Full Download Models of quantum matter : a first course on integrability and the bethe ansatz first

Page 1


Models of Quantum matter : a first course on integrability and the Bethe Ansatz First Edition. Edition Eckle

Visit to download the full and correct content document: https://ebookmass.com/product/models-of-quantum-matter-a-first-course-on-integrabil ity-and-the-bethe-ansatz-first-edition-edition-eckle/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

An Introduction to quantum optics and quantum fluctuations First Edition. Edition Milonni

https://ebookmass.com/product/an-introduction-to-quantum-opticsand-quantum-fluctuations-first-edition-edition-milonni/

Integrability: From Statistical Systems to Gauge Theory First Edition. Edition Patrick Dorey

https://ebookmass.com/product/integrability-from-statisticalsystems-to-gauge-theory-first-edition-edition-patrick-dorey/

A First Course in Probability 9th Edition, (Ebook PDF)

https://ebookmass.com/product/a-first-course-in-probability-9thedition-ebook-pdf/

A First Course in Abstract Algebra, 7th Edition

Fraleigh

https://ebookmass.com/product/a-first-course-in-abstractalgebra-7th-edition-fraleigh/

The black book of quantum chromodynamics : a primer for the LHC era First Edition. Edition Campbell

https://ebookmass.com/product/the-black-book-of-quantumchromodynamics-a-primer-for-the-lhc-era-first-edition-editioncampbell/

A First Course in the Finite Element Method 6 Enhanced SI Edition Daryl L. Logan

https://ebookmass.com/product/a-first-course-in-the-finiteelement-method-6-enhanced-si-edition-daryl-l-logan/

On Law and Justice First Edition Alf Ross

https://ebookmass.com/product/on-law-and-justice-first-editionalf-ross/

Essays on Frege’s : basic laws of arithmetic First Edition. Edition Ebert

https://ebookmass.com/product/essays-on-freges-basic-laws-ofarithmetic-first-edition-edition-ebert/

Oxford Mathematics: Applications and Interpretation

Higher Level Course Companion First Edition David Harris

https://ebookmass.com/product/oxford-mathematics-applicationsand-interpretation-higher-level-course-companion-first-editiondavid-harris/

MODELSOFQUANTUMMATTER

ModelsofQuantumMatter

AFirstCourseonIntegrabilityandtheBetheAnsatz

HumboldtStudyCentre UlmUniversity

GreatClarendonStreet,Oxford,OX26DP, UnitedKingdom

OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwide.Oxfordisaregisteredtrademarkof OxfordUniversityPressintheUKandincertainothercountries ©Hans-PeterEckle2019

Themoralrightsoftheauthorhavebeenasserted

FirstEditionpublishedin2019

Impression:1

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedin aretrievalsystem,ortransmitted,inanyformorbyanymeans,withoutthe priorpermissioninwritingofOxfordUniversityPress,orasexpresslypermitted bylaw,bylicenceorundertermsagreedwiththeappropriatereprographics rightsorganization.Enquiriesconcerningreproductionoutsidethescopeofthe aboveshouldbesenttotheRightsDepartment,OxfordUniversityPress,atthe addressabove

Youmustnotcirculatethisworkinanyotherform andyoumustimposethissameconditiononanyacquirer PublishedintheUnitedStatesofAmericabyOxfordUniversityPress 198MadisonAvenue,NewYork,NY10016,UnitedStatesofAmerica

BritishLibraryCataloguinginPublicationData Dataavailable

LibraryofCongressControlNumber:2019930263

ISBN978–0–19–967883–9

DOI:10.1093/oso/9780199678839.001.0001

Printedandboundby CPIGroup(UK)Ltd,Croydon,CR04YY LinkstothirdpartywebsitesareprovidedbyOxfordingoodfaithand forinformationonly.Oxforddisclaimsanyresponsibilityforthematerials containedinanythirdpartywebsitereferencedinthiswork.

FürIrene

Preface

WhystudyBetheansatz?TheBetheansatzprovidesoneoftheveryfewmethodologiesto calculatethephysicalpropertiesofmodelsforstronglyinteractingquantummatter non–perturbatively.Arguablyitistheonlysuchmethodwehavewhichisexact.Thismeans, oncewehavesetupthemodel,therearenoapproximationsorfurtherassumptions necessary:wecanexactlycomputephysicallyrelevantpropertiesofthemodel.Thereis, furthermore,aninfinitesetofconservedquantities:thequantummechanicalmodelis integrable.

Thismakesthesearchforquantummodelswhichareamenabletoanexactsolutionby theBetheansatzmethodologysoimportantandrewarding.Evenif—asissometimes,but certainly notalways,thecase—themodelwithanexactsolutionisnotthemostphysically relevantone,theexactsolutionwillprovideimportantbenchmarksforothermodelsthat mayoccasionallybeclosertophysicalreality,butdonotadmitanexactsolution.Hence, foraplethoraofcases,theBetheansatzsolutionprovidesvaluableinsightintothephysics ofstronglyinteractingquantummatter.

SinceHansBetheprovidedtheeponymousmethodtosolvetheHeisenbergquantum spinchain,manymoremodelsoflow-dimensionalquantumsystemshavebeenfoundto beintegrablebytheBetheansatz.

Moreover,thesemodelsandtheirintegrabilityhavebeenandcontinuetoplayaninfluentialroleinmanysubfieldsofphysics,whichincludeclassicalandquantumstatistical mechanics,quantumfieldtheory,andquantummany-particleandcondensedmatter physics,thelatterinrecenttimesespeciallyinconnectionwithmoderndevelopmentsin physicsonthenanometrescaleandinlowdimensions.Quantumopticshasalsobenefited fromstudyingintegrablemodels,especiallyininvestigationsofultracoldBosonicand FermionicquantumgasesandBose–Einsteincondensatesinartificialcrystalsoflight, theso-calledopticallattices.Recentlyinstringtheoryandcosmologythereisahype ofactivityinvolvingconjecturesofBetheansatzintegrabilityintheframeworkofthe celebratedanti-de-Sitterspace/conformalfieldtheory(AdS/CFT)correspondence.

Ofcourse,BetheansatzandintegrabilityarediscussedinMathematicalPhysics,but thereisalsoanongoingcross-fertilizationwithvarioussubfieldsofpureMathematics.

