[FREE PDF sample] Intelligent data mining and analysis in power and energy systems : models and appl

Page 1


Intelligent Data Mining and Analysis in Power and Energy Systems : Models and Applications for Smarter Efficient Power Systems 1st Edition Zita A. Vale

Visit to download the full and correct content document: https://ebookmass.com/product/intelligent-data-mining-and-analysis-in-power-and-en ergy-systems-models-and-applications-for-smarter-efficient-power-systems-1st-editio n-zita-a-vale/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Power System Protection: Fundamentals and Applications (IEEE Press Series on Power and Energy Systems) 1st Edition Ciufo

https://ebookmass.com/product/power-system-protectionfundamentals-and-applications-ieee-press-series-on-power-andenergy-systems-1st-edition-ciufo/

Intelligent Systems and Learning Data Analytics in Online Education: A volume in Intelligent Data-Centric Systems Santi Caballé

https://ebookmass.com/product/intelligent-systems-and-learningdata-analytics-in-online-education-a-volume-in-intelligent-datacentric-systems-santi-caballe/

Applications of modern heuristic optimization methods in power and energy systems Lee Kwang Y.

https://ebookmass.com/product/applications-of-modern-heuristicoptimization-methods-in-power-and-energy-systems-lee-kwang-y/

Predictive Modelling for Energy Management and Power Systems Engineering Ravinesh Deo

https://ebookmass.com/product/predictive-modelling-for-energymanagement-and-power-systems-engineering-ravinesh-deo/

https://ebookmass.com/product/big-data-application-in-powersystems-reza-arghandeh/

Electrochemical Power Sources: Fundamentals, Systems, and Applications Tom Smolinka

https://ebookmass.com/product/electrochemical-power-sourcesfundamentals-systems-and-applications-tom-smolinka/

Intelligent Coordinated Control of Complex Uncertain Systems for Power Distribution and Network Reliability

1st Edition Meng Xiangping

https://ebookmass.com/product/intelligent-coordinated-control-ofcomplex-uncertain-systems-for-power-distribution-and-networkreliability-1st-edition-meng-xiangping/

Power Electronics, Motor Drive Systems: Fundamentals, Experiments and Applications Manias

https://ebookmass.com/product/power-electronics-motor-drivesystems-fundamentals-experiments-and-applications-manias/

Applied Power Quality: Analysis, Modelling, Design and Implementation of Power Quality Monitoring Systems

Sarath Perera

https://ebookmass.com/product/applied-power-quality-analysismodelling-design-and-implementation-of-power-quality-monitoringsystems-sarath-perera/

IEEEPress

445HoesLane Piscataway,NJ08854

IEEEPressEditorialBoard

SarahSpurgeon, EditorinChief

JónAtliBenediktssonAndreasMolischDiomidisSpinellis

AnjanBoseSaeidNahavandiAhmetMuratTekalp

AdamDrobot

Peter(Yong)Lian

JeffreyReed ThomasRobertazzi

IntelligentDataMiningandAnalysisinPowerand EnergySystems

ModelsandApplicationsforSmarterEfficientPowerSystems

GECADResearchGrouponIntelligentEngineeringandComputingforAdvancedInnovation andDevelopment(GECAD)PolytechnicInstituteofPorto(ISEP/IPP)Porto,Portugal

TiagoPinto

GECADResearchGrouponIntelligentEngineeringandComputingforAdvancedInnovation andDevelopment(GECAD)PolytechnicInstituteofPorto(ISEP/IPP)Porto,Portugaland UniversityofTrás-os-MonteseAltoDouroVilaReal,Portugal

MichaelNegnevitsky

SchoolofEngineering,UniversityofTasmaniaHobart,Tasmania,Australia

GaneshKumarVenayagamoorthy

HolcombeDepartmentofElectricalandComputerEngineering,Real-TimePowerand IntelligentSystemsLaboratoryClemsonUniversityClemson,SC,USAandSchoolof EngineeringUniversityofKwaZulu-NatalDurban,SouthAfrica

Copyright©2023byTheInstituteofElectricalandElectronicsEngineers,Inc.

PublishedbyJohnWiley&Sons,Inc.,Hoboken,NewJersey.Allrightsreserved. PublishedsimultaneouslyinCanada.

Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedinanyformorbyany means,electronic,mechanical,photocopying,recording,scanning,orotherwise,exceptaspermittedunderSection 107or108ofthe1976UnitedStatesCopyrightAct,withouteitherthepriorwrittenpermissionofthePublisher,or authorizationthroughpaymentoftheappropriateper-copyfeetotheCopyrightClearanceCenter,Inc.,222 RosewoodDrive,Danvers,MA01923,(978)750-8400,fax(978)750-4470,oronthewebatwww.copyright.com. RequeststothePublisherforpermissionshouldbeaddressedtothePermissionsDepartment,JohnWiley&Sons, Inc.,111RiverStreet,Hoboken,NJ07030,(201)748-6011,fax(201)748-6008,oronlineathttp://www.wiley.com/ go/permission.

Trademarks:WileyandtheWileylogoaretrademarksorregisteredtrademarksofJohnWiley&Sons,Inc.and/or itsaffiliatesintheUnitedStatesandothercountriesandmaynotbeusedwithoutwrittenpermission.Allother trademarksarethepropertyoftheirrespectiveowners.JohnWiley&Sons,Inc.isnotassociatedwithanyproduct orvendormentionedinthisbook.

LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbesteffortsinpreparing thisbook,theymakenorepresentationsorwarrantieswithrespecttotheaccuracyorcompletenessofthecontents ofthisbookandspecificallydisclaimanyimpliedwarrantiesofmerchantabilityorfitnessforaparticularpurpose. Nowarrantymaybecreatedorextendedbysalesrepresentativesorwrittensalesmaterials.Theadviceand strategiescontainedhereinmaynotbesuitableforyoursituation.Youshouldconsultwithaprofessionalwhere appropriate.Neitherthepublishernorauthorshallbeliableforanylossofprofitoranyothercommercialdamages, includingbutnotlimitedtospecial,incidental,consequential,orotherdamages.Further,readersshouldbeaware thatwebsiteslistedinthisworkmayhavechangedordisappearedbetweenwhenthisworkwaswrittenandwhenit isread.Neitherthepublishernorauthorsshallbeliableforanylossofprofitoranyothercommercialdamages, includingbutnotlimitedtospecial,incidental,consequential,orotherdamages.

Forgeneralinformationonourotherproductsandservicesorfortechnicalsupport,pleasecontactourCustomer CareDepartmentwithintheUnitedStatesat(800)762-2974,outsidetheUnitedStatesat(317)572-3993orfax(317) 572-4002.

Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprintmaynotbe availableinelectronicformats.FormoreinformationaboutWileyproducts,visitourwebsiteatwww.wiley.com.

LibraryofCongressCataloging-in-PublicationData

Names:Vale,Zita,editor.|Pinto,Tiago,PhD,editor.|Negnevitsky, Michael,editor.|Venayagamoorthy,GaneshKumar,editor.

Title:Intelligentdataminingandanalysisinpowerandenergysystems: modelsandapplicationsforsmarterefficientpowersystems/editedby ZitaVale,TiagoPinto,MichaelNegnevitsky,GaneshKumar Venayagamoorthy.

