Buy ebook Remote sensing digital image analysis sixth edition john alan richards cheap price

Page 1


Remote sensing digital image analysis

Sixth Edition John Alan Richards

Visit to download the full and correct content document: https://ebookmass.com/product/remote-sensing-digital-image-analysis-sixth-edition-jo hn-alan-richards/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Remote Sensing Digital Image Analysis 6th ed. 2022

Edition John A. Richards

https://ebookmass.com/product/remote-sensing-digital-imageanalysis-6th-ed-2022-edition-john-a-richards/

Remote Sensing and Image Interpretation, 7th Edition 7th Edition, (Ebook PDF)

https://ebookmass.com/product/remote-sensing-and-imageinterpretation-7th-edition-7th-edition-ebook-pdf/

Thermal and Optical Remote Sensing John O Odindi

https://ebookmass.com/product/thermal-and-optical-remote-sensingjohn-o-odindi/

Atmospheric Remote Sensing Abhay Kumar Singh

https://ebookmass.com/product/atmospheric-remote-sensing-abhaykumar-singh/

Techniques and methods in urban remote sensing Weng

https://ebookmass.com/product/techniques-and-methods-in-urbanremote-sensing-weng/

Remote Sensing of Geomorphology, Volume 23 Paolo

Tarolli

https://ebookmass.com/product/remote-sensing-of-geomorphologyvolume-23-paolo-tarolli/

Remote Sensing of Ocean and Coastal Environments Meenu Rani

https://ebookmass.com/product/remote-sensing-of-ocean-andcoastal-environments-meenu-rani/

Hyperspectral Remote Sensing: Theory and Applications

Prem Chandra Pandey

https://ebookmass.com/product/hyperspectral-remote-sensingtheory-and-applications-prem-chandra-pandey/

Atmospheric Remote Sensing: Principles and Applications

Abhay Kumar Singh

https://ebookmass.com/product/atmospheric-remote-sensingprinciples-and-applications-abhay-kumar-singh/

RemoteSensingDigitalImageAnalysis

JohnA.Richards RemoteSensingDigital ImageAnalysis

SixthEdition

TheAustralianNationalUniversity Canberra,ACT,Australia

ISBN978-3-030-82326-9ISBN978-3-030-82327-6(eBook) https://doi.org/10.1007/978-3-030-82327-6

1st –5th editions:©Springer-VerlagBerlinHeidelberg1986,1993,1999,2006,2013 6th edition:©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringer NatureSwitzerlandAG2022

Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuse ofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped.

Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse.

Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations.

ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland

Thisbookisdedicatedtothememoryofthe lateDavidLandgrebe,ProfessorEmeritusof PurdueUniversity.

Asateacher,mentor,friendandcolleagueto generationsofengineersandscientistsin remotesensing,Davetouchedandinfluenced thelivesandcareersofmanytheworldover.

Thedevelopmentofquantitativemethodsfor theanalysisofremotesensingimagedata owesmuchtoDave’sleadership.Helaidthe foundationsfortheapplicationof classificationtechniquestotheearthsciences thatweusetoday.

DavidLandgrebewasoneofthetrueand inspirationalpioneersofourfield.

Preface

Inafieldlikeremotesensingimageanalysis,whichchangessoquickly,revisinga long-standingtextbookisachallenge.Itisimportanttoincorporatecontemporary techniques,whilenotdiscardingproceduresfromthepastwhich,whileapparently supersededbynewermethods,neverthelessretainvalueandareoftensimplertouse. Also,someprocessingoperationsfromthepastcanbecomeimportantagainasdata typesandvolumeschange.Streamingmethodsforclusteringareanexamplewith thetrendnowtoverylargedatasets.

Aswiththepreviousedition,judgementshavehadtobemadeaboutwhattoleave out,whattoretainandwhattoadd.Thosejudgementshavebeenmadeagainstthe intendedpurposeofthebook.Fromthebeginning,ithasbeendesignedasateaching textfortheseniorundergraduateandpostgraduatestudent,andasafundamental treatmentforthoseengagedintheapplicationofdigitalimageanalysisinremote sensingprojectsorinremotesensingimageprocessingresearch.

Thepresentationlevelisforthemathematicalnon-specialist.Becausemostoperationalusersofremotesensingcomefromtheearthsciencescommunities,thetext ispitchedatalevelcommensuratewiththeirbackground.Thatisimportantbecause therecognisedauthoritiesindigitalimageanalysisandmachinelearningtendto befromengineering,computerscienceandmathematics.Althoughfamiliaritywith acertainlevelofmathematicsandstatisticscannotbeavoided,thetreatmenthere progressesthroughanalysescarefully,withmanyhand-workedexamples,sothatany lackofdepthinmathematicalbackgroundshouldnottakeawayfromunderstanding theimportantaspectsofimageanalysisandinterpretation.

Althoughtheprincipalfocusofthetreatmentisondigitalimageinterpretationand theanalyticaltechniquesthatmakethatpossible,thematerialislocatedwithinthe domainofremotesensingapplications.Thatmeansprojectobjectivesareasimportantasfindingthebest-performingalgorithm.Algorithmsneedtobeincorporated intomethodologiesthatcangenerateoptimalresultsfromacarefulcombinationof procedures,andinwhichthestepsofchoosingreferencematerialtosupportthe processandforassessingaccuracy,maybejustasimportantasalgorithmperformance.Whilealgorithmperformanceisakeyobjectiveinthemachinelearning

remotesensingresearchcommunity,itisprojectoutcomesthatdrivetheremote sensingapplicationsspecialist.Thatisakeyemphasisofthisbook.

Althoughthechapterscanbeusedindividually,thematerialispresentedina sequentialmanner.Apersonwithlittleornobackgroundinremotesensingimage interpretationcanstartwiththeearlychaptersinordertoappreciatekeyconceptsin remotesensingandimageformation,howerrorsariseinrecordedimageryandhow theycanbecorrected.Theremainingchaptersthenworkprogressivelythroughthe majoranalyticalmethodsfundamentaltodigitalimageanalysis,finishingupwith meansbywhichmethodologiescanbedevisedtotackleremotesensingprojects.

Overtheyears,manypeoplehaveeitherdirectlyorindirectlycontributedtothis book.ThelateDavidLandgrebe,towhomthiseditionisdedicated,wasafriendand colleaguewhodidmuchtoshapemythinkingabouttheapplicationofquantitative methodsinremotesensing.Hepioneeredmanyoftheideasthatendedupinone wayoranotherinpartsofthisbook.

