SYNCHROTRON LIGHT RESEARCH INSTITUTE (PUBLIC ORGANIZATION)
SLRI DATA BOOKLET
2011
SLRI
DATA BOOKLET
2011
C ONTENTS
SECTION 1 SIAM PHOTON SOURCE SECTION 2 BEAMLINES BL1: Time resolved XAS (Bonn-SUT SLRI) BL2.2: SAXS BL3.2a: PES BL3.2b: PEEM BL4.1: IR Spectroscopy and Imaging BL6a: DXL BL6b: µ-XRF BL6b: PXRD BL7.2: MX BL8: XAS SECTION 3 MISCELLANEOUS Physical Constants Unit conversion General formulas SECTION 4 USER INFORMATION How to apply for beamtime Contact SLRI SLRI extension phone numbers Useful phone numbers in Nakhon Ratchasima Synchrotron Worldwide
Page
5 9 11 13 16 18 26 28 30 38 41 44 53 55 56 57 59 61 62 63 66 67
SECTION 1 THE SIAM PHOTON SOURCE
The Siam Photon Source
The Siam Photon Source (SPS) is a 1.2 GeV synchrotron light source. The injector system of the SPS comprises a 40 MeV linac (LINAC) and a 1 GeV booster synchrotron (SYN). The electron beam energy is ramped to 1.2 GeV in the storage ring (STR).
Figure 1.1. Layout of the Siam Photon Source.
The storage ring
The SPS storage ring comprises 4 superperiods of a Double Bend Acromat (DBA) lattice. The components of on period are shown in Figure 1.2.
Figure 1.2. Lay out of DBA-lattice of a period 7
Table 1.1 The SPS storage ring parameters
Table 1.1 The SPS storage ring parameters
Energy Table 1.1 The SPS storage ring parameters 1.20 GeV Circumference 81.3 m Energy 1.20 GeV Revolution time 271.2 ns Circumference
81.3 m 271.2 ns 2.78 m
Revolution time Bending Radius Bending Radius Betatron tune Horizontal Betatron tune Horizontal Vertical Vertical Energy loss per turn Energy loss per turn Natural emittance Natural emittance RF RFfrequency frequency Harmonic number Harmonic number Bunch Bunch length length
2.78 m 4.75
4.75 2.86 2.8666 keV 66 keV 41 nm-rad 41 nm-rad 118 MHz 118 MHz 32 32 52.3 mm 52.3 mm
Synchrotron light spectra
Synchrotron light Synchrotron lightspectra spectra
Currently, synchrotron light is generated from the SPS by
2
40-160eV & 220-1040eV 1E16
2
1E16
40-160eV & 220-1040eV
Undulator, 位=60 mm st rd th th 1 ,3 5 &7 harmonics
1E14
Undulator, 位=60 mm st rd th th 1 ,3 5 &7
Bending magnet harmonics
1E14 1E12
1s C 1s N 1s O 1s F
Bending magnet 1E12
1E10
100
1000
10000
Photon Energy (eV)
Figure 1.3. The photon flux density of SPS.
1E10
1s C 1s N 1s O 1s F
Flux density (ph/s/0.1%BW/mrad /mm 2)/mm2) Flux density (ph/s/0.1%BW/mrad
Currently, synchrotron light is (60 generated from thetheSPS by bendingCurrently, synchrotron light is mm generated from magnets and the U60 period length bending magnets and the (60 (60 mm SPS by bending and U60 the U60 mmperiod period length permanent magnet magnets undulator). length permanent magnet undulator). permanent magnet undulator).
100
1000
Figure 1.3. The photon flux density of SPS. Photon Energy (eV)
Figure 1.3. The photon flux85 density of SPS.
10000
SECTION 2 BEAMLINE SPECIFICATIONS
BL1: Time-resolved XAS (Bonn-SUT-SLRI)
BL4: Time-resolved XAS (Bonn-SUT-SLRI)
Unlike Unlikeconventional conventional x-ray x-ray absorption absorption spectroscopy spectroscopy (XAS)which which relies relies on on aa point point by (XAS) by point point mechanical mechanicalscanning scanning for collection for collection procedure, procedure, the the energy energy dispersive dispersive XAS XAS employsaabent bent crystal crystal to to disperse disperse and employs and focus focusaarange rangeofofX-ray X-ray energies. The The attractiveness attractiveness of energies. of energy energy dispersive dispersive scheme scheme alsoconsists consists ofof the the fact fact that also that the the sample sample isis located locatedininthe the polychromaticfocus focus area area which which permits polychromatic permits to to study studysmall small amount ofof sample. sample. The amount The transmitted transmitted x-ray x-ray isisdetected detected simultaneously with with the the position simultaneously position sensitive sensitive detector detector(PSD). (PSD). The PSD PSD used used atat BL4 BL4 isis the The the NMOS NMOS linear linearimage imagesensor sensor whichconsist consist ofof 1024 1024 element element photodiode. which photodiode.The Thecombination combination EDM and and PSD PSD allows allows the ofofEDM the simultaneous simultaneous detection detectionofofthe the absorptionspectra spectrawithin withina short a shortperiod periodof oftime. time. Thus absorption Thus this this beamline is capableof ofobtaining obtaining the the information beamline is capable information ofof electronicand andstructural structuralchanges changes under applied factors electronic under applied factors such as temperature, pressure,electromagnetic electromagnetic field, field, and assuchtemperature, pressure, and irradiation(in-situ (in-situ measurement). measurement). irradiation The Theenergy energy bandwidth bandwidth (∆(ΔE) E) ofofthethe polychromatic x-rayxpolychromatic cancan be be calculated via;via; ray calculated 2 R
=
sin θ
+
sin θ
p
q
ΔE = E cot θ
⎡ l − l sin θ ⎤ ⎢⎣ R p ⎥⎦
whereR,R,p,p,q,q,θθ, ,EEand andl lare arecrystal crystalradius, radius,source-to-crystal source-to-crystal where length, crystal-to-focus length, Bragg angle, photon energy
length, crystal-to-focus length, Bragg angle, photon energy and crystal length, respectively. and crystal length, respectively.
11 20
Beamline specification
Beamline specification Radiation source Photon Energy Wavelength Energy Resolution (ΔE/E) Spot size (H×V) Detectors Sample type Applications/ Research Field
Bending magnet 3-8 keV 4.13-1.55 Å 10-1 2 mm × 2 mm NMOS (S3904-1024, Hamamatsu) Powder / solid / liquid Investigation of electronic and structural changes, In-situ XAS
21
12
BL2.2: Small Angle X-ray Scattering (SAXS)
BL2.2: Small Angle X-ray Scattering (SAXS) BL2.2: Small Angle X-ray Scattering (SAXS) BL2.2 Angle BL2.2 aa Small Small Angle X-ray X-rayScattering Scattering(SAXS) (SAXS) BL2.2: Small AngleisisX-ray Scattering (SAXS) beamline beamline dedicated fornano-scale nano-scale structuralinvestigation investigation BL2.2 is adedicated Small for Angle X-ray structural Scattering (SAXS) ofof materials nano-particle, polymer, fiber andandcolloid. materials such asnano-scale nano-particle, polymer, fiber BL2.2 is asuch Small Angle X-ray Scattering (SAXS) beamline dedicated foras structural investigation ofcolloid. In toto nano-particle, optimize the flux, the beamline adopts In order order optimize the photon photon flux, the and beamline adopts a beamline dedicated for nano-scale structural investigation of materials such as polymer, fiber colloid. aDouble Double Multilayer Monochromator (DMM) materials such as Multilayer nano-particle, polymer, fiber and(DMM) colloid.a forfor In order to optimize the photon Monochromator flux, the beamline adopts monochromatizing synchrotron from thethebending monochromatizing synchrotron x-ray fromadopts In order to Multilayer optimize the photon flux, thex-ray beamline a Double Monochromator (DMM) forbending magnet number 22ofofMonochromator the Photon Source. magnet number theSiam Siam Photon Source. Double Multilayer (DMM) for monochromatizing synchrotron x-ray from the bending monochromatizing x-ray from the bending magnet number 2 of synchrotron the Siam Photon Source. magnetBeamline number 2specification of the Siam Photon Source. Beamline specification Radiation source Bending magnet Beamline specification Radiation source Photon Energy Bending 6-9magnet keV Radiation source Bending magnet PhotonWavelength Energy 6-9 keV1.4-2.1 Å Photon Energy 6-9 keVÅ-2 Wavelength 1.4-2.1 Energy 10 Wavelength Å EnergyResolution (ΔE/E)1.4-2.1 10-2 Energy Resolution Spot(ΔE/E) size (H×V) 10-2 1 mm × 0.2 mm Resolution (ΔE/E) Spot size (H×V) 1 mm ×CCD 0.2 mm Detectors (Mar165) / image plate Spot size (H×V)type 1CCD mm(Mar165) ×Powder 0.2 mm/ /solid Sample / liquid Detectors image plate / fiber Detectors CCD (Mar165) image/investigation plate Nano structural of Sample type Powder / solid / /liquid fiber Applications/ Sample type Powder / solid / investigation liquid / fiber ofsize materials, nano particle Nano structural Research Field Applications/ analyses Nano structural investigation materials, nano particle size of Applications/ Research Field materials, analyses nano particle size Research Field analyses For 9 keV x-ray and Mar SX165 CCD detector, the relations For 9x-ray keVaand x-ray andSX165 Mar SX165 detector, therange relations between chosen sample-detector distance of the For 9 keV Mar CCD CCD detector, the L, relations between a chosen sample-detector distance range amplitude ofsample-detector the scattering vector For 9 keV and Mar SX165 CCD detector, theL,relations between a x-ray chosen distance L, range of theof the amplitude of the scattering vector λ) sinθL,, range of the between a ofchosen sample-detector distance amplitude the scattering vectorq=(4π/ amplitude of the vector where thescattering scattering angle is 2θ, q=(4π/ λ) sin θ , and range of measurable q=(4π/ λ)structure sinθ ,range of measurable of where characteristic the scatteringlength angle is the 2θ, where the scattering angle isand θ, and range of measurable π2/q d=2 where the scattering is 2θ, and range of measurable characteristic length ofangle the structure characteristic length of the structure are given in the characteristic length of following thed=2 structure π/q table. π/q are given in the followingd=2 table. are given in the following table.
