Download ebooks file Numerical calculations in clifford algebra: a practical guide for engineers and

Page 1


Numerical Calculations in Clifford Algebra: A Practical Guide for Engineers

and Scientists Andrew Seagar

Visit to download the full and correct content document: https://ebookmass.com/product/numerical-calculations-in-clifford-algebra-a-practical-g uide-for-engineers-and-scientists-andrew-seagar/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Applied Numerical Methods with Python for Engineers and Scientists Steven C. Chapra

https://ebookmass.com/product/applied-numerical-methods-withpython-for-engineers-and-scientists-steven-c-chapra/

Modern Physics for Scientists and Engineers 5th Edition Stephen Thornton & Andrew Rex

https://ebookmass.com/product/modern-physics-for-scientists-andengineers-5th-edition-stephen-thornton-andrew-rex/

Applied Numerical Methods with MATLAB for Engineers and Scientists, 5th Edition Steven C. Chapra

https://ebookmass.com/product/applied-numerical-methods-withmatlab-for-engineers-and-scientists-5th-edition-steven-c-chapra/

Applied Numerical Methods with MATLAB for Engineers and Scientists 4th Edition Steven C. Chapra Dr.

https://ebookmass.com/product/applied-numerical-methods-withmatlab-for-engineers-and-scientists-4th-edition-steven-c-chapradr/

The

Scholarship of Teaching and Learning: A Guide for

Scientists, Engineers, and Mathematicians

https://ebookmass.com/product/the-scholarship-of-teaching-andlearning-a-guide-for-scientists-engineers-and-mathematiciansjacqueline-dewar/

Physics for Scientists and Engineers 9th Edition, (Ebook PDF)

https://ebookmass.com/product/physics-for-scientists-andengineers-9th-edition-ebook-pdf/

Statistics

for Engineers and Scientists 5th Edition

William Navidi

https://ebookmass.com/product/statistics-for-engineers-andscientists-5th-edition-william-navidi-2/

Statistics for Engineers and Scientists, 6th Edition

William Navidi

https://ebookmass.com/product/statistics-for-engineers-andscientists-6th-edition-william-navidi-2/

Statistics For Engineers and Scientists 6th Edition

William Navidi

https://ebookmass.com/product/statistics-for-engineers-andscientists-6th-edition-william-navidi/

NumericalCalculationsinCliffordAlgebra

NumericalCalculationsinCliffordAlgebra

APracticalGuideforEngineersandScientists

AndrewSeagar

POBox192

GriffithUniversityPostOffice QLD4222,Australia

Thiseditionfirstpublishd2023 ©2023JohnWiley&SonsLtd.

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,or transmitted,inanyformorbyanymeans,electronic,mechanical,photocopying,recordingorotherwise, exceptaspermittedbylaw.Adviceonhowtoobtainpermissiontoreusematerialfromthistitleisavailable athttp://www.wiley.com/go/permissions.

TherightofAndrewSeagartobeidentifiedastheauthorofthisworkhasbeenassertedinaccordance withlaw.

RegisteredOffices

JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA

JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK

Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWileyproducts visitusatwww.wiley.com.

Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Somecontentthat appearsinstandardprintversionsofthisbookmaynotbeavailableinotherformats.

Trademarks:WileyandtheWileylogoaretrademarksorregisteredtrademarksofJohnWiley&Sons,Inc. and/oritsaffiliatesintheUnitedStatesandothercountriesandmaynotbeusedwithoutwritten permission.Allothertrademarksarethepropertyoftheirrespectiveowners.JohnWiley&Sons,Inc.isnot associatedwithanyproductorvendormentionedinthisbook.

LimitofLiability/DisclaimerofWarranty

Whilethepublisherandauthorshaveusedtheirbesteffortsinpreparingthiswork,theymakeno representationsorwarrantieswithrespecttotheaccuracyorcompletenessofthecontentsofthisworkand specificallydisclaimallwarranties,includingwithoutlimitationanyimpliedwarrantiesofmerchantability orfitnessforaparticularpurpose.Nowarrantymaybecreatedorextendedbysalesrepresentatives,written salesmaterialsorpromotionalstatementsforthiswork.Thisworkissoldwiththeunderstandingthatthe publisherisnotengagedinrenderingprofessionalservices.Theadviceandstrategiescontainedhereinmay notbesuitableforyoursituation.Youshouldconsultwithaspecialistwhereappropriate.Thefactthatan organization,website,orproductisreferredtointhisworkasacitationand/orpotentialsourceoffurther informationdoesnotmeanthatthepublisherandauthorsendorsetheinformationorservicesthe organization,website,orproductmayprovideorrecommendationsitmaymake.Further,readersshould beawarethatwebsiteslistedinthisworkmayhavechangedordisappearedbetweenwhenthisworkwas writtenandwhenitisread.Neitherthepublishernorauthorsshallbeliableforanylossofprofitorany othercommercialdamages,includingbutnotlimitedtospecial,incidental,consequential,orother damages.

LibraryofCongressCataloging-in-PublicationData:

Names:Seagar,Andrew,author.|JohnWiley&Sons,publisher.

