[FREE PDF sample] Deep reinforcement learning for wireless communications and networking: theory, ap

Page 1


Deep Reinforcement Learning for

Wireless Communications and Networking: Theory, Applications and Implementation Dinh Thai Hoang

Visit to download the full and correct content document: https://ebookmass.com/product/deep-reinforcement-learning-for-wireless-communicat ions-and-networking-theory-applications-and-implementation-dinh-thai-hoang/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Metaverse Communication and Computing Networks: Applications, Technologies, and Approaches Dinh Thai Hoang

https://ebookmass.com/product/metaverse-communication-andcomputing-networks-applications-technologies-and-approaches-dinhthai-hoang/

Data Communications and Networking 5th Edition

https://ebookmass.com/product/data-communications-andnetworking-5th-edition/

Malware Diffusion Models for Wireless Complex Networks. Theory and Applications 1st Edition Karyotis

https://ebookmass.com/product/malware-diffusion-models-forwireless-complex-networks-theory-and-applications-1st-editionkaryotis/

Nanoscale Networking and Communications Handbook John R. Vacca

https://ebookmass.com/product/nanoscale-networking-andcommunications-handbook-john-r-vacca/

Statistical Process Monitoring Using Advanced DataDriven and Deep Learning Approaches: Theory and Practical Applications 1st Edition Fouzi Harrou

https://ebookmass.com/product/statistical-process-monitoringusing-advanced-data-driven-and-deep-learning-approaches-theoryand-practical-applications-1st-edition-fouzi-harrou/

Risk Modeling: Practical Applications of Artificial Intelligence, Machine Learning, and Deep Learning

https://ebookmass.com/product/risk-modeling-practicalapplications-of-artificial-intelligence-machine-learning-anddeep-learning-terisa-roberts/

Deep Learning in Bioinformatics: Techniques and Applications in Practice Habib Izadkhah

https://ebookmass.com/product/deep-learning-in-bioinformaticstechniques-and-applications-in-practice-habib-izadkhah/

Magnetic Communications: Theory and Techniques Liu

https://ebookmass.com/product/magnetic-communications-theory-andtechniques-liu/

AI Applications to Communications and Information Technologies: The Role of Ultra Deep Neural Networks

https://ebookmass.com/product/ai-applications-to-communicationsand-information-technologies-the-role-of-ultra-deep-neuralnetworks-daniel-minoli/

IEEEPress

445HoesLane

Piscataway,NJ08854

IEEEPressEditorialBoard

SarahSpurgeon, EditorinChief

JónAtliBenediktsson

AnjanBose

JamesDuncan

AminMoeness

DesineniSubbaramNaidu

BehzadRazavi

JimLyke

HaiLi

BrianJohnson

JeffreyReed

DiomidisSpinellis

AdamDrobot

TomRobertazzi

AhmetMuratTekalp

DeepReinforcementLearningforWireless CommunicationsandNetworking

Theory,Applications,andImplementation

DinhThaiHoang

UniversityofTechnologySydney,Australia

NguyenVanHuynh

EdinburghNapierUniversity,UnitedKingdom

DiepN.Nguyen

UniversityofTechnologySydney,Australia

EkramHossain UniversityofManitoba,Canada

DusitNiyato

NanyangTechnologicalUniversity,Singapore

Copyright©2023byTheInstituteofElectricalandElectronicsEngineers,Inc.Allrights reserved.

PublishedbyJohnWiley&Sons,Inc.,Hoboken,NewJersey.

PublishedsimultaneouslyinCanada.

Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedinany formorbyanymeans,electronic,mechanical,photocopying,recording,scanning,orotherwise, exceptaspermittedunderSection107or108ofthe1976UnitedStatesCopyrightAct,without eitherthepriorwrittenpermissionofthePublisher,orauthorizationthroughpaymentofthe appropriateper-copyfeetotheCopyrightClearanceCenter,Inc.,222RosewoodDrive,Danvers, MA01923,(978)750-8400,fax(978)750-4470,oronthewebatwww.copyright.com.Requeststo thePublisherforpermissionshouldbeaddressedtothePermissionsDepartment,JohnWiley& Sons,Inc.,111RiverStreet,Hoboken,NJ07030,(201)748-6011,fax(201)748-6008,oronlineat http//www.wiley.com/go/permission.

TrademarksWileyandtheWileylogoaretrademarksorregisteredtrademarksofJohnWiley& Sons,Inc.and/oritsaffiliatesintheUnitedStatesandothercountriesandmaynotbeused withoutwrittenpermission.Allothertrademarksarethepropertyoftheirrespectiveowners. JohnWiley&Sons,Inc.isnotassociatedwithanyproductorvendormentionedinthisbook.

LimitofLiability/DisclaimerofWarrantyWhilethepublisherandauthorhaveusedtheirbest effortsinpreparingthisbook,theymakenorepresentationsorwarrantieswithrespecttothe accuracyorcompletenessofthecontentsofthisbookandspecificallydisclaimanyimplied warrantiesofmerchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreatedor extendedbysalesrepresentativesorwrittensalesmaterials.Theadviceandstrategiescontained hereinmaynotbesuitableforyoursituation.Youshouldconsultwithaprofessionalwhere appropriate.Neitherthepublishernorauthorshallbeliableforanylossofprofitoranyother commercialdamages,includingbutnotlimitedtospecial,incidental,consequential,orother damages.Further,readersshouldbeawarethatwebsiteslistedinthisworkmayhavechanged ordisappearedbetweenwhenthisworkwaswrittenandwhenitisread.Neitherthepublisher norauthorsshallbeliableforanylossofprofitoranyothercommercialdamages,includingbut notlimitedtospecial,incidental,consequential,orotherdamages.

