Instant ebooks textbook Mathematical analysis: volume ii 1, january 1 2024 edition teo lee peng down

Page 1


Mathematical

Analysis: Volume II 1, January 1 2024 Edition Teo Lee Peng

Visit to download the full and correct content document: https://ebookmass.com/product/mathematical-analysis-volume-ii-1-january-1-2024-ed ition-teo-lee-peng/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Mathematical Analysis: Volume I 1, January 1 2024

Edition Teo Lee Peng

https://ebookmass.com/product/mathematical-analysisvolume-i-1-january-1-2024-edition-teo-lee-peng/

CFA 2024 Level II Study Books (Combined Books: 1 - 5)

Kaplan Schweser

https://ebookmass.com/product/cfa-2024-level-ii-study-bookscombined-books-1-5-kaplan-schweser/

Mastering Adobe Photoshop 2024 1 / converted Edition

Gary Bradley

https://ebookmass.com/product/mastering-adobephotoshop-2024-1-converted-edition-gary-bradley/ Beyond Time (Beyond Book 1) Lee Mccormick

https://ebookmass.com/product/beyond-time-beyond-book-1-leemccormick/

Southern Shifters Books 1-4: Volume 1 Gayle

https://ebookmass.com/product/southern-shiftersbooks-1-4-volume-1-gayle/

Regional Geology and Tectonics: Principles of Geologic Analysis: Volume 1: Principles of Geologic Analysis 2nd Edition Nicola Scarselli (Editor)

https://ebookmass.com/product/regional-geology-and-tectonicsprinciples-of-geologic-analysis-volume-1-principles-of-geologicanalysis-2nd-edition-nicola-scarselli-editor/

Embedded Mechatronic Systems, Volume 1: Analysis of Failures, Predictive Reliability 2nd Edition

Abdelkhalak El Hami

https://ebookmass.com/product/embedded-mechatronic-systemsvolume-1-analysis-of-failures-predictive-reliability-2nd-editionabdelkhalak-el-hami/

CORe JaVa Volume 1 Fundamental volume 2 twelfth edition

Cay

https://ebookmass.com/product/core-java-volume-1-fundamentalvolume-2-twelfth-edition-cay/

Wicked Ink (Royal Ink Tattoo Book 1) M.A. Lee

https://ebookmass.com/product/wicked-ink-royal-ink-tattoobook-1-m-a-lee/

TeoLeePeng

MathematicalAnalysis

January1,2024

VolumeII

3.4.3UniformContinuity

4.2.1Differentiability

4.2.2FirstOrderApproximations

4.2.3TangentPlanes

4.2.4DirectionalDerivatives

5.4ExtremaProblemsandtheMethodofLagrangeMultipliers

6.5.2PolarCoordinates

6.5.3SphericalCoordinates

6.5.4OtherExamples

6.6ProofoftheChangeofVariablesTheorem

6.7SomeImportantIntegralsandTheirApplications

7.3The

7.4TheUniformConvergenceofaTrigonometricSeries

7.5FourierTransforms

Preface

Mathematicalanalysisisastandardcoursewhichintroducesstudentstorigorous reasoningsinmathematics,aswellasthetheoriesneededforadvancedanalysis courses.Itisacompulsorycourseforallmathematicsmajors.Itisalsostrongly recommendedforstudentsthatmajorincomputerscience,physics,datascience, financialanalysis,andotherareasthatrequirealotofanalyticalskills.Some standardtextbooksinmathematicalanalysisincludetheclassicalonebyApostol [Apo74]andRudin[Rud76],andthemodernonebyBartle[BS92],Fitzpatrick [Fit09],Abbott[Abb15],Tao[Tao16, Tao14]andZorich[Zor15, Zor16].

Thisbookisthesecondvolumeofthetextbooksintendedforaone-yearcourse inmathematicalanalysis.Weintroducethefundamentalconceptsinapedagogical way.Lotsofexamplesaregiventoillustratethetheories.Weassumethatstudents arefamiliarwiththematerialofcalculussuchasthoseinthebook[SCW20]. Thus,wedonotemphasizeonthecomputationtechniques.Emphasisisputon buildingupanalyticalskillsthroughrigorousreasonings.

Besidescalculus,itisalsoassumedthatstudentshavetakenintroductory coursesindiscretemathematicsandlinearalgebra,whichcoverstopicssuchas logic,sets,functions,vectorspaces,innerproducts,andquadraticforms.Whenever needed,theseconceptswouldbebrieflyrevised.