Description:Hoboken,NewJersey:Wiley-IEEEPress,[2023]|Series:IEEE pressseriesonpowerandenergysystems

Identifiers:LCCN2022043311(print)|LCCN2022043312(ebook)|ISBN 9781119834021(cloth)|ISBN9781119834038(adobepdf)|ISBN 9781119834045(epub)

Subjects:LCSH:Electricpowersystems.|Datamining.

Classification:LCCTK1001.I5772023(print)|LCCTK1001(ebook)|DDC 621.31–dc23/eng/20220909

LCrecordavailableathttps://lccn.loc.gov/2022043311

LCebookrecordavailableathttps://lccn.loc.gov/2022043312

CoverDesign:Wiley

CoverImage:©metamorworks/Shutterstock

Setin9.5/12.5ptSTIXTwoTextbyStraive,Chennai,India

“ToourdearParentsandChildren”

Contents

AbouttheEditors xix

ListofContributors xxi

Foreword xxvii

Introduction 1 References 3

PartIDataMiningandAnalysisFundamentals 5

1Foundations 7

AnselY.Rodríguez-González,AngelDíaz-Pacheco,RamónAranda,andMiguelÁ. Álvarez-Carmona

Acronyms 7

1.1DataMining:WhyandWhat? 7

1.2DataMiningintoKDD 8

1.3TheDataMiningProcess 9

1.3.1DataCleaning 10

1.3.2DataIntegration 10

1.3.3DataReduction 11

1.3.4DataTransformation 12

1.4DataMiningTaskandTechniques 12

1.4.1Techniques 14

1.4.1.1Techniquesinthe“Description”Branch 14

1.4.1.2RegressionTechniques 14

1.4.1.3ClassificationTechniques 15

1.4.2Applications 17

1.5DataMiningIssuesandConsiderations 18

1.5.1ScalabilityofAlgorithms 18

1.5.2HighDimensionality 18

1.5.3ImprovingInterpretability 18

1.5.4HandlingUncertainty 19

1.5.5PrivacyandSecurityConcerns 19

1.6Summary 19 References 20

2DataMiningandAnalysisinPowerandEnergySystems:AnIntroductionto AlgorithmsandApplications 25 FernandoLezama Acronyms 25

2.1Introduction 25

2.2DataMiningTechnologies 26

2.2.1SupervisedMethods 26

2.2.1.1Regression-BasedMethods 27

2.2.1.2Classification-BasedMethods 27

2.2.2UnsupervisedMethods 27

2.2.2.1AssociationRuleMining 28

2.2.2.2Clustering-BasedMethods 28

2.3DataMiningApplicationsinPowerSystems 28

2.3.1Profiling 29

2.3.2Forecasting 31

2.3.3FaultDetectionandDiagnosis 33

2.3.4OtherApplications 34

2.4DiscussionandFinalRemarks 35 References 37

3DeepLearninginIntelligentPowerandEnergySystems 45 BrunoMota,TiagoPinto,ZitaVale,andCarlosRamos Acronyms 45

3.1Introduction 46

3.2DeepLearning 49

3.2.1RegressionProblems 49

3.2.1.1PhotovoltaicEnergyForecast 49

3.2.1.2WindPowerForecast 50

3.2.1.3BuildingEnergyConsumptionPrediction 50

3.2.1.4ElectricityPriceForecast 51

3.2.1.5OtherRegressionWorks 52

3.2.2ClassificationProblems 52

3.2.2.1PowerQualityDisturbancesDetection/Classification 53

3.2.2.2FaultDetection/Classification 54

3.2.2.3FeatureEngineering 55

3.2.2.4OtherClassificationWorks 55

3.2.3Decision-MakingProblems 56

3.2.3.1EnergyManagement 56

3.2.3.2DemandResponse 57

3.2.3.3ElectricityMarket 57

3.2.3.4OtherDecision-MakingWorks 58

3.3Accomplishments,Limitations,andChallenges 58

3.4Conclusions 60 References 60

PartIIClustering 69

4DataMiningTechniquesAppliedtoPowerSystems 71 SérgioRamos,JoãoSoares,ZahraForouzandeh,andZitaVale Acronyms 71

4.1Introduction 71

4.1.1DataSelection 72

4.1.2DataPre-processing 73

4.1.3DataMining 73

4.1.4AnalysisandInterpretation 74

4.2DataMiningTechniques 75

4.2.1ClusteringAlgorithms 76

4.2.2ClusteringValidityIndices 79

4.2.3ClassificationAlgorithms 80

4.3DataMiningTechniquesAppliedtoPowerSystems 82

4.3.1ElectricalConsumersCharacterization 83

4.3.1.1TypicalLoadProfile 83

4.3.2ElectricalConsumersCharacterization–Classification 86

4.3.3Conclusions 89

4.4ElectricalTariffsDesignBasedonDataMiningTechniques 90

4.4.1ElectricalTariffsDesign 90

4.4.2Conclusions 93

4.5DataMiningContributionstoCharacterizeZonalPrices 93

4.5.1ZonalPricesCharacterization 93

4.5.2Conclusions 97

4.6DataMining-BasedMethodologyforWindForecasting 98

4.6.1WindForecasting 98

4.6.2Conclusions 100

4.7FinalRemarks 101 References 101

5SynchrophasorDataAnalyticsforAnomalyandEventDetection, Classification,andLocalization 105 SajanK.Sadanandan,ArmanAhmed,ShikharPandey,andAnuragK.Srivastava

5.1Introduction 105

5.2SynchrophasorDataQualityIssuesandChallenges 106

5.2.1PMUDataFlow:DataQualityIssues 107

5.2.2PMUDataAnomalies 108

5.3ML-BasedAnomalyDetection,Classification,andLocalization(ADCL)OverData DriftingMultivariateSynchrophasorDataStreams 108

5.3.1DataDriftinSynchrophasorMeasurements 109

5.3.2PMUNETFramework 110

5.3.2.1DataPre-Processing(DPP)Module 110

5.3.2.2Data-Drift(DD)Module 110

5.3.2.3Save-Load(SL)Module 112

5.3.3AnomalyDetector(AD)Module 112

5.3.3.1AnomalyClassification 113

5.3.3.2AnomalyLocalization 113

5.3.4DistributedDeepAutoencoderLearning 113

5.4SynchrophasorDataAnomalyandEventDetection,Localization,and Classification(SyncAED) 114

5.4.1SynchrophasorDataAnomalyDetection(SyncAD) 114

5.4.1.1BaseDetectors 115

5.4.1.2EnsembleMethod 115

5.4.1.3Prony-BasedTransientWindowEstimation 115

5.4.2EventDetection,Classification,andLocalization 116

5.4.2.1EventDetection 117

5.4.2.2EventClassification 117

5.4.2.3EventLocalization 117

5.5Test-BedandTestCases 119

5.5.1Cyber-PowerTest-BedArchitecture 119

5.5.1.1TestCase 119

5.6ResultsandDiscussion 120

5.6.1SimulationResultsforPMUNET 120

5.6.1.1PerformanceEvaluationMetrics 120

5.6.1.2ExperimentalAnalysis 121

5.6.2SimulationResultsforSyncAED 122

5.6.2.1AnomalyDetection 122

5.6.2.2EventDetectionandClassificationUsingClusteringandDecisionTree 122

5.7Summary 125 Acknowledgments 125 References 125

6ClusteringMethodsfortheProfilingofElectricityConsumersOwningEnergy StorageSystem 129