MycolleagueAssociateProfessorXiupingJiahasbeenagreatcollaboratorover theyears,commencingwhensheundertookherPh.D.Manyofthemethodspresented herehavebeentheresultofafruitfulresearchpartnershipforwhichIexpressmy sinceregratitudetoher.

Dr.TerryCocks,formerManagingDirectorofHyVistaCorporationPtyLtd, Australia,kindlymadeavailableHyMaphyperspectralimageryofPerth,Western Australia,toallowmanyoftheexamplescontainedinthisandthepreviousedition tobegenerated.

IamindebtedtoJasonBrownofCapellaSpacewithwhoseencouragementthis sixtheditionwasprepared;otherwise,itmaynothavehappened.Healsokindly providedtheradarimageryusedinChap. 1

Lastly,Iacknowledgethededication,supportandencouragementofmywife Glenda.Herperseveranceandunderstandinghavebeenenormouslyimportant, andhavemadethejobofwritingthisneweditionfulfillingandsatisfying, notwithstandingthedemandsitmadeonfamilytime.

Canberra,Australia June2021

1SourcesandCharacteristicsofRemoteSensingImageData .......1

1.1EnergySourcesandWavelengthRanges....................1

1.2PrimaryDataCharacteristics..............................5

1.3RemoteSensingPlatforms................................6

1.4WhatEarthSurfacePropertiesAreMeasured?...............11

1.4.1SensingintheVisibleandReflectedInfrared Ranges........................................11

1.4.2SensingintheThermalInfraredRange............14

1.4.3SensingintheMicrowaveRange..................14

1.5SpatialDataSourcesinGeneralandGeographic InformationSystems.....................................18

1.6ScaleinDigitalImageData...............................21

1.7DigitalEarth...........................................21

1.8HowThisBookIsArranged..............................23

1.9BibliographyonSourcesandCharacteristicsofRemote SensingImageData.....................................25

2.2SourcesofRadiometricDistortion.........................32 2.3InstrumentationErrors...................................32

2.4EffectoftheSolarRadiationCurveandtheAtmosphere onRadiometry..........................................35

2.5CompensatingfortheSolarRadiationCurve................37

2.6InfluenceoftheAtmosphere..............................38

2.7EffectoftheAtmosphereonRemoteSensingImagery........42

2.8CorrectingAtmosphericEffectsinBroadWaveband

2.9CorrectingAtmosphericEffectsinNarrowWaveband Systems...............................................45

2.10Empirical,DataDrivenMethodsforAtmospheric Correction.............................................49

2.10.1HazeRemovalbyDarkSubtraction...............50

2.10.2TheFlatFieldMethod...........................50

2.10.3TheEmpiricalLineMethod......................51

2.10.4LogResiduals..................................52

2.11SourcesofGeometricDistortion...........................53

2.12TheEffectofEarthRotation..............................54

2.13TheEffectofVariationsinPlatformAltitude,Attitude andVelocity............................................56

2.14TheEffectofSensorFieldofView:PanoramicDistortion.....56

2.15TheEffectofEarthCurvature.............................59

2.16GeometricDistortionCausedbyInstrumentation Characteristics..........................................60

2.16.1SensorScanNonlinearities.......................61

2.16.2FiniteScanTimeDistortion......................61

2.16.3AspectRatioDistortion..........................61

2.17CorrectionofGeometricDistortion........................62

2.18UseofMappingFunctionsforImageCorrection.............62

2.18.1MappingPolynomialsandtheUseofGround ControlPoints..................................63

2.18.2BuildingaGeometricallyCorrectImage...........64

2.18.3ResamplingandtheNeedforInterpolation.........65

2.18.4TheChoiceofControlPoints.....................67

2.18.5ExampleofRegistrationtoaMapGrid............68

2.19MathematicalRepresentationandCorrection ofGeometricDistortion..................................70

2.19.1AspectRatioCorrection.........................70

2.19.2EarthRotationSkewCorrection..................71

2.19.3ImageOrientationtoNorth–South................72

2.19.4CorrectingPanoramicEffects....................72

2.19.5CombiningtheCorrections.......................72

2.20ImagetoImageRegistration..............................73

2.20.1RefiningtheLocalisationofControlPoints.........73

2.20.2ExampleofImagetoImageRegistration...........75

2.21OtherImageGeometryOperations.........................78

2.21.1ImageRotation.................................78

2.21.2ScaleChangingandZooming....................78

2.22BibliographyonCorrectingandRegisteringImages..........79

2.23Problems...............................................80

3InterpretingImages ...........................................87

3.1Introduction............................................87

3.2Photointerpretation......................................88

3.2.1FormsofImageryforPhotointerpretation..........89

3.2.2ComputerEnhancementofImagery forPhotointerpretation..........................90

3.3QuantitativeAnalysis:FromDatatoLabels.................91

3.4ComparingQuantitativeAnalysisandPhotointerpretation.....93

3.5TheFundamentalsofQuantitativeAnalysis.................94

3.5.1PixelVectorsandSpectralSpace..................94

3.5.2LinearClassifiers...............................98

3.5.3StatisticalClassifiers............................98

3.6Sub-classesandSpectralClasses..........................101

3.7UnsupervisedClassification..............................103

3.8BibliographyonInterpretingImages.......................103

3.9Problems...............................................104

4RadiometricEnhancementofImages ...........................107

4.1Introduction............................................107

4.1.1PointOperationsandLookUpTables.............107

4.1.2ScalarandVectorImages........................108

4.2TheImageHistogram....................................108

4.3ContrastModification....................................109

4.3.1HistogramModificationRule.....................109

4.3.2LinearContrastModification.....................110

4.3.3SaturatingLinearContrastEnhancement...........111

4.3.4AutomaticContrastEnhancement.................112

4.3.5LogarithmicandExponentialContrast Enhancement..................................113

4.3.6PiecewiseLinearContrastModification............113

4.4HistogramEqualisation..................................113

4.4.1UseoftheCumulativeHistogram.................113

4.4.2AnomaliesinHistogramEqualisation.............120

4.5HistogramMatching.....................................122

4.5.1Principle......................................122

4.5.2ImagetoImageContrastMatching................123

4.5.3MatchingtoaMathematicalReference............126

4.6DensitySlicing.........................................126

4.6.1BlackandWhiteDensitySlicing..................126

4.6.2ColourDensitySlicingandPseudocolouring.......127

4.7BibliographyonRadiometricEnhancementofImages........129

4.8Problems...............................................131

5GeometricProcessingandEnhancement:ImageDomain Techniques ...................................................135

