Introduction to quantum mechanics john dirk walecka 2024 scribd download

Page 1


Introduction to Quantum Mechanics John Dirk

Walecka

Visit to download the full and correct content document: https://ebookmass.com/product/introduction-to-quantum-mechanics-john-dirk-walecka /

More products digital (pdf, epub, mobi) instant download maybe you interests ...

ELECTRON SCATTERING FOR NUCLEAR AND NUCLEON STRUCTURE

John Dirk Walecka

https://ebookmass.com/product/electron-scattering-for-nuclearand-nucleon-structure-john-dirk-walecka/

Solutions

Manual to Introduction to Robotics Mechanics and Control Third Edition John J. Craig

https://ebookmass.com/product/solutions-manual-to-introductionto-robotics-mechanics-and-control-third-edition-john-j-craig/

Consciousness and Quantum Mechanics 1st Edition Shan Gao (Editor)

https://ebookmass.com/product/consciousness-and-quantummechanics-1st-edition-shan-gao-editor/

An Introduction to quantum optics and quantum fluctuations First Edition. Edition Milonni

https://ebookmass.com/product/an-introduction-to-quantum-opticsand-quantum-fluctuations-first-edition-edition-milonni/

Introduction to Fracture Mechanics Robert O. Ritchie

https://ebookmass.com/product/introduction-to-fracture-mechanicsrobert-o-ritchie/

Quantum Mechanics 3rd Edition Nouredine Zettili

https://ebookmass.com/product/quantum-mechanics-3rd-editionnouredine-zettili/

Introduction to Quantum Field Theory with Applications to Quantum Gravity 1st Edition Iosif L. Buchbinder

https://ebookmass.com/product/introduction-to-quantum-fieldtheory-with-applications-to-quantum-gravity-1st-edition-iosif-lbuchbinder/

Identity and Indiscernibility in Quantum Mechanics

Tomasz Bigaj

https://ebookmass.com/product/identity-and-indiscernibility-inquantum-mechanics-tomasz-bigaj/

Quantum Mechanics Mathematical Structure and Physical Structure Part II (Revised 2022) Third Edition John Boccio

https://ebookmass.com/product/quantum-mechanics-mathematicalstructure-and-physical-structure-part-ii-revised-2022-thirdedition-john-boccio/

INTRODUCTION TO QUANTUM MECHANICS

This page intentionally left blank

INTRODUCTION TO QUANTUM MECHANICS

USA

Published by

World Scientific Publishing Co. Pte. Ltd.

5 Toh Tuck Link, Singapore 596224

USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601

UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

Library of Congress Cataloging-in-Publication Data

Names: Walecka, John Dirk, 1932– author.

Title: Introduction to quantum mechanics / John Dirk Walecka, College of William and Mary, USA.

Description: New Jersey : World Scientific Publishing Company, [2021] | Includes bibliographical references and index.

Identifiers: LCCN 2021018728 (print) | LCCN 2021018729 (ebook) | ISBN 9789811234729 (hardcover) | ISBN 9789811236112 (paperback) | ISBN 9789811234736 (ebook) | ISBN 9789811234743 (mobi)

Subjects: LCSH: Quantum theory

Classification: LCC QC174.12 .W345 2021 (print) | LCC QC174.12 (ebook) | DDC 530.12--dc23

LC record available at https://lccn.loc.gov/2021018728

LC ebook record available at https://lccn.loc.gov/2021018729

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Copyright © 2021 by World Scientific Publishing Co. Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher.

For any available supplementary material, please visit https://www.worldscientific.com/worldscibooks/10.1142/12222#t=suppl

Printed in Singapore

ForJohnandAnn

This page intentionally left blank

Preface

Theauthorrecentlypublishedabookentitled IntroductiontoElectricity andMagnetism [Walecka-18].Itisbasedonanintroductorycoursetaught severalyearsagoatStanford,withover400studentsenrolled.Theonly requirementswereanelementaryknowledgeofcalculusandfamiliaritywith vectorsandNewton’slaws;thedevelopmentwasotherwiseself-contained. Thelectures,althoughrelativelyconcise,takeonefromCoulomb’slawto Maxwell’sequationsandspecialrelativityinalucidandlogicalfashion.