CátiaSilva,PedroFaria,JuanM.Corchado,andZitaVale Acronyms 129

6.1Introduction 129

6.2MethodologyDefinition 131

6.3ClusteringofConsumerswithESS 135

6.3.1OptimalNumberofClusters 135

6.3.1.1AverageSilhouetteMethod 136

6.3.1.2ElbowMethod 136

6.3.1.3GapStatisticMethod 137

6.3.2ClusteringMethods 137

6.3.2.1PartitionalClustering 138

6.3.2.2FuzzyClustering 141

6.3.2.3HierarchicalClustering 142

6.4Conclusion 145

Acknowledgments 146 References 146

PartIIIClassification 149

7ANovelFrameworkforNTLDetectioninElectricDistributionSystems 151 Chia-ChiChu,NelsonFabianAvila,GerardoFigueroa,andWen-KaiLu Acronyms 151

7.1Introduction 151

7.1.1State-of-the-Art 152

7.1.2ProposedFramework 153

7.2DataAcquisitionandPre-Processing 154

7.2.1DataAcquisition 154

7.2.2Pre-Processing 155

7.3FeatureExtraction 156

7.3.1Overview 156

7.3.2MODWPT 156

7.3.3FeatureExtractionMechanism 156

7.4ClassificationStrategies 158

7.4.1RandomUnder-Sampling(RUS)andRandomOver-Sampling(ROS)Techniques 158

7.4.2AdaptiveBoostingAlgorithm 158

7.4.3RandomUnder-SamplingBoostingAlgorithm 159

7.5Evaluation 160

7.6Experiments 161

7.6.1OutlierDetectionUsingSmoothingSplines 161

7.6.2MODWPT-BasedSignalDecomposition 163

7.6.3RusBoostNTLDetectionTechnique 163

7.6.4ComparisonwithExistingApproaches 164

7.7Conclusion 166 References 167

8ElectricityMarketParticipationProfilesClassificationforDecisionSupportin MarketNegotiation 171 TiagoPintoandZitaVale Acronyms 171

8.1Introduction 171

8.2BilateralNegotiation 172

8.3DecisionSupportforBilateralNegotiations 174

8.3.1ClusteringofPlayersProfiles 176

8.3.2ClassificationofNewPlayers 177

8.3.2.1ArtificialNeuralNetworks 177

8.3.2.2SupportVectorMachines 177

8.4IllustrativeResults 178

8.5Conclusion 183 References 184

9Socio-demographic,Economic,andBehavioralAnalysisofElectric Vehicles 187 RúbenBarreto,TiagoPinto,andZitaVale Acronyms 187

9.1Introduction 187

9.2ElectricVehicleOutlook 188

9.2.1ElectricMobilityMarket 188

9.2.2EconomicAspects 189

9.2.3Socio-demographicAspects 190

9.2.4RecommendationsforPolicymakers 191

9.3DataMiningModelsforEVs 191

9.3.1ChargingBehavior 191

9.3.2EVUserBehavior 192

9.3.3DrivingRange 193

9.3.4Speed 194

9.3.5ElectricVehicleBattery 195

9.3.6ChargingStationPlanning 195

9.3.7Summary 196

9.4Conclusions 197 References 197

PartIVForecasting 201

10AMultivariateStochasticSpatiotemporalWindPowerScenario ForecastingModel 203 WenleiBai,DueheeLee,andKwangY.Lee Acronyms 203 Nomenclature 203

10.1Introduction 204

10.2GeneralizedDynamicFactorModel 206

10.2.1DerivationoftheGDFM 206

10.2.2EstimationoftheGDFM 208

10.2.3ForecastoftheGDFM 210

10.2.4VerificationoftheGDFM 212

10.2.5ApplicationoftheGDFM 216

10.3Conclusion 219 References 221

11SpatiotemporalSolarIrradianceandTemperatureDataPredictive Estimation 223

ChirathPathiravasamandGaneshKumarVenayagamoorthy Acronyms 223

11.1Introduction 223

11.2VirtualWeatherStations 225

11.3DistributedWeatherForecasting 227

11.3.1SpatiotemporalPredictionNetwork 227

11.3.2ComputationalUnits 228

11.4ResultsandDiscussion 228

11.4.1WeatherDataEstimation 229

11.4.2WeatherDataPrediction 230

11.5Summary 232 Acknowledgment 234 References 234

12ApplicationofDecomposition-BasedHybridWindPowerForecastingin IsolatedPowerSystemswithHighRenewableEnergyPenetration 237 EvgeniiSemshikov,MichaelNegnevitsky,JamesHamilton,andXiaolinWang

12.1Introduction 237

12.2DecompositionTechniques 238

12.2.1VariationalModeDecomposition 239

12.2.2DecompositionofWindPowerTimeSeries 239

12.3Decomposition-BasedNeuralNetworkForecasting 241

12.3.1TheoryBehindLSTM 242

12.3.2VMD-LSTMforWindPowerForecasting 242

12.4Forecast-BasedDispatchinIsolatedPowerSystems 243

12.4.1ControlStrategy 244

12.4.2RegulationandLoadFollowingReserves 246

12.5CaseStudies 249

12.5.1KingIslandIsolatedPowerSystem 249

12.5.2CaseStudyI(ControlStrategywithNoREForecast) 250

12.5.3CaseStudyII(ControlStrategyInvolvingPersistenceModelREForecast) 251

12.5.4CaseStudyIII(ControlStrategyInvolvingVMD-LSTM-BasedRE Forecast) 251

12.5.5EconomicAssessmentOveraYearofOperation 252

12.6ConclusionsandDiscussions 253 References 253

PartVDataAnalysis 257

13HarmonicDynamicResponseStudyofOverheadTransmissionLines 259 DharmbirPrasad,RudraP.Singh,IrfanKhan,andSushriMukherjee Acronyms 259 Nomenclature 259

13.1IntroductiontoMethodology 260

13.1.1General 261

13.1.2SelectionAspectsofDampers 261

13.1.3LiteratureReview 262

13.2ProblemFormulation 264

13.2.1DesignAspect 265

13.2.2MathematicalModeling 265

13.3NumericalAnalysis 266

13.3.1SimulationInputs 267

13.3.1.1ModelDescription 267

13.3.1.2LoadExcitation 268

13.3.1.3SpanWisePhaseLag 268

13.3.2AnalysisFindings 271

13.4Conclusion 273

13.AAppendix 274

References 277

14EvaluationofShortestPathtoOptimizeDistributionNetworkCostand PowerLossesinHillyAreas:ACaseStudy 281 SubhoUpadhyay,RajeevK.Chauhan,andMahendraP.Sharma Acronyms 281

