Immediate download The chemical transformations of c1 compounds 1st edition xiao-feng wu ebooks 2024

Page 1


The Chemical Transformations of C1 Compounds 1st Edition Xiao-Feng Wu

Visit to download the full and correct content document: https://ebookmass.com/product/the-chemical-transformations-of-c1-compounds-1st-e dition-xiao-feng-wu/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Transition Metal-Catalyzed Benzofuran Synthesis 1st

Edition Xiao-Feng Wu

https://ebookmass.com/product/transition-metal-catalyzedbenzofuran-synthesis-1st-edition-xiao-feng-wu/

Metal-Organic Frameworks for

Chemical Reactions:

From Organic Transformations to Energy Applications 1st Edition Anish Khan (Editor)

https://ebookmass.com/product/metal-organic-frameworks-forchemical-reactions-from-organic-transformations-to-energyapplications-1st-edition-anish-khan-editor/

Biotechnological Production of Bioactive Compounds 1st

Edition Madan L. Verma (Editor)

https://ebookmass.com/product/biotechnological-production-ofbioactive-compounds-1st-edition-madan-l-verma-editor/

Biotechnological production of bioactive compounds

Chandel

https://ebookmass.com/product/biotechnological-production-ofbioactive-compounds-chandel/

Life C1 Advanced 2nd Edition Paul Dummett

https://ebookmass.com/product/life-c1-advanced-2nd-edition-pauldummett/

Mathematical Foundation of Fuzzy Sets 1st Edition Hsien-Chung Wu

https://ebookmass.com/product/mathematical-foundation-of-fuzzysets-1st-edition-hsien-chung-wu/

The People’s Dance: The Power and Politics of Guangchang Wu 1st ed. Edition Rose Martin

https://ebookmass.com/product/the-peoples-dance-the-power-andpolitics-of-guangchang-wu-1st-ed-edition-rose-martin/

Modern Synthesis Processes and Reactivity of Fluorinated Compounds 1st Edition Edition Groult Henri. (Ed.)

https://ebookmass.com/product/modern-synthesis-processes-andreactivity-of-fluorinated-compounds-1st-edition-edition-groulthenri-ed/

Asian Transformations: An Inquiry into the Development of Nations 1st Edition Deepak Nayyar (Eds.)

https://ebookmass.com/product/asian-transformations-an-inquiryinto-the-development-of-nations-1st-edition-deepak-nayyar-eds/

TheChemicalTransformationsofC1Compounds

TheChemicalTransformationsof C1Compounds

Volume1

Editedby

Xiao-FengWu,BuxingHan,KuilingDing,andZhongminLiu

TheChemicalTransformationsof C1Compounds

Volume2

Editedby

Xiao-FengWu,BuxingHan,KuilingDing,andZhongminLiu

TheChemicalTransformationsof C1Compounds

Volume3

Editedby

Xiao-FengWu,BuxingHan,KuilingDing,andZhongminLiu

Editors

Prof.Dr.Xiao-FengWu

DalianNationalLaboratoryforClean Energy

DalianInstituteofChemicalPhysics

ChineseAcademyofSciences 116023Dalian Liaoning,China

Leibniz-InstitutfürKatalysee.V. Albert-Einstein-Straße29a 18059Rostock Germany

Prof.Dr.BuxingHan InstituteofChemistry

ChineseAcademyofSciences No.21stNorthStreet Zhongguancun 100190Beijing China

Prof.Dr.KuilingDing ShanghaiInstituteofOrganicChemistry ChineseAcademyofSciences 354FenglinRoad ChineseAcademyofSciences 200032Shanghai China

Prof.Dr.ZhongminLiu ChineseAcademyofSciences

DalianInstituteofChemicalPhysics 457ZhongshanRoad 116023Dalian China

CoverDesign: Wiley CoverImage: ©SommaiLarkjit/Getty

Allbookspublishedby WILEY-VCH arecarefully produced.Nevertheless,authors,editors,and publisherdonotwarranttheinformationcontained inthesebooks,includingthisbook,tobefreeof errors.Readersareadvisedtokeepinmindthat statements,data,illustrations,proceduraldetailsor otheritemsmayinadvertentlybeinaccurate.

LibraryofCongressCardNo.: appliedfor

BritishLibraryCataloguing-in-PublicationData Acataloguerecordforthisbookisavailablefrom theBritishLibrary.

BibliographicinformationpublishedbytheDeutsche Nationalbibliothek

TheDeutscheNationalbibliothekliststhis publicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableonthe Internetat <http://dnb.d-nb.de>.

©2022WILEY-VCHGmbH,Boschstr.12,69469 Weinheim,Germany

Allrightsreserved(includingthoseoftranslation intootherlanguages).Nopartofthisbookmaybe reproducedinanyform–byphotoprinting, microfilm,oranyothermeans–nortransmittedor translatedintoamachinelanguagewithoutwritten permissionfromthepublishers.Registerednames, trademarks,etc.usedinthisbook,evenwhennot specificallymarkedassuch,arenottobe consideredunprotectedbylaw.

PrintISBN: 978-3-527-34895-4

ePDFISBN: 978-3-527-83187-6

ePubISBN: 978-3-527-83189-0

oBookISBN: 978-3-527-83188-3

Typesetting Straive,Chennai,India PrintingandBinding

Printedonacid-freepaper 10987654321

1DirectConversionsofMethaneviaHomogeneous Processes 1 HuiChen,AnhuaHu,LiangChang,QingAn,HuiPan,andZhiweiZuo