Title:NumericalcalculationsinCliffordalgebra:apracticalguidefor engineersandscientists/AndrewSeagar.

Description:Hoboken,NJ:Wiley,2023.|Includesindex.

Identifiers:LCCN2022053609(print)|LCCN2022053610(ebook)|ISBN 9781394173242(hardback)|ISBN9781394173266(adobepdf)|ISBN 9781394173259(epub)

Subjects:LCSH:Cliffordalgebras.|Algebra–Dataprocessing.

Classification:LCCQA199.S432023(print)|LCCQA199(ebook)|DDC 512/.57–dc23/eng20230203

LCrecordavailableathttps://lccn.loc.gov/2022053609

LCebookrecordavailableathttps://lccn.loc.gov/2022053610

Coverdesign:Wiley

Coverimage:©JStudios/GettyImages

Setin9.5/12.5ptSTIXTwoTextbyStraive,Chennai,India

ToCathy,Laura,JonandAxil

Contents

ListofFigures xv

ListofTables xix

Preface xxi

PartIEntitiesandOperations 1

1Introduction 3

1.1Operations 3

1.2History 4

1.3AlternativeForms 5

1.4Naming 6

1.5Structure 7

1.5.1Algebraic 7

1.5.2Numeric 8

1.6Entities 11

References 12

2Input 13

2.1Syntax 13

2.2Constants 14

2.2.1SpecificTypes 14

2.2.2General 16

2.3Variables 19

2.3.1CheckingandConverting 19

Reference 23

3Output 25

3.1TreeFormat 26

3.2NumericFormats 29

3.2.1DefaultFormat 29

3.2.2DefinedFormat 31

3.3ExtendedFormats 32

3.3.1Rounding 32

3.3.2PartsofCoefficients 33

3.4SelectedComponents 35

3.5PrimitiveFormats 36

3.6RecoveredValues 38

4UnaryOperations 41

4.1Theory 41

4.1.1Negation 41

4.1.2Involution 41

4.1.3PairExchange 42

4.1.4Reversion 43

4.1.5CliffordConjugation 44

4.1.6SupplementationandPseudo-scalar 44

4.2Practice 45

4.2.1ExampleCode 45

4.2.2ExampleOutput 47

5BinaryOperations 49

5.1GeometricOrigins 49

5.1.1OuterMultiplication 49

5.1.2OrthogonalComponents 52

5.1.3InnerMultiplication 53

5.1.4Names 54

5.2MultiplicationofUnits 55

5.2.1ProgressiveandRegressiveMultiplication 55

5.2.2Outer,Inner,andCentralMultiplication 57

5.2.3MultiplicationByScalars 58

5.3CentralMultiplication 59

5.3.1PrimalUnits 60

5.3.2EvolvedandOtherUnits 61

5.3.3Numbers 62

5.4Practice 63

5.4.1ExampleCode 63

5.4.2ExampleOutput 65

5.4.3MultiplicationTables 65 References 70

6VectorsandGeometry 71

6.1Theory 71

6.1.1Magnitude 71

6.1.2Inverse 72

6.1.3Reflection 72

6.1.4Projection 73

6.1.5Rotation 73

6.2Practice 74

6.2.1ExampleCode 74

6.2.2ExampleOutput 76

7Quaternions 79

7.1Theory 79

7.1.1Magnitude 80

7.1.2Inverse 80

7.1.3ReflectionandProjection 80

7.1.4Rotation 81

7.1.5Intersection 82

7.1.6Factorisation 82

7.2Practice 83

7.2.1ExampleCode 83

7.2.2ExampleOutput 86 References 87

8PauliMatrices 89

8.1Theory 89

8.1.1RecoveryofComponents 90

8.1.2Magnitude 90

8.1.3Inverse 91

8.1.4Reflection,Projection,andRotation 91

8.2Practice 91

8.2.1ExampleCode 91

8.2.2ExampleOutput 94 Reference 95

9BicomplexNumbers 97

9.1Theory 97

9.1.1Conjugate 98

9.1.2Magnitude 98

9.1.3Inverse 98

9.1.4Reflection,Projection,andRotation 99

9.2Practice 99

9.2.1ExampleCode 99

9.2.2ExampleOutput 101 Reference 102

10ElectromagneticFields 103

10.1Theory 103

10.1.1TimeandFrequency 103

10.1.2ElectromagneticEntities 104

10.1.3DiracOperators 105

10.1.4Maxwell’sEquations 105

x Contents

10.1.5SimplifiedNotation 105

10.1.6Magnitude 106

10.1.7Inverse 106

10.1.8Reflection 107

10.1.9Projection 107

10.1.10Rotation 107

10.2Practice 107

10.2.1ExampleCode 107

10.2.2ExampleOutput 110

10.3FieldArithmetic 112

10.3.1ExtensionsBasedonQuaternions 112

10.3.2Inverses 113

10.3.3ExampleCode 115

10.3.4ExampleOutput 117 References 118

11ArraysofCliffordNumbers 119

11.1Theory 119

11.2Practice 120

11.2.1ExampleCode 120

11.2.2ExampleOutput 123 Reference 125

12PowerSeries 127

12.1Theory 127

12.1.1UserDefined 127

12.1.2Predefined 128

12.1.3Convergence 129

12.1.4Factorisation 130

12.1.5Squaring 131

12.2Practice 131

12.2.1UserDefined 131

12.2.2Predefined 133

12.2.2.1StandardConvergence 136

12.2.2.2ExtendedConvergence 141

12.2.2.3DoublyExtendedConvergence 146 References 148