14.1Introduction 282

14.2DesignofPowerDistributionNetwork 282

14.3DigitalElevationMap 283

14.4PlacementofGeneratorsandLoadCenters 283

14.5SingleLineDiagramof9-BusSystem 285

14.6FindingShortestPathBetweenLoad/GeneratingCenters 286

14.6.1ObjectiveFunction 287

14.6.2DistributionNetworkDistance 289

14.7SelectionofConductorUsingNewtonRaphsonMethod 290

14.7.1EstimationofConductorCost 292

14.8CalculationofCO2 EmissionCostSaving 293

14.9OverallCostEstimationofDistributionSystem 294

14.10SensitivityAnalysis 294

14.10.1ChangeinDieselFuelPrice 295

14.10.2ChangeinSolarRadiation 295

14.10.3ChangeinDemand 295

14.10.4ChangeinEnergyIndexRatio 295

14.11Conclusion 295 References 296

15IntelligentApproachestoSupportDemandResponseinMicrogrid Planning 299

RahmatKhezri,AminMahmoudi,andHirohisaAki Acronyms 299

15.1Introduction 299

15.2MicrogridPlanning 300

15.2.1ProblemOverview 301

15.2.2ObjectiveFunctions 302

15.2.3DataAnalysis 303

15.2.3.1WeatherData 304

15.2.3.2LoadData 304

15.2.3.3ElectricityPrice 304

15.2.4MicrogridComponents 305

15.2.4.1DistributedEnergyResources 305

15.2.4.2EnergyStorageSystems 305

15.2.5MicrogridOperation 306

15.3DemandResponseinMicrogrids 306

15.3.1OverviewonDemandResponseApplicationforMicrogrids 306

15.3.2DemandResponse:TypesandCharacteristics 307

15.3.3IncentiveDR 308

15.3.4Time-BasedDR 309

15.4IntelligentApproachestoSupportDemandResponse 309

15.4.1DataMiningMethodsinDR 310

15.4.1.1SupervisedDataMining 310

15.4.1.2UnsupervisedDataMining 312

15.4.2FuzzyLogic-BasedDR 313

15.4.3ApplicationsinMicrogridPlanning 313

15.4.3.1CostReduction 313

15.4.3.2ResiliencyEnhancement 314

15.4.3.3FlexibilityImprovement 314

15.4.3.4BatteryCapacityReduction 314

15.5Conclusion 315 References 315

16SocioeconomicAnalysisofRenewableEnergyInterventions:Developing AffordableSmall-scaleHouseholdSustainableTechnologiesin NorthernUganda 319

JensB.Holm-Nielsen,AchoraP.O.Mamur,andSamsonMasebinu Acronyms 319

16.1Introduction 319

16.2RenewableEnergyTechnologies 321

16.2.1Bio-oil 321

16.2.2Bio-pellets 322

16.2.3Biogas 322

16.2.4SolarCookers 322

16.2.5SolarPV 323

16.3Methodology 323

16.3.1DriverPressureImpactStateResponseFramework 323

16.3.2Cost–BenefitAnalysis 324

16.4ApplicationoftheMethod 324

16.5CaseStudyResultsforProductDevelopment 327

16.5.1FieldStudy 327

16.5.2SourceofEnergyforCooking 328

16.5.3SourceofEnergyforLighting 328

16.5.4HouseholdIncomeLevel 328

16.5.5ChallengesforFirewoodandCharcoalUse 329

16.5.6TheRankofAdoptionTowardSustainableRenewableEnergyTechnologies 329

16.5.7HouseholdOpinionsforModernEnergyTechnologies 330

16.5.8LevelofAwarenessofthePopulation 331

16.5.9MediumofInformation 331

16.5.10PromotiontoPurchaseAlternativeRenewableEnergyTechnologies 331

16.5.11SourcesofFundforInvestmentinNorthernUgandaTowardRenewableEnergy TechnologiesforHouseholds 332

16.6Cost–BenefitAnalysis(CBA) 333

16.6.1BenefitstoBetterHealth 333

16.6.2BenefitsonGreenhouseGasEmissionsReduction 334

16.6.3BenefitsoftheDistrictForestResourcesPreservation 334

16.6.4OutcomesofCost–BenefitAnalysis 334

16.7Conclusion 337 References 338

PartVIOtherMachineLearningApplications 343

17Non-IntrusiveLoadMonitoringUsingAParallelBidirectionalLong Short-TermMemoryModel 345 VictorAndreanandKuo-LungLian Nomenclature 345

17.1Introduction 346

17.1.1Optimization-BasedApproach 346

17.1.2Learning-BasedApproach 347

17.2NILMSystemandDataPreprocessing 349

17.2.1DataScaling 349

17.2.2WindowLengthSelection 350

17.2.3Input-to-OutputRelation(IOR) 350

17.2.3.1IOR1 351

17.2.3.2IOR2 351

17.2.3.3IOR3 351

17.2.3.4IOR4 351

17.3ProposedMethod 352

17.3.1FeatureExtractor 353

17.3.2ElementsofthePBLSTM 355

17.3.2.1ConvolutionNeuralNetwork(CNN) 355

17.3.2.2BidirectionalLongShort-TermMemory(BLSTM) 356

17.3.2.3DenseLayer 357

17.3.2.4DeepNeuralNetworkTraining 358

17.4Validation 358

17.5Conclusion 368 References 368

18ReinforcementLearningforIntelligentBuildingEnergyManagement SystemControl 371 OliveraKotevskaandPhilippAndelfinger ChapterObjectives 371

18.1Introduction 371

18.2ReinforcementLearning 372

18.2.1DeepReinforcementLearning 374

18.2.2AdvancedReinforcementLearning 375

18.3ApplicationsofDeepReinforcementLearninginBuildingEnergyManagement SystemsControl 376

18.3.1Heating,Ventilation,andAirConditioning 377

18.3.2WaterHeater 379

18.3.3OtherDevices 380

18.4ChallengesandResearchDirections 380

18.5Conclusions 383 References 383

19FederatedDeepLearningTechniqueforPowerandEnergySystems DataAnalysis 387

HamedMoayyed,ArashMoradzadeh,BehnamMohammadi-Ivatloo,and RezaGhorbani

Nomenclature 387

Acronyms 387

Symbols 387

19.1Introduction 388

19.2FederatedLearning(FL) 388

19.2.1FederatedLearningMotivation 389

19.2.2PerformanceEvaluationMetrics 390

19.2.3FederatedLearningvs.DistributedMachineLearningApproaches 391

19.2.4TheFederatedAveragingAlgorithm 391

19.2.5ApplicationsofFederatedLearning 393

19.2.6ChallengesofFederatedLearning 395

19.3PowerSystemsChallengesandthePerformanceofArtificialIntelligence TechniquesinIt 396

19.3.1AI-BasedForecastinginPowerSystems 396

19.3.2AI-BasedConditionMonitoringinPowerSystems 397

19.4ApplicationofFederatedDeepLearninginPowerandEnergySystems 399

19.4.1ElectricVehicleNetworks 399

19.4.2FalseDataInjectionAttacksinSolarFarms 399

19.4.3SolarIrradiationForecasting 400

19.4.4HeatingLoadDemandForecasting 400

19.5Conclusion 400 References 401

20DataMiningandMachineLearningforPowerSystemMonitoring, Understanding,andImpactEvaluation 405

