Instant download Calibration in analytical science: methods and procedures paweł kościelniak pdf all

Page 1


Visit to download the full and correct content document: https://ebookmass.com/product/calibration-in-analytical-science-methods-and-proced ures-pawel-koscielniak/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Mathematical Methods of Analytical Mechanics 1st

Edition Henri Gouin

https://ebookmass.com/product/mathematical-methods-of-analyticalmechanics-1st-edition-henri-gouin/

Analytical Methods for Environmental Contaminants of Emerging Concern Nuria Fontanals

https://ebookmass.com/product/analytical-methods-forenvironmental-contaminants-of-emerging-concern-nuria-fontanals/

Flexible Bronchoscopy 4th Edition Ko-Pen Wang

https://ebookmass.com/product/flexible-bronchoscopy-4th-editionko-pen-wang/

Scattering Methods and their Application in Colloid and Interface Science Otto Glatter

https://ebookmass.com/product/scattering-methods-and-theirapplication-in-colloid-and-interface-science-otto-glatter/

Sustainable Shale Oil and Gas. Analytical Chemistry, Geochemistry, and Biochemistry Methods 1st Edition

https://ebookmass.com/product/sustainable-shale-oil-and-gasanalytical-chemistry-geochemistry-and-biochemistry-methods-1stedition-vikram-rao/

Causation in Science and the Methods of Scientific Discovery Rani Lill Anjum

https://ebookmass.com/product/causation-in-science-and-themethods-of-scientific-discovery-rani-lill-anjum/

Britain and the Dictatorships of Argentina and Chile, 1973–82 1st ed. Edition Grace Livingstone

https://ebookmass.com/product/britain-and-the-dictatorships-ofargentina-and-chile-1973-82-1st-ed-edition-grace-livingstone/

Essentials of Mathematical Methods in Science and Engineering 2nd Edition S. Selcuk Bayin

https://ebookmass.com/product/essentials-of-mathematical-methodsin-science-and-engineering-2nd-edition-s-selcuk-bayin/

Science stories: science methods for elementary and middle school teachers Sixth Edition Koch

https://ebookmass.com/product/science-stories-science-methodsfor-elementary-and-middle-school-teachers-sixth-edition-koch/

CalibrationinAnalyticalScience

MethodsandProcedures

PawełKo ́ scielniak

Author

ProfessorDr.PawełKo ´ scielniak JagiellonianUniversity DepartmentofAnalyticalChemistry GronostajowaSt.2 30-387Krakow Poland

CoverDesignandImage: Wiley

Allbookspublishedby WILEY-VCH arecarefully produced.Nevertheless,authors,editors,and publisherdonotwarranttheinformation containedinthesebooks,includingthisbook, tobefreeoferrors.Readersareadvisedtokeep inmindthatstatements,data,illustrations, proceduraldetailsorotheritemsmay inadvertentlybeinaccurate.

LibraryofCongressCardNo.: appliedfor BritishLibraryCataloguing-in-PublicationData Acataloguerecordforthisbookisavailable fromtheBritishLibrary.

Bibliographicinformationpublishedby theDeutscheNationalbibliothek TheDeutscheNationalbibliotheklists thispublicationintheDeutsche Nationalbibliografie;detailedbibliographic dataareavailableontheInternetat <http://dnb.d-nb.de>

©2023WILEY-VCHGmbH,Boschstr.12, 69469Weinheim,Germany

Allrightsreserved(includingthoseof translationintootherlanguages).Nopartof thisbookmaybereproducedinanyform–by photoprinting,microfilm,oranyother means–nortransmittedortranslatedintoa machinelanguagewithoutwrittenpermission fromthepublishers.Registerednames, trademarks,etc.usedinthisbook,evenwhen notspecificallymarkedassuch,arenottobe consideredunprotectedbylaw.

PrintISBN: 978-3-527-34846-6

ePDFISBN: 978-3-527-83110-4

ePubISBN: 978-3-527-83112-8

oBookISBN: 978-3-527-83111-1

Typesetting Straive,Chennai,India

Contents

Preface ix

1CalibrationFundamentals 1

1.1AnalyticalContext 1

1.2PrinciplesofAnalyticalCalibration 2

1.3CalibrationStandardsandModels 5

1.4CalibrationProceduresandMethods 7

1.5CalibrationintheContextofMeasurementErrors 8

1.5.1UncontrolledAnalyticalEffects 9

1.5.2EliminationandCompensationofUncontrolledEffects 11

1.6CalibrationinQualitativeAnalysis 14

1.7CalibrationinQuantitativeAnalysis 18

1.8GeneralRulesforCorrectCalibration 22 References 24

2“Calibration-Free”Analysis 25

2.1NovelApproach 25

2.2EmpiricalCalibration 26

2.3TheoreticalCalibration 30

2.3.1FixedModels 30

2.3.2FlexibleModels 36 References 45

3CalibrationMethodsinQualitativeAnalysis 47

3.1Classification 47

3.2ExternalCalibrationMethods 49

3.2.1ExternalStandardMethod 49

3.2.2ReferenceSampleMethod 59

3.3InternalCalibrationMethods 71

3.3.1InternalStandardMethod 71

3.3.2IndirectMethod 75

3.4StandardAdditionMethod 80 References 83

4IntroductiontoEmpiricalCalibrationinQuantitative Analysis 85

4.1Classification 85

4.2FormulationofModelFunctions 86

4.3ExaminationofInterferenceEffect 93

4.4MathematicalModelingofRealFunction 98 References 100

5ComparativeCalibrationMethods 103

5.1ExternalCalibrationMethods 103

5.1.1ExternalStandardMethod 103

5.1.1.1ModifiedProcedures 110

5.1.2DilutionMethod 115

5.2InternalCalibrationMethods 125

5.2.1InternalStandardMethod 125

5.2.2IndirectMethod 133 References 141

6AdditiveCalibrationMethods 143

6.1BasicAspects 143

6.2StandardAdditionMethod 144

6.2.1ExtrapolativeVariant 144

6.2.1.1ModifiedProcedures 155

6.2.2InterpolativeVariants 162

6.2.3IndicativeVariant 167

6.3Titration 172

6.4IsotopeDilutionMethod 180

6.4.1RadiometricIsotopeDilution 182

6.4.2IsotopeDilutionMassSpectrometry 189

6.4.2.1ModifiedProcedures 197 References 199

7CalibrationinNonequilibriumConditions 203

7.1FlowInjectionAnalysis 203

7.1.1ManipulationTechniques 205

7.1.2GradientTechnique 212

7.2KineticAnalysis 220 References 231

8ComplexCalibrationApproaches 233

8.1ExtrapolativeMethods 233

8.1.1ExtrapolativeIndirectMethod 234

8.1.2ExtrapolativeInternalStandardMethod 239

8.1.3ExtrapolativeDilutionMethod 244

8.2MixedMethods 252

8.3CombinedMethods 256

8.3.1IntegratedCalibrationMethods 256

8.3.1.1SimpleIntegratedMethod 256

8.3.1.2ComplementaryDilutionMethod 261

8.3.2GeneralizedCalibrationStrategy 270

8.3.2.1VersatileFlowInjectionCalibrationModule 276

8.3.3StandardDilutionAnalysis 280 References 286

9CalibrationApproachesforDetectionandExaminationof InterferenceEffects 289

9.1Introduction 289

9.2SimpleProceduresforDetectionandExaminationofInterference Effects 290

9.3DetectionandCompensationofAdditiveInterferenceEffect 295

9.3.1InterpolativeProcedure 297

9.3.2ExtrapolativeProcedure 301

9.3.3IntegratedProcedure 308 References 311

10Calibration-BasedProceduresforCorrectionofPreparative Effects 313

10.1Introduction 313

10.2SpecificProcedures 314

10.3SurrogateRecoveryMethod 316

10.3.1ReliabilityoftheMethod 318

10.3.2InterpretationsoftheMethod 321

10.3.3Recoveryvs.InterferenceEffect 324

10.3.4Recoveryvs.SpeciationEffect 329 References 333

11Calibration-RelatedApplicationsofExperimentalPlans 335

11.1Introduction 335

11.2ExaminationofInterferenceEffects 337

11.3ModelingofRealFunctions 342

11.4MulticomponentAnalysis 347 References 356

12FinalRemarks 359 References 365 Index 367

Preface

Analyticalchemistryisanexceptionallybeautifulscientificarea.Behindsuch adescriptionstandsnotonlytheauthor’sundoubtedlysubjectiveviewbutalso completelyobjectiveobservations.Inprobablynootherchemicaldisciplineis thepurposeoftheoreticalandexperimentalworksoclearlyandunambiguously definedasinanalyticalchemistry.Thisaimissimplytolookdeepintothematter andtodeterminethetypeoramountofcomponentscontainedinit.Takinginto accountthattheguidingprincipleofallscientificresearchisthepursuitoftruth, itcanbesaidthateverychemicalanalysis(andtherearemanythousandsofsuch analysescarriedouteverydayintheworld)isinfactthefulfillmentofthisprinciple, andeveryanalyticalchemistcanhavethefeelingofgettingasclosetothe“truth”as possibleduringhiswork,ifonlyhedoesitcorrectlyandcarefully.Thisiscertainly amotivatingandrewardingaspect.

Thespecificityofanalyticalchemistryalsoliesinthefactthatthescientific principles,rules,andmethodsdevelopedovertheyearscanbeusedinpractice extremelydirectly,rapidly,andusefully,whichontheotherhandpromotesthe developmentofnewtheoreticalandinstrumentalconcepts.Thiscouplingisthe reasonwhy,especiallyinrecentdecades,analyticalchemistryhasdevelopedrapidly andbecomeincreasinglyimportantinallareasofbusinessandsociety.Through theapplicationofnewanalyticalmethodsandtechniques,innovativechemical andbiochemicalmaterials,aswellasspecialized,high-techapparatus,analysts areabletopenetratedeeperanddeeperintomatter,detectinganddeterminingthe componentscontainedinitineversmallerquantitiesandinavarietyofchemical forms.

Inthecurrentofthisprogress,however,itiseasytosuccumbtothefascinationof itstechnicalandinstrumentalaspects,graduallyforgettingthatthemerecreationof newanalyticalmethodsandinventions–thatis,thesearchforpathsto“truth”–is insufficient,evenifthesepathsarethemostingeniousandinnovative.Itisequally importantthattheanalyticalresultsobtainedbytheseroutesshould,asfaraspossible,havethecharacteristicsofthe“true,”which,inanalyticallanguage,means abovealltheirmaximallyhighaccuracyandprecision.

Nooneneedstobeconvincedoftheimportanceofhigh-qualitychemicalanalysis. Severalyearsago,itwascalculatedthatrepetitionsofanalysesperformedinindustriallaboratoriesintheUSA,whicharenecessaryduetoincorrectanalyticalresults,

x Preface

generatelossesofseveralbilliondollarsayear.Butevenmoreimportantisthefact thatonlyonthebasisofreliableresultsofvarioustypesofanalysis,inparticular clinical,pharmaceutical,environmentalorforensicanalysis,itispossibletomakea reliablediagnosis,whichconsequentlydeterminesourhealthandlivingconditions todayandinthefuture.

Whatisthemeaningandroleofanalyticalcalibrationinthiscontext?Theanswer tothisquestioncanbegiveninoneword–enormous.Oneneedonlyrealizethat acalibrationprocessmustaccompanyalmosteveryanalyticalproceedingregardlessofwhethertheanalysisisqualitativeorquantitativeinnature.Inotherwords, withoutthisprocess,achievingtheanalyticalgoal–or,ifyouprefer,gettingcloser totheanalyticaltruth–issimplyimpossible.Moreover,theproperchoiceofthe calibrationpathanditscorrectadaptationtothedifferentstagesoftheanalytical procedurecancontributesignificantlytothemaximumapproximationofthetrue result.Againstthisbackground,itseemsobviousthat,amongthevariousanalytical issues,thesubjectofcalibrationrequiresspecialattentionandinterest.

Unfortunately,therealitycontradictsthisthesis–interestincalibrationissues amonganalystsisrelativelylowbothscientificallyandpractically.Firstofall,there arenobookpositionsentirelydevotedtothistopic,exceptperhapsformultivariatecalibration,which,however,isnotwidelyusedinanalyticallaboratories.In analyticalchemistrytextbooks,littleisusuallysaidaboutcalibrationmethods,usuallylimitingthemselvestobasic,customaryapproachesandsolutions.Ontheother hand,overtheyearsmanyarticleshaveappearedinwhichnewcalibrationsolutions canbefound,testifyingtoprogressinthisanalyticalfieldaswell.Mostly,however, thesereportsareusuallytreatedaspurelyacademicandaregenerallynotapplicable inlaboratorypractice.

Itmustalsobesaidthatinthefieldofcalibrationthereisanextremelylarge nomenclaturalchaos,concerningnotonlythenomenclatureandclassificationof calibrationmethodsbutalsotheconceptoftheanalyticalcalibrationprocessassuch. Thisstateofaffairsobviouslyhasnegativeconsequences.Aboveall,itisnotconducivetoteachingpurposes,sinceitisdifficulttoreliablyconveyspecificanalytical knowledgeusingalanguagethatisnotstandardizedandgenerallyaccepted.The lackofacommongroundforcommunicationinthisareacanalsobecomeasource ofmisunderstandingsandambiguitiesleadingtoerroneousandincorrectanalyticalprocedures.Andyet,noonebutananalystshouldbeparticularlysensitiveto “order”and“purity”inhiswork.

Themainpurposeofthisbookistofill,atleasttosomeextent,thesegapsand backlogs.Itcollectsanddescribesavarietyofcalibrationmethodsandprocedures fordeterminingthenatureandquantityofsamplecomponentsindifferentways. Theseapproachesaretailoredtothespecificchemicalandinstrumentalconditions ofthequalitativeandquantitativeanalysesperformed,aswellastothespecific objectivestheanalystwishestoachieveinadditiontotheoverarchinggoal.Based onthecalibrationpropertiesofthesemethods,theirnomenclatureandclassification areproposed.Itisalsoshownhowcalibrationapproachescanbecombinedandintegratedmainlytodiagnose,evaluate,andeliminateanalyticalerrorsandthusachieve resultswithincreasedprecisionandaccuracy.

Thecontentsofthisbookarelargelybasedontheauthor’smanyyearsofexperience.Thisistosomeextenttheresultofboththelayoutofthebookandthedetailed selectionoftheissuescovered,whichcertainlydoesnotexhausttheentirecalibrationsubjectmatter.Forthesamereason,onecanfindhereoriginal,authorial approachestothissubject,which–althoughpreviouslypublishedinscientificarticlesandthusverified–maybefurtherdebatable.Therefore,Iapologizeinadvanceto thosewhohaveslightlydifferentviewsontheissuesraisedinthebook.Iunderstand thisandatthesametimeinviteopponentstosuchadiscussion.Ibelieve,however, thatdespiteallpossiblereservationsanddoubts,thebookwillbeausefulsourceof informationonanalyticalcalibrationand,formany,avaluableadditiontoanalytical knowledgeandahelpfultoolinscientificandlaboratorywork.

Asmentioned,thecalibrationprocessisinextricablylinkedtotheanalyticalprocess.Wanderingthroughthevariousavenuesofperformingcalibrationsisthusalso anopportunitytolearnorrecallvariousanalyticalmethodsandgeneralproblems relatedtoanalyticalchemistryandchemicalanalysis.Withthisinmind,theauthor alsoseesthisbookasasupplementtogeneralanalyticalknowledgedeliveredin aslightlydifferentwayandfromadifferentanglethantypicalanalyticalscience textbooks.

Finally,IwouldliketoexpressmywarmgratitudetoProfessorAndrzejParczewski for“infecting”memanyyearsagowiththesubjectofcalibration.Iwouldalsolike tothankmycolleaguesfromtheDepartmentofAnalyticalChemistryoftheJagiellonianUniversityinKrakowforaccompanyingmeonexcitinganalyticaladventure andforprovidingmewithmanyoftheirresearchresultsforit.

ButIammostgratefultomybelovedWife–formotivation,wordsofsupport,and timewhich,attheexpenseofbeingwithher,Icoulddevotetothiswork.Without you,Ania,thisbookwouldnothavebeenwritten.

Kraków,March2022
PawełKo ´ scielniak

CalibrationFundamentals

Thegeneralunderstandingoftheterm“calibration”isfarfromwhatappliesto theconceptinananalyticalsense.Leavingasidecolloquialconnotations,such ascalibratingaweapon,thetermisgenerallyassociatedwiththeadjustmentof specificparametersofanobjecttofixedordesiredquantities,andinparticularwith theadjustmentofaspecificinstrumenttoperformacorrectfunction.Itis,therefore, understoodmoreasaprocessofinstrumentalstandardizationoradjustment.This isreinforcedbypubliclyavailablenomenclaturalsources.Forexample,inthe CambridgeAdvancedLearner’sDictionary[1]calibrationisdefinedas“ theprocessofcheckingameasuringinstrumenttoseeifitisaccurate,”andinthe http://Vocabulary.comonlinedictionaryas“theactofcheckingoradjusting(by comparisonwithastandard)theaccuracyofameasuringinstrument”[2].Evenin amoderntextbookinthefieldofinstrumentalanalysis,youcanread:“Inanalytical chemistry,calibrationisdefinedastheprocessofassessmentandrefinementof theaccuracyandprecisionofamethod,andparticularlytheassociatedmeasuring equipment ”[3].

Theambiguityoftheterm“calibration”makesitdifficulttounderstanditproperly inapurelyanalyticalsense.Tounderstandtheterminthisway,onemustofcourse takeintoaccountthespecificityofchemicalanalysis.

1.1AnalyticalContext

Theanalystaimstoreceive theanalyticalresult,i.e.toidentify thetype (inqualitativeanalysis)ortodeterminethe quantity (inquantitativeanalysis)ofaselected component(analyte)inthematerial(sample)assayed.Toachievethisgoal,he mustundertakeaseriesofoperationsthatmakeup theanalyticalprocedure,the generalschemeofwhichisshowninFigure1.1.

Whenstartingananalysis,thesamplemustfirstbepreparedformeasurementin suchawaythatitsphysicalandchemicalpropertiesaremostsuitableformeasuringthetypeoramountofanalyteinquestion.Thisstepconsistsofsuchprocesses as,e.g.takingthesamplefromitsnaturalenvironmentandthenchangingitsaggregatestate,dilutingit,pre-concentratingit,separatingthecomponents,changingthe temperature,orcausingachemicalreaction.

CalibrationinAnalyticalScience:MethodsandProcedures,FirstEdition.PawełKoscielniak. ©2023WILEY-VCHGmbH.Published2023byWILEY-VCHGmbH.

Sample preparation

Sample measurement

Analytical signal

Sample preparation

Sample measurement

Analytical signal

Analytical result

Figure1.1 Analyticalprocedurealone(a)andsupplementedbyanalyticalcalibration(b).

Themeasurementisgenerallyperformedbythechosenusinganinstrument thatoperatesontheprincipleofaselected measurementmethod (e.g.atomic absorptionspectrometry,potentiometry,etc.).Theinstrumentshouldrespondto thepresenceoftheanalytestudiedintheformof measurementsignals.Froma calibrationpointofview,themostrelevantsignalistheso-called analyticalsignal, i.e.thesignalcorrespondingtothepresenceofanalyteinthesample.

Ananalyticalprocedurecarriedoutinadefinedmannerbyaspecificmeasurementmethodformsan analyticalmethod

Thebasicanalyticalproblemisthat theanalyticalsignalisnotadirect measureofthetypeandamountofanalyteinthesample,butonlyinformationindicatingthatacertaincomponentinacertainamountispresentinthe sample.Toperformacompleteanalysis,itisnecessarytobeable totransformthe analyticalsignalintotheanalyticalresult andtoperformthistransformation. Thisistheroleofanalyticalcalibration.AsseeninFigure1.3,theanalytical calibrationprocessisanintegralpartoftheanalyticalprocedureandwithout analyticalcalibration,qualitativeandquantitativeanalysiscannotbeperformed. Realizingthisaspectallowsonetolookatthesubjectofcalibrationasa fundamentalanalyticalissue.

1.2PrinciplesofAnalyticalCalibration

However,thereisstillthequestionofwhattheprocessoftransformingananalytical signaltoananalyticalresultconsistsof,i.e.howanalyticalcalibrationshouldbe defined.Inthisregard,thereisalsonounifiedapproach,soitisbesttorelyonofficial recommendations.

Theprocessofanalyticalcalibrationislargelyconcernedwiththemakingof measurementsandtheinterpretationofmeasurementdataandthereforefalls withinthescopeofmetrology.IntheJointCommitteeforGuidesinMetrology (JCGM)documentonbasicandgeneraltermsinmetrology,calibrationisdefinedas “ operationthat,underspecifiedconditions,inafirststep,establishesarelation betweenthequantityvalueswithmeasurementuncertaintiesprovidedbymeasurementstandardsandcorrespondingindicationswithassociatedmeasurement uncertaintiesand,inasecondstep,usesthisinformationtoestablisharelation forobtainingameasurementresultfromanindication”[4].Atthesame,the documentmakesitclearthat“calibrationshouldnotbeconfusedwithadjustment ofameasuringsystem ”.

Themetrologicalterm,althoughitallowsforadeeperunderstandingofthe conceptofcalibration,isstillrathergeneralbecauseitisinherentlyapplicableto differentmeasurementsystemsanddifferenttypesofresultsobtained.Theconcept ofcalibrationintheanalyticalsenseismorecloselyapproximatedbypublications issuedbytheInternationalUnionofPureandAppliedChemistry(IUPAC).In thepaper[5],theIUPACdefinitionisalignedwiththeJCGMdefinitioninthat itdefinesanalyticalcalibrationas“...thesetofoperationswhichestablish,under specifiedconditions,therelationshipbetweenvalueindicatedbytheanalytical instrumentandthecorrespondingknownvaluesofananalyte,”andinasubsequent IUPACpublication[6]wefindanexpressreferenceofanalyticalcalibrationtoboth quantitativeandqualitativecalibration: “Calibrationinanalyticalchemistry istheoperationthatdeterminesthefunctionalrelationshipbetweenmeasuredvalues(signalintensitiesatcertainsignalpositions)andanalytical quantitiescharacterizingtypesofanalytesandtheiramount(content, concentration).”

Suchapurelytheoreticalapproachistoogeneral,evenabstract,andunrelated toanalyticalpractice.Inparticular,itdoesnotprovideguidanceonhowthefunctionalrelationship(calibrationmodel)shouldbeformulatedindifferentanalytical situationsandhowitrelatestothedifferenttypesofmethodsusedinqualitative andquantitativeanalysis.Nordoesitsayanythingabouttherelativenatureofthe calibrationprocessthattheterm“measurementstandard”givestotheconceptin metrologicalterms.

Toextendthedefinitionofanalyticalcalibration,theauthorproposestointroduce theconceptofthreefunctionsthatrelatethesignaltotheanalyticalresult:thetrue function,therealfunction,andthemodelfunction[7].Thisapproachisillustrated inFigure1.2.

Ifasamplethatananalysttakesforqualitativeorquantitativeanalysiscontainsa component(analyte)ofinterest,thenbeforeanyactionistakenwiththesample,the typeofanalyteanditsquantityinthesamplecanbereferredtoasthe truevalue (typeorquantity), x true ,oftheanalyte.Ifitwerepossibletomeasuretheanalytical signalforthatanalyteatthatmoment,thentherelationshipbetweentheresulting signalanditstruetypeorquantity, Y true = T (x true )couldbecalledthe truefunction. However,thedeterminationofthetruefunctionandthetruevalueoftheanalyteisnotpossibleinpracticebecauseitrequirestheanalyst’sinterventioninthe

function, Y = T(x)

True analyte value, Xtrue Real analyte value, X0 Real function, Y = F(x)

of model function Model function, Y = G(x)

result, Xx

Figure1.2 Conceptofanalyticalcalibrationbasedonthetermsoftrue, Y = T (x ),real, Y = F (x ),andmodel, Y = G (x ),functions(virtualanalyticalstepsandtermsaredenotedby dottedlines;fordetailsseetext).

formofpreparingthesampleformeasurementandperformingthemeasurement. Theinitiationofeventhesimplestandshortestanalyticalstepsresultsinachange ofthetrueanalyteconcentrationinthesamplethatcontinuesuntiltheanalytical signalismeasured.Thus,theconceptsoftruefunctionandtrueanalytevalueare essentiallyunrealisticandimpossibletoverifyexperimentallyormathematically.

Whenthesampleispreparedforanalysis,thetypeoramountofanalyteinthe sampletobeanalyzedtakesona realvalue, x 0 .Therelationshipbetweentheanalyticalsignalandthetypeoramountofanalyteisdescribedatthispointbythe real function, Y = F (x ),whichtakesthevalue Y 0 forthevalue x 0 :

0 = F (x0 ) (1.1)

Althoughthevalueof Y 0 ismeasurable,theexactformoftherealfunctionis unknownbecauseitdependsonanumberofeffectsandprocessesthatledtothe currentstateofthisrelationshipduringthepreparationofthesampleformeasurement.Consequently,thedeterminationoftherealresult x 0 bymeansofthereal functionisimpossible.

Thissituationforcestheformulationofanadditionalauxiliary modelfunction, Y = G(x ).Theroleofthisfunctionistoreplacetherealfunctioninthesearchfor thetruevalue, x 0 .Itshouldthereforemeettwobasicconditions:tobeknown andwell-definedandtobethemostaccurateapproximationoftherealfunction (G(x ) ↔ F (x )).Tofulfilltheseconditions,a calibrationstandard (oneormore) shouldbeused,whichshouldbesimilartothesampleandproperlypreparedfor measurement.

Assumingthattheapproximationoftherealfunctionbythemodelfunction, Y = G(x ),isaccurate,thentheinverseformofthemodelfunction, x = G 1 (Y ),has

True
Y

1.3CalibrationStandardsandModels 5 tobecreated,whichiscalledtheevaluationfunction[6].Theoretically,itallowsthe valueof Y 0 tobetransformedintotherealresult, x 0 :

0 = G 1 (Y0 )

Inpractice,theapproximationoftherealfunctionbythemodelfunctionisnever accuratebecausetherealfunctionisessentiallyunknown.Therefore,transformation(1.2)leadstoacertainvalue x x :

= G 1 (Y0 )

whichisanapproximatemeasureoftherealresult, x 0 .Thisresultcanalsobeconsideredasthefinal analyticalresult.

Theprocessesofcreatingamodelfunctionanditsapproximationandtransformationarefundamental,integral,andnecessaryelementsofanalyticalcalibration. Thus,itcanbesaidthat analyticalcalibrationconsistsofapproximatingthe realrelationshipbetweenthesignal, Y ,andthetype, b,oramount, c,ofan analyteinasamplebymeansofamodelfunction,andthenapplyingthis functiontotransformthesignalobtainedfortheanalyteinthesampleto theanalyticalresult.

Notethenaturallogicoftheabovedescriptionofanalyticalcalibration.Suchquantitiesas“sample”(consideredasacollectionofunknownchemicalconstituents), “realfunction”and“realtypeoramountofanalyte”havetheircounterpartsinthe termsof“standard”,“modelfunction”and“obtainedtypeoramountofanalyte”, whichareassociatedwithanalyticalcalibration.Theformerarelargelyhypothetical, unknowninfacttotheanalyst,whilethelatterareknownandareapproximations oftheformer.Justasthecompositionandpropertiesofasamplecanneverbefaithfullyreproducedinastandard,theformoftherealfunctioncannotbeaccurately approximatedbyamodelfunction,andtherealtypeoramountofanalyteinthe sampleatthetimetheanalyticalsignalismeasuredcanonlybeapproximatedby theanalyticalresultobtained.

1.3CalibrationStandardsandModels

Dependingonthetypeofunivariatemodelfunctionused,analyticalcalibrationcan bebroadlydividedinto empiricalcalibration and theoreticalcalibration [7]. Insomecases,thecalibrationisalsoofacomplexnaturetovaryingdegrees (empirical–theoreticalortheoretical–empirical)when,tobetterrepresentthe realfunction,empiricalinformationissupportedbytheoreticalinformationor viceversa.

Anessentialpartofanycalibrationprocessistheuseofcalibrationstandards, whichcanbeofdifferentnature: chemical,biological,physical,ormathematical [7].Acommonfeatureofcalibrationstandardsisthattheydirectlyorindirectly enabletheassignmentofameasurementsignaltoaknown,well-definedtype oramountofanalyte.Thesestandardsarethereforeusedtoformulateamodel function.Accordingtotheprincipleofanalyticalcalibration,astandardshouldbe abletoformulateamodelfunctionthatapproximatesthetruefunctionasclosely aspossible.

Inempiricalcalibration,themodelfunctionisformulatedonthebasisoftheperformedexperiment,sensoryperception,orobservation.Thesourcesofinformation neededtocreatethistypeof empiricalmodelfunction, Y = G(x ),aremeasurementsofanalyticalsignalsobtaineddirectlyorindirectlyforchemical,biological,or physicalstandards.Inthiscase,theanalystdoesnotgointothetheoreticalaspectsof thedependenceoftheanalyticalsignalonthetypeoramountofanalyte(althoughin somecasesthelawsandrulesunderlyingthisdependence,e.g.Nernst’sorLambert Beer’slaw,maybehelpful).

Awidelyrecognizedandusedmethodofanalyticalcalibrationistheempirical calibrationperformedwitha chemicalstandard.Thisisasyntheticor(lesscommonly)naturalmaterial,singleormulticomponent,containingananalyteofknown typeoramount.Inspecialcases,achemicalstandardcontainsaknowntypeor amountofasubstancethatreactswiththeanalyteoraknowntypeoramountof anisotopeoftheelementbeingdetermined.Calibrationwithchemicalstandardsis auniversalprocedureinthesensethatitdoesnotdependonthechosenmeasurementmethod.Themodelfunctionformulatedismathematicallyusuallysimpleand itsgraphicalformiscalledacalibrationgraph.

Intheoreticalcalibration,themodelfunctionisformulatedonthebasisofa mathematicaldescriptionofphysicochemicalphenomenaandprocessesoccurring duringtheanalysisusingagivenanalyticalandmeasurementmethod.Sucha descriptionincludesphenomenologicalquantitiesbasedonphysicalorchemical measurements(electrochemicalpotentials,diffusioncoefficients,etc.),universal quantities(molarmass,atomicnumber,stoichiometricfactors),and/orfundamentalphysicalconstants(Faradayconstant,Avogadroconstant,etc.).Theindividual elementsofthemathematicaldescriptionactas mathematicalstandards,and thefunctioncreatedwiththem, Y = G(x ),isa theoreticalmodelfunction.

Inanalyticalchemistry,therearerelativelyfewcasesofwell-definedtheoretical modelsofrelativelysimplemathematicalform.However,intheliterature,onecan findmanynewproposalsofsuchfunctionsformulatedforvariousmeasurement methods.Asarule,theyhaveaverycomplexmathematicalstructure,whichresults fromthedesiretoapproximatetherealfunctionasaccuratelyaspossible.Astrong motivationforthesescientificeffortsisthatthetheoreticalmodelallowsthecalculationoftheanalyticalresultwithouttheneedtopreparechemicalstandardsand performmeasurementsfortheanalyteinthesestandards.

Asmentioned,othertypesofcalibrationstandardscanbefoundinchemical analysis,aswellasmodelfunctionsofadifferentnatureformulatedwiththem, asdiscussedinChapter2ofthischapter.Itcanbehypothesizedthat analytical calibrationisinherentlyconnectedwiththeuseofstandardsandthe creationofmodelfunctionswiththeirhelp.

Theimplicationsofthisapproachtoanalyticalcalibrationareinteresting.Qualitativeorquantitativeanalysisperformedonthebasisofatheoreticalmodelfunction isoftenreferredtointheliteratureascalibration-freeanalysisorabsoluteanalysis. Fromthepointofviewoftheaccepteddefinitionofanalyticalcalibration,thisterm ismisleading,becausetheformulationofthetheoreticalmodelfunction,likethe empiricalmodel,ispartofthefullcalibrationprocedure.Thus,thequestionsarise:

canchemicalanalysisbeperformedinpracticewithoutanalyticalcalibrationand whatconditionsmustananalyticalmethodmeettobecalleda“absolutemethod”? ThediscussionofthisissuewillbethesubjectofChapter2ofthisbook.

1.4CalibrationProceduresandMethods

Theconceptofanalyticalcalibrationpresentedaboveperhapsdonotyetgiveaclear pictureofthisprocess.How,then,doesthefullempiricalandtheoreticalcalibration procedurelookingeneral?

Asalreadystated,thecalibrationprocessisessentialtotheperformanceofchemicalanalysis–bothqualitativeandquantitative–andisanintegral,inseparablepart ofanyanalyticalmethod.Whatthecalibrationprocesscontributestotheanalyticalprocedureisthehandlingofthecalibrationstandardnecessarytoformulatethe modelfunctionanduseittotransformthemeasurementsignaltotheanalytical result.Thus,thecalibrationprocedureconsistsofthreesteps:preparative,measurement,andtransformation.

The preparativestep consistsinpreparingthesampleandthestandardinsuch asuitablewaythatthetruefunction, Y = F (x ),andthemodelfunction, Y = G(x ), aresimilartoeachotherasmuchaspossible.Inthecaseofempirical z-calibration, therearetwomainroutestothisgoal:

● thesampleandstandardarepreparedseparately,takingcarethatthechemicalcompositionofthestandardissimilartothatofthesampleandthatthepreparationofthesampleandstandardformeasurementissimilar,

● thestandardisaddedtothesample priortomeasurement(lessfrequentlyprior tosampleprocessing).

Inthecaseoftheoreticalcalibration,separatetreatmentofthesampleandthe standardisobviousandnatural.Appropriatepreparationofthestandardinrelation tothesampleconsistsinintroducingsuchmathematicalstandardstothetheoreticalmodelthatmostadequatelydescribethestateofthesampleandthephenomena andprocessesthatthesampleundergoesundertheconditionsofthespecificmeasurementmethod.

Inthemeasurementstage,signalmeasurementsaremadeusingaselectedmeasurementmethod.Ifthecalibrationisempirical,measurementsarerelatedtothe sampleandstandardoronthesampleandsamplewiththeadditionofthestandard (dependingontheirpreparationatthepreparativestage).Ineithercase,themeasurementsinvolvingthestandardareusedtoformulateanempiricalmodelfunction. Inthecaseofatheoreticalcalibration,measurementsaremadeonlyforthesample andtheformulatedtheoreticalmodelisconsideredasthemodelfunction.

Inthe transformationstep,thevalueofthesignalobtainedforthesampleis enteredintoanempiricalortheoreticalmodelfunctionandthusthefinalanalytical result(typeoramountofanalyteinthesample)isdetermined.

Referringtotheformulatedextendeddefinitionofanalyticalcalibration,itcanbe noticedthatthepreparativeandmeasurementstagesareusedtoapproximatethe

Empirical calibration

Standard

sample + standard preparation or Standard

sample + standard measurement or

Empirical model function Analytical result

Theoretical calibration

preparation

measurement

Formulation theoretical model function of Analytical result

Figure1.3 Generalschemeofempiricalandtheoreticalcalibration.

modelfunctiontotherealfunction,andthekey,transformationalcalibrationprocesstakesplaceatthelaststage.Aschematicdiagramoftheproceduresofempirical andtheoreticalcalibrationisshowninFigure1.3.

Calibrationprocedureswithspecificpreparationofsampleandstandardfor measurementform calibrationmethods.Ingeneral,therefore,twogroups ofmethodscanbedistinguishedinanalyticalcalibration,whichcanbecalled comparativemethods (whenthesampleandstandardaretreatedseparately)and additivemethods (whenthestandardisaddedtothesample).Withineachof thesetwogroups,itispossibletodistinguishmethodsthatdiffermorespecifically onthepreparativeside(e.g.externalstandardmethod,internalstandardmethod, standardadditionmethod,etc.).Thesenamesaremostlycustomaryanddonot alwayscorrespondtothespecificsoftheindividualmethods.Therefore,another, moreessentialcriterionforthedivisionofthecalibrationmethodsintermsof themathematicalwayoftransformingthemeasurementsignalintotheanalytical resultwillalsobeproposed.

1.5CalibrationintheContextofMeasurementErrors

Theroleofanalyticalcalibrationisnotonlytomakeitpossibletoidentifyor determineananalyteinasample,butalsotodosowithasmuch accuracyand precision aspossible.Themeasureofaccuracyisthestatisticallysignificant differencebetweentheanalyticalresultobtained, x x ,andthetruetypeoramount ofanalyte, x true ,inthesamplebeforeitwassubjectedtoanyanalyticalprocess. Themeasureofprecisionistherandomdifferenceinanalyticalresultsobtainedin

so-calledparallelanalyses,thatis,performedinthesamewayandunderthesame experimentalconditions.Theaccuracyandprecisionofananalyticalresultarethus determinedbyanysystematicandrandomchangesinthetruefunctionbeforeit becomes,atthetimeofmeasurement,thetruefunction,andthenbythesystematic andrandomdifferencebetweenthetruefunctionanditsrepresentation,themodel function.

Changesintheanalyticalsignalthatoccurbothduringsamplepreparationfor measurementandduringmeasurement,resultinginthetransformationofthetrue functiontothemodelfunction,canbecalledanalyticaleffects[7].Theycanbe controllableanduncontrollable.Controlledanalyticaleffectsinclude,forexample, changescausedbyatargetedactionbytheanalysttodecreaseorincreasetheconcentrationofananalyteinasamplebydilutionorconcentration,respectively.Effects ofthistypecanusuallybecalculatedandcorrectedatthestageofanalyticalresult calculation.

Duringqualitativeandquantitativeanalysis,however,therearealsosuchchanges intheanalyticalsignalthatarepartiallyorcompletelyoutoftheanalyst’scontrol. These uncontrolledanalyticaleffects canbebothrandomandsystematic. Althoughtheanalystisusuallyawareoftheriskoftheiroccurrenceandusually triestopreventthemaccordingly,heorshemayoverlookorevenneglectthem whileperformingtheanalysis.Asaresult,controlovertheentireanalyticalprocess islostinasense.Uncontrolledeffectsmanifestthemselvesbychangingtheposition andintensityoftheanalyticalsignal,i.e.theyareimportantinbothqualitativeand quantitativeanalysis.

1.5.1UncontrolledAnalyticalEffects

Uncontrolledeffectscanbecausedbymanyfactorsmanifestingthemselvesatdifferentstagesoftheanalyticalprocess.Theclassificationoftheseeffectscoveringall possiblefactorsis,ofcourse,amatterofconvention.Thedivisionpresentedbelow istheauthor’sproposal[7].

Uncontrolledeffectsareprimarilycausedbytheanalysthimself(theso-called humanfactor)asaresultofincorrectorcarelessbehavioratvariousstagesof theanalyticalprocess.Themagnitudeofthesechangesdependsprimarilyonthe analyst’sknowledgeandskills,thatis,onhisorherprofessionalabilitiesand qualifications.Personalfactorssuchastiredness,nervousness,andhurryplaya largerole.Theminimizationofthehumanfactorisalsonotfavoredbyaroutine, “automatic”approachtoindividualanalyticalactivities,resulting,forexample, fromperforminganalysesaccordingtoasingle,unchanginganalyticalmethodover alongperiodoftime.

Thebasiceffectsinclude preparativeeffect.Underthisterm,weunderstand signalchangescausedbysuchsampleprocessingthatresultsinuncontrolled change(loss,lessoftengain)ofanalyteamountinthesample.Theanalytecan bepartiallyloste.g.whenchangingtheaggregatestateofthesample(tomakeit suitableforthegivenmeasurementmethod)orwhenseparatingitscomponents. Theprocessofchangingtheamount(orrarelythetype)ofsamplecanalsotake

placeoutsidethepurposive,controlledactionoftheanalystasaresultofe.g.an inducedchemicalreaction.Apreparativeeffectisalsoinvolvedwhenthechangein signalresultsdirectlyfromphysicalchangesinthesampleorstandard(e.g.solution viscosity),orfromchangesinenvironmentalconditionsunderwhichthesample andstandardareprocessed(e.g.temperature,humidity,illumination,etc.).

The instrumentaleffect iscausedbytheactionofvariousinstrumentalcomponentsusedintheanalyticalprocesstoprocessthesamplepriortomeasurement. Inthiscase,thesourceofrandomchangesintheanalyticalsignalisallnatural imperfectionsinthedesignandoperationoftheseinstruments,includingthemeasurementsystemsthatcharacterizethemeasurementmethod.However,asaresult ofinstrumentmalfunction,signalchangescanalsobesystematic.

Theinstrumentalmeasurementsystemisthesourceofseparatespecificmeasurementchangesoccurringinthedetectionsystem.Thisphenomenoncantherefore becalleda detectioneffect.Thesechangesaremanifested,forexample,bythe limitedabilityofthesystemtorespondproportionallytotheanalyteconcentration,whichisnaturalforeachdetector.Anotherphenomenonistheso-called measurementtrend,whichconsistsofasuccessiveincreaseordecreaseinsignal intensityovertime.Inspectrometricmethods,thereissometimestheproblemof baseline,whichvariesmoreorlessrandomlybetweenspectra.Thedetectioneffect canalsoberelatedtonaturalphenomenaunderlyingthemeasurementmethod (atypicalexampleisthephenomenonofself-absorptionofradiationemittedinthe emissionspectrometrymethod,causingachangeinanalyticalsignalintensityout ofproportiontotheamountofanalyteinthesample).

Thesignalmeasuredforaspecifictypeoramountofanalytecanalsobeaffectedby othercomponentsbothnaturallypresentinthesample(native)andintroducedduringsamplepreparationformeasurement.Thesecomponentsthentakeontherole ofinterferents,andthesignalchangecausedbythemistheso-called interference effect.Iftheeffectcomesexclusivelyfromthenativecomponentsofthesample, thenitiscalleda matrixeffect,whileiftheinterferentsarecomponentsaddedto thesampleduringsampleprocessing,thentheinducedchangesarecalleda blank effect.Theinterferenceeffectcanoriginateatthestageofsamplepreparationfor measurement(e.g.duetoaddedreagents),butcanalsobeinducedduringmeasurementoftheanalyticalsignalasaresultofphenomenaandprocessesoccurringat thisstage.

Finally,aspecificeffectisthe speciationeffect.Itoccurswhenananalytecontainedinasampleunexpectedlyfortheanalystchangesitschemicalformandatthe sametimechangesitsmeasurementsensitivity.Aswiththeinterferenceeffect,this changecanoccurbeforemeasurement(e.g.asaresultofachemicalreaction)orat thetimeofmeasurement,whenitinvolvesachangeinthatformthatisresponsible forcausingtheanalyticalsignalinthedetectionsystem(e.g.achangefromatoms toanalyteionsinatomicabsorptionspectrometry).

Uncontrolledeffectsarerevealedbyachangeintheanalyticalsignaleither directlyorindirectlybychangingthetypeoramountofanalyte,asillustratedin Figure1.4.

1.5CalibrationintheContextofMeasurementErrors 11

Uncontrolled effect

SpeciesHumanPreparativeInstrumentalDetectionInterference

Change of form or amount of analyte

Change of analytical signal

Figure1.4 Pathwaysofthevariousuncontrolledeffects.Source:Ko ´ scielniak[7]/ Elsevier/CCBY4.0.

1.5.2EliminationandCompensationofUncontrolledEffects

Thenaturalwaytoavoiduncontrolledeffectsrevealedduringsamplehandlingisto employvariousmeansof eliminating them.Effectivenessoftheseactionslargely dependsonproperidentificationofthetypeoftheseeffectsandtheirsources,which aredifferentlysituatedontheanalyticalprocedureplan.ThisisshowninFigure1.5.

Sample measurement

Sample with unknown, true analyte value

Sample preparation

Sample measurement

Instrumental Preparative

Human Interference

Species Detection

Figure1.5 Impactofuncontrolledeffectsonananalyteinthesampleduringits preparationandmeasurement;duetoeliminationofeffectstherealanalytevalue approachesthetruevalue(x 0 ≈ x true ).Source:Ko ´ scielniak[7]/Elsevier/CCBY4.0.

Theprerequisiteforreducingtheinfluenceofthehumanfactoristhatanalyses shouldbeperformedonlybyqualifiedstaff,withahighlevelofknowledgeandskills, maintainingcareandcautionduringthework.Instrumentalanddetectioneffects maynotbeamajorproblemiftheinstrumentsusedareofhighquality,provenreliability,andlowmaintenance.Inspecialcaseswherethereare,forexample,strong timetrendsorbaselineshifts,specialcorrectionproceduresareused[8].

Incontrasttoinstrumentalanddetectioneffects,speciationeffectscanbedifficult toeliminateiftheanalyticalprocedureisrelativelycomplexandinvolvestheuseof differenttypesofchemicalreactions.Thepreparativeeffectcanalsobedifficultto eliminateeffectively.Thisisbecausenosampleprocessingisinpracticefreefrom partiallossofanalyte.Thedegreeofthisphenomenonshouldineachcasebewell recognizedbypreliminaryexperimentsandthenreducedasmuchaspossible.The amountofanalytelostcanalsobequantified(e.g.bytherecoverymethod,which isdiscussedlaterinChapter10)andthefinalanalyticalresultcanbecorrectedon thisbasis.

Theinterferenceeffectcanbeeliminatedinbasicallytwoways.Theuniversal wayistoremovetheinterferentsfromthesampleortoisolatetheanalytefromthe samplematrixbyappropriatelyselectedlaboratorytechniques(e.g.byextraction, crystallization,gaseousdiffusion,etc.).Anotherapproachistoaddanappropriately selectedreagenttothesampletoeliminateinterferentsbychemicalmeans.

Progressiveeliminationofuncontrolledeffectscausesthetwoanalytevalues,true, x true ,andreal, x 0 ,tobecomeincreasinglysimilar,ascanbeseeninFigure1.5. When theeffectsarecompletelyeliminated,thetrueanalytevaluebecomesan accurate(withinrandomerror)measureofthetrueanalytevalueinthe sample,i.e x 0 ≈ x true .

Whenproceedingwithananalyticalcalibration,theanalystisforcedtouseastandard.Importantly,however,thisconstraintsimultaneouslyprovidesanopportunity tomakethestandardsimilartothesample.Ifthesampleandstandardaresimilar,thenalluncontrolledeffectsoccurringduringtheanalyticalprocedureshould, intheory,manifestthemselvesinthesamewayandwithappropriatestrengthwith respecttoboththesampleandthestandard.Asaresult, compensation forthese effectsoccurs.Notethateffectcompensationdiffersfromtheprocessofelimination inthatitdoesnoteliminatetheuncontrolledeffects,butmerelyinvolvesequalizing theminthesampleandstandard.

Inanempiricalcalibrationperformedusingachemicalstandard,itiseasiestto compensateforinstrumentaleffectsbecauseitissufficienttomaintaininstrumentalconditionsatthesameoptimumlevelduringsampleandstandardpreparation formeasurement.Thedetectioneffectiscompensatedforjustaseasilybyusingthe sameinstrumentforbothsampleandstandardmeasurementsandkeepingtheconditionsofthemeasurementsthesame.

Compensatingforpreparativeeffectsismoredifficult,althoughitcanbeachieved tosomeextentbysubjectingthestandardtothesamepreparativetreatmentsto whichthesamplewassubjected.However,itmustbetakenintoaccountthatthe analyteinthestandardmaybesubjecttothiseffecttoadifferentdegreethanthe nativeanalyteduetothedifferentchemicalenvironmentandpotentiallydifferent

1.5CalibrationintheContextofMeasurementErrors 13 chemicalform.Forspeciationeffects,itisveryimportantthatthechemicalformof theanalyteremainsthesameinthesampleandinthestandardduringthecalibrationprocedure.Iftheanalyteispresentinseveralchemicalformsinthesample,the analyteinthestandardneednottakealloftheseformsbutshouldbeintheformin whichtheanalyteistobedeterminedinthesample.

Themostdifficulteffecttocompensateforeffectivelyistheinterferenceeffect. Itisonlyrelativelysimpletocompensatefortheblankeffectbyaddingthereagents usedinsamplepreparationtothestandards.Theeffectfromnativesamplecomponentsrequiresthatthecompositionofthesampleinthestandardisaccurately reproduced(whichisverydifficultorevenimpossibleinpractice)andthatthisconditionbemaintaineduntilmeasurementsaremade.However,therearevariousways tomakethesampleandthestandardatleastpartiallysimilarinchemicalcompositionortocompensatefortheeffectbyusinganappropriatecalibrationmethod. ThesesolutionswillbeshownanddiscussedinChapter6.

Thecompensationofeffectsisofferedbythecalibrationprocess andis thereforecloselyrelatedtotherepresentationoftherealfunctionbythemodelfunction.Themoreaccuratetheapproximationofthetwofunctionsis,themorecompletethecompensationprocessis.Progressivecompensationofeffectspromotesa progressiveapproximationoftheanalyticalresult, x x ,totherealresult, x 0 ,aswell astherealresult, x 0 ,tothetrueresult, x true .Thus, aftercompletecompensation, theanalyticalresultbecomesanaccurate(withinrandomerror)estimate ofthetruevalueoftheanalyteinthesample,i.e. x x ≈ x true . Thisisillustrated schematicallyinFigure1.6.

Intheoreticalcalibration,compensatingforuncontrolledeffectsinvolvesdescribingthemadequatelybymeansofamathematicalstandard,i.e.includinginthis descriptiontheeffectsofvariousfactorsonthesignalmeasuredfortheanalytein thesample.However,whileachemicalstandardcanbemadesimilartoasample duetoitssimilarnature,makingamathematicalstandardsimilartoasample isextremelydifficult.Thus,whendecidingtouseatheoreticalcalibration,itis

Standard preparation Standard measurement

Figure1.6 Impactofuncontrolledeffectsonananalyteinboththesampleandstandard duringitspreparationandmeasurement;duetocompensationforeffectstheanalytical resultvalueapproachesthetruevalue(x x ≈ x true ).Source:Ko ´ scielniak[7]/CCBY4.0.

importanttoeliminate,asmuchaspossible,uncontrolledeffectsaffectingthe analyteinthesample.

Analyticalcalibrationthusleadstoanaccurateanalyticalresulteitherbycomplete eliminationofuncontrolledeffectsorbytheircompletecompensation.Elimination ofaneffectthusdoesnotrequireitscompensation(e.g.onceaninterferenceeffect hasbeeneliminatedwithaspecialreagent,thereisnoneedtoreconstructthecompositionofinterferentsinthestandard),althoughifitisknownthattheelimination ofaneffectmaybeincomplete,itshouldbecompensated.Similarly,compensation foreffects(e.g.instrumentaleffects)doesnotrequiretheirelimination,althoughany smallreductionincreasesthechanceoftheircompletecompensation.Theprocesses ofeliminationandcompensationofuncontrolledeffectsarethuscomplementary activitiesinthesensethat,takentogether,theyprovidethebestchanceofachievinganaccurateassessmentofthetruevalueoftheanalyteinthesamplefromthe analyticalresultobtained.

Sohowshouldtheanalyticalcalibrationprocessbeevaluatedinthecontextof errorsmadeduringtheanalyticalprocedure?Certainly,calibrationisapotential sourceofitsownrandomandsystematicanalyticalerrors.Thisisprimarilydue totheneedtouseastandard.Theempiricalstandard,likethesample,issubject touncontrolledeffectsthatmaybeofadifferenttypethanthosefoundinthe sampleandthereforenotcompensable.Furthermore,thesampleisalwaysmore orlessdifferentfromthestandardeitherbecauseofpropertiesandcomposition (inempiricalcalibration)orbecauseofmathematicalapproximationsandcorrections(intheoreticalcalibration).Fromtheimperfectionofthecalibrationstandard comestheimperfectionofthemodelfunctionandtheaddeddifficultyofaccurately approximatingthetruefunction.

Ontheotherhand,itshouldbenotedthatifitwerepossibletodeterminethe truevalueofananalyteinasamplewithoutthecontributionofanystandard,the analyticalprocedureusedwouldhavetobecompletelyfreeofuncontrolledeffects, ortheseeffectswouldhavetobecompletelyeliminated,andbothareimpossible inpractice.Theparticipationofacalibrationstandard,i.e.theperformanceofan analyticalcalibration,isthereforenotonlyanecessaryconditionforobtainingan analyticalresult,butalsooffersanadditionalopportunitytoimprovethequalityof thisresultbycompensatingforuncontrolledeffects.

1.6CalibrationinQualitativeAnalysis

Analyticalcalibrationappliesequallytoqualitativeandquantitativeanalysis[6]. However,inbothcasestheformoftherealfunctionisdifferent,thebasisfortheformulationofthemodelfunctionisdifferent,andtheaccuracyoftheresultsofanalyte identificationanddeterminationisalsoevaluateddifferently.Itisthereforeworth takingacloserlookatthesecalibrationaspectsinbothtypesofchemicalanalysis. Whenproceedingwithaqualitativeanalysis,theanalystgenerallywantsto identifytheanalyte,thatis,tofindoutwhatcomponentispresentinthesample beinganalyzedorwhatchemicalcomponentsthesampleiscomposedof.Insome

Figure1.7 Measurementimagesofthesampleandstandardusedinqualitativeanalysis: theanalyteisidentifiedfromthepositionofthe Y 0 and Y x signalsobtainedforthe unknownanalyteinthesampleandtheknownanalyteinthestandard,respectively.

cases,heaskswhetheraspecificcomponentorseveralcomponentsarepresent inthesample.Inothersituations,hemayalsobeinterestedinquestionssuchas: whatisthekindofthewholesample,whetherthesampleunderstudyissimilarto anothersample,orwhetherthesampleunderstudybelongstoaparticulargroup ofsamples.

Therelationshipbetweenmeasurementsignalandanalytetypecanbeillustrated bythemeasurementimagesshowninFigure1.7.Theyarecreatedbysubjectinga multicomponentsampleandastandardofsimilarchemicalcompositiontothesampletomeasurementsunderidenticalconditionswithaspecificinstrumentinsuch awaythatachangeinsignalintensityisrecordedasthespecificquantitycharacteristicofthemeasurementmethodused(e.g.wavelength,time,etc.)changes.These signals,whensignificantlylargerthanthemeasurementnoise,correspondtothe presenceofunknowncomponentsinthesampleandatleastoneknowncomponent, bx ,presentinthestandard(solidline). Thetypeofcomponentisindirectlyindicatedbythesignalposition ontheabscissaaxis,thatis,thevalueofthespecific quantitycorrespondingtothemaximumintensityofitssignal.

Empiricalcalibrationinqualitativeanalysisusuallyinvolvescomparingthesignalpositionvalue Y 0 obtainedforthesamplewithasimilarvalue Y x obtainedfor thestandard(seeFigure1.4).1 Sincethevalueof Y x obtainedforthestandardcorrespondstotheknowncomponent bx ,itcanbesaidthatbothvaluesformamodel function, Y = G(b),atapointwithcoordinates[Y x , bx ].Becauseofthesimilarityof thevaluesof Y x and Y 0 ,therealfunction, Y = F (b),canalsobeconsideredaswell approximatedbythemodelfunctionatthispoint.Insuchasituation,thevalueof Y 0 isassignedacomponent bx usingtheevaluationfunction: bx = G 1 (Y 0 ),anditis

1Thiscalibrationapproachreferstoaspecificcomparativecalibrationmethod,mostcommonly usedinquantitativeanalysis.

position, Y

Figure1.8 Analytical calibrationinqualitative analysis:analyte b0 inasample (emptypoints)isidentifiedas analyte bx inastandard(full points)onthebasisofmutual signalpositions, Y 0 and Y x

claimedthatthecomponent b0 presentinthesampleisprobablythecomponent bx presentinthemodel.ThisprocedureisillustratedinFigure1.8.

Theoreticalcalibrationinvolvesthemathematicalformulationofamodelfunction, Y = G(b).Itshouldbestapproximatetherealfunction, Y = F (b),atleastinone pointwithcoordinates[Y x , bx ].Whenthesignalobtainedforthesample, Y 0 ,issubstitutedintotheformulaoftheinversefunctionoftheformulatedmodelfunction, thesignalpositionvalue, bx ,isobtained,indicatingthetruetype, b0 ,oftheanalyte sought.

Mathematically,therealfunctionandthemodelfunctionarediscretefunctions inqualitativeanalysis,asshowninFigure1.5.Whentherealfunctionismapped sufficientlyaccuratelywiththemodelfunction,anysignalofaparticularposition obtainedforknowncomponentsofthestandardistheoreticalevidenceforthepresenceorabsenceofthosecomponentsinthesample.Somecomponentsmaybeidentifiedbytwoormoresignals,2 whichareanalyticalsignalsforthem.Inmanycases, amodelfunctioncanbeusedtoidentifymultiplecomponentsofasample,thatis, toperformamulticomponentanalysis.

Whenapplyingthechosenanalyticalmethodandrecordingthesignalunder appropriatelyestablishedoptimumconditions,theanalystshouldhaveathis disposalatleastonesignalcorrespondingtoaspecifictypeofanalyte.Itismost advantageousifhehasameasurementimageofthetypeshowninFigure1.7,which coversawiderangeofmagnitudecharacterizingthetypeofconstituent.Suchan image,obtainedunderspecificexperimentalconditions,reflectsthechemical compositionoftheentiresampleandischaracteristicofit.Thepresenceofthe desiredanalyteinthesamplecanthenbeindicatednotonlybythecorresponding positionsoftheanalyticalsignals,butadditionallybyotherparameters,suchasthe numberofthesesignals,theirabsoluteandrelativeheights,andeventheshape oftheentiresignalrecordedinagivenmeasurementrange(somemeasurement

2Nevertheless,therelationships Y = F (b)and Y = G(b)canbecalledfunctionsbecause,dueto thenaturalrandomerrorsoftheobtainedmeasuredandcalculatedvalues,differentsignalscannot representperfectlythesamemeasureofaparticularsamplecomponent.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.