Beamline specification
are given in the following table.
137 7
Table 2.1. q-range and measurable characteristic length Table 2.1. q-range and measurable characteristic length Table 2.1. q-range and measurable characteristic length Table 2.1.2.1. q-range and measurable characteristic length Table 2.1. q-range and measurable characteristic length Table 2.1. q-range and measurable characteristic length Table q-range and measurable characteristic length
Table 2.1. 2.1. q-range and and measurable measurable characteristic length -1 -1 Table q-range -1)) (nm) L (m) (m) q-range (nm -1 characteristic ddlength (nm) L q-range (nm -1 ) (nm) (m) q-range (nm ) -1 d (nm) L (m) q-range (nm (nm) L (m) (m) q-range (nm dddd (nm) LL q-range (nm -1)) -1 ) (nm) L (m) q-range (nm 0.5 0.46-7.45 0.84-13.78 0.5 0.46-7.45 0.84-13.78 ) d (nm) L (m) q-range (nm 0.5 0.46-7.45 0.84-13.78 0.50.5 0.46-7.45 0.84-13.78 0.5 0.46-7.45 0.84-13.78 0.46-7.45 0.84-13.78 0.5 0.46-7.45 0.84-13.78 1.0 0.23-3.75 1.67-27.56 1.0 0.23-3.75 1.67-27.56 0.5 0.46-7.45 0.84-13.78 1.0 0.23-3.75 1.67-27.56 1.01.0 0.23-3.75 1.67-27.56 1.0 0.23-3.75 1.67-27.56 0.23-3.75 1.67-27.56 1.0 0.23-3.75 1.67-27.56 1.5 0.15-2.51 2.51-41.33 1.5 0.15-2.51 2.51-41.33 0.23-3.75 1.67-27.56 1.5 0.15-2.51 2.51-41.33 1.51.0 0.15-2.51 2.51-41.33 1.5 0.15-2.51 2.51-41.33 1.5 0.15-2.51 2.51-41.33 1.5 0.15-2.51 2.51-41.33 2.0 0.11-1.88 3.34-55.11 2.0 0.11-1.88 3.34-55.11 0.15-2.51 2.51-41.33 2.0 0.11-1.88 3.34-55.11 2.01.5 0.11-1.88 3.34-55.11 2.0 0.11-1.88 3.34-55.11 2.0 0.11-1.88 3.34-55.11 2.0 0.11-1.88 3.34-55.11 2.5 0.09-1.50 4.18-68.89 2.5 0.09-1.50 4.18-68.89 2.0 0.11-1.88 3.34-55.11 2.5 0.09-1.50 4.18-68.89 2.52.5 0.09-1.50 4.18-68.89 2.5 0.09-1.50 4.18-68.89 0.09-1.50 4.18-68.89 2.5 0.09-1.50 4.18-68.89 3.0 0.08-1.25 5.01-82.67 3.0 0.08-1.25 5.01-82.67 2.5 0.09-1.50 4.18-68.89 3.0 0.08-1.25 5.01-82.67 3.03.0 0.08-1.25 5.01-82.67 3.0 0.08-1.25 5.01-82.67 0.08-1.25 5.01-82.67 3.0 0.08-1.25 5.01-82.67 3.5 0.07-1.07 5.85-96.44 3.5 0.07-1.07 5.85-96.44 3.0 0.08-1.25 5.01-82.67 3.5 0.07-1.07 5.85-96.44 3.53.5 0.07-1.07 5.85-96.44 3.5 0.07-1.07 5.85-96.44 0.07-1.07 5.85-96.44 3.5 0.07-1.07 5.85-96.44 4.0 0.06-0.94 6.68-110.22 4.0 0.06-0.94 6.68-110.22 3.5 0.07-1.07 5.85-96.44 4.0 0.06-0.94 6.68-110.22 4.04.0 0.06-0.94 6.68-110.22 4.0 0.06-0.94 6.68-110.22 0.06-0.94 6.68-110.22 4.0 0.06-0.94 6.68-110.22 4.0 0.06-0.94 6.68-110.22 Some useful formulae Some useful formulae Some useful formulae Some useful formulae Some useful formulae Some useful formulae Rod-like particles Rod-like particles Someparticles useful formulae Rod-like particles Some useful formulae Rod-like particles Rod-like Rod-like particles Rod-like particles 22
Some useful formulae
2 ) ⎞2 Rod-like particles particles qR LL I (q), ππ Rod-like ⎛⎛ JJJ11((()qR π L= π 22⎛A222J I (qπ) = qR ⎞ ))))⎞⎞⎟⎟⎟⎞⎞222 ρ L(qII), πL 2 ρ J 1((qR qR AA222⎛⎜⎜⎜⎜⎛⎛1222(JqR cc((q = q),), II c((qqq)ρ)) == I (qII)II((((=qqqq)))) = 2 ρ2020022⎜⎜A = = πIπqqcqL qR A ⎜⎝⎜⎛22 JJ111qR 0 A (qR qR LL IIccc((qq),), I c (qIIIc)c(((=qq ⎟⎟ ))⎟⎞⎟⎠⎟⎠⎟⎟⎞ )) == ρρ qR 1 (qR II((qq))q== qq IIcc((qq),), IIcccc((qq)) == ρρ002002⎝AA22⎛⎝⎜⎜⎝⎜⎝⎜⎜⎝22qR ⎠ ⎠⎟⎠⎟⎟⎠ qR q ⎟⎠ ⎜⎝ qR Flat particles qR q Flat particles ⎠ 2 ⎝ Flat particles FlatFlat particles Flat particles particles 2π A Flat particles particles ⎛⎛sin( sin( qT / 222)))⎞⎞⎞2222 Flat qT A II t ((qq),), II c((qq)) ==2 ρρ22022⎛TTsin( πA 22⎛⎜ sin( qT A222ππ π= I (q2) = qT qT /qT 2)////⎞222 ⎟ sin( 2A tt ( q ), = I (qII)II((((=qqqq)))) = Iπ2A (qIII), q)ρ)) == = T 222⎛⎜⎜⎜⎜⎛⎜⎛sin( ρ0202⎜⎜TT ⎟ 2)))⎞⎟⎟⎟⎟⎠⎞⎟⎞22 I c (qIIIc)cc(((=qq =2 222qqqπ ( q ), t2A qT / 2 ρ 0T ( q ), sin( qT / ⎟ ρ qT / 2 t ⎝ A π 2 0 2 2 t ⎛ sin( qT / 2 ) ⎜ ⎝ qT 2⎠ ⎞⎟⎟⎠⎟⎟⎠ /qT 2 ///22 II((qq))q== qq222 IItt((qq),), IIccc((qq)) == ρρ0020⎝TT 2 ⎜⎜⎝⎝⎜⎜⎝qT qT ⎠⎠⎟
Flat particles
qq Guinier Law Guinier Law Guinier Law Guinier Law Guinier Law Guinier Law Guinier Radius ofLaw gyration for the whole particle R
⎜⎝ qT ⎟ ⎝ qT //22 ⎠⎠
Radius of gyration for the whole particle Guinier Law Guinier Law Radius ofgyration gyration for the whole particle R Rg Radius for the whole particle Radius ofofgyration forfor thethe whole particle R RR Radius of gyration for the whole particle Radius of gyration whole 11particle R ggg 2 2 Radius of of gyration gyration for the whole particle Rgggg 22V 222whole Radius 1 −− 211particle exp( 202V II((qq))for ==2 ρρthe exp( qq222RR2g2)) R g
q)ρ)) == = ρ0202Vexp( V 22 exp( − q22)Rg2g2))) I (qI)II(((=qq − −− q 13Rqq V exp( 0V ρρ 002 2 exp( gg2 3 qg22RR 3−−13313 exp( II((qq)) == ρρ020VV 2 exp( q RRg2g ))
Radius of gyration of the cross-section Radius of gyration of the cross-section RR Radius ofgyration gyration of the the cross-section R R 33 R R Radius ofofgyration of the cross-section Radius of gyration of the cross-section R Radius of the cross-section Radius of gyration of cross-section c 111 Radius of of gyration gyration of of the the cross-section cross-section Radius RR c
ccc cc
22 A222 exp( 1−− 121 qq22222RRc2c222)) cc I (qq))) == ρ 2 ρ AA22 exp( = ρ2020022exp( −q 2Rq qc2 )RR R2c ) I (qII)II((((=qqq − − A exp( exp( − 0 A )ρ) == ρρ 2 cc2)) 0202A 22 exp( 2−− 122122 q A thickness exp( II((qq))of == ρρthe exp( qq2RRRtc2c )) Radius of gyration of the 00 A thickness Radius of gyration 2t R Radius of gyration gyration of the the thickness R2 ttt 2R Radius of gyration of the thickness Radius of gyration of the R 2 2thickness 2thickness 2 R Radius of of 2 2 2 t I (q )of exp(2−−qq222RRR t 2 T 2thickness 202 Radius of of gyration gyration the R ==2 Tρρ t2)) 2 exp( Radius 02 T ρ T exp( I (qII)II((((=qqqq))ρ))of −q − 0 exp( = ρthe T 2thickness exp( −Rqqt 2 )R Rt2t2t))t 0 ρ == 002T 2 exp( − q 22Rt2t2) exp(−−qq RRtt )) Pair Distribution Distribution Function II((qq)) ==Function ρρ020TT 2 exp( Pair
