverthereals.An inner product isanoperationwhichmapspairsofvectorsin V toareal number.Wedenoteaninnerproducton V by v, w .Areal-valued functionon V × V isreferredtoasan innerproduct ifandonlyifit satisfiesthefollowingfouraxioms:

IP1: Thenumber v, v isgreaterthanorequalto0forall v in V . Equalityholdsifandonlyif v =0.(Hence,if v isnot0, v, v is strictly largerthan0.)

IP2: Forall v, w ∈ V , u, v = v, u (Commutativity)

IP3: Forall u, v, w ∈ V , u + w, v = u, v + w, v

IP4: Forall u, v ∈ V ,and α ∈ R, αu, v = α u, v

Avectorspace V iscalledan innerproductspace ifitisequipped withsomespecifiedinnerproduct.

Definition1.2 Let V beaninnerproductspace.If v isavectorin V wedefine v = v, v

Theexpression v iscalledthe norm (orlength)ofthevector v inducedbytheinnerproduct u, v on V .

Example1. Itiseasilyverifiedthat,for x =(x1 ,x2 ,x3 ,...,xn )and y =(y1 ,y2 ,y3 ,...,yn )in Rn ,itswell-knowndot-product x, y = x y = x1 y1 + x2 y2 + + xn yn

satisfiesthefouraxiomsaboveandsoisaninnerproductonthe vectorspace Rn .Thisisoftenreferredtoasthe Euclideaninner product orthe standardinnerproduct on Rn .Thenormon Rn induced

bythedotproductis

x = (x1 ,x2 ,x3 ,...,xn ) = (x1 ,x2 ,x3 ,...,xn ) · (x1 ,x2 ,x3 ,...,xn ) = n i=1 x2 i

Thisparticularnormisreferredtoasthe Euclideannorm on Rn . Itisalsoreferredtoasthe L2 -normon Rn ,inwhichcase,itwill berepresentedas x 2 .Wewillusethisparticularnormtomeasure distancesbetweenvectorsin Rn .Thatis,thedistancebetween x = (x1 ,x2 ,x3 ,...,xn )and y =(y1 ,y2 ,y3 ,...,yn )isdefinedtobe x y = n i=1 (xi yi )2

Inthecasewhere n =2or3,thisrepresentstheusualdistance formulabetweenpointsin2-spaceand3-space,respectively.Inthe casewhere n =1,itrepresentstheabsolutevalueofthedifference oftwonumbers.

Example2. Considerthevectorspace, V = C [a,b],thesetofall continuousreal-valuedfunctionsontheclosedinterval[a,b]equipped withtheusualadditionandscalarmultiplicationoffunctions.We definethefollowinginnerproducton C [a,b]as:

= b a

(x)g (x) dx

ShowingthatthisoperationsatisfiestheinnerproductaxiomsIP1 toIP4isleftasanexercise.Inthiscase,thenormof f ,inducedby thisinnerproduct,isseentobe f = b a f (x)2 dx

Itisalsoreferredtoasthe L2 -normon C [a,b]andwerepresentitas f 2 .

Thefollowingtheoremcalledthe Cauchy–Schwarzinequality offersanimportantproblemsolvingtoolwhenworkingwithinner productspaces.Thenormwhichappearsintheinequalityistheone inducedbythegiveninnerproduct.Thisinequalityholdstruefor anywell-definedinnerproductonavectorspace.

Theorem1.3(Cauchy–Schwarzinequality). Let V beavector spaceequippedwithaninnerproductanditsinducednorm.Then, forvectors x and y in V, | x, y |≤ x y

Equalityholdstrueifandonlyif x and y arecollinear(i.e., x = αy or y = αx).

Proof. Thestatementclearlyholdstrueif y =0. Let x, y betwo(notnecessarilydistinct)vectorsin V where y =0. Foranyrealnumber t, 0 ≤ x ty, x ty = x 2 2t x, y + t2 y 2

Choosing t = x, y y 2 intheaboveequationweobtain 0 ≤ x 2 x, y 2 y 2

Theinequality, | x, y |≤ x y ,follows.

Wenowprovethesecondpartofthestatement.If x and y are collinear,say x = αy ,then | x, y | = | αy, y | = |α| y, y = |α| y y = αy y = x y

Conversely,suppose | x, y | = x y .If y iszerothen 0= ty and so x and y arecollinear.Suppose y = 0.Consider t = x, y 2 y 2 . x ty, x ty = x 2 x, y 2 y 2 (asdescribedabove) =0

So,byIP1, x ty, x ty =0implies x ty =0so x and y are collinear.Wehaveshownthatequalityholdsifandonlyif x and y arecollinear.