Inthisbook,wehavedefinedallthemathematicaltermsweusecarefully. Whilemostofthetermshavestandarddefinitions,someofthetermsmayhave definitionsdeferfromauthorstoauthors.Thereadersareadvisedtocheckthe definitionsofthetermsusedinthisbookwhentheyencounterthem.Thiscanbe easilydonebyusingthesearchfunctionprovidedbyanyPDFviewer.Thereaders arealsoencouragedtofullyutilizethehyper-referencingprovided.

TeoLeePeng

Chapter1

EuclideanSpaces

Inthissecondvolumeofmathematicalanalysis,westudyfunctionsdefinedon subsetsof Rn.Forthis,weneedtostudythestructureandtopologyof Rn first. Westartbyarevisionon Rn asavectorspace.

Inthesequel, n isafixedpositiveintegerreservedtobeusedfor Rn

1.1TheEuclideanSpace RnRnRn asaVectorSpace

If S1, S2, , Sn aresets,thecartesianproductofthese n setsisdefinedastheset

=

1 ×···×

n i=1

thatcontainsall n-tuples (a1,...,an),where ai ∈ Si forall 1 ≤ i ≤ n

Theset Rn isthecartesianproductof n copiesof R.Namely,

Thepoint (x1,x2,...,xn) isdenotedas x,whereas x1,x2,...,xn arecalledthe componentsofthepoint x.Wecandefineanadditionandascalarmultiplication on Rn.If x =(x1,x2,...,xn) and y =(y1,y2,...,yn) arein Rn,theadditionof x and y isdefinedas

Inotherwords,itisacomponentwiseaddition.Givenarealnumber α,thescalar multiplicationof α with x isgivenbythecomponentwisemultiplication αx =(αx1,αx2,...,αxn)

Theset Rn withtheadditionandscalarmultiplicationoperationsisavector space.Itsatisfiesthe10axiomsforarealvectorspace V .

Chapter1.EuclideanSpaces2

The10AxiomsforaRealVectorSpace V V V

Let V beasetthatisequippedwithtwooperations–theadditionandthe scalarmultiplication.Foranytwovectors u and v in V ,theiradditionis denotedby u + v.Foravector u in V andascalar α ∈ R,thescalar multiplicationof v by α isdenotedby αv.Wesaythat V withtheaddition andscalarmultiplicationisarealvectorspaceprovidedthatthefollowing 10axiomsaresatisfiedforany u, v and w in V ,andany α and β in R.

Axiom1 If u and v arein V ,then u + v isin V .

Axiom2 u + v = v + u.

Axiom3 (u + v)+ w = u +(v + w).

Axiom4 Thereisazerovector 0 in V suchthat

0 + v = v = v + 0 forall v ∈ V.

Axiom5 Forany v in V ,thereisavector w in V suchthat v + w = 0 = w + v

Thevector w satisfyingthisequationiscalledthe negative of v,andis denotedby v.

Axiom6 Forany v in V ,andany α ∈ R, αv isin V .

Axiom7 α(u + v)= αu + αv

Axiom8 (α + β)v = αv + βv

Axiom9 α(βv)=(αβ)v

Axiom10 1v = v

Rn isarealvectorspace.Thezerovectoristhepoint 0 =(0, 0,..., 0) with allcomponentsequalto0.Sometimeswealsocallapoint x =(x1,...,xn) in

Chapter1.EuclideanSpaces3

Rn avector,andidentifyitasthevectorfromtheorigin 0 tothepoint x

Definition1.1StandardUnitVectors

In Rn,thereare n standardunitvectors e1, , en givenby e1 =(1, 0,..., 0), e2 =(0, 1,..., 0), , en =(0,..., 0, 1)

Letusreviewsomeconceptsfromlinearalgebrawhichwillbeusefullater.

Giventhat v1,..., vk arevectorsinavectorspace V ,alinearcombinationof v1,..., vk isavector v in V oftheform v = c1v1 + + ckvk

forsomescalars c1,...,ck,whichareknownasthecoefficientsofthelinear combination.

Asubspaceofavectorspace V isasubsetof V thatisitselfavectorspace. Thereisasimplewaytoconstructsubspaces.