Radius of gyration of the thickness R Pair Distribution Function Pair Distribution Function Pair Distribution Function Pair Distribution Function
Globular particles Globular particles Pair Distribution Function Pair Distribution Globular particles Globular particles Globular particles Function Pair Distribution Function Globular particles 1 Globular particles particles Globular 1 11 I (q) ⋅ (qr ) ⋅ sin(qr ) dq p( r ) = ∞∞ ∞ ∞∞ 222 ∞∞
== 11I (∫qI)I(⋅(qq()qr ) ⋅ sin( qr dq Globular particles ) ⋅⋅()(qr qr sin( qr dq p( rpp)pp((=((rrrr)))) = ⋅ sin( qr )qr dq)))) dq = 222π1π qr sin( qr dq )))⋅⋅⋅sin( π∫1 ∫II((qq))⋅⋅((qr ∞
2 00 qr))⋅⋅sin( sin(qr qr)) dq dq pp((rr)2) =π= 22ππ0 222 ∫∫0∫00 II((qq))⋅⋅((qr Rod-like particles Rod-like particles 22ππ 00 Rod-like particles Rod-like particles Rod-like particles Rod-like particles ∞∞ ∞ 1 Rod-like particles ∞ 11 ∞∞ I (q)(qr ) J (qr )dq Rod-like particles p (r )1== dq 1I ∞∫∞(qIIc)( 0( qr c ((q = 2∫21π )()qr q)( qr0))())JJqr qr))))dq dq pc (pprpp)cccc((=((rrrr)))) = qr Jqr dq = JJ00()((qr qr dq c πc0∫0 IIccc((qq)()(qr 211π qr))JJ0000((qr qr))dq dq ppcc((rr)2) =π= 220ππ ∫∫0∫00 IIcc((qq)()(qr Flat particles π 2 Flat particles 2π 00 Flat particles FlatFlat particles Flat particles ∞ particles ∞∞ 1 Flat particles ∞ 1 Flat particles pp ((rr))1== 11 ∞∞ II ((qq))cos( qr dq qr dq =∫π1π1I t∞(∞∫∫qIII)ttt(cos( (q) cos( cos( qr)))))dq dq pt (rppp)tttt(=((rrr))) == qr )qr dq cos( qr dq 1π 0∫0 tt (qq))cos( t cos(qr qr))dq dq pptt((rr)π) ==0ππ ∫∫00 IItt((qq))cos( 2
Rod-like particles Flat particles
ππ ∫000
8 8 8888 88
14
Table 2.2. Relation between radius of gyration and 2.2. Relation between radius of gyration and Table geometrical parameters geometrical parameters Shape
R g2
Shape
R g2
Sphere
3R 5
Hollow sphere
3 R25 − R15 5 R23 − R13
L2 R 2 + 12 12 a2 + b2 + c2 5 a2 + b2 + c2 12 a2 + b2 h2 + 4 12
Hollow cylinder
R12 + R22 h 2 + 2 12 L 12 R 2
Rod Ellipsoid Prism Elliptic cylinder
Thin rod Thin disk Guassian chain
9
15
Nl 2 6
BL3.2a: Photoelectron Emission Spectroscopy (PES) An Undulator (U60) provides a highly collimated light with high photon flux in the region of VUV and Soft X-rays (photon energy from 40 to 1040 eV) for BL3.2. The beamline is divided into 2 branch-lines, BL3.2a Photoelecron Emission Spectroscopy (PES) and BL3.2b Photoemission Electron Microscopy (PEEM). By using PES technique, the energy of electrons emitted from sample’s surface by photoelectric effect are measured to calculate the binding energies of elemental compositions in the sample. Such information obtained is very useful, particularly for studies of variety of material surface and interface. The end-station of BL3.2a is equipped with electron energy analyzers, LEED optics, electron and ion guns, the molecular beam epitaxy (MBE) system with reflected high-energy electron diffraction (RHEED) optics and the surface magneto-optical Kerr effect (SMOKE) system.
16
Beamline specification
Beamline specification Radiation source Photon Energy Wavelength Energy Resolution (ΔE/E) Spot size (HxV)
Detectors
Sample type Applications/ Research Field
Undulator (U60) with λU= 60 mm 40-160 eV 220-1040 eV 309.96-77.49 Å 56.36-11.92 Å 10-4 4.7 mm x 1.2 mm @ VSXAS#1, 3.7 mm x 0.8 mm @ VSXPS, 1.2 mm x 0.3 mm @ VSXAS#2 and 0.3 mm x 0.1 mm @ ARPES Electron energy analyzers from Thermo VG Scientific: Angle-resolved (ARUPS10), Angleintegral (Alpha110 and CLAM2) Solid, flat and smooth, UHV compatible and conductive. Powder form can be used in case of XPS Surface, interface and thin-film researches, Material Science
11
17
BL3.2b: Photoemission Electron Microscopy (PEEM) At BL3.2b (PEEM), a sample is irradiated with monochromatic light from varied line-spacing plane-grating monochromator. Electrons created by photoemission and photoabsorption processes are projected by a set of magnetic lenses onto a micro-channel plate intensifier and a phosphor screen where the final image is formed. By scanning incident photon energy and capturing PEEM image at each energy step, a series of images which contains photoabsorption spectra from selective areas of the sample can be obtained. Alternatively, photon energy is fixed and an electron energy analyzer is used to determine the photoemission spectra of photoelectrons emitted from certain areas of the sample. PEEM is, therefore, an effective tool to study surface and interface phenomena. Examples of researches that benefit from PEEM’s capability include thin-film depositions, structural analyses of composite materials, study on novel electronic substrate, applied physics involving surface phenomena and the study of biological systems.
18
Beamline specification Beamline specification Radiation source Photon Energy Wavelength Energy Resolution (ΔE/E) Spot size (HxV) Detectors Sample type Applications/ Research Field
Undulator (U60) with λU= 60 mm 40-160 eV 220-1040 eV 309.96-77.49 Å 56.36-11.92 Å 10-4 FWHM 0.22102 x 0.04229 mm @ 40 eV (from calculation) Micro-channel plate Sensicam QE CCD camera Electron energy analyzer Solid , flat and smooth, UHV compatible and conductive Surface, interface and thin-film researches, Material Science , Biological Imaging with μ–XAS technique.