Wenowverifythatanorm, ,whichisinducedbyaninnerproduct , onthevectorspace V willalwayssatisfythefollowingthree fundamentalproperties:

(1)Forall x ∈ V , x ≥ 0,equalityholdsifandonlyif x =0.

(2)Forall x ∈ V andscalar α ∈ R, αx = |α| x .

(3)Forall x, y ∈ V , x + y ≤ x + y .

Thefirstpropertyfollowsfromthefactthatthenormisdefinedas beingthesquarerootofanumber.Thesecondpropertyfollowsfrom thestraightforwardargument: αx = αx,αx = √α2 x, x = |α| x

Thethirdpropertyisreferredtoasthe triangleinequality.It’snontrivialproofinvokestheCauchy–Schwarzinequality.Weproveit below.

Corollary1.4 Thetriangleinequalityfornormsinducedbyinner products. Foranypairofvectors x and y inaninnerproductspace, x + y ≤ x + y .Ifequalityholdsthenthetwovectors x and y arecollinear.

Proof.

(Cauchy–Schwarz) =( x + y )2

Thus x + y ≤ x + y ,asrequired. Inthecasewherewehaveequality:Supposewehave x + y = x + y .Then x + y 2 =( x + y )2 .Fromthedevelopmentabove,theinequalitiesmustbeequalities,sowemusthave x, y = x y .Thismeans | x, y | = x ||y .BytheCauchy–Schwarztheorem, x and y arecollinear.

Example3. Usethethedotproductpropertiesandthelawof cosines, c2 = a2 + b2 2ab cos θ (where a,b,c representthelengths ofthesidesofatriangle ABC and θ istheanglebetweentothe sides AB and AC )toprovetheCauchy–Schwarzinequalityin R2 .

Solution: Considerthetwovectors a and b in R2 whereoneisnota scalarmultipleoftheother.Thentheextremitiesofthetwovectors formatrianglewithangle θ between a and b.Thenthenorms a , b and b a arenumberswhichcanrepresentthelengthofthesides ofthetriangle.Let θ representtheanglebetween a and b.

Weapplythecosinelawtoobtain b a 2 = a 2 + b 2 2 a b cos θ

If a, b representsthedot-product,weobtain,byapplyingthedotproductpropertiesandtheproperty a 2 = a, a

Example4. Suppose a and b =(1, 0)aretwovectorsin R2 where a =1withanglebetween a and b = θ .Showthat a, b =cos θ ,as isrepresentedinFigure1.1.

Figure1.1. Dot-productintheplane.

Solution: Thisfollowsfromtheaboveexampleand cos θ = a, b a b = a, b 1 × 1

1.2NormsonArbitraryVectorSpaces

Wenowshowthatnormsonavectorspacecanexistindependently frominnerproducts.

Definition1.5 Let V avectorspaceoverthereals.Anormon V isafunction, : V → R,whichsatisfiesthethreefollowingnorm axioms:

N1: Forall v ∈ V , v ≥ 0.Theequality v =0holdstrueifand onlyif v =0.Hence,if v isnot 0, v > 0.

N2: Forall v ∈ V , α ∈ R, αv = |α| v

N3: Forall v, u ∈ V , u + v ≤ u + v (Triangleinequality).

Avectorspace V iscalleda normedvectorspace ifitisequipped withsomespecifiednormsatisfyingthesethreenormaxioms.Itis denotedby(V, ).Notethatthevectorspace V neednotbean innerproductspace,norneedtherebeanyrelationshipbetween andsomeinnerproduct.

Thisfunction, : V → R,willbeusedtomeasurethe“distance”, x y ,betweenanytwovectors x and y .Notethat x y = ( 1)(y x) = |− 1| y x = y x .Thatis,“thedistance between x and y isthesameasthedistancebetween y and x ”. Weprovideafewexamplesoffunctionsknowntobenorms.

Example5. Thenorm inducedbytheinnerproductofaninner productspace(V, , )hasalreadybeenshowntosatisfytheaxioms N1,N2,andN3.

Example6. The1-normon Rn isdefinedas x 1 = (x1 ,x2 ,x3 ,...,xn ) 1 = n i=1 |xi |

Itcanbeshowntosatisfythethreenormaxioms.(Leftasan exercise.)

Example7. The ∞-normon Rn isdefinedas x ∞ = (x1 ,x2 ,x3 ,...,xn ) ∞ =max{|x1 |, |x2 |,..., |xn |}

Itcanbeshowntosatisfythethreenormaxioms.(ProvingthatN1 andN2aresatisfiedisleftasanexercise.)