Althoughneverpresentedinanactualcourse,itoccurredtotheauthor thatitwouldbefuntocomposeanequivalentsetoflectures,aimedatthe verybeststudents,thatwouldserveasa prequel tothat Electricityand Magnetism text.Thisbookhasnowalsobeenpublishedas Introductionto ClassicalMechanics [Walecka-20].Thegoalofthissecondtextistoprovide aclearandconcisesetoflecturesthattakeonefromtheintroductionand applicationofNewton’slawsuptoHamilton’sprincipleandthelagrangian mechanicsofcontinuoussystems.

Bothofthesetextsonclassicalphysicsaremeantforinitialone-quarter physicscourses.Theselectures,aimedattheverybeststudents,assumea goodconcurrentcourseincalculus;theyareotherwiseself-contained.Both textscontainanextensivesetofaccessibleproblemsthatenhancesand extendsthecoverage.Asanaidtoteachingandlearning,thesolutionsto theseproblemshavenowbeenpublishedinadditionaltexts[Walecka-19, Walecka-21].

Thepresenttextcompletesthefirst-yearintroductiontophysicswitha setoflectureson IntroductiontoQuantumMechanics,theverysuccessful theoryofthemicroscopicworld.TheSchr¨odingerequationismotivated andpresented.Severalapplicationsareexplored,includingscatteringand transitionrates.Theapplicationsareextendedtoincludebothquantum

electrodynamicsandquantumstatistics.Thereisadiscussionofquantummeasurements.Thelecturesthenarriveataformalpresentationof quantumtheorytogetherwithasummaryofitspostulates.Aconcluding chapterprovidesabriefintroductiontorelativisticquantummechanics. Anextensivesetofaccessibleproblemsagainenhancesandextendsthe coverage.

Thegoalofthesethreetextsistoprovideagood,understandable,oneyearintroductiontothefundamentalsofclassicalandquantumphysics.It ismyhopethatstudentsandteachersalikewillfindtheuseofthesebooks rewardingandsharesomeofthepleasureItookinwritingthem.

Quantummechanicsisahugefield,andnoattempthasbeenmade toprovideacompletebibliography.Thereferencesgiveninthetextare onlydirectlyrelevanttothediscussionathand.Itisimportant,however, tomentionsomeofthegood,existingbooksthattheauthorhasfound particularlyuseful,suchas [Wentzel(1949);BjorkenandDrell(1964); BjorkenandDrell(1965);Schiff(1968);ItzyksonandZuber(1980); LandauandLifshitz(1981);Shankar(1994);Merzbacher(1997);Gottfried andYan(2004);FeynmanandHibbs(2010)].Inaddition,appendixBlists somesignificantnamesinquantummechanics,bothinitstheoryandinits applications.

Iwouldliketoonceagainthankmyeditor,Ms.LakshmiNarayanan, forherhelpandsupportonthisproject.IamalsogratefultoPaoloAmore forhisreadingofthemanuscript.

JohnDirkWalecka Governor’sDistinguishedCEBAF ProfessorofPhysics,emeritus CollegeofWilliamandMary Williamsburg,Virginia January8,2021

Preface vii

1.Motivation1

1.1ClassicalOptics.........................1

1.2PlanckDistribution.......................2

1.3Photons.............................3

1.4Davisson–GermerExperiment.................4

2.WavePacketforFreeParticle5

2.1deBroglieRelation.......................5

2.2Schr¨odingerEquation.....................5

2.3Interpretation..........................7

2.4StationaryStates........................8

2.5EigenfunctionsandEigenvalues ................9

2.6GeneralSolution........................11

3.IncludePotential V (x)13

3.1Schr¨odingerEquation.....................13

3.2ParticleinaBox........................14

3.3BoundaryConditions ......................16

3.4BarrierPenetration.......................17

3.5BoundStates..........................19

3.6HigherDimensions.......................21

3.7PerturbationTheory......................22

3.7.1Non-DegeneratePerturbationTheory.........23

This page intentionally left blank

Chapter1

Motivation

1.1ClassicalOptics

Consideranon-dispersivewavewhichistherealpartof

Here c isthevelocityofthewave,andthefrequencyandwavelengthare relatedby

Aswehaveseen,thiscouldbeanelectromagneticwaveinvacuum,atransversewaveonastringundertension,orthesoundwaveinamedium.This wavesatisfiesthewaveequation

;waveequation(1.3)

Wehavealsoseenthatalinearcombinationoftwosuchwaveswith slightlydifferentwavenumbers k ,producesanamplitudemodulatedsignal. Amoregenerallinearcombinationcanproducealocalizedwavepacket,or pulse.