Electron Binding Energies Electron Binding Energies Electron binding energies (electron volts, ev) of the
elementsElectron binding form) energies volts,1.ev)Values of in their natural are (electron listed in Table the elements natural areData listedBooklet in Table 2.3 Values in the table in aretheir taken fromform) X-ray (LNBL/PUBin490theRev.2). table are taken from X-ray Data Booklet (LNBL/PUB490 Rev.2).
19 13
20
1H 2 He 3 Li 4 Be 5B 6C 7N 8O 9F 10 Ne 11 Na 12 Mg 13 Al 14 Si 15 P 16 S 17 Cl 18 Ar 19 K 20 Ca 21 Sc 22 Ti 23 V
13.6 24.6 54.7 111.5 188 284.2 409.9 543.1 696.7 870.2 1070.8 1303.0 1559.6 1839 2145.5 2472 2822.4 3205.9 3608.4 4038.5 4492 4966 5465
Element K 1s
48.5 63.5 88.7 117.8 149.7 189 230.9 270 326.3 378.6 438.4 498.0 560.9 626.7
37.3 41.6
L1 2s
21.7 30.65 49.78 72.95 99.82 136 163.6 202 250.6 297.3 349.7 403.6 460.2 519.8
L2 2p1/2
21.6 30.81 49.50 72.55 99.42 135 162.5 200 248.4 294.6 346.2 398.7 453.8 512.1
L3 2p3/2
29.3 34.8 44.3 51.1 58.7 66.3
M1 3s
15.9 18.3 25.4 28.3 32.6 37.2
14
M2 3p1/2
15.7 18.3 25.4 28.3 32.6 37.2
M3 3p3/2
M4 3d3/2
M5 3d5/2
N1 4s
Table 2.3 Electron binding energies (electron volts) for the elements in their natural forms.
N2 4p1/2
N3 4p3/2
Table 2.3 Electron binding energies (electron volts) for the elements in their natural forms.
21
696.0 769.1 844.6 925.1 1008.6 1096.7 1196.2 1299.0 1414.6 1527.0 1652.0 1782 1921 2065 2216 2373 2532 2698 2866 3043 3224 3412 3604 3806
24 Cr 25 Mn 26 Fe 27 Co 28 Ni 29 Cu 30 Zn 31 Ga 32 Ge 33 As 34 Se 35 Br 36 Kr 37 Rb 38 Sr 39 Y 40 Zr 41 Nb 42 Mo 43 Tc 44 Ru 45 Rh 46 Pd 47 Ag
5989 6539 7112 7709 8333 8979 9659 10367 11103 11867 12658 13474 14326 15200 16105 17038 17998 18986 20000 21044 22117 23220 24350 25514
L1 2s
Element K 1s
583.8 649.9 719.9 793.2 870.0 952.3 1044.9 1143.2 1248.1 1359.1 1474.3 1596 1730.9 1864 2007 2156 2307 2465 2625 2793 2967 3146 3330 3524
L2 2p1/2
574.1 638.7 706.8 778.1 852.7 932.7 1021.8 1116.4 1217.0 1323.6 1433.9 1550 1678.4 1804 1940 2080 2223 2371 2520 2677 2838 3004 3173 3351
L3 2p3/2
74.1 82.3 91.3 101.0 110.8 122.5 139.8 159.5 180.1 204.7 229.6 257 292.8 326.7 358.7 392.0 430.3 466.6 506.3 544 586.1 628.1 671.6 719.0
M1 3s 42.2 47.2 52.7 58.9 68.0 77.3 91.4 103.5 124.9 146.2 166.5 189 222.2 248.7 280.3 310.6 343.5 376.1 411.6 447.6 483.5 521.3 559.9 603.8
15
M2 3p1/2 42.2 47.2 52.7 59.9 66.2 75.1 88.6 100.0 120.8 141.2 160.7 182 214.4 239.1 270.0 298.8 329.8 360.6 394.0 417.7 461.4 496.5 532.3 573.0
M3 3p3/2
10.2 18.7 29.8 41.7 55.5 70 95.0 113.0 136.0 157.7 181.1 205.0 231.1 257.6 284.2 311.9 340.5 374.0
M4 3d3/2
10.1 18.7 29.2 41.7 54.6 69 93.8 112 134.2 155.8 178.8 202.3 227.9 253.9 280.0 307.2 335.2 368.3
M5 3d5/2
Table 2.3 Electron binding energies (eV) (continued)
27.5 30.5 38.9 43.8 50.6 56.4 63.2 69.5 75.0 81.4 87.1 97.0
N1 4s
Table 2.3 Electron binding energies (eV) (continued).
14.1 16.3 21.3 24.4 28.5 32.6 37.6 42.3 46.3 50.5 55.7 63.7
N2 4p1/2
14.1 15.3 20.1 23.1 27.1 30.8 35.5 39.9 43.2 47.3 50.9 58.3
N3 4p3/2
22
4018 4238 4465 4698 4939 5188 5453 5714 5989 6266 6549 6835 7126 7428 7737 8052 8376 8708 9046 9394 9751 10116 10486
48 Cd 49 In 50 Sn 51 Sb 52 Te 53 I 54 Xe 55 Cs 56 Ba 57 La 58 Ce 59 Pr 60 Nd 61 Pm 62 Sm 63 Eu 64 Gd 65 Tb 66 Dy 67 Ho 68 Er 69 Tm 70 Yb
26711 27940 29200 30491 31814 33169 34561 35985 37441 38925 40443 41991 43569 45184 46834 48519 50239 51996 53789 55618 57486 59390 61332
L1 2s
Element K 1s
3727 3938 4156 4380 4612 4852 5107 5359 5624 5891 6164 6440 6722 7013 7312 7617 7930 8252 8581 8918 9264 9617 9978
L2 2p1/2
3538 3730 3929 4132 4341 4557 4786 5012 5247 5483 5723 5964 6208 6459 6716 6977 7243 7514 7790 8071 8358 8648 8944
L3 2p3/2
772.0 827.2 884.7 946 1006 1072 1148.7 1211 1293 1362 1436 1511 1575 — 1723 1800 1881 1968 2047 2128 2207 2307 2398
M1 3s 652.6 703.2 756.5 812.7 870.8 931 1002.1 1071 1137 1209 1274 1337 1403 1471 1541 1614 1688 1768 1842 1923 2006 2090 2173
16
M2 3p1/2 618.4 665.3 714.6 766.4 820.0 875 940.6 1003 1063 1128 1187 1242 1297 1357 1420 1481 1544 1611 1676 1741 1812 1885 1950
M3 3p3/2 411.9 451.4 493.2 537.5 583.4 630.8 689.0 740.5 795.7 853 902.4 948.3 1003.3 1052 1110.9 1158.6 1221.9 1276.9 1333 1392 1453 1515 1576
M4 3d3/2 405.2 443.9 484.9 528.2 573.0 619.3 676.4 726.6 780.5 836 883.8 928.8 980.4 1027 1083.4 1127.5 1189.6 1241.1 1292.6 1351 1409 1468 1528
M5 3d5/2
Table 2.3 Electron binding energies (eV) (continued)
109.8 122.9 137.1 153.2 169.4 186 213.2 232.3 253.5 274.7 291.0 304.5 319.2 — 347.2 360 378.6 396.0 414.2 432.4 449.8 470.9 480.5
N1 4s
Table 2.3 Electron binding energies (eV) (continued). N2 4p1/2 63.9 73.5 83.6 95.6 103.3 123 146.7 172.4 192 205.8 223.2 236.3 243.3 242 265.6 284 286 322.4 333.5 343.5 366.2 385.9 388.7
63.9 73.5 83.6 95.6 103.3 123 145.5 161.3 178.6 196.0 206.5 217.6 224.6 242 247.4 257 271 284.1 293.2 308.2 320.2 332.6 339.7
N3 4p3/2
23
— — — — 0.1 2.0 1.5 — 5.2 0 8.6 7.7 8.0 8.6 — — 2.5
l0.7 16.9 23.9 32.1 40.4 48.9 67.5 77.5 89.9 102.5 — 115.1 120.5 120 129 127.7 142.6 150.5 153.6 160 167.6 175.5 182.4
48 Cd 49 In 50 Sn 51 Sb 52 Te 53 I 54 Xe 55 Cs 56 Ba 57 La 58 Ce 59 Pr 60 Nd 61 Pm 62 Sm 63 Eu 64 Gd 65 Tb 66 Dy 67 Ho 68 Er 69 Tm 70 Yb
11.7 17.7 24.9 33.3 41.9 50.6 69.5 79.8 92.6 105.3 109 115.1 120.5 120 129 133 — 150.5 153.6 160 167.6 175.5 191.2
N6 4f5/2
Element N4 4d3/2 N5 4d5/2
— — — — 0.1 2.0 1.5 — 5.2 0 8.6 2.4 4.3 5.2 4.7 4.6 1.3
N7 4f7/2
23.3 22.7 30.3 34.3 37.8 37.4 37.5 — 37.4 32 36 45.6 49.9 49.3 50.6 54.7 52.0
O1 5s
17
13.4 14.2 17.0 19.3 19.8 22.3 21.1 — 21.3 22 28 28.7 26.3 30.8 31.4 31.8 30.3