Weprovethatthe ∞-normon Rn satisfiesthetriangleinequality N3.

Proofof x + y ∞ ≤ x ∞ + y ∞ . Notethat |xi |≤ max i=1...n {|xi |} foreach i,and |yi |≤ maxi=1...n {|yi |} foreach i.Then foreach i =1to n, |

Thenmax 1...n {|xi yi |}≤ x ∞ + y ∞ andso x + y ∞ ≤ x ∞ + y ∞ , asrequired.

Example8. Let p ≥ 1.The p-normon Rn isdefinedas

Itcanbeshownthatthisfunctionsatisfiesthethreenormaxioms. Wewillnotprovethisfor p ingeneral.

Notethatwhen p =2the p-normissimplytheEuclideannorm on Rn .SincetheEuclideannormisinducedbyaninnerproduct,it automaticallysatisfiesthethreenormaxioms.Provingthat,forany p ≥ 1,the p-normsatisfiesN1andN2isstraightforward.Butproving thatthetriangleinequalityholdstrueforall p ≥ 1isnoteasy.The interestedreaderscanlooktheproofupinmostrealanalysistexts orfinditonline.

Anaturalquestioncomestomind .Areallnormsonavector space V inducedbysomeinnerproduct?Theanswerisno!

Thefollowingtheoremtellsushowtorecognizethosenormswhich areinducedbysomeinnerproduct.

Theorem1.6 Suppose isanormonavectorspace V .There existsaninnerproduct , suchthat x = x, x , forall x ∈ V, ifandonlyif, forall x, y ∈ V, thenorm satisfiestheparallelogram identity

Proof. Theproofinvolvesshowingthat,if satisfiestheparallelogramidentitythentheidentity

isavalidinnerproducton V whichinduces .Theproofisroutine andsoisnotpresentedhere.

Examplesofnormson C [a,b]

Example9. The Lp -norm.Let V = C [a,b]denotethefamilyofall real-valuedcontinuousfunctionsontheclosedinterval[a,b]equipped withtheusual+andscalarmultiplication.If p ≥ 1,thenwedefine the Lp -normon C [a,b]asfollows:

Inthecasewhere p =1,wehave

whichiseasilyshowntosatisfythethreenormaxioms.Inthecase where p =2,thenthisnormisonewhichisinducedbytheinner product

on C [a,b].

Itisstraightforwardtoshowthat,forall p ≥ 1, f p satisfiesN1 andN2.Butprovingthat f + g p ≤ f p + g p ,forall p ≥ 1,is difficult.Thisinequalityisreferredtoasthe Minkowskiinequality. Theinterestedreaderswillfindaproofinmostrealanalysistextsor online.

Example10. Thesup-norm:Wedefineanothernormonthevector space, C ∗ (S ),ofallboundedcontinuousreal-valuedfunctionsonthe space S .Recallthatthe supremum ofasubset A ofanorderedset S , writtenas“sup A”isthe leastupperbound of A whichiscontained in S .Notethatsup A mayormaynotbelongto A.Wedefinethe sup-normon C ∗ (S )as

f ∞ =sup {|f (x)| : x ∈ S }

Thesup-normisalsoreferredtoasthe“infinity-norm”or“uniform norm”.Showingthatthisisavalidnormisleftasanexercise.

1.3ConvergenceandCompletenessinaNormed VectorSpace

Convergenceofsequencesformsandimportantpartofanalysis.In whatfollows,normson Rn arealwaysassumedtobetheEuclidean norm,unlessotherwisestated.Aninfinitesequenceinanormedvectorspace, V ,isafunctionwhichmaps N (notnecessarilyone-to-one) ontoasubset, S ,of V .Thismeansthatasequenceistheindexationof theelementsofacountablesubset, S ,byusingthenaturalnumbers. Forexample, S = {x0 , x1 , x2 ,..., xn ,...}.Notethatsomeofthese mayberepeated(sincethefunctionmapping N into S neednotbe one-to-one).Wegeneralizethenotionofa“convergentsequenceand itslimit”in R toa“convergentsequenceanditslimit”inanormed vectorspace(V, ).

Definition1.7 Let(V, +,α, )beavectorspaceequippedwith anorm .Wesayasequenceofvectors {xn } in V convergestoa vector a in V withrespecttothenorm if

Forany ε> 0,thereexistsaninteger N> 0suchthat xn a|| <ε whenever n>N .

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.