13MatricesofCliffordNumbers 149

13.1Background 149

13.2Inversion 150

13.3Practice 152

13.3.1ExampleCode 152

13.3.2ExampleOutput 155 Reference 159

PartIICustomisation 161

14Memory 163

14.1MemoryUsage 163

14.2Examples 165

14.2.1MemoryTreeSparsity 165

14.2.2MemoryExpansion 170

14.2.3MemoryRecycling 171

14.2.3.1ExplicitandImplicit 171

14.2.3.2ImplicitandNested 173 Reference 175

15Errors 177

15.1UserErrors 177

15.1.1SyntaxErrorsandMessages 180

15.2SystemErrors 181

15.3Recovery 182

15.4BeneficialUsage 185 Reference 191

16Extension 193

16.1Accumulation 193

16.2Multiplication 195

16.3Transformation 197

16.4Filtration 198

PartIIIApplication 203

17Verification 205

17.1Identities 205

17.2Tests 205

17.2.1ExampleCode 205

17.2.2ExampleOutput 208 Reference 214

18LinesNotParallel 215

18.1Theory 215

18.1.1CommonPlane 215

18.1.1.1InnerProduct 216

18.1.1.2OuterProduct 217

18.1.1.3GeometricalInterpretation 217

18.1.2NoPlaneinCommon 218

18.1.2.1InnerProduct 219

18.1.2.2Solution 219

18.2Practice 220

18.2.1ExampleCode 220

18.2.2ExampleOutput 223 Reference 224

19PerspectiveProjection 225

19.1Theory 225

19.2Practice 225

19.2.1ExampleCode 225

19.2.2ExampleOutput 229 Reference 230

20LinearSystems 231

20.1Theory 231

20.2Practice 233

20.2.1ExampleCode 233

20.2.2ExampleOutput 235 References 235

21FastFourierTransform 237

21.1Theory 237

21.2Practice 238

21.2.1ExampleCode 238

21.2.2ExampleOutput 243 References 244

22HertzianDipole 245

22.1Theory 245

22.2Practice 246

22.2.1ExampleCode 246

22.2.2ExampleOutput 251 Reference 253

23FiniteDifferenceTimeDomain 255

23.1Theory 255

23.1.1AnalyticalSolution 255

23.1.2SeriesSolution 256

23.1.3AnalyticalExample 257

23.1.4NumericalDerivatives 257

23.2Practice 259

23.2.1ExampleCode 259

23.2.2ExampleOutput 265 References 270

24CauchyExtension 271

24.1Background 271

24.2Theory 272

24.2.1TwoDimensions 272

24.2.2ThreeDimensions 272

24.2.3Singularity 273

24.2.4TheTamingFunction 273

24.2.5Construction 274

24.3Practice 276

24.3.1ExampleCode 276

24.3.2ExampleOutput 281 References 284

25ElectromagneticScattering 285

25.1Background 285

25.2Theory 286

25.3Practice 288

25.3.1ExampleCode 288

25.3.2ExampleOutput 289 References 293

PartIVProgramming 295

26Interfaces 297

26.1ConfigurationandObservation 297

26.1.1Management 297

26.1.2Printing 298

26.2SimpleEntities 300

26.2.1Units 300

26.2.2Components 300

26.2.3Numbers 302

26.2.3.1EstablishingandRecoveringValues 302

26.2.3.2Functions 303

26.2.3.3AdditionandSubtraction 304

26.2.3.4Multiplication 304

26.2.3.5Geometric 305

26.2.3.6Filtering 305

26.3HigherEntities 306

26.3.1Vectors 306

26.3.2BicomplexNumbers 307

26.3.3Quaternions 307

26.3.4PauliMatrices 308

26.3.5ElectromagneticFields 308

26.4MultipleEntities 309

26.4.1Arrays 309

26.4.2FastFourierTransforms 309

26.4.3Series 310

26.4.4Matrices 310 Reference 311

27Descriptions 313

27.1Arguments 313

27.2Datatypes 313

27.3Formats 315

27.4ManualPages 316

27.4.1A–E 316

27.4.2F–J 342

27.4.3K–O 369

27.4.4P–T 387

27.4.5U–Z 468

27.5QuickReference 477

Reference 487

AKeytoExampleCodeandResults 489

Index 493

ListofFigures

Figure4.1 Negation 42

Figure4.2 Involution 42

Figure4.3 Pairexchange 43

Figure4.4 Reversion 43

Figure4.5 Supplement 44

Figure4.6 Pseudo-scalar eN fordimension n = 3 45

Figure5.1 Outermultiplicationofunequalvectors 50

Figure5.2 Outermultiplicationofequalvectors 50

Figure5.3 Lefttorightdistributionofoutermultiplicationoveraddition 50

Figure5.4 Righttoleftdistributionofoutermultiplicationoveraddition 51

Figure5.5 Anti-commutativityofoutermultiplication 51

Figure5.6 Outermultiplicationusingorthogonalcomponents 52

Figure5.7 Outerandinnermultiplicationofvectors 53

Figure5.8 Geometricbehaviourofinnerandoutermultiplicationforvectors 54

Figure5.9 Pictorialrepresentationofprogressive(∧)andregressive(∨) multiplication 56

