Point-Set Topology with Topics
Basic General Topology for Graduate Studies
Robert André
University of Waterloo, Canada
Published by
World Scientific Publishing Co. Pte. Ltd.
5 Toh Tuck Link, Singapore 596224
USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601
UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE
Library of Congress Cataloging-in-Publication Data
Names: André, Robert (Mathematician), author.
Title: Point-set topology with topics : basic general topology for graduate studies / Robert André, University of Waterloo, Canada.
Description: New Jersey : World Scientific, [2024] | Includes bibliographical references and index.
Identifiers: LCCN 2023021913 | ISBN 9789811277337 (hardcover) | ISBN 9789811277344 (ebook for institutions) | ISBN 9789811277351 (ebook for individuals)
Subjects: LCSH: Topology--Textbooks. | Point set theory--Textbooks.
Classification: LCC QA611 .A537 2024 | DDC 514/.322--dc23/eng20230819
LC record available at https://lccn.loc.gov/2023021913
British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.
Copyright © 2024 by World Scientific Publishing Co. Pte. Ltd.
All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher.
For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher.
For any available supplementary material, please visit https://www.worldscientific.com/worldscibooks/10.1142/13439#t=suppl
Desk Editors: Logeshwaran Arumugam/Rosie Williamson
Typeset by Stallion Press
Email: enquiries@stallionpress.com
Printed in Singapore
JemeplaisoissurtoutauxMath´ematiques`acausedela certitudeetdel’´evidencedeleursraisons.Maisjene remarquoispointencoreleurvrayusage.
Ren´eDescartes DiscoursdelaM´ethode(1637)
Forthoughweloveboththetruthandourfriends,piety requiresustohonorthetruthfirst.
Aristotle NicomacheanEthics(350BC)
∼ tion ∼
Ilikeitwhenthelongingbecomesbelonging,danceofpolaritiesultimatelybecomesunion,feelingtheotherlikethelost partofoneself. So...union becomes “ tion.”
RobertaColzani (2021)
Preface
Thistextwaspreparedtoserveasanintroductiontothestudyof generaltopology.Moststudentsinmathematicsarerequired,atsome pointintheirstudy,tohaveknowledgeofthefundamentalsofgeneraltopologyandmastertopologicaltechniquesthatmaybeuseful intheirareaofspecialization.“Trustus,notonlywillyoubeglad tobeskilledatusingthesetools,butalotofconceptsyoustudyin yourfieldofinterestwilleventuallybeseenasspecificcasesinvestigatedinamoregeneralcontextingeneraltopology”theyaretold. Itsometimesoccursthatsomestudentsdevelopaparticularfascinationforgeneraltopologyinspiteofitoccasionallybeingdescribed asbeing“nolongerinfashionanymore”.Recallthatmathematicians suchasGeorgeCantorandFelixHausdorff,werealsotoldthatsome ofthemathematicstheyspenttimeinvestigatingwas“notinfashion”.Reasonsforthecontinuedstudyofthistopicoftengobeyond thesimpleperceptionthatitisapracticalorusefultool.Theintricatebeautyofthemathematicalstructuresthatarederivedinthis fieldbecomeitsmainattraction.Thisis,ofcourse,howthiswriter perceivesthesubjectandservedasthemainmotivationtoprepare atextbookthatwillhelpthereaderenjoyitsstudy.Ofcourse,one wouldnaturallyhopethatanauthorwouldwriteabookonlyabout somethingheorshefeelspassionateabout.Ioftenheardsomestudentsdescribegeneraltopologyasbeing“hard”.Well,someofitis. ButIhaveoftenthoughtthatmaybethisperceptionwasdeveloped becausetheydidnotapproachitquiteintherightway.Inthistext, wetrytoimproveonthewaysthatstudentsareintroducedtoit.