O2 5p1/2
12.1 12.1 14.8 16.8 17.0 22.3 21.1 — 21.3 22 21 22.6 26.3 24.1 24.7 25.0 24.1
O3 5p3/2
O4 5d3/2
O5 5d5/2
Table 2.3 Electron binding energies (eV) (continued)
P1 6s
Table 2.3 Electron binding energies (eV) (continued). P2 6p1/2
P3 6p3/2
24
10870 11271 11682 12100 12527 12968 13419 13880 14353 14839 15347 15861 16388 16939 17493 18049 18639 19237 19840 20472 21105 21757
71 Lu 72 Hf 73 Ta 74 W 75 Re 76 Os 77 Ir 78 Pt 79 Au 80 Hg 81 Tl 82 Pb 83 Bi 84 Po 85 At 86 Rn 87 Fr 88 Ra 89 Ac 90 Th 91 Pa 92 U
63314 65351 67416 69525 71676 73871 76111 78395 80725 83102 85530 88005 90524 93105 95730 98404 101137 103922 106755 109651 112601 115606
L1 2s
Element K 1s
10349 10739 11136 11544 11959 12385 12824 13273 13734 14209 14698 15200 15711 16244 16785 17337 17907 18484 19083 19693 20314 20948
L2 2p1/2
9244 9561 9881 10207 10535 10871 11215 11564 11919 12284 12658 13035 13419 13814 14214 14619 15031 15444 15871 16300 16733 17166
L3 2p3/2
2491 2601 2708 2820 2932 3049 3174 3296 3425 3562 3704 3851 3999 4149 4317 4482 4652 4822 5002 5182 5367 5548
M1 3s 2264 2365 2469 2575 2682 2792 2909 3027 3148 3279 3416 3554 3696 3854 4008 4159 4327 4490 4656 4830 5001 5182
18
M2 3p1/2 2024 2108 2194 2281 2367 2457 2551 2645 2743 2847 2957 3066 3177 3302 3426 3538 3663 3792 3909 4046 4174 4303
M3 3p3/2 1639 1716 1793 1872 1949 2031 2116 2202 2291 2385 2485 2586 2688 2798 2909 3022 3136 3248 3370 3491 3611 3728
M4 3d3/2 1589 1662 1735 1809 1883 1960 2040 2122 2206 2295 2389 2484 2580 2683 2787 2892 3000 3105 3219 3332 3442 3552
M5 3d5/2
Table 2.3 Electron binding energies (eV) (continued)
506.8 538 563.4 594.1 625.4 658.2 691.1 725.4 762.1 802.2 846.2 891.8 939 995 1042 1097 1153 1208 1269 1330 1387 1439
N1 4s
Table 2.3 Electron binding energies (eV) (continued). N2 4p1/2 412.4 438.2 463.4 490.4 518.7 549.1 577.8 609.1 642.7 680.2 720.5 761.9 805.2 851 886 929 980 1058 1080 1168 1224 1271
N3 4p3/2 359.2 380.7 400.9 423.6 446.8 470.7 495.8 519.4 546.3 576.6 609.5 643.5 678.8 705 740 768 810 879 890 966.4 1007 1043
25
8.9 15.9 23.5 33.6 42.9 53.4 63.8 74.5 87.6 104.0 122.2 141.7 162.3 184 210 238 268 299 319 342.4 371 388.2
196.3 211.5 226.4 243.5 260.5 278.5 296.3 314.6 335.1 358.8 385.0 412.2 440.1 473 507 541 577 603 639 675.2 708 736.2
71 Lu 72 Hf 73 Ta 74 W 75 Re 76 Os 77 Ir 78 Pt 79 Au 80 Hg 81 Tl 82 Pb 83 Bi 84 Po 85 At 86 Rn 87 Fr 88 Ra 89 Ac 90 Th 91 Pa 92 U
206.1 220.0 237.9 255.9 273.9 293.1 311.9 331.6 353.2 378.2 405.7 434.3 464.0 500 533 567 603 636 675 712.1 743 778.3
N6 4f5/2
Element N4 4d3/2 N5 4d5/2
7.5 14.2 21.6 31.4 40.5 50.7 60.8 71.2 84.0 99.9 117.8 136.9 157.0 184 210 238 268 299 319 333.1 360 377.4
N7 4f7/2
57.3 64.2 69.7 75.6 83 84 95.2 101.7 107.2 127 136.0 147 159.3 177 195 214 234 254 272 290 310 321
O1 5s 33.6 38 42.2 45.3 45.6 58 63.0 65.3 74.2 83.1 94.6 106.4 119.0 132 148 164 182 200 215 229 232 257
19
O2 5p1/2 26.7 29.9 32.7 36.8 34.6 44.5 48.0 51.7 57.2 64.5 73.5 83.3 92.6 104 115 127 140 153 167 182 232 192
O3 5p3/2
9.6 14.7 20.7 26.9 31 40 48 58 68 80 92.5 94 102.8
O4 5d3/2
7.8 12.5 18.1 23.8 31 40 48 58 68 80 85.4 94 94.2
O5 5d5/2
Table 2.3 Electron binding energies (eV) (continued)
26 34 44 — 41.4 — 43.9
P1 6s
Table 2.3 Electron binding energies (eV) (continued).
15 19 — 24.5 — 26.8
P2 6p1/2
15 19 — 16.6 — 16.8
P3 6p3/2
BL 4.1: IR Spectroscopy and Imaging Infrared microspectroscopy is a very useful technique forBLthe4.1:identification of chemical compounds. Because of IR Spectroscopy and Imaging high brightness of synchrotron radiation, synchrotron based Infrared microspectroscopy is a very useful technique for the Infrared microspectroscopy provides high spatial resolution, identification of chemical compounds. Because of high better signal toofnoise ratio and shorter data acquisition than brightness synchrotron radiation, synchrotrontime based conventional technique. BL 4.1: IR Spectroscopy Imaging Infrared microspectroscopy provides high spatialand resolution, is better designed extract to data mid-infrared light signal to to noise ratiothe andfarshorter acquisition time (spectral range between 4000-100 cm-1) the 1.2 and GeV than conventional technique. BL 4.1: IR from Spectroscopy Siam Photonis Source. This divided into 2 branch-lines Imaging designed to beamline extract theis farto mid-infrared light -1 (spectral range between 4000-100 cm ) from the 1.2 GeV in order to provide 2 end-stations working simultaneously. Photonbeam Source. into 2 branchAnSiam infrared of This highbeamline brillianceis divided in the 1-100 microns lines in range, order with to aprovide end-stations wavelength spectral 2region optimizedworking between simultaneously. An infrared beam of high brilliance in the 12.5-100 microns is delivered to an FTIR spectrometer, attached microns wavelength range, with a spectral region to100 an infrared microscope. FTIR Microspectroscopy has been optimized between 2.5-100 microns is delivered to an FTIR used to identify attached and spatially chemical makeup spectrometer, to anresolved infraredthemicroscope. FTIR ofMicrospectroscopy many samples suchhasasbeen biological various plant used tomaterials, identify and spatially andresolved animalthe tissues, minerals, polymers films and laminates, chemical makeup of many samples such as semiconductors, forensicsvarious materials, pharmaceutical biological materials, plant and animal materials, tissues, etc.minerals, polymers films and laminates, semiconductors, forensics materials, pharmaceutical materials, etc.