Figure5.10 Pictorialrepresentationofcentralmultiplication 58

Figure5.11 Pictorialrepresentationofmultiplicationbyascalar 59

Figure5.12 Multiplicationoffixedvector a andvariablevector b supportedasinner andoutermultiplicationattwoendsofcentral90∘ span 60

Figure5.13 Identificationofterritorycoveredbydifferenttypesofmultiplication 70

Figure6.1 Reflectionofvector,incontextwithnegativesignature �� =−1 72

Figure6.2 Orthogonalprojectionsofvector,incontextwithnegativesignature �� =−1 73

Figure6.3 Rotationofvector 74

Figure7.1 Geometricinterpretationofunitquaternions I , J , K asbivectors 81

Figure7.2 Constructionofvectorfactorsofquaternioninplaneperpendicularto vector V83

xvi ListofFigures

Figure11.1 Triangularpulse 124

Figure11.2 Spectrumoftriangularpulse 124

Figure12.1 Clifford–Besselfunction f (x )= Cn (x ) withscalarargumentfororders n = 0 and1 134

Figure12.2 Clifford–Besselfunctionwithnon-scalarargument 134

Figure13.1 Matrixwithfiverowsandsevencolumnscontainingasub-matrixofthree rowsandfourcolumns 150

Figure17.1 NumericalerrorasfunctionofdimensionforfullCliffordnumbers 212

Figure17.2 Numericalerrorasfunctionofdimensionforvectors 213

Figure17.3 ComputationaltimeasfunctionofdimensionforfullClifford numbers 213

Figure17.4 Computationaltimeasfunctionofdimensionforvectors 214

Figure18.1 Point x closesttotwolines b a and s r (a)withcommonplane,(b)with nocommonplane 216

Figure18.2 Intersectionoftwolinesin n dimensionsatpoint x 216

Figure18.3 Solutionforscalarparameter �� asratiooftwoareas(a)asperequation, (b)geometricallyreconfigured 217

Figure18.4 Solutionforscalarparameter �� asaratiooftwoareas(a)asperequation, (b)geometricallyreconfigured 218

Figure18.5 Minimumseparationoftwolinesin n dimensionsatpoints u and v 218

Figure19.1 Shadow-plane x2 y2 ,ontowhichpoints x3 , y3 , z3 inspaceareprojectedby raysfromthesun 226

Figure19.2 Dodecahedronwithperspectiveprojection 230

Figure21.1 Sampledperiodicsignal 238

Figure21.2 Periodicspectrumofperiodicsignal 238

Figure22.1 Verticalcurrentsource Ik withinregion Ω0 oflength h andcross-sectional area A,standingverticallyattheorigin,cappedattheendswithcharge reservoirs Ω1 , Ω2 246

Figure22.2 ComponentsofHertziandipolefield 251

Figure22.3 MagnitudeofHertziandipolefield 252

Figure22.4 Hertziandipolefieldinverticalplane 252

Figure22.5 InverseofHertziandipolefieldinverticalplane 253

Figure23.1 Sinusoidalwaveform 257

Figure23.2 Observationwindow0to L forinfiniteseriesoftravellingpulses 266

Figure23.3 Gaussianpulsetravellingonecycle 266

Figure23.4 Triangularpulsetravellingonecycle 267

Figure23.5 Squarepulsetravellingonecycle 268

Figure23.6 Gaussianpulsetravelling2048cycles 268

ListofFigures

Figure23.7 Triangularpulsetravelling2048cycles 269

Figure23.8 Squarepulsetravelling2048cycles 269

Figure23.9 Squarepulseshapeafter1024cycles 270

Figure24.1 CuboctahedronwithCauchyextensionoftheelectromagneticfieldfrom points s onthesurface Σ topoints r outside 273

Figure24.2 Variableofintegration s passespointofevaluation r closeto boundary Σ 275

Figure24.3 DipolefieldanderrorinCauchyextension 281

Figure24.4 ErrorinCauchyextensionasratio 282

Figure24.5 ErrorinCauchyextensionasfunctionofresolution 283

Figure24.6 Tamed(continuouswithsymbols)anduntamed(dashed)errorsfor Hertziantamingsource 283

Figure24.7 Tamed(continuouswithsymbols)anduntamed(dashed)errorsforDirac deltatamingsource 284

Figure25.1 Relativeerrorinreducedmatrixforextendedelectromagneticfield 290

Figure25.2 Relativeerrorinproductofmatrixandinverseofextendedelectromagnetic field 290