Butfirst,Ishouldatleastwriteafewwordsaboutthemathematicalcontentofthistextbook.Thechoiceofcontentaswellas theorderandpaceofthepresentationoftheconceptsfoundinthe textweredevelopedwithseniormathundergraduateormathgraduatestudentsinmind.Thetargetedreaderwillhavebeenexposedto somemathematicalrigortoalevelnormallyfoundinanintroduction tomathematicalanalysistextsoraspresentedinanintroductionto linearalgebraorabstractalgebratexts.ThefirsttwosectionsofPart Iconsistmostlyofareviewintheformofasummarizedpresentation ofverybasicideasonnormedvectorspacesandmetricspaces.These aremeanttoeasethereaderintothemainsubjectmatterofgeneral topology(inChapters3–20ofPartsII–VI).PartsII–VInormally formthecorematerialcontainedinmost,oneortwosemester,Basic GeneralTopologycourse.Oncewehaveworkedthroughthemost fundamentalconceptsoftopologyinChapters 1–20,thereaderwill beexposedtobriefintroductionstomorespecializedoradvanced topics.ThesearepresentedinPartVIIintheformofasequenceof chaptersmanyofwhichcanbereadorstudied,independently,orin shortsequencesoftwoorthreechapters,providedthestudenthas masteredChapters3–20.
Chaptersrelatedtothemorebasicideasofgeneraltopologyare followedbyalistof Conceptreview typequestions.Thesequestions highlightforstudentsthemainideaspresentedinthatsectionand willhelptesttheirunderstandingoftheseconcepts.Theanswers toall Conceptreview questionsareinthemainbodyofthetext. Attemptingtoanswerthesequestionswillhelpthestudentdiscover essentialnotionswhichareoftenoverlookedwhenfirstexposedto theseideas.Readingasectionprovidesacertainlevelofunderstanding,butansweringquestions,evensimpleones,relatedtoits contentrequiresamuchdeeperunderstanding.Theeffortsrequired inansweringcorrectlysuchquestionsleadsthestudenttotheability tosolvemorecomplexproblemsintheExercisesections.Ifthestudentdesiresamorein-depthstudyofatopicinPartVII,thereare manyexcellenttopologybooksthatcansatisfythisneed.
Textbookexampleswillserveassolutionmodelstomostofthe exercisequestionsattheendofeachsection.
Incertainsections,wemakeuseofelementarysettheory.Astudentwhofeelsabitrustywhenfacingtheoccasionalreferencestoset theorynotionsmaywanttoreviewsomeofthese.Forconvenience,
asummaryofthemainsettheoryconceptsappearattheendof thetextintheformofanappendixtothebook.Amoreextensive coverageofnaivesettheoryisofferedinthebook AxiomsandSet Theory bythisauthor.Itishighlyrecommendedandwillserveas anexcellentcompaniontothisbook.
Asweallknow,anytextbook,wheninitiallypublished,willcontainsomeerrors,sometypographical,othersinspellingorinformattingand,whatisevenmoreworrisome,somemathematical.Critical oralertreadersofthetextcanhelpweedoutthemostglaringmistakesbycommunicatingsuggestionsandcommentsdirectlytothe author.Thiswillbemuchappreciatedbythiswriteraswellasby futurereaders.
RobertAndr´ e UniversityofWaterloo,Ontario
This page intentionally left blank
AbouttheAuthor
RobertAndr´ e isaPh.D.graduatefromtheUniversityofManitoba withaspecializationinPoint-Settopologyunderthesupervisionof Dr.R.GrantWoods.HehaslecturedattheUniversityofManitoba andtheUniversityofReginaand17yearsasafacultymemberofthe DepartmentofPureMathematicsattheUniversityofWaterlooin Ontario,Canada.Healsolecturedmathematicsfor13yearsatthe highschoollevelinManitoba,Saskatchewan,andNewBrunswick.