Forgeneralinformationonourotherproductsandservicesorfortechnicalsupport,please contactourCustomerCareDepartmentwithintheUnitedStatesat(800)762-2974,outsidethe UnitedStatesat(317)572-3993orfax(317)572-4002.

Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsin printmaynotbeavailableinelectronicformats.FormoreinformationaboutWileyproducts, visitourwebsiteatwww.wiley.com.

LibraryofCongressCataloging-in-PublicationDataappliedfor:

HardbackISBN:9781119873679

CoverDesign:Wiley CoverImage:©Liuzishan/Shutterstock

Setin9.5/12.5ptSTIXTwoTextbyStraive,Chennai,India

Tomyfamily–DinhThaiHoang

Tomyfamily–NguyenVanHuynh

ToVeronicaHaiBinh,PaulSonNam,andThuy–DiepN.Nguyen

Tomyparents–EkramHossain

Tomyfamily–DusitNiyato

Contents

NotesonContributors xiii

Foreword xiv

Preface xv

Acknowledgments xviii

Acronyms xix

Introduction xxii

PartIFundamentalsofDeepReinforcementLearning 1

1DeepReinforcementLearningandItsApplications 3

1.1WirelessNetworksandEmergingChallenges 3

1.2MachineLearningTechniquesandDevelopmentofDRL 4

1.2.1MachineLearning 4

1.2.2ArtificialNeuralNetwork 7

1.2.3ConvolutionalNeuralNetwork 8

1.2.4RecurrentNeuralNetwork 9

1.2.5DevelopmentofDeepReinforcementLearning 10

1.3PotentialsandApplicationsofDRL 11

1.3.1BenefitsofDRLinHumanLives 11

1.3.2FeaturesandAdvantagesofDRLTechniques 12

1.3.3AcademicResearchActivities 12

1.3.4ApplicationsofDRLTechniques 13

1.3.5ApplicationsofDRLTechniquesinWirelessNetworks 15

1.4StructureofthisBookandTargetReadership 16

1.4.1MotivationsandStructureofthisBook 16

1.4.2TargetReadership 19

1.5ChapterSummary 20

References 21

2MarkovDecisionProcessandReinforcementLearning 25

2.1MarkovDecisionProcess 25

2.2PartiallyObservableMarkovDecisionProcess 26

2.3PolicyandValueFunctions 29

2.4BellmanEquations 30

2.5SolutionsofMDPProblems 31

2.5.1DynamicProgramming 31

2.5.1.1PolicyEvaluation 31

2.5.1.2PolicyImprovement 31

2.5.1.3PolicyIteration 31

2.5.2MonteCarloSampling 32

2.6ReinforcementLearning 33

2.7ChapterSummary 35 References 35

3DeepReinforcementLearningModelsandTechniques 37

3.1Value-BasedDRLMethods 37

3.1.1DeepQ-Network 38

3.1.2DoubleDQN 41

3.1.3PrioritizedExperienceReplay 42

3.1.4DuelingNetwork 44

3.2Policy-GradientMethods 45

3.2.1REINFORCEAlgorithm 46

3.2.1.1PolicyGradientEstimation 46

3.2.1.2ReducingtheVariance 48

3.2.1.3PolicyGradientTheorem 50

3.2.2Actor-CriticMethods 51

3.2.3AdvantageofActor-CriticMethods 52

3.2.3.1AdvantageofActor-Critic(A2C) 53

3.2.3.2AsynchronousAdvantageActor-Critic(A3C) 55

3.2.3.3GeneralizedAdvantageEstimate(GAE) 57

3.3DeterministicPolicyGradient(DPG) 59

3.3.1DeterministicPolicyGradientTheorem 59

3.3.2DeepDeterministicPolicyGradient(DDPG) 61

3.3.3DistributedDistributionalDDPG(D4PG) 63

3.4NaturalGradients 63

3.4.1PrincipleofNaturalGradients 64

3.4.2TrustRegionPolicyOptimization(TRPO) 67

3.4.2.1TrustRegion 69

3.4.2.2Sample-BasedFormulation 70

3.4.2.3PracticalImplementation 70

3.4.3ProximalPolicyOptimization(PPO) 72

3.5Model-BasedRL 74

3.5.1VanillaModel-BasedRL 75

3.5.2RobustModel-BasedRL:Model-EnsembleTRPO(ME-TRPO) 76

3.5.3AdaptiveModel-BasedRL:Model-BasedMeta-PolicyOptimization (MB-MPO) 77

3.6ChapterSummary 78 References 79

4ACaseStudyandDetailedImplementation 83

4.1SystemModelandProblemFormulation 83

4.1.1SystemModelandAssumptions 84

4.1.1.1JammingModel 84

4.1.1.2SystemOperation 85

4.1.2ProblemFormulation 86

4.1.2.1StateSpace 86

4.1.2.2ActionSpace 87

4.1.2.3ImmediateReward 88

4.1.2.4OptimizationFormulation 88

4.2ImplementationandEnvironmentSettings 89

4.2.1InstallTensorFlowwithAnaconda 89

4.2.2Q-Learning 90

4.2.2.1CodesfortheEnvironment 91

4.2.2.2CodesfortheAgent 96

4.2.3DeepQ-Learning 97

4.3SimulationResultsandPerformanceAnalysis 102

4.4ChapterSummary 106 References 106

PartIIApplicationsofDRLinWirelessCommunications andNetworking 109

5DRLatthePhysicalLayer 111

5.1Beamforming,SignalDetection,andDecoding 111

5.1.1Beamforming 111

5.1.1.1BeamformingOptimizationProblem 111

5.1.1.2DRL-BasedBeamforming 113

5.1.2SignalDetectionandChannelEstimation 118

5.1.2.1SignalDetectionandChannelEstimationProblem 118

5.1.2.2RL-BasedApproaches 120

x Contents

5.1.3ChannelDecoding 122

5.2PowerandRateControl 123

5.2.1PowerandRateControlProblem 123

5.2.2DRL-BasedPowerandRateControl 124

5.3Physical-LayerSecurity 128

5.4ChapterSummary 129 References 131

6DRLattheMACLayer 137

6.1ResourceManagementandOptimization 137

6.2ChannelAccessControl 139

6.2.1DRLintheIEEE802.11MAC 141

6.2.2MACforMassiveAccessinIoT 143

6.2.3MACfor5GandB5GCellularSystems 147

6.3HeterogeneousMACProtocols 155

6.4ChapterSummary 158 References 158

7DRLattheNetworkLayer 163

7.1TrafficRouting 163

7.2NetworkSlicing 166

7.2.1NetworkSlicing-BasedArchitecture 166

7.2.2ApplicationsofDRLinNetworkSlicing 168

7.3NetworkIntrusionDetection 179

7.3.1Host-BasedIDS 180

7.3.2Network-BasedIDS 181

7.4ChapterSummary 183 References 183

8DRLattheApplicationandServiceLayer 187

8.1ContentCaching 187

8.1.1QoS-AwareCaching 187

8.1.2JointCachingandTransmissionControl 189

8.1.3JointCaching,Networking,andComputation 191

8.2DataandComputationOffloading 193

8.3DataProcessingandAnalytics 198

8.3.1DataOrganization 198

8.3.1.1DataPartitioning 198

8.3.1.2DataCompression 199

8.3.2DataScheduling 200

8.3.3TuningofDataProcessingSystems 201

8.3.4DataIndexing 202

8.3.4.1DatabaseIndexSelection 202

8.3.4.2IndexStructureConstruction 203

8.3.5QueryOptimization 205

8.4ChapterSummary 206 References 207

PartIIIChallenges,Approaches,OpenIssues,and EmergingResearchTopics 213

9DRLChallengesinWirelessNetworks 215

9.1AdversarialAttacksonDRL 215

9.1.1AttacksPerturbingtheStatespace 215

9.1.1.1ManipulationofObservations 216

9.1.1.2ManipulationofTrainingData 218

9.1.2AttacksPerturbingtheRewardFunction 220

9.1.3AttacksPerturbingtheActionSpace 222

9.2MultiagentDRLinDynamicEnvironments 223

9.2.1Motivations 223

9.2.2MultiagentReinforcementLearningModels 224

9.2.2.1Markov/StochasticGames 225

9.2.2.2DecentralizedPartiallyObservableMarkovDecisionProcess (DPOMDP) 226

9.2.3ApplicationsofMultiagentDRLinWirelessNetworks 227

9.2.4ChallengesofUsingMultiagentDRLinWirelessNetworks 229

9.2.4.1NonstationarityIssue 229

9.2.4.2PartialObservabilityIssue 229

9.3OtherChallenges 230

9.3.1InherentProblemsofUsingRLinReal-WordSystems 230

9.3.1.1LimitedLearningSamples 230

9.3.1.2SystemDelays 230

9.3.1.3High-DimensionalStateandActionSpaces 231

9.3.1.4SystemandEnvironmentConstraints 231

9.3.1.5PartialObservabilityandNonstationarity 231

9.3.1.6MultiobjectiveRewardFunctions 232

9.3.2InherentProblemsofDLandBeyond 232

9.3.2.1InherentProblemsofDL 232

9.3.2.2ChallengesofDRLBeyondDeepLearning 233

9.3.3ImplementationofDLModelsinWirelessDevices 236

9.4ChapterSummary 237 References 237

10DRLandEmergingTopicsinWirelessNetworks 241

10.1DRLforEmergingProblemsinFutureWirelessNetworks 241

10.1.1JointRadarandDataCommunications 241

10.1.2AmbientBackscatterCommunications 244

10.1.3ReconfigurableIntelligentSurface-AidedCommunications 247

10.1.4RateSplittingCommunications 249

10.2AdvancedDRLModels 252

10.2.1DeepReinforcementTransferLearning 252

10.2.1.1RewardShaping 253

10.2.1.2IntertaskMapping 254

10.2.1.3LearningfromDemonstrations 255

10.2.1.4PolicyTransfer 255

10.2.1.5ReusingRepresentations 256

10.2.2GenerativeAdversarialNetwork(GAN)forDRL 257

10.2.3MetaReinforcementLearning 258

10.3ChapterSummary 259 References 259

Index 263

NotesonContributors

DinhThaiHoang SchoolofElectricalandData

Engineering

UniversityofTechnologySydney

Australia

NguyenVanHuynh SchoolofComputing,Engineeringand theBuiltEnvironment

EdinburghNapierUniversity

UK

DiepN.Nguyen SchoolofElectricalandData

Engineering

UniversityofTechnologySydney

Australia

EkramHossain DepartmentofElectricaland ComputerEngineering UniversityofManitoba

Canada

DusitNiyato SchoolofComputerScienceand Engineering NanyangTechnologicalUniversity

Singapore

Foreword

Prof.MerouaneDebbah,Integratingdeepreinforcementlearning(DRL)techniquesinwirelesscommunicationsandnetworkinghaspavedthewayfor achievingefficientandoptimizedwirelesssystems.Thisground-breakingbook providesexcellentmaterialforresearcherswhowanttostudyapplicationsofdeep reinforcementlearninginwirelessnetworks,withmanypracticalexamplesand implementationdetailsforthereaderstopractice.Italsocoversvarioustopicsat differentnetworklayers,suchaschannelaccess,networkslicing,andcontent caching.Thisbookisessentialforanyonelookingtostayaheadofthecurvein thisexcitingfield.

Prof.VincentPoor,Manyaspectsofwirelesscommunicationsandnetworkingare beingtransformedthroughtheapplicationofdeepreinforcementlearning(DRL) techniques.Thisbookrepresentsanimportantcontributiontothisfield,providingacomprehensivetreatmentofthetheory,applications,andimplementation ofDRLinwirelesscommunicationsandnetworking.Animportantaspectofthis bookisitsfocusonpracticalimplementationissues,suchassystemdesign,algorithmimplementation,andreal-worlddeploymentchallenges.Bybridgingthe gapbetweentheoryandpractice,theauthorsprovidereaderswiththetoolsto buildanddeployDRL-basedwirelesscommunicationandnetworkingsystems. Thisbookisausefulresourceforthoseinterestedinlearningaboutthepotential ofDRLtoimprovewirelesscommunicationsandnetworkingsystems.Itsbreadth anddepthofcoverage,practicalfocus,andexpertinsightsmakeitasingularcontributiontothefield.

Preface

Reinforcementlearningisoneofthemostimportantresearchdirectionsof machinelearning(ML),whichhashadsignificantimpactsonthedevelopment ofartificialintelligence(AI)overthelast20years.Reinforcementlearningis alearningprocessinwhichanagentcanperiodicallymakedecisions,observe theresults,andthenautomaticallyadjustitsstrategytoachieveanoptimal policy.However,thislearningprocess,evenwithprovenconvergence,oftentakes asignificantamountoftimetoreachthebestpolicyasithastoexploreand gainknowledgeofanentiresystem,makingitunsuitableandinapplicableto large-scalesystemsandnetworks.Consequently,applicationsofreinforcement learningareverylimitedinpractice.Recently,deeplearninghasbeenintroducedasanewbreakthroughMLtechnique.Itcanovercomethelimitationsof reinforcementlearningandthusopenaneweraforthedevelopmentofreinforcementlearning,namely deepreinforcementlearning (DRL).DRLembraces theadvantageofdeepneuralnetworks(DNNs)totrainthelearningprocess, therebyimprovingthelearningrateandtheperformanceofreinforcement learningalgorithms.Asaresult,DRLhasbeenadoptedinnumerousapplications ofreinforcementlearninginpracticesuchasrobotics,computervision,speech recognition,andnaturallanguageprocessing.

Intheareasofcommunicationsandnetworking,DRLhasbeenrecentlyused asaneffectivetooltoaddressvariousproblemsandchallenges.Inparticular, modernnetworkssuchastheInternet-of-Things(IoT),heterogeneousnetworks(HetNets),andunmannedaerialvehicle(UAV)networksbecomemore decentralized,ad-hoc,andautonomousinnature.NetworkentitiessuchasIoT devices,mobileusers,andUAVsneedtomakelocalandindependentdecisions, e.g.spectrumaccess,datarateadaption,transmitpowercontrol,andbasestation association,toachievethegoalsofdifferentnetworksincluding,e.g.throughputmaximizationandenergyconsumptionminimization.Inuncertainand stochasticenvironments,mostofthedecision-makingproblemscanbemodeled asaso-called Markovdecisionprocess (MDP).Dynamicprogrammingandother

algorithmssuchasvalueiteration,aswellasreinforcementlearningtechniques, canbeadoptedtosolvetheMDP.However,modernnetworksarelarge-scaleand complicated,andthusthecomputationalcomplexityofthetechniquesrapidly becomesunmanageable,i.e.curseofdimensionality.Asaresult,DRLhasbeen developingasanalternativesolutiontoovercomethechallenge.Ingeneral,the DRLapproachesprovidethefollowingadvantages:

● DRLcaneffectivelyobtainthesolutionofsophisticatednetworkoptimizations, especiallyincaseswithincompleteinformation.Thus,itenablesnetwork entities,e.g.basestations,inmodernnetworkstosolvenon-convexand complexproblems,e.g.jointuserassociation,computation,andtransmission schedule,toachieveoptimalsolutionswithoutcompleteandaccuratenetwork information.

● DRLallowsnetworkentitiestolearnandbuildknowledgeaboutthecommunicationandnetworkingenvironment.Thus,byusingDRL,thenetworkentities, e.g.amobileuser,canlearnoptimalpolicies,e.g.basestationselection,channelselection,handoverdecision,caching,andoffloadingdecisions,without knowingapriorichannelmodelandmobilitypattern.

● DRLprovidesautonomousdecision-making.WiththeDRLapproach,network entitiescanmakeobservationsandobtainthebestpolicylocallywithminimumorwithoutinformationexchangeamongeachother.Thisnotonlyreduces communicationoverheadsbutalsoimprovesthesecurityandrobustnessofthe networks.

● DRLsignificantlyimprovesthelearningspeed,especiallyinproblemswithlarge stateandactionspaces.Thus,inlarge-scalenetworks,e.g.IoTsystemswith thousandsofdevices,DRLallowsthenetworkcontrollerorIoTgatewaysto controldynamicallyuserassociation,spectrumaccess,andtransmitpowerfor amassivenumberofIoTdevicesandmobileusers.

● Severalotherproblemsincommunicationsandnetworkingsuchas cyber-physicalattacks,interferencemanagement,anddataoffloadingcan bemodeledasgames,e.g.thenon-cooperativegame.DRLhasbeenrecently extendedandusedasanefficienttooltosolvecompetitor,e.g.findingtheNash equilibrium,withoutcompleteinformation.

Clearly,DRLwillbethekeyenablerforthenextgenerationofwirelessnetworks. Therefore,DRLisofincreasinginteresttoresearchers,communicationengineers, computerscientists,andapplicationdevelopers.Inthisregard,weintroducea newbook,titled“DeepReinforcementLearningforWirelessCommunicationsandNetworking:Theory,Applications,andImplementation”,which willprovideafundamentalbackgroundofDRLandthenstudyrecentadvancesin DRLtoaddresspracticalchallengesinwirelesscommunicationsandnetworking. Inparticular,thisbookfirstgivesatutorialonDRL,frombasicconceptsto

Preface

advancedmodelingtechniquestomotivateandprovidefundamentalknowledge forthereaders.Wethenprovidecasestudiestogetherwithimplementation detailstohelpthereadersbetterunderstandhowtopracticeandapplyDRLto theirproblems.Afterthat,wereviewDRLapproachesthataddressemerging issuesincommunicationsandnetworking.Theissuesincludedynamicnetwork access,dataratecontrol,wirelesscaching,dataoffloading,networksecurity,and connectivitypreservation,whichareallimportanttonext-generationnetworks suchas5Gandbeyond.Finally,wehighlightimportantchallenges,openissues, andfutureresearchdirectionsforapplyingDRLtowirelessnetworks.

Acknowledgments

Theauthorswouldliketoacknowledgegrant-awardingagenciesthatsupported partsofthisbook.ThisresearchwassupportedinpartbytheAustralianResearch CouncilundertheDECRAprojectDE210100651andtheNaturalSciencesand EngineeringResearchCouncilofCanada(NSERC).

TheauthorswouldliketothankMr.CongThanhNguyen,Mr.HieuChiNguyen, Mr.NamHoaiChu,andMr.KhoaVietTranfortheirtechnicalassistanceand discussionsduringthewritingofthisbook.

Acronyms NoAcronymsTerms

1A3Casynchronousadvantageactor-critic

2ACKacknowledgmentmessage

3AIartificialintelligence

4ANNartificialneuralnetwork

5APaccesspoint

6BERbiterrorrate

7BSbasestation

8CNNconvolutionalneuralnetwork

9CSIchannelstateinformation

10D2Ddevice-to-device

11DDPGdeepdeterministicpolicygradient

12DDQNdoubledeepQ-network

13DLdeeplearning

14DNNdeepneuralnetwork

15DPGdeterministicpolicygradient

16DQNdeepQ-learning

17DRLdeepreinforcementlearning

18eMBBenhancedmobilebroadband

19FLfederatedlearning

20FSMCfinite-stateMarkovchain

21GANgenerativeadversarialnetwork

22GPUgraphicsprocessingunit

23IoTInternet-of-Things

NoAcronymsTerms

24ITSintelligenttransportationsystem

25LTELong-termevolution

26M2Mmachine-to-machine

27MACmediumaccesscontrol

28MARLmulti-agentRL

29MDPMarkovdecisionprocess

30MECmobileedgecomputing

31MIMOmultiple-inputmultiple-output

32MISOMulti-inputsingle-output

33MLmachinelearning

34mMTCmassivemachinetypecommunications

35mmWavemillimeterwave

36MUmobileuser

37NFVnetworkfunctionvirtualization

38OFDMAorthogonalfrequencydivisionmultipleaccess

39POMDPpartiallyobservableMarkovdecisionprocess

40PPOproximalpolicyoptimization

41PSRpredictivestaterepresentation

42QoEQualityofExperience

43QoSQualityofService

44RANradioaccessnetwork

45RBresourceblock

46RFradiofrequency

47RISreconfigurableintelligentsurface

48RLreinforcementlearning

49RNNrecurrentneuralnetwork

50SARSAstate-action-reward-state-action

51SDNsoftware-definednetworking

52SGDstochasticgradientdescent

53SINRsignal-to-interference-plus-noiseratio

54SMDPsemi-Markovdecisionprocess

55TDtemporaldifference

56TDMAtime-divisionmultipleaccess

57TRPOtrustregionpolicyoptimization

NoAcronymsTerms

58UAVunmannedaerialvehicle

59UEuserequipment

60ULuplink

61URLLCultra-reliableandlow-latencycommunications

62VANETvehicularadhocNETworks

63VNFvirtualnetworkfunction

64WLANwirelesslocalareanetwork

65WSNwirelesssensornetwork

Introduction

Deepreinforcementlearning(DRL)empoweredbydeepneuralnetworks(DNNs) hasbeendevelopingasapromisingsolutiontoaddresshigh-dimensionaland continuouscontrolproblemseffectively.TheintegrationofDRLintofuturewirelessnetworkswillrevolutionizeconventionalmodel-basednetworkoptimization withmodel-freeapproachesandmeetvariousapplicationdemands.Byinteracting withtheenvironment,DRLprovidesanautonomousdecision-makingmechanismforthenetworkentitiestosolvenon-convex,complex,model-freeproblems, e.g.spectrumaccess,handover,scheduling,caching,dataoffloading,andresource allocation.Thisnotonlyreducescommunicationoverheadbutalsoimproves networksecurityandreliability.ThoughDRLhasshowngreatpotentialtoaddress emergingissuesincomplexwirelessnetworks,therearestilldomain-specific challengesthatrequirefurtherinvestigation.Thechallengesmayincludethe designofproperDNNarchitecturestocapturethecharacteristicsof5Gnetwork optimizationproblems,thestateexplosionindensenetworks,multi-agent learningindynamicnetworks,limitedtrainingdataandexplorationspacein practicalnetworks,theinaccessibilityandhighcostofnetworkinformation,as wellasthebalancebetweeninformationqualityandlearningperformance.

ThisbookprovidesacomprehensiveoverviewofDRLanditsapplicationsto wirelesscommunicationandnetworking.Itcoversawiderangeoftopicsfrom basictoadvancedconcepts,focusingonimportantaspectsrelatedtoalgorithms, models,performanceoptimizations,machinelearning,andautomationforfuture wirelessnetworks.Asaresult,thisbookwillprovideessentialtoolsandknowledge forresearchers,engineers,developers,andgraduatestudentstounderstandand beabletoapplyDRLtotheirwork.Webelievethatthisbookwillnotonlybeof greatinteresttothoseinthefieldsofwirelesscommunicationandnetworkingbut alsotothoseinterestedinDRLandAImorebroadly.

1.1WirelessNetworksandEmergingChallenges

Overthepastfewyears,communicationtechnologieshavebeenrapidlydevelopingtosupportvariousaspectsofourdailylives,fromsmartcitiesandhealthcareto logisticsandtransportation.Thiswillbethebackboneforthefuture’sdata-centric society.Nevertheless,thesenewapplicationsgenerateatremendousamount ofworkloadandrequirehigh-reliabilityandultrahigh-capacitywirelesscommunications.Inthelatestreport[1],Ciscoprojectedthenumberofconnected devicesthatwillbearound29.3billionby2023,withmorethan45%equipped withmobileconnections.Thefastest-growingmobileconnectiontypeislikely machine-to-machine(M2M),asInternet-of-Things(IoT)servicesplayasignificantroleinconsumerandbusinessenvironments.Thisposesseveralchallenges infuturewirelesscommunicationsystems:

● Emergingservices(e.g.augmentedreality[AR]andvirtualreality[VR])require high-reliabilityandultrahighcapacitywirelesscommunications.However, existingcommunicationsystems,designedandoptimizedbasedonconventionalcommunicationtheories,significantlypreventfurtherperformance improvementsfortheseservices.

● Wirelessnetworksarebecomingincreasinglyadhocanddecentralized,in whichmobiledevicesandsensorsarerequiredtomakeindependentactions suchaschannelselectionsandbasestationassociationstomeetthesystem’s requirements,e.g.energyefficiencyandthroughputmaximization.Nonetheless,thedynamicsanduncertaintyofthesystemspreventthemfromobtaining optimaldecisions.

● Anothercrucialcomponentoffuturenetworksystemsisnetworktrafficcontrol. Networkcontrolcandramaticallyimproveresourceusageandtheefficiency ofinformationtransmissionthroughmonitoring,checking,andcontrolling dataflows.Unfortunately,theproliferationofsmartIoTdevicesandultradense DeepReinforcementLearningforWirelessCommunicationsandNetworking: Theory,Applications,andImplementation,FirstEdition. DinhThaiHoang,NguyenVanHuynh,DiepN.Nguyen,EkramHossain,andDusitNiyato. ©2023TheInstituteofElectricalandElectronicsEngineers,Inc.Published2023byJohnWiley&Sons,Inc.

radionetworkshasgreatlyexpandedthenetworksizewithextremelydynamic topologies.Inaddition,theexplosivegrowingdatatrafficimposesconsiderable pressureonInternetmanagement.Asaresult,existingnetworkcontrol approachesmaynoteffectivelyhandlethesecomplexanddynamicnetworks.

● Mobileedgecomputing(MEC)hasbeenrecentlyproposedtoprovidecomputingandcachingcapabilitiesattheedgeofcellularnetworks.Inthisway,popularcontentscanbecachedatthenetworkedge,suchasbasestation,end-user devices,andgatewaystoavoidduplicatetransmissionsofthesamecontent, resultinginbetterenergyandspectrumusage[2,3].Onemajorchallengein futurecommunicationsystemsisthestragglingproblemsatbothedgenodes andwirelesslinks,whichcansignificantlyincreasethecomputationdelayof thesystem.Additionally,thehugedatademandsofmobileusersandthelimited storageandprocessingcapacitiesarecriticalissuesthatneedtobeaddressed.

Conventionalapproachestoaddressingthenewchallengesanddemandsof moderncommunicationsystemshaveseverallimitations.First,therapidgrowth inthenumberofdevices,theexpansionofnetworkscale,andthediversityof servicesintheneweraofcommunicationsareexpectedtosignificantlyincrease theamountofdatageneratedbyapplications,users,andnetworks[1].However, traditionalsolutionsmaybeunabletoprocessandutilizethisdataeffectivelyto improvesystemperformance.Second,existingalgorithmsarenotwell-suitedto handlethedynamicanduncertainnatureofnetworkenvironments,resultingin poorperformance[4].Finally,traditionaloptimizationsolutionsoftenrequire completeinformationaboutthesystemtobeeffective,butthisinformation maynotbereadilyavailableinpractice,limitingtheapplicabilityofthese approaches.Deepreinforcementlearning(DRL)hasthepotentialtoovercome theselimitationsandprovidepromisingsolutionstothesechallenges.

DRLleveragesthebenefitsofdeepneuralnetworks(DNNs),whichhaveproven effectiveintacklingcomplex,large-scaleengines,speechrecognition,medical diagnosis,andcomputervision.ThismakesDRLwellsuitedformanagingthe increasingcomplexityandscaleoffuturecommunicationnetworks.Additionally, DRL’sonlinedeploymentallowsittoeffectivelyhandlethedynamicsand unpredictablenatureofwirelesscommunicationenvironments.

1.2MachineLearningTechniquesandDevelopment ofDRL

1.2.1MachineLearning

Machinelearning(ML)isaproblem-solvingparadigmwhereamachine learnsaparticulartask(e.g.imageclassification,documenttextclassification, speechrecognition,medicaldiagnosis,robotcontrol,andresourceallocationin

Figure1.1 Adata-drivenMLarchitecture.

communicationnetworks)andperformancemetric(e.g.classificationaccuracy andperformanceloss)usingexperiencesordata[5].Thetaskgenerallyinvolves afunctionthatmapswell-definedinputstowell-definedoutputs.Theessenceof data-drivenMListhatthereisapatterninthetaskinputsandtheoutcomewhich cannotbepinneddownmathematically.Thus,thesolutiontothetask,which mayinvolvemakingadecisionorpredictinganoutput,cannotbeprogrammed explicitly.Ifthesetofrulesconnectingthetaskinputsandoutput(s)wereknown, aprogramcouldbewrittenbasedonthoserules(e.g.if-then-elsecodes)tosolve theproblem.Instead,anMLalgorithmlearnsfromtheinputdataset,which specifiesthecorrectoutputforagiveninput;thatis,anMLmethodwillresult inaprogramthatusesthedatasamplestosolvetheproblem.Adata-drivenML architecturefortheclassificationproblemisshowninFigure1.1.Thetraining moduleisresponsibleforoptimizingtheclassifierfromthetrainingdatasamples andprovidingtheclassificationmodulewithatrainedclassifier.Theclassificationmoduledeterminestheoutputbasedontheinputdata.Thetrainingand classificationmodulescanworkindependently.Thetrainingproceduregenerally takesalongtime.However,thetrainingmoduleisactivatedonlyperiodically. Also,thetrainingprocedurecanbeperformedinthebackground,whilethe classificationmoduleoperatesasusual.

TherearethreecategoriesofMLtechniques,includingsupervised,unsupervised,andreinforcementlearning.

● Supervisedlearning:Givenadataset D ={(x�� , y1 ), (x�� , y2 ), , (xn , yn )} ⊆ ℝn ×  ,asupervisedlearningalgorithmpredicts y thatgeneralizestheinput–output mappingin D toinputs x outside D.Here, ℝn isthe n-dimensionalfeature space  , xi istheinputvectorofthe ithsample, yi isthelabelofthe ithsample, and  isthelabelspace.Forbinaryclassificationproblems(e.g.spamfiltering),  ={0,1} or  ={−1,1}.Formulticlassclassification(e.g.faceclassification),  ={1,2, , K }(K ≥ 2).Ontheotherhand,forregressionproblems(e.g. predictingtemperature),  = ℝ.Thedatapoints (xi , yi ) aredrawnfroma (unknown)distribution  (X , Y ).Thelearningprocessinvolveslearningafunction h suchthatforanewpair (x, y)∽  ,wehave h(x)= y withhighprobability (or h(x)≈ y).Alossfunction(orriskfunction),suchasthemeansquared

errorfunction,evaluatestheerrorbetweenthepredictedprobabilities/values returnedbythefunction h(xi ) andthelabels yi onthetrainingdata.

Forsupervisedlearning,thedataset D isusuallysplitintothreesubsets: DTR asthetrainingdata, DVA asthevalidationdata,and DTE asthetestdata.The function h(⋅) isvalidatedon DVA :ifthelossistoosignificant, h(⋅) willberevised basedon DTR andvalidatedagainon DVA .Thisprocesswillkeepgoingback andforthuntilitgivesalowlosson DVA .Thestandardsupervisedlearning techniquesincludethefollowing:Bayesianclassification,logisticregression, K -nearestneighbor(KNN),neuralnetwork(NN),supportvectormachine (SVM),decisiontree(DT)classification,andrecommendersystem.Notethat supervisedlearningtechniquesrequiretheavailabilityoflabeleddatasets.

● Unsupervisedlearning techniquesareusedtocreateaninternalrepresentation oftheinput,e.g.toformclusters,extractfeatures,reducedimensionality, estimatedensity.Unlikesupervisedlearning,thesetechniquescandealwith unlabeleddatasets.

● Reinforcementlearning(RL) techniquesdonotrequireapriordataset.WithRL, anagentlearnsfrominteractionswithanexternalenvironment.Theideaof learningbyinteractingwithadomainisanimitationofhumans’naturallearningprocess.Forexample,atthepointwhenanewbornchildplays,e.g.waves hisarmsorkicksaball,his/herbrainhasadirectsensorimotorconnectionwith itssurroundings.Repeatingthisprocessproducesessentialinformationabout theimpactofactions,causesandeffects,andwhattodotoreachthegoals.

Deeplearning(DL),asubsetofML,hasgainedpopularitythankstoitsDNN architecturestoovercomethelimitationsofML.DLmodelsareabletoextractthe keyfeaturesofdatawithoutrelyingonthedata’sstructure.The“deep”indeep learningreferstothenumberoflayersintheDNNarchitecture,withmorelayers leadingtoadeepernetwork.DLhasbeensuccessfullyappliedinvariousfields, includingfaceandvoicerecognition,texttranslation,andintelligentdriverassistancesystems.Ithasseveraladvantagesovertraditionalalgorithmsasfollows[6]:

● Noneedforsystemmodeling:Thesystemmustbewellmodeledintraditional optimizationapproachestoobtaintheoptimalsolution.Nevertheless,allinformationaboutthesystemmustbeavailabletoformulatetheoptimizationproblem.Inpractice,thismaynotbefeasible,especiallyinfuturewirelessnetworks whereusers’behaviorsandnetworkstatesarediverseandmayrandomlyoccur. Eveniftheoptimizationproblemiswelldefined,solvingitisusuallychallenging duetononconvexityandhigh-dimensionalproblems.DLcanefficientlyaddress alltheseissuesbyallowingustobedata-driven.Inparticular,itobtainstheoptimalsolutionbytrainingtheDNNwithsufficientdata.

● Supportsparallelanddistributedalgorithms:Inmanycomplexsystems,DLmay requirealargevolumeoflabeleddatatotrainitsDNNtoachievegoodtraining

performance.DLcanbeimplementedinparallelanddistributedtoaccelerate thetrainingprocess.Specifically,insteadoftrainingwithsinglecomputinghardware(e.g.graphicsprocessingunit[GPU]),wecansimultaneouslyleveragethe computingpowerofmultiplecomputers/systemsforthetrainingprocess.There aretwotypesofparallelisminDL:(i)modelparallelismand(ii)dataparallelism. Fortheformer,differentlayersinthedeeplearningmodelcanbetrainedin parallelonothercomputingdevices.Thelatterusesthesamemodelforevery executionunitbuttrainsthemodelwithdifferenttrainingsamples.

● Reusable:Thetrainedmodelcanbereusedinothersystems/problemseffectively withDL.Usingwell-trainedmodelsbuiltbyexpertscansignificantlyreduce thetrainingtimeandrelatedcosts.Forexample,AlexNetcanbereusedinnew recognitiontaskswithminimalconfigurations[6].Moreover,thetrainedmodel canbetransferredtoadifferentbutrelatedsystemtoimproveitstrainingusing thetransferlearningtechnique.Thetransferlearningtechniquecanobtaina goodtrainingaccuracyforthetargetsystemwithafewtrainingsamplesasit canleveragethegainedknowledgeinthesourcesystem.Thisisveryhelpfulas collectingtrainingsamplesiscostlyandrequireshumanintervention.

ThereareseveraltypesofDNNs,suchasartificialneuralnetworks(ANNs)(i.e. feed-forwardneuralnetworks),convolutionalneuralnetworks(CNNs),andrecurrentneuralnetworks(RNNs).However,theyconsistofthesamecomponents:(i) neurons,(ii)weights,(iii)biases,and(iv)functions.Typically,layersareinterconnectedvianodes(i.e.neurons)inaDNN.Eachneuronhasanactivationfunction tocomputetheoutputgiventheweightedinputs,i.e.synapsesandbias[7].During thetraining,neuralnetworkparametersareupdatedbycalculatingthegradient ofthelossfunction.

1.2.2ArtificialNeuralNetwork

AnANNisatypicalneuralnetworkknownasafeed-forwardneuralnetwork.In particular,ANNconsistsofnonlinearprocessinglayers,includinganinputlayer, severalhiddenlayers,andanoutputlayer,asillustratedinFigure1.2.Ahidden layerusestheoutputsofitspreviouslayerastheinput.Inotherwords,ANNpasses informationinonedirectionfromtheinputlayertotheoutputlayer.Ingeneral, ANNcanlearnanynonlinearfunction;thus,itisoftenreferredtoasauniversal functionapproximator.Theessentialcomponentofthisuniversalapproximation isactivationfunctions.Specifically,theseactivationfunctionsintroducenonlinear propertiestothenetworkandthushelpittolearncomplexrelationshipsbetween inputdataandtheiroutputs.Inpractice,therearethreemainactivationfunctions widelyadoptedinDLapplications:(i)sigmoid,(ii)tanh,and(iii)relu[6,8].Due toitseffectivenessandsimplicity,ANNisthemostpopularneuralnetworkused inDLapplications.

1.2.3ConvolutionalNeuralNetwork

AnothertypeofdeepneuralnetworkisCNN,designedmainlytohandleimage data.Todothat,CNNintroducesnewlayers,includingconvolution,RectifiedLinearunit(Relu),andpoolinglayers,asshowninFigure1.3.

● Convolutionlayer deploysasetofconvolutionalfilters,eachofwhichhandles certainfeaturesfromtheimages.

● Relulayer canmapnegativevaluestozeroandmaintainpositivevaluesduring training,andthusitenablesfasterandmoreeffectivetraining.

● Poolinglayer isdesignedtoreducethenumberofparametersthatthenetwork needstolearnbyperformingdown-samplingoperations.

ItisworthnotingthataCNNcancontaintensorhundredsoflayersdepending onthegivenproblem.Thefilterscanlearnsimplefeaturessuchasbrightnessand edgesandthenmovetocomplexpropertiesthatuniquelybelongtotheobject.In general,CNNperformsmuchbetterthanANNinhandlingimagedata.Themain reasonisthatCNNdoesnotneedtoconvertimagestoone-dimensionalvectors beforetrainingthemodel,whichincreasesthenumberoftrainableparameters andcannotcapturethespatialfeaturesofimages.Incontrast,CNNusesconvolutionallayerstolearnthefeaturesofimagesdirectly.Asaresult,itcaneffectively

Figure1.2 Artificialneuralnetworkarchitecture.
Figure1.3 Convolutionalneuralnetworkarchitecture.

learnallthefeaturesofinputimages.Intheareaofwirelesscommunications, CNNisapromisingtechniquetohandlenetworkdataintheformofimages,e.g. spectrumanalysis[9–11],modulationclassification[12,13],andwirelesschannel featureextraction[14].

1.2.4RecurrentNeuralNetwork

AnRNNisaDLnetworkstructurethatleveragespreviousinformationtoimprove thelearningprocessforthecurrentandfutureinputdata.Todothat,RNNis equippedwithloopsandhiddenstates.AsillustratedinFigure1.4,byusingthe loops,RNNcanstorepreviousinformationinthehiddenstateandoperatein sequence.Inparticular,theoutputoftheRNNcellattime t 1willbestoredin thehiddenstate ht andwillbeusedtoimprovethetrainingprocessoftheinputat time t.ThisuniquepropertymakesRNNsuitablefordealingwithsequentialdata suchasnaturallanguageprocessingandvideoanalysis.

Inpractice,RNNmaynotperformwellwithlearninglong-termdependencies asitcanencounterthe“vanishing”or“exploding”gradientproblemcausedbythe backpropagationoperation.Longshort-termmemory(LSTM)isproposedtodeal withthisissue.AsillustratedinFigure1.5,LSTMusesadditionalgatestodecide

Figure1.4 Recurrentneuralnetworkarchitecture. Update Forget
Figure1.5 LSTMnetworkarchitecture.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.