1.1Introduction 1

1.2FormationofMethanolandItsDerivatives 2

1.2.1ElectrophilicActivation 2

1.2.2Radical-MediatedActivation 9

1.3FormationofAceticAcid 11

1.3.1K2 S2 O8 Oxidant-BasedSystems 12

1.3.2O2 Oxidant-BasedSystems 14

1.3.3H2 SO4 Oxidant-BasedSystems 15

1.3.4OtherOxidant-BasedSystems 17

1.4FormationofMethanesulfonicAcid 17

1.5FormationofBorylatedProducts 19

1.6FormationofAminatedProducts 21

1.7FormationofAlkylatedProducts 23

1.8SummaryandConclusions 24

References 26

2ChemicalTransformationsofMethanol 31 ZhengkaiChenandXiao-FengWu

2.1Introduction 31

2.2Methylation 31

2.2.1C-Methylation 32

2.3N-Methylation 42

2.4Hydroxymethylation 49

2.5N-Formylation 51

2.6Methoxylation 54

2.7TheReactionsUsingMethanolastheC1Source 62

2.8Conclusions 65 References 65

3SynthesisofOlefinsfromCH3 OH 71

WennaZhang,YingxuWei,andZhongminLiu

3.1Introduction 71

3.2CatalystsofMethanoltoOlefins 73

3.2.1ZSM-5CatalystwithMFITopologyStructure 73

3.2.2SAPO-34withCHATopologyStructure 73

3.2.3OtherCatalystswith8-MRPoreOpeningandCavityStructure 76

3.3CatalyticReactionMechanismofMethanolConversion 77

3.3.1ReactionCourseofMTOProcess 77

3.3.2DirectMechanismofMethanolConversion 78

3.3.2.1Carbonylation-BasedMechanism 79

3.3.2.2MethoxymethylCarbocationMechanism 81

3.3.2.3Methane-formaldehydeMechanism 81

3.3.2.4Extra-FrameworkAluminum-Assisted(EFAL)InitialC—CBond Formation 83

3.3.2.5OxoniumIon-ylideMechanism 85

3.3.2.6SMS/TMO-mediatedDME/MethanolActivationMechanism 88

3.3.3AutocatalysisCharacterofMethanolConversion 88

3.3.4IndirectMechanismofMethanolConversion 90

3.3.4.1HydrocarbonPoolMechanism 91

3.3.4.2Dual-cycleMechanism 97

3.3.4.3Cyclopentadienes-BasedCycle 100

3.3.5EvolutionfromDirectMechanismtoIndirectMechanism 102

3.3.6ReactionNetworkofMTOProcess 105

3.4DeactivationofMTOReaction 107

3.4.1Low-temperatureDeactivationMechanismofSAPO-34inMTO Reaction 108

3.4.2High-temperatureDeactivationMechanismofSAPO-34inMTO Reaction 109

3.4.3ACage-passingGrowthDeactivatingModelonSAPO-34 112

3.5DMTOProcessDevelopments 115

3.5.1Scale-upSynthesisofDMTOCatalyst 115

3.5.2IndustrialTestofDMTOTechnology 115

3.5.3DMTOTechnologyCommercialization 117

3.5.4DMTO-IITechnology 117

3.5.5DMTO-IIITechnology 118

3.6ConclusionsandOutlook 119 Acknowledgments 119 References 119

4CarbonylationofMethanol:AVersatileReaction 127 DipakK.Dutta

4.1Introduction 127

4.2CarbonylationofMethanoltoProduceAceticAcid 131

4.2.1IndustrialProcesses 131

4.2.1.1TheCobalt-BasedBASFProcess 131

4.2.1.2Rhodium-Catalyst-BasedMonsantoCarbonylationProcess 132

4.2.1.3TheIridium-BasedCativaProcessofBPChemicals 135

4.2.2LaboratoryProcesses 137

4.2.2.1HomogeneousCatalysts 137

4.3ConclusionandFutureAspects 151 Acknowledgments 152 References 152

5FormaldehydeasC1SynthoninOrganicSynthesis 157

WanfangLiandXiao-FengWu

5.1Introduction 157

5.2FormaldehydeasMethylenes(–CH2 –) 159

5.2.1MethylenesLinkingTwoArylGroups 159

5.2.2MethylenesLinkingTwoAlkylGroups 165

5.2.3MethylenesLinkingCarbonandNitrogen 167

5.2.3.1Mannich-TypeReactions 167

5.2.3.2FormationofPropargylAmines 167

5.2.3.3SynthesisofAllylandBenzylAmines 172

5.2.4MethylenesLinkingCarbonandOxygen 176

5.2.4.1Oxa-Pictet–SpenglerReaction 176

5.2.4.2FormationofPropargylAlcohols 178

5.2.5MethylenesLinkingCarbonandHalogens 179

5.2.6MethenynationReactions(=CH2 ) 180

5.2.6.1FormationofTerminalAllenes 180

5.2.6.2MethenynationofAllylicandBenzylicPositions 182

5.2.6.3MethylenynationofCarbonylsviaWittigReaction 183

5.2.6.4 α-MethylenynationsofCarbonyls 184

5.2.7MethylenenLinkingTwoHeteroatoms 185

5.3HydroxymethylationReagent(–CH2 OH) 192

5.3.1HydroxymethylationofCarbonylSubstrates 192

5.3.2PrinsandCarbonyl-EneReactionswithFormaldehyde 199

5.3.3Morita–Baylis–HillmanReactionwithFormaldehyde 205

5.3.4ReductiveHydroxymethylationofAlkenesandAlkynesAllenes 206

5.3.5HydromethoxylationofOrganometallics 211

5.3.6HydromethylationofMiscellaneousCompounds 213

5.4AsCOSource 217

5.4.1CarbonylationReactions 217

5.4.1.1CarbonylationofArylHalides 217

5.4.1.2CarbonylationofAlkenesandAlkynes 220

5.4.2HydroformylationsReactions 223

5.4.3FormaldehydeforKetoneSynthesis 227

5.5AsHydrogenDonorandAccepter 227

5.6AsMethylationandFormylationReagents 230

5.6.1MethylationReagent 230

5.6.2FormylationReagent 232

5.7FormaldehydeasLigandandReductantinOrganometallic Chemistry 234

5.8SummaryandOutlook 235 References 236

6OrganicTransformationsofHCO2 H 249 ZhipingYinandXiao-FengWu

6.1Introduction 249

6.2ProvidingCarbonylMoiety 249

6.2.1ReactionswithArylHalidesorTriflates 250

6.2.2ReactionswithAlkenesorAlkynes 254

6.2.3ReactionswithAmines 256

6.3ProvidingCarboxylMoiety 257

6.3.1ReactionswithArylHalides 257

6.3.2ReactionswithArenes 258

6.3.3ReactionswithAlkenesorAlkynes 260

6.4AsHydrogenSource 263

6.4.1ReducingAlkenesorAlkynes 263

6.4.2ReducingCarbonylGroups 268

6.4.3HydrogenolysisBenzylicC—OBonds 272

6.4.4ReducingNitroGroups 275

6.4.5ReducingUnsaturatedC—NBonds 278

6.5OtherReactions 281

6.6Conclusion 283 References 283

7TheMultifunctionalMaterialsforHeterogenous Carboxylation:FromFundamentalUnderstandingtoIndustrial Applications 289 YunjieDing,LiYan,andXiangenSong

7.1Introduction 289

7.2HydroformylationofOlefins 289

7.2.1HeterogeneousHydroformylation 290

7.2.1.1HydroformylationofEthylene 290

7.2.1.2HydroformylationofPropene 292

7.2.1.3HydroformylationofButenes 293

7.2.1.4HydroformylationofLong-ChainOlefins 298

7.2.1.5AsymmetricHydroformylation 301

7.3HeterogeneousCarbonylation 303

7.4OtherCatalyticReactions 307

7.4.1AsymmetricHydrogenation 307

7.4.2Alkoxycarbonylation 308

7.4.3Suzuki–MiyauraCouplingReactions 311

7.4.4OxidativeHeckReaction 312

7.4.5Hydrogenation 313

7.4.6ChemoselectiveDecarbonylationofAldehydes 315

7.4.7CyclicAdditionReactionofCO2 andEpoxides 315

7.5SummaryandPerspective 319

Acknowledgments 319

ConflictofInterest 319 References 319

8RecentHydrocarbonylationofUnsaturatedHydrocarbonswith HomogeneousCatalyst 325

KaiwuDongandKuilingDing

8.1Introduction 325

8.2TransitionMetal-CatalyzedHydroformylation 327

8.2.1Cobalt-CatalyzedHydroformylation 328

8.2.2Rhodium-CatalyzedHydroformylation 332

8.2.3Ruthenium-CatalyzedHydroformylation 352

8.2.4Iron-,Osmium-,andIridium-CatalyzedHydroformylation 357

8.2.5Metal-FreeHydroformylation 360

8.3TransitionMetal-CatalyzedHydrocarbonylation (ReppeCarbonylation) 361

8.3.1Palladium-CatalyzedHydrocarbonylation 361

8.3.1.1Palladium-CatalyzedHydrocarbonylationofAlkenes 361

8.3.1.2Palladium-CatalyzedEnantioselectiveHydrocarbonylationof Alkenes 383

8.3.1.3Palladium-CatalyzedHydrocarbonylationofAlkynes 386

8.3.1.4Palladium-CatalyzedHydrocarbonylationofInSituGenerated Alkenes 393

8.3.2Nickel-CatalyzedHydrocarbonylation 395

8.3.3Ruthenium-andPlatinum-CatalyzedHydrocarbonylation 397 Acknowledgments 399 ListofAbbreviations 399 References 400