Huygen’sprinciple statesthateachpointonawavefrontactsasasource ofanoutgoingsphericalwave.Fromthis,anditsgeneralizations,onederivessingle-slitdiffraction,two-slitandmulti-slitinterference,andmostof classicalwaveoptics.1

1 SeeProbs.1.1–1.2.Foramoredetaileddiscussionhere,see [Wiki(2021)].

1.2PlanckDistribution

Earlyinthetwentiethcentury,Planckwasstudyingthedistributionof energyasafunctionoffrequencyfortheelectromagneticradiationina cavity.Normalmodesareuncoupledsimpleharmonicoscillators.The classicalequipartitiontheoremsaysthattheenergyofasimpleharmonic oscillatoratanabsolutetemperature T is

where kB isBoltzmann’sconstant

kB =1 381 × 10 23 J/o K;Boltzmann’sconstant(1.5)

Sincethereisnolimittohowsmallthewavelengthcanbe,orhowhigh thefrequency,thisclassicalresultsaysthereshouldbeanever-increasing energyasafunctionoffrequencyfortheradiationinacavity,theso-called ultravioletcatastrophe. 2

Tofithisdata,Planckemployedan empirical expressionoftheform

;Planckdistribution(1.6)

where h isaconstantobtainedfromthefit,nowknownasPlanck’sconstant

≡ =1 055 × 10 34 Js;Planck’sconstant(1.7)

Notethatat low frequency,thePlanckdistributionreproducestheequipartitionresult

whileat high frequency,itnowdisappearsexponentially

OnecanaskwherethisempiricalPlanckdistributionmightcomefrom. Supposethatineachmodewithfrequency ν inthecavityitispossibleto haveanynumber n of photons,eachwithenergy

2 SeeProb.1.3.

Thenthemeanenergyinthemodeatthetemperature T followsfrom anelementarystatisticalcalculationwiththeBoltzmannweightingfactor e nhν/kB T as

Thesumisjustageometricseries3

Itfollowsthat

ThisreproducesPlanck’sdistribution.

1.3Photons

Thefactthatlightwavesactuallyconsistofphotons,whichmanifestparticleproperties,wasdemonstratedbyEinsteininhisexaminationofthe photoelectriceffect,wherelightshiningonvarioussolidsejectselectrons. Thephotonsoflighteachhaveanenergy

= hν ;photon(1.14)

Weknowthemomentumfluxinanelectromagneticwaveis1/c timesthe energyflux,andhenceeachphotoninlightalsohasamomentum

Photonsarenowobservedeverydayinthelaboratoryassingleeventsin low-intensityradiationdetectors.

3 Note e nhν/kB T = e hν/kB T n .

Soundwavesinmaterialsalsoregularlyexhibitparticleproperties through phonons,whichsatisfyanalogousrelationstotheabove.4

1.4Davisson–GermerExperiment

Wehaveseenthatwavesexhibitparticleproperties.TheDavisson–Germer experimentin1927showedthat particlesalsoexhibitwaveproperties.They tookelectronsfromanoven,letthemimpingeonacrystal,andlookedfor Braggdiffractionmaxima(Fig.1.1).

Fig.1.1SketchofDavisson–Germerexperiment.

Theyobservedadiffractionpatternasinclassicaloptics,5 andquantum mechanicswason!