Figure25.3 Inversiontimeformatrixofextendedelectromagneticfield 291

Figure25.4 RelativeerrorinreducedmatrixforquaternionandPaulimatrix 292

Figure25.5 RelativeerrorinproductofmatrixandinverseforquaternionandPauli matrix 292

Figure25.6 InversiontimeformatrixofquaternionsandPaulimatrices 293

ListofTables

Table1.1 Basicunaryandbinaryoperations 4

Table1.2 Equivalencebetweennotations 4

Table1.3 ConversionofoperationsbetweenCliffordandotheralgebras 6

Table1.4 ExamplesofCliffordnumbers 7

Table1.5 Basicmathematicalentities 11

Table2.1 Syntaxforconstants 14

Table4.1 Unaryoperations 42

Table5.1 Elementarybinaryoperations 50

Table5.2 Rulesforprogressive(∧)andregressive(∨)multiplication 57

Table5.3 Rulesforcentralmultiplicationbetweenunits 58

Table5.4 Rulesformultiplicationbyascalar 59

Table5.5 Rulesforcentralmultiplication xy betweenprimalunitsandscalars 61

Table5.6 MultiplicationofevolvedandotherCliffordunits x and y61

Table5.7 Multiplicationtablesforpositivesignatures 66

Table5.8 Multiplicationtablesfornegativesignatures 68

Table6.1 Geometricoperationsonvectors 72

Table7.1 Geometricoperationsonquaternions 80

Table8.1 GeometricoperationsonPaulimatrices 90

Table9.1 Geometricoperationsonbicomplexnumbers 98

Table10.1 Electromagneticentitiesintimeandfrequencydomain 104

Table12.1 PowerseriesforBessel–Cliffordfunction f (x )= Cn (x ) oforder n128

Table12.2 Pre-definedpowerseries 128

Table12.3 Evaluationoflogarithmandbinomialfunctionsasaproductofscalarand non-scalarparts 130

Table13.1 Functionprototypeofroutinetodeclarefunctionforinversionofmatrix elements 151

Table13.2 Pre-definedfunctionsformatrixinversion 151

Table14.1 Forks,branches,andleavesofbinarytree 164

Table14.2 BinarytreeforfullCliffordnumberofthreedimensions 164

Table15.1 Usererrors,A–Z 178

Table15.2 Syntaxerrors 180

Table15.3 Syntaxmessages 180

Table15.4 Systemerrors 181

Table16.1 Functionprototypeofworkerroutinetomergecomponentsintotrees 194

Table16.2 Predefinedunaryandbinaryoperationsformergingcomponentsinto trees 194

Table16.3 Functionprototypesofworkerroutinestomultiplynumbersand componentsbyapplyingthedistributionofmultiplicationover addition 196

Table16.4 Pre-definedoperationsformultiplyingtwocomponents 196

Table16.5 Functionprototypesofworkerroutinestoapplytransformationsto numbers 198

Table16.6 Pre-definedfunctionsfortransformingnumbers 199

Table16.7 Functionprototypesofworkerroutinestoapplyfilterstonumbers 200

Table16.8 Pre-definedtestsforfilteringnumbers 201

Table17.1 IdentitiesforCliffordnumbers u, v, w andvector a206

Table21.1 Limitsonfrequenciesandperiodsforsignalintermsofsampling parameters 238

Table25.1 Computationaleffortforalternativemethodsofmatrixsolutionfor electromagneticfieldproblems 287

Table27.1 Argumenttypes 314

Table27.2 Newdatatypes 314

Table27.3 Printingformats 316

TableA.1 Generalapplicationcodeandresults 490

TableA.2 SurfaceandCauchyapplicationcodeandresults 490

TableA.3 Demonstrationcodeandresults 491

Preface

Cliffordalgebraisatool,andlikealltoolsshouldonlybeusedfortaskstowhichitiswell suited.Onesignthatatooliswellsuitedtoataskisthatbyusingthetoolthetaskissimpler thanbyusingadifferenttool.However,likemosttools,withCliffordalgebrathereisthe needtoinvestsometimetodevelopproperlytheskilltouseit.

Clifforddevelopedhisalgebrawithaparticulartaskinmind,namelythesolutionof Maxwell’sequationsofclassicalelectromagnetism.Atthetimetwoothertoolswereinuse, Cartesiancomponentsandquaternions.Vectorcalculuscamelater,outofquaternions.

Cliffordcalledhisalgebraa‘geometricalgebra’.Heconstructeditfromquaternions, pinningtheirbehaviouratafundamentallevelonthealgebraoftheorthogonalelementary vectorunits ep introducedearlierbyGrassmann.Asaconsequence,inadditiontothe multiplicationofquaternions,Clifford’sgeometricalgebrainheritsthemanyandvaried multiplicationsandotheroperationssupportedbyGrassmann’sextensive1 algebra.Thelist includes(asnamedbyGrassmannatthetime)innerandoutermultiplication,progressive andregressivemultiplication,centralmultiplication,andtheunarysupplementoperation.