This page intentionally left blank
Preface vii
AbouttheAuthor xi
PartINormsandMetrics1
Chapter1.NormsonVectorSpaces3
Chapter2.MetricsonSets23
PartIITopologicalSpaces:Fundamental Concepts37
Chapter3.ATopologyonaSet39
Chapter4.SetClosures,InteriorsandBoundaries61
Chapter5.BasesofTopologicalSpaces85
Chapter6.ContinuityonTopologicalSpaces117
Chapter7.ProductSpaces143
Chapter8.TheQuotientTopology189
xiv Point-SetTopologywithTopics
PartIIITopologicalSpaces:SeparationAxioms207
Chapter9.SeparationwithOpenSets209
Chapter10.SeparationwithContinuousFunctions237
PartIVLimitPointsinTopologicalSpaces275
Chapter11.LimitPointsinFirstCountableSpaces277
Chapter12.LimitPointsofNets285
Chapter13.LimitPointsofFilters309 PartVCompactSpacesandRelatives335
Chapter14.Compactness:DefinitionandBasicProperties337
Chapter15.CountablyCompactSpaces363
Chapter16.Lindel¨ofSpaces377
Chapter17.SequentiallyandFeeblyCompactSpaces387
Chapter18.LocallyCompactSpaces407
Chapter19.ParacompactTopologicalSpaces423
PartVITheConnectedProperty439
Chapter20.ConnectedSpacesandProperties441 PartVIITopics475
Chapter21.CompactificationsofCompletely RegularSpaces477
Chapter22.SingularSetsandSingularCompactifications515
Chapter23.On C -EmbeddingsandPseudocompactness537
Chapter24.RealcompactSpaces561
Chapter25.PerfectFunctions581
Chapter26.PerfectandFreudenthalCompactifications597
Chapter27.SpacesWhoseElementsAreSequences611
Chapter28.CompletingIncompleteMetricSpaces633
Chapter29.TheUniformSpaceandtheUniform Topology643
Chapter30.TheStone–WeierstrassTheorem669
Chapter31.Metrizability679
Chapter32.TheStoneSpace693
Chapter33.BaireSpaces723
Chapter34.TheClassof F -Spaces735
This page intentionally left blank
NormsonVectorSpaces
Abstract
Inthissection,wereviewafewbasicnotionsaboutinnerproductson vectorspacesandhowtheyareusedasamechanismtoconstructa distancemeasuringtoolcalled“norm”Wethendefine“normonan abstractvectorspace”withnoreferencetoaninnerproduct.Weshow howtodistinguishbetweennormsthatareinducedbyaninnerproductandthosethatarenot.Wethenprovideafewexamplesofnorms onvectorsspacesofcontinuousfunctions, C [a,b].Weendthissectionwithaformaldefinitionofthecompactpropertyinnormedvector spaces.
1.1ReviewofInnerProductSpaces
Webeginbyreviewingafewbasicnotionsaboutthosevector spaceswerefertoas innerproductspaces.Recallthattheset Rn = {(x1 ,x2 ,x3 ,...,xn ): xi ∈ R} equippedwithtwooperations, additionandscalarmultiplication,isknowntobea vectorspace.We canalsoequipavectorspacewithathirdoperationcalled“dotproduct”whichmapspairsofvectorsin Rn tosomerealnumber.The dot-productisaspecificreal-valuedoperationon Rn whichbelongs toalargerfamilyofvectorspaceoperationscalled innerproducts Webrieflyremindourselvesofafewfactsaboutinnerproductson abstractvectorspaces.
Definition1.1 Let V beavectorspaceoverthereals.An inner product isanoperationwhichmapspairsofvectorsin V toareal number.Wedenoteaninnerproducton V by v, w .Areal-valued functionon V × V isreferredtoasan innerproduct ifandonlyifit satisfiesthefollowingfouraxioms:
IP1: Thenumber v, v isgreaterthanorequalto0forall v in V . Equalityholdsifandonlyif v =0.(Hence,if v isnot0, v, v is strictly largerthan0.)
IP2: Forall v, w ∈ V , u, v = v, u (Commutativity)
IP3: Forall u, v, w ∈ V , u + w, v = u, v + w, v
IP4: Forall u, v ∈ V ,and α ∈ R, αu, v = α u, v
Avectorspace V iscalledan innerproductspace ifitisequipped withsomespecifiedinnerproduct.
Definition1.2 Let V beaninnerproductspace.If v isavectorin V wedefine v = v, v
Theexpression v iscalledthe norm (orlength)ofthevector v inducedbytheinnerproduct u, v on V .