Proposition1.1

Let V beavectorspace,andlet v1,..., vk bevectorsin V .Thesubset

of V thatcontainsalllinearcombinationsof v1,..., vk isitselfavector space.Itiscalledthesubspaceof V spanned by v1,..., vk

Example1.1

In R3,thesubspacespannedbythevectors e1 =(1, 0, 0) and e3 =(0, 0, 1) istheset W thatcontainsallpointsoftheform x(1, 0, 0)+ z(0, 0, 1)=(x, 0,z), whichisthe xz-plane.

Next,werecalltheconceptoflinearindependence.

Chapter1.EuclideanSpaces4

Definition1.2LinearIndependence

Let V beavectorspace,andlet v1,..., vk bevectorsin V .Wesaythat theset {v1,..., vk} isalinearlyindependentsetofvectors,orthevectors v1,..., vk arelinearlyindependent,iftheonly k-tupleofrealnumbers (c1,...,ck) whichsatisfies

Example1.3

Example1.4

Let V beavectorspace.Twovectors u and v in V arelinearlyindependent ifandonlyif u = 0, v = 0,andtheredoesnotexistsaconstant α suchthat v

Letusrecallthefollowingdefinitionfortwovectorstobeparallel.

Definition1.3ParallelVectors

Let V beavectorspace.Twovectors u and v in V areparallelifeither u = 0 orthereexistsaconstant α suchthat v = αu.

Inotherwords,twovectors u and v in V arelinearlyindependentifandonly iftheyarenotparallel.

Chapter1.EuclideanSpaces5

Example1.5

If S = {v1,..., vk} isalinearlyindependentsetofvectors,thenforany S′ ⊂ S, S′ isalsoalinearlyindependentsetofvectors. Nowwediscusstheconceptofdimensionandbasis.

Definition1.4DimensionandBasis

Let V beavectorspace,andlet W beasubspaceof V .If W canbe spannedby k linearlyindependentvectors v1,..., vk in V ,wesaythat W hasdimension k.Theset {v1,..., vk} iscalledabasisof W

Example1.6

In Rn,the n standardunitvectors e1, , en arelinearlyindependentand theyspan Rn.Hence,thedimensionof Rn is n

Example1.7

In R3,thesubspacespannedbythetwolinearlyindependentvectors e1 = (1, 0, 0) and e3 =(0, 0, 1) hasdimension2.

Next,weintroducethetranslateofaset.

Definition1.5TranslateofaSet

If A isasubsetof Rn , u isapointin Rn,thetranslateoftheset A bythe vector u istheset

Example1.8

In R3,thetranslateoftheset A = {(x,y, 0) | x,y ∈ R} bythevector u =(0, 0, 2) istheset

In Rn,thelinesandtheplanesareofparticularinterest.Theyareclosely

Chapter1.EuclideanSpaces6 relatedtotheconceptofsubspaces.

Definition1.6Linesin RnRnRn

Aline L in Rn isatranslateofasubspaceof Rn thathasdimension1.As aset,itcontainsallthepoints x oftheform

x = x0 + tv,t ∈ R, where x0 isafixedpointin Rn,and v isanonzerovectorin Rn.The equation x = x0 + tv, t ∈ R,isknownastheparametricequationofthe line.

Alineisdeterminedbytwopoints.

Example1.9

Giventwodistinctpoints x1 and x2 in Rn,theline L thatpassesthrough thesetwopointshaveparametricequationgivenby

x = x1 + t(x2 x1),t ∈ R

When 0 ≤ t ≤ 1, x = x1 + t(x2 x1) describesallthepointsontheline segmentwith x1 and x2 asendpoints.

Figure1.1:ALinebetweentwopoints.

Chapter1.EuclideanSpaces7

Definition1.7Planesin RnRnRn

Aplane W in Rn isatranslateofasubspaceofdimension2.Asaset,it containsallthepoints x oftheform

where x0 isafixedpointin Rn,and v1 and v2 aretwolinearlyindependent vectorsin Rn

Besidesbeingarealvectorspace, Rn hasanadditionalstructure.Itsdefinition ismotivatedasfollows.Let P (x1,x2,x3) and Q(y1,y2,y3) betwopointsin R3

ByPythagorastheorem,thedistancebetween P and Q isgivenby

Figure1.2:Distancebetweentwopointsin R2

Considerthetriangle OPQ withvertices O, P , Q,where O istheorigin.Then

Let θ betheminoranglebetween OP and OQ.Bycosinerule,

Astraightforwardcomputationgives

Chapter1.EuclideanSpaces8

Figure1.3:Cosinerule.