4 Rememberthat c istheappropriatewavevelocity.

5 Again,see [Wiki(2021)] formoredetails.

Chapter2

WavePacketforFreeParticle

2.1deBroglieRelation

Inattemptingtowriteawaverelationforanon-relativisticparticleofmass m,deBroglieappealedtotheanalogousphotonrelationsfromtheabove. Heassociatedawavelengthwiththemomentumaccordingto

;deBrogliewavelength(2.1)

Asoneimmediateconsequence,ifonefitsanintegralnumber n ofwavelengthsaroundacircleofradius a,then

Theangularmomentum |L | ofaparticlemovingaroundinthecircleis then |L | = mva = n ;angularmomentum(2.3)

Aswehaveseen,thisispreciselythequantizationconditionthatleadsto theBohrtheoryoftheone-electronatom!1

2.2Schr¨odingerEquation

WiththedeBroglierelation,andtheangularfrequency ω (k )givenby

1 SeeProb.1.5.

thewaveinEq.(1.1)nowtakesthedispersiveform

Appropriatelinearcombinationsofthesewavescanagaindescribealocalizedwavepacket.2

LetusaskwhatwaveequationthisΨ(x,t)satisfies.Evidently

Themomentumoftheparticleis p = k .Thisquantityisobtainedfrom thewaveinEq.(2.5)bytakingapartialderivativewithrespectto x.Let usthereforedefinethemomentum p tobethedifferentialoperator

andwritethehamiltonian H (p)forafreeparticleas

ThenthiswaveΨ(x,t)forafreeparticlesatisfiesthe Schr¨odingerequation i ∂ Ψ(x,t) ∂t = H Ψ(x,t);Schr¨odingerequation(2.9)

Wemakeafewcommentsonthisresult:

• Thisequationisinherentlycomplex,sothenisthewavefunction Ψ(x,t).Hence,wewillhavetoarriveatsomenewphysicalinterpretationofΨ(x,t).Wewillproceedtoinvestigatethisbelow;

• ThedifferentialequationexplicitlycontainsPlanck’sconstant ;

• Thedifferentialequationislinearinthetimederivative,andthusit looksmorelikeacomplexdiffusionequationthanawaveequation;

• Itinvolvestheclassicalhamiltonian H (p,x),where p nowbecomes adifferentialoperatorinvolvingPlanck’sconstant

2 SeeProb.2.7;seealso [Walecka(2008)].

• Themomentum p andtheposition x nowsatisfyingthebasic commutationrelation

[p,x]Ψ(x,t) ≡ (px xp)Ψ(x,t)= i Ψ(x,t)(2.11) ;commutationrelation

• Infact,theargumentcanbeturnedaround.Onesaysthatthesystemisquantizedby imposing thecanonicalcommutationrelation inEq.(2.11),whichcanbesatisfiedbywritingthemomentumas thedifferentialoperatorinEq.(2.10).

2.3Interpretation

ThecomplexSchr¨odingerwavefunctionΨ(x,t),forwhichwewritethe underlyingdifferentialequationinquantummechanics,isnotaphysical observable.Asyoumightimagine,thisleadstosubstantialcomplications. Ontheotherhand,wedoknowintuitivelythatthewavefunctionshould belargewheretheparticleis,andsmallwhereitisnot.Bornsuggested thatweinterpretthesquareofthemodulusofΨ(x,t)asthe probability density offindingtheparticleattheposition x atthetime t

(x,t

HereΨ∗ (x,t)isthecomplexconjugateofΨ(x,t).

Weshouldatleastfinda continuityequation fortheprobabilitydensity ρ(x,t),andtheconsequentconservationofprobability,inthetheory.Let ustrytoestablishthat.Consider

ThecomplexconjugateoftheSchr¨odingerequationgives

Hence

Insertionofthedifferentialformof H = 2 ∂ 2 /∂x2 allowsthistobewritten as

;probabilityflux

Thuswehaveachievedourcontinuityequationfortheprobabilitydensity. Notethatthe probabilityflux S (x,t)isjustameanvalueof p/m forthe particle,orits meanvelocity.Notealsothat S (x,t)isexplicitly real.

2.4StationaryStates

LetuslookforseparatedsolutionstothepartialdifferentialSchr¨odinger equation

x,t)=Φ(t)ψ (x)(2.18)

Wewilleventuallybuildthegeneralsolutionoutofthese.Substitutioninto theequation,anddivisionbyΨ=Φψ ,gives

Inorderforthistoholdforall(x,t),bothexpressionsmustsimplybeequal tosomeconstant E .