Example1. Itiseasilyverifiedthat,for x =(x1 ,x2 ,x3 ,...,xn )and y =(y1 ,y2 ,y3 ,...,yn )in Rn ,itswell-knowndot-product x, y = x y = x1 y1 + x2 y2 + + xn yn
satisfiesthefouraxiomsaboveandsoisaninnerproductonthe vectorspace Rn .Thisisoftenreferredtoasthe Euclideaninner product orthe standardinnerproduct on Rn .Thenormon Rn induced
bythedotproductis
x = (x1 ,x2 ,x3 ,...,xn ) = (x1 ,x2 ,x3 ,...,xn ) · (x1 ,x2 ,x3 ,...,xn ) = n i=1 x2 i
Thisparticularnormisreferredtoasthe Euclideannorm on Rn . Itisalsoreferredtoasthe L2 -normon Rn ,inwhichcase,itwill berepresentedas x 2 .Wewillusethisparticularnormtomeasure distancesbetweenvectorsin Rn .Thatis,thedistancebetween x = (x1 ,x2 ,x3 ,...,xn )and y =(y1 ,y2 ,y3 ,...,yn )isdefinedtobe x y = n i=1 (xi yi )2
Inthecasewhere n =2or3,thisrepresentstheusualdistance formulabetweenpointsin2-spaceand3-space,respectively.Inthe casewhere n =1,itrepresentstheabsolutevalueofthedifference oftwonumbers.
Example2. Considerthevectorspace, V = C [a,b],thesetofall continuousreal-valuedfunctionsontheclosedinterval[a,b]equipped withtheusualadditionandscalarmultiplicationoffunctions.We definethefollowinginnerproducton C [a,b]as:
= b a
(x)g (x) dx
ShowingthatthisoperationsatisfiestheinnerproductaxiomsIP1 toIP4isleftasanexercise.Inthiscase,thenormof f ,inducedby thisinnerproduct,isseentobe f = b a f (x)2 dx
Itisalsoreferredtoasthe L2 -normon C [a,b]andwerepresentitas f 2 .
Thefollowingtheoremcalledthe Cauchy–Schwarzinequality offersanimportantproblemsolvingtoolwhenworkingwithinner productspaces.Thenormwhichappearsintheinequalityistheone inducedbythegiveninnerproduct.Thisinequalityholdstruefor anywell-definedinnerproductonavectorspace.
Theorem1.3(Cauchy–Schwarzinequality). Let V beavector spaceequippedwithaninnerproductanditsinducednorm.Then, forvectors x and y in V, | x, y |≤ x y
Equalityholdstrueifandonlyif x and y arecollinear(i.e., x = αy or y = αx).
Proof. Thestatementclearlyholdstrueif y =0. Let x, y betwo(notnecessarilydistinct)vectorsin V where y =0. Foranyrealnumber t, 0 ≤ x ty, x ty = x 2 2t x, y + t2 y 2
Choosing t = x, y y 2 intheaboveequationweobtain 0 ≤ x 2 x, y 2 y 2
Theinequality, | x, y |≤ x y ,follows.
Wenowprovethesecondpartofthestatement.If x and y are collinear,say x = αy ,then | x, y | = | αy, y | = |α| y, y = |α| y y = αy y = x y
Conversely,suppose | x, y | = x y .If y iszerothen 0= ty and so x and y arecollinear.Suppose y = 0.Consider t = x, y 2 y 2 . x ty, x ty = x 2 x, y 2 y 2 (asdescribedabove) =0
So,byIP1, x ty, x ty =0implies x ty =0so x and y are collinear.Wehaveshownthatequalityholdsifandonlyif x and y arecollinear.
Wenowverifythatanorm, ,whichisinducedbyaninnerproduct , onthevectorspace V willalwayssatisfythefollowingthree fundamentalproperties:
(1)Forall x ∈ V , x ≥ 0,equalityholdsifandonlyif x =0.
(2)Forall x ∈ V andscalar α ∈ R, αx = |α| x .
(3)Forall x, y ∈ V , x + y ≤ x + y .
Thefirstpropertyfollowsfromthefactthatthenormisdefinedas beingthesquarerootofanumber.Thesecondpropertyfollowsfrom thestraightforwardargument: αx = αx,αx = √α2 x, x = |α| x
Thethirdpropertyisreferredtoasthe triangleinequality.It’snontrivialproofinvokestheCauchy–Schwarzinequality.Weproveit below.