XindaKe,HuiyingRen,QiuhuaHuang,PavelEtingov,andZhangshuanHou Acronyms 405

20.1Introduction 406

20.2PowerSystemMonitoringwithPhasorMeasurementUnitData 407

20.2.1PMUAnomalyDetectionFramework 407

20.2.2AnomalyDetectionandClassification 408

20.3PowerSystemMechanisticandPredictiveUnderstanding 411

20.3.1SpatiotemporalPatternRecognitioninPMUSignals 412

20.3.1.1TimeSeriesPatternRecognition 412

20.3.1.2SimilaritiesandVariationsAcrossUnits 415

20.3.1.3Similarities/DiscrepanciesBetweenDays/Months 417

20.3.2EventsClassificationandLocalizationThroughConvolutionalNeuralNetwork 417

20.3.2.1PolishSystemTestbedandDataPreparation 417

20.3.2.2FaultTypesandImplementation 419

20.3.2.3CNNModelDevelopment 419

20.3.2.4CNNModelEvaluation 420

20.3.2.5FaultLocalization 421

20.3.2.6FaultClassification 422

20.4CharacterizationandModellingofWeatherandPowerExtremes 423

20.4.1DataSources 424

20.4.2SpatiotemporalAnalysis 425

20.4.3ProbabilisticModellingofLinesOutage 428

20.5Conclusion 430 References 430

Conclusions 433 ZitaVale,TiagoPinto,MichaelNegnevitsky,andGaneshKumarVenayagamoorthy

Index 435

AbouttheEditors

ZitaVale,IEEESeniorMember,graduatedinelectricalengineeringin1986,receivedthePhD degreeinelectricalandcomputerengineeringin1993,andtheAgregaçãotitle(Habilitation)in 2003fromtheUniversityofPorto,Portugal.SheisafullprofessorintheSchoolofEngineering, PolytechnicofPorto.SheleadstheresearchactivitiesonIntelligentPowerandEnergySystems atGECAD–ResearchGrouponIntelligentEngineeringandComputingforAdvancedInnovationandDevelopment.Shehasbeeninvolvedinmorethan60R&Dprojectsandpublished morethan200papersininternationalscientificjournals.Herscientificresearchactivities mainlyfocusonPowerandEnergySystemsOperation,ElectricityMarkets,DemandResponse, Renewables,ElectricVehicles,andDistributedGenerationandStorage.Shehasbeendeveloping artificial-intelligence-basedmodels,methods,andapplicationsforpowerandenergy,usingagents andmultiagentsystems,knowledge-basedsystems,semantics,machinelearning,datamining, andevolutionarycomputation.

Sheactivelyparticipatesinseveraltechnicalworkinggroupsandcommittees.Sheisthechair oftheIEEEPESIntelligentDataAnalysisandMining(IDMA)WorkingGroupandoftheOpen DataSets(ODS)TaskForce.SheisthechairoftheboardofdirectorsofISAP–IntelligentSystems ApplicationtoPowerSystems.Sheisinvolvedineditingactivitiesfordifferentjournalsandbooks andisaregularreviewerandevaluatorforpapersandforprojectproposalsandmonitoringfrom differentfundingagenciesaroundtheworld.

TiagoPinto isanassistantprofessorattheUniversidadedeTrásosMonteseAltoDouro (UTAD),Portugal,andresearcheratINESC-TEC.HehasconcludedtheBScandMSc,bothat theSchoolofEngineeringofthePolytechnicofPorto,wherehehasalsodevelopedhisresearch workformorethan10years,namelyatGECAD–ResearchGrouponIntelligentEngineering andComputingforAdvancedInnovationandDevelopment.HegotthePhDfromUTADin2016, afterwhichheengagedinapostdocattheUniversityofSalamanca,incollaborationwiththe UniversityofOxfordandENGIE.Hismainresearchinterestsfocusonartificialintelligenceand itsapplicationinpowerandenergysystems,particularlymachinelearning,multi-agentsystems, decisionsupportsystems,andmetaheuristicoptimization.Throughtheinvolvementinmorethan 30researchprojectsinthesefields,hehasauthoredover200publicationsininternationaljournals andconferences,andhasco-editedseveralbooksandspecialissuesinjournalsrelatedtopower andenergysystemsandartificialintelligence.

MichaelNegnevitsky receivedtheBE(Hons)inElectricalEngineeringdegreeandPhDdegree fromByelorussianUniversityofTechnology,Minsk,Belarus,in1978and1983,respectively.From 1978to1980,heworkedattheElectricalMaintenance,ConstructionandCommissioningCompany,andfrom1984to1991,hewasSeniorResearchFellowattheDepartmentofElectricalEngineering,ByelorussianUniversityofTechnology,Minsk.AfterhisarrivaltoAustralia,heworked

atMonashUniversity,Melbourne,andthentheUniversityofTasmania.CurrentlyheisProfessor andChairinPowerEngineeringandComputationalIntelligence,andDirectoroftheCentrefor RenewableEnergyandPowerSystems.

Hisresearchinterestsincludepowersystemanalysisandcontrol,micro-gridswithdistributed andrenewableenergyresources,smartgrids,powerqualityandapplicationsofartificialintelligenceinpowersystems.Hehaspublishedmorethan450papersinhigh-qualityjournalsand refereedconferenceproceedings,authored14chaptersinseveralbooks,andreceived4patents forinventions.Hisbook ArtificialIntelligence (AddisonWesley2002,2005,2011)hasbeentranslatedintoMandarin,Cantonese,Korean,Greek,andVietnameseandadoptedinmanyuniversities aroundtheworld.

HeisFellowofEngineersAustralia,FellowoftheJapanSocietyforthePromotionofScience, MemberofCIGREAPC4(SystemTechnicalPerformance)andAPC6(DistributionSystemsand DispersedGeneration),AustralianTechnicalCommittee.Dr.NegnevitskyhasservedasSecretary andDeputyChairofIEEEPESEnergyDevelopmentandPowerGenerationCommittee,Chair ofIEEEPESInternationalPracticesSubcommittee,andChairoftheIEEEPESWorkingGroup onHighRenewableEnergyPenetrationinRemoteandIsolatedPowerSystems.In2018,he receivedtheJointAustralasianCommitteeforPowerEngineeringandCIGREAustraliaAward for“outstandingcareer-longcontributionstoresearchandteachinginelectricpowerengineering aswellascontributiontoindustryandCIGREactivities.”

GaneshKumarVenayagamoorthy istheDukeEnergyDistinguishedProfessorofPowerEngineeringandProfessorofElectricalandComputerEngineeringatClemsonUniversitysinceJanuary 2012.Priortothat,hewasaProfessorofElectricalandComputerEngineeringattheMissouri UniversityofScienceandTechnology(MissouriS&T),Rolla,USA,wherehewasfrom2002to2011. Dr.VenayagamoorthywasaSeniorLecturerinDepartmentofElectronicEngineering,DurbanUniversityofTechnology,Durban,SouthAfrica,wherehewasfrom1996to2002.Dr.Venayagamoorthy istheFounderandDirectoroftheReal-TimePowerandIntelligentSystemsLaboratoryatMissouri S&TandClemsonUniversity.

