New Robotic Actuator is Three Times Stronger than Human Muscle themindguild.com/new-robotic-actuator-three-times-stronger-human-muscle September 20, 2017
Have you heard about the new robotic actuator is three times stronger than human muscle? Researchers from Columbia Engineering created untether soft robotics resolving an issue that has been long standing in the technical community. The movements and actions of these robots will hopefully mimic those of real biological systems. A group from the Creative Machines lab has created a synthetic soft muscle that can be 3D printed. It is a unique artificial tissue with intrinsic expansion capability that will not need a compressor or even high-voltage machines as did the previous muscles that have been used. This new material possesses a strain density that’s 15 times greater than natural muscle, and is able to lift about 1000 times its own weight.
The Development of these New Robotic Actuators Before this creation, there was no material at all that had been able to function like a soft muscle because they did not have the right properties for intense actuation strain and stress. All the soft actuators that presently exist are generally dependent on hydraulic or pneumatic inflation to expand the elastomer skins. These external machines such as compressors and also pressure-regulating devices that are required for these technologies have always limited miniaturization which is vital to robotic creations. “We’ve been making great strides toward making robots minds, but robot bodies are still primitive,” said Hod Lipson, Professor of mechanical engineering. “This is a big piece of the puzzle and, like biology, the new actuator can be shaped and reshaped a thousand ways. We’ve overcome one of the final barriers to making lifelike robots.” The soft material of robotics was inspired by actual living organisms and it holds huge promise when it comes to having robots which can eventually converse with humans, such as in healthcare or manufacturing environments. The big advantage that soft robots have 1/2