Mechanics of hydraulic fracturing: experiment, model, and monitoring xin-rong zhang 2024 scribd down

Page 1


Mechanics

of Hydraulic Fracturing: Experiment, Model, and Monitoring Xin-Rong Zhang

Visit to download the full and correct content document: https://ebookmass.com/product/mechanics-of-hydraulic-fracturing-experiment-modeland-monitoring-xin-rong-zhang/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Transcritical CO2 Heat Pump Xin-Rong Zhang

https://ebookmass.com/product/transcritical-co2-heat-pump-xinrong-zhang/

Effects of brain-derived mitochondria on the function of neuron and vascular endothelial cell after traumatic brain injury. Baoliang Zhang & Yalong Gao & Qifeng Li & Dongdong Sun & Xinlong Dong & Xiaotian Li & Wenqiang Xin & Jianning Zhang https://ebookmass.com/product/effects-of-brain-derivedmitochondria-on-the-function-of-neuron-and-vascular-endothelialcell-after-traumatic-brain-injury-baoliang-zhang-yalong-gaoqifeng-li-dongdong-sun-xinlong-dong-xiao/

eTextbook 978-0134292380 Fundamentals of Hydraulic Engineering Systems (5th Edition)

https://ebookmass.com/product/etextbook-978-0134292380fundamentals-of-hydraulic-engineering-systems-5th-edition/

Concrete Composite Columns: Behavior and Design Chong Rong

https://ebookmass.com/product/concrete-composite-columnsbehavior-and-design-chong-rong/

Organogermanium Compounds. Theory, Experiment, and Applications Vladimir Ya. Lee

https://ebookmass.com/product/organogermanium-compounds-theoryexperiment-and-applications-vladimir-ya-lee/

Nonlinear Continuum Mechanics for Finite ElasticityPlasticity: Multiplicative Decomposition with Subloading Surface Model 1st Edition Koichi Hashiguchi

https://ebookmass.com/product/nonlinear-continuum-mechanics-forfinite-elasticity-plasticity-multiplicative-decomposition-withsubloading-surface-model-1st-edition-koichi-hashiguchi/

Mechanical Vibrations and Condition Monitoring 1st Edition Juan

https://ebookmass.com/product/mechanical-vibrations-andcondition-monitoring-1st-edition-juan-carlos-a-jauregui-correa/

What Happened to the Vital Center? Presidentialism, Populist Revolt, and the Fracturing of America Nicholas Jacobs

https://ebookmass.com/product/what-happened-to-the-vital-centerpresidentialism-populist-revolt-and-the-fracturing-of-americanicholas-jacobs/

Empiricisms: Experience and Experiment from Antiquity to the Anthropocene Barry Allen

https://ebookmass.com/product/empiricisms-experience-andexperiment-from-antiquity-to-the-anthropocene-barry-allen/

MechanicsofHydraulicFracturing

MechanicsofHydraulicFracturing

Experiment,Model,andMonitoring

ChinaUniversityofGeosciences Wuhan,China

BishengWu TsinghuaUniversity Beijing,China

DiansenYang WuhanUniversity Wuhan,China

AndrewBunger UniversityofPittsburgh Pittsburgh,PA,USA

Thiseditionfirstpublished2023 ©2023JohnWiley&Sons,Inc.

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted,inanyformorbyanymeans, electronic,mechanical,photocopying,recordingorotherwise,exceptaspermittedbylaw.Adviceonhowtoobtainpermissiontoreusematerial fromthistitleisavailableathttp://www.wiley.com/go/permissions.

TherightofXiZhang,BishengWu,DiansenYang,andAndrewBungertobeidentifiedastheeditorsforthisworkhasbeenassertedinaccordance withlaw.

RegisteredOffice(s)

JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA

EditorialOffice

Boschstr.12,69469Weinheim,Germany

Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWileyproductsvisitusatwww.wiley.com.

Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Somecontentthatappearsinstandardprintversionsofthis bookmaynotbeavailableinotherformats.

LimitofLiability/DisclaimerofWarranty

Whilethepublisherandauthorhaveusedtheirbesteffortsinpreparingthisbook,theymakenorepresentationsorwarrantieswithrespect totheaccuracyorcompletenessofthecontentsofthisbookandspecificallydisclaimanyimpliedwarrantiesofmerchantabilityorfitnessfora particularpurpose.Nowarrantymaybecreatedorextendedbysalesrepresentativesorwrittensalesmaterials.Theadviceandstrategiescontained hereinmaynotbesuitableforyoursituation.Youshouldconsultwithaprofessionalwhereappropriate.Further,readersshouldbeaware thatwebsiteslistedinthisworkmayhavechangedordisappearedbetweenwhenthisworkwaswrittenandwhenitisread.Neitherthepublisher norauthorsshallbeliableforanylossofprofitoranyothercommercialdamages,includingbutnotlimitedtospecial,incidental,consequential, orotherdamages.

LibraryofCongressCataloging-in-PublicationData

Names:Zhang,Xi(Geologist),editor.

Title:Mechanicsofhydraulicfracturing:experiment,model,and monitoring/editedbyProfXiZhang,ChinaUniversityofGeosciences,Prof. BishengWu,TsinghuaUniversity,Prof.DiansenYang,Wuhanuniversity,Prof.AndrewBunger.

Description:Firstedition.|Hoboken,NJ,USA:Wiley,2023.|Includes bibliographicalreferencesandindex.

Identifiers:LCCN2022030857(print)|LCCN2022030858(ebook)|ISBN 9781119742340(hardback)|ISBN9781119742418(adobepdf)|ISBN 9781119742456(epub)|ISBN9781119742487(oBook)

Subjects:LCSH:Hydraulicfracturing.

Classification:LCCTN871.255.M432023(print)|LCCTN871.255(ebook)| DDC622/.3381–dc23/eng/20220907

LCrecordavailableathttps://lccn.loc.gov/2022030857

LCebookrecordavailableathttps://lccn.loc.gov/2022030858

CoverDesign:Wiley

CoverImage:©StudioOne-One/GettyImages

Setin9.5/12.5ptSTIXTwoTextbyStraive,Pondicherry,India

Contents

ListofContributors xiii

Foreword xv

Preface xvii

1HydraulicFractureGeometryfromMinebackMapping 1

R.G.Jeffrey

1.1Introduction 1

1.2SummaryofMappedFractureGeometries 1

1.2.1FracturesinCoal 1

1.2.1.1DHM-7Fracture 2

1.2.1.2DDH190Fracture 2

1.2.2FracturesinHardRock 5

1.2.2.1NorthparkesE48MappedFractures 5

1.2.3OtherMappedFractures 7

1.3ComparisonofMappedFractureGeometries 7

1.3.1DimensionlessParameters 7

1.4FractureGeometrySummary 8

1.5Conclusions 9 References 9

2MeasurementsoftheEvolutionoftheFluidLaginLaboratoryHydraulicFractureExperimentsinRocks 11 DongLiuandBriceLecampion

2.1Introduction 11

2.2MaterialsandMethods 12

2.2.1MaterialsandExperimentalSet-up 12

2.2.2Methods 12

2.2.3ExperimentalDesign 13

2.3Results 14

2.3.1MARB-005 – AHFGrowthwithaFluidLag 14

2.3.2MARB-007 – AHFGrowthduringandaftertheInjection 15

2.3.3GABB-002 – APoint-LoadLikeHFGrowth 16

2.4DiscussionsandConclusions 18

2.4.1ResolutionoftheFluidFrontLocation 18

2.4.2Quasi-BrittleEffects 18

2.4.3HydraulicFractureSurfaces 19

2.4.4Conclusions 21

DataAvailability 21

AppendixADeterminationoftheTimeofFractureInitiation 21 References 22

3MappingHydraulicFractureGrowthUsingTiltmeterMonitoringTechnique 25 Z.R.ChenandR.G.Jeffrey

3.1Introduction 25

3.2ForwardProblemFormulation 26

3.2.1ForwardModelDefinition 26

3.2.2ForwardModel 27

3.2.2.1PointSourceDislocationSingularityModel 28

3.2.2.2AGeneralDistributedDislocationModel 29

3.3BayesianInversionMethod 30

3.4FieldApplications 31

3.4.1InversionResultsUsingthePointSourceForwardModel 31

3.4.2InversionResultsUsingtheGeneralPlanarForwardModel 31

3.5Conclusions 34

Acknowledgments 34

References 34

4ExperimentalObservationsofHydraulicFracturing 37

GuangqingZhangandDaweiZhou

4.1Introduction 37

4.2ExperimentalSetuponLaboratory-Scale 37

4.3LaboratoryInvestigationofFluid-DrivenFracturesinVariousApplications 38

4.3.1HydraulicFracturinginOilandGasReservoirs 38

4.3.1.1BasicIssuesofBreakdownPressureandFractureGeometry 38

4.3.1.2MultipleHydraulicFractureGrowth 39

4.3.1.3InteractionsBetweenHydraulicFracturesandNaturalFractures 40

4.3.1.4FracturePropagationThroughtheLayeredFormation 41

4.3.1.5NonlinearFracturingintheDeepReservoir 42

4.3.1.6CyclicFracturing 43

4.3.2EnvironmentalFracturinginaShallowFormation 44

4.3.3HydraulicStimulationinEGS 44

4.4ConclusionsandFutureWork 45

References 46

5FirstFieldTrailandExperimentalStudiesonscCO2 Fracturing 51 HaiyanZhu,LeiTao,ShoucengTian,andHaizhuWang

5.1Introduction 51

5.2ReviewonscCO2 Fracturing 52

5.2.1ShaleandscCO2 Interaction 52

5.2.1.1MicroscalePhysicalChanges 52

5.2.1.2MicroscaleChemicalChanges 52

5.2.1.3MacroscaleMechanicalChanges 53

5.2.1.4ConclusionsontheExperimentsonShaleandscCO2 Interaction 54

5.2.2ExperimentsandNumericalSimulationsonscCO2 Fracturing 54

5.2.2.1ExperimentsonscCO2 Fracturing 54

5.2.2.2NumericalSimulationsonscCO2 Fracturing 57

5.3AFieldTrailonscCO2 FracturingofContinentalShaleinYanchangOilField 57

5.3.1scCO2 FracturingTechnology 57

5.3.2scCO2 FracturingFieldTest 58

5.3.2.1ReservoirPropertiesofTestWells 58

5.3.2.2FracturingProcessandOperationParameters 58

5.3.3FieldTestResultsandAnalysis 59

5.3.3.1MicroseismicMonitoringandInversionofFractureGeometry 59

5.3.3.2ProductionData 60

5.4ChallengesinscCO2 Fracturing 60

5.4.1scCO2 FracturingMechanismIsStillNotClear 60

5.4.2ChallengesinProppantsCarrying 60

5.4.3ChallengeonthePredictingandMonitoringCO2 Phase 61

5.4.4LackofSpecializedEquipmentforscCO2 Fracturing 61

5.5Conclusions 61

Acknowledgments 61

References 61

6AnUnstructuredMovingElementMeshforHydraulicFractureModeling 65 JohnNapierandEmmanuelDetournay

6.1Introduction 65

6.2DiscreteModelofaPlanarHydraulicFracture 65

6.2.1UnstructuredMesh 66

6.2.2DiscreteElasticityEquation 66

6.2.3DiscretizedLubricationEquationsforChannelElements 67

6.2.4TipElements 67

6.3Time-MarchingAlgorithm 67

6.3.1IterationLoops 68

6.3.2LocalFrontUpdate 68

6.3.3GenerationofaNewRingofTipElements 68

6.3.4CrackSurfaceRemeshing 69

6.3.5GeneralSolutionAlgorithmLogic 69

6.4NumericalSimulations:StressBarriers 70

6.4.1DescriptionofExperiment 70

6.4.2NumericalSimulations(noRemeshing) 70

6.4.3ComparisonwithExperimentalResultsandOtherSimulations 71

6.4.4IllustrationandAssessmentoftheElementRe-MeshingStrategy 71

6.5Conclusions 73 Acknowledgments 73 References 73

7StudyofHydraulicFractureInterferencewithaLatticeModel 75 C.Detournay,B.Damjanac,M.Torres,andY.Han

7.1Introduction 75

7.2 XSite CodeOverview 75

7.3NumericalStudiesofFractureInterference 75

7.3.1InteractionofaHydraulicFracturewithaNaturalFracture 76

7.3.2InteractionofTwoHydraulicFractures 76

7.3.2.1NumericalStudy 76

7.3.2.2InterpretationofResults 78

7.3.3InteractionofHydraulicFracturesinInjectionofMultipleClusters 79

7.3.4InteractionofHydraulicFracturesinFracturedMedium 81

7.3.5InteractionofHydraulicFracturesinZipper-StageInjection 83

7.4Afterword 83 References 85

8TheTippingPoint:HowTipAsymptoticsCanEnhanceNumericalModelingofHydraulicFractureEvolution 87 A.Peirce

8.1Introduction 87

8.2MathematicalModel 87

8.2.1Assumptions 87

8.2.2GoverningEquation 88

8.2.2.1Elasticity 88

8.2.2.2FluidTransport 88

8.2.2.3BoundaryandPropagationConditions 88

8.2.2.4TipAsymptotics,VertexSolutions,andGeneralizedAsymptotes 89

8.3Discretization,CoupledEquations,andtheMultiscaleILSASchemetoLocatetheFreeBoundary 91

8.3.1Discretization 91

8.3.1.1DisplacementDiscontinuityFormulationforPlanarFractures 91

8.3.2LocatingtheFreeBoundaryUsingtheImplicitLevelSetAlgorithm(ILSA) 92

8.4NumericalResults 95

8.4.1SymmetricStressBarrier: m-VertexSolutionvsExperimentandtheEffectofToughness 95

8.4.2AStressDrop:DistinctPropagationRegimesAlongthePeriphery 95

8.5Conclusions 95

8.6Acknowledgment 97 References 97

9Plasticity:AMechanismforHydraulicFractureHeightContainment 99 PanosPapanastasiou

9.1Introduction 99

9.2TheDependenceoftheEffectiveFractureToughnessonPropagationDirection 100

9.3EffectiveFractureToughnessvs.ClosureStress 101

9.4ANewBrittlenessIndexDefinesFractureContainment 102

9.5Conclusions 103 Acknowledgments 104 References 104

10TurbulentFlowEffectsonPropagationofRadialHydraulicFractureinPermeableRock 107 E.A.Kanin,D.I.Garagash,andA.A.Osiptsov

10.1Introduction 107

10.2ModelFormulation 108

10.2.1ProblemDefinition 108

10.2.2GoverningEquations 109

10.2.2.1CrackElasticity 109

10.2.2.2FluidFlow 109

10.2.2.3FracturePropagation 110

10.2.2.4BoundaryConditions 110

10.2.2.5GlobalFluidVolumeBalance 110

10.3SolutionApproach 111

10.4SolutionExamplesforTypicalFieldApplications 112

10.5LimitingPropagationRegimes 115

10.6NormalizationoftheGoverningEquations 118

10.7ProblemParameterSpaceAnalyses 119

10.7.1ZeroLeak-OffCase(ImpermeableRock) 120

10.7.2NonzeroLeak-OffCase(PermeableRock) 121

10.8Conclusions 122 Acknowledgments 124 References 125

11AnalysisofaConstantHeightHydraulicFracture 127 E.V.Dontsov

11.1Introduction 127

11.2GoverningEquations 128

11.3TipRegion 129

11.4VertexSolutions 132

11.4.1StorageViscosity 132

11.4.2Leak-offViscosity 133

11.4.3StorageToughness 133

11.4.4Leak-offToughness 133

11.5FullSolution 134

11.6ApplicationExamples 136

11.7Summary 137 References 137

12DiscreteElementModelingofHydraulicFracturing 141 MengliLiandFengshouZhang

12.1Introduction 141

12.2DiscreteElementModelingofHydraulicFracturing 142

12.3HydraulicFractureInteractingwithNaturalFractures 142

12.3.1HybridDiscrete-ContinuumMethod 143

12.3.2ModelCalibrationforaHydraulicFractureinIntactRock 144

12.3.3OrthogonalCrossing 145

12.3.3.1EffectsofStressRatioandFrictionofNaturalFractures 145

12.3.3.2EffectofStrength(Toughness)Contrast 147

12.3.3.3EffectofStiffness(Modulus)Contrast 149

12.3.4Non-OrthogonalCrossing 150

12.3.5FracturingComplexity 151

12.4DEMModelingofSupercriticalCarbonDioxideFracturing 153

12.4.1NewAlgorithmfortheToughness-DominatedRegime 153

12.4.2NumericalModelSetup 154

12.4.2.1ModelDescription 154

12.4.2.2ModelVerification 156

12.4.3HydraulicFracturinginIntactRockSample 157

12.4.4HydraulicFracturinginFracturedRockSample 161

12.5DEMModelingofFluidInjectionintoDenseGranularMedia 163

12.5.1BackgroundandExperimentalMotivation 163

12.5.2ModelSetup 165

12.5.3EffectoftheInjectionRate 166

12.5.4DimensionlessTimeScaling 168

12.5.5EnergyPartition 170

12.6Discussion 171

12.7Conclusions 171

References 172

13InteractionofaHydraulicFracturewithNaturalFracturesofLesserHeightandWeakBeddingInterfacesasa PossibleMechanismforFractureSwarms 177 XiaoweiWengandOlgaKresse

13.1Introduction 177

13.2PossibleMechanismsforFractureBifurcation 179

13.3InteractionofCloselySpacedParallelFractures 182

13.3.1FractureTipExtensioninOverlappedRegion 182

13.3.2InstabilityofCloselySpacedParallelHydraulicFractures – SharedInlet 183

13.3.3InstabilityofCloselySpacedParallelHydraulicFractures – SeparateInlets 184

13.4PossibleMechanismsforCreatingFractureSwarms 185

13.5Conclusions 188

References 189

14HydraulicFracturingMechanismsLeadingtoSelf-OrganizationWithinDykeSwarms 193 Andrew.P.Bunger,D.Gunaydin,S.T.Thiele,andA.R.Cruden

14.1Introduction 193

14.2SwarmMorphologyandFundamentalDrivers 193

14.3DykeSwarmModelandEnergetics 194

14.4Alignment 196

14.5Avoidance 197

14.6StressShadow 197

14.7StressPlugs 199

14.8Attraction 199

14.9EmergentSpacing 200

14.10SimulatingDykeSwarmAssembly 201

14.11Conclusions 202 Acknowledgments 203

References 203

15NumericalSimulationofThermalFracturingDuringHeatExtractionfromaClosed-LoopCirculationEnhanced GeothermalSystem 207

Z.Lei,BishengWu,andZ.Chen

15.1Introduction 207

15.2MathematicalFormulation 208

15.2.1ProblemDescription 208

15.2.2GoverningEquationsofCoupledThermoelasticModel 209

15.2.2.1FluidFlow 209

15.2.2.2RockDeformation 209

15.2.2.3FractureInitiationandPropagation 210

15.2.2.4ThermalTransportThroughFluidFlow 211

15.2.2.5HeatTransferinRockMatrix 211

15.2.3BoundaryandInitialConditions 211

15.3SolutionMethodologyandComputationalProcedures 211

15.3.1CoupledFluid-FractureSolver 211

15.3.1.1WeakFormandFEMDiscretization 211

15.3.1.2ExtendedFiniteElementApproximation 212

15.3.2CoupledFluid-ThermalSolver 213

15.3.3SolutionStrategy 213

15.4NumericalResults 214

15.4.1FluidFlowandProductionTemperature 214

15.4.2TemperatureDistributioninRockFormation 216

15.4.3FracturePropagation 216

15.4.3.1SingleFractureCase 216

15.4.3.2DoubleFractureCase 220

15.5Conclusions 221 References 221

16MultipleHydraulicFracturesGrowthfromaHighlyDeviatedWell:AXFEMStudy 225 YunZhouandDiansenYang

16.1Introduction 225

16.2ProblemFormulation 227

16.2.1GoverningEquations 228

16.2.1.1SolidDeformation 228

16.2.1.2FluidFlowinMatrix 229

16.2.1.3FluidFlowinFractures 229

16.2.1.4FlowRateDivisiontoMultipleFractures 229

16.2.1.5FracturePropagation 229

16.2.2WeakForms 230

16.3NumericalMethod 230

16.3.1XFEMApproximationof u(x, t)and p(x, t) 230

16.3.2SpatialandTimeDiscretization 231

16.3.3SolutionStrategy 231

16.3.3.1SolutionofHM-CoupledEquations 231

16.3.3.2SolutionofFlowRateDivision 231

16.4NumericalResults 232

16.4.1VerificationoftheModel 232

16.4.2Multi-ClusterHydraulicFracturinginHigh-AngleWell 233

16.4.2.1ModelSet-up 234

16.4.2.2OperationalParameters 235

16.4.2.3DeviationAngle 236

16.4.2.4FractureSpacing 239

16.4.2.5FracturePlacement 240

16.4.2.6FractureNumber 241

16.5Discussion 245

16.6Conclusions 245

Appendix16.ADimensionlessToughness κ 245

Appendix16.BDimensionlessParameter Gm246

Appendix16.CDimensionlessVariabilityCoefficient Cv 246 References 246

17HydraulicFracturing-InducedSliponaPermeableFault 251 Xi.Zhang,R.G.Jeffrey,andJ.Yang

17.1Introduction 251

17.2ModelSetup 252

17.3SummaryofModelingResults 254

17.3.1FullyClosedFractures 254

17.3.1.1ConstantFaultPermeability 254

17.3.1.2EnhancedFaultPermeability 254

17.3.1.3FaultPermeabilityReduction 255

17.3.2PartiallyOpenedFracture 256

17.3.2.1PlanarFault 256

17.3.2.2NonplanarFault 256

17.4RadiatedEnergy 256

17.5ConclusionsandFutureWork 258 Acknowledgment 259 References 259

Index 263

ListofContributors

AndrewP.Bunger

DepartmentofCivilandEnvironmentalEngineering, UniversityofPittsburgh,Pittsburgh,PA,USA and DepartmentofChemicalandPetroleumEngineering, UniversityofPittsburgh,Pittsburgh,PA,USA

Z.R.Chen

CSIROEnergy,ClaytonSouth,Victoria,Australia

A.R.Cruden

SchoolofEarthAtmosphere&Environment,Monash University,Clayton,Victoria,Australia

B.Damjanac

ItascaConsultingGroup,Minneapolis,MN,USA

EmmanuelDetournay

DepartmentofCivil,Environmental,and Geo-Engineering,UniversityofMinnesota,Minneapolis, MN,USA

C.Detournay

ItascaConsultingGroup,Minneapolis,MN,USA

E.V.Dontsov

ResFracCorporation,555BryantSt., #185PaloAlto,CA,USA

D.I.Garagash

DepartmentofCivilandResourceEngineering, DalhousieUniversity, Halifax,NovaScotia,Canada

D.Gunaydin

DepartmentofCivilandEnvironmentalEngineering, UniversityofPittsburgh,Pittsburgh,PA,USA

Y.Han

AramcoServicesCompany:AramcoResearchCenter, Houston,TX,USA

R.G.Jeffrey

SCTOperationsPty.Ltd.,Wollongong,NewSouthWales, Australia

E.A.Kanin

ProjectCenterforEnergyTransitionandESG, SkolkovoInstituteofScienceandTechnology(Skoltech), Moscow,RussianFederation

OlgaKresse Schlumberger,Houston,TX,USA

BriceLecampion

Geo-EnergyLaboratory,GaznatChaironGeo-Energy, EcolePolytechiqueFédéraledeLausanne,EPFL-ENACIIC-GEL,Lausanne,Switzerland

Z.Lei

DepartmentofHydraulicEngineering,Tsinghua University,Haidian,Beijing,China

MengliLi

KeyLaboratoryofGeotechnicalandUnderground EngineeringofMinistryofEducation,TongjiUniversity, Shanghai,China and

DepartmentofGeotechnicalEngineering,CollegeofCivil Engineering,TongjiUniversity,Shanghai,China

DongLiu

Geo-EnergyLaboratory,GaznatChaironGeo-Energy, EcolePolytechiqueFédéraledeLausanne,EPFL-ENACIIC-GEL,Lausanne,Switzerland

JohnNapier

DepartmentofMiningEngineering, UniversityofPretoria, Hatfield,Pretoria SouthAfrica

A.A.Osiptsov

ProjectCenterforEnergyTransitionandESG, SkolkovoInstituteofScienceandTechnology(Skoltech), Moscow,RussianFederation

PanosPapanastasiou DepartmentofCivilandEnvironmentalEngineering, UniversityofCyprus,Nicosia,Cyprus

A.Peirce DepartmentofMathematics,UniversityofBritish Columbia,Vancouver,BritishColumbia,Canada

LeiTao

StateKeyLaboratoryofOilandGasReservoirGeologyand Exploitation,ChengduUniversityofTechnology, Chengdu,China

S.T.Thiele

HelmholtzInstituteFreibergforResourceTechnology, Helmholtz-ZentrumDresden-Rossendorf,Freiberg, Germany

ShoucengTian

StateKeyLaboratoryofPetroleumResourcesand Prospecting,UniversityofPetroleum(Beijing), Beijing,China

M.Torres

ItascaConsultingGroup,Minneapolis,MN,USA

HaizhuWang

StateKeyLaboratoryofPetroleumResourcesand Prospecting,UniversityofPetroleum(Beijing), Beijing,China

XiaoweiWeng Retired,Schlumberger,Houston,TX,USA

BishengWu DepartmentofHydraulicEngineering,Tsinghua University,Beijing,China

DiansenYang SchoolofCivilEngineering,WuhanUniversity, Wuhan,China

J.Yang InstituteofRockandSoilMechanics,ChineseAcademyof Sciences,Wuhan,China

XiZhang FacultyofEngineering,ChinaUniversityofGeosciences, Wuhan,China and SCTOperationsPtyLtd,Wollongong,Australia

FengshouZhang

KeyLaboratoryofGeotechnicalandUnderground EngineeringofMinistryofEducation,TongjiUniversity, Shanghai,China and DepartmentofGeotechnicalEngineering,CollegeofCivil Engineering,TongjiUniversity,Shanghai,China

GuangqingZhang CollegeofPetroleumEngineering,ChinaUniversityof Petroleum-Beijing,Beijing,China

YunZhou

StateKeyLaboratoryofGeomechanicsandGeotechnical Engineering,InstituteofRockandSoilMechanics,Chinese AcademyofSciences,Wuhan,Hubei,China

DaweiZhou CollegeofPetroleumEngineering,ChinaUniversityof Petroleum-Beijing,Beijing,China

HaiyanZhu

StateKeyLaboratoryofOilandGasReservoirGeologyand Exploitation,ChengduUniversityofTechnology, Chengdu,China

Foreword

Forabout15yearsuntilhisretirementfromthe CommonwealthScientificandIndustrialResearch Organization(CSIRO)in2015,RobJeffreyledagroupof scientists,technicalofficers,students,andacademic visitors,allengagedinhydraulicfracturingresearch. UnderRob’sdirection,theCSIROHydraulicFracturing (CSIROHF)group,locatedinMelbourne,wasavibrant center,uniqueinthediversityofitsactivitiesthat involvedfieldtesting,laboratoryexperiments,theoretical modeling,andnumericalsimulations.Manyauthorsof thisbookhavebeenassociatedwiththeCSIROHF group,andtheircontributionsaretributestoRob’s inspiredleadership.

ApermanentfocusoftheCSIROHFgroupwastosupport thedevelopmentofhydraulicfracturingasameansto preconditionarockmassforcaveinducementofore bodiesandcoalminegoafs.Thisapplicationofhydraulic fracturingtominingwasRob’sbrainchild,aninvention foreshadowedbytheexperienceandexpertiseRobgained intheUnitedStateswhileworking,first,forthemining industryandlaterforthepetroleumindustryinresearch anddevelopment.Hispatentedtechniqueisnowbeing usedroutinelyinminesinseveralcountries,including Australia,Chile,andIndonesia.Preconditioningby hydraulicfracturinghasaprofoundeconomicimpacton hardrockminesrelyingonblockcavingandonlongwall coalmines,insomecasesensuringtheeconomicviability oftheseoperations.

OneofRob’soutstandingachievementsatCSIROwasthe establishmentofaworld-classlaboratorydedicatedto

hydraulicfracturingresearchwithalargepolyaxialcellas itscenterpiece.AparticularpointofprideforRobwasthe heavy-dutyequipmentusedtoconductfieldtests.Thelab wasthebirthplaceofinnovativeexperiments;somewere conductedinglassorpolymethylmethacrylate(PMMA)to enablevisualizationofthefractureevolutionand photometricmeasurementsoftheaperturefieldtotest computationalmodels,whileothersexploredthe interactionofahydraulicfracturewithdiscontinuities orwithafreesurface,tociteafew.Althoughexperiments inthefieldorinthelabareRob’spassion,hewas alwaysenthusiasticallysupportiveoftheoreticaland computationalwork.

SomemembersoftheformerCSIROHFgrouphave movedtoacademicpositionsinChina,Europe,and NorthAmerica,buttheyremainengagedinhydraulic fracturingresearch.Withthismigration,thetheoretical expertiseandknow-howforinnovativeexperimental workgainedintheCSIROlabhasbeenkeptaliveand furtherflourished.ThisisoneofRob’senduringlegacies. Onapersonalnote,IamindebtedtoRobforgivingme thewonderfulopportunitytoworkinhisgroup.Itwas initiatedattheARMAVailSymposiumin1999,when Robaskedme “wouldyoubeinterestedtospendsomeof yoursabbaticalinMelbourne …. ” Thisledtoalong-term collaborationandachancetodiscoverAustraliaon multipleoccasions.

EmmanuelDetournay,UniversityofMinnesota, Minneapolis,USA

Preface

Thisvolumeofcontributedchapterscomesfromthenetworkofresearchersworkingonmechanicsofhydraulic fracturingintheory,experiments,andapplications.Many ofthesecontributorscomprisedtheparticipantsinaseries ofHydraulicFracturingSummitsheldfrom2001to2015. Theseworkshopsprovidedavenueforlivelydebatesand effectiveexchangesofideas.ThesuccessoftheseSummits isattributedtoRobJeffreyandEmmanuelDetournay,who initiatedthisseriesofannualmeetingsandfosteredthe communityintheircollaborations.Theyrecognizedthescientificsignificanceofthisfast-growingfieldpriortothe surgeofunconventionaloilandgasreservoirstimulation, andthroughthisworkshopmentoredagenerationof hydraulicfracturingresearchers.

Thisvolumeisdevotedtocelebratingthe70thbirthdayof RobJeffrey,whowastheprogramleaderatCommonwealthScientificandIndustrialResearchOrganisation (CSIRO),Australia,whenthreeoftheeditorsworkedthere. Robisoneofthepioneersfortheapplicationofhydraulic fracturingincoalseamgasreservoirstimulationandthe foundationoftheknowledgeonhydraulicfracturegrowth innaturallyfracturedrocks.Duringhisfortyyearsworking inhydraulicfracturingfield,helaunchedmanyimportant researchdirections,beingamongthefirsttoworkinareas suchasfracturenetworkformation,novelfracturemonitoringmethods,mine-throughmappingoffull-scale hydraulicfractures,anduseofhydraulicfracturingtomodifyrockmasspropertiesforbothblockcavingandlongwall coalmining.Allofhisworkbroughttogethertheoretical andexperimentalmethodsinordertoaddressnewissues withrigorandpragmatism.InrecognitionofRob’soutstandingcontributionsbothtothefieldandtotheircareers, hisHydraulicFracturingSummitcolleaguesandothersare happytocontributethisbookthatisinhishonor.

Thisvolumecontains17chapters,coveringawiderange ofrelevantresearchtopicsandimportantapplicationareas. Theeditorswishtothankeverycontributorfortheirdiligenceandcarefulchoiceoftopics.Thechapterswillprovidethefirstcomprehensivestoryontheseexperimental andfieldmonitoringresults,includingcomparisonsofseveralnumericalmethodswithindustrialapplications.This bookwillbenefitawidespectrumofreaders,rangingfrom newcomersseekinganefficientorientationtothefieldto seasonedexpertslookingforauniquesetofreferences onsomeofthemostimportantissueswithinthehydraulic fracturingcommunityoverthepasttwodecades.

Theeditorsaregratefultothoseanonymousreviewersof thebookproposalfortheirpositivecommentsandconstructivesuggestionsandtothemanyvolunteerreviewers whospenttremendousamountoftimeandeffortinthe evaluationofeachchapter.WealsoowemuchtoDr.RituparnaBose,LaylaHarden,andStefanieVolkatWiley,who areawareoftherapid-growingknowledgeandsocial impactofhydraulicfracturing,andalongwithothereditorialteammemberssupportingthisbook.Withouttheir vision,enthusiasm,anddiligentefforts,thisbookwould nothavebeenpossible.

XiZhang,ChinaUniversityofGeosciences, Wuhan,China

BishengWu,TsinghuaUniversity, Beijing,China

DiansenYang,WuhanUniversity, Wuhan,China

AndrewBunger,UniversityofPittsburgh, Pittsburgh,PA,USA

HydraulicFractureGeometryfromMinebackMapping

SCTOperationsPty.Ltd.,Wollongong,NewSouthWales,Australia

KEYPOINTS

• Detailsoffull-sizehydraulicfracturegeometryareonlyavailablefrommappingofminedfractures.

• Hydraulicfracturesmappedinnaturallyfracturedcoal,sandstone,andincrystallinerockshowmanysimilaritiesthatresultfrom interactionswithnaturalfracturesandshearstructures.

1.1Introduction

Hydraulicfractureshavebeenmappedduringminingina rangeofrocktypesandinavarietyofgeologicandinsitu stresssettings.Mappinghasoccurredforfracturesplaced intoclayandsoil[1],weldedtuff[2],coal([3–5]),andesite [6],andothercrystallineandmetamorphicrocksinporphyryorebodies[7–9].

Coalseamsaretypicallyfracturedforthepurposeof stimulatingproductionofseamgas(coalbedmethane), eitherforcommercialuseofthegasortoimprovedrainageofgasfromthecoalbeforemining.Approximately 50hydraulicfractureshavebeenminedandmappedin detailincoalseamsintheUnitedStatesandAustralia ([3,4,10,11];Jeffreyetal.1993).Incomparison,fractures mappedinothermaterials(soilandrock)totallessthan 20,with10oftheselocatedinporphyrycopperandgold orebodies([6,7,9];containingintrusivemonzonitesand metamorphosedvolcanicsediments.Thesefractureswere placedaspartofinvestigationsintofracturegeometry expectedtobeproducedbyhydraulicfracturesusedto preconditiontheorebodyinadvanceofmining.Thefracturesplacedintoweldedtuffwerepartofearlyresearch intohydraulicfracturegrowth[2]andthesoilfractures werepartofastudyoffracturingforwasteremediation[1].

Bycomparingthefracturegeometrymappedinthesedifferentnaturalmaterials,commonanddisparatefeaturesof thefracturesarehighlighted.Tohelpwiththecomparison,

dimensionlessgroupsthathavebeenshowntobeimportantinhydraulicfracturegrowtharecalculatedorestimatedforeachmappedfracture.Thereisanextensive bodyofworkusingexperimental,analytical,andnumerical methodstoinvestigateinteractionsofhydraulicfractures withbeddingandnaturalfracturesandfaults.Thispaper limitsitselftothemappedgeometryexposedbymining offull-sizehydraulicfracturesandpresentsacomparison offeaturesfoundincoal,sandstone,andstrongermetamorphicorigneousrocks.

1.2SummaryofMappedFracture Geometries

Selectedhydraulicfracturesthatwereplacedincoal,sandstone,andhardrockaredescribedinthissection.Foreach fracturethetreatmentparameters,rockproperties,andin situpropertiesarelisted.

1.2.1FracturesinCoal

Twofracturesplacedintocoalseamswillbedescribed,one locatedinAustraliaasdescribedbyJeffreyetal.(1993)and onelocatedintheUnitedStates[10].Thefracturedescriptionsincludedetailsofthetreatmentandsitecharacterization,includingrockmechanicalpropertiesandinsitu stressdata.

MechanicsofHydraulicFracturing:Experiment,Model,andMonitoring,FirstEdition. EditedbyXiZhang,BishengWu,DiansenYang,andAndrewBunger. ©2023JohnWiley&Sons,Inc.Published2023byJohnWiley&Sons,Inc.

1.2.1.1DHM-7Fracture

Aspartofaprogramtobetterunderstandhydraulicfracturestimulationofcoal,wellDHM-7wasfracturedusing lineargelwithsandproppant[10].DHM-7wasdrilled andcompletedopenholethroughtheBlueCreekcoalseam inAlabama.ThewellwaslocatedovertheOakGroveMine intheWarriorBasin.Table1.1summarizestheparameters ofthesiteandthetreatmentparameters.Itisdifficultto measure σH incoalbecausethecleatandnaturalfractures makeovercoringimpracticalandthedeterminationoffractureinitiationisdifficultwhenusingamicrofracstresstest. Avaluefor σH thatislargerthantheverticalstresshasbeen selectedbecausetheminebackmappingrevealednodevelopmentofproppedfracturesatrightanglestothedirection ofthemainverticalfracturebranch.

Roomandpillarminingexposedthefractureinthecoal ribaroundthesidesoftwopillarsandalongthecoalrib nearestthewell(Figure1.1).Averticalandhorizontal proppedfracture(T-shaped)wasfoundwiththevertical partconsistingofanumberofparallelstrands.Thevertical fractureextendedformorethan30mtothenorthofthe well.Ahorizontalproppedfracture,extendingovertheverticalfracture,waslocatedatthecoal-roofrockinterfaceand wasmappedindetail(seeFigure1.2).Thefracturewasnot minedtothesouth,butbasedontheareaandfracture widthsmapped,theproppedfracturemappedonthenorth sideofwellDHM-7wasestimatedtocontainapproximately 75%ofthesandproppantinjected[12].

ThetreatmentpumpedintoDHM-7usedanoncrosslinkedguar-basedgelfluidthatwasinjectedatanaveragerateof8.3barrels/min(0.022m3/s).Athickresin-coated sandsystemwaspushedintothenear-wellpartofthe

Table1.1 DHM-7.Coal,well,andtreatmentparameters.

ParameterValueUnitsDescription

σH >8.1MPaMaximumhorizontalstress

σh 6.2MPaMinimumhorizontalstress

σv 8.1MPaVerticalstress

Po <3MPaPorepressure(estimated)

k 1.2mdPermeability,millidarcy

E 4000MPaYoung’smodulusofcoal

ν 0.3Poisson’sratioofcoal

Q 0.022m3/sInjectionrate

μ 25×10 9 MPasApparentfluidviscosity, at170s 1

Depth331.3mDepthtotopofBlueCreek seam

r 0.108mWellboreradius

fractureonthemorningfollowingthemaintreatment.This resincoatedsandwasusedtotestitsabilitytostabilizethe wellboreregion.Itisdesignedtoretain80%ofthesand’spermeabilityaftercuring.Muchoftheverticalfractureexposed nearestthewellbore,atlocationAinFigure1.1,wasfilled withthisresin-coatedsand.Samplesofthisproppedfracture wereexcavatedandtakenfromthemineforlateranalysis anddisplay.Noresin-coatedsandwasfoundatthenext exposureatlocationB.Mappingofthehorizontalfracture wasdoneatthedetaillevelrepresentedinFigure1.2along allproppedexposures.

ThemappedgeometryinDHM-7andothercasespresentedbelowrelyontheproppanttomarkthefracture path.Thehydraulicfracturetypicallyextendsbeyondthe proppant,especiallywhenlessviscousfluidsareused. Hydraulicfracturescannotingeneralbefoundormapped iftheydonotcontainproppant.Thedistributionofthe proppant,especiallyinahorizontalfracture,dependson boththefracturewidthandthefluidvelocityfield.Proppanttransportinhorizontalfracturesisanareaofstudy thathasreceivedlittleattention,primarilybecausehorizontalfracturegrowthisthoughttobearareoccurrence atdepthsgreaterthanapproximately300m.Thehydraulic fracturesdescribedbelowthatwereplacedintotheorebody atNorthparkesatadepthof580mwerehorizontal.Tshapedfracturesarecommoninstimulationofcoaland bettermodelsthatcandealwithhorizontalfracturegrowth andtheassociatedproppanttransportproblemwouldbe welcome.

1.2.1.2DDH190Fracture

AnuncasedHQ-sizecoredborehole(DDH190)wasdrilled throughtheGermanCreekcoalatCentralCollieryin Queenslandandwashydraulicallyfracturedusingaborate crosslinkedhydroxypropylguargelfluid.Thesitewascharacterizedbyundertakingwelltesting,stressmeasurement, coretesting,andfracturetestingbeforethemainfracture treatment.Table1.2summarizesthesiteparametersrelevanttothetreatmentasgivenbyJeffreyetal.[5].

Mappingofthefractureduringandafterdevelopmentof theroadwaysinthisareaoftheminerevealedavertical fractureinthecoalthatextendedintotheroofrock (Figure1.3).Thefracturetraceintheroofrock (Figure1.3a)wasprimarilyasinglefracture,butinteractionswithnaturalfracturesresultedintheformationof someoffsetsandshortparallelbranches.Theverticalfracturetraceinthecoalatthenorthsideof13cut-through (Figure1.3b)wastypicalofotherverticalsectionsmapped atthissite,consistingofasinglefracturethatinteracted withbeddedandshearedcoal.The150mm-thickmid-seam shearzone(mssz)runsthroughmuchoftheGermanCreek seamandiscomposedofshearedcoal,withparticles

North

DHM-7

Oak Grove Mine

Alabama

Mine roadway Sand Propped Horizontal Fracture

coal pillar

Mine roadway

25 Mapping station with average sand thickness* for 1 foot section of horizontal fracture. * Sand thickness reported in hundredths of inches. Vertical fracture at coal rib

Figure1.1 AplanviewoftheproppedhydraulicfracturemappedattheDHM-7siteisshowninthetopdrawingwhilethree mappedverticalfracturesectionsexposedatthecoalribareshowninthelowerdrawing.Mappingofthehorizontalfracture occurredalongtheribsoftheroadwayswherethefracturewasexposedneartheroof(Source: Boyeretal.[12]/GasResearchInstitute).

Depth193.5mDepthtotopofGermanCreekseam r 0.048mWellboreradius 4 1HydraulicFractureGeometryfromMinebackMapping

Figure1.2 Sevenlinearfeetofhorizontalfracturemappedalongthenorthsideofthecoalpillar(Source: Boyeretal.[12]/GasResearch Institute).ThelocationofthisportionofthehorizontalfractureisindicatedinFigure1.1andlabeledasstation1through6.The entirehorizontalfracturewasmappedatthislevelofdetailandthenumbersinFigure1.1alongthepillarboundaryindicatetheaverage proppedwidthinhundredthsofinches(e.g.30represents0.30in.).

Table1.2 DDH190siteparameters.

ParameterValueUnitsDescription

σH >4MPaMaxhorizontalstress,inroof

σh 2.5 1.9

Minhorizontalstressincoal Minhorizontalstressinroof

σv 4.5MPaVerticalstress

Po 1.08MPaPorepressure

k 4.2mdPermeability,millidarcy

E 2000 25000 MPa MPa Young’smodulus,coal Young’smodulus,roofrock

ν 0.35 0.13 Poisson’sratio,coal Poisson’sratio,roofrock Q 0.0025m3/sInjectionrate

μ 610×10 9 MPasApparentfluidviscosityat170s 1

Figure1.3 Lookingdownonproppedfracturetrace(a)insandstoneroofrockat13cut-through.Verticalsection(b)showing proppedfractureexposedonnorthcoalribof13cut-throughnearboreholeDDH190(

Source: Jeffreyetal.[5]/CoalbedMethane AssociationofAlabama). 1.2SummaryofMappedFractureGeometries

rangingfromclaysizetoafewcentimetersinsize.Themssz issofterandweakerthanthecoalaboveandbelowit.This hydraulicfractureandothersmappedinthiscoalseam oftendevelopedanoffsetacrossthemssz.

ThefractureatDDH190extendedintothelowerstress roofrockwithonly12%oftheproppantinjectedestimated tobeaccountedforbytheproppedfractureinthecoal seam.Themappingclearlyshowsthetraceofthepropped hydraulicfractureintheroofandinthecoal,butdoesnot revealifthefracturewasgrowingprimarilylaterallyorverticallyatthesectionsmapped.Modelingofthisfracture suggestsupwardgrowthof7mintotheroofrockatthe borehole[13].

1.2.2FracturesinHardRock

Hydraulicfracturingisusedinminingtoinducecavingand topreconditionrockforcaving[7].Morerecently,preconditioninghasbeenusedinareasofhighstressasameansof reducingthepotentialfortheoccurrenceoflarge,damagingseismicevents[14].Atotalofninefractureshavebeen minedandmappedatfourmetalliferousminesitesin

Australia[7,9,15]andChile[6].Thefracturesdescribed byJeffreyetal.[9]willbecomparedtothefracturesplaced intocoalseams.

1.2.2.1NorthparkesE48MappedFractures

Sixhydraulicfractureswereplacedaheadofatunnelat580 mdepthattheE48Northparkesmineaspartofaminethroughexperiment[9].Thefractureswereproppedwith coloredplasticandsandandweremonitoredbymicroseismicandtiltmeterarrays.Themappedhydraulicfracturesat Northparkesconsistofnearlyhorizontalsegmentswithoffsetsatintervalsalongthemproducedasthefracturegrew intoandalongdippingveins,naturalfractures,andshear zones.Fracturebranchesandsub-parallelproppedsections werealsomapped,makingup10–15%ofthetotalfracture extent.Therockmassatthesiteisnaturallyfractured,containingapproximatelyfivenaturalfracturespermeter. Additionaldetailsofthesite,fracturing,andmine-back canbefoundinJeffreyetal.[9].Table1.3listssiteandrock parameters.ThestressdirectionsgiveninTable1.3are basedonovercoringdatameasurednearthefracturesite.

Table1.3 SiteandrockparametersforNorthparkesE48.

ParameterValueUnitsDescription

σH 40MPaMaxhorizontalstress,2900,80 dip

σh 22MPaMinhorizontalstress,220,110 dip

σv 15MPaVerticalstress,1650,760 dip

Po <1MPaPorepressure

k 0.005mdPermeability,millidarcy

E 50000MPaYoung’smodulus

ν 0.2Poisson’sratio

Q 0.0075m3/sInjectionrate

μ 610×10 9 1×10 9 MPas MPas

Apparentcrosslinkedgelviscosityat170s 1 Viscosityofwater

Depth580mDepthbelowsurface

r 0.048mWellboreradius

Figure1.4 HydraulicfracturesmappedalongatunnelattheNorthparkesE48mine(Source: Jeffreyetal.[9]/SocietyofPetroleum Engineers).Theinitiationpointofeachfractureisindicatedalongtheboreholewhichisdrawnwithapurpleline.

Theminimumstresswasnearlyverticalwiththemaximum stressorientednearlyhorizontalanddirectedapproximatelyeast–west.

ThehydraulicfracturesweremappedalongtheE48D102 tunnelasitwasdriven.Thefractureswerehorizontalwith stepsalongtheirpathoftenformingwheretheyinteracted withnaturalfracturesandshearstructures.Theseoffsets werelargeenoughtoincreasetheaveragedipbecausethe fracturetracefollowingastair-steppattern.Figure1.4shows anoverviewofthefivefracturesthatwereproppedwith coloredplasticandmappedalongthesidesofthetunnel.

Fractures6and7wereplacedusingcrosslinkedguargel whilefractures5,8,and9wereplacedusingwater.Thecolorsofthepointsmappedalongeachfractureshownin Figure1.4correspondtothecolorsoftheplasticproppant

used.Thegridlinesshownaretheminecoordinatesin meters.Theinitiationpointofeachfractureisindicated byablacksquaresymbolandtheboreholeisshownby thelineconnectingthesesymbols.Figure1.5containsa moredetailedsketchofFracture8,whichcontainedthelargestoffsetorstepmappedinanyofthefracturesatthissite. Theinjectioninterval,whichwasintheboreholeE48D102, isshown.Thisintervalislocatedapproximately2.5moutof theplaneofthefracturetraceshownbecausetheborehole wasdrilledalongthecenterlineofthetunnel.Fracture growthislikelytohavebeensemi-radialfromtheinjection intervalandshouldnotbevisualizedasoccurringpurely alongthefracturetrace.Fracture7containedanoffsetsimilarinsizetotheoneshowninFigure1.5andaseriesof smalleroffsets(butconsistingof200–400mmsteps)were

8, looking south

Scale 2m

Figure1.5 Themappedtraceoffracture8,exposedalongthe southsideofthetunnel,attheNorthparkesE48mine-backsite (Source: Jeffreyetal.[15]).

mappedatoneexposureofFracture5.Therefore,atthissite thecrosslinkedgeldidnotproducemoreplanarfractures comparedtothewaterdrivenfractures.

Detailsofthefracturegeometrywerenotcollectedexcept alongthesidesofthetunnelandoccasionallyacrossthe tunnelfaceandback.Thisisacommondifficultyexperiencedwhenmappinghydraulicfracturesinacommercial mine.Thetunnellingorcoalextractionoperationstake precedenceovermapping.InthecaseoftheE48site,the tunnelisextendedinapproximatelyfour-meterintervals usingadrill-blast-muck-supportcycle.Mappingis restrictedtooccurbetweenthemuckandsupportorsupportanddrillsteps.

1.2.3OtherMappedFractures

Hydraulicfractureshavebeenplacedintoarangeofrock andsoilmaterialsfollowedbyminingandmapping.Warpinskietal.[16]andWarpinskiandTeufel[2]describe hydraulicfracturesplacedintovolcanictuffandMurdoch [1]describefracturesplacedintoclayandsoilatshallow depth.Detailsofthesefracturescanbefoundinthepapers cited.

Table1.4 Dimensionlessgroupsusedincomparisons.

1.3ComparisonofMappedFracture Geometries

Nondimensionalparametersareusefulinhelpingtodeterminethetypeoffracturegrowthtoexpectindifferentrocks andatdifferentsites.Forexample,thedimensionlesstoughnessordimensionlessviscositycanbeusedtodetermineif thetreatmentwascarriedoutinthefracturetoughnessor fluidviscositydominatedregime[17].Viscositydominated growthleadstomoreplanarfracturegeometries[18].

Thefracturewidthrestrictionsresultingfromoffsetsand branchesalongthefracturepatharepotentialsitesfor proppantbridgingandthenarrowwidthattheselocations resultinahigherinjectionpressureandslowerfracture growthcomparedtomoreplanarfractureconditions[19]. Thegrowthofcloselyspacedfractureshasbeenshownto bewelldescribedbyseveraldimensionlessparameters [8,20].Resultsfromnumericalcalculationsofthepathof anewfractureplacednexttoanexistingfracturewerepresentedbyBungeretal.[20]andwerecomparedtominebackandlaboratoryexperimentsinBungeretal.[8].The fracturesmappedanddescribedabovewillbecompared witheachotherandarefurthercategorizedbycalculating valuesforthedimensionlessviscosityanddifferentialstress parameters.

1.3.1DimensionlessParameters

Thenondimensionalparametersusedarelistedin Table1.4.Thephysicalparametersthatareusedindefining thenondimensionalparametersarelistedinTable1.1.The nondimensionalviscosityisusedtodeterminewhetherthe fracturegrowthisdominatedbyrockfracturetoughnessor byfrictionallossesassociatedwithviscousfluidflowinthe fracturechannel[17].Thedimensionlessstressiscommonlyusedinstudiesofhydraulicfracturesinteracting withotherhydraulicfracturesorcrossingnaturalfractures [8,18,19].Twovaluesofdimensionlessdifferentialstress aredefinedbecauseahydraulicfracturegrowingwithan

Fracture

Table1.5 Nondimensionalparametersforthreesites.

Site Md13 d23 NorthparkesF87.71.70.5

orientationsuchthatitopensagainst σ3 willbesubjectto arangeofdifferentialstresses,dependingonthelocation ofthepointbeingconsideredwithrespecttotheother twoprincipalstresses.Theseparametersaretherefore usedhereasreferencevaluesinthecomparisonsofoverallfracturegrowthbehaviorasdeterminedbymine-back mapping.

Thevaluesofthethreedimensionlessparametersateach ofthethreemappingsitesarelistedinTable1.5.

1.4FractureGeometrySummary

The M valuelistedfortheNorthparkessiteappliestofracturescreatedusingwater,whichwasthecaseforFracture 8,whilethetreatmentinDHM-7usedlineargelanda crosslinkedgelwasusedinDDH190.The M valuesbelow 0.25representafractureregimethatistoughnessdominatedwhilean M valueofoneorgreaterisviscositydominated.Allofthefracturesdescribedherefallintothe viscositydominatedregime.Thefracturegrowthregime forthepartofthefracturethatextendedintotheroofrock atDDH190wasstronglyviscositydominated.

Naturalfracturesandshearzoneswerecrossedbythe hydraulicfracturesatallthreesites.Thedownwardgrowth ofthefractureattheDDH190sitewasbluntedbyasoftclay atthecoal-floorrockinterface.

Fracture8atNorthparkesentereda45 dippingnatural fractureandgrewalongitforapproximately2.5mbefore exitingdowndip.Theexitpointcoincideswithadditionalcalcitemineralizationinthenaturalfracture.This

sectionofthestructurewouldbestrongerinshear,resultinginhighershear-generatedtensilestressandwepropose thatthisallowedtensilefracturesorwingfractures[21]to formatthatlocation,allowingthehydraulicfractureto escapethenaturalfracture.

Table1.6providesasummaryofthefeaturesthatare presentinthefracturesatthethreesitesfortwodifferent resolutions.Theresolutionisdefinedasthesmallestfeature onthehydraulicfracturethatisincludedindescribingthe fracturegeometry.InTable1.6,nonplanarmeansthemain fracturechannelisnotinasingleplanewhilebranching meansthefracturetreatmenthasproppedseveralfractures overpartsofitsextentthatmaybeparalleloratanangleto themainfracture.

TheproppedfractureattheDHM-7sitewasT-shaped, witheachsegmentplanarwhenviewedwitharesolution of1m.Whenviewedinmoredetail(witharesolutionof 0.01m)offsetsandbranchesareapparentasshownin Figures1.1and1.2.AT-shapedfractureisconsideredto beabranchedfracture,becausethehorizontalandvertical segmentsarebothconsideredasbranchesofthefracture channel.InTable1.6,theDHM-7fractureisconsidered tobenonplanarandbranchedatthecoarserresolution. T-shapedfracturesrepresentacasewherethehydraulic fractureisdivertedintothehorizontaldirectionratherthan crossingthehorizontalfeatureandcontinuingtogrowvertically.HorizontalfracturesassociatedwithT-shapedfractureshavebeenmappedtoextend10–100sofmeters withoutdivertingbackintothecoalorupintotheroof. Themechanicsofthisobservedfeatureofthesefractures hasnotbeencompletelyexplained.

ThequalitativedescriptioninTable1.6showsthatthe classificationregardingplanarity,branches,andoffsets dependsonthescaleoftheobservation.Whenamore detailedviewisavailable,thefracturesatallthesitesshow offset,nonplanar,andbranchedgrowth.Themainfactor thatcontrolsthedevelopmentofthesefeaturesinahydraulicEfractureisthepresenceofnaturalfracturesorbedding interfaces.Thefracturegrowthregimeandthedeviatoric stress,atleastintherangerepresentedbythethreesites reviewedhere,donotseemtoresultinastrongchange

SiteOffsetsNonplanarBranchingOffsetsNonplanarBranching

NorthparkesYesYesNoYesYesYes

DHM-7NoYesYesYesYesYes

DDH190coalNoNoNoYesYesYes

DDH190roofNoNoNoYesYesYes

Table1.6 Fracturegeometryversusresolutionofobservation.

inthefracturegeometry,atleastasexpressedbymapping ofitsproppedextent.Networklikefracturedevelopment wouldbeexpectedasthedeviatoricstressisreducedtoward zero,butwedonothavemappedfracturesrepresenting thatstresscondition.

1.5Conclusions

Threesitesatwhichhydraulicfractureshavebeenmined andmappedaredescribed.Measuredparametersaregiven foreachsitethatarethenusedtofindthedimensionless

References

1 Murdoch,L.C.(1995).Formsofhydraulicfracturescreated duringafieldtestinOverconsolidatedglacialdrift. QuarterlyJournalofEngineeringGeology 28:23–35.

2 Warpinski,N.R.andTeufel,L.W.(1987).Influenceof geologicdiscontinuitiesonhydraulicfracturepropagation. JournalofPetroleumTechnology 39(2):209–220.

3 Diamond,W.P.andOyler,D.C.(1987).Effectsof StimulationTreatmentsonCoalbedsandSurrounding Strata. USBMReportRI9083.

4 Elder,C.H.(1977).EffectsofHydraulicStimulationon CoalbedsandAssociatedStrata. USBMReportRI8260.

5 Jeffrey,R.G.,Enever,J.R.,Ferguson,T.etal.(1992).Smallscalehydraulicfracturingandminebackexperimentsin coalseams. Proceedingsofthe1992InternationalCoalbed MethaneSymposium,Tuscaloosa,(17–21May).Paper9330.

6 Chacon,E.;Barrera,V.;Jeffrey,R.;vanAs,A.Hydraulic fracturingusedtopreconditionoreandreducefragment sizeforblockcaving.In MassMin 2004;Santiago;pp 429–534.

7 vanAs,A.andJeffrey,R.G.(2002).Hydraulicfracture growthinnaturallyfracturedrock:minethroughmapping andanalysis. 5thNorthAmericanRockMechanics Symposiumandthe17thTunnellingAssociationofCanada Conference,9.Toronto:ARMA.

8 Bunger,A.P.,Jeffrey,R.G.,Kear,J.etal.(2011). Experimentalinvestigationoftheinteractionamong closelyspacedhydraulicfractures. 45thUSRock Mechanics/GeomechanicsSymposium.AmericanRock MechanicsAssociation.https://www.onepetro.org/ conference-paper/ARMA-11-318.Accessed 28January2016.

9 Jeffrey,R.G.,Bunger,A.P.,Lecampion,B.etal.(2009). Measuringhydraulicfracturegrowthinnaturallyfractured rock. ProceedingsSPEAnnualMeeting,18.New Orleans:SPE.

viscosityanddimensionlessdeviatoricstressvaluesfor thesites.

Themappedfracturesatallthreesitesarefoundtobe similarinthesensethat,whentheyarestudiedatadetailed scale,theyallcontainedoffsets,werenonplanar,andcontainedbranches.Thecommonfactorbetweenallsitesis thattherock(orcoal)wasnaturallyfractured.Thenondimensionalparameterswerenotfoundtobeusefulinpredictingtheamountofoffsetting,nonplanargrowth,or branching.Mappingfracturesatsiteswithlowerdeviatoric stressmayshowasensitivitytothatparameterinpredicting networksuchasfracturedevelopment.

10 Boyer,C.M.,Stubbs,P.B.,Schwerer,F.C.etal.(1986). Measurementofcoalbedpropertiesforhydraulicfracture designandmethaneproduction. Proceedingsofthe1986 UnconventionalGasTechnologySymposium,Louisville, (18–21May).PaperSPE15258.

11 Steidl,P.F.(1991).ObservationsofInducedFractures InterceptedbyMiningintheWarriorBasin,Alabama. GRI TopicalReportNo.GRI-91/0327.

12 Boyer,C.M.,Stubbs,P.B.,Schwerer,F.C.,etal.(1986b). MappingoftheDHM-7HydraulicFracture.AppendixIin: Measurementofstaticcoalbedreservoirconditionsfor hydraulicfracturedesign;finalreport,volumeII,GRI-87/ 0082.2.Chicago,IL,GasResearchInstitute,Dec.1986.

13 Jeffrey,R.G.,Settari,A.,andSmith,N.P.(1995).A comparisonofhydraulicfracturefieldexperiments, includingminebackgeometrydata,withnumerical fracturemodelsimulations. ProceedingsSPEAnnual Meeting,(591–606).Dallas:SPE.

14 Board,Mark,TonyRorke,GaryWilliams,andNickGay. “Fluidinjectionforrockburstcontrolindeepmining.” In The33rdUSSymposiumonRockMechanics (USRMS).1992.

15 Jeffrey,R.G.,Zhang,X.andBunger,A.P.(2010).Hydraulic fracturingofnaturallyfracturedreservoirs. Thirty-Fifth WorkshoponGeothermalReservoirEngineering,9. Stanford:StanfordUniversity.

16 Warpinski,N.R.,Schmidt,R.A.,andNorthrop,D.A.(1982). In-situstresses:thepredominantinfluenceonhydraulic fracturecontainment. JournalofPetroleumTechnology 34 (3(March)):653–664.

17 Detournay,E.(2004).Propagationregimesoffluid-driven fracturesinimpermeablerocks. InternationalJournalof Geomechanics 4(1):35–45.

18 Weng,X.,Kresse,O.,Chuprakov,D.etal.(2014).Applying complexfracturemodelandintegratedworkflowin

unconventionalreservoirs. JournalofPetroleumScience andEngineering 124:468–483.https://doi.org/10.1016/ j.petrol.2014.09.021.

19 Zhang,X.andJeffrey,R.G.(2006).Theroleoffrictionand secondaryflawsondeflectionandre-initiationofhydraulic fracturesatorthogonalpre-existingfractures. Geophysical JournalInternational 166:1454–1465.

20 Bunger,A.P.,Zhang,X.,andJeffrey,R.G.(2012).Parameters affectingtheinteractionamongcloselyspacedhydraulic fractures. SPEJournal-Richardson 17(1):292–306.

21 Fairhurst,C.andCook,N.G.W.(1966).Thephenomenonof rocksplittingparalleltothedirectionofmaximumcompressionintheneighborhoodofasurface. ProceedingsFirst CongressInternationalSocietyforRocksMechanics.Lisbon.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.