Corollary1.4 Thetriangleinequalityfornormsinducedbyinner products. Foranypairofvectors x and y inaninnerproductspace, x + y ≤ x + y .Ifequalityholdsthenthetwovectors x and y arecollinear.
Proof.
(Cauchy–Schwarz) =( x + y )2
Thus x + y ≤ x + y ,asrequired. Inthecasewherewehaveequality:Supposewehave x + y = x + y .Then x + y 2 =( x + y )2 .Fromthedevelopmentabove,theinequalitiesmustbeequalities,sowemusthave x, y = x y .Thismeans | x, y | = x ||y .BytheCauchy–Schwarztheorem, x and y arecollinear.
Example3. Usethethedotproductpropertiesandthelawof cosines, c2 = a2 + b2 2ab cos θ (where a,b,c representthelengths ofthesidesofatriangle ABC and θ istheanglebetweentothe sides AB and AC )toprovetheCauchy–Schwarzinequalityin R2 .
Solution: Considerthetwovectors a and b in R2 whereoneisnota scalarmultipleoftheother.Thentheextremitiesofthetwovectors formatrianglewithangle θ between a and b.Thenthenorms a , b and b a arenumberswhichcanrepresentthelengthofthesides ofthetriangle.Let θ representtheanglebetween a and b.
Weapplythecosinelawtoobtain b a 2 = a 2 + b 2 2 a b cos θ
If a, b representsthedot-product,weobtain,byapplyingthedotproductpropertiesandtheproperty a 2 = a, a
Example4. Suppose a and b =(1, 0)aretwovectorsin R2 where a =1withanglebetween a and b = θ .Showthat a, b =cos θ ,as isrepresentedinFigure1.1.
Figure1.1. Dot-productintheplane.
Solution: Thisfollowsfromtheaboveexampleand cos θ = a, b a b = a, b 1 × 1
1.2NormsonArbitraryVectorSpaces
Wenowshowthatnormsonavectorspacecanexistindependently frominnerproducts.
Definition1.5 Let V avectorspaceoverthereals.Anormon V isafunction, : V → R,whichsatisfiesthethreefollowingnorm axioms:
N1: Forall v ∈ V , v ≥ 0.Theequality v =0holdstrueifand onlyif v =0.Hence,if v isnot 0, v > 0.
N2: Forall v ∈ V , α ∈ R, αv = |α| v
N3: Forall v, u ∈ V , u + v ≤ u + v (Triangleinequality).
Avectorspace V iscalleda normedvectorspace ifitisequipped withsomespecifiednormsatisfyingthesethreenormaxioms.Itis denotedby(V, ).Notethatthevectorspace V neednotbean innerproductspace,norneedtherebeanyrelationshipbetween andsomeinnerproduct.
Thisfunction, : V → R,willbeusedtomeasurethe“distance”, x y ,betweenanytwovectors x and y .Notethat x y = ( 1)(y x) = |− 1| y x = y x .Thatis,“thedistance between x and y isthesameasthedistancebetween y and x ”. Weprovideafewexamplesoffunctionsknowntobenorms.
Example5. Thenorm inducedbytheinnerproductofaninner productspace(V, , )hasalreadybeenshowntosatisfytheaxioms N1,N2,andN3.
Example6. The1-normon Rn isdefinedas x 1 = (x1 ,x2 ,x3 ,...,xn ) 1 = n i=1 |xi |
Itcanbeshowntosatisfythethreenormaxioms.(Leftasan exercise.)
Example7. The ∞-normon Rn isdefinedas x ∞ = (x1 ,x2 ,x3 ,...,xn ) ∞ =max{|x1 |, |x2 |,..., |xn |}
Itcanbeshowntosatisfythethreenormaxioms.(ProvingthatN1 andN2aresatisfiedisleftasanexercise.)
Weprovethatthe ∞-normon Rn satisfiesthetriangleinequality N3.