Forthefirstterm,onethenhas i dΦ(t) dt = E Φ(t)(2.20)

Thesolutiontothisequationis Φ(t)= e iEt/ (2.21)

Forthesecondterm,onehas

Thisisadifferentialeigenvalueequation,where E isthe eigenvalue,and ψ (x)isthe eigenfunction.Multiplythisequationontheleftby ψ ∗ ,and integrateovertheappropriaterangein x.Thisgives

Letusassumethatthehamiltonianis hermitian andsatisfies

Wewilldiscussthispropertyissomedetailbelow.Inthiscase,onehas

Theeigenvalue E ofthehermitianhamiltonian H isreal,andsinceitis justthemeanvalueofthehamiltonianbyEq.(2.23),wecanidentifyitas the energy ofthesystem.

Theseparatedsolutionthushastheform

IfthisissubstitutedintoEqs.(2.12)and(2.17),onehas

Theprobabilitydensityandprobabilitycurrentare independentoftime, andtheseparatedsolutioninEq.(2.26)isknownasa stationarystate.

2.5EigenfunctionsandEigenvalues

Letusstartwiththesimplestcaseoftheeigenfunctionsandeigenvaluesof themomentumoperator

Herewehavedenotedtheeigenvaluesby k .Thesolutionstothisequation are

Nowitiscrucialtosupplysome boundaryconditions fortheproblem. Hereweshalljustconsiderthesimplestcaseof periodicboundaryconditions (p.b.c.).Imaginetheparticleisrunningaroundalargecircleoflength L, andlet x denotethedistancealongthecircle(seeFig.2.1).

Fig.2.1Freeparticlegoingaroundalargecircleoflength L,withthedistance x along thecircle.Basisforperiodicboundaryconditions(p.b.c.).

Thep.b.c.inthiscaseis

Theeigenvaluesofthemomentumthenfollowimmediatelythrough

Thenormalizedeigenfunctionsare

Asimplecalculationshowsthesesolutionsare orthonormal

where δm,n istheKroneckerdelta

Nowconsiderthefollowingexpression

Apartialintegrationgives

Withourboundaryconditions,thefirsttermonther.h.s. vanishes,and hencethemomentumoperator p is hermitian

Notethatthehermiticityoftheoperatordependscruciallyontheboundary conditionsintheproblem.

Itisevidentthattheabovemomentumeigenfunctionsarealsoeigenfunctionsofthehamiltonian

Arepetitionofthepreviouscalculationshowsthatthehamiltonian H = p2 /2m isalsohermitian[seeEq.(2.24)].

Thesestationarystatesforaparticlegoingaroundinacircleareeigenstatesofmomentum,withadiscretequantumdifference

betweentheeigenvalues.Theprobabilitydensityineachstationarystate is constant

Thereisnopreferredpositiononthecircle.

2.6GeneralSolution

LetustrytoconstructthegeneralsolutiontotheSchr¨odingerequationfor afreeparticlemovingaroundthecirclefromtheseseparatedsolutions

SincetheSchr¨odingerequationislinear,theprincipleof superposition holds, andanylinearcombinationofsolutionsisagainasolution.

TheSchr¨odingerequationisfirstorderinthetimederivative,soonehas tospecifythewavefunctioneverywhereinspaceattheinitialtime(say t =0)tospecifythesolution

Usetheorthonormalityoftheeigenfunctionstodeterminetheexpansion coefficients

Thefunctions ψn (x)forma completeset,anditisknownthatanarbitrary piecewisecontinuousfunctioncanbeexpandedinsuchacomplexFourier series.3

3 See [FetterandWalecka(2003)];seealsoProb.9.1.

Chapter3

IncludePotential V (x)

3.1Schr¨odingerEquation

LetustryandextendtheSchr¨odingerequationtodescribeanon-relativistic particleofmass m movinginarealpotential V (x).Anevidentapproachis tojustappealtoourclassicalmechanicsargumentsandextendthehamiltonianby

Letusseewhathappenstoourpreviousquantummechanicsargumentsif weworkwiththefollowinghamiltonian

WewillcontinuetowritethemomentumintheSchr¨odingerequationas

Thehamiltonianisstill hermitian,sincearealpotentialishermitian

Theseparatedsolutionsarethenagainstationarystates

where E istherealenergy

Thepotential cancels onther.h.s.ofEq.(2.15) 1 i Ψ∗ (x,t)[V Ψ(x,t)] [V Ψ(x,t)]∗ Ψ(x,t) =0(3.7)