Today,othernamesarealsoused.Grassmannhimselfchangedoutermultiplicationto progressivemultiplicationwhenattemptingtocombinedifferenttypesofmultiplication withinasingleframework2 .Thatnamewasnotadoptedgenerally,withexteriormultiplicationnowasanotheralternative.

Regressivemultiplicationmaybefoundintheformofthe‘meet’operationwithinthe contextofcomputergraphics,whereitisusedtoformulatetheintersectionbetween geometricdescriptionsofobjects.Central(ormiddle)multiplicationiscurrentlycalled CliffordmultiplicationsomewhatlosingsightofClifford’salgebraassupportingmany kindsofmultiplication,notjustone.Grassmann’ssupplementoperationisnowcalledthe Hodgestar(orHodge’sdual)operation.

Ashavethenameschangedovertime,sohavethenotations.Grassmannhimselfused differentnotationsatdifferenttimesforthesameoperationsashisworksmatured.Takeas exampleinnermultiplication,definedbyGrassmannastheoutermultiplicationofone numberbythesupplementofanother.Atthetime,Grassmannused(square)brackets [] toindicatetheoutermultiplicationofthenumbersinbetween,andaverticalbar | to

1Themeaningof‘extensivealgebra’isinthesensethatthealgebrasupportstheextensionfromany particulardimensionalspacetothenexthigher-dimensionalspace. 2Fornow,Cliffordalgebradoesthatforus.

representthesupplementofthenumberfollowing.Thus,thenotation [ a | b ] denotesinner multiplicationastheoutermultiplicationofnumber a bythesupplementofnumber b. Today,theinnermultiplicationoftwonumbersiswritteninatleasttwonotations. Thefirstnotationis (a , b),whereGrassmann’sbracketshavebeenreplacedbyparentheses andtheverticalbarhaswitheredtoacomma.Withthisnotation,sightoftheunderlying outermultiplicationandsupplementislost.

Thesecondnotationis a ∧∗ b,wherethebracketshavebeenreplacedbytheinfixwedge operator3 ∧ toindicatetheoutermultiplicationofthenumbersoneitherside,andtheverticalbarhasbeenreplacedbytheHodgestaroperator.Thisnotationismoreinkeepingwith Grassmann’soriginal.

Someworksongeometricalgebrafocusmoreonthealgebrathanonthegeometryand moreonthetheorythanthepractice.Itisamistaketoconcentratewhollyonthealgebra becausethatlosessightofthegeometricalapplication.Itisequallyamistaketoconsider onlyvectorsbecausetheyaretoosimple,bythemselvesbeinginsufficienttorepresentthe fullgeometryoftwoorhigherdimensionalspaces.Boththealgebraandthevectorsare necessary;however,singlyortogether,theyprovideanincompletepicture.

Itisalsoamistaketotreatthealgebrawhollyasanabstraction.Itisimportanttoexamine concreteexamples.Myownviewisthatapplicationmeansnothinglessthanconceptionat anabstractlevel,designatasystemlevel,calculationatanumericallevel,andconstruction ataphysicallevelofsomeactualapparatusintendedtoperformsomeusefulfunctionsuch asamicrowaveantennatotransmitandreceiveelectromagneticradiationforthepurpose ofcommunication.

ForthecommittedbeginnertotheapplicationofCliffordalgebra,therearetwoobstacles toovercome.First,itisnecessarytoacquireaworkingknowledgeofsomeoftheabstract concepts(whichImuchprefertocalltools)inordertobeabletoformulateproblemsand theirsolutions.Foranyonefamiliarwithvectorcalculus,thatservesasagoodstartingpoint.

MovingfromvectorcalculustoCliffordalgebrainvolvesaparadigmshiftinwhich problemsinmultipledimensionsarenolongertreatedasasystemofpartialdifferential equationsinamultiplicityofsingle-dimensionalscalarvariables,butratherasasingle ordinarydifferentialequationinasinglemulti-dimensional,non-scalarvariable.

Itisnotnecessarytobecomefamiliarwithallofthetools.Forclassicalelectromagnetism, Grassmann’scentral(nowClifford)multiplicationplaystheleadingrole,withmostofthe otherkindsofmultiplicationseldomorneverused.Combiningcentralmultiplicationwith theCauchyintegral,reincarnatedinmultipledimensionsusingCliffordalgebra,provides newtoolswhicharesufficientinmanypracticalcasestoserveaseffectivereplacementsto thevectorcalculus,theHelmholtzequation,andtheGreen’sfunctions.

Secondistheknottyobstacleofnumericalcalculation.Thishastobeconvenient(orat leastnottooinconvenient),efficientenoughtoallowthesolutionofmeaningfulproblems withinacceptabletimeframes,andmostimportantly,writtenlargelybysomeoneelse.

Theworkhereattemptstoprovideabridgespanningbothoftheseobstacles.Equal importanceisgiventofundamentaltheory,practical(geometrical)application,and softwareimplementation.Thesethreecomponentsarepresentedintheformsofwritten

3Notdissimilartotheinverted‘u’symbol ∩ usedearlierbyGrassmannforthesamepurpose.

text,someequations,manyfigures,andextensiveexamplesofcomputercodeandthe correspondingoutput.