Dr.VenayagamoorthyreceivedhisPhDandMScEngdegreesinElectricalEngineeringfrom theUniversityofNatal,Durban,SouthAfrica,inApril2002andApril1999,respectively.He receivedhisBEngdegreewithaFirst-ClassHonorsinElectricalandElectronicsEngineeringfrom AbubakarTafawaBalewaUniversity,Bauchi,Nigeria,inMarch1994.HeholdsanMBAdegreein EntrepreneurshipandInnovationfromClemsonUniversity,SC(August2016).

Dr.Venayagamoorthy’sinterestsareinresearch,developmentandinnovationofpowersystems, smartgrid,andartificialintelligencetechnologies.Dr.VenayagamoorthyisaFellowoftheIEEE, IET(UK),theSouthAfricanInstituteofElectricalEngineers(SAIEE)andAsia-PacificArtificial IntelligenceAssociation(AAIA),andaSeniorMemberoftheInternationalNeuralNetwork Society.

ListofContributors

A.Ahmed SmartGridDemonstrationandResearch InvestigationLab WashingtonStateUniversity Pullman,WA USA

HirohisaAki FacultyofEngineering,Informationand Systems UniversityofTsukuba Tsukuba,Ibaraki Japan

PhilippAndelfinger InstituteforVisualandAnalyticComputing UniversityofRostock Rostock Germany

VictorAndrean DepartmentofElectricalEngineering NationalTaiwanUniversityofScienceand Technology Taipei Taiwan

RamónAranda TepicTechnologyTransferUnit,Centerfor ScientificResearchandHigherEducationof Ensenada Tepic,Nayarit,Mexico and

NationalCouncilofScienceandTechnology MexicoCity,MexicoCity Mexico

NelsonF.Avila IndependentElectricitySystemOperator Toronto,ON Canada WenleiBai OracleEnergyandWater Austin,TX USA

RúbenBarreto ResearchGrouponIntelligentEngineering andComputingforAdvancedInnovationand Development(GECAD)Instituteof EngineeringPolytechnicofPorto Porto Portugal

MiguelA.Carmona TepicTechnologyTransferUnit,Centerfor ScientificResearchandHigherEducationof Ensenada Tepic Nayarit Mexico and NationalCouncilofScienceandTechnology MexicoCity MexicoCity Mexico

RajeevK.Chauhan DepartmentofElectricalEngineering,Faculty ofEngineering DayalbaghEducationalInstitute Agra,UttarPradesh

India

Chia-ChiChu DepartmentofElectricalEngineering NationalTsingHuaUniversity HsinChu

Taiwan,R.O.C.

JuanM.Corchado BISITEresearchgroup UniversityofSalamanca Salamanca Spain

PavelEtingov PacificNorthwestNationalLaboratory Richland,WA

USA

PedroFaria

GECAD–ResearchGrouponIntelligent EngineeringandComputingforAdvanced InnovationandDevelopment Porto

Portugal

GerardoFigueroa SentianceNV Antwerpen

Belgium

ZahraForouzandeh

GECAD–ResearchGrouponIntelligent EngineeringandComputingforAdvanced InnovationandDevelopment,Polytechnicof Porto,SchoolofEngineering(ISEP) Porto

Portugal

RezaGhorbani RenewableEnergyDesignLaboratory (REDLab),DepartmentofMechanical Engineering UniversityofHawaiiatManoa Honolulu,HI USA

JamesHamilton SchoolofEngineering,UniversityofTasmania Hobart

Tasmania

Australia

JensB.Holm-Nielsen DepartmentofEnergyTechnology CenterforBioenergyandGreenEngineering AalborgUniversity

Esbjerg

Denmark

ZhangshuanHou PacificNorthwestNationalLaboratory Richland,WA USA

QiuhuaHuang PacificNorthwestNationalLaboratory Richland,WA USA

XindaKe PacificNorthwestNationalLaboratory Richland,WA USA

IrfanKhan Supreme&Co.Pvt.Ltd. Kolkata,WestBengal India

RahmatKhezri CollegeofScienceandEngineering FlindersUniversity

Adelaide,SA

Australia

OliveraKotevska ComputerScienceandMathematics OakRidgeNationalLaboratory Tennessee OakRidge USA

DueheeLee ElectricalEngineeringDepartment KonkukUniversity

Seoul Korea

KwangY.Lee ElectricalandComputerEngineering Department BaylorUniversity Waco,TX USA

FernandoLezama PolytechnicofPorto(ISEP/IPP),Research GrouponIntelligentEngineeringand ComputingforAdvancedInnovationand Development(GECAD)

Porto

Portugal

Kuo-LungLian DepartmentofElectricalEngineering NationalTaiwanUniversityofScienceand Technology

Taipei Taiwan

Wen-KaiLu DepartmentofInformationManagement NationalTaiwanUniversity

Taipei

Taiwan,R.O.C.

AminMahmoudi CollegeofScienceandEngineering,Flinders University

Adelaide,SA

Australia

AchoraP.O.Mamur FacultyofSociology,Environmentaland BusinessEconomics UniversityofSouthernDenmark Esbjerg

Denmark

SamsonMasebinu DepartmentofEnergyTechnology,Centerfor BioenergyandGreenEngineering AalborgUniversity Esbjerg

Denmark

HamedMoayyed GECAD–ResearchGrouponIntelligent EngineeringandComputingforAdvanced InnovationandDevelopment,Polytechnicof Porto(P.PORTO)

Porto

Portugal

BehnamMohammadi-Ivatloo FacultyofElectricalandComputer Engineering UniversityofTabriz

Tabriz

Iran

ArashMoradzadeh FacultyofElectricalandComputer Engineering UniversityofTabriz

Tabriz

Iran

BrunoMota GECADResearchGrouponIntelligent EngineeringandComputingforAdvanced InnovationandDevelopment(GECAD) PolytechnicInstituteofPorto(ISEP/IPP)

Porto

Portugal

SushriMukherjee IndianInstituteofTechnologyDelhi HauzKhas NewDelhi India

MichaelNegnevitsky

SchoolofEngineering,UniversityofTasmania Hobart Tasmania Australia

AngelD.Pacheco

TepicTechnologyTransferUnit,Centerfor ScientificResearchandHigherEducationof Ensenada Tepic Nayarit Mexico

S.Pandey SmartGridandTechnology ComEd OakbrookTerrace,IL USA

ChirathPathiravasam

HolcombeDepartmentofElectricaland ComputerEngineering,Real-TimePowerand IntelligentSystemsLaboratory ClemsonUniversity Clemson,SC USA and DepartmentofElectricalEngineering UniversityofMoratuwa Katubedda SriLanka

TiagoPinto

GECADResearchGrouponIntelligent EngineeringandComputingforAdvanced InnovationandDevelopment(GECAD) PolytechnicInstituteofPorto(ISEP/IPP)