Thustheargumentonthecontinuityequationfortheprobabilitydensity goesthroughunaltered

∂ρ(x,t) ∂t + ∂S (x,t) ∂x =0;continuityequation(3.8)

where

ρ(x,t)= |Ψ(x,t)|2 ;probabilitydensity S (x,t)= 1 2m Ψ (x,t)pΨ(x,t)+[pΨ(x,t)]∗ Ψ(x,t) (3.9) ;probabilityflux

Inparticular,theprobabilitydensityandfluxarestilltime-independentin thestationarystates

ρ(x)= |ψ (x)|2 ;stationarystates S (x)= 1 2m ψ (x)pψ (x)+[pψ (x)]∗ ψ (x) (3.10)

3.2ParticleinaBox

Beforeinvestigatingthegeneralboundaryconditions,letusfirstconsider anothersimplephysicalsituationwherethepotentialisrepulsiveandgrows verylarge.Thepotentialtheneffectivelypresentsa wall totheparticle wherethewavefunctionmust vanish.Ifaparticlemovesinonedimension alongthe x-axisandisinaboxoflength L,theboundaryconditionsbecome (seeFig.3.1)

ψ (0)= ψ (L)=0;particleinbox(3.11)

Theenergyeigenstatesinthiscaseare

ψn (x)= 2 L sin kn x kn = nπ L ; n =1, 2, 3, ··· (3.12)

Fig.3.1Freeparticlemovinginaone-dimensionalboxoflength L,withthedistance x alongtheaxis.Thereisaninfiniterepulsivepotential,orwall,onbothsides.

Thecorrespondingenergyeigenvaluesare

Theenergyeigenstatesarenolongeralsoeigenstatesofmomentum, sincenowtheparticleisbouncingoffthewalls;however,themomentum operatorisstill hermitian sincetheboundarytermonther.h.s.ofEq.(2.36) stillvanishes

Weshowthefirstfoureigenfunctionsandcorrespondingprobability densitiesinFigs.3.2and3.3.Ifonehassomewayofrepeatedlyobserving thelocationoftheparticleinthesestationarystates,thenonewillindeed observethespatialdistributioninFig.3.3. Thisisareal,quiteamazing, consequenceofquantummechanics!

Thegeneralsolutiontotheproblemofanon-relativisticparticleina one-dimensionalboxisconstructedexactlyasinthelastchapter

Theeigenfunctionsagainsatisfytheorthonormalitycondition

Theexpansioncoefficientsarethusobtainedfromtheinitialconditionjust

asbefore

Thefunctions ψn (x)forma completeset,anditisknownthatanarbitrary piecewisecontinuousfunctioncanbeexpandedinsuchaFouriersineseries.1

Fig.3.2Firstfourwavefunctionsofaparticleinaone-dimensionalboxoflength L Takenfrom [AmoreandWalecka(2013)]

3.3BoundaryConditions

TheseparatedSchr¨odingerequationisasecond-orderdifferentialequation inspace.Withnoadditionalinput,theevidentboundaryconditionisto askthatthephysicallyacceptablesolutions,andtheirfirstderivatives,be continuous

ψ (x),ψ (x)continuous;boundaryconditions(3.18)

1 Again,see [FetterandWalecka(2003)].

Fig.3.3Probabilitydensitiescorrespondingtothefirstfourwavefunctionsofaparticle inaone-dimensionalboxoflength L.Takenfrom [AmoreandWalecka(2013)].

Thissoundssoobvious,butasweshallnowsee,thishasessential,and quiteunexpected,consequences.

3.4BarrierPenetration

Consideranon-relativisticparticlemovinginonedimensionagainstabarrierofheight V0 extendingforall x> 0.Supposeitsenergyislessthan thebarrierheight.Thenclassicallyitcannevergetintothebarrier,since itskineticenergyisapositivedefinitequantity E = m 2 ˙ x 2 + V0 ; x> 0 E V0 = m 2 x 2 ≥ 0(3.19)

Letusnowaskwhathappensinquantummechanicswiththeabove boundaryconditions.Considerastationarystatewithanenergy E<V0 belowthebarrier.Totheleftofthebarrier,wehavebothanincidentand reflectedwave(seeFig.3.4)

ψ (x)= e ikx + ae ikx ; x< 0(3.20)

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.