9CarbonylationofC(sp2 )—XBonds 415 HuaanziHu,JianLiu,andQiangZhu

9.1Introduction 415

9.2CommonAspects 415

9.2.1TypesofC(sp2 )—X 416

9.2.1.1Aryl/VinylHalides 416

9.2.1.2Aryl/VinylPseudohalides 417

9.2.2CatalystsorInitiators 418

9.2.2.1NobleMetalCatalysts 418

9.2.2.2Non-NobleMetalCatalysts 420

9.2.2.3PhotoinitiatedRadicalProcess 421

9.2.2.4OtherRadicalProcess 425

9.2.3COSources 425

x Contents

9.2.3.1MetalCarbonylComplex 426

9.2.3.2FormicAcidandItsDerivatives 426

9.2.3.3Others 428

9.2.3.4TheTwo-ChamberSystem 431

9.2.4Nucleophiles 431

9.3DominoCarbonylations 434

9.3.1IntramolecularDominoCarbonylations 434

9.3.2IntermolecularDominoCarbonylations 436

9.4DoubleCarbonylations 438

9.4.1AdjacentCarbonylGroups 439

9.4.2NonadjacentCarbonylGroups 441

9.5AsymmetricCarbonylations 442

9.6Applications 445

9.6.1SynthesisofHeterocycles 445

9.6.2DrugsorNaturalProducts 448 References 452

10CarbonylationofC(sp3 )—XBondsUtilizingCO 459 RenyiShiandAiwenLei

10.1Introduction 459

10.2CarbonylationofAllylCompounds 460

10.2.1AllylMetallicReagents 460

10.2.2AllylHalides 464

10.2.3AllylEsters 466

10.2.4AllylEthers 472

10.2.5AllylAlcohols 473

10.2.6AllylAmines 477

10.3CarbonylationofBenzylicCompounds 477

10.3.1BenzylHalides 477

10.3.2BenzylAlcohol 487

10.3.3BenzylAmines 490

10.3.4Benzyl-H 491

10.3.5Others 492

10.4 α-CarbonylationofCarbonylDerivatives 493

10.4.1 α-HalideCarbonylDerivatives 493

10.4.2 α-HCarbonylDerivatives 494

10.4.3Other 494

10.5CarbonylationofAliphaticAlkylCompounds 495

10.5.1AlkylMetallicReagents 495

10.5.2AliphaticAlkylHalides 496

10.5.3CarbonylationofHeterocycles 503

10.5.4AliphaticC—HBonds 510

10.6Conclusion 515 References 516

11CarbonylativeC—HBondActivation 533

AngelaKaiserandBruceA.Arndtsen

12RecentAdvancesinRadicalCarbonylation 567

ShuheiSumino,TakahideFukuyama,andIlhyongRyu

13AsymmetricCarbonylationReactions 611

Shao-TaoBai,JialinWen,andXumuZhang

14CarbonylativeSynthesisofDPC(DiphenylCarbonate) 667 RaffaellaMancusoandBartoloGabriele

15OxidativeCarbonylationofAmines 687 YanweiCao,LinHe,andChunguXia

16CarbonylationofNitroarenesandRelatedCompounds 721 FabioRagainiandFrancescoFerretti

17Zeolite-CatalyzedCarbonylationofDimethylEther 763 EnshengZhan,ZhipingXiong,andWenjieShen

18ComplexNaturalProductTotalSynthesesFacilitatedby Palladium-CatalyzedCarbonylativeCyclizations 793 YiyangLuo,LeiLi,andMingjiDai

19Metal-CatalyzedAlternatingPolymerizationReactionswith CarbonMonoxide 827

WernerOberhauser

20COHydrogenation 861

JingtingHu,WeiZhou,KangCheng,QinghongZhang,andYeWang

21CarboxylationwithCarbonDioxideasaC1Sourcevia Carbon–CarbonBondFormingReactions 909 TetsuakiFujihara

22CyclizationReactionswithCO2 973

ArjanW.Kleij

23ReductionofCO2 toFormicAcid 1003

BernardB.A.Bediako,QingliQian,andBuxingHan

24ReductionofCO2 toCOandTheirApplications 1027

KarolineT.Neumann,AnneK.Ravn,MartinB.Johansen,AskeS.Donslund, MagnusH.Rønne,HaraldurG.Gudmundsson,andTroelsSkrydstrup

25HydrogenationofCO2 toChemicalswithGreen Hydrogen 1073

FengSha,XinyiLiu,ShanTang,JijieWang,andCanLi

26MethylationReactionswithCO2 1185

Xiang-YangYao,Zhi-WenYang,Hong-RuLi,andLiang-NianHe

27UsingCO2 as–CH–and–CH2 –Sources 1217

Xiao-WangChen,Yong-YuanGui,Yuan-XuJiang,KeJing,Ya-NanNiu, Yue-MingJiang,andDa-GangYu

28CatalyticAsymmetricTransformationofCO2 1265

FachaoYan,Jian-FeiBai,andYuehuiLi

29PolymerizationReactionswithCO2 1305 Wen-BingLiandXiao-BingLu

30Transition-Metal-CatalyzedC–CNCross-Coupling 1337 MuruganDhanalakshmiandPazhamalaiAnbarasan

31RecentAdvancementinTransition-Metal-Catalyzed HydrocyanationofNonpolarUnsaturatedCompounds 1367 RongrongYu,KaiwuDong,andXianjieFang

32OrganicTransformationswithMeNO2 1397 DebaratiDas,NilamPatil,andBhalchandraM.Bhanage

33ApplicationsofDMFasaReagentinOrganicSynthesis 1439 ZechaoWangandXiao-FengWu

34AdvancesintheSynthesisofMethylatedProductsThrough DirectApproaches:AGuideforSelectingMethylation Reagents 1475 YantaoChen

35OrganicTransformationswithDCM,CCl4 ,CHCl3 ,andCHBr3 andOtherRelatedReactions 1577 YunyunLiuandJie-PingWan

36TrifluoromethylationwithCF3 IandOtherRelated Reagents 1609 Xiu-HuaXuandFeng-LingQing

37TheApplicationsofDimethylSulfoxideasaOne-Carbon SourceinOrganicSynthesis 1647 Chong-LiangLiandXiao-FengWu

1667

DirectConversionsofMethaneviaHomogeneousProcesses

HuiChen,AnhuaHu,LiangChang,QingAn,HuiPan,andZhiweiZuo

ShanghaiTechUniversity,SchoolofPhysicalScienceandTechnology,393MiddleHuaxiaRoad,Shanghai 201210,China

1.1Introduction

Naturalgasistypicallyviewedasacleanenergyfuelandaneconomicalchemical feedstockbythechemicalcommunity.Withdwindlingoilsuppliesandthegrowing importanceofreducingtheworldwidedependenceonpetroleum-basedchemical products,therecentdiscoveryofunconventionalreservoirswithlargevolumeshas madeitaneconomicallyattractiverawmaterial.Inadditiontothedirecteconomic gainfromthemakingofvalue-addedchemicalproducts,theupgradingofnatural gasintoliquidchemicalsalsocouldhelpreducethecapitalandemissioncostsofthe long-rangetransportationofnaturalgas.Withmoreandmorecountriesandsocietiescommittingtocarbonneutralityintheforthcomingyears,thedevelopmentof innovativeandeffectivemeansofutilizingthisabundantnaturalresourceformore sustainablechemicalproductionhasbecomeurgent.

