A Weirdo Particle Discovered in Antarctica that is Older than the Sun themindguild.com/weirdo-particle-discovered-antarctica-older-than-sun May 2, 2019
A small grain discovered inside a meteorite in Antarctica is shedding light on how our solar system came into existence. Scientists sliced open a meteorite found within the LaPaz icefield located in Antarctica to reveal an interesting and surprising discovery. Within this meteorite was an inclusion that was determined to come straight from the nova of a white dwarf to the planet Earth. After evaluating the composition of this inclusion, researchers were then able to gain fresh insights into the thermodynamics of the white dwarf novae, which is now teaching us how solar systems similar to ours are formed in the universe. “Sometimes research is about satisfying your curiosity. One of the greatest curiosities is how the universe was formed and how life started,” stated Jane Howe, who was one of the scientists working on this project. “And this weirdo particle showed us something we didn’t know before.”
How the White Dwarf Created ‘this weirdo particle’ In a certain sense, all things that are composed of similar stardust were also detected within this meteorite from Antarctica —that is matter which comes from stars or the Big Bang. But it is quite rare to come across matter that originates straight from the source. The grain from this LaPaz meteorite, which is now called LAP-149, is now thought to have originated straight from a white dwarf nova. And because there is no fusion taking place inside a white dwarf, so they generally don’t create new matter for the universe. White dwarfs are actually remnants of old stars that have no energy and have burned all of their fuel. The white glow that they emit is simply residual energy from the fusion reactions of the old star. However, whenever white dwarfs orbit another star within a binary system, they tend to suck away material from its 1/2