Hence,

(1.1)

Itisaquotientof x1y1 + x2y2 + x3y3 bytheproductofthelengthsof OP and OQ

Generalizingtheexpression x1y1 + x2y2 + x3y3 from R3 to Rn definesthedot product.Foranytwovectors x =(x1,x2,...,xn) and y =(y1,y2,...,yn) in Rn , thedotproductof x and y isdefinedas x · y = n i=1 xiyi = x1y1 + x2y2 + ··· + xnyn.

Thisisaspecialcaseofaninnerproduct.

Definition1.8InnerProductSpace

Arealvectorspace V isaninnerproductspaceifforanytwovectors u and v in V ,aninnerproduct ⟨u, v⟩ of u and v isdefined,andthefollowing conditionsforany u, v, w in V and α,β ∈ R aresatisfied.

1. ⟨u, v⟩ = ⟨v, u⟩

2. ⟨αu + βv, w⟩ = α⟨u, w⟩ + β⟨v, w⟩.

3. ⟨v, v⟩≥ 0 and ⟨v, v⟩ =0 ifandonlyif v = 0.

Chapter1.EuclideanSpaces9

Proposition1.2EuclideanInnerProducton RnRnRn

On Rn ,

definesaninnerproduct,calledthestandardinnerproductortheEuclidean innerproduct.

Definition1.9EuclideanSpace

Thevectorspace Rn withtheEuclideaninnerproductiscalledthe Euclidean n-space.

Inthefuture,whenwedonotspecify, Rn alwaysmeanstheEuclidean n-space. Onecandeducesomeusefulidentitiesfromthethreeaxiomsofaninner productspace.

Proposition1.3

If V isaninnerproductspace,thenthefollowingholds.

(a) Forany

(b) Foranyvectors

in V ,andforanyrealnumbers

Giventhat V isaninnerproductspace, ⟨v, v⟩≥ 0 forany v in V .For example,forany x =(x1,x2,...,xn) in Rn,undertheEuclideaninnerproduct,

When n =3,thelengthofthevector OP fromthepoint O(0, 0, 0) tothepoint

Chapter1.EuclideanSpaces10

P (x1,x2,x3) is

Thismotivatesustodefinetonormofavectorinaninnerproductspaceas follows.

Definition1.10NormofaVector

Giventhat V isaninnerproductspace,thenormofavector v isdefinedas

Thenormofavectorinaninnerproductspacesatisfiessomeproperties,which followfromtheaxiomsforaninnerproductspace.

Proposition1.4

Let V beaninnerproductspace.

1. Forany v in V , ∥v∥≥ 0 and ∥v∥ =0 ifandonlyif v = 0

2. Forany α ∈ R and v

Motivatedbythedistancebetweentwopointsin R3,wemakethefollowing definition.

Definition1.11DistanceBetweenTwoPoints

Giventhat V isaninnerproductspace,thedistancebetween u and v in V isdefinedas

Forexample,thedistancebetweenthepoints x =(x1,...,xn) and y = (y1,...,yn) intheEuclideanspace Rn is

Chapter1.EuclideanSpaces11

Foranalysisin R,animportantinequalityisthetriangleinequalitywhichsays that |x + y|≤|x| + |y| forany x and y in R.Togeneralizethisinequalityto Rn , weneedthecelebratedCauchy-Schwarzinequality.Itholdsonanyinnerproduct space.

Proposition1.5Cauchy-SchwarzInequality

Giventhat V isaninnerproductspace,forany u and v in V ,

Theequalityholdsifandonlyif u and v areparallel.

Proof

Itisobviousthatifeither u = 0 or v = 0,

andsotheequalityholds.

Nowassumethatboth u and v arenonzerovectors.Considerthequadratic function f : R → R definedby

Noticethat f (t)= at2 + bt + c,where

The3rd axiomofaninnerproductsaysthat f (t) ≥ 0 forall t ∈ R.Hence, wemusthave b2 4ac ≤ 0.Thisgives

Thus,weobtaintheCauchy-Schwarzinequality

u, v⟩|≤∥u

Chapter1.EuclideanSpaces12

Theequalityholdsifandonlyif b2 4ac =0.Thelattermeansthat f (t)=0 forsome t = α,whichcanhappenifandonlyif αu v = 0,

orequivalently, v = αu

Nowwecanprovethetriangleinequality.