5.1Introduction............................................135

5.2NeighbourhoodOperationsinImageFiltering...............136

5.3ImageSmoothing.......................................138

5.3.1MeanValueSmoothing..........................138

5.3.2MedianFiltering................................139

5.3.3ModalFiltering................................140

5.4SharpeningandEdgeDetection...........................140

5.4.1SpatialGradientMethods........................141

5.4.1.1TheRobertsOperator..................143

5.4.1.2TheSobelOperator....................143

5.4.1.3ThePrewittOperator...................144

5.4.1.4TheLaplacianOperator................145

5.4.2SubtractiveSmoothing(UnsharpMasking).........147

5.5EdgeDetection.........................................147

5.6LineandSpotDetection..................................150

5.7ThinningandLinking....................................150

5.8GeometricProcessingasaConvolutionOperation...........151

5.9ImageDomainTechniquesComparedwithUsing theFourierTransform....................................153

5.10GeometricPropertiesofImages...........................154

5.10.1MeasuringGeometricProperties..................155

5.10.2DescribingTexture..............................156

5.11MorphologicalAnalysis..................................159

5.11.1Erosion.......................................161

5.11.2Dilation.......................................162

5.11.3OpeningandClosing............................163

5.11.4BoundaryExtraction............................164

5.11.5OtherMorphologicalOperations andApplications...............................166

5.12ObjectandShapeRecognition............................166

5.13BibliographyonGeometricProcessingandEnhancement: ImageDomainTechniques...............................167

5.14Problems...............................................168

6SpectralDomainImageTransforms .............................171

6.1Introduction............................................171

6.2ImageArithmeticandVegetationIndices...................172

6.3ThePrincipalComponentsTransform......................174

6.3.1TheMeanVectorandtheCovarianceMatrix........174

6.3.2AZeroCorrelation,RotationalTransform..........179

6.3.3TheEffectofanOriginShift.....................184

6.3.4ExampleandSomePracticalConsiderations........185

6.3.5ApplicationofPrincipalComponentsinImage EnhancementandDisplay.......................187

6.3.6TheTaylorMethodofContrastEnhancement.......189

6.3.7UseofPrincipalComponentsforImage Compression...................................193

6.3.8ThePrincipalComponentsTransform inChangeDetectionApplications.................194

6.3.9UseofPrincipalComponentsforFeature Reduction.....................................198

6.4TheNoiseAdjustedPrincipalComponentsTransform........198

6.5TheKauth-ThomasTasseledCapTransform................201

6.6TheKernelPrincipalComponentsTransform................205

6.7HSIImageDisplay......................................208

6.8PanSharpening.........................................210

6.9BibliographyonSpectralDomainImageTransforms.........211 6.10Problems...............................................212

7.1Introduction............................................217

7.2SpecialFunctions.......................................218

7.2.1TheComplexExponentialFunction...............218

7.2.2TheImpulseorDeltaFunction...................220

7.2.3TheHeavisideStepFunction.....................221

7.3TheFourierSeries.......................................222

7.4TheFourierTransform...................................224

7.5TheDiscreteFourierTransform...........................227

7.5.1PropertiesoftheDiscreteFourierTransform........229

7.5.2ComputingtheDiscreteFourierTransform.........230

7.6Convolution............................................230

7.6.1TheConvolutionIntegral........................230

7.6.2ConvolutionwithanImpulse.....................231

7.6.3TheConvolutionTheorem.......................231

7.6.4DiscreteConvolution............................232

7.7SamplingTheory........................................233

7.8TheDiscreteFourierTransformofanImage................236

7.8.1TheTransformEquations........................236

7.8.2EvaluatingtheFourierTransformofanImage......237

7.8.3TheConceptofSpatialFrequency................238

7.8.4DisplayingtheDFTofanImage..................238

7.9ImageProcessingUsingtheFourierTransform..............239

7.10ConvolutioninTwoDimensions...........................241

7.11OtherFourierTransforms................................242

7.12LeakageandWindowFunctions...........................243

7.13TheWaveletTransform..................................244

7.13.1Background....................................244

7.13.2OrthogonalFunctionsandInnerProducts..........245

7.13.3WaveletsasBasisFunctions......................246

7.13.4DyadicWaveletswithCompactSupport...........247

7.13.5ChoosingtheWavelets..........................248

7.13.6FilterBanks...................................248

7.13.6.1SubBandFiltering, andDownsampling....................248

7.13.6.2ReconstructionfromtheWavelets, andUpsampling.......................252

7.13.6.3RelationshipBetweentheLow andHighPassFilters...................253

7.13.7ChoiceofWavelets.............................254

7.14TheWaveletTransformofanImage.......................256

7.15ApplicationsoftheWaveletTransforminRemote SensingImageAnalysis..................................257

7.16BibliographyonSpatialDomainImageTransforms..........259

7.17Problems...............................................260

8SupervisedClassificationTechniques

8.1Introduction............................................263

8.2TheEssentialStepsinSupervisedClassification.............264

8.3MaximumLikelihoodClassification.......................267

8.3.1Bayes’Classification............................267

8.3.2TheMaximumLikelihoodDecisionRule..........267

8.3.3MultivariateNormalClassModels................269

8.3.4DecisionSurfaces..............................270

8.3.5Thresholds....................................271

8.3.6NumberofTrainingPixelsRequired..............273

8.3.7TheHughesPhenomenonandtheCurse ofDimensionality..............................274

8.3.8AnExample...................................276

8.4GaussianMixtureModels................................278

8.5MinimumDistanceClassification..........................284

8.5.1TheCaseofLimitedTrainingData................284

8.5.2TheDiscriminantFunction.......................285

8.5.3DecisionSurfacesfortheMinimumDistance Classifier......................................286

8.5.4Thresholds....................................286

8.5.5DegenerationofMaximumLikelihood toMinimumDistanceClassification...............286

8.5.6ClassificationTimeComparison oftheMaximumLikelihoodandMinimum DistanceRules.................................287

8.6ParallelepipedClassification..............................288

8.7MahalanobisClassification...............................289

8.8Non-parametricClassification.............................290

8.9TableLookUpClassification.............................291

8.10 k NN(NearestNeighbour)Classification....................291

8.11TheSpectralAngleMapper...............................292

8.12Non-parametricClassificationfromaGeometricBasis........293

8.12.1LinearClassificationandtheConcept ofaWeightVector..............................293