DharmbirPrasad

AsansolEngineeringCollege Asansol,WestBengal India

CarlosRamos

GECADResearchGrouponIntelligent EngineeringandComputingforAdvanced InnovationandDevelopment(GECAD) PolytechnicInstituteofPorto(ISEP/IPP)

Porto

Portugal

SérgioRamos

Porto Portugal and UniversityofTrás-os-MonteseAltoDouro VilaReal Portugal

GECAD–ResearchGrouponIntelligent EngineeringandComputingforAdvanced InnovationandDevelopment,Polytechnicof Porto,SchoolofEngineering(ISEP) Porto Portugal

HuiyingRen

PacificNorthwestNationalLaboratory Richland,WA USA

AnselY.RodríguezGonzález TepicTechnologyTransferUnit,Centerfor ScientificResearchandHigherEducationof Ensenada Tepic Nayarit Mexico and NationalCouncilofScienceandTechnology MexicoCity

MexicoCity

Mexico

SajanK.Sadanandan SmartGridIntegration R&DCenter,DubaiElectricity&Water Authority(DEWA)

Dubai

UAE

EvgeniiSemshikov SchoolofEngineering,UniversityofTasmania Hobart,Tasmania

Australia

MahendraP.Sharma DepartmentofHydroandRenewableEnergy IndianInstituteofTechnology Roorkee,Uttarakhand

India

CátiaSilva

GECAD–ResearchGrouponIntelligent EngineeringandComputingforAdvanced InnovationandDevelopment

Porto

Portugal

RudraP.Singh AsansolEngineeringCollege Asansol,WestBengal

India

JoãoSoares

GECAD–ResearchGrouponIntelligent EngineeringandComputingforAdvanced InnovationandDevelopment,Polytechnicof Porto,SchoolofEngineering(ISEP)

Porto

Portugal

AnuragK.Srivastava SmartGridResiliencyandAnalyticsLab WestVirginiaUniversity Morgantown,WV

USA

SubhoUpadhyay DepartmentofElectricalEngineering,Faculty ofEngineering DayalbaghEducationalInstitute Agra,UttarPradesh

India

ZitaVale GECADResearchGrouponIntelligent EngineeringandComputingforAdvanced InnovationandDevelopment(GECAD) PolytechnicInstituteofPorto(ISEP/IPP)

Porto

Portugal

GaneshKumarVenayagamoorthy HolcombeDepartmentofElectricaland ComputerEngineering,Real-TimePowerand IntelligentSystemsLaboratory ClemsonUniversity Clemson,SC

USA and SchoolofEngineering UniversityofKwaZulu-Natal

Durban

SouthAfrica

XiaolinWang SchoolofEngineering,UniversityofTasmania Hobart,Tasmania

Australia

Foreword

Recentmachinelearninganddataanalyticsmethodshaveproliferatedintomostareasofscience, engineering,andcommerce.Thereareexcellentreasonsfortheirincreasingpopularityandapplications.Manyreal-worldproblemsaretoocomplextocomeupwithclosed-formanalyticalsolutions.However,suchchallengesdidnotmakepractitionersidle;instead,theyhavecreatedworking models,prototypesandevenbuiltsystemswithacarefulunderstandingofcriticalcomponentsof thesystemsasafirststep.Thedatageneratedfromsuchsystemsarethenanalyzedbymachine learninganddataanalyticsmethodstohaveamorecomprehensiveunderstandingofthesystems.

Thisbooktitled IntelligentDataMiningandAnalysisinPowerandEnergySystems makesahuge leapinthisdirectioninprovidingabetterunderstandingofpowerandenergysystems.Compiled byZitaVale,TiagoPinto,MichaelNegnevitsky,andGaneshKumarVenayagamoorthy,thebook beginswithanintroductiontomachinelearninganddataanalyticsmethodsandthenlaysout state-of-the-artmethodsinaddressingvarioustopicsinpowerandenergysystemdesign,clustering,classification,forecasting,andanalysiswithlatestmachinelearninganddataanalytics methods.

Thebookisself-containedandwrittenforbothnoviceandexpertsonthetopic.Thetopicsare discussedinsimplemannerwithadequatereferencesanddetails,sothatreaderscanunderstand thecurrentstate-of-the-artandalsofindrelevantpaststudiesinasinglevolume.

Ifyouareworkinginpowerandenergysystemseitherasaresearcherorapractitioner,thisisa must-havebooktostayaheadinthegame.Authorsareexpertsintheirownfields.Thebookwill saveyoureffortsinsearchingformaterialsonthetopic,provideyouwiththelatestmethodologies, anddirectyoutoothersimilarpaststudies.

Kudostotheeditorsforthiscompilationandauthorsfortheircontributions.

KalyanmoyDeb

UniversityDistinguishedProfessor

WithrowSeniorDistinguishedResearchScholar

KoenigEndowedChairProfessor

IEEECISEvolutionaryComputationPioneer

IEEEFellow

DepartmentofElectricalandComputerEngineering

MichiganStateUniversity,EastLansing,MI,USA

Introduction

Inaneraofever-increasingdata,thereisalsoanincreasingneedforthedevelopmentofsuitable intelligentdataminingandanalysissolutionsthatenabletakingthevalueoutofthesedata. Fosteredbythisincreasingneedandalsoboostedbytherecentworldwideboominartificial intelligenceinterestanddevelopment,wehavebeenwitnessingasignificantdevelopmentofa widearrayofnewadvanceddataminingmodelsandmethods.Thesemodelsandmethodologies havebeeninstrumentalindealingwithrealproblems,especiallyinhighlycomplexdomainssuch aspowerandenergysystems[1].

Thechallengesinpowerandenergysystemshavechangedcompletelyduringthepastyears, especiallybecauseoftheincreaseinthedistributedrenewableenergysourcesandtheconsequently requiredtransformationsinpowersystems’operation,management,andplanning,andalsoin electricitymarkets[2].Newplayersareemerging,suchasprosumers,electricvehicles,newtypesof aggregators,energycommunities,newlocalmarketoperators,energymanagersofdifferentkinds, amongmanyothers[3,4].Consequently,newbusinessmodelsarealsobeingproposed,experimented,andimplementedasthewaytoinvolvesuchnewplayersinthesectorinanactiveway whilecreatinganewvaluefortheseplayersandforthesystem,e.g.throughtheenhancementof theuseoflocalgenerationandthefosteringofconsumptionandgenerationflexibilitytrading[5].

Suchsignificantchangesinatraditionallyconservativesectorrequireanunprecedentedadaptationandforesightcapacityfromtheentireenergyvaluechain,includingfrompolicymakers, regulators,operators,planners,andevenfromthesmallerplayers.Thisiswheretheroleofnew andintelligentdataminingandanalysismodelsandmethodologiesbecomecrucial,contributing toovercomingmultipleproblemswithdistinctcharacteristics.Somerelevantexamplesarepower systemplanning,stateestimation,energyresourceprofiling,aggregationandforecasting,market negotiation,andenergymanagementatmultiplelevels,includingbuilding,microgrid,smartgrid, energycommunity,anddistributiongridlevels.