Someprominentexamplesofintegrablemodelsinclude:variousvariantsofthe Heisenbergquantumspinchainwhosephysicalrealizationsareprobedbyneutron scattering;theHubbardmodelanditsvariantswhichinteraliahavebeendiscussed inconnectionwithhigh-temperaturesuperconductivity;theKondomodelwhichhas recentlyseenarenaissancebecauseofthedevelopmentoftunablequantumdots; interactingBoseandFermigaseswhichcannowbeproducedinverypureandtunable forminopticallattices.

But,whatistheBetheansatz?Initsoriginalform,devisedbyBethe,itisaningeniously guessedformforthewavefunctionofaone-dimensionalquantumsystem.However, whythiswavefunctioniscorrectandevenexactremainedanopenquestionwhichhas onlybeenansweredmuchlaterthroughthealgebraicformoftheBetheansatz.This methodenablesustoconstructanintegrablequantummodelinonedimensionfrom atwo-dimensionalstatisticalmechanicalmodel.Theconstructionrevealsthereason forquantumintegrabilityanddeliverstheinfinitesetofconservedquantitiestogether withthewavefunctionwhichBetheguessed.InourexpositionoftheBetheansatz methodology,weshallthereforestart,somewhatunhistorically,butmoresystematically, withthealgebraicBetheansatz.

Whoisthisbookfor?Interestingly,alookatRichardFeynman’slastblackboards(Paz, 1989)revealsthathemaywellhavebeeninterested.Inoneofhislastpublications(1988), Feynmaninfactwrote:

‘Igotreallyfascinatedbythese(1 + 1)-dimensionalmodelsthataresolvedbytheBethe ansatzandhowmysteriouslytheyjumpoutatyouandworkandyoudon’tknowwhy.I amtryingtounderstandallthisbetter.’CitedafterBatchelor(2007).

InviewoftheexcitingdevelopmentsinBetheansatzofthelasttwodecades,Richard Feynman’sfascinationwouldcertainlyhavecontinued.

Themosthelpfulprerequisitesforpresentreadersareagoodgroundinginquantum mechanics,statisticalmechanics,andthebasicsofquantummany-particletheory, especiallysecondquantization.However,weshallcomprehensivelydiscussthenecessary toolsandbackgroundinpartIofthebook.Throughthisapproach,thebookshould besmoothlyaccessibleforMaster’sstudentswholookforanareaofspecializationas wellasforbeginninggraduatestudents.Moreover,toparaphrasePaulHalmos(inthe prefaceofhisbookonMeasureTheory(Halmos,1978)),thenovicetotheBetheansatz methodologyshould not bediscouragedifsheorhefindsthatsheorhedoesnothavethe prerequisitestoreadthepreliminaries.Afterall,asMaxBornremindsus,wherewould quantumphysicsbeifWernerHeisenberghadbeendiscouragedthathedidnotknow whatamatrixwaswhenhedevelopedthematrixformofquantummechanics?

Thebookgrewoutoflecturenotestheauthorpreparedforaninvitedgraduatelecture seriesattheIndianInstituteofScienceinBangalorein1995,summerschoolcourses attheUniversityofJyväskyläinCentralFinlandin1997(on BetheAnsatzMethodsin Many–BodyPhysics)and1999(on ConformalInvarianceinStatisticalPhysics),agraduate courseatthesameUniversitywhich,togetherwithanamiablegroupofstudents, madetheextremelycoldFinnishwinterof1999actuallyanenjoyableexperience,and postgraduatecoursesattheUniversityofNewSouthWalesinSydneyin2000,and withintheMathematics–Physics MP 2 PlatformatGöteborgUniversityin2009,aswell assummerschoollecturesinTurkey:2013inTurunç,2014inIzmirand2013inIreland inDungarvenundertheauspicesoftheSchoolofTheoreticalPhysicsoftheDublin InstituteforAdvancedStudies.

Acknowledgements

Theauthor’s workingknowledge ofthetopicsandmethodsonwhichthisbookfocuses wasshapedthroughcollaborationswithseveralpeoplewhoaregratefullyacknowledged inchronologicalorder:FerencWoynarovich,TuongTruong,ChrisHamer,Rudolf Römer,BillSutherland,AlexanderPunnoose,HenrikJohannesson,CharlesStafford, TimByrnes,RobertBursill,AndersSandvik,andJohanNilsson.Gratefullyacknowledgingdiscussionswithmanyothers,especiallymythesisadvisorDieterSchotteand withIngoPeschelandKarolPenson,Ishallnotattempttomentionallofthemforfear thatsomeone’snamemightescapemyattention.

IlearnedcoordinateBetheansatzfromandduringafruitfulcollaborationwithFerenc Woynarovich.WebothwereinitiatedtothealgebraicBetheansatzbyTuongTruong.

IalsooftenenjoyedstimulatingdiscussionswithHolgerFrahmaswellasmutualvisits withFabianEssler,AndreasKl ¨ umper,andAndreasSchadschneider.

MydeeplyfeltthanksgotoHenrikJohannessonforhiskindinvitationstoprepareand deliverlecturesinGöteborgand,veryespecially,forourlong-standingcollaborationand friendship.

GreatthanksarealsoduetoHenrikagainandAlexanderStolinfororganizing andco–lecturingthecourseon‘IntegrableModelsandQuantumGroups’withinthe Mathematics–Physics MP 2 PlatformatGöteborgUniversity.

JussiTimonen’sinitiativeishighlyappreciatedforsuggestingandencouragingmy lecturesinJyväskylä.

ValuablediscussionswithBalazsHetényi,especiallyinconnectionwiththecoorganizationofthesummerschoolsinTurkey,andwithDanielBraak,aregratefully acknowledged.ManythanksalsogotoKarstenSeifertwhovolunteeredtoundertake thealtruistictaskofproof-readingpartsofthisbookatvariousstagesofitsformation.

ManythanksareduetoNatanAndrei,NikolayBogoliubov,andthelateAnatoli IzerginfortheirhospitalityatRutgersandinSanktPetersburg,respectively,andthe sharingoftheirknowledgeinstimulatingpersonaldiscussionsandinthewrittenform oflecturenotes,andalsotoVladimirKorepinforencouragementonmanyoccasions.