Beamline specification Beamline specification Radiation source Photon Energy Wavelength Spot size (H×V) Detectors Sample type Applications/ Research Field
Edge and Bending Magnet 0.3-0.025 eV 1.5-50 µm 10 × 10 µm MCT (Mercury Cadmium Telluride) Powder / solid / liquid / fiber/ solid coated on IR slide Soft Matter Biomedical and biological science Archeology Enviromental science Polymer science
22 26
Table 2.4 Principle absorption of main IR frequencies
Table 2.4 Principle absorption of main IR frequencies Wavenumber (cm-1)
Functional Group
Type of vibration
3300 – 3600
Alcohol
O-H (Strong and broad)
3000-2800& 1500-1440
Alkanes
H-C-H Asymmetric & Symmetric Stretch & H-C-H Bend
3100-3000& 1675-1600
Alkenes
3300-3200
Alkynes
1600-1500& 1400-1300
Nitro Groups
N=O Stretch & N=O Bend
3500-3100& 1640-1560
AminesPrimary
N-H Stretch & N-H Bend
3500-3100& 1550-1450
AminesSecondary
N-H Stretch & N-H Bend
3500-3100& 1670-1600& 1640-1550
Amides
N-H Stretch (similar to amines) & C=O Stretch & N-H Bend
3400-2400& 1730-1650
Carboxyl ic Acids
Hydrogen-bonded O-H Stretch & C=O Stretch
C=C-H Asymmetric Stretch & C-C=C Symmetric Stretch
1750-1625
ketones
C=O Stretch
1750-1625 1755-1650& 1300-1000
aldehyde Esters
C=O Stretch C=O Stretch & C-O Stretch
23
27
BL6a: Deep X-ray Lithography (DXL) BL6a is a white light beamline for Deep X-ray Lithography used for LIGA process. X-ray LIGA is a technique using synchrotron radiation for micromachining and MEMS fabrication, with specific needs such as mass production, smooth side wall, various lateral shapes, precise metal parts and high aspect ratio microstructures. Design and fabrication of high aspect ratio microstructures using X-ray lithography can provide high precision micromolding for micro-component in industrial fabrication process. DXL can also be applied in MEMS technology which is use to fabricate sensors and actuators such as humidity sensor, accelerator sensor, pressure sensor, microswitch, microheater, and microvalve. LIGA process is shown in Figure 2.1. Since it is a white light beamline BL6a can also be used for irradiation of specimens. Experiments such as a study on effects of radiation on biological samples can be performed by irradiating sample with synchrotron light at BL6a.
Figure 2.1. X-ray LIGA process 28
Beamline specification
Beamline specification Radiation source Photon Energy Spot size (HxV) Photoresist Applications/ Research Field
Bending magnet White beam 87.2 mm Ă— 7.4 mm SU-8, PMMA, Dry film Design and fabrication of highaspect-ratio microstructure, micromolding, micropart sensor, actuator and etc.
29
25
BL6b: Micro–X–ray Fluorescence (µ-XRF) BL6b, a beamline for synchrotron µ-X-ray fluorescence spectroscopy and imaging technique, utilizes continuous Xrays from a bending magnet. The synchrotron light with energy below 1 keV is filtered out by a beryllium window with 100 µm thickness. The horizontal and vertical divergences of the beam are 5.3 mrad and 1.1 mrad, respectively. The Polycapillary X-ray half-lens is then used in order to focus the white beam onto sample with spots size below 100 µm. This endstation is specifically for the elemental analysis of a wide variety of materials in EnergyDispersive mode. This technique provides good-qualitative and quantitative XRF analyses, with advantages for samples with low mass density and small analysis areas. Moreover, the distribution mapping of specific elements in particular area can be achieved. This is a user-friendly and non-destructive technique, in which various research fields can be studied e.g. biology, chemistry, material science, life science, environment science, soil science, cultural heritage, etc.
30
Beamline specification
Beamline specification Radiation source Photon Energy Spot size (HxV) Detectors Sample type Applications/ Research Field
Bending magnet White beam 95 × 95 μm Si(PIN) detector (energy resolution: 150 eV) Solid/powder/living samples (eg., plant) Element analysis, element distribution analysis /biology, chemistry, materials, life sciences, environment science, soil science, cultural heritage and etc.
X-Ray Emission Energies
X-Ray Emission Energies
InIntable K,L, L,and andMMx-ray x-ray emission table2.4, 2.5, characteristic characteristic K, emission lines given for for elements elements with with 11 11=≤ZZ= ≤92.92.Only Onlythethe lines are are given strongest are included: included: Ka Kα1,, Ka Kα,2,KKβ Lα, 1La , Lα 2, Lβ1, strongest lines lines are β1,1,La 1 2 1 2, L β1, Mα.1.Values Valuesininthe thetable table taken from X-ray Data Lβ Lβ22,, LLγγ11,, Ma arearetaken from X-ray Data 1 Booklet (LNBL/PUB-490Rev.2). Rev.2). Booklet (LNBL/PUB-490
31
27
32
Element 11 Na 12 Mg 13 Al 14 Si 15 P 16 S 17 Cl 18 Ar 19 K 20 Ca 21 Sc 22 Ti 23 V 24 Cr 25 Mn 26 Fe
Kα1 1,040.98 1,253.60 1,486.70 1,739.98 2,013.7 2,307.84 2,622.39 2,957.70 3,313.8 3,691.68 4,090.6 4,510.84 4,952.20 5,414.72 5,898.75 6,403.84 28
Kα2 Kβ1 Lα1 Lα2 Lβ1 Lβ2 1,040.98 1,071.1 1,253.60 1,302.2 1,486.27 1,557.45 1,739.38 1,835.94 2,012.7 2,139.1 2,306.64 2,464.04 2,620.78 2,815.6 2,955.63 3,190.5 3,311.1 3,589.6 3,688.09 4,012.7 341.3 341.3 344.9 4,086.1 4,460.5 395.4 395.4 399.6 4,504.86 4,931.81 452.2 452.2 458.4 4,944.64 5,427.29 511.3 511.3 519.2 5,405.509 5,946.71 572.8 572.8 582.8 5,887.65 6,490.45 637.4 637.4 648.8 6,390.84 7,057.98 705.0 705.0 718.5 Table 2.5 Energies of x-ray emission lines (continued).
Lγ1
Mα1
Table 2.5 Photon energies, in electron volts,volts, of principal K-,K-,L-,L-,and lines. Table 2.5 Photon energies, in electron of principal andM-shell M-shell emission emission lines.
33
Element 27 Co 28 Ni 29 Cu 30 Zn 31 Ga 32 Ge 33 As 34 Se 35 Br 36 Kr 37 Rb 38 Sr 39 Y 40 Zr 41 Nb 42 Mo 43 Tc
Kα1 6,930.32 7,478.15 8,047.78 8,638.86 9,251.74 9,886.42 10,543.72 11,222.4 11,924.2 12,649 13,395.3 14,165 14,958.4 15,775.1 16,615.1 17,479.34 18,367.1 29
Kα2 Kβ1 Lα1 Lα2 Lβ1 Lβ2 6,915.30 7,649.43 776.2 776.2 791.4 7,460.89 8,264.66 851.5 851.5 868.8 8,027.83 8,905.29 929.7 929.7 949.8 8,615.78 9,572.0 1,011.7 1,011.7 1,034.7 9,224.82 10,264.2 1,097.92 1,097.92 1,124.8 9,855.32 10,982.1 1,188.00 1,188.00 1,218.5 10,507.99 11,726.2 1,282.0 1,282.0 1,317.0 11,181.4 12,495.9 1,379.10 1,379.10 1,419.23 11,877.6 13,291.4 1,480.43 1,480.43 1,525.90 12,598 14,112 1,586.0 1,586.0 1,636.6 13,335.8 14,961.3 1,694.13 1,692.56 1,752.17 14,097.9 15,835.7 1,806.56 1,804.74 1,871.72 14,882.9 16,737.8 1,922.56 1,920.47 1,995.84 15,690.9 17,667.8 2,042.36 2,039.9 2,124.4 2,219.4 16,521.0 18,622.5 2,165.89 2,163.0 2,257.4 2,367.0 17,374.3 19,608.3 2,293.16 2,289.85 2,394.81 2,518.3 18,250.8 20,619 2,424 2,420 2,538 2,674 Table 2.5 Energies of x-ray emission lines (continued).
Table 2.5 Energies of x-ray emission lines (continued).
2,302.7 2,461.8 2,623.5 2,792
Lγ1
Mα1
34
Element 44 Ru 45 Rh 46 Pd 47 Ag 48 Cd 49 In 50 Sn 51 Sb 52 Te 53 I 54 Xe 55 Cs 56 Ba 57 La 58 Ce 59 Pr 60 Nd
Kα1 19,279.2 20,216.1 21,177.1 22,162.92 23,173.6 24,209.7 25,271.3 26,359.1 27,472.3 28,612.0 29,779 30,972.8 32,193.6 33,441.8 34,719.7 36,026.3 37,361.0 30
Kα2 Kβ1 Lα1 Lα2 Lβ1 Lβ2 19,150.4 21,656.8 2,558.55 2,554.31 2,683.23 2,836.0 20,073.7 22,723.6 2,696.74 2,692.05 2,834.41 3,001.3 21,020.1 23,818.7 2,838.61 2,833.29 2,990.22 3,171.79 21,990.3 24,942.4 2,984.31 2,978.21 3,150.94 3,347.81 22,984.1 26,095.5 3,133.73 3,126.91 3,316.57 3,528.12 24,002.0 27,275.9 3,286.94 3,279.29 3,487.21 3,713.81 25,044.0 28,486.0 3,443.98 3,435.42 3,662.80 3,904.86 26,110.8 29,725.6 3,604.72 3,595.32 3,843.57 4,100.78 27,201.7 30,995.7 3,769.33 3,758.8 4,029.58 4,301.7 28,317.2 32,294.7 3,937.65 3,926.04 4,220.72 4,507.5 29,458 33,624 4,109.9 — — — 30,625.1 34,986.9 4,286.5 4,272.2 4,619.8 4,935.9 31,817.1 36,378.2 4,466.26 4,450.90 4,827.53 5,156.5 33,034.1 37,801.0 4,650.97 4,634.23 5,042.1 5,383.5 34,278.9 39,257.3 4,840.2 4,823.0 5,262.2 5,613.4 35,550.2 40,748.2 5,033.7 5,013.5 5,488.9 5,850 36,847.4 42,271.3 5,230.4 5,207.7 5,721.6 6,089.4 Table 2.5 Energies of x-ray emission lines (continued).
Table 2.5 Energies of x-ray emission lines (continued). Lγ1 2,964.5 3,143.8 3,328.7 3,519.59 3,716.86 3,920.81 4,131.12 4,347.79 4,570.9 4,800.9 — 5,280.4 5,531.1 5,788.5 6,052 6,322.1 6,602.1 833 883 929 978
Mα1
35
Element 61 Pm 62 Sm 63 Eu 64 Gd 65 Tb 66 Dy 67 Ho 68 Er 69 Tm 70 Yb 71 Lu 72 Hf 73 Ta 74 W 75 Re 76 Os 77 Ir
Kα1 38,724.7 40,118.1 41,542.2 42,996.2 44,481.6 45,998.4 47,546.7 49,127.7 50,741.6 52,388.9 54,069.8 55,790.2 57,532 59,318.24 61,140.3 63,000.5 64,895.6 31
Kα2 Kβ1 Lα1 Lα2 Lβ1 Lβ2 38,171.2 43,826 5,432.5 5,407.8 5,961 6,339 39,522.4 45,413 5,636.1 5,609.0 6,205.1 6,586 40,901.9 47,037.9 5,845.7 5,816.6 6,456.4 6,843.2 42,308.9 48,697 6,057.2 6,025.0 6,713.2 7,102.8 43,744.1 50,382 6,272.8 6,238.0 6,978 7,366.7 45,207.8 52,119 6,495.2 6,457.7 7,247.7 7,635.7 46,699.7 53,877 6,719.8 6,679.5 7,525.3 7,911 48,221.1 55,681 6,948.7 6,905.0 7,810.9 8,189.0 49,772.6 57,517 7,179.9 7,133.1 8,101 8,468 51,354.0 59,370 7,415.6 7,367.3 8,401.8 8,758.8 52,965.0 61,283 7,655.5 7,604.9 8,709.0 9,048.9 54,611.4 63,234 7,899.0 7,844.6 9,022.7 9,347.3 56,277 65,223 8,146.1 8,087.9 9,343.1 9,651.8 57,981.7 67,244.3 8,397.6 8,335.2 9,672.35 9,961.5 59,717.9 69,310 8,652.5 8,586.2 10,010.0 10,275.2 61,486.7 71,413 8,911.7 8,841.0 10,355.3 10,598.5 63,286.7 73,560.8 9,175.1 9,099.5 10,708.3 10,920.3 Table 2.5 Energies of x-ray emission lines (continued).
Table 2.5 Energies of x-ray emission lines (continued). Lγ1 6,892 7,178 7,480.3 7,785.8 8,102 8,418.8 8,747 9,089 9,426 9,780.1 10,143.4 10,515.8 10,895.2 11,285.9 11,685.4 12,095.3 12,512.6
Mα1 — 1,081 1,131 1,185 1,240 1,293 1,348 1,406 1,462 1,521.4 1,581.3 1,644.6 1,710 1,775.4 1,842.5 1,910.2 1,979.9
36
Element 78 Pt 79 Au 80 Hg 81 Tl 82 Pb 83 Bi 84 Po 85 At 86 Rn 87 Fr 88 Ra 89 Ac 90 Th 91 Pa 92 U
Kα1 66,832 68,803. 70,819 72,871. 74,969. 77,107. 79,290 81,520 83,780 86,100 88,470 90,884 93,350 95,868 98,439
Kα2 65,112 66,989 68,895 70,831 72,804 74,814 76,862 78,950 81,070 83,230 85,430 87,670 89,953 92,287 94,665
Kβ1 75,74 77,98 80,25 82,57 84,93 87,34 89,80 92,30 94,87 97,47 100,1 102,8 105,6 108,4 111,3
Lα1 9,442. 9,713. 9,988. 10,26 10,55 10,83 11,13 11,42 11,72 12,03 12,33 12,65 12,96 13,29 13,61
32
Lα2 9,361. 9,628. 9,897. 10,17 10,44 10,73 11,01 11,30 11,59 11,89 12,19 12,50 12,80 13,12 13,43
Lβ1 11,07 11,44 11,82 12,21 12,61 13,02 13,44 13,87 14,31 14,77 15,23 15,71 16,20 16,70 17,22
Lβ2 11,25 11,58 11,92 12,27 12,62 12,97 13,34 — — 14,45 14,84 — 15,62 16,02 16,42
Table 2.5 Energies of x-ray emission lines (continued). Lγ1 12,942 13,381 13,830 14,291 14,764 15,247 15,744 16,251 16,770 17,303 17,849 18,408 18,982 19,568 20,167
Mα1 2,050. 2,122. 2,195. 2,270. 2,345. 2,422. — — — — — — 2,996. 3,082. 3,170.
Figure 2.2. Transitions that give rise to the emission lines in Table 2.5.
37
BL6b: X-ray powder diffraction
BL6b: X-ray powder diffraction
X-ray powder diffraction technique (P-XRD) at BL6b is in aX-ray powder diffraction (P-XRD)technique, at BL6b is used time-sharing mode, as technique a complementary used inµ-XRF. a time-sharing mode, as consists a complementary technique, with The system of a single-axis with µ-XRF. The consists of acounter single-axis goniometer goniometer and system a proportional detector with and a proportional counter withdiffractometer receiving andis receiving and scattering sollerdetector slits. The scatteringbysoller diffractometer is donated by the King donated the slits. KingThe Mongkut’s University of Technology Mongkut’s University Technology (KMUTT). Si (111) (KMUTT). A Si (111) of crystal is used to reflect theAbeam into crystal is used to reflect the P-XRD branch. the P-XRD branch. With the the beam angle into of approximately 14°, 8 With X-rays the angle 14°, 8 keV be keV canofbeapproximately selected for P-XRD end X-rays station.can When selected for P-XRD end station. removed, the crystal is removed, white When beam the of crystal X-raysiscan go to white beam end of X-rays can go to micro-XRF end station. micro-XRF station.
Powder Powder diffraction a powerful analytical technique diffraction is a ispowerful technique for for investigation crystalline materials.analytical Eachcrystal crystal structure investigation of of crystalline materials. Each structure produces aadistinctive TheThe positions of theof produces distinctivediffraction diffractionpattern. pattern. positions diffraction peakspeaks give information on the lattice d-spacing the diffraction give information on the lattice of dthe crystal, andcrystal, the relative intensity the peaks indicates spacing of the and the relativeofintensity of the peaks particular particular phase andphase type ofandmaterial fingerprinta indicates type ofproviding material aproviding for materialfor identification. Samples withSamples mixed phases show fingerprint material identification. with mixed superposed containing informationinformation on relative phases show patterns superposed patterns containing on concentration of the mixtures. relative concentration of the mixtures.
Beamline specification
Beamline specification Radiation source Photon Energy Wavelength Energy Resolution ΔE/E) Spot size (HxV) Detectors Sample type Applications/ Research Field
Bending magnet 8 keV 1.55 Å 10-4 10 × 3 mm Proportional counter Powder crystalline material structure, atomic arrangement, /Chemistry, Material science
34
38
Simple cubic
Body-centered cubic
Simple tetragonal
Simple Body-centered orthorhombic orthorhombic
Body-centered tetragonal
Base-centered orthorhombic
rhombohedral
Simple monoclinic
Face-centered cubic
Face-centered orthorhombic
hexagonal
Base-centered monoclinic
triclinic
Figure 2.3. The 14 Bravais Lattices of 3-dimensional Space. 39
Table 2.6 Equation of d-spacing for all seven crystal Table 2.6 Equation of d-spacing for all seven crystal systems systems Equation
Crystal System
1 k2 + k2 + l2 = 2 d hkl a2
Cubic Tetragonal Hexagonal
1 k 2 + k 2 +l 2 = + 2 2 d hkl a2 c 1 4 ⎛ k 2 + hk + k 2 ⎞ +l 2 = ⎜ ⎟+ 2 2 d hkl 3⎝ a2 ⎠ c
Rhombohedral
( k 2 + k 2 + l 2 ) sin 2 α + 2(hk + kl + hl )(cos 2 α − cos α ) 1 = 2 d hkl a 2 (1 − 3cos 2 α + 2 cos3 α )
Orthorhombic
1 h2 k 2 l 2 = 2+ 2+ 2 2 d hkl a b c
Monoclinic
1 1 ⎛ h 2 k 2 sin 2 β l 2 2hl cos β ⎞ = + 2− ⎜ + ⎟ 2 d hkl sin 2 β ⎝ a 2 b2 c ac ⎠ −1 1 = (1 − cos2 α − cos2 β − cos2 γ + 2 cos α cos β cos γ ) 2 d hkl
Triclinic
⎛ h2 k2 l2 2kl × ⎜ 2 sin 2 α + 2 sin 2 β + 2 sin 2 γ + ( cos β cos γ − cos α ) b c bc ⎝a 2lh 2hk + ( cos γ cos α − cos β ) + ( cos α cos β − cos γ ) ⎞⎟ ca ab ⎠
36
40
BL7.2: Macromolecule Crystallography beamline and end station (MX)
BL7.2: TheMacromolecule end station forCrystallography Macromolecule Crystallography beamline and (MX)endbeamline has been installed at Siam Photon Laboratory station (MX) end station for research Macromolecule Crystallography (SPL) toThepromote the MX and serve an increasing (MX) ofbeamline installed at Siam number MX usershasin been Thailand. While waitingPhoton for the Laboratory to promote the MX research servestorage an installation of(SPL) the wavelength shifter into theandSPL number of MX in Thailand. While waiting ringincreasing and the construction of users the BL 7.2 to complete, an x-ray for the installation of the wavelength shiftercollection, into the SPL diffractometer has been utilized for data using storage ring and construction the BL 7.2 todata complete, rotating anode as anthex-ray source.ofDiffraction obtained an x-ray diffractometer has been utilized for data collection, can be analyzed to give three-dimensional structure of the using rotating The anodeprocedure as an x-ray source. Diffraction data macromolecule. for structure determination obtained can be analyzed todata give collection, three-dimensional structure consists of crystallization, data processing, of the macromolecule. The procedure for structure structure refinement/validation and model building. The determination consists crystallization, data collection, data at information allows us toof understand biological processes processing, structure refinement/validation and model the most basic level: which molecules interact, how they interact The information allows us to understand biological andbuilding. how enzymes catalyze reactions. Since the threeprocesses at the most basic level: which molecules interact, dimensional structures of proteins and nucleic acids are how they interact and how enzymes catalyze reactions. Since essential for the understanding of reaction mechanisms, structures of proteins and nucleic acids therethe arethree-dimensional many for applications of MXoftechnique. For example, essential the understanding reaction mechanisms, it is are athere powerful tool to determine how a pharmaceutical are many applications of MX technique. For example,drug interacts with itstool protein targethow anda pharmaceutical what changesdrug might it is a powerful to determine improve it. with its protein target and what changes might interacts improve it.
Beamline specification Beamline specification Radiation source Photon Energy Wavelength Energy Resolution ΔE/E) Spot size (HxV) Detectors Sample type Applications/ Research Field
Wavelength shifter 5-20 keV 2.48-0.62 Å 10-4 940 × 130 μm CCD (Mar SX165) Macromolecule crystal (proteins and nucleic acids) Three-dimensional structural analysis used for agricultural, pharmaceutical and industrial applications 37
41
42
Cubic
Tetragonal
k
a=b=c ;
m-3
mmm (2/m 2/m 2/m) l h, k h, k, l 4/m a=b≠c ; l α=β=γ=90 4/m m m (4/m 2/m 2/m) k l l, k
2/m
-1
class Screw Unit Cell Laue (after Dimensions Integration) axis
a≠b≠c ; α≠β≠γ Monoclinic a≠b≠c ; α=γ=90 β≠90 Orthorhombic a≠b≠c ; α=β=γ=90
Triclinic
Crystal system
38
F23 (196)
C222 (21) F222 (22) C2221 (20)
C2 (5)
I23 (197)
I4 (79) I41 (80) I422 (97) I4122 (98)
I222 (23) I212121 (24)
14 Bravais Lacttices (from autoindex) FaceBodyC-centered centered centered
P222 (16) P2221 (17) P21212 (18) P212121 (19) P4 (75) P41 P42 P43 (76-78) P422 (89) P4212 (90) P4122 (91) P4222 (93) P4322 (95) P41212 (92) P42212 (94) P43212 (96) P23 (195)
P2 (3) P21 (4)
P1 (1)
Primitive
Table 2.72.7Bravais Laueclass classandandSpace Space Group Determination. Table BravaisLattice, Lattice, Laue Group Determination Rhombohedral
43
a=b=c ; m-3 α=β=γ=90 (2/m -3) m3m (4/m -3 2/m)
a=b≠c ; α=β=90 γ≠120
Cubic
Hexagonal
P4 (75) P41 P42 P43 (76-78) P422 (89) P4212 (90) P4122 (91) P4222 (93) P4322 (95) P41212 (92) P42212 (94) P43212 (96) P23 (195) P213 (198) 38 P432 (207) P4132 (213) P4232 (208) P4332 (212) P3 (143) P31 P32 (144-145) P321 (150) P3121 (152) P3221 (154) P312 (149) P3112 (151) P3212 (153) P6 (168) P61 (169) P62 (171) P63 (173) P64 (172) P65 (170) P622 (177) P6122 (178) P6222 (180) P6322 (182) P6422 (181) P6522 (179) I4 (79) I41 (80) I422 (97) I4122 (98)
6/m m m
6/m
-31m
-3m1
-3
l
l
l
l
l
l
l
39
I23 (197) I213 (199) F432 (209) I432 (211) F4132 (210) I4132 (214)
F23 (196)
R32 (155)
R3 (146)
Table 2.7 Bravais Lattice, Laue class and Space Group Determination (continued).
4/m a=b≠c ; l α=β=γ=90 4/m m m (4/m 2/m 2/m) k l l, k
Tetragonal
BL8: X-ray Absorption Spectroscopy (XAS) BL8 is dedicated to X-ray Absorption Spectroscopy (XAS). XAS is a powerful technique for determining chemical speciation and local structure (type of neighboring atoms, coordination number, inter-atomic distance) around the absorbing atom. Moreover XAS is a non-destructive tool which can be employed to study samples in different scientific areas, such as material science, biology, environmental science, archeology and geology. The technique can be applied to crystalline and amorphous samples in all physical forms. BL8 is a bending magnet beamline, tunable by a fixed-exit double crystal monochromator (DCM), equipped with several types of crystal for covering photon energy from 1250 eV to 10000 eV. K-edge absorption of Magnesium up to Zinc can be studied. Other heavier atomic species can be investigated via L or M edges. XAS can be carried out in either transmission mode (TM-XAS) in which transmitted intensity of x-rays after the sample is detected or fluorescent mode (FL-XAS) in which intensity of fluorescent x-rays from the sample is detected.
Figure 2.4 Experimental setup for TM-XAS and FL-XAS
44
Beamline specification
Beamline specification Beamline specification Radiation source Bending magnet Radiation source Bending magnet Photon Energy 1.25 keV-10 keV Photon Energy 1.25 keV-10ÅkeV Wavelength 1.24-9.94 Wavelength 1.24-9.94 Å Energy 1e-4 to 3e-4 Energy Resolution ΔE/E) 1e-4 to 3e-4 Resolution ΔE/E) Spot size (HxV) 13 mm × 1 mm Spot size (HxV) 1 mm 13 mm ×and 10-cm 40-cm long ion chamber 10-cm and 40-cm long ion chamber (TM mode) (TM mode) 13-element Ge detector (FL mode) Detectors 13-element Ge detector (FL mode) Detectors Lytle detector (FL mode) Lytle detector (FL mode) Silicon drift detector (FL mode) Silicon detector (FL/ gas