Proposition1.6TriangleInequality

Let V beaninnerproductspace.Foranyvectors v

,...,

Proof

Itissufficienttoprovethestatementwhen k =2.Thegeneralcasefollows frominduction.Given v1 and v2 in V ,

Thisprovesthat

Fromthetriangleinequality,wecandeducethefollowing.

Corollary1.7

Let V beaninnerproductspace.Foranyvectors u and v in V

Expressintermsofdistance,thetriangleinequalitytakesthefollowingform.

Proposition1.8TriangleInequality

Let V beaninnerproductspace.Foranythreepoints v1, v2, v3 in V ,

Moregenerally,if v1, v2,..., vk are k vectorsin V ,then

Sincewecandefinethedistancefunctiononaninnerproductspace,inner productspaceisaspecialcaseofmetricspaces.

Definition1.12MetricSpace

Let X beaset,andlet d : X × X → R beafunctiondefinedon X × X Wesaythat d isametricon X providedthatthefollowingconditionsare satisfied.

1. Forany x and y in X, d(x,y) ≥ 0,and d(x,y)=0 ifandonlyif x = y.

2. d(x,y)= d(y,x) forany x and y in X

3. Forany x, y and z in X, d(x,y) ≤ d(x,z)+ d(y,z). If d isametricon X,wesaythat (X,d) isametricspace.

Metricspacesplayimportantrolesinadvancedanalysis.If V isaninnner productspace,itisametricspacewithmetric

UsingtheCauchy-Schwarzinequality,onecangeneralizetheconceptofangles toanytwovectorsinarealinnerproductspace.If u and v aretwononzerovectors inarealinnerproductspace V ,Cauchy-Schwarzinequalityimpliesthat

Chapter1.EuclideanSpaces14

isarealnumberbetween 1 and1.Generalizingtheformula(1.1),wedefinethe angle θ between u and v as

Thisisananglebetween 0◦ and 180◦.Anecessaryandsufficientconditionfor twovectors u and v tomakea 90◦

Definition1.13Orthogonality

Let V beaninnerproductspace.If u and v areorthogonalvectorsin V , then

Nowwediscusstheprojectiontheorem.

Theorem1.10ProjectionTheorem

Let V beaninnerproductspace,andlet w beanonzerovectorin V .If v isavectorin V ,thereisauniquewaytowrite v asasumoftwovectors v1 and v2,suchthat v1 isparallelto w and v2 isorthogonalto w.Moreover, foranyrealnumber α,

andtheequalityholdsifandonlyif α isequaltotheuniquerealnumber β suchthat v1 = βw

Chapter1.EuclideanSpaces15

Figure1.4:Theprojectiontheorem.

Proof

Assumethat v canbewrittenasasumoftwovectors v1 and v2,suchthat v1 isparallelto w and v2 isorthogonalto w.Since w isnonzero,there isarealnumber β suchthat v1 = βw.Since v2 = v v1 = v βw is orthogonalto w,wehave 0= ⟨v βw, w⟩ = ⟨v, w⟩−

⟨w, w⟩

Thisimpliesthatwemusthave

= ⟨v, w⟩ ⟨w, w⟩ , and v1 = ⟨v, w⟩ ⟨w, w⟩ w, v2 = v ⟨v, w⟩ ⟨w, w⟩ w.

Itiseasytocheckthat v1 and v2 givenbytheseformulasindeedsatisfy therequirementsthat v1 isparallelto w and v2 isorthogonalto w.This establishestheexistenceanduniquenessof v1 and v2. Nowforanyrealnumber α, v αw = v v1 +(β α)w

Chapter1.EuclideanSpaces16

Since v v1 = v2 isorthogonalto (β α)w,thegeneralizedPythagoras

theoremimpliesthat

Thisprovesthat

Theequalityholdsifandonlyif

Since ∥w∦=0,wemusthave α = β

Thevector v1 inthistheoremiscalledtheprojectionof v ontothesubspace spannedby w.

Thereisamoregeneralprojectiontheoremwherethesubspace W spannedby w isreplacedbyageneralsubspace.Wesaythatavector v isorthogonaltothe subspace W ifitisorthogonaltoeachvector w in W

Theorem1.11GeneralProjectionTheorem

Let V beaninnerproductspace,andlet W beafinitedimensionalsubspace of V .If v isavectorin V ,thereisauniquewaytowrite v asasumof twovectors v1 and v2,suchthat v1 isin W and v2 isorthogonalto W .The vector v1 isdenotedbyprojW v.Forany w ∈ W ,

andtheequalityholdsifandonlyif w = projW v.

SketchofProof

If W isa k-dimensionalvectorspace,ithasabasisconsistsof k linearly independentvectors w1,..., wk.Sincethevector v1 isin W ,thereare constants c1,...,ck suchthat v1 = c1w1 + ··· + ckwk

Chapter1.EuclideanSpaces17

Thecondition v2 = v v1 isorthogonalto W givesriseto k equations

Usingthefactthat w1,..., wk arelinearlyindependent,onecanshowthat the k × k matrix

isinvertible.Thisshowsthatthereisaunique

satisfying thelinearsystem(1.2).

If V isaninnerproductspace,abasisthatconsistsofmutuallyorthogonal vectorsareofspecialinterest.

Definition1.14OrthogonalSetandOrthonormalSet

Let V beaninnerproductspace.Asubsetofvectors S = {u

,..., uk}

iscalledanorthogonalsetifanytwodistinctvectors ui and uj in S are orthogonal.Namely,

S iscalledanorthonormalsetifitisanorthogonalsetofunitvectors. Namely,

If S = {u1,..., uk} isanorthogonalsetofnonzerovectors,itisalinearly independentsetofvectors.Onecanconstructanorthonormalsetbynormalizing eachvectorintheset.Thereisastandardalgorithm,knownastheGram-Schmidt process,whichcanturnanylinearlyindependentsetofvectors {v1,..., vk} into

Chapter1.EuclideanSpaces18

anorthogonalset {u1,..., uk} ofnonzerovectors.Westartbythefollowing lemma.

Lemma1.12

Let V beaninnerproductspace,andlet S = {u1,..., uk} beanorthogonal setofnonzerovectorsin V thatspansthesubspace W .Givenanyvector v in V ,

Proof

Bythegeneralprojectiontheorem, v = v1 + v2,where v1 = projW v isin W and v2 isorthogonalto W .Since S isabasisfor W ,thereexistscalars c1,c2,...,ck suchthat v1 = c1u1 + + ckuk.Therefore,

Since S isanorthogonalsetofvectorsand v2 isorthogonaltoeach ui,we findthatfor 1 ≤ i ≤ k,

Thisprovesthelemma.

Theorem1.13Gram-SchmidtProcess

Let V beaninnerproductspace,andassumethat S = {v1,..., vk} is alinearlyindependentsetofvectorsin V .Definethevectors u1,..., uk inductivelyby u1 = v1,andfor 2 ≤ j ≤ k,

Then S′ = {u1,..., uk} isanonzerosetoforthogonalvectors.Moreover, foreach 1 ≤ j ≤ k,theset {ui | 1 ≤ i ≤ j} spansthesamesubspaceas theset {vi | 1 ≤ i ≤ j}.

Chapter1.EuclideanSpaces19

SketchofProof

For 1 ≤ j ≤ k,let Wj bethesubspacespannedbytheset {vi | 1 ≤ i ≤ j}.

Thevectors u1,..., uk areconstructedbyletting u1 = v1,andfor 2 ≤ j ≤ k, uj = vj projWj 1 vj

Since {v1,..., vj } isalinearlyindependentset, uj = 0.Usinginduction, onecanshowthatspan {u1,..., uj } = span {v1,..., vj }.Byprojection theorem, uj isorthogonalto Wj 1.Hence,itisorthogonalto u1,..., uj 1. Thisprovesthetheorem.

Amappingbetweentwovectorspacesthatrespectthelinearstructuresis calledalineartransformation.

Definition1.15LinearTransformation

Let V and W berealvectorspaces.Amapping T : V → W iscalled alineartransformationprovidedthatforany v1,..., vk in V ,foranyreal numbers c1,...,ck,

Lineartransformationsplayimportantrolesinmultivariableanalysis.Inthe following,wefirstdefineaspecialclassoflineartransformationsassociatedto specialprojections.

For 1 ≤ i ≤ n,let Li bethesubspaceof Rn spannedbytheunitvector ei.For thepoint x =(x1,...,xn), projLi x = xiei

Thenumber xi isthe ith-componentof x.Itwillplayimportantroleslater.The mappingfrom x to xi isafunctionfrom Rn to R.

Definition1.16ProjectionFunctions

For 1 ≤ i ≤ n,the ith-projectionfunctionon Rn isthefunction πi : Rn → R definedby πi(x)= πi(x1,...,xn)= xi.

Chapter1.EuclideanSpaces20

Figure1.5:Theprojectionfunctions.

Thefollowingisobvious.

Proposition1.14

For 1 ≤ i ≤ n,the ith-projectionfunctionon Rn isalineartransformation. Namely,forany x1,..., xk in Rn,andanyrealnumbers c1,...,ck,

Thefollowingisausefulinequality.

Proposition1.15

Let x beavectorin Rn.Then

Attheendofthissection,letusintroducetheconceptofhyperplanes.

Definition1.17Hyperplanes

In Rn,ahyperplaneisatranslateofasubspaceofdimension n 1.Inother words, H isahyperplaneifthereisapoint x0 in Rn,and n 1 linearly independentvectors v1, v2, ..., vn 1 suchthat H containsallpoints x of theform x = x0 + t1v1 + + tn 1vn 1, (t 1,...,tn 1) ∈ Rn 1

Chapter1.EuclideanSpaces21

Ahyperplanein R1 isapoint.Ahyperplanein R2 isaline.Ahyperplanein R3 isaplane.

Definition1.18NormalVectors

Let v1, v2, , vn 1 belinearlyindependentvectorsin Rn,andlet H be thehyperplane

Anonzerovector n thatisorthogonaltoallthevectors v1,..., vn 1 is calledanormalvectortothehyperplane.If x1 and x2 aretwopointson H, then n isorthogonaltothevector v = x2 x1.Anytwonormalvectorsof ahyperplanearescalarmultiplesofeachother.

Proposition1.16

If H isahyperplanewithnormalvector n =(a1,a2,...,an),and x0 = (u1,u2,...,un) isapointon H,thentheequationof H isgivenby

Conversely,anyequationoftheform

istheequationofahyperplanewithnormalvector n =(a1,a2,...,an).

Example1.10

Given 1 ≤ i ≤ n,theequation xi = c isahyperplanewithnormalvector ei. Itisahyperplaneparalleltothecoordinateplane xi =0,andperpendicular tothe xi-axis.

Chapter1.EuclideanSpaces22

Exercises1.1

Question1

Let

Question2

Let

Question3

Question4

Question5

Chapter1.EuclideanSpaces23

1.2ConvergenceofSequencesin RnRnRn

ApointintheEuclideanspace Rn isdenotedby x =(x1,x2,...,xn).When n =1,wejustdenoteitby x.When n =2 and n =3,itiscustomarytodenotea pointin R2 and R3 by (x,y) and (x,y,z) respectively.

TheEuclideaninnerproductbetweenthevectors x =(x1,x2,...,xn) and y =(y1,y2,...,yn) is

,

Thenormof x is

whilethedistancebetween x and y is

Asequencein Rn isafunction f : Z+ → Rn.For k ∈ Z+,let ak = f (k). Thenwecanalsodenotethesequenceby {ak}∞ k=1,orsimplyas {ak}

InvolumeI,wehaveseenthatasequenceofrealnumbers {ak}∞ k=1 issaidto convergetoarealnumber a providedthatforany ε> 0,thereisapositiveinteger K suchthat |ak a| <ε forall k ≥ K.

Noticethat |ak a| isthedistancebetween ak and a.Todefinetheconvergence ofasequencein Rn,weusetheEuclideandistance.

Example1.11

Chapter1.EuclideanSpaces24

Definition1.19ConvergenceofSequences

Asequence {ak} in Rn issaidtoconvergetothepoint a in Rn provided thatforany ε> 0,thereisapositiveinteger K sothatforall k ≥ K,

<ε.

If {ak} isasequencethatconvergestoapoint a,wesaythatthesequence {ak} isconvergent.Asequencethatdoesnotconvergetoanypointin Rn issaidtobedivergent.

Figure1.6:Theconvergenceofasequence.

Asinthe n =1 case,wehavethefollowing.

Proposition1.17

Asequencein Rn cannotconvergetotwodifferentpoints.

Definition1.20LimitofaSequence

If {ak} isasequencein Rn thatconvergestothepoint a,wecall a thelimit ofthesequence.Thiscanbeexpressedas

Thefollowingiseasytoestablish.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Instant ebooks textbook Mathematical analysis: volume ii 1, january 1 2024 edition teo lee peng down by Education Libraries - Issuu