31077

Page 1


AtomicClusterswithUnusualStructure,Bonding andReactivity:TheoreticalApproaches, ComputationalAssessmentandApplicationsPratim KumarChattaraj

https://ebookmass.com/product/atomic-clusters-with-unusualstructure-bonding-and-reactivity-theoretical-approachescomputational-assessment-and-applications-pratim-kumarchattaraj/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Chemical Reactivity in Confined Systems: Theory, Modelling and Applications Pratim Kumar Chattaraj

https://ebookmass.com/product/chemical-reactivity-in-confined-systemstheory-modelling-and-applications-pratim-kumar-chattaraj/

ebookmass.com

Organic Chemistry: Structure and Reactivity Study Guide 5th Edition Seyhan Ege

https://ebookmass.com/product/organic-chemistry-structure-andreactivity-study-guide-5th-edition-seyhan-ege/

ebookmass.com

Hybrid Intelligent Approaches for Smart Energy: Practical Applications Senthil Kumar Mohan

https://ebookmass.com/product/hybrid-intelligent-approaches-for-smartenergy-practical-applications-senthil-kumar-mohan/

ebookmass.com

The Shakespeare Codex (Modern Plays) Terry Pratchett

https://ebookmass.com/product/the-shakespeare-codex-modern-playsterry-pratchett/

ebookmass.com

Titanium Dioxide (TiO2) and Its Applications Francesco Parrino

https://ebookmass.com/product/titanium-dioxide-tio2-and-itsapplications-francesco-parrino/

ebookmass.com

The Science of Trust: Emotional Attunement for Couples

https://ebookmass.com/product/the-science-of-trust-emotionalattunement-for-couples/

ebookmass.com

CFA 2024 Level II Study Books (Combined Books: 1 - 5) Kaplan Schweser

https://ebookmass.com/product/cfa-2024-level-ii-study-books-combinedbooks-1-5-kaplan-schweser/

ebookmass.com

User Tested: How the World's Top Companies Use Human Insight to Create Great Experiences Janelle Estes

https://ebookmass.com/product/user-tested-how-the-worlds-topcompanies-use-human-insight-to-create-great-experiences-janelleestes-2/ ebookmass.com

Japan’s Asian Diplomacy: Power Transition, Domestic Politics, and Diffusion of Ideas Hidetaka Yoshimatsu

https://ebookmass.com/product/japans-asian-diplomacy-power-transitiondomestic-politics-and-diffusion-of-ideas-hidetaka-yoshimatsu/ ebookmass.com

The Evolution of the Political, Social and Economic Life of Cyprus, 1191-1950 Spyros Sakellaropoulos

https://ebookmass.com/product/the-evolution-of-the-political-socialand-economic-life-of-cyprus-1191-1950-spyros-sakellaropoulos/

ebookmass.com

AtomicClusterswithUnusualStructure, BondingandReactivity

AtomicClusterswithUnusual Structure,BondingandReactivity

TheoreticalApproaches,Computational AssessmentandApplications

IndianInstituteofTechnologyKharagpur,Kharagpur,India

SudipPan

InstituteofAtomicandMolecularPhysics,JilinUniversity,Changchun,China

GabrielMerino UniversidaddeMerida,Merida,Mexico

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2023ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearance CenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher (otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecome necessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusing anyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethods theyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhavea professionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliability foranyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,or fromanyuseoroperationofanymethods,products,instructions,orideascontainedinthematerialherein.

ISBN:978-0-12-822943-9

ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: SusanDennis

AcquisitionsEditor: CharlesBath

EditorialProjectManager: JudithClarissePunzalan

ProductionProjectManager: KumarAnbazhagan

CoverDesigner: MarkRogers

TypesetbySTRAIVE,India

GuruduttDubeyandPrasadV.Bharatam

theoryandallmetalaromaticity

DebolinaPaulandUtpalSarkar

6.Structuralevolution,stability,and spectraofsmallsilverandgold clusters:Aviewfromtheelectron shellmodel

PhamVuNhat,NguyenThanhSi, andMinhThoNguyen

1.Introduction

2.Equilibriumstructuresandgrowth

3.Thermodynamicstabilities

4.Phenomenologicalshellmodel

5.Electronicabsorptionspectra

7.Opticalresponsepropertiesof somemetalclustersupported host-guestsystems

ArpitaPoddarandDebduttaChakraborty

1.Introduction

3.1Geometricalstructuresand thermodynamicfeasibilityof obtainingthecorrespondinghostguestmoieties

3.2Opticalandelectronicpropertiesof theselectedmetalcluster-host complexes

8.GroupIII–Vhexagonalpnictide clustersandtheirpromisefor graphene-likematerials

EshaV.ShahandDebeshR.Roy

5.GroupIII–Vgraphene-likematerialsfrom potentialclusterunits

thermoelectrics

5.2Mono-andmultilayerthalliumnitride forthermoelectrics

5.3Othertwo-dimensionalgroupIII–V

9.M(L)8 complexes(M=Ca,Sr,Ba; L=PH3,PF3,N2,CO):Actofan alkaline-earthmetalasa conventionaltransitionmetal

Hai-XiaLi,Zhong-HuaCui,DandanJiang, LiliZhao,andSudipPan

6.M(Bz)3:20-electroncomplex

10.Structures,reactivity,and propertiesoflowionization energyspeciesdopedfullerenes andtheircomplexeswith superhalogen

AbhishekKumar,AmbrishKumarSrivastava, GargiTiwari,andNeerajMisra

1.Introduction

3.LowIEspeciesdoped endofullerenes

3.1Li@C60 vsSA@C60 endofullerene (SA=FLi2,OLi3,andNLi4)

3.2Li@C60 vsLr@C60 endofullerene 176

4.Endofullerene-superhalogen complexes 177

4.1Li@C60 PF6 endofullerene complex 177

4.2SA@C60 BF4 endofullerene complex 179

5.Conclusionsandperspectives

11.Generationofglobalminimum energystructuresofsmall molecularclustersusingmachine learningtechnique

GourhariJanaandRanitaPal

1.Introduction

2.Ourproposedmethodologyand algorithm(parallelimplementation) 187

2.1Particleswarm optimization 187

2.2Fireflyalgorithm 188

2.3ADMP-CNN-PSOapproach 190

3.Computationaldetails 191

4.Experimentalsetup 191

4.1PSO,FA,andADMP-CNN-PSO 192

5.Resultsanddiscussion 192

5.1PSO:Boronclusters,Bn (n =5,6) 192

5.2CNNandPSO:N4 2 ,N6 4 ,Aun (n =2–8)andAunAgm (2 n + m 8) clusters

5.3Fireflyalgorithmwithdensity functionaltheory 202

6.Conclusion 206 Acknowledgments 206

12.Studiesonhydrogenstoragein molecules,cages,clusters,and materials:ADFTstudy

K.R.Maiyelvaganan,M.Janani,K.Gopalsamy, M.K.Ravva,M.Prakash,andV.Subramanian

1.Introduction

2.H-storageinvariousmotifs—Theroad maprepresentation

2.1H-storageinsmallmolecules 215

2.2Hydrogenstorageinmolecular cages

2.3H-storageinmolecularclusters

2.4H-storageinmaterials

13.Adensityfunctionaltheorystudy ofH3+ andLi3+ clusters:Similar structureswithdifferentbonding, aromaticity,andreactivity properties

DongboZhao,XinHe,MengLi, ChunnaGuo,ChunyingRong, PratimKumarChattaraj,andShubinLiu 1.Introduction

14.Designingnanoclustersfor catalyticactivationofsmall molecules:Atheoreticalendeavor

AnupPramanik,SouravGhoshal, andPranabSarkar

1.Introduction

2.N2 activation

3.H2 activation

4.ActivationandreductionofCO2

4.1Specificroleofmetalhydrideforthe reductionofCO2 254

5.ActivationofO2 andoxidationofCOon Aun nanoclusters 255

5.1EffectofdopinginAun nanoclusters 256

5.2Aln anionicnanoclusters:Effectof electronspin 257

6.H2Oactivation 258

7.C–XandC–Hbondsactivation 260

7.1C–XbondactivationonAln nanoclusters 260

7.2CompetitiveH–Xeliminationon aluminananoclusters 260

7.3Selectivityofaluminananoclusters duringelimination 262

7.4SelectiveC–Hbond activation 262

8.Summaryandfutureoutlook

15.Molecularelectrides:Anoverview oftheirstructure,bonding,and reactivity

RanajitSahaandPrasenjitDas

1.Introduction

1.1Electrides

1.2Confinementoftheelectron

1.3Developmentof organic electrides

1.4Developmentof inorganic electrides 276

1.5Towardthe molecularelectride 277

2.Normsandconditionsofbeing a molecularelectride 278

3.Computationalmethodology 279

4.Examplesofmolecularelectrides 281

4.1Alkalimetal-doped electrides 281

4.2Mg2EP,molecularelectrideandsmall moleculeactivation 283

4.3Bondingin[Mg4(HDippL)2]2 complex anditselectridenature 285

4.4Mg2@C60 anditselectride characteristics 286

4.5BinuclearSandwichcomplexesof alkalineearthmetalsaselectrides 287

4.6Li3@Cg(Cg=B40 andC60)andtheir electridenature 288

5.Conclusion

16.Hydrogentrappingpotentialofa fewnovelmolecularclusters andions

SukantaMondal,PrasenjitDas,and SantanabGiri

1.Introduction

2.Theoreticalbackground

3.Computationaldetails

4.Atomicandmolecularclusters

4.1MgandCaclusters

4.2B2LiandB2Li2 moieties

4.3C12N12 cage

5.Ionicclusters

5.1N4Li2 andN6Ca2 clusters

5.2Li3 + andNa3 + ions

5.3B2Li+ andB2Li2 + ions

5.4M5Li7

17.Polarizabilityofatomsandatomic clusters

SwapanK.Ghosh

1.Introduction 313

2.Basicsofresponsepropertiesand polarizability 314

3.DFT-basedapproachtocalculationof polarizability 314

4.Polarizabilityofsphericallysymmetric systems:Atomsandatomicclusters withinthejelliummodel 317

5.Chemicalreactivityindices-basedroute topolarizability 318

6.Discussiononpolarizabilityvaluesof atomicclusters

18.Advancesinclusterbonding: Bridgingsuperatomicbuilding blocksviainterclusterbonds

NikolayV.Tkachenko,Zhong-MingSun, AlexanderI.Boldyrev,andAlvaro Munoz-Castro

1.Introduction

2.Interclusterbondingofgoldclusters

3.InterclusterbondingofZintlclusters

4.Extendednetworks

19.Zintlclusterasabuildingblockof superalkali,superhalogen, andsuperatom

SwapanSinha,RuchiJha,SubhraDas,and SantanabGiri

1.Introduction

20.Metallicclustersforrealizing planarhypercoordinatesecondrowmaingroupelementsand multiplebondedspecies

AmlanJ.Kalita,ShahnazS.Rohman, ChayanikaKashyap,LakhyaJ.Mazumder, IndraniBaruah,RitamRajBorah, FarnazYashmin,KangkanSarmah, andAnkurK.Guha

1.Introduction

2.Planarhypercoordinatemaingroup elements

3.Planarpentacoordinatenitrogen 348

4.Metalclustersupportedmultiplebonded second-rowmaingroupelement

5.Conclusionsandfutureaspects

21.Planarhypercoordinatecarbon

PrasenjitDas,SudipPan, andPratimKumarChattaraj

1.Introduction

2.Planartetracoordinatecarbon(ptC) 357

3.Planarpentacoordinatecarbon (ppC) 361

4.Planarhexacoordinatecarbon(phC) 365

5.Highercoordinatecarbon

6.Conclusion

22.Transformationofnanoclusters withoutco-reagent

SaniyaGratious,SayaniMukherjee, andSukhenduMandal

1.Introduction 373

2.Co-reactant-freetransformations 373

2.1pH-inducedtransformation 373

2.2Solvent-inducedtransformation 375

2.3Photo-inducedtransformation 379

2.4Temperature-induced transformation 381

3.Perspectivesandconclusions

23.ApplicationoffrustratedLewis pairsinsmallmoleculeactivation andassociatedtransformations

DandanJiang,ManasGhara,SudipPan, LiliZhao,andPratimKumarChattaraj

1.Introduction 387

2.ThechemistryofLewisacidsand bases 387

3.IdentificationofFLPreactivity 389

4.MechanismofH2 activationbyFLPs 389

5.ThermodynamicsonH2 activationby FLP 392

6.Activationofothersmallmolecules 393

7.Aromaticity-enhancedsmallmolecule activation 397

8.Catalytichydrogenation 398

9.Boron-ligandcooperation 401 10.Polymerizationreaction 403 11.Summaryandoutlook 407 References 407

24.Ligand-protectedclusters

YukatsuShichibuandKatsuakiKonishi

1.Introduction 411

2.Representativeexamplesoftheoretical studies 411

3.Diphosphine-ligatedgoldclusters 411 3.1Jelliummodelsandcoreshapes 411

3.2Geometricstudies 413

3.3Electronicstudies 414

3.4Effectsofligandsongeometricand electronicstructures 416 4.Conclusion

Contributors

Numbersinparenthesesindicatethepagesonwhichtheauthors’ contributionsbegin.

IndraniBaruah (345),AdvancedComputationalChemistryCentre,DepartmentofChemistry,CottonUniversity,Guwahati,Assam,India

PrasadV.Bharatam (61),DepartmentofMedicinal Chemistry,NationalInstituteofPharmaceuticalEducationandResearch,S.A.S.Nagar,Punjab,India

AlexanderI.Boldyrev (321),DepartmentofChemistry andBiochemistry,UtahStateUniversity,Logan,UT, UnitedStates

RitamRajBorah (345),AdvancedComputationalChemistryCentre,DepartmentofChemistry,CottonUniversity,Guwahati,Assam,India

DebduttaChakraborty (123),DepartmentofChemistry, BirlaInstituteofTechnology,Mesra,Ranchi,Jharkhand,India

PratimKumarChattaraj (237,357,387),Departmentof Chemistry,IndianInstituteofTechnology,Kharagpur, India

Zhong-HuaCui (157),InstituteofAtomicandMolecular Physics,KeyLaboratoryofPhysicsandTechnologyfor AdvancedBatteries(MinistryofEducation),JilinUniversity,Changchun,China

PrasenjitDas (275,297,357),DepartmentofChemistry, IndianInstituteofTechnologyKharagpur,Kharagpur, India

SubhraDas (333),SchoolofAppliedSciencesand Humanities,HaldiaInstituteofTechnology,Haldia; DepartmentofChemistry,CoochBeharPanchanan BarmaUniversity,CoochBehar,WestBengal,India

GuruduttDubey (61),DepartmentofMedicinalChemistry,NationalInstituteofPharmaceuticalEducation andResearch,S.A.S.Nagar,Punjab,India

ManasGhara (387),DepartmentofChemistryandCentre forTheoreticalStudies,IndianInstituteofTechnology Kharagpur,Kharagpur,India

SwapanK.Ghosh (313),UM-DAE-CentreforExcellence inBasicSciences,UniversityofMumbai,Mumbai, India

SouravGhoshal (247),DepartmentofChemistry,VisvaBharatiUniversity,Santiniketan,India

SantanabGiri (297,333),SchoolofAppliedSciencesand Humanities,HaldiaInstituteofTechnology,Haldia, India

K.Gopalsamy (213),CenterforHighComputingandInorganicPhysicalChemistryLaboratory,CentralLeather ResearchInstitute,CouncilofScientificandIndustrial Research,Chennai,TamilNadu,India

SaniyaGratious (373),SchoolofChemistry,Indian InstituteofScienceEducationandResearchThiruvananthapuram,Trivandrum,Kerala,India

AnkurK.Guha (345),AdvancedComputationalChemistryCentre,DepartmentofChemistry,CottonUniversity,Guwahati,Assam,India

ChunnaGuo (237),KeyLaboratoryofChemicalBiology andTraditionalChineseMedicineResearch(Ministry ofEducationofChina),HunanNormalUniversity, Changsha,Hunan,PRChina

XinHe (237),KeyLaboratoryofChemicalBiologyand TraditionalChineseMedicineResearch(Ministryof EducationofChina),HunanNormalUniversity, Changsha,Hunan,PRChina

GourhariJana (185),DepartmentofChemistry,Indian InstituteofTechnologyBombay,Mumbai,India

M.Janani (213),DepartmentofChemistry,Faculty ofEngineeringandTechnology,SRMInstituteof ScienceandTechnology,Chengalpattu,TamilNadu, India

RuchiJha (333),AdvancedTechnologyDevelopment Center(ATDC),IndianInstituteofTechnologyKharagpur,Kharagpur,WestBengal,India

DandanJiang (157,387),InstituteofAdvancedSynthesis,SchoolofChemistryandMolecularEngineering,JiangsuNationalSynergeticInnovation CenterforAdvancedMaterials,NanjingTechUniversity,Nanjing,China

AmlanJ.Kalita (345),AdvancedComputationalChemistryCentre,DepartmentofChemistry,CottonUniversity,Guwahati,Assam,India

ChayanikaKashyap (345),AdvancedComputational ChemistryCentre,DepartmentofChemistry,Cotton University,Guwahati,Assam,India

KatsuakiKonishi (411),GraduateSchoolofEnvironmentalScience,HokkaidoUniversity,Sapporo,Japan

AbhishekKumar (173),DepartmentofPhysics,UniversityofLucknow,Lucknow,UttarPradesh,India

Hai-XiaLi (157),InstituteofAtomicandMolecular Physics,KeyLaboratoryofPhysicsandTechnology forAdvancedBatteries(MinistryofEducation),Jilin University,Changchun,China

MengLi (237),KeyLaboratoryofChemicalBiologyand TraditionalChineseMedicineResearch(Ministryof EducationofChina),HunanNormalUniversity, Changsha,Hunan,PRChina

ShubinLiu (237),ResearchComputingCenter; DepartmentofChemistry,UniversityofNorthCarolina, ChapelHill,NC,UnitedStates

K.R.Maiyelvaganan (213),DepartmentofChemistry, FacultyofEngineeringandTechnology,SRMInstitute ofScienceandTechnology,Chengalpattu,TamilNadu, India

SukhenduMandal (373),SchoolofChemistry,Indian InstituteofScienceEducationandResearchThiruvananthapuram,Trivandrum,Kerala,India

LakhyaJ.Mazumder (345),AdvancedComputational ChemistryCentre,DepartmentofChemistry,Cotton University,Guwahati,Assam,India

JoseM.Mercero (19),KimikaFakultatea,Euskal HerrikoUnibertsitatea( UPV/EHU)andDonostia InternationalPhysicsCenter(DIPC),Donostia, Euskadi,Spain

NeerajMisra (173),DepartmentofPhysics,Universityof Lucknow,Lucknow,UttarPradesh,India

M.Molayem (41),PhysicalandTheoreticalChemistry, SaarlandUniversity,Saarbrucken,Germany

SukantaMondal (297),DepartmentofEducation, AshutoshMukhopadhyaySchoolofEducational Sciences,AssamUniversity,Silchar,Assam,India

SayaniMukherjee (373),SchoolofChemistry,Indian InstituteofScienceEducationandResearchThiruvananthapuram,Trivandrum,Kerala,India

AlvaroMun ˜ oz-Castro (321),GrupodeQuı´micaInorga ´ nicayMaterialesMoleculares,FacultaddeIngenierı´a,UniversidadAutonomadeChile,ElLlano Subercaseaux,Santiago,Chile

MinhThoNguyen (99),InstituteforComputational ScienceandTechnology(ICST),QuangTrungSoftware City,HoChiMinhCity,Vietnam

PhamVuNhat (99),DepartmentofChemistry,CanTho University,CanTho,Vietnam

EdisonOsorio (1),FacultyofNaturalSciencesand Mathematics,UniversityofIbague,Ibague,Colombia

RanitaPal (185),AdvancedTechnologyDevelopment Centre,IndianInstituteofTechnologyKharagpur, Kharagpur,India

SudipPan (157,357,387),InstituteofAtomicand MolecularPhysics,JilinUniversity,Changchun,China

DebolinaPaul (87),DepartmentofPhysics,Assam University,Silchar,India

ArpitaPoddar (123),DepartmentofChemistry,Indian InstituteofTechnologyKharagpur,Kharagpur,West Bengal,India

M.Prakash (213),DepartmentofChemistry,Facultyof EngineeringandTechnology,SRMInstituteofScience andTechnology,Chengalpattu,TamilNadu,India

AnupPramanik (247),DepartmentofChemistry,SidhoKanho-BirshaUniversity,Purulia,India

M.K.Ravva (213),DepartmentofChemistry,SRM University—AP,Amaravati,AndhraPradesh,India

ShahnazS.Rohman (345),AdvancedComputational ChemistryCentre,DepartmentofChemistry,Cotton University,Guwahati,Assam,India

ChunyingRong (237),KeyLaboratoryofChemical BiologyandTraditionalChineseMedicineResearch (MinistryofEducationofChina),HunanNormal University,Changsha,Hunan,PRChina

DebeshR.Roy (139),MaterialsandBiophysicsGroup, DepartmentofPhysics,SardarVallabhbhaiNational InstituteofTechnology,Surat,India

RanajitSaha (275),InstituteforChemicalReaction DesignandDiscovery(WPI-ICReDD),Hokkaido University,Sapporo,Japan;DepartmentofChemistry, IndianInstituteofTechnologyKharagpur,Kharagpur, India

PranabSarkar (247),DepartmentofChemistry,VisvaBharatiUniversity,Santiniketan,India

UtpalSarkar (87),DepartmentofPhysics,Assam University,Silchar,India

KangkanSarmah (345),AdvancedComputational ChemistryCentre,DepartmentofChemistry,Cotton University,Guwahati,Assam,India

EshaV.Shah (139),MaterialsandBiophysicsGroup, DepartmentofPhysics,SardarVallabhbhaiNational InstituteofTechnology,Surat,India

YukatsuShichibu (411),GraduateSchoolofEnvironmentalScience,HokkaidoUniversity,Sapporo,Japan

NguyenThanhSi (99),DepartmentofChemistry,CanTho University,CanTho,Vietnam

SwapanSinha (333),SchoolofAppliedSciencesand Humanities,HaldiaInstituteofTechnology,Haldia, India

M.Springborg (41),PhysicalandTheoreticalChemistry, SaarlandUniversity,Saarbr€ ucken,Germany

AmbrishKumarSrivastava (173),Departmentof Physics,DeenDayalUpadhyayaGorakhpurUniversity, Gorakhpur,UttarPradesh,India

V.Subramanian (213),CenterforHighComputingand InorganicPhysicalChemistryLaboratory,Central LeatherResearchInstitute,CouncilofScientificand IndustrialResearch;AcademyofScientificandInnovativeResearch(AcSIR),Chennai,TamilNadu,India

Zhong-MingSun (321),StateKeyLaboratoryof Elemento-OrganicChemistry,TianjinKeyLabofRare EarthMaterialsandApplications,SchoolofMaterials ScienceandEngineering,NankaiUniversity,Tianjin, China

GargiTiwari (173),DepartmentofPhysics,PatnaUniversity,Patna,Bihar,India

NikolayV.Tkachenko (321),DepartmentofChemistry andBiochemistry,UtahStateUniversity,Logan,UT, UnitedStates

JesusM.Ugalde (19),KimikaFakultatea,Euskal HerrikoUnibertsitatea(UPV/EHU)andDonostiaInternationalPhysicsCenter(DIPC),Donostia,Euskadi, Spain

FarnazYashmin (345),AdvancedComputationalChemistryCentre,DepartmentofChemistry,CottonUniversity,Guwahati,Assam,India

DongboZhao (237),InstituteofBiomedicalResearch, YunnanUniversity,Kunming,Yunnan,PRChina

LiliZhao (157,387),InstituteofAdvancedSynthesis, SchoolofChemistryandMolecularEngineering, JiangsuNationalSynergeticInnovationCenterfor AdvancedMaterials,NanjingTechUniversity,Nanjing, China

Chapter1

Describingchemicalbondinginexotic systemsthroughAdNDPanalysis

1.Introduction

Thechemicalbondingtheoryisoneofthemostimportantconceptsinchemistryanditsobjectiveistoexplainthestability ofthousandsofcompoundspresentinnature.However,theseconceptsareconstantlyevolvinginordertosatisfythemajor challengesofresearchthroughtheformulationofnewandincreasinglysophisticatedbindingmodels.TheLewischemical bondingtheory,formulatedthroughlonepairsandtwo-centertwo-electron(2c-2e)covalentbonds,hasbeenusedto explainthenatureandbehaviorofchemicalbondingattheundergraduateandresearchlevelsformorethan90years. Thesuccessisthesimplicityofmodel,theavailabilityandsimplicityofrulesforbuildingstructures,andthegraphical representationofchemicalbondingpattern.Successfully,thesemodelscouldbeassociatedwiththepropertiesofspecies andtheirreactivity,thusprovidingadescriptiveandpredictivemodel. [1,2] Nevertheless,therearesituationsinwhichthe chemicalbondandpropertiesofcertainspeciescannotbesatisfactorilydescribedbythistheory.Withinthesegroups,we emphasizetheclusters,aggregatesofatomsormoleculesbondedtogetherbydifferenttypesofinteractions.Studiesofthese systemsbeganinthe1950sandareoftensynthesizedusingmassspectrometerionsourcesorlaservaporizationtechniques. Thelattertechniqueallowstheresearcherto“assemble”speciesofanycompositionandtogobeyondstudiesofaggregates ofvolatilematerials [3–5].Structurally,clustersareanintermediateformofmatterbetweentheatomiclevelandthesolid phase,andtheirpropertiesareextremelysensitivetocompositionandchargeandcanbedrasticallyalteredbytheaddition orabstractionofaslittleasasingleatomorelectron,socreatingspecieshomologoustothoseobservedinmolecularbeams isextremelydifficult [6,7].OneofthechemicalsystemsinwhichchemicalbondingcannotbeexplainedbyLewisbond theoryareboronhydrides,systemscharacterizedbyatypical3c-2e,4c-2e,etc.,chemicalbonds [8–10]

TheAdaptiveDensityNaturalPartitioning(AdNDP)isatheoreticaltooldevelopedin2008byZubarevandBoldyrevto determinethechemicalbondingpatternsindifferentsystemsofinterest. [11] Thisapproachhasbeensuccessfullyapplied formorethanadecadetodescribethechemicalbondinginaromaticandantiaromaticorganicmolecules [12] anddifferent atomicclusters,includingboronclustersandcombinationsofdifferent chemical elementssuchasC,Si,Ge,Sn,Mg,Ca,Sr Ba,Be,andamongothers [13–22].AdNDPisbasedontheconceptofelectronpairasthemainelementofchemicalbonding modelandallowsrepresentingtheelectronicstructureintermsof nc-2ebonds,where n includestheintervaloftotalnumber ofatomsinaparticularatomicensemble.ThisapproachrecoverstheLewischemicalbondingmodelanddelocalized bondingelementsassociatedtotheconceptsofaromaticityandantiaromaticity.Inthisperspective,AdNDPprovidesa perfectdescriptionofsystemswithlocalizedanddelocalizedbonds,withoutinvolvingtheresonanceconcept.Essentially, AdNDPisapowerfulvisualapproachforinterpretateofwavefunctionsbasedonmolecularorbitals(MOs);nevertheless, MOswillnotbeconsideredproperlyasachemicalbondingmodel,unlesstheyareusedasapartofaromaticity/antiaromaticityconceptfordelocalizedbonds.

Nevertheless,insystemswherenotinvolvethesharingofelectronssuchashydrogenbridges,electrostaticinteractions andVanderWaalsforcesareprevalent,thereisnoelectrondensitysharinginthetargetregionandAdNDPtoolfailsto describethesetypesofinteractionscorrectly.However,thismethodologyallowsdescribingacorrectlocalizationofcore electronsandlonepairsresponsibleofstabilityforcertainmolecules,validatingtheresultsobtainedbyothermethodologies,whicharebettertodescribethistypeofinteractions.Anexampleofthisalliancewasappliedinthestudychemical bondingschemeinEC3+,EC4+,EC5+,andEC6+ species(E ¼ Sc,Y,andLa),workpublishedbyOsorioetal.,indepthusinga combinationofdifferenttheoreticalstrategies [23].Inafirstinstance,theexhaustiveexplorationsofrelevantpotential energysurfaces(PESs)providedafan-likestructuresasthemostenergeticallystableconfigurations.Thechemicalbonding

analysisusingthenaturalbondorbital(NBO)analysisindicatedthatthemetal-carboninteractionhasstrongioniccharacter,increasingwhengoingfromSctoLa.Besides,NBOpredictedthepresenceofsomedegreeofcovalentmetal-carbon interaction,resultverifiedbymeansofenergydecompositionanalysis(EDA) [24].TheEDAresultsshowedthatinall studiedcases,bothelectrostaticandcovalentcomponentssignificantlycontributetobondinginteractionbetweenthe carbonfragment(Cn 1 )andmetal(E2+).Additionally,thetopologicalanalysisofelectrondensityshowedthatmetal-carbon interactionsaremainlyofaclosed-shellnature(ionic-likeinteractions).However,theyalsohaveadegreeofcovalentcharacter.Finally,theAdNDPresultssupportthecovalentcomponentintheseinteractionsand,inturn,describemetal-carbon bondsasdelocalizedforms.

Inorganicmoleculesarea,anexamplewhereacombinationofdifferenttheoreticalmethodologiesisusedtoexplain chemicalbondingcanbefoundinthetheoreticaldescriptionofmechanismforthewalkrearrangementinDewarthiophenesclarifiedbyRestrepoetal. [25],wheretheresultsobtainedbyNBOandAdNDPtoolsshowedainterestingevolutionpictureofbondingduringtherearrangements,fullyconsistentandcomplementarytotheBader’stheory [26–28], wherethenatureofbondinginteractionsandevolutionofbondingusingdescriptorscalculatedatthebondcriticalpoints (BCPs)showedanexpectedincrease(decrease)intheelectrondensityattheBCPsassociatedtochemicalbondsinthe processofbeingformed(broken).Anotherexampleisthetheoreticalstudyofreactionstepsduringthebiosynthesisof suicidalclavulanicacid(coformulatedwith b-lactamantibioticsandusedtofightbacterialinfections) [29].Inthiswork, Restrepoetal.,providedevidenceofareactionchannelforthedoubleinversionofconfigurationthatinvolvesatotalofsix reactionsteps.Themoleculargeometriesandelectronicstructurescalculationsshowedasubstantialreorganizationof electrondensityrightattheonsetofreaction,mostlyinvolvingacyclicevolution/involutionoflargeregionsof p delocalizationusedtostabilizetheexcesschargeleftaftertheinitialprotonabstraction.Anumberofbondingdescriptors derivedfromanalysisofelectrontopologydistributionsshowedtheevolutionofbondordersandarequiteconsistentwith theplotsofevolutionofelectrondensityandbondingorbitalslocalizedbyAdNDPanalysis.

1.1AdNDPimplementation

TheAdNDPmethodologyisaNBOanalysisgeneralizationbasedontheoptimaltransformationofamultielectronwave functiontoalocalizedform,consistentwiththetheoreticalLewischemicalbondingmodel.Thefirstorderreducedmatrix operatorforaclosedshellsystem,independentofspin,isdefinedas:

where1and10 aretheabbreviationsfor w1 and w1 0 ,respectively,andthematrixelementis

So, g(1 j 10 )canbeexpressedasanorthonormalbasissetofatomicorbitals{wk}

Thediagonalelements Pkl ofmatrixdensity P ¼ {Pkl}correspondtooccupancynumber(ON)of wk orbitals.If wk arethe bondingorbitalswithamaximumoccupancy,thesetofhybridorbitalsshouldbeconsideredasoptimal,inthesensein whichtheapproximatewavefunctionconstructedusingthe wk orbitalswillhaveabetteroverlapwiththeoriginalwave function.Itisnecessarytoperformsomeapproximationsinthesearchforthesehybridorbitalswithmaximumoccupancy, sincethisprocedureiscomputationallydemanding.Thedensitymatrix P isrepresentedinblockformasfollows:

whereblock Pjj correspondstothe jthatomiccenter.Thenaturalspinorbitalswithmaximumoccupancyareeigenvectorsof completedensitymatrix P.Itispossibletoobtainhybridorbitalsmaximizingtheoccupationoveranatomiccenter,this means,diagonalizingthesubblocks P whichinvolvethisatomiccenter.Theprocedurecorrespondstosolvingthefollowing eigenvalueproblem:

where Pij isthedensitymatrixofsubblockonthe jthcenter, Sij istheoverlapmatrix,and hl(j) and nl(j) correspondtothefirst eigenvectorandeigenvalueof Pij,respectively,where nl(j) iscloseto2.00.Thealgorithmimplementationiscalledadaptive naturaldensitypartitioning(AdNDP)andisbasedonthediagonalizationof n-atomsubblocksofdensitymatrixforan n-atomicmolecularsystemwritteninthebasesofnaturalatomicorbitals(NAO).NAOsare1-centerorbitalsofmaximum occupancyforagivenmolecularwavefunctionderivedfromtheatomicsubblocksofdensitymatrix.Thegoalofalgorithm istorevealthemostprobableregionsinwhichlocalizedelectronpairsexist [11,12].

Inthenextsections,areviewofsomeapplicationofAdNDPmethodologytoboronchemistryandthecombinationof thesewithotherelementsoftheperiodictablewillbepresented.Withthisknowledge,itisexpectedthatthescientific communitywillbemotivatedtoexploresystemsthatdifferinasignificantwayfromclassicalchemistryandunderstand thechemicalbondingconceptspresentedinthem.

2.Boronhydrides

Boronisoneofthelightestchemicalelementsintheperiodictablewhichcanformcovalentbondswithhydrogenand, therefore,canbeusefulinformingunitsorbuildingblocksfordesigningandconstructinghydrogenstoragematerials, orinotherareassuchascatalysis [9].Understandingtheelectronicstructure,chemicalbondingandstabilityofdifferent conformationsorboronhydridesserieswithdifferentstoichiometrieswillallowtheestablishmentofboron-hydrogenratios usefulfordifferentkindsofapplications.

2.1ChemicalbondingschemeinB3Hy complexes

Althoughthestructureandpropertiesofalargenumberofboronhydridecompoundsarewellknown [10,30–32],thereare stillhundredsofunexploredsystemsthatcouldbetheoreticallydesignedfromtheBxHy0 0/n+/n generalformula.Inorderto understandthestructuralrelationshipbetweenthreeboronatomsand n hydrogens,theBoldyrev’sgroupexploredthePES ofneutralandanionicclustersofB3Hy series(y ¼ 4–7)usingtheGradientEmbeddedGeneticAlgorithm(GEGA)program [33].ThechemicalbondingschemerevealedbyAdNDPanalysisallowedtoexplaincorrectlythegeometricalandnotvery particularshapeofthesesystems:presenceof2c-2eB BandB H,3c-2eB H Bbonds,andfinallyoneB B B3c2esigmabondonB3 triangle [34]

InrelationtotheimportanceofB3Hn systems,ithasbeenexperimentallydemonstratedthattheoctahydrotriborane anionB3H8 occupiesanintermediatepositionintherankingofboronhydridecompoundsoflowercomplexity,and duetothetriangular(deltahedral)geometry,thisanioncanbeconsideredasabuildingblockforthepreparationofpolyhedralboronhydrides [35].Informationrelatedtosynthesisofthesecompoundscanbereviewedandconsultedintheliterature [36–39].InordertounderstandandestablishthebindingschemeandstabilityofB3 aggregates,theBoldyrev’s groupconductedanexplorationonthePEStounderstandthereversibledehydrogenationofMg(B3H8)2 system,which occursexperimentallyundercertainspecialconditions [40].ThestudywasperformedusingtheCoalescenceKick (CK)algorithm [41,42] andlocalizedthemoststableconformationforB3H8 anionandanadditionalstructureveryclose inenergywhichexplainsthefluxionalbehaviorofthisanion.TheAdNDPanalysisrevealedthepresenceofclassicalB H andB Bbonds(2c-2e),B H B3c-2ebondsandoneB B B3c-2edelocatedbondonB3 [40]

2.2IsostructuralrelationshipsinBnHn series

Istherearelationshipbetweencarbonandboronchemistry?Toanswerthisquestion,itisnecessarytoreviewtheestablishedconceptstaughtinundergraduatechemistrycourses.Carbonandboronareneighborsonperiodictable,buttheir chemicalbondingisdifferent.Moleculesthatpossesscarboncanform2c-2ebondswithothercarbonatomsorwithother elementssuchashydrogen.AspecificexampleisthesaturatedhydrocarbonswithCnH2n+2 stoichiometry,compounds characterizedbythepresenceof2c-2ebondsformedbyhybridorbitalsdenominatedassp3 [2].Accordingtotheperiodicity trendsandthenumberofvalenceelectronsofchemicalelements,theBnHn+2 serieswouldbeexpectedtoconsistofclassical 2c-2ebonds,whichshouldbeformedbysp2 hybridorbitals.AnexplorationofPESonBnHn+2 (n ¼ 2–5)series,usingthe CKprogram,revealedthattheclassicalstructurescomposedofsp2 hybridbondsbecomeprogressivelylessstableasthe seriesbecomeslarger,i.e.,geometricallymorecompactstructuresarecreatedanddifferentchemicalbondslike3c-2e, 4c-2e,etc.appear [43].Theconformationsandchemicalbondinganalysisareshownin Fig.1.

FIG.1 GlobalminimaandchemicalbondsidentifiedbyAdNDPanalysis. (PictureobtainedfromE.Osorio,J.K.Olson,W.Tiznado,A.I.Boldyrev, Analysisofwhyboronavoidssp2hybridizationandclassicalstructuresintheBnHn+2 series,Chem.AEur.J.18(2012)9677–9681. https://doi.org/ 10.1002/chem.201200506 withthepermissionofChemistryAEuropeanJournal.)

Thisperformanceoccursbecausetheboronatomsinthemoleculesstudiedtrytoavoidsp2 hybridization,sincean empty2patomicorbitalwouldbehighlyunfavorable.Thisaffinityofborontohaveacertainelectrondensityinall2p atomicorbitalsisoneofthemainreasonswhyclassicalstructuresarenotthemoststableconfigurations [43]

Ontheotherhand,Tiznadoetal.performedaPESscanonLinBnH2n series(n ¼ 3–6)andshowedthatboronavoids adoptingstructuressimilartothoseoforganiccycloalkanes(CnH2n),wherecyclopentane(C5H10)andcyclohexane (C6H12)arethemoststablesystems.However,theauthorsreportedthedesignofsmallestanalogofaromaticcarbocations (C3H3+),theLi3B3H3+ system,wheretheglobalminimumhasatriangularB3H32 shapewithstructuralfeaturesand chemicalbondingpatternssimilartoitsorganiccounterpart.Theauthorsconcludethataromaticityisakeyfactorfor designinganalogsofcyclicorganiccompoundsbasedonlithiumboronhydrides [44].

2.3Electronictransmutation

Oneofthemostimportantobjectivesofalchemistsatthebeginningofhistorywasthetransmutation(transformation)of basemetalsintogoldorsilver.Toachievethisgoal,thescientistsoftimelearnedtoextractcertainmetalsfrommineralsand toproducedifferenttypesofinorganicacidsandbases,whichestablishedthefundamentalsofmodernchemistry [45,46]. Alreadyinthe20thcentury,scientistsdemonstratedthatalthoughnucleartransmutationispossibleandoneelementcanbe transformedintoanotheronlybyanuclearreaction,suchreactionsrequiresignificantlyhighenergiescomparedtoanormal chemicaltransformation.Recentinvestigationsshowthattheoldalchemist’sideaofchemicaltransmutationisnot completelydead.Theoreticalanalysesshowthat,inparticularsystems,whenaboronatomacquiresanadditionalelectron akindofelectronictransmutationoccurs,andthechemicalbondandgeometricalstructureofresultingspeciebehavelikea carbonatom [47].TheworkreportedbyOlsonetal.showedthatthemoststablegeometricshapeofLi2B2H6 systemcontainsaLi2B2H6 nucleuswhichisisostructuraltoC2H6 ethanemolecule.Theauthorsproposethatthisconceptmayhavea significanteffectonpredictionofnewchemicalcompounds [47].

Accordingtotheelectronictransmutationconcepts,itcouldbegeneralizedtodifferentsystems.Theexplorationon PESsofSi5-n(BH)n 2 andNa(Si5 n(BH)n) systems,with n ¼ 0–5,showedthatanisoelectronicsubstitutionofaSiatom foraB HunitalongthetransformationfromSi52 toB5H52 ispossibleandthedeltahedralshapeofglobalminimaisnot affectedasonemovesuptheseries [48].ThechemicalbondingschemefortheSi5 n(BH)n 2 seriesispresentedin Fig.2. TheAdNDPanalysesshowedthattheconservationofstructureisduetovalenceelectronscombiningtoformsix2c-2e Xeq-Xaxbonds(X ¼ SiorB),5-n lonepairsonthesiliconatomand n B H2c-2ebonds;aparticularfactistheclosenessin electronegativityvaluesofboronandsiliconatoms(2.04vs.1.90,onthePaulingscalerespectively),whichexplainsthe prevalenceofstructuresatseverallevelsofisoelectronicsubstitution.

FIG.2 ChemicalbondingpictureofSi5 2 (A),BHSi4 2 (B),B2H2Si3 2 (C),B3H3Si2 2 (D),B4H4Si2 (E),andB5H5 2 (F)revealedbytheAdNDPanalysis. (PictureobtainedfromreferenceE.Osorio,A.P.Sergeeva,J.C.Santos,W.Tiznado,TheoreticalstudyoftheSi5-n(BH)n2-andNa(Si5-n(BH)n)-(n ¼ 0-5) systems,Phys.Chem.Chem.Phys.14(2012)16326–16330. https://doi.org/10.1039/c2cp42674a withthepermissionofPhysicalChemistryChemical PhysicsJournal.)

ElectronictransmutationonSi52 systemcanbeexploredwithotherelementsofperiodictablesuchasaluminum, whichhasthesameelectronnumberasboron.Osorioetal.investigatedthetransformationofSi52 toAl5H52 through thesuccessivesubstitutionofsiliconatomsbyAl Hunits,exploringthePESsforSi5 n(AlH)n 2 (n ¼ 0–5)systems [49].Theresultsshowedhowtheglobalminima,with n ¼ 1–3,keepthesamedeltahedralstructureofSi52 clusterand thesamechemicalbondingscheme.ThechemicalbondinganalysisforSi5 n(AlH)n 2 (n ¼ 1–3)ispresentedin Fig.3 Nevertheless,inthecaseof n ¼ 4(Al4H4Si2 )thedeltahedralconformationiscompletelydestroyedandAl4Sifragment adoptsaplanarconformationwith C2V symmetry.Thisresultshowshowthisconceptofelectronictransmutationisnot alwaysapplicabletoagivensystem [49]

Regardingthenatureofaluminum,itiswellknownthataluminum-hydrogenatomicclustersarestabilizedbytheconventionalAl AlbondsandAl H Almulticentricbonds,however,informationabouttheexistenceofdoubleAl]Alor tripleAl^Albondsislimited.Olsonetal.reportedthroughcombinedstudiesofphotoelectronspectroscopyandabinitio simulationsthepresenceofanAl]AldoublebondwithintheLiAl2H4 cluster,whichwasproposedthroughthetheoreticalmodelofelectronictransmutation [50].ExhaustivesearchesforthemoststablestructuresofLiAl2H4 cluster showedthattheglobalminimumpossessesageometricalstructuresimilartoSi2H4,thusdemonstratingthatanelectronic transmutationphenomenonoccursfromAltoSithroughelectronicdonation.Theoreticalsimulationsofphotoelectron spectrumallowedtoestablishthecoexistenceoftwoisomersandconfirmedthepresenceofaAl]Aldoublebond [50]

Unfortunately,theelectronictransmutationmodelisonlyfeasibleforsomeparticularsystems,i.e.,itcannotbe extendedtoallatomsoftheperiodictable.ThisbehaviorwasdescribedbyOlsonandetal.whoperformedabinitiostudies forelectronictransmutationofberylliumatomintoboron.ExhaustivesearchesoflowestenergystructuresforLinBen and Bn (n ¼ 3–5)showedhowthestructurecorrespondingtotheglobalminimumofLi3Be3 possessesachemicalbonding schemeandgeometricalstructuresimilartoB3 system.However,inthecaseofserieswith n ¼ 4and5,theminimumenergy structuresdonotresembletheirBn counterparts [51].

2.4ChemicalbondingindeltahedralBnHn 2 systems

Withintheenormousexistinginformationonboron-hydrogensystems,theBnHn 2 areparticularlyinterestingsincethey arecharacterizedbytheirhigh3Dsymmetry,bybeingstablearomaticspeciesandalsobecausetheypossess n +1valence electronpairs,accordingtoWade’srules [52–55].However,theelectronicstructurescannotbeexplainedbytheclassical Lewisstructurepictureduetotheelectrondeficientcharacter.ThemulticentricbondingschemeforBnHn 2 systems,with n ¼ 2–17,hasbeenrevealedthroughAdNDPanalysisinordertoobtaininformationonstabilityandaromaticity.

FIG.3 ChemicalbondingschemeforSi52 ,AlHSi42 (A1),Al2H2Si32 (B1),andAl3H3Si22 (C1)revealedbytheAdNDPanalysis. (Pictureobtained fromI.Fuenzalida-Valdivia,M.J.Beltran,F.Ferraro,A.Vasquez-Espinal,W.Tiznado,E.Osorio,IsoelectronicsubstitutionfromSi52 toAl5H52 : explorationoftheseriesSi5 n(AlH)n2 (n ¼ 0–5),Chem.Phys.Lett.647(2016)150–156. https://doi.org/10.1016/j.cplett.2016.01.062 withthepermissionofChemicalPhysicsLettersJournal.)

DifferenttheoreticalanalysesusedtodescribechemicalbondingshowhowallsandpvalenceelectronsinBnHn 2 are involvedintheformationofmulticentricbondsonthecagesurface,whichcoincideswithdifferentsymmetricconfigurations.Inthissense,AdNDPisabletodetectfivedifferenttypesofmulticentricbonds,includinganopen3c-2eBBB bond,atriangle-shaped3c-2eBBBbond,adiamond-shaped4c-2ebond,an8c-2ebondintheformofadoublering, andabondtotallydelocalizedovertheentiresurfaceofboroncage [52]

TheAdNDPtoolhasalsobeenusefulforstudyingthestabilityoflargerclusters,suchastheB80H20,C80H20 and Al80H20 systems,whichcontaintetrahedralB4H,C4H,andAl4HfragmentsinplaceofC Hfragmentsatthevertices ofdodecahedralscaffold.TheAdNDP,NBOandELFanalysesdemonstratethechemicalbondinginC80H20 canbe describedintermsofclassical2c-2eC C s bonds,whiletheelectron-deficientB80H20 andAl80H20 analogsshowthe presenceof2c-2eand3c-2e s bondsasresponsibleforthebondingbetweenandwithinthetetrahedralfragments, respectively [56].

3.Boronnanowheels

Thissectionpresentsananalysisofchemicalbondinginboronwheelstounderstandtheirbehaviorandhowtheincorporationofcertainmetalsintotheirstructureproceeds.

3.1Dynamicbehaviorinsmallboronclusters

Atpresent,itispossibletofindintheliteratureinnumerableinformationaboutthelowerenergystructuresofsmalland medium-sizedboronclusters,mostofwhicharemadeupofapairofconcentricringsandpresenttwo-dimensionalshapes [41,57,58].However,thecurrentresearchneedstoaddeffortstounderstandthedynamicbehaviorofthesesystemsandto findapplicationsforthem.AstudycarriedoutbyMerino’sgroupusingBorn-Oppenheimermoleculardynamics(BO-MD) simulationstools [59,60] showedhowinclustersB11 ,B13+,B15 ,andB19 therotationbarriersofoneoftheseringswith respecttootherareremarkablylow [61].Inthesesystems,theouterringsubunitssurroundtheinnerfragment,whichina sequenceofrandommotionsmakesitswayaroundthemainaxisinonedirectionortheother,allowingpartialrotationof innerfragment.TheAdNDPanalysispresentedin Fig.4 showshowthesesystemspossessanetworkof2c-2esinglebonds linkingtheboronatomsintheouterrings.

Inthecaseofinnerrings,thebondingisduetoanetworkofmulticenter s bondsinvolvingalmostexclusivelytheinner atoms,andaseparatesetofbondsbetweenthreeand,insomecases,morecenterslinkingtheinnerandouterrings.Asa conclusionofthiswork,theauthorsarguedthatacombinationofelectronicandgeometricfactorsisnecessaryfora decreaseinrotationalbarrierstooccurinthesetwo-dimensionalclusters.Thesefactorscanbesummarizedinthreeitems: (i)asufficientlylargeouterring;(ii)a s-skeletonofindividualringsthatremainsessentiallyintactduringrotation;and(iii) atransitionstateforinnerringrotationthatinvolvesthetransformationfromasquaregeometricshapetoadiamond,arule thatmayberelatedtoamechanismsuggesteddecadesagofortheisomerizationofcarboranesandboranes [61]

3.2BoronwheelsmembersofWankelmotorfamily

TheresearchcarriedoutbyBoldyrevandWang’sgroupsontheexistenceofaboronwheelformedby19boronatoms (B19 ) [41],whichcontainsaninternalpentagonalfragmentofsixboronatomsandsurroundedby13otheratoms,inspired differentauthorstounderstandthemotionofthesetwoconcentricrings.

Merino’sgroupdeterminedthroughBO-MDsimulationshowintheB19-clusterthepentagonalfragmentandtheouter boronringcanrotatealmostfreelyinoppositedirections,similartoaWankelmotor [62].Inspiredbytheseresults,thesame researchgroupreportedthetheoreticaldesignofB182 cluster,asystemthathasadynamicbehaviorsimilartoB19 and wouldthereforebehavelikeaWankelmotor [63].Thisdianionicandelectronicallystableclusterhasadoublearomatic concentricsystem, s and p.Theinternalunit,composedofsixboronatoms,undergoesanalmostfreerotationwithinthe perimeterofB12 ring.

TheAdNDPanalysispresentedin Fig.5 showstheabsenceof2c-2esigmabondslocatedbetweentheouterringB12 and innerunitB6;additionally,AdNDPonlydetectsthepresenceofmulticentricdelocalizedbondsas3c-2e,4c-2e,etc.,which migrateeasilyfromonepositiontoanotherduringtherotationofB6 unit.

Similarly,theAdNDPtoollocatedasetof4c-2edelocalized p bondsbetweentheinnerandouterring,andone6c-2e bondlocatedontheinnerring.Theabsenceofanylocalized s bondbetweentheinnerringandperipheralboronatoms makestheB182 systemshowafluxionalbehavior.

TheunderstandingofdynamicperformanceofthesesystemshasallowedtoMerino’sgroupestablishhowtostopor preventonefragmentfromrotatingaroundanother.TheirtheoreticalinvestigationsshowshowthesubstitutionintheB19 systemofacarbonatomforaboronatomcangiveaneutralspecies,CB18, andcancelthefluxionalityofthisanion [64].The AdNDPanalysisreportedin Fig.6 showshowCB18 clusterhasapielectrondistributionanalogoustoB19 ;however,the sigmaelectrondistributionisconsiderablydifferent:elevenperipheralB B2c-2ebonds,twoC B2c-2ebondsandone extra2c-2eC Bbond,whichconnectstheperipheralandinternalpentagonalrings.Thislastlocalizedbondisthemain reasonwhytheCB18 clusterhasaradicallydifferentdynamicbehaviorthantheB19 cluster.

Returningtosmall2Dboronclusters,theoreticalstudiesshowhowthetransformationofarigidsystemsuchastheB12 cluster,whichhasahighrotationalenergybarrierintheinnerring,toadynamicWankelmotorsystemispossiblethrough theincorporationofcertaintransitionmetals,mainlyIr,whichlowerstherotationalbarriersignificantly,transforming MB12 clustersintoWankelMotor [65]

TheglobalminimumofIrB12 isasymmetricbowl-shapedstructureinwhichtheIratomislocatedontheconcavesideof bowl,similartoitslightercongenersCoB12 andRhB12 .AlthoughalltheseMB12 clustersshowadynamicalbehavior

FIG.4 SigmabondsdetectedbyAdNDPforgroundstatesandtransitionstatesofB13 + andB15 systems. (PictureobtainedfromS.Jalife,L.Liu,S.Pan, J.L.Cabellos,E.Osorio,C.Lu,etal.,Dynamicalbehaviorofboronclusters,Nanoscale8(2016)17639–17644. https://doi.org/10.1039/c6nr06383g with thepermissionofRoyalSocietyofChemistry.)

analogoustotheso-called“Wankelmotors,”rotationofinnerB3 ringaroundofperipheralB9 ring,theenergybarrierislower forIrB12 system(5.0kcalmol 1).AlowinteractionenergybetweenB3 andMB9 fragmentsisthemainreasonwhy therotationalenergybarrierislowerforIrB12 thanforCoB12 andRhB12 clusters.Thechemicalbondingschemefor IrB12 obtainedbyAdNDPanalysisispresentedin Fig.7 andlocatestwolonepairsonIratom,nine2c-2elocalized s bonds intheperipheralB9 ring,andone3c-2edelocalized s bondininnerB3 ring.Oneofthemostimportantresultsisthatinner B3 andouterB9 ringsareconnectedbythreedelocalized s bondsof3c-2etypeandtherearenolocalizedbondsbetweenthe

FIG.5 AdNDPanalysisforB182 (PictureobtainedfromD.Moreno,S.Pan,L.L.Zeonjuk,R.Islas,E.Osorio,G.M.Guajardo,etal.,B182 :axquasiplanarbowlmemberoftheWankelmotorfamily,Chem.Commun.50(2014)8140–8143. https://doi.org/10.1039/c4cc02225d withthepermissionofRoyal SocietyofChemistry.)

metalIrandinnerB3 ring.Additionally,AdNDPanalysisshowsinteractionsbetweenIrandtheB12 moietythroughthree s andone p bonds.Furthermore,fourfullydelocalizedorbitalsalsocontributetotheinteractionbetweenMatomandB12 moiety.

3.3Designofsandwichstructures

ThediscoveryofferroceneFe(C5H5)2 in1951attractedcountlessinterestinfundamentalresearchatthetimeduetoits unusualstructureandbondingcharacteristics,resultsthatledtonumerousapplicationsinmaterialssciencesuchasdissolutionofmetalions,catalysis,andbiologicalresponse;amongothers [66,67].Oneofrulesforstructuraldesignofthese systemsinvolvesligandsthatcancoordinatewithtransitionmetalatomsthroughinteractionsbetweenthedelocalized p MOsofligandsandpartiallyoccupieddorbitalsoftransitionmetals.

FIG.6 ChemicalbondingschemeforCB18 reportedbyAdNDP. (PictureobtainedfromF.Cervantes-Navarro,G.Martinez-Guajardo,E.Osorio, D.Moreno,W.Tiznado,R.Islas,etal.,Stoprotating!OnesubstitutionhaltstheB19 motor,Chem.Commun.50(2014)10680–10682. https://doi. org/10.1039/c4cc03698k withthepermissionofRoyalSocietyofChemistry.)

FIG.7 AdNDPanalysisforIrB12 (PictureobtainedfromL.Liu,D.Moreno,E.Osorio,A.C.Castro,S.Pan,P.K.Chattaraj,etal.,Structureand bondingofIrB12-:convertingarigidboronB12platelettoaWankelmotor,RSCAdv.6(2016)27177–27182. https://doi.org/10.1039/c6ra02992b with thepermissionofRoyalSocietyofChemistry.)

FIG.8 AdNDPanalysisofendohedralstructure(I)ofCrB24. (PictureobtainedfromL.Liu,D.Moreno,E.Osorio,A.C.Castro,S.Pan,P.K.Chattaraj, etal.,StructureandbondingofIrB12-:ConvertingarigidboronB12platelettoaWankelmotor,RSCAdv.6(2016)27177–27182. https://doi.org/10. 1039/c6ra02992b andL.Liu,E.Osorio,T.Heine,Theimportanceofdynamicsstudiesonthedesignofsandwichstructures:aCrB24case,Phys.Chem. Chem.Phys.18(2016)18336–18341. https://doi.org/10.1039/c6cp02445a withthepermissionofRoyalSocietyofChemistry.)

StudiesreportedbyLi’sgroupshowhowboronclusterscanbeusedforthedesignofsandwichstructuresusingcertain transitionmetalatoms.Inthislight,Lietal.reportedhowCrB24 clustercanbeconstitutedbyakindofsandwich-type structureinwhichthechromiumatomislocatedbetweentwoB12 sheets,paralleltoeachother [68].Intuitively,the CrB24 sandwichcomplexmightnotnecessarilybethemostthermodynamicallystablestructure,sincetwoB12 units areweaklycoordinatedthroughachromiumatom.InvestigationsfocusingonBO-MDsimulationsshowedhowthe sandwich-likeCrB24 structurehasextremelypoordynamicstability:theconformationcollapsesresultinginahighlysymmetricendohedralstructurewithachromiumatominthecenterofaB24 cage [69].TheAdNDPanalysisforCrB24 systemis presentedin Fig.8 andshowshowtheendohedralCrB24 complexisstabilizedduetopresenceofsix3c-2e s bondsdelocalizedbetweenboronatomsinthecentralpartofboxandthecentralchromiumatom.Thesebondscorrespondtoamixing betweenpz orbitalsofboronatomsanddorbitalsofchromiumatom.Finally,thewholesystemisstabilizedbypresenceof three25c-2e p bondsdelocalizedoverthewholebox.

Althoughthesmallboronclusterspreferplanar(2D)conformationstomaximizethenetworkofmulticentertwoelectronbonds,thepresenceofametalwithsuitablecharacteristicscanreshapethemorphologyofclusterandformsystems ofboronlikeNanowheel,inwhichthemetalislocatedinthecenterofit.Theoreticalandphotoelectronspectroscopy

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.