Methaneisthemainchemicalcomponentofnaturalgas,andthus,thedirect transformationofmethaneintohigh-valueliquidcommoditychemicalshas attractedenormousamountsofresearchattentionacrossthescientificcommunity overthepastfewdecades[1–8].Nevertheless,thecentralchallengeofmethane functionalizationliesinitslowintrinsicreactivity.Thehomolyticbonddissociation energy(BDE)oftheC—Hbondsinmethaneis105kcal/mol,whichisthehighest amongallofthealkanes,indicatingthatmethaneistheleastreactivelightalkane [9].Inaddition,becauseofmethane’shighionizationpotentialof12.6eV,electron affinityof1.5eV,highpK a of50indimethylsulfoxide(DMSO),andprotonaffinity of132kcal/mol,directconversionsofmethaneinvolvingelectrontransferand protontransferareunfavorable.Besides,thegaseouspropertyofmethaneleadsto itslowsolubilityinmostreactionsolvents(e.g.methanehasa1mMsolubilityin waterat1atmand25 ∘ C),whichrendersthereactionconcentrationofmethane insolutiondisadvantageous.Moreover,theintroductionofanyfunctionalgroups canresultinmoreactivatedC—Hbondsintheproducts,souniqueselectivityfor themethaneC—Hbondshastobeachieved.Despitethesechallenges,tremendous

TheChemicalTransformationsofC1Compounds,FirstEdition. EditedbyXiao-FengWu,BuxingHan,KuilingDing,andZhongminLiu. ©2022WILEY-VCHGmbH.Published2022byWILEY-VCHGmbH.

1DirectConversionsofMethaneviaHomogeneousProcesses

progresshasbeenmadeintheC–Hfunctionalizationofmethaneusingtransition metalcatalystssuchasPt,Pd,andHg[9].Nevertheless,thepracticaldemands ofindustrialdevelopmenthaveimposedseverechallengesontheutilizationof coeffectivecatalystsandreagentsandonecologicallybenignconditionsforthe developmentofhighlyefficientandselectiveC(sp3 )—Hbondfunctionalizations, constantlydrivingthedevelopmentofcatalyticstrategies.

Inthischapter,wesummarizedtheadvancementsinthedirectconversion ofmethanethroughahomogeneousprocess.Notably,tremendousprogress hasbeenachievedintheheterogeneousresearchfield[10–12],andithasbeen well-documentedelsewhere;therefore,itisnotincludedhere.Tofurtherhighlight thepracticalsignificanceofhomogenouscatalyticplatformsinmethaneC–H functionalizations,meanwhilecoveringthetheoreticalaspectoftheeminent strategiesformethaneC–Hactivations,thischapteriscategorizedbasedonthe typeofproductsderivedfromthedirectfunctionalizationofmethane,including methanolanditsderivatives,aceticacid,methanesulfonicacid(MSA),aminated products,alkylatedproducts,andborylatedproducts(Figure1.1).

1.2FormationofMethanolandItsDerivatives

Methanolisaversatilecommoditychemical,transportationfuel,andapromising energycarrier.Withmorethan20milliontonsproducedannually,methanolis mainlyproducedindustriallyfromsyntheticgas.Inthepastdecades,significant researchefforthasbeendedicatedtodevelopingamethodforthedirectoxidation ofmethaneintomethanolanditsderivativeswiththegoalofobviatingmultistep andenergy-intensiveprocesses[13].ThecentralchallengeliesinthelowintrinsicreactivityofmethaneincomparisontoactivatedC—Hbondsofmethanol (96kcal/mol).Consequently,theconversionofmethaneandtheselectivityof oxidativeproductshavebecomeimportantfactorsaffectingthereactionefficiency, andoveroxidationhastobesuppressedtoalargeextent.Despitethesignificant challenges,tremendousprogresshasbeenachievedinthelast40years.Inthis section,wedividedtheselectedexamplesintotwopartsbasedontheactivation modesofthemethane:thetransitionmetal-catalyzedelectrophilicactivationof methaneintoM–CH3 species,theradical-mediatedactivationofmethanethrough hydrogenatomtransfer(HAT)intoamethylradicalintermediate.

1.2.1ElectrophilicActivation

TheC(sp3 )—Hbondofmethanecanbeactivatedbyaweakcoordinationwithcertaintransitionmetalcenters,namelyelectrophilicactivation.Morespecifically,this activationstrategyconsistsoftwosteps:themetalionofcomplexedwithC(sp3 )—H bondofmethaneinanelectrophilicfashion,theformedmetal–methanecomplex couldundergooxidationandreductiveeliminationtogeneratetheC–Hfunctionalizationproducts.Theseefficientmetalcatalystsformethaneoxidationareexpected toberelativelysoftandeasytopolarizeandhighlyelectrophilicspeciesthatcanform

C–H BDE: 105 kcal/mol

Ionization potential: 12.6 eV

Electron affinity: 1.5 eV

Proton affinity: 132 kcal/mol

Abundant C1 feedstock

Homogeneous conditions

Figure1.1 Directconversionsofmethaneviahomogeneousprocesses.

Reactive intermediate

Diverse functionalizations

CH3OH, CH3OR CH3CO2H CH3SO3H CH3–NHR CH3-CHR1R2 CH3−BR2

Value-added products

1DirectConversionsofMethaneviaHomogeneousProcesses relativelystrongcovalentbondswithcarbonatomsarealsogoodoxidants.Moreover, owingtotheactivatedC—Hbondsinmethanolanditsderivatives,highlyacidic mediasuchasoleumandtrifluoroaceticacidareusuallyrequiredforensuringa highselectivity.

Intheearly1980s,Shilovetal.reportedtheK2 PtCl4 catalyzeddirectconversion ofmethaneintomethanolforthefirsttime[14,15].EmployingK2 PtCl6 asthe oxidantattherelativelymildconditions,thisreactionexhibitsgoodselectivity forthegenerationofmethanolproduct.Acatalyticcycleofthisapproachwas proposedinFigure1.2.TheactivationofC—Hbondsofmethaneby(H2 O)2 PtCl2 speciesaffordsaPt(II)–CH3 intermediate,whichisthenoxidizedtoahigh-valent Pt(IV)–CH3 speciesbyK2 PtCl6 .ReductiveeliminationofthePt(IV)–CH3 intermediateyieldsthemethanolproductandregeneratesthecatalyst.Thismethodopens upnewavenuefortheelectrophilicactivationofmethaneviaahomogeneous process;however,thecharacteristicsoflowturnoverfrequency(TOF, <10 5 s 1 at <100 ∘ C),lowturnovernumber(TON, <20),stoichiometricuseofK2 PtCl6 , andthedistributionofoxidationproductsrenderthismethodinefficientin somedegree.