Thisbookprovidesacomprehensivereviewofintelligentdataminingandanalysisapplications inpowerandenergysystems.Thisbookisorganizedinsixcomplementaryparts,eachfocusing onaspecifictopicwithinthedataminingandanalysisdomain,namely,dataminingandanalysisfundamentals,clustering,classification,forecasting,dataanalysis,andothermachinelearning applications.Eachofthesixpartsisbrieflydescribedasfollows:

PartI: Dataminingandanalysisfundamentalsprovideanoverviewondataminingandanalysisfoundationsasameanstointroducethereadertothemainconceptsofthedomainand facilitatethedeeperunderstandingoftheworksdescribedintherestofthebook.Besidesthe mainconceptsbehinddataminingandanalysis,thefirstchapterisdedicatedtohighlighting theimportanceofdatapre-processingandfeatureengineeringasameanstoenableasuitable

IntelligentDataMiningandAnalysisinPowerandEnergySystems:ModelsandApplicationsforSmarterEfficient PowerSystems,FirstEdition.EditedbyZitaVale,TiagoPinto,MichaelNegnevitsky,andGaneshKumarVenayagamoorthy. ©2023TheInstituteofElectricalandElectronicsEngineers,Inc.Published2023byJohnWiley&Sons,Inc.

applicationofthestate-of-the-artmodelsdedicatedtothediversetraditionalproblemsrelated todatamining.Thisintroductoryoverviewprovidesthemeansforadeeperunderstandingof dataminingandanalysis,bridgingthereaderintothepowerandenergysystemsapplication domainthroughthepresentationoftwosystematicreviews,namely,ondataminingandanalysisapplicationsinpowerandenergysystemsandonthecontributionsofdeeplearninginpower systemproblems.Thesetwochaptersaddressdifferentproblemswithinpowerandenergysystems,whichbenefitfromtheadvancesofdataminingmodelsrelatedtoclustering,classification, forecasting,andothercommonapproaches.

PartII: Clusteringpresentsadescriptionofworksthatapplyclusteringmodelsandmethodsto addresspowerandenergysystemproblems.Theseincludestandardclusteringapproaches,as wellasthecombinationofclusteringwithothermodels,e.g.classification-based,tosolvedifferenttypesofproblems.Specifically,thepowerandenergysystemproblemsaddressedbythis partincludeconsumer-directedproblemsrelatedtoconsumerclusteringanddemandprofiling.Aggregationproblemsconsideringnotonlytheaggregationofconsumersbutalsooftheir consumptionflexibilityareexploredasameanstosolvedemandresponsechallengesinwider scales.Synchrophasordataanalyticstakingadvantageonclusteringmodelsandtheircombinationwithotherapproachesarealsoaddressed,aimingatanomalydetection,localization,and classification.

PartIII: Classificationincludesthedescriptionofworksthatapplyclassificationmodelssuchas artificialneuralnetworks,supportvectormachines,K-nearestneighbors,amongothers,tosolve problemsusinglabeleddata.Theapplicationcasesoftheseworksarerelatedtonon-technical lossdetectioninelectricdistributionsystems,electricalvehicleintegrationinthepowersystemundermultipleworldwideperspectivesandconsideringdifferenttypesoftechnologies,and electricitymarketparticipationanddecisionsupport,namely,inthescopeofbilateralcontract negotiationsusinghistoricandoverserveddatafrommultiplenegotiators’negotiationprocess.

PartIV: Forecastingisdevotedtothedescriptionofworksrelatedtotheforecastingofenergy resourceswithdistinctcharacteristics.Theseworksaremainlyfocusedontheforecastingof highlyvariablerenewableenergysources;besides,theapplicationoftraditionalregression-based algorithmsdescribestheadvantagesofspecificapproachessuchasmultivariatestochasticmodels,spatiotemporalmodels,anddecomposition-basedmodels.Theforecastingmodelsare appliedtosolarirradianceandtemperatureestimationandtowindandsolarpowerforecasting underdistinctscenariosregardinghistoricaldata,powersystemcharacteristics,andoverall renewableenergypenetration.

PartV: Dataanalysispresentstheapplicationofdataanalysismodelsofdistinctnaturestoaddress differenttypesofpowersystem-relatedproblems.Theseproblemsconcernissuessuchasthe vibrationoftransmissionlineconductorsthroughtheanalysisofharmonicdynamicresponse andthedesignofpowerdistributionnetworkinhillyareaswiththepurposeofenablingoff-grid electrification.Theapplicationofintelligentdemandresponsemodelsaspartofmicrogridplanningisanotheroftheaddressedproblems.Thispartisfinalizedwithachapterfocusingon socioeconomicanalysisofrenewableenergyinterventionstowardaffordableandsustainable householdtechnologies.

PartVI: Othermachinelearningapplicationsdescribeapplicationsthatusedistincttypesof machinelearningapproachessuchasreinforcementlearning,federatedlearning,andprobabilisticmodeling,addressingavariedsetofchallengesofnatures.Suchchallengesincludethe stateestimationofpowerelectronicconverters,usingbothwhiteboxandblackboxapproaches. Theproblemofintelligentbuildingenergymanagementandcontrolisaddressedusing reinforcementlearning.Federateddeeplearningisappliedtogenerateglobalsupermodelsfor

powersystemdataanalysis,andriskassessmentofpowersystemoutagesisperformedthrough probabilisticmodeling,consideringweatherandclimateextremes.

Overall,thisbookcomprisesthedescriptionofawidesetofintelligentdataminingandanalysis models,methodologies,andapplications,addressingproblemsofdistinctnatureswithinthefield ofpowerandenergysystems,whilehighlightingtheadvantagesofthealreadyachievedbreakthroughsinthedomainandpointingoutthemaingapsthathavenotyetbeensolved,aspointers forfuturepathsofcontinuousresearchanddevelopment.

ZitaVale PolytechnicofPorto,Portugal TiagoPinto PolytechnicofPorto,Portugal UniversityofTrás-os-MonteseAltoDouro Portugal MichaelNegnevitsky UniversityofTasmania,Australia GaneshKumarVenayagamoorthy ClemsonUniversity,USA

References

1 Ibrahim,M.S.,Dong,W.,andYang,Q.(2020).Machinelearningdrivensmartelectricpowersystems:currenttrendsandnewperspectives. AppliedEnergy 272:115237.

2 Pinto,T.,Vale,Z.,Widergren,S.,andeditors.(2021). LocalElectricityMarkets,1e.Academic Press384pp.https://www.elsevier.com/books/local-electricity-markets/pinto/978-0-12-820074-2.

3 Koirala,B.P.,Koliou,E.,Friege,J.etal.(2016).Energeticcommunitiesforcommunityenergy:a reviewofkeyissuesandtrendsshapingintegratedcommunityenergysystems. Renewableand SustainableEnergyReviews 56:722–744.

4 deSão,J.D.,Faria,P.,andVale,Z.(2021).Smartenergycommunity:asystematicreviewwith metanalysis. EnergyStrategyReviews 36:100678.

5 Hall,S.andRoelich,K.(2016).Businessmodelinnovationinelectricitysupplymarkets:therole ofcomplexvalueintheUnitedKingdom. EnergyPolicy 92:286–298.

DataMiningandAnalysisFundamentals

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.