8.12.2TestingClassMembership.......................294

8.13TrainingaLinearClassifier...............................295

8.14TheSupportVectorMachine:LinearlySeparableClasses.....295

8.15TheSupportVectorMachine:OverlappingClasses...........300

8.16TheSupportVectorMachine:NonlinearlySeparable DataandKernels........................................303

8.17Multi-categoryClassificationwithBinaryClassifiers.........306

8.18ApplyingtheSupportVectorClassifier.....................307

8.18.1InitialChoices.................................307

8.18.2GridSearchingforParameterDetermination........308 8.18.3DataCenteringandScaling......................309

8.18.4Examples......................................309

8.19CommitteesofClassifiers................................312

8.19.1Bagging.......................................313

8.19.2BoostingandAdaBoost.........................313

8.20NetworksofClassifiers:TheArtificialNeuralNetwork.......315

8.20.1TheProcessingElement.........................316

8.20.2TrainingtheNeural Network—Backpropagation......................317

8.20.3ChoosingtheNetworkParameters................323 8.20.4Example......................................323

8.21TheConvolutionalNeuralNetwork........................326

8.21.1TheBasicTopologyoftheConvolutional NeuralNetwork................................328

8.21.2DetectingSpatialStructure.......................332

8.21.3Stride.........................................332

8.21.4PoolingorDown-Sampling......................333

8.21.5TheReLUActivationFunction...................333

8.21.6HandlingtheOutputsofaCNN...................334

8.21.7MultipleFiltersintheConvolutionLayer..........335

8.21.8SimplifiedRepresentationoftheCNN.............336

8.21.9MultispectralandHyperspectralInputs toaCNN......................................336

8.21.10ASpectral-SpatialExampleoftheUse oftheCNN....................................339

8.21.11AvoidingOverfitting............................340

8.21.12Variations.....................................341

8.22RecurrentNeuralNetworks...............................343

8.22.1Multi-temporalRemoteSensing..................343 8.22.2ImportanceofMemory..........................343

8.22.3TheRecurrentNeuralNetwork(RNN) Architecture...................................344

8.22.4TrainingtheRNN..............................346

8.23ContextClassification....................................346

8.23.1TheConceptofSpatialContext...................346

8.23.2ContextClassificationbyImagePre-processing.....348

8.23.3PostClassificationFiltering......................349

8.23.5HandlingSpatialContextbyMarkovRandom

8.24BibliographyonSupervisedClassificationTechniques........359

9.2SimilarityMetricsandClusteringCriteria...................370

9.3 k MeansClustering......................................372

9.3.1The k MeansAlgorithm.........................373 9.4IsodataClustering.......................................374

9.4.1MergingandDeletingClusters...................375

9.4.2SplittingElongatedClusters......................375

9.5ChoosingtheInitialClusterCentres........................375

9.6Costof k MeansandIsodataClustering....................376

9.7UnsupervisedClassification..............................376

9.8AnExampleofClusteringwiththe k MeansAlgorithm.......377

9.9ASinglePassClusteringTechnique........................378

9.9.1TheSinglePassAlgorithm.......................379

9.9.2AdvantagesandLimitationsoftheSinglePass Algorithm.....................................380

9.9.3StripGenerationParameter......................381

9.9.4VariationsontheSinglePassAlgorithm...........381

9.9.5AnExampleofClusteringwiththeSinglePass Algorithm.....................................381

9.10HierarchicalClustering..................................383

9.10.1AgglomerativeHierarchicalClustering............383

9.11OtherClusteringMetrics.................................383

9.12SomeAlternativeClusteringTechniques....................385

9.12.1HistogramPeakSelection........................385

9.12.2MountainClustering............................385

9.12.3kMediansClustering...........................386

9.12.4kMedoidsClustering...........................386

9.13ClusteringLargeDataSets...............................388

9.13.1TheKTreesAlgorithm..........................389

9.13.2DBSCAN.....................................393

9.14ClusterSpaceClassification..............................395

9.15BibliographyonClusteringandUnsupervised Classification...........................................399

10.1TheNeedforFeatureReduction...........................403

10.2ApproachestoFeatureReduction..........................405

10.3FeatureReductionbySpectralTransforms..................406

10.3.1FeatureReductionUsingthePrincipal ComponentsTransform..........................406

10.3.2FeatureReductionUsingtheCanonical AnalysisTransform.............................409

10.3.2.1Within-ClassandAmong-Class Covariance...........................409

10.3.2.2ASeparabilityMeasure................411

10.3.2.3TheGeneralisedEigenvalue Equation.............................411

10.3.2.4AnExample..........................413

10.3.3DiscriminantAnalysisFeatureExtraction (DAFE).......................................415

10.3.4Non-parametricDiscriminantAnalysis(NDA)......417

10.3.5DecisionBoundaryFeatureExtraction(DBFE).....421

10.3.6Non-parametricWeightedFeatureExtraction (NWFE).......................................422

10.4FeatureReductionbyBlockDiagonalisingtheCovariance Matrix.................................................423

10.5FeatureSelection........................................429

10.5.1MeasuresofSeparability........................429

10.5.2Divergence....................................430

10.5.2.1Definition............................430

10.5.2.2DivergenceofaPairofNormal Distributions..........................432

10.5.2.3UsingDivergenceforFeature Selection.............................432

10.5.2.4AProblemwithDivergence.............433

10.5.3TheJeffries-Matusita(JM)Distance...............433

10.5.3.1Definition............................433

10.5.3.2ComparisonofDivergenceandJM Distance.............................435

10.5.4TransformedDivergence.........................436

10.5.4.1Definition............................436

10.5.4.2TransformedDivergence andtheProbabilityofCorrect Classification.........................436

10.5.4.3UseofTransformedDivergence inClustering..........................437

10.5.5SeparabilityMeasuresforMinimumDistance Classification..................................437

10.6DistributionFreeFeatureSelection—ReliefF................438

11.2AnOverviewofClassification............................448

11.2.1SupervisedClassification........................448

11.2.1.1SelectionofTrainingData..............448 11.2.1.2FeatureSelection......................449

11.2.1.3ClassifierOutputsandAccuracy Checking.............................450

11.2.2UnsupervisedClassification......................450

11.2.3Semi-supervisedClassificationandTransfer Learning......................................452