ManythanksarealsoduetoPeterHorsch,JoachimStolze,andJohannesVoit,and thelateHeinzBarentzenandHellmutKeiterfordiscussionsandhospitalityinStuttgart, Bayreuth,andDortmund,respectively,andthesharingofpertinentsetsoflecturenotes.

TheteamatOxfordUniversityPresscannotbepraisedhighlyenough,especiallytheir friendlypatienceandcheerfulspirit,whichappeartobeinexhaustible.Theincentiveof AprilWarmangotthisprojectunderwayandhelpeditalonginitsearlyinfantsteps. SönkeAdlungsuppliedfreshguidancetohelptheprojectalongwheneverthereseemed tobeanimpasse.AniaWronksinevertiredofprovidingmotivationandmomentumfor thebookprojectand,ofcourse,allthenecessaryinformation.

1Introduction 1

Part1MethodsandModelsintheTheoryofQuantumMatter

2QuantumMany-ParticleSystemsandSecondQuantization 5

2.1Many-particleHilbertspaces8

2.2Occupationnumberrepresentation:BosonsandFermions19

2.3CreationandannihilationoperatorsforBosons21

2.4Basistransformation26

2.5Quantumfieldoperators27

2.6One-particleoperators29

2.7Two-particleoperators33

2.8SecondquantizationoftheSchrödingerequation:Bosoniccase35

2.9CreationandannihilationoperatorsforFermions36

2.10SecondquantizationoftheSchrödingerequation:Fermioniccase40

2.11Secondquantizationformalismandthemany-particlewavefunction41

2.12Normalordering43

3AngularMomentum 45

3.1Angularmomentumofasinglequantumparticle45

3.2Angularmomentumofseveralquantumparticles56

4EquilibriumStatisticalMechanics 63

4.1Fundamentalpostulateofequilibriumstatisticalmechanics64

4.2Microcanonicalensemble66

4.3Entropy67

4.4Secondlawofthermodynamics68

4.5Temperature69

4.6Pressureandchemicalpotential69

4.7Firstlawofthermodynamics70

4.8Canonicalensemble70

4.9Partitionfunction72

4.10Grandcanonicalensemble75

4.11Gibbsentropy77

4.12Densitymatrix78

4.13Non-interactingquantumgases82

4.14Classicallatticemodelsinstatisticalmechanics93

4.15Interactingmagneticmoments:mean-fieldtheory97

4.16Transfermatrix106

4.17Exactsolutionoftheone-dimensionalIsingmodel108

5PhaseTransitions,CriticalPhenomena,andFinite-SizeScaling 111

5.1Phases,phasediagrams,andphasetransition113

5.2Criticalbehaviour116

5.3Landau–Ginzburgtheory120

5.4Scaling126

5.5Renormalizationgroup131

5.6Finite-sizescaling147

5.7Quantumphasetransitions154

6StatisticalMechanicsandQuantumFieldTheory 177

6.1Connectionbetweenstatisticalmechanicsandquantumfieldtheory177

6.2Thermalfluctuationsandquantumfluctuations181

7ConformalSymmetryinStatisticalMechanics 188

7.1Fromscaletoconformalinvariance189

7.2Conformalsymmetry194

7.3Conformaltransformationsindimensionslargerthantwo195

7.4Conformaltransformationsintwodimensions202

7.5Orderparameterfieldsandcorrelationfunctions205

7.6Energy-momentumtensor209

7.7Energy-momentumtensorintwodimensions212

7.8ConformalWardidentities213

7.9Energy-momentumtensorandtheVirasoroalgebra218

7.10Finite-sizecorrectionsrevisited234

8ModelsofStronglyInteractingQuantumMatter 241

8.1Bosefluid242

8.2Electroniccorrelations255

8.3Coulombgas269

8.4LandauFermiliquidtheory278

8.5Luttingerliquidtheory289

8.6Magnetism313

8.7Hubbardmodel356

8.8Heisenbergmodel366

8.9Magneticquantumimpuritymodels372

8.10QuantumRabimodel395

Part2AlgebraicBetheAnsatz

9IceModel 425

9.1Physicalmotivationforthesquarelatticeicemodel425 9.2Definitionoftheicemodel428

10GeneralSquareLatticeVertexModels

430

10.1Vertexmodelsintwodimensions432 10.2Sixteen-andeight-vertexmodels432 10.3VertexBoltzmannweightsandthepartitionfunction432 10.4R-matrix:matrixofBoltzmannweightsofavertex434 10.5Integrabilityandthetransfermatrix438 10.6Commutingtransfermatrices438

10.7Monodromymatrix440 10.8FurthertotheL-operator446 10.9Yang–Baxterrelations447 10.10MoreonYang–Baxterrelations449 10.11ExploitingYang–Baxterintegrability451

11Six-VertexModel 454

11.1Yang–Baxterrelationforthesix-vertexmodel455 11.2Parameterizationofthesix-vertexmodel456 11.3AlgebraicBetheansatzsolutionofthesix-vertexmodel459 11.4QuantumHamiltoniansfromthetransfermatrix467 11.5InhomogeneousYang–Baxterquantumintegrablemodels470

12QuantumTavis–CummingsModel

12.1AlgebraicBetheansatzrevisited474 12.2ModifiedquantumTavis–Cummingsmodel475

12.3TransfermatrixofthemodifiedquantumTavis–Cummingsmodel476 12.4Commutativityofthetransfermatrix479 12.5SimplequantumTavis–Cummingsmodel481 12.6BetheansatzsolutionofthequantumTavis–Cummingsmodel484

Part3CoordinateBetheAnsatz

13TheAnisotropicHeisenbergQuantumSpinChain 491

13.1DescriptionoftheXXZHeisenbergquantumspinchain492 13.2SpecialcasesoftheXXZHeisenbergquantumspinchain495 13.3BasicpropertiesoftheXXZHeisenbergquantumspinchain498

14BetheAnsatzfortheAnisotropicHeisenbergQuantumSpinChain 502 14.1VerificationoftheBetheansatz503 14.2Periodicboundaryconditions508 14.3Parameterizationofthequasi-momenta511

14.4GroundstateoftheXXZHeisenbergquantumspinchain517 14.5ExcitationsoftheXXZHeisenbergquantumspinchain522 14.6Excitationsoftheisotropicantiferromagneticspinchain537

15BoseGasinOneDimension:Lieb–LinigerModel 545

15.1Classicalnon-linearSchrödingerequation546 15.2Quantumnon-linearSchrödingermodel547