Softwareimplementationsarebasedoncomputerprogramsourcecode(writteninthe ‘c’computerprogramminglanguage)invokingindividualroutines,specificallyconstructed todoalloftheactualcalculation,fromasuite4 providedanddistributedopenlyforthatvery purpose.Whentheuserfindstheyneedtodosomethingnotalreadyprovided,thereisno significantobstacletoprogressbecausethecodeisopenforinspection,modification,and extension.

Chapters1,4,and5introducethetheoryofGrassmann’smultiplicationsandClifford’s algebrawithastrongrelianceondiagramsandpictogramstovisuallyportraythevariousoperationsandinstilaconceptualinsighttotheunderlyingmechanisms.Recourseto equations,whichmaywellproveresultsbutwhichcanoftenfailtoprovideenlightenment, isavoidedwherepossible.

Chapters6–11and13describethemechanismsprovidedwithintheCliffordnumerical suite(CNS)forrepresentingdifferententitiesasCliffordnumbers.Theseincludevectors, quaternions,Paulimatrices,bicomplexnumbers,electromagneticfields,andarraysor matricesofanyofthose.

Chapters12and18–25presentpracticalapplicationsasexamplesshowinghowtoimplementnumericalcalculationsforthevariousoperations,onavarietyofnumericaldata types.Theapplicationsprogressfromthesimplerandperhapssomewhatcontrivedtothe moreadvancedandrealistic.Themajorityoftheapplicationsdealwithproblemshavinga geometricalnatureorinterpretation.

Chapter12demonstratestheevaluationoffunctionswithaCliffordargumentusing powerseriesexpansions.Chapters18and19provideexamplesforfindingtheclosest pointsonlineswhichmayormaynotintersectandtheperspectiveprojectionofanobject ontoanorientedplane.

Chapters13,20,21,and25dealwiththesolutionofvariouslinearsystemsofequations. Chapter13demonstratesthesolutionoflinearsystemsinwhichthevariablesarebicomplexnumbersusingGaussianelimination,whereasChapter25doesthesameforvariables whichareextendedelectromagneticfields.InChapter20,Grassmann’sownmethodof eliminationisusedwithscalarsasvariables.Grassmann’ssolutionhasageometricinterpretationastheratioofhyper-volumesratherthantheusualconceptastheintersection ofhyper-planes.Chapter21demonstratesarecursiveimplementationofthefastFourier transform(FFT)forarbitraryCliffordnumbers.Thelengthofthetransformsislimitedto powersof2.

Chapters22–25giveexamplesinvolvingelectromagneticfields.Thesimplestin Chapter22isthecalculationoftheelectromagneticfieldfromaHertziandipole.More challenginginChapter23isanimplementationforthesimulationofelectromagnetic wavepropagationusingthefinitedifferencetimedomain(FDTD)method.Thisisonly inonedimension.ThenextapplicationisinChapter24,wheretheCauchyintegralis usedtoextendtheelectromagneticfieldmeasuredonaclosedsurfacetopointsaway fromthesurface.Thisimplementationisinthreedimensions.Lastly,Chapter25demonstratestheeffectivenessofsolvingelectromagneticscatteringproblemsusingClifford

Preface numbersrepresentingthosefieldsassinglewholeentitiesratherthanseparatedintoscalar components.

Inadditiontotheimplementationsthemselvesandtheexamplesoftheoutputtheyproduce,thechapterforeachapplicationreviewsthetheoryorequationsonwhichtheyare based.

Extensiveexamplesfortheimplementationofsoftwareareinterspersedwhereappropriateamongsttheothermaterial.Chapters2and3covermechanismsprovidedfortheinput andoutputofnumbers.Chapters14–17providedetailsonmemoryusage,errorsandhow torecoverfromthem,methodsforextendingthesoftwarebywritingyourownsmallfragmentsofcodeandcouplingthemintotheexistingframework,andonCliffordidentities whichcanbeusedtochecktheconsistencyofsomeofthedifferentoperations.

Chapters26and27givedetailsofeveryindividualroutine5 asalistorganisedbyfunction, cross-referencedtodetaileddescriptionsinalphabeticalorder.

Asaconsequenceofprovidingthesuiteintheformofsourcecode,allcalculationscompiletonativemachinecode,andthereisnoneedforanyslowinterpretivemechanismsor conversionofdatatypesatthetimeofexecution.Thisleadstocomparativelylittleadministrativeoverheadsothatmostofthecomputationaltimeisspentdirectlyonthenumerical calculations.

ThesuiteisabletohandleCliffordnumbersofupto n = 31dimensions,storingonly componentswhichhavenon-zerovaluetomakeefficientuseofmemory.Calculationswith dimensionsinthedoubledigitswithfullCliffordnumbers(allnon-zerocomponents)can beslow,largelybecausetherearemanycomponentswhichhavetobemultipliedinall22n combinations.For31dimensionsthatcanbemorethan4 × 1018 complexmultiplications. Incontrast,thereisnosuchissuewhennumbersaresparse,aswithvectors,oroflow dimension,aswithelectromagneticfields.