In1998,Perianaetal.reportedaplatinum-catalyzeddirectoxidationofmethane intothemethylester[16].The2,2′ -bipyrimidine(bpym)ligandusedinthisreaction playsacrucialroletoprolongthecatalystlifeandfurtherimprovetheTONs.They

50 mM (bpym)PtCl2

+ H2SO4, 220 °C

Figure1.3 ModificationoftheShilovreactionwith(bpym)PtCl2 complex.Source:Modified fromMironovetal.[17].

foundthatthe(bpym)PtCl2 complexisbeneficialtoincreasetheconversionof methanebyupto90%andtheselectivitybyabout81%at220 ∘ Cinconcentrated sulfuricacid,withmethylbisulfateasthemajorproduct.Incomparisontothe K2 PtCl4 ,the(bpym)PtCl2 catalystisabletocircumventtheformationofPtblack. Consequently,theTONsofthereactionareupto300withtheTOFisabout10 3 s 1 AsdepictedinFigure1.3,acatalyticcycleofthiscatalyticsystemwasproposed [17].Initially,theelectrophilicactivationofmethanebytheactive(bpym)Pt(II) formsa(bpym)Pt(II)–CH3 species(stepk1 ).Then,the(bpym)Pt(II)–CH3 species couldeitherreducethe(bpym)Pt(IV)intermediateintotheactive(bpym)Pt(II)via aself-repairreaction(stepk5 )orbetransformedinto(bpym)Pt(IV)speciesbythe oxidationwithH2 SO4 (stepk2 ).Finally,reductiveeliminationofthe(bpym)Pt(IV) speciesgeneratesthemethylbisulfateproduct(stepk3 ).

Nevertheless,theactivityof(bpym)PtCl2 catalystishighlysensitivetowaterand evenasmallamountsofwaterinthisreactionsystemwouldcausediminished activity.Inordertoobtainthehighconversionandefficiency,highcatalystloading

1DirectConversionsofMethaneviaHomogeneousProcesses isrequired.Moreover,asthereactiongenerateswatercontinuously,theTOF decreasessharplyto <10 5 s 1 whentheconcentrationofH2 SO4 dropsbelow90%. Toovercomethisproblem,additionalSO3 isneededtopreventthewateraccumulationthroughtheincorporationofwaterintoH2 SO4 .Thusly,theconcentrationof H2 SO4 remainsabove98%throughouttheoxidativeprocess.

Theseparationofmethanolfromthereactionmixtureisdifficultbecauseatleast twovolumeequivalentsofwaterarerequiredtodilutethehighlyacidicsystem, resultingintheincreasedcost.Michalkiewiczetal.developedalow-pressure membranedistillationtechniquetoseparatethemethylbisulfatefromthereaction mixture[18].Schüthandcoworkersinvestigatedthecrucialfactorsforselective oxidationofmethanetomethylbisulfatewithplatinumsalts[19–21].Theyfound thattheuseof(bpym)PtCl2 in20%oleumcaneffectivelyincreasetheTOFand selectivity(Table1.1).Moreover,differentcatalystshavebeenfoundeffectiveto enhancetheelectrondensityofthePtcentertoachieveahighercatalyticactivity. ThescreeningresultdisclosesthatsimpleplatinumsaltK2 PtCl4 issuperiortothe (bpym)PtCl2 catalyst,withTOFsofupto25000h 1 andTONsofgreaterthan16000 in20%oleum.Later,Leeandcoworkersintroduceda(DMSO)2 PtCl2 -catalyzed methaneoxidationtogeneratemethylbisulfateinoleumsystem[22].Comparing with(bpym)PtCl2 andK2 PtCl4 catalysts,(DMSO)2 PtCl2 catalystexhibitedan enhancedcatalyticactivityregardingboththeyieldsandtheTONsofmethyl bisulfate.Underacatalystconcentrationof3.0mM,theyieldofmethylbisulfate reaches84%with94%selectivity.Besides,theTONscanbeimprovedto19000at thelowcatalystconcentration.

InadditiontoPt(II)catalysts,othertransitionmetalsaltssuchasHg(II)[23,24] andAu(I)orAu(III)[25,26]werealsodemonstratedtobeeffectivecatalystsforthe oxidationofmethaneintomethanolormethylesterinhighlyacidicmedia,suchas concentratedsulfuricacidorH2 SeO4 .However,thecatalyticefficienciesaresomewhatinferiortothatobtainedinPt(II)-catalyzedsystems(Table1.2).

Generally,theelectrophilicactivationofmethanebythesecatalystsisrestrictedin acidicmediasimilartoorstrongerthanH2 SO4 /SO3 athightemperaturesintermsof thecatalyticactivityandcatalystsolubility.Consequently,amorereactivecatalystis requiredincatalyticreactionsemployingmuchweakeracidicmediasuchasacetic acidandtrifluoroaceticacid.SenandcoworkersreportedaPd(II)-catalyzedoxidativeofmethanetomethyltrifluoroacetatewithtrifluoroaceticacidasthesolvent [27,28].ThisapproachutilizesPd(O2 CC2 H5 )2 asthecatalystandH2 O2 astheoxidant,methyltrifluoroacetate,couldbeobtainedwithin30minutesat90 ∘ C.Whereas thelowTONofabout5isobtained,thisPdcatalyzedsystemrepresentsasuccessful exampleofmethaneactivationunderrelativelyweaklyacidicconditionsatalow temperature.

Strassnerandcoworkershavedemonstrated N -heterocycliccarbenes(NHC)as effectiveligandsforPd(II)toactivatethemethane[29,30].Theyfoundthatsolutions ofPd(II)complexesofNHCsinacidscatalyzedtheformationofmethylesterswith ahighselectivityat80 ∘ C.TheTONofthePdcatalystcouldreach41whenK2 S2 O8 employedastheoxidant(Table1.3).

1.2FormationofMethanolandItsDerivatives 7

Table1.1 ModificationsonPtcatalystsforhomogeneousoxidationofmethanetomethyl bisulfate.

1b)

2a)

3a)

>75576570

4a) (bipy)PtCl2

5a) (NH3 )2 PtCl2

2150.69714460840

2150.69819200650

6a) PtCl2 2150.69715300770

7a) Pt(acac)2 2150.689722500880

8a) K2 PtCl4

2150.698Upto25000Upto16000

9a) (DMSO)2 PtCl2 180394630019000

a)In20%oleum.

b)In98%H2 SO4

Baoandcoworkersachievedacatalyticsystemforthedirectaerobicoxidation ofmethaneviathemergingofPd2+ /Pd0 ,Q/H2 Q,andNO2 /NOintrifluoroacetic acid[31].Thismethodrepresentsthefirstexampleutilizinganorganiccocatalyst fortheselectivemethaneoxidation.Theproposedcatalyticcycleisdescribedin Figure1.4,Pd(II)isresponsiblefortheC(sp3 )–Hinsertionandleadstotheformation ofPd(II)–methylcomplex,whichreadilyundergoesreductiveeliminationtoform theoxidizedproductCF3 COOCH3 andPd(0)species.Thesingleelectrontransfer betweenPd(0)andbenzoquinone(BQ)willregeneratePd(II)forcatalystturnover. InordertoachievethecatalyticcycleofBQ,NO2 couldfunctionalizeaselectron shuffleandcanbegeneratedwithmolecularoxygenservingasterminaloxidants.

8 1DirectConversionsofMethaneviaHomogeneousProcesses

Table1.2 Homogeneousoxidationofmethanetomethylbisulfateunderstrongacidic media. CH4

Metal catalyst CH3OSO3H

Solvent, oxidant

EntryCatalyst

(∘ C)

andoxidant

(h 1 )TON

1 PtII NN NN Cl Cl 220102%H2 SO4 908136Upto500

2Hg(OSO3 H)2 180100%H2 SO4 50853.615

3Au0 1803MSeO3 in 96%D2 SO4 8773.632

4Au0 1803MSeO3 in 96% D2 SO4 + 2% SO3 28942.78

5PdSO4 16030%oleum11000.40.8

Table1.3 HomogeneousoxidationofmethanetomethyltrifluoroacetatebyPd(II).

CH4 CF3CO2H +CF3CO2CH3 Pd(II), oxidant CF3CO2H

EntryCatalystOxidant Temperature (∘ C)TON

1Pd(OCOC2 H5 )2 H2 O2 905 2 N N N N Pd Br Br Me Me K2 S2 O8 9030

3Pd(hfacac)2 H2 O2 5050

4Pd(OAc)2 /Q/NO2 O2 807 5 N N R N N Pd Cl Cl K2 S2 O8 8041

6a) PdCl2 (bpy)/Q/H5 PMo10 V2 O40 O2 80118

a)TFA/C8 F18 /H2 Owasused.

1.2FormationofMethanolandItsDerivatives

CombinedredoxcouplesforcatalyticoxidationofmethanebyO2 .

1.2.2Radical-MediatedActivation

TheactivationofmethanethroughaHATprocess,albeitchallengingduetothe highC(sp3 )—HBDE,hasbeendemonstratedtobeeffectiveinproducingthehighly reactivemethylradicalinsituwithinahomogenoussystem.Trappedbylow-valency metalspeciesoroxidizeddirectlybyoxygen,themethylradicalcantherebyyield productscontainingmethylfunctionalizedgroupsviaeitherreductiveelimination ordirectoxidization,deliveringmethanol,formicacid,etc.asproducts.

EmployingK2 S2 O8 asthestoichiometricradicalinitiator,PdSO4 ascatalyst,fumingsulfuricacidassolvent,Senandcoworkersdisclosedahighlychemoselective protocolforthedirectC–Hfunctionalizationofmethane,impressivelymethyl bisulfatewastheonlyproduct[32].Athree-step,liquid-phaseprocessinitiatedby urea–H2 O2 systemincombinationwithRhCl3 catalystwasdevelopedforthepartial oxidationofmethanetomethanol,usingSO3 astheoxidant(Figure1.5)[33].Inthe firststep,MSAisobtainedthroughthecaptureofthemethylradicalbySO3 .Then, thisintermediatewasoxidizedwithalargeexcessofSO3 at160 ∘ Ctofurnishmethyl bisulfate,whichsubsequentlyhydrolyzedtoformthefinalproductmethanol.

Inarelativeweakeracidictrifluoroaceticacidmedia,selectivemethaneC–HfunctionlizationtomethyltrifluoroacetatecanbeachievedbyusingaCu(OAc)2 /K2 S2 O8 catalystsystem,withaTONofupto151andanearlyquantitativeyield(96.3%)based CH4 SO3 CH3SO3H cat. Urea/H2O2, cat. RhCl3 + CH3SO3H, 75 °C CH3X SO3 160 °C H2O CH3OH Where X = –OSO3CH3, –OSO3CH3

Figure1.5 Radical-initiatedoxidationofmethanebyK2 S2 O8 .Source:Modifedfrom Mukhopadhyayetal.[33].

Figure1.4

1.1 mol% Cu(OAc)2 5 mmol K2S2O8 CF3CO2H/(CF3CO)2O

Figure1.6 Cu(OAc)2 -catalyzedmethaneoxidation.Source:BasedonYinetal.[34].

ontheamountofmethane(Figure1.6)[34].Thiscoppercatalyzedsystemisbelieved tobeinitiatedbythesingle-electronoxidationofmethylradicalintoCH3 + species bytheCu(II)andthenrapidlyreactwiththesolventtrifluoroaceticacidtoobtain themethyltrifluoroacetate.

In2018,vanBokhovenandcoworkerreportedaselectivemethodtoconvert methanetomethyltrifluoroacetateat90 ∘ Cwithlowpressures(5bar)usingcopper(II)oxidecatalyst,resultingina63%yieldwithaTONof33anda71%conversion [35].Notably,aremarkablefeatureofthecatalyticplatformistherecyclabilityof thecoppercatalyst,whichcanbeusedasecondtimewithoutsignificantdecrease inthecatalyticactivity.

AnelegantexampleofgeneratingmethylradicalswasreportedbyPerianalab, usingacombinationofchlorideandiodateasoxidant[36].Theproductmethyltrifluoroacetatewasobtainedwithgoodselectivity(>85%)in20%yieldfrommethane. Thismetal-freeprocessinitiatedbyoxidativeformationofchlorineradical,which wasacompetentHATreagenttoactivatemethaneintohighlyreactivemethylradical.TheresultantmethylradicalwasthentrappedbyI2 toformmethyliodide,which canbesubsequentlyconvertedintomethyltrifluoroacetateinthetrifluoroaceticacid solvent(Figure1.7).

HydroxylradicalwasalsoproventobeaneffectiveHATagenttoactivatemethane togeneratemethanolandmethylester[37,38].Recently,theOhkuboandHirose developedaone-stepprocessfortheoxygenationofmethaneintomethanoland formicacidusingchlorinedioxideasanefficientradicalprecursortogeneratechlorineradicalsunderlightirradiation[39].Thekeytothesuccessofthisprocessis theuseofaperfluorinatedsolvent(i.e.perfluorohexane).Byformingatwo-phase systemwithwater,goodselectivitycouldbeachievedthatseparatedtheproductsin thewaterphaseformtheoxidationprocessinthefluorousphase.Inthisway,14% and85%yieldsofmethanolandformicacid,respectively,wereobtainedunderambientconditions,withamethaneconversionof99%,withouttheformationoffurther overoxidizedproducts.

Recent,HuandcoworkersdemonstratedthatinexpensiveFeCl3 saltcouldcatalyzethedirectoxidationofmethanewiththeemploymentofH2 O2 asoxidantunder

Figure1.7 Functionalizationofmethanebyiodate/chloridesystem.

amildcondition(50 ∘ C)inwater[40].Notably,theefficiencyofthiscatalyticoxidationwasevidencedbyaremarkableyieldsofmethanol(1972.2 μmol/gcat)and formicacid(33273.5 μmol/gcat),withahighTOFof5.7h 1 . Naturecreatesauniqueradical-reboundmechanismtoachievehighlyselective methaneaerobicoxidation,thuslyformmethanolselectivelybymethanemonooxygenases(MMOs).Centraltothisstrategy,ahigh-valentiron(IV)oxoclustercan easilyabstractonehydrogenatomfrommethyltoreleasethemethylradical,which wouldbesubsequentlycapturedbythedinuclearironclustertogeneratemethanol, avoidingthenonselectivecouplingofmethylradicalwithoxygen[41–43].Although extensivemechanisticstudieshavebeenconducted,thechallengesinefficient productionofthisactiveenzymehavehamperedtheuseforindustrialapplications,drivingthedevelopmentofmorerobustcatalyticsystem.In2012,Arnold andcoworkersreportedamethanehydroxylationbycytochromeP450using iodosylbenzeneastheterminaloxidant[44].Shortlyafterthisreport,Kamachi andcoworkersdescribedamodifiedphotosyntheticsystemcontainingaparticle methanemonooxygenase(pMMO),wherenicotinamideadeninedinucleotide (NADH)generatedfromwateroxidationinthethylakoidwaspassedontoassistant theactivationoxygeninthepMMOsystem[45].In2019,Leeandcoworkers developedaninnovativeapproachtoproducepMMO-mimicsin Escherichiacoli throughmolecularreconstructiontechnologies[46].Incomparisontothenative pMMOsystem,theseeasilyaccessibleenzymesdemonstratedcomparablecatalytic efficiencyinmethaneoxidation.