Proofof x + y ∞ ≤ x ∞ + y ∞ . Notethat |xi |≤ max i=1...n {|xi |} foreach i,and |yi |≤ maxi=1...n {|yi |} foreach i.Then foreach i =1to n, |
Thenmax 1...n {|xi yi |}≤ x ∞ + y ∞ andso x + y ∞ ≤ x ∞ + y ∞ , asrequired.
Example8. Let p ≥ 1.The p-normon Rn isdefinedas
Itcanbeshownthatthisfunctionsatisfiesthethreenormaxioms. Wewillnotprovethisfor p ingeneral.
Notethatwhen p =2the p-normissimplytheEuclideannorm on Rn .SincetheEuclideannormisinducedbyaninnerproduct,it automaticallysatisfiesthethreenormaxioms.Provingthat,forany p ≥ 1,the p-normsatisfiesN1andN2isstraightforward.Butproving thatthetriangleinequalityholdstrueforall p ≥ 1isnoteasy.The interestedreaderscanlooktheproofupinmostrealanalysistexts orfinditonline.
Anaturalquestioncomestomind .Areallnormsonavector space V inducedbysomeinnerproduct?Theanswerisno!
Thefollowingtheoremtellsushowtorecognizethosenormswhich areinducedbysomeinnerproduct.
Theorem1.6 Suppose isanormonavectorspace V .There existsaninnerproduct , suchthat x = x, x , forall x ∈ V, ifandonlyif, forall x, y ∈ V, thenorm satisfiestheparallelogram identity
Proof. Theproofinvolvesshowingthat,if satisfiestheparallelogramidentitythentheidentity
isavalidinnerproducton V whichinduces .Theproofisroutine andsoisnotpresentedhere.
Examplesofnormson C [a,b]
Example9. The Lp -norm.Let V = C [a,b]denotethefamilyofall real-valuedcontinuousfunctionsontheclosedinterval[a,b]equipped withtheusual+andscalarmultiplication.If p ≥ 1,thenwedefine the Lp -normon C [a,b]asfollows:
Inthecasewhere p =1,wehave
whichiseasilyshowntosatisfythethreenormaxioms.Inthecase where p =2,thenthisnormisonewhichisinducedbytheinner product
on C [a,b].
Itisstraightforwardtoshowthat,forall p ≥ 1, f p satisfiesN1 andN2.Butprovingthat f + g p ≤ f p + g p ,forall p ≥ 1,is difficult.Thisinequalityisreferredtoasthe Minkowskiinequality. Theinterestedreaderswillfindaproofinmostrealanalysistextsor online.
Example10. Thesup-norm:Wedefineanothernormonthevector space, C ∗ (S ),ofallboundedcontinuousreal-valuedfunctionsonthe space S .Recallthatthe supremum ofasubset A ofanorderedset S , writtenas“sup A”isthe leastupperbound of A whichiscontained in S .Notethatsup A mayormaynotbelongto A.Wedefinethe sup-normon C ∗ (S )as
f ∞ =sup {|f (x)| : x ∈ S }
Thesup-normisalsoreferredtoasthe“infinity-norm”or“uniform norm”.Showingthatthisisavalidnormisleftasanexercise.
1.3ConvergenceandCompletenessinaNormed VectorSpace
Convergenceofsequencesformsandimportantpartofanalysis.In whatfollows,normson Rn arealwaysassumedtobetheEuclidean norm,unlessotherwisestated.Aninfinitesequenceinanormedvectorspace, V ,isafunctionwhichmaps N (notnecessarilyone-to-one) ontoasubset, S ,of V .Thismeansthatasequenceistheindexationof theelementsofacountablesubset, S ,byusingthenaturalnumbers. Forexample, S = {x0 , x1 , x2 ,..., xn ,...}.Notethatsomeofthese mayberepeated(sincethefunctionmapping N into S neednotbe one-to-one).Wegeneralizethenotionofa“convergentsequenceand itslimit”in R toa“convergentsequenceanditslimit”inanormed vectorspace(V, ).
Definition1.7 Let(V, +,α, )beavectorspaceequippedwith anorm .Wesayasequenceofvectors {xn } in V convergestoa vector a in V withrespecttothenorm if
Forany ε> 0,thereexistsaninteger N> 0suchthat xn a|| <ε whenever n>N .