15.3Lieb–Linigermodelinthehardcorelimit:gas549

15.4 δ -potentialasboundarycondition552

15.5FormoftheBetheeigenfunctions553 15.6ConstructionoftheBetheansatzwavefunction558 15.7Unrestrictedconfigurationspace562

15.8Periodicboundaryconditions:Betheansatzequations565

15.9Groundstateofthe δ -Bosegasinthethermodynamiclimit568 15.10Excitedstates573

Part4ElectronicSystems:NestedBetheAnsatz

16ElectronicSystems 585

16.1Fermigasinonedimension586 16.2One-dimensionalHubbardmodel598 16.3Kondomodel600

16.4AlgebraicBetheansatzforthespineigenvalueproblem612 16.5Magneticimpuritiesinnanostructures:Betheansatzresults625

Part5ThermodynamicBetheAnsatz

17ThermodynamicsoftheRepulsiveLieb–LinigerModel 633

17.1Thermodynamiclimit,particles,andholes633 17.2Betheansatzequationsforparticlesandholes634 17.3EntropyandthermodynamicBetheansatz636

18ThermodynamicsoftheIsotropicHeisenbergQuantumSpinChain 641

18.1SummaryofBetheansatzfortheisotropicspinchain641 18.2PreparationofthethermodynamicBetheansatz:particlesandholes644

18.3ThermodynamicBetheansatzequations649

18.4Thermodynamics652

18.5Thermodynamicsforsmall T and h 653

Part6BetheAnsatzforFiniteSystems

19MathematicalTools 657

19.1Euler–Maclaurinformula657

19.2Wiener–Hopftechnique661

20.1BetheansatzforthefiniteHeisenbergquantumspinchain668

20.2Finite-sizecorrections669

20.3ApplicationoftheEuler–Maclaurinformula673

20.4ApplicationoftheWiener–Hopftechnique675

20.5Higherorderfinite-sizecorrections685 References

Ajourneyofathousandmilesbeginswithasinglestep.

–LaoTzu

Thisbriefintroductorychapter’spurposeistodirectyou,thereader,quicklytothose placesinthebookwhereyoucanfindgeneralintroductoryinformationthatmaybe helpfulforanoverviewofandtheorientationwithinthebook.Itisdeliberatelykept shorttoavoidredundancies.

Thegeneralmotivationforthewritingofthebookandthemaintargetedreaderships aswellasthelevelsofsophisticationassumedanddetailaimedatinthepresentation ofthevariouspartsofthebookareoutlinedinthepreface.There,wealsoattempta delineationofanassessmentoftherelevanceofthebook’stopicsforcurrentandpotential futureresearch.

Thelistofcontents,byitsnatureintheformofkeywordsandkeyphrases,provides amorecomprehensiveorientationofallthetopicstreatedandtheirmutualdependence.

Thebookisdividedintosixmajorpartsand,includingthisshortintroductorychapter, intotwentychapters.Eachpartandeachchapterbeginswithadescriptiondetailing theirrespectivesubjectmatter.Thepartdescriptionssupplythebiggerpicture,whilethe outlinesatthebeginningsofeachchapterpointmorespecificallytothetopicstreated. Whereverthisseemedtobehelpful,wehaveattemptedtosupplyfurthersignpostsabout whatwehaveachievedandwhereweplantogofromthere.

Atvariousplaces,wealsoremarkonthedepthwithwhichthetopicsaretreated,what mayhavebeenleftoutorwillonlybementionedinpassing,therelationtootherparts andchaptersandthebook’sintentionsasawhole,andwheretofindalternativeand furtherspecializedtreatmentsofthesetopics.

Inordertosupplyaroughoverview,letusbrieflysummarizethemajorpartsofthe bookandtheirinterrelationship.

PartIrangesfromthefundamentalconceptsandtoolsrequiredforanunderstanding ofstronglyinteractingquantummattertothefundamentalmodelsthatrepresentthe physicalsystemsofstronglyinteractingquantummatter.Inthisbook,wewantto investigateselectedaspectsofthesemodelswithaparticularemphasisontheusesof theexactmethodologyoftheBetheansatzandofquantumintegrability.

PartIIisdevotedtothequantuminversescatteringmethodandthealgebraicBethe ansatzthatdemonstratethequantumintegrabilityofcertainone-dimensionalstrongly interactingquantummodelsandprovidetheirexactsolution.Ourapproachmakes decisiveuseoftheintimateconnectionbetweenthesemodelsandtwo-dimensional

modelsofclassicalstatisticalmechanics.Theconcretemodelsweshallbeenlistingin thispartaretheHeisenbergquantumspinchainasone-dimensionalquantummodel andthesix-vertexmodelastwo-dimensionalclassicalstatisticalmodel.

InpartIII,weintroducethecoordinateBetheansatz,theoriginalapproachBethe usedtosolvetheHeisenbergquantumspinchain.Sincethisapproachdoesnotallow ustounderstandwhythemodelsarequantumintegrable,weshalladdressitonlyafter wediscussthealgebraicBetheansatzandthequantuminversescatteringmethod.The coordinateBetheansatzapproachis,however,stillextremelyuseful.Wedemonstratethis againfortheHeisenbergquantumspinchainandalsoforagasofBosonsinteractingvia δ -functionpotentialsinonedimension.

PartIVisconcernedwithstronglyinteractingquantummodelswherethefundamentalconstituentshaveinternaldegreesoffreedom.Ourexamples,theone-dimensionalgas ofFermionsinteractingvia δ -functionpotentials,theone-dimensionalHubbardmodel, andtheKondomodelofamagneticimpurityinteractingwithconductionelectrons,are allelectronicmodelswherethereisonlyoneinternaldegreeoffreedominadditiontothe particledegreeoffreedom,whichiselectronicspin.Weshallfindthatthesemodelscan besolvedbytwointerconnectedBetheansätze.Themethodisthuscalled nested Bethe ansatz.

Thusfar,theBetheansatzmethodsdiscussedweremainlyinvestigatingthelow-lying andthereforezerotemperaturepropertiesofthequantummodels.InpartVweexamine howtoextendtheBetheansatztofinitetemperatures.Again,ourquantummodelsof choicewillbetheHeisenbergquantumspinchainandalsotheBosegasinteractingvia δ -functionpotentialsinonedimension.

InpartVI,thefinalpartofthebook,werelinquishanotherassumptionwemade orhadtomakeinordertofindsolutionsoftheBetheansatzequations,equationswhich generallyholdforafinitesystem.Sofar,weusuallyconsideredthethermodynamiclimit, thelimitofaninfinitesystemsize.ThislimitallowedustorewritetheBetheansatz equationsaslinearintegralequationsforcertaindensitieswhosesolutionscharacterized solutionsoftheBetheansatzequations,butonly,ofcourse,forthethermodynamiclimit. TheBetheansatzforfinitesystemsattemptstofindcorrectionstotheBetheansatz solutionsandphysicalquantities,e.g.thegroundstateenergyofthethermodynamiclimit thattakesintoaccountthefinitenessofasystem.Again,weinquireintohowthiscanbe achievedusingtheHeisenbergquantumspinchainasourexemplarymodelsystem.

Thefocusofthisbookisonselectedconcepts,methods,andmathematicaltechniques intheareaofstronglyinteractingquantummattersystems,especiallythevarious Betheansatztechniquesdiscussed.Wehopethatthesetechniqueswillproveuseful infutureresearchintheareaofstronglyinteractingquantummatter.Wealsohope thatsomephysicalinsightwillbegainedfromthemodelsofquantummatterusedas examplestodemonstratetheconceptsandtechniquesandwillprovideguidanceforthe understandingofothersystemsnottreatedhere.

Forthemostpart,weshallusenaturalunitswherethespeedoflight,Boltzmann’s, andPlanck’sconstantsare

exceptwhenincludingtheconstantsexplicitlywillrendertheresultsmoretransparent.

Part1 MethodsandModelsinthe TheoryofQuantumMatter

Cannotwebecontentwithexperimentalone?No,thatisimpossible;thatwouldbea completemisunderstandingofthetruecharacterofscience.Themanofsciencemust workwithmethod.Scienceisbuiltupoffacts,asahouseisbuiltofstones;butan accumulationoffactsisnomoreasciencethanaheapofstonesisahouse.

–HenriPoincaré(1854–1912)

Thisfirstpartofthebookpresentsanoverviewofthemostimportantmethods indispensableforanunderstandingofthetheoryofstronglyinteractingquantummatter. Moreover,weintroduceaselectionofquantummechanicalmany-particlemodelsand therelatedconceptsthatformthebackgroundofthetheoryofquantummatter, especiallyinviewofthequantumintegrablemodels,whoseexactBetheansatzsolutions arediscussedinlaterpartsofthebook.Thesemethodsandmodelsarerelevantalsoin manyotherpartsoftheoreticalandmathematicalphysics.Itisthereforerecommended thatreadersreviewthismaterialtojudgehowfamiliartheyarewithit.

Thesechapters,however,donottreatanddonotattempttotreattheirtopicsinafully comprehensivemanner.Thereisalwaysalotmorethatcouldbecovered.Infact,there isavastliteraturespecificallydevotedtothesetopics.Nevertheless,weattemptasclear andcomprehensibleatreatmentaspossibleoftheaspectswecoverwiththeintentionto renderthoseaspectsthatwedocoverself-contained.Whereaself-containedtreatmentis beyondthelimitationsofthisbook,weprovideappropriatehintstotheliteraturespecially devotedtothesetopics.

Morespecifically,inchapter2,basicfactsarereviewedfromthequantummechanics ofmany-particlesystems,inparticularleadingfromtheHilbertspacesrepresenting quantummany-particlesystemstoadiscussionofsecondquantization,whichisthe languagemostusefultoformulatethemodelsofstronglyinteractingquantummatter.

Moreover,inchapter3weaddressthequantummechanicaltheoryofangular momentum,especiallyformanyquantumparticles,whichisindispensableforan understandingofthemagneticpropertiesofthemodelsofstronglyinteractingquantum

MethodsandModelsintheTheoryofQuantumMatter

matter.Thesemagneticpropertieswillbeatthecentreofmuchofourdiscussionof quantumintegrablemodelsandtheirexactBetheansatzsolutions.

Quantummany-particletheoryis,ofcourse,restingonthefoundationsofequilibrium statisticalmechanics,especiallyquantumstatisticalmechanics.Butclassicalstatistical mechanicsalsowillbenecessarytoappreciatethedevelopmentsofquantummodels thatareintegrablebytheBetheansatzmethod.Anexaminationofthemethodsand resultsofequilibriumstatisticalmechanics,bothclassicalandquantum,willthereforebe ausefuladditioninthisfirstpartofthebook,andwhichwetakeupinchapter4.

Amongthemostfascinatingphenomenaofmany-particlesystems,againclassical andquantum,phasetransitionsandcriticalphenomenaoccupyaprominentplace. Theirtheoreticaldescriptionischallengingandrequiresanarsenalofsophisticatedand innovativemethodsthatareoutlinedinchapter5,wherewealsoanalysetheapproach tothethermodynamiclimitofsystemsoffinitesize.

Thereisanintimateconnectionbetweenquantumfieldtheoryand(classical)statisticalmechanicsonwhichmuchofthequantuminversescatteringmethodandthe algebraicBetheansatzisfounded.Chapter6offersanintroductiontothisimmensely usefulconnection,whichwillalsoplayacentralroleinthesubsequentchapter.

Betheansatzcalculationsforfinitesystems,beingrathermoreinvolvedthanthosein thethermodynamiclimit,produceresultsthatcanbedirectlycomparedtopredictions basedontheconformalsymmetryoftwo-dimensionalclassicalstatisticalmechanics. Inordertofullyappreciatethisconnection,chapter7offersanintroductionintobasic aspectsoftheconformalsymmetryofcriticalsystems.

Whilethechaptersdescribedsofarweremainlyconcernedwithmethodsusefulfor athoroughappreciationoftheBetheansatzmethodologiesexaminedinlaterpartsof thebook,chapter8ofthisfirstpartintroducesthephysicalbackgroundofaselectionof modelsofstronglyinteractingquantummattertogetherwithmethodstoinvestigateand understandthem.Theselectioncriteriahavebeenwhetherappropriateversionsofthe modelsexhibitquantumintegrabilityandaresolvablebyBetheansatz.Thequantum many-particlemodelsconsideredrangefromtheBosefluidtomodelsofitinerantas wellaslocalizedmagnetismandtotheFermiliquidandultimatelytomodelsofstrong light–matterinteraction.

QuantumMany-ParticleSystems andSecondQuantization

Oneoftheprincipalobjectsoftheoreticalresearchistofindthepointofviewfrom whichthesubjectappearsinthegreatestsimplicity.

Thischapterreviewssomeaspectsofthequantummechanicsofsystemscomposedof manyparticles(many-bodyormany-particlesystems),whichwillproveusefulforthe laterdevelopmentsinthisbook.Wemainlyconcentrateonthefoundationsofquantum many-particlephysicsleadingtotheformalismof secondquantization asaconvenient languagefortheformulationofthepropertiesofthemany-particlesystemsofquantum matter.

Many-particlequantumsystemscanbedescribedbyamany-particleSchrödinger equation,whosecorrespondingwavefunctiondependsontheconfigurationofthe particles,e.g.theirpositions ri andpossiblyfurtherquantumnumbers,e.g.thespin quantumnumbers σ i oftheparticles.Inpracticethisapproachisverycumbersomeeven forquitemodestnumbersofparticles,letaloneforthemacroscopicnumbersofparticles ofquantumstatisticalmechanicsandcondensedmatterphysics. Secondquantization is aformulationorlanguageofmany-particlequantummechanicsthathelpstominimize thetechnicalcomplicationsofpracticalcalculationsformany-particlesystems.

Itisalsotheappropriatelanguageofotherbranchesoftheoreticalphysics,most notablyquantumfieldtheory(see,forexampleLancasterandBlundell,2014).

Twoexamplesillustratetheusefulnessofsecondquantization.Inquantumfield theoryaswellasmanyapplicationsofmany-particlephysicsandcondensedmatter physics,thenumberofparticlesisvariable,i.e.particlescanbecreatedaswellas destroyed.1 Moreover,theSchrödingerequation,andhencethewavefunction,fora

1 Asweshallsee,theconceptofcreatingandannihilatingparticlesisaratherabstractone,especiallyfor Fermions,i.e.particlesforwhichthePauliexclusionprincipleapplies.RichardFeynman,inhisNobelprize acceptancespeech(Feynman,1965),alludestothisinapersonalreminiscence:‘Irememberthatwhensomeone hadstartedtoteachmeaboutcreationandannihilationoperators,thatthisoperatorcreatesanelectron,Isaid, “howdoyoucreateanelectron?Itdisagreeswiththeconservationofcharge”,andinthatway,Iblockedmy mindfromlearningaverypracticalschemeofcalculation.’

QuantumMany-ParticleSystemsandSecondQuantization

systemof N = 1024 particlesisdifferentfromthoseofasystemof N = 1024 1particles. Yet,weexpectbothsystemstoexhibitthesamemacroscopicphysics.Inthelanguageof secondquantization,whichisspecificallyadaptedtoaccommodatevariablenumbersof particles,wecancopeeasilywithbothsituationsasdetailedworkinthischapterandin chapter4onequilibriumstatisticalmechanicsshows,aswellasthroughoutmanyother chaptersofthisbook.

Secondquantizationisastandardtopicofquantummany-particletheoryand treatmentscanbefoundinmanybookswhollyorpartlydevotedtothistopic.A classicreferencedevotedtothemethodofsecondquantizationisBerezin(1966).Some standardreferencesarethecorrespondingchaptersofAbrikosov etal. (1975),Fetter andWalecka(2003),Mahan(2000),andNegeleandOrland(1998).Morerecentwork includesNazarovandDanon(2013),AltlandandSimons(2010),andColeman(2015). Ofcourse,alloftheseworkstreatmanymoretopicsinthetheoryofquantummanyparticlephysics.

Inparticular,applicationsofthemethodofsecondquantizationcanbefoundin thecitedworksandinlaterchaptersofthisbook,whereweshallmakeampleuseof thelanguageofsecondquantization.Inthischapter,however,weconcentrateonthe formalism,demonstratingitspowerwithonlyafewelementaryexamples.

Section2.1ofthischapterconstructstheHilbertspaces,thetensorproductspaces, andtheFockspaces,appropriateforthestatesofthemany-particlesystemandthen section2.2,selectsfromtheseHilbertspacesthesymmetrizedmany-particlestatesof themany-particleHilbertspacethatdescribeBosons,whereanynumberofparticles canoccupythesamequantumstateandtheantisymmetrizedmany-particlestatesthat describeFermions,whereatmostoneparticlecanoccupythesamequantumstate.

ThisconstructionofHilbertspacesismoregeneral:foranyquantumsystemcomposedofsubsystems,aHilbertspacecanbeconstructedinthewaywedescribe. Therefore,weinitiallykeepthediscussionmoregeneralbeforewefocusagainonHilbert spacescomposedof(many)quantumparticles.

Forthefollowingfewsections,wefocusontheBosoniccase,beforeeventuallyalso discussingFermions.Insection2.3,weintroducecreationandannihilationoperators forBosons.Theseoperatorsarethemainobjectsinwhichtheformalismofsecond quantizationisexpressed.

Thecreationandannihilationoperatorscanbeexpressedindifferentorthonormal andcompletebases.Thetransformationsofthecreationandannihilationoperators betweendifferentabstractorthonormalandcompletebasesarederivedinsection2.4, whileinsection2.5thecreationandannihilationoperatorsinthepositionbasis,then calledquantumfieldoperators,areintroducedasoneofthemostimportantexamples.

Section2.6isdevotedtotheintroductionofone-particleoperators,section2.7to two-particleoperatorsintheformalismofsecondquantization.

Anelementaryintroductionofsecondquantizationstartsfromthetime-dependent single–particleSchrödingerequationofbasicquantummechanics.Howthiscanbe achievedisdemonstratedforBosonsinsection2.8andforFermionsinsection2.10.

Section2.9finallyreturnstoFermions,introducingcreationandannihilationoperatorsfortheFermioniccase.

Thepenultimatesectionofthischapter,2.11demonstratesexplicitlytheequivalence ofthemany-particlewavefunctionandtheformalismofsecondquantization,whilethe finalsection2.12ofthischaptertouchesontheissueofthecorrectorderingofcreation andannihilationoperators,i.e.thenormalordering.

Asapreludetotheformalism,westartwithanelementaryexercise:thequantum treatmentofthesingleparticleone-dimensionalharmonicoscillatorintermsofcreation andannihilationoperators,sometimesalsocalledladderoperators.Inthisexerciseweare remindedofimportantnotionsthathelpilluminatethemoreformaltreatmentoftherest ofthischapter.Moreover,thealgebraicstructureencounteredherewillreappearmany timesinthisandinlaterchapters.Hence,itmaybequiteagoodideatogothroughthis elementaryexercisetogainconfidenceforthemoreinvolvedlaterdevelopments.

EXERCISE2.1

Quantummechanicalharmonicoscillator TheHamiltonianof theone-dimensionalharmonicoscillatorofamass m andfrequency ω isgiveninterms ofthepositionoperator x andthemomentumoperator p =−i d dx satisfyingthecanonical commutationrelation

AmongthemanywaystosolvetheSchrödingerequationoftheharmonicoscillator,a particularlyelegant,andfruitful,waydeconstructstheHamiltonian(2.2)intooperators, thecreationandannihilationoperator,respectively

• Show,usingtheladderoperators a and a† ,thatthecanonicalcommutationrelation [x,p] = i becomes

andtheHamiltonian(2.2)

• Furthermore,showthat,if λ istheeigenvaluecorrespondingtothenormalized eigenstate |λ oftheoperator = a† a,then

• Calculatethecoefficients c λ and d λ

• Provethat λ ≥ 0andthat λ = 0mustbeaneigenvalue.Whatis,hence,thespectrum ofeigenvaluesof and H,respectively?Showthatthisimpliesforthegroundstate a|0 = 0.

• Usetherepresentation(2.3)oftheladderoperatorsasdifferentialoperatorsto solvetheSchrödingerequationforthegroundstatecorrespondingto λ = 0,i.e. determinethegroundstatewavefunction x|0

• Determinethewavefunctionofthefirstexcitedstatebyapplyingthecreation operator a† oncetothegroundstatewavefunction.

Theresultsobtainedthusfarsuggestthattheoperator canbeinterpretedas anoperatorcountingthenumberofexcitationsoftheharmonicoscillator.Inorder tomakethisevenmoresuggestiveletuschangethenotationandreplace by n and |λ by |n .Furthermore,asweshallseeinmoredetailinthischapter,theseresults suggestaninterpretationoftheexcitationsoftheharmonicoscillatoras particles or quasiparticles.Thestatewithnoparticles |0 thencorrespondstothevacuumstate.

• Showwiththehelpof(2.6)and(2.7)thattheproperlynormalizedstateof n excitationsor n particlesis

• Finally,toappreciatehowfruitfulthisalgebraictreatmentoftheharmonicoscillator is,calculatetheexpectationvaluesofthefirstfewpowersofthepositionoperator inthestate |n ,letussay x,x2 , x3 ,and x4 .

• Hint:Provefirstthatthenumberoperator n = a† a,andhencetheHamiltonian H = ω a† a + 1 2 ,areHermitianoperatorsandthatthereforethecorresponding eigenstates,whicharenon–degenerate(why?),areorthogonal.

Withthisexerciseatthebackofourminds,wecannowstarttodeveloptheformalism ofsecondquantizationbyfirstconstructingaHilbertspaceappropriateforaquantum many-particlesystem.

2.1Many-particleHilbertspaces

Theformalismof‘secondquantization’2 providesanelegantandeconomicwayto describeaphysicalsystemcontainingagreat,possiblyindeterminate,numberof

2 Thenameisatrifleunfortunateandoriginatesfromtheinterpretationofthealgebraofladderoperators (seeexercise2.1).Theseoperatorsandtheircorrespondingquantumexcitationscanbeviewedasdiscrete ‘quantized’units.Itmustbeemphasized,however,that‘second’quantizationisarepresentationofquantum mechanicsparticularlysuitableforproblemsinvolvingmanyparticles.Itis not aquantizinganalreadyquantized theory.However,tobeabletodistinguishrepresentations,weshallinplacesalsohavetousetheequally unfortunateepithet‘first’quantization.

Many-particleHilbertspaces 9 particles.Itdescribesparticlesasquantaofaquantumfieldandis,hence,attheheart ofthemodernunderstandingofquantummechanicsandquantumfieldtheory.

Weassumethatthesolutionofthequantumproblemforoneparticleisknown,i.e. weassumethat

• thereisaone-particleHilbertspace(quantumstatespace) H1 ,with,especially,the scalarproduct φ |ψ ofstates |ψ , |φ ∈ H1 fromthisHilbertspace;

• thismeansinparticular,thattheone-particleSchrödingereigenvalueproblemhas beensolvedforthesingleparticleHamiltonian H:

where |λ ∈ H1 isanormalizedeigenstateand λ thecorrespondingeigenvalue;

• furthermore,thetimeevolutionoftheparticleisdeterminedbytheunitaryoperator (ignoringthepossibilityofanexplicitlytime-dependentHamiltonian)

• lastly,observablessuchasposition r,momentum p,angularmomentum L,etc.,of thesingleparticleproblemhavebeendetermined.

Secondquantizationisaformalismpermittingtoconstructquantitiesthatcorrespond toasystemcomposedofanarbitrary,indeterminatenumberofsuchquantumparticles undertheassumptionthatthestatementsaboveforasingleparticleholdtrue.

ThebasisoftheformalismconsistsinconstructingHilbertspacesandstatesforan arbitrarynumberofparticlesfromtheHilbertspaceandstatesofasingleparticle.

2.1.1CompositeHilbertspaceoftwosystemsAandB

Asmentionedintheintroductiontothischapter,webeginwithamoregeneralpointof view.Assumethattherearetwoquantumsystems A and B whichmaybutneednotbe individualquantumparticles.Forinstance,system A coulddenoteamicroscopicsystem, whilesystem B couldrepresentamacroscopicmeasurementapparatus.Theirrespective Hilbertspacesare H A and H B .Weareinterestedinthecompositequantumsystem AB WecanconstructaHilbertspaceforthecompositequantumsystemintwodifferent ways.Bothwaysbeginbyformingaspaceofallorderedpairsofstatestakenfromthe Hilbertspaces H A and H B

whichcanbemadeintoacompositeHilbertspacebychoosingascalarproductintwo differentways.

2.1.1.1TensorproductHilbertspace

ThefirstconstructionisachievedthroughtheintroductionofatensorproductHilbert space H AB oftwoHilbertspaces H A and H B ,whosedimensionsdim H A and dim H B neednotbethesame,

withdimensiondim H AB = (dim H A )(dim H B ).WithrespecttothecompositeHilbert space H AB ,theHilbertspaces H A and H B arecalledfactorspaces.

ItshouldbeemphasizedthatalreadytheHilbertspaceofasingleparticlecanbea tensorproductspaceastheexampleofthespin-orbitHilbertspaceofasingleparticle showswhere

isthetensorproductoftheorbitalHilbertspace Horbit oftheparticlewithitstwodimensionalspinstatespace C 2

NowtheconstructionofthetensorproductHilbertspace H AB proceedsasfollows. Foreachpairofstates f A ≡|ψ A ∈ H A and f B ≡|ϕ B ∈ H

thereisa(formal) productstate F forwhichdifferentnotationsareinuse

Thesenotations,goingfromlefttoright,emphasizelessandlessthatthestatesbelong to,ingeneral,differentHilbertspaces.Hence,theiruserequiresmoreandmorecaution andaclearunderstandingoftheirmeaninginparticularsituations.

Thecompositestatesarelinearineachoftheirfactorsseparately,i.e.

withcomplexnumbers λ and μ

Thescalarproductbetweencompositestatesisformedinaspace-wisemannerby

InordertoobtainacompositeHilbertspace H AB largeenoughtocontainstatesthat cannotbewrittenaspureproductstates,i.e.statesoftheform

Many-particleHilbertspaces 11

weneedtoconsiderthelinearspan(alsocalledlinearhull)ofthespace M .Thisis achievedbytakingbasesofthefactorHilbertspaces H A and H B ,e.g. {|nA } and {|mB }, toformabasisofthecompositeHilbertspace H AB

aso-called(tensor)productbasis,inthesensethatallstatesoftheform

withcomplexnumbers cn,m asexpansioncoefficients,i.e.thelinearspanof M ,define thecompositeHilbertspace H AB . Sinceanorthonormalbasisin H AB satisfies,using(2.17),

thatis,thebasisofthecompositeHilbertspaceisorthonormalifthebasesofthefactor statesareorthonormal,weobtainforthescalarproductoftwostatesoftheform(2.20)

whichcompletestheconstructionofthecompositeHilbertspace H AB . UsingthenotionofaproductHilbertspace H AB ,wearenowinapositionto introduceinaformalwayanimportantnotionattheheartofmanyinvestigationsin quantumphysics.Itisthenotionof quantumentanglement,whichgoesbacktoimportant publicationsbyEinstein,Podolsky,andRosen1935,andespeciallybySchrödinger (1935).Acompositestatein H AB iscalledentangledifitcannotberepresentedasa productstatebutonlyasasuperpositionofproductstates,asin(2.20).

Examplesofcompositestatesthatcannotbewrittenasproductstatesaretheso-called Bellstates

whicharestatesinthecompositeHilbertspace

QuantumMany-ParticleSystemsandSecondQuantization

wherethefactorstatesdescribetwo-levelsystemsorso-calledqubits.Thesestatesare maximallyentangledstates.Detailsaboutmaximallyentangledstatesandentanglement measuresingeneralcanbefoundinAudretsch(2007).

2.1.1.2CompositeHilbertspaceasadirectsum

However,adifferentwayisalsopossibletoconstructacompositeHilbertspacefromthe Hilbertspaces H A and H B ofthetwoquantumsystems A and B.Thestartingpointis againthespace M oforderedpairsofstatesgivenin(2.11).

However,nowwedefinethescalarproductoftwostates F = ( f A , f B ) ≡|ψ AB ≡ (|ψ A , |ψ B )and G = (

Thisdefinitionofascalarproductforthespace M makesitintoacompositeHilbert space ˜ H AB differentfromthetensorproductHilbertspace H AB weconstructedin theprevioussection.ThiscompositeHilbertspaceiscalledadirectsumspaceandis denoted

Inordertoavoidpossibleconfusion,wementionthatmultiplicationbyacomplex number λ istobeunderstoodcomponent-wise

incontrasttothetensorproductHilbertspace H AB where

WeencounterthisimportantkindofspacelaterunderthenameofFockspacewhen wediscusssituationsinvolvingparticleproductionanddestructionand,hence,needa Hilbertspacewithavariablenumberofparticles.

ThereweshallalsoneedthenotionoforthogonalityforstatesfromdifferentHilbert spacesthatcanbeconvenientlydefinedusingadirectsumofthesespaces.Weextend thevectors f A

Many-particleHilbertspaces

Calculatingthescalarproduct(2.26)ofthesetwospecialvectorsof H ,wediscoverthe importantresult

namely,thatstatesfromdifferentsubspacesofadirectsumHilbertspaceareorthogonal toeachother.

2.1.2Caseofmanydistinguishableparticles

TheconstructionofacompositeHilbertspaceconsistingoftheHilbertspacesof twosubsystems,discussedintheprevioussection,caneasilybegeneralizedtothe caseofmanysubsystems.Fromnowonwefocusonthecaseofmanysubsystems whereeachsubsystemisasinglequantumparticle.Inconstructingthemany-particle Hilbertspace,letusassumeforthetimebeingthattheparticlesare distinguishable.Of course,inquantumphysics,weencountermanysituationswhereparticlesareindeed distinguishable,e.g.theelectronandprotonformingahydrogenatomaredistinguishable quantumparticles.

TheHilbertspaceofasystemcomposedof exactlyN particlesisgivenbythetensor productHilbertspaceof N copiesofthesingle-particleHilbertspace H1 withdimension dim H1 :

ThestatesofthisHilbertspaceareformedfromlinearcombinationsofproductstates oftheform(cp.(2.14))

Suchastatevectorrepresentsastateofthesystemwherethefirstparticleisinstate |ϕ 1 , thesecondinthestate |ϕ 2 , ,andthe N thinthestate |ϕ N .Crucially,wenotethatthe statesofdifferentparticlesmaycoincide,i.e.thatthepossibility

forparticles i = j mustbetakenintoaccount.

Thescalarproductin H ⊗N 1 isdefinedbygeneralizing(2.17)

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.