1.3FormationofAceticAcid

Aceticacidisanimportantcommodityfeedstockwidelyusedintheproduction ofagrochemical,pharmaceutical,andpolymermaterials.Theglobaldemandfor aceticacidisabout6.5Mt/a,ofwhichapproximately5.0Mt/aismanufactured

1DirectConversionsofMethaneviaHomogeneousProcesses

frommethanol.Theindustrial-scaleproductionofaceticacidcurrentlyinvolves athree-stepprocessbasedonthehigh-temperatureconversionofmethaneto syngas,theconversionofsyngastomethanol,andthecarbonylationofthe methanoltoaceticacid.Thedirectcarbonylationisimplementedthroughthe rhodium-catalyzedMonsantoprocessandtheiridium-catalyzedCativaprocess [47].Theintensiveenergyrequirements,highcost,andmultistepreactionrequired forthisproductionprocessleadtoitslowereconomy.Inrecentdecades,significant researcheffortshavebeenmadeconcerningthedirectconversionofmethaneto aceticacid,ofwhichdirectC–Hoxidativecarbonylationrepresentsanefficient route.Generally,oxidantsarerequiredinthiscrosscouplingofmethaneandcarbon monoxide,andoftentimesplayasignificantroleintheefficiencyandselectivity. Thissectionisorganizedbasedontheoxidantsemployedinthedirectoxidative carbonylationofmethanetoaceticacid,includingK2 S2 O8 ,O2 ,H2 SO4 ,andother oxidants.

1.3.1K2 S2 O8 Oxidant-BasedSystems

Becauseofitslowtoxicity,availability,andstability,K2 S2 O8 hasbeenfoundtobea suitableoxidantforoxidativereactions.Inparticular,itbehavesnotonlyasanoxidantbutalsoasasourceofinitiatedradicalsduringthedirectconversionofmethane toaceticacid.ThroughaK2 S2 O8 -mediatedreaction,LinandSenachievedthefirst exampleofoxidativecarbonylationofmethanewithCOinwater(Table1.4)[48].A modeofhydrogen-atomabstractionprocessbythesulfateradicalspecies,generated fromK2 S2 O8 ,formethaneoxidativeconversiontoaceticacidwasproposedinthis approach.Inthesameyear,Fujiwaraetal.reportedthefirstcatalyticapproach ofPd(OCOEt)2 /CuSO4 -catalyzeddirectcarbonylationofmethanetoaceticacid mediatedbyK2 S2 O8 oxidant[49].ThisreactioncanbecatalyzedbyPd(OCOEt)2 andCuSO4 individuallyorincombination,butthehighestyieldwasobtained whenCuSO4 wasusedasthecatalystalone.Inthefollowingdecade,thesearch foranefficientcatalystforthesynthesisofaceticacidfrommethaneemploying K2 S2 O8 astheoxidantwascontinuedbytheFujiwaragroup,namely,aCu(OAc)2 catalyst[50],aYb2 O3 catalyst[51],aVO(acac)2 catalyst[52,53],aMgcatalyst [54],aCo(OAc)2 catalyst[55,56],aCaCl2 catalyst[57],andaMo/CaCl2 catalyst [58].Amongthem,theVO(acac)2 catalystdemonstratedthehighestconversion efficiency,achieving97%and93%molaryieldsofaceticacidbasedonmethane usingCO2 [52]andCO[53]asthecarbonylatingagents,respectively.Inaddition, CaCl2 isalsoaneffectivecatalyst,providinga93.8%molaryieldfrommethaneafter 140hours.

BellandcoworkersalsostudiedthedirecttransformationofmethaneandCO2 to aceticacidusingaVO(acac)2 andK2 S2 O8 catalyticsystem[59].Theyfoundthatthe aceticacidispredominantlyformedbythereactionofmethaneandtrifluoroacetic acidwiththecoproductionofCHF3 whenthesolventistrifluoroaceticacid.Note thatthereactionofmethanewithCO2 isthermodynamicallyunfavorable;however, thetransformationofmethanewithtrifluoroaceticacidisthermodynamicallyfavorable[60,61].Inthisprotocol,an ∼7%conversionofmethanetoaceticacidwas

Table1.4 DirectconversionofmethanetoaceticacidutilizingK2 S2 O8 astheoxidant.

Catalyst K2S2O8, solvent [CO] +

EntryCatalyst[CO]a) Solvent

1NoneCOD2 O105–115——n.a.

2CuSO4 COCF3 CO2 H8039.40.881

3Cu(OAc)2 COCF3 CO2 H80111.35.570.9

4Yb2 O3 COCF3 CO2 H8010.05n.a.

5VO(acac)2 CO2 CF3 CO2 H80241.2097

6MgCOCF3 CO2 H800.050.0021

7Co(OAc)2 COCF3 CO2 H700.20.020.1

8VO(acac)2 COCF3 CO2 H80301.593

9CaCl2 COCF3 CO2 H8030.50.1593.8

10Mo/CaCl2 COCF3 CO2 H85170.8589.4

11VO(acac)2 CO2 FumingH2 SO4 85n.a.n.a.7

12Ca[V(ON(CH (CH3 )CO2 )2 )2 ]

NoneCF3 CO2 H8013.40.6729.4

13HPACOCF3 CO2 H80300015020

14Ca[V(HIDA)2 ]COCF3 CO2 H805630281.554

a)Corbonylatingagent.

b)Turnovernumber(molesofaceticacidpermoleofcatalyst).

c)Turnoverfrequency(molesofaceticacidpermoleofcatalystperhour).

d)Highestmolaryield(%)ofaceticacidbasedonmethane. n.a.,notapplied.

obtainedwhenfumingsulfuricacidwasutilizedasthesolvent,andtheformation ofCH3 SO3 HwasinhibitedinthepresenceofCO2 underthesereactionconditions. Specially,thewaterformedduringthisprocessmustbeabsorbedinanaccompanyingreactionfortheoverallthermodynamicstobefavorable.

ThePombeirogroupachievedthedirectconversionofmethaneintoaceticacid employingvanadiumcomplexeswithN,O-,O,O-ligands,orheteropolyacidsas catalystsandK2 S2 O8 astheoxidant[62–64].Inthesereactions,thehighestmolar yieldofaceticacidfrommethanewas54%,andtheTONwasupto5630.The catalyststillremainedactiveafteritssolutionwasrecycledmultipletimes,andthe recyclingofthereactionprocedurewasconductedbysimplyaddednewportions oftheK2 S2 O8 oxidantandthemethaneandCOforeachrun.Densityfunctional theorymechanisticstudieshaveshownthatthiscarboxylationofmethaneproceeds througharadicalmechanism,involvingthesequentialformationofmethylradicals, acetylradicals,andperoxyacetylradicals.Uponhydrogenatomabstractionfrom thetrifluoroaceticacidorthemethane,thisprocessyieldsaceticacid(Figure1.8).

1DirectConversionsofMethaneviaHomogeneousProcesses

Figure1.8 Proposedmechanismoftheradicalformationandcarboxylationofmethaneto aceticacid.

1.3.2O2 Oxidant-BasedSystems

O2 ,whichconstitutes20.95%oftheEarth’satmosphere,isoneofthemostabundant,inexpensivefeedstockmaterials.Fromacommercialpointofview,direct catalytictransformationofmethaneintoaceticacidemployingO2 astheoxidant wouldbeanidealprocess.Nevertheless,thethermodynamicdrivingforceofthe C–Obandformationbetweenmethaneandoxygen,comparedtothesluggish couplingofmethaneandcarbonmonoxide,hasresultedinasignificantchallenge toachieveselectiveformationofaceticacidinthepresentofC1oxidativeproducts. Thefirsttodemonstratethefeasibilityofcatalyticoxidativecarbonylationof methanetoaceticacidunderO2 oxidantconditionswereLinandSen[65],using theRhCl3 –HCl–HI(KI)catalyticsysteminanaqueousmedium,andFujiwara etal.[66],employingPd(OAc)2 /Cu(OAc)2 asthecatalystintrifluoroaceticacid (Table1.5).TheTOFoftheaceticacidwas0.07h 1 underreactionconditions developedbytheSenetal.and0.10h 1 underreactionconditionsdevelopedby Fujiwaraetal.Inaddition,Senetal.showedthatMeOHwasnottransformedinto aceticacidundertheirreactionconditionsbutwasoxidizedtoformicacid.The roleofI inthisprotocolhasnotyetbeenunambiguouslydetermined.Inaddition, COcanbereplacedwithCO2 intheFujiwaraetal.system,resultinginaTOFof 0.83h 1 .FurtherstudiesbasedontheRhCl3 –Cl –I catalyticsystemwereconductedbySenandcoworkers[67],Grigoryanandcoworkers[68],andChepaikin etal.[69],andtheyusedC3 H7 CO2 H/D2 O,CD3 CO2 D/D2 O,andCF3 CO2 D/D2 O aqueousmediums,respectively.Intheseprocesses,improvedyieldswereobtained fortheoxidativecarbonylationofmethane.Shul’pinandcoworkersachievedthe vanadiumcomplex-catalyzedcarboxylationofmethanewithCOorCO2 inan aqueoussolution[70].TheTONoftheaceticacidwas37after50hoursat100 ∘ C

Table1.5 DirecttransformationofmethanetoaceticacidusingO2 astheoxidant.

Catalyst O2, solvent [CO] +

1RhCl3 COD2 O9527.60.07

2RhCl3 • 3H2 OCOC3 H7 CO2 H/ HFIP/D2 O 80441.29

3RhCl3 COCD3 CO2 D/ D2 O

4RhCl3 • 4H2 OCOCF3 CO2 D/ D2 O 95n.a.n.a.

5Pd(OAc)2 / Cu(OAc)2 COCF3 CO2 H804.10.1

Pd(OAc)2 / Cu(OAc)2

7K2 PdCl4 / H5 PMo10 V2 O40

a)Carbonylatingagent.

b)Turnovernumber(molesofaceticacidpermoleofcatalyst).

c)Turnoverfrequency(molesofaceticacidpermoleofcatalystperhour).

d)K2 S2 O8 wasusedastheoxidant.

e)H2 O2 wasusedastheoxidant. n.a.,notapplied.

inthepresenceofO2 andanNaVO3 catalyst.Likewise,whenthereactionwas conductedinanNaVO3 andpyrazine-2-carboxylicacid(PCA)catalystsystemwith H2 O2 astheoxidant,theTONoftheaceticacidwas22after50hoursat40 ∘ C.In addition,CO2 canbeusedinsteadofCOinthisapproach,resultinginaTONof20 fortheaceticacidafter30hoursat40 ∘ C.Recently,Haoetal.reportedtheK2 PdCl4 andH5 PMo10 V2 O40 (HPA)-catalyzedpartialoxidationofmethaneusingO2 asthe oxidantatalowtemperature[71].TheTONofaceticacidwasashighas4167,and theconversionofmethanewasupto11%aftereighthoursat80 ∘ C.

1.3.3H2 SO4 Oxidant-BasedSystems

Transitionmetal-catalyzedoxidativeconversionsofmethanetoaceticacidinliquid sulfuricacidhavebeenestablished,whereinH2 SO4 notonlyservesasareaction solventbutalsoasanoxidant.Perianaetal.achievedthePd-catalyzed,highlyselectiveoxidativecondensationoftwomethanemoleculestoaceticacidinonestep (Figure1.9)[72,73].TheproposedelectrophilicC—Hbondactivationofmethaneby

1DirectConversionsofMethaneviaHomogeneousProcesses

20 mM PdSO4 H2SO4, 180 °C

Figure1.9 Proposedmechanismfortheoxidativecondensationoftwomethane moleculestoaceticacid.

thePd(II)speciestogenerateaPd–CH3 intermediateiscrucialtothisreaction.The methylgroupoftheaceticacidoriginatesfromthemethane,andthecarboxylgroup originatesfromtheMeOH,whichisalsogeneratedinsitufromthemethane.The productselectivityofthisreactionisreportedtobeashighas90%,whilethecatalytic efficiencyremainslow.AlthoughMeOHistheprecursorofCO,theadditionofhigh concentrationsofCOcausesthereactiontoshutdownbecausethereductionrateof Pd(II)withCOoutstripsthereoxidationrateofPd(0).Asaresult,thecarbonylation processoccursonlyatlowlevelsofCOviatheinsituoxidationofmethanol.This tandemcatalysisinvolvesmethaneelectrophilicC—Hbondactivationtogenerate Pd–CH3 species,followedbytheefficientoxidativecarbonylationwithMeOHgeneratedinsitufrommethanetoformaceticacid.Inthistransformation,concentrated H2 SO4 istheoxidantusedforthereoxidationofthePd(0)speciestoPd(II)intermediatesinthecatalyticcycle,andthisprocessisbelievedtobetherate-determining step.Thisstepcanbeaccelerateddramatically;however,whenCuCl2 andO2 are introducedtothereactionmixture[74].Consequently,theyieldofaceticacidis increasedsignificantlycomparedwiththatobtainedutilizingPdSO4 alone.Belletal. investigatedtheeffectsofthereactionconditionsandmechanismindetail,including identifyingCOasareactionintermediateandidentifyinganintermolecularprocess inthegenerationoftheproducts[75].

InadditiontothePd-catalyzedoxidativeconversionofmethanetoaceticacid inliquidsulfuricacid,thePt(II)catalystcanbeusedasanalternativecatalystfor thisreaction.ZerellaandBelldescribedthePt-catalyzedoxidativecarbonylationof

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.