11.3EffectofResamplingonClassification.....................453

11.4AHybridSupervised/UnsupervisedMethodology............454

11.4.1OutlineoftheMethod...........................454

11.4.2ChoosingtheImageSegmentstoCluster...........455

11.4.3RationalisingtheNumberofSpectralClasses.......456

11.4.4AnExample...................................456

11.4.5HybridClassificationwithOtherSupervised Algorithms....................................459

11.5ClusterSpaceClassification..............................461

11.6AssessingClassificationAccuracy.........................462

11.6.1UseofaTestingSetofPixels.....................462

11.6.2TheErrorMatrix...............................463

11.6.3QuantifyingtheErrorMatrix.....................464

11.6.4TheKappaCoefficient..........................467

11.6.5NumberofTestingSamplesRequired forAssessingMapAccuracy.....................472

11.6.6NumberofTestingSamplesRequired forPopulatingtheErrorMatrix...................476

11.6.7PlacingConfidenceLimitsonAssessed Accuracy......................................478

11.6.8CrossValidationAccuracyAssessment andtheLeaveOneOutMethod...................479

11.7DecisionTreeClassifiers.................................479

11.7.1CART(ClassificationandRegressionTrees)........482

11.7.2RandomForests................................485

11.7.3ProgressiveTwo-ClassDecisionClassifier.........487

11.8ImageInterpretationThroughSpectroscopyandSpectral LibrarySearching.......................................488

11.9EndMembersandUnmixing..............................490

11.10IsThereaBestClassifier?................................492

11.10.1SegmentingtheSpectralSpace...................492

11.10.2ComparingtheClassifiers........................494

11.11BibliographyonImageClassificationinPractice.............497

11.12Problems...............................................500

12MultisourceImageAnalysis

12.2StackedVectorAnalysis..................................504

12.3StatisticalMultisourceMethods...........................505

12.3.1JointStatisticalDecisionRules...................505

12.3.2CommitteeClassifiers...........................507

12.3.3OpinionPoolsandConsensusTheory.............508

12.3.4UseofPriorProbabilities........................509

12.3.5SupervisedLabelRelaxation.....................510

12.4TheTheoryofEvidence..................................510

12.4.1TheConceptofEvidentialMass..................511

12.4.2CombiningEvidencewiththeOrthogonalSum.....513

12.4.3DecisionRules.................................515

12.5Knowledge-BasedImageAnalysis.........................515

12.5.1EmulatingPhotointerpretationtoUnderstand KnowledgeProcessing..........................516

12.5.2TheStructureofaKnowledge-BasedImage AnalysisSystem................................517

12.5.3RepresentingKnowledgeinaKnowledge-Based ImageAnalysisSystem..........................518

12.5.4ProcessingKnowledge—TheInferenceEngine.....520

12.5.5RulesasJustifiersofaLabellingProposition.......521

12.5.6EndorsingaLabellingProposition................522

12.5.7AnExample...................................523

12.6OperationalMultisourceAnalysis.........................525

12.7BibliographyonMultisourceImageAnalysis................528 12.8Problems...............................................530

AppendixA:SatelliteAltitudesandPeriods ..........................535

AppendixB:BinaryRepresentationofDecimalNumbers

AppendixC:EssentialResultsfromVectorandMatrixAlgebra

AppendixD:SomeFundamentalMaterialfromProbability andStatistics ......................................................551

AppendixE:PenaltyFunctionDerivationoftheMaximum LikelihoodDecisionRule ...........................................555

Chapter1

SourcesandCharacteristicsofRemote

SensingImageData

Abstract Thewavelengthrangescommonlyusedforimagingtheearth’ssurface arediscussed,includingreflectedsunlight,thermalemissionfromtheearthitself andthemicrowaveradiationusedinimagingradars.Theideaofmeasuringenergy comingfromtheearth’ssurfaceinasetofwavebandssimultaneouslyiscovered, leadingtotheconceptofamultispectralimage,orahyperspectralimageifthe numberofwavebandsisverylarge.Remotesensingplatformsanddifferentsensor typesarecovered,alongwiththeearthsurfacecharacteristicsthatcanbedetected withremotesensinginstruments.Imagescaleisconsideredandthelocationof remotesensingwithinthe fieldsofgeographicinformationsystemsanddigitalearth modelsisintroduced.

1.1EnergySourcesandWavelengthRanges

Inremotesensingenergycomingupfromtheearth'ssurfaceismeasuredusinga sensormountedonaspacecraftorotherelevatedplatform.Thatmeasurementis usedtoconstructanimageofthelandscapebeneaththeplatform,asdepictedin Fig. 1.1

Inprinciple,anyenergycomingfromtheearth’ssurfacecanbeusedtoforman image.Mostoftenitisreflectedsunlightsothattheimagerecordedis,inmany ways,similartotheviewwewouldhaveoftheearth’ssurfacefromanaircraft, eventhoughthewavelengthsusedinremotesensingareoftenoutsidetherangeof humanvision.Theupwellingenergycouldalsobefromtheearthitselfactingasa radiatorbecauseofitsown finitetemperature.Alternatively,itcouldbeenergythat isscattereduptoasensorhavingbeenradiatedontothesurfacebyanartifi cial source,suchasalaseroraradar.

Providedanenergysourceisavailable,almostanywavelengthcouldbeusedto imagethecharacteristicsoftheearth’ssurface.Thereis,however,afundamental limitation,particularlywhenimagingfromspacecraftaltitudes.Theearth’satmospheredoesnotallowthepassageofradiationatallwavelengths.Energyatsome wavelengthsisabsorbedbythemolecularconstituentsoftheatmosphere.

© TheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerlandAG2022 J.A.Richards, RemoteSensingDigitalImageAnalysis, https://doi.org/10.1007/978-3-030-82327-6_1

Fig.1.1 Signal flowina remotesensingsystem

upwelling radia on from the landscape sensor

signal transmission to the ground

ground recep on and processing data in image form ready for use

Wavelengthsforwhichthereislittleornoatmosphericabsorptionform atmosphericwindows.Figure 1.2 showsthetransmittanceoftheearth’satmosphereona pathbetweenspaceandtheearthoveraverybroadrangeoftheelectromagnetic spectrum.Thepresenceofasignifi cantnumberofatmosphericwindowsinthe visibleandinfraredregionsofthespectrumisevident,asisthealmostcomplete transparencyoftheatmosphereatradiowavelengths.Thewavelengthsusedfor imaginginremotesensingareclearlyconstrainedtotheseatmosphericwindows. Theyincludetheso-called optical wavelengthscoveringthevisibleandinfrared, thethermalwavelengthsandtheradiowavelengthsthatareusedinradarand passivemicrowaveimagingoftheearth’ssurface.

Whateverwavelengthrangeisusedtoimagetheearth’ssurface,theoverall systemisacomplexoneinvolvingthescatteringoremissionofenergyfromthe surface,followedbytransmissionthroughtheatmospheretoinstrumentsmounted ontheremotesensingplatform.Thedataisthentransmittedtotheearth’ssurface, afterwhichitisprocessedintoimageproductsreadyforapplicationbytheuser. ThatdatachainisshowninFig. 1.1.Itisfromthepointofimageacquisition onwardsthatthisbookisconcerned.Wewanttounderstandhowthedata,once availableinimageformat,canbeinterpreted.

Wetalkabouttherecordedimageryas imagedata,sinceitistheprimarydata sourcefromwhichweextractusableinformation.Oneoftheimportantcharacteristicsoftheimagedataacquiredbysensorsonaircraftorspacecraftplatformsis instrumenta on

Fig.1.2 Theelectromagneticspectrumandthetransmittanceoftheearth’satmosphere,showing thepositionsoftheatmosphericwindowsusedinopticalremotesensing

thatitisreadilyavailableindigitalformat.Spatiallyitiscomposedofdiscrete pictureelements,or pixels.Radiometrically thatisinbrightness itisquantised intodiscretelevels.

Possiblythemostsigni ficantcharacteristicoftheimagedataprovidedbya remotesensingsystemisthewavelength,orrangeofwavelengths,usedinthe imageacquisitionprocess.Ifreflectedsolarradiationismeasured,imagescan,in principle,beacquiredintheultraviolet,visibleandnear-to-middleinfraredranges ofwavelengths.Becauseofsigni ficantatmosphericabsorption,asseeninFig. 1.2, ultravioletmeasurementsarenotmadefromspacecraftaltitudes.Mostcommon opticalremotesensingsystemsrecorddatafromthevisiblethroughtothenearand mid-infraredrange:typically,thatcoversapproximately0.4–2.5 lm.

Theenergyemittedbytheearthitself,inthethermalinfraredrangeofwavelengths,canalsoberesolvedintodifferentwavelengthsthathelpunderstand propertiesofthesurfacebeingimaged.Figure 1.3 showswhytheserangesare important.Thesunasaprimarysourceofenergyhasasurfacetemperatureofabout 5950K.Theenergyitemitsasafunctionofwavelengthisdescribedtheoretically byPlanck’sblackbodyradiationlaw.AsseeninFig. 1.3 ithasitsmaximaloutput atwavelengthsjustshorterthan1 lmandisamoderatelystrongemitteroverthe range0.4–2.5 lmidenti fiedearlier.

Theearthcanalsobeconsideredasablackbodyradiator,withatemperatureof 300K.Itsemissioncurvehasamaximuminthevicinityof10 µmasseeninFig. 1.3 Asaresult,remotesensinginstrumentsdesignedtomeasuresurfacetemperature

Fig.1.3 Relativelevelsofenergyfromblackbodieswhenmeasuredatthesurfaceoftheearth: themagnitudeofthesolarcurvehasbeenreducedasaresultofthedistancetravelledbysolar radiationfromthesuntotheearth;alsoshownaretheboundariesbetweenthedifferentwavelength rangesusedinopticalremotesensing

typicallyoperatesomewhereintherangeof8–12 lm.AlsoshowninFig. 1.3 isthe blackbodyradiationcurvecorrespondingtoa firewithatemperatureof1000K.As observed,itsmaximumoutputisinthewavelengthrange3–5 lm.Accordingly,sensors designedtomapburning firesontheearth’ssurfacetypicallyoperateinthatrange.

Thevisible,reflectiveinfraredandthermalinfraredrangesofwavelengthrepresentonlypartofthestoryinremotesensing.Wecanalsoimagetheearthinthe microwaveorradiorange,typicalofthewavelengthsusedinmobilephones, satellitenavigationsystems,television,WiFi,Bluetoothandradar.Whiletheearth doesemititsownlevelofmicrowaveradiation,itisoftentoosmalltobemeasured formostremotesensingpurposes.Instead,energyisradiatedfromaplatformonto theearth’ssurface.Itisbymeasuringtheenergyscatteredbacktotheplatformthat imagedataisrecordedatmicrowavewavelengths.1 Suchasystemisreferredtoas active sincetheenergysourceisprovidedbytheplatformitself,orbyacompanion platform.Bycomparison,remotesensingmeasurementsthatdependonanenergy sourcesuchasthesunortheearthitselfarecalled passive

1 ForatreatmentofremotesensingatmicrowavewavelengthsseeJ.A.Richards, RemoteSensing withImagingRadar,Springer,Berlin,2009.

1.2PrimaryDataCharacteristics

Thepropertiesofdigitalimagedataofimportanceinimageprocessingandanalysis arethenumberandlocationofthespectralmeasurements(bandsorchannels),the spatialresolutiondescribedbythepixelsize,andthe radiometricresolution.These areshowninFig. 1.4.Radiometricresolutiondescribestherangeanddiscernible numberofdiscretebrightnessvalues.Itissometimesreferredtoas dynamicrange andisrelatedtothesignal-to-noiseratioofthedetectorsused.Frequently,radiometricresolutionisexpressedintermsofthenumberofbinarydigits,orbits, necessarytorepresenttherangeofavailablebrightnessvalues.Datawithan8bit radiometricresolutionhas256levelsofbrightness,whiledatawith12bitradiometricresolutionhas4096brightnesslevels.2

Thesizeoftherecordedimageframeisalsoanimportantproperty.Itis describedbythenumberofpixelsacrosstheframeor swath,orintermsofthe numbersofkilometrescoveredbytherecordedscene.Together,theframesizeof theimage,thenumberofspectralbands,theradiometricresolutionandthespatial resolutiondeterminethedatavolumegeneratedbyaparticularsensor.Thatsetsthe amountofdatatobeprocessed,atleastinprinciple.

Imagepropertieslikepixelsizeandframesizearerelateddirectlytothetechnicalcharacteristicsofthesensorthatwasusedtorecordthedata.The instantaneous fieldofview (IFOV)ofthesensorisits fi nestangularresolution,asshownin Fig. 1.5.Whenprojectedontothesurfaceoftheearthattheoperatingaltitudeofthe platform,itdefinesthesmallestresolvableelementintermsofequivalentground metres,whichiswhatwerefertoaspixelsize.Similarly,the fieldofview (FOV)of thesensoristheangularextentoftheviewithasacrosstheearth’ssurface,againas

Fig.1.4

Fig.1.5 Definitionofimage spatialproperties,with commonunitsindicated

seeninFig. 1.5.Whenthatangleisprojectedontothesurfaceitdefinestheswath widthinequivalentgroundkilometres.Mostimageryisrecordedinacontinuous stripastheremotesensingplatformtravelsforward.Generally,particularlyfor spacecraftprograms,thestripiscutupintosegments,equalinlengthtotheswath width,sothatasquareimageframeisproduced.Foraircraftsystems,thedatais oftenleftinstripformatforthecomplete flightline flowninagivenmission.

1.3RemoteSensingPlatforms

Remotesensingcanbecarriedoutusingsatellites,aircraftordronesasplatformsto carrytheimaginginstruments.Inmanywaysthoseinstrumentshavesimilar characteristicsbutdifferencesinthealtitudeandstabilityoftheplatformcanleadto differingimageproperties.

Therearetwobroadclassesofsatelliteprogram:thosesatellitesthatorbitat geostationaryaltitudesabovetheearth’ssurface,generallyassociatedwithweather andclimatestudies,andthosewhichorbitmuchclosertotheearthandthatare generallyusedforearthsurfaceandoceanographicobservations.Thelowearth orbitingsatellitesareusuallyinasun-synchronousorbit.Thatmeansthattheorbital planeisdesignedsothatitprecessesabouttheearthatthesameratethatthesun appearstomoveacrosstheearth’ssurface.Inthismannerthesatelliteacquiresdata ataboutthesamelocaltimeoneachorbit.

Lowearthorbitingsatellitescanalsobeusedformeteorologicalstudies. Notwithstandingthedifferencesinaltitude,thewavebandsusedforgeostationary andearthorbitingsatellites,forweatherandearthobservation,areverycomparable. Themajordistinctionintheimagedatatheyprovidegenerallyliesinthespatial resolutionavailable.Whereasdataacquiredforearthresourcespurposeshaspixel

sizesoftheorderof1–10morso,thatusedformeteorologicalpurposes(bothat geostationaryandloweraltitudes)hasamuchlargerpixelsize,oftenoftheorderof 1km.

Theimagingtechnologiesusedinsatelliteremotesensingprogramshaveranged fromtraditionalcamerastoscannersthatrecordimagesoftheearth’ssurfaceby movingtheinstantaneous fieldofviewoftheinstrumentacrossthesurfaceto recordtheupwellingenergy.Typicalofthelattertechniqueisthatusedinthe Landsatprograminwhichamechanicalscannerrecordsdataatrightanglestothe directionofsatellitemotiontoproducerasterscansofdata.Theforwardmotionof thevehicleallowsanimagestriptobebuiltupfromtherasterscans.Thatprocessis showninFig. 1.6.Adispersiondevice,suchasaprismordiffractiongrating, integratedwiththesensor,separatestherecordedsignalintoanumberofwavebandsbydispersingtheradiationontosetsofdetectors;thereareasmanyseparate imagesrecordedoftheregionoftheearth’ssurfaceastherearedetectorsandthus wavebands.

Someweathersatellitesscantheearth’ssurfaceusingthespinofthesatellite itselfwhilethesensor ’spointingdirectionisvariedalongtheaxisofthesatellite. Theimagedataisthenrecordedinarasterscanfashion.

Withtheavailabilityofreliabledetectorarraysbasedonchargecoupleddevice (CCD)technology,analternativeimageacquisitionmechanismutiliseswhatis commonlycalleda “push-broom” technique.InthisapproachalinearCCDimaging arrayiscarriedonthesatellitenormaltotheplatformmotionasshowninFig. 1.7 Asthesatellitemovesforwardthearrayrecordsastripofimagedata,equivalentin widthtothe fieldofviewseenbythearray.Eachindividualdetectorrecordsastripin widthequivalenttothesizeofapixel.Becausethetimeoverwhichenergyemanatingfromtheearth’ssurfaceperpixelcanbelargerwithpushbroomtechnology thanwithmechanicalscanners,betterspatialresolutionisusuallyachieved.

TwodimensionalCCDarraysarealsoavailableand findapplicationinsatellite imagingsensors.However,ratherthanrecordatwo-dimensionalsnapshotimageof theearth’ssurface,thearrayisemployedinapushbroommanner;thesecond dimensionisusedtorecordsimultaneouslyanumberofdifferentwavebandsfor eachpixelviatheuseofamechanismthatdispersestheincomingradiationby wavelength.SuchanarrangementisshowninFig. 1.8.Oftenabout200channels arerecordedinthismannersothatthereflectioncharacteristicsoftheearth’s surfacearewellrepresentedinthedata.Suchdevicesareoftenreferredtoas imagingspectrometers andthedataisdescribedas hyperspectral,asagainst multispectral whenoftheorderof10wavebandsisrecorded.

Aircraftscannersoperateessentiallyonthesameprinciplesasthosefoundwith satellitesensors.BothmechanicalscannersandCCDarraysareemployed.

ThelogarithmicscaleusedinFig. 1.3 hidesthefactthateachofthecurves shownextendstoinfinity.Ifweignoreemissionsassociatedwithaburning fire,itis clearthattheemissionfromtheearthatlongerwavelengthsfarexceedsreflected solarenergy.Figure 1.9 re-plotstheearthcurvefromFig. 1.3 showingthatthereis continuousemissionofenergyrightouttothewavelengthswenormallyassociate withradiotransmissions.Inthemicrowaveenergyrange,wherethewavelengths

rota ng or oscilla ng scanning mirror

signals out at different wavelengths

pixel size swath width

Fig.1.6 Imageformationbymechanicallinescanning,showingthereceivedsignaldispersedinto severaldifferentwavelengths(orwavebands)

Fig.1.7 Imageformationbypushbroomscanning

arebetween1cmand1m,thereis,inprinciple,measurableenergycomingfrom theearth’ssurface.Asaresult,itispossibletobuildremotesensinginstruments thatformmicrowaveimagestheearth.Ifthoseinstrumentsdependonmeasuring thenaturallyoccurringlevelsshowninFig. 1.9,thenthepixelstendtobevery largebecauseoftheextremelylowlevelsofenergyavailable.Largepixelsare necessarytocollectenoughsignalsothatnoisefromthereceiverelectronicsand theenvironmentdoesnotdominatetheinformationofinterest.

Fig.1.8 Imageformationbypushbroomscanningwithanarraythatallowstherecordingof severalwavelengthssimultaneously

Fig.1.9 Illustrationofthelevelofnaturallyemittedenergyfromtheearthinthemicrowaverange ofwavelengths

Moreoften,wetakeadvantageofthefactthattheverylownaturallyoccurring levelsofmicrowaveemissionfromthesurfacepermitsustoassumethattheearth is,forallintentsandpurposes,azeroemitter.Thatallowsustoirradiatetheearth’s surfaceartificiallywithasourceofmicrowaveradiationatawavelengthofparticularinterest.Inprinciple,wecoulduseatechniquenotunlikethatshownin Fig. 1.6 tobuildupanimageoftheearthatthatwavelength.Technologically,

Fig.1.10 Syntheticapertureradarimaging;astheantennabeamtravelsoverfeaturesonthe groundmanyechoesarereceivedfromthepulsesofenergytransmittedfromtheplatform,which arethenprocessedtoprovideaveryhighresolutionimageofthosefeatures

however,theprincipleofsyntheticapertureradarisusedtocreatetheimage.We nowdescribethattechniquebyreferencetoFig. 1.10.

Apulseofelectromagneticenergyatthewavelengthofinterestisradiatedtothe sideoftheplatform.Itusesanantennathatproducesabeamthatisbroadinthe across-trackdirectionandrelativelynarrowinthealong-trackdirection,asillustrated.Thecross-trackbeamwidthdefinestheswathwidthoftherecordedimage. Featuresareresolvedacrossthetrackbythetimetakenforthepulsetotravelfrom thetransmitter,viascatteringfromthesurface,andbacktotheradarinstrument. Alongthetrack,featuresareresolvedspatiallyusingtheprincipleofaperture synthesis,whichentailsrecordingmanyreflectionsfromeachspotontheground andusingsignalprocessingtechniquestosynthesisehighspatialresolutionfroma systemthatwouldotherwiserecordfeaturesatadetailtoocoarsetobeofvalue. Thetechnicaldetailsofhowtheimageisformedarebeyondthescopeofthis treatmentbutcanbefoundinstandardtextsonradarremotesensing.3 Whatis importanthereisthestrengthofthesignalreceivedbackattheradarplatform becausethatdeterminesthebrightnessvaluesofthepixelsthatconstitutetheradar image.Aswithopticalimaging,theimagepropertiesofimportanceinradar imagingincludethespatialresolution,butnowdifferentinthealongandcrosstrack directions,theswathwidth,andthewavebandsatwhichtheimagesarerecorded. Whereastheremaybeasmanyas200wavebandswithopticalinstruments,there arerarelymorethanthreeorfourwithradaratthisstageofourtechnology. However,thereareotherradarparameters.Theyincludetheanglewithwhichthe

3 SeeRichards,loc.cit.,I.H.Woodhouse, IntroductiontoMicrowaveRemoteSensing,Taylorand Francis,BocaRaton,Florida,2006,F.M.HendersonandA.J.Lewis,eds, Principlesand ApplicationsofImagingRadar,ManualofRemoteSensing, 3rded.,Volume2,JohnWileyand Sons,N.Y.,1998,andF.T.UlabyandD.G.Long, MicrowaveRadarandRadiometricRemote Sensing,TheUniversityofMichiganPress,AnnArbor,2014.

1.3RemoteSensingPlatforms11

earth’ssurfaceisviewedoutfromtheplatform(theso-called lookangle)andthe polarisationofboththetransmittedandreceivedradiation.Asaconsequence,the parametersthatdescribearadarimagecanbemorecomplexthanthosethat describeanopticalimage.Nevertheless,oncearadarimageisavailable,the techniquesofthisbookbecomerelevanttotheprocessingandanalysisofradar imagedata.Thereare,however,somepeculiaritiesofradardatathatmeanspecial techniquesmoresuitedtoradarimageryareoftenemployed.4

1.4WhatEarthSurfacePropertiesAreMeasured?

Inthevisibleandinfraredwavelengthrangesallearthsurfacematerialsabsorb incidentsunlightdifferentiallywithwavelength.Somematerialsdetectedby satellitesensorsshowlittleabsorption,suchassnowandcloudsinthevisibleand nearinfrared.Ingeneral,though,mostmaterialshavequitecomplexabsorption characteristics.Earlyremotesensinginstrumentation,andmanycurrentinstruments,donothavesufficientspectralresolutiontobeabletorecognisethe absorptionspectraindetail,comparedwithhowthosefeaturesmightappearin laboratory-recordedspectra.Instead,thewavebandsavailablewithsomedetectors allowonlyacruderepresentationofthespectrum,butneverthelessonethatismore thansufficientfordifferentiatingamongmostcovertypes.Evenoureyesdoacrude formofspectroscopybyallowingustodifferentiateearthsurfacematerialsbythe colourswesee,eventhoughthecoloursarecompositesofthered,greenandblue signalsthatreachoureyesafterincidentsunlighthasscatteredfromthenaturaland builtenvironment.

Moremoderninstrumentsrecordmany,sufficiently fi nespectralsamplesover thevisibleandinfraredrangethatwecangetverygoodrepresentationsofreflectancespectra,aswewillseeinthefollowing.

1.4.1SensingintheVisibleandReflectedInfraredRanges

Intheabsenceofburning fires,Fig. 1.3 showsthattheupwellingenergyfromthe earth’ssurfaceuptowavelengthsofabout3 lmispredominantlyreflectedsunlight.Itcoverstherangefromtheultraviolet,throughthevisible,andintothe infraredrange.Sinceitisreflectedsunlighttheinfraredisusuallycalledreflected infrared,althoughitisthenbrokendownintothenear-infrared,shortwavelength infraredandmiddle-infraredranges.Together,thevisibleandreflectedinfrared rangesarecalledopticalwavelengthsasnotedearlier.Thedefinitionsandthe

4 SeeRichards,loc.cit.,forinformationonimageanalysistoolsspeci ficallydesignedforradar imagery.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.