Asatool,theCNSiswellsuitedtotherapiddevelopmentandtestingofalgorithmswhich relyonCliffordalgebraorthealgebraofGrassmann’sothermultiplicationoperations.The rapidityisaconsequenceofremovingfromthedevelopertheneedtodelveintotheminusculedetail,freeingthemtooperateatahigherlevel,muchclosertothephenomenonof immediateinterest.Asanexample,theelectromagneticfieldistreatedasasingleentity (Cliffordnumber)ratherthanastwopartseachwiththreecomponents.

Thisworkservesasbotharesourcefordevelopinganunderstandingofthetheory andprinciplesbehindthesolutionofproblemswithinCliffordalgebra,aswellasa sourceofexamplesandareferenceguideforthepracticalimplementationofsolutionsin numericalcode.

March17,2023

AndrewSeagar GoldCoast

PartI

EntitiesandOperations

Introduction

Thepurposeofthesuiteofroutinesdescribedhere,theCliffordnumericalsuite(CNS), istoprovideaplatformfortheimplementationofapplicationswhichrequirenumerical evaluationofthevariousmathematicaloperationsofferedwithinthecontextofClifford algebra.Theroutinesaredesignedtoallowtheusertoignoremostoftheinternaldetailsof datastructuresandmemorymanagementifsodesired.

Thesuiteisconstructedusingthe‘c’computerprogramminglanguage(Kernighan& Ritchie1978,King2008)sothatitcanbeembeddedinto,compiledwith,andinvoked directlyfromtheuser’scode.Thisavoidstheoverheadsofcopyingdataassociatedwiththe callmechanismsinvolvedinimplementationsunderneathinterpretivemeta-languages1 andconsequentlyoffersanoverallhigherspeedofcodeexecution.Thatinturnadmits thepossibilityofsolvingproblemswhicharemorerealisticandlesstrivial.Theintentionistoprovidemostuserswithaviableenvironmentforthedevelopmentoftheirown applications.

Providingthesourcecodealsoallowstheusertoenhanceandtailorittobestsuittheir ownpurposes.Incaseswhereultimatespeedandmemoryefficiencyisrequired,thesuite canbeusedintheformativedevelopmentphase,andsubstitutedwiththeuser’sown hard-codedreplacementsintheendapplicationphase.

1.1Operations

ThebasicmathematicaloperationswhicharesupportedbytheCNSarelistedinTable1.1 anddescribedwithexamplesinChapters4and5.Higherlevelandgeometricoperations suchasinversion,reflection,projection,androtationofvectorsandotherentitiesarealso supported,asdescribedinChapters6–10.Thesetofapplicationprogrammerinterfaces (API’s)foraccessingthesuiteisdescribedinChapters26and27.

1SuchasScilab.

NumericalCalculationsinCliffordAlgebra:APracticalGuideforEngineersandScientists, FirstEdition.AndrewSeagar. ©2023JohnWiley&SonsLtd.Published2023byJohnWiley&SonsLtd.

Table1.1 Basicunaryandbinaryoperations.

CaseUnaryoperationNotationBinaryoperationNotation

GeneralNegation a Addition a + b

Involution ¬ a

Subtraction a b

Reversion ̃ a Outerproduct a ∧ b

Cliffordconjugation a Innerproduct (a , b) e∅

Complexconjugation a∗

SpecialHodgedual

1.2History

Regressiveproduct a ∨ b

Centralproduct ab

Leftinteriorproduct a ⌟ b

Rightinteriorproduct a ⌞ b

Scalarproduct (a , b)

Inhisbooksof1844and1862,Grassmann(1995,2000)introduceshisanti-commutative outermultiplication [ ab ] andunarysupplementoperation | b,usingthatpairtogenerate hiscommutativeinnermultiplication [ a | b ],aslistedinthecentralcolumnofTable1.2. Inlatertimes,notationfortheoutermultiplicationhaschangedto a ∧ b =[ ab ],the supplementoperatorhaschangedtotheHodgedualstaroperator ∗ b = | b,andtheinner multiplicationhaschangednotationto (a, b)=[ a | b ]. Itisstraightforwardbysimplesubstitutionofnotationtowritethreeequivalentforms forGrassmann’sinnermultiplication [ a | b ]= a ∧∗ b =(a, b).Somecareisneededin interpretingthese‘equalities’becausetheproductofthe scalar innermultiplication (a, b) withoutthe e∅ isaproperscalar,whereasthecorrespondingproductsoftheothertwo innermultiplicationsasformulatedarestrictlypseudo-scalars.

Table1.2 Equivalencebetweennotations.

ExterioralgebraExtensiontheoryGeometricalgebra variousa) GrassmannClifford

WedgeproductOuterproductOuterproduct a ∧ b [ ab ] a ∧ b

HodgedualSupplementHodgedual ∗ b | b beN

Innerproduct(Pseudo-scalar)Innerproduct(Conflated)Innerproduct(Grade0) a ∧∗ b [ a | b ](a, b) e∅ a)Peano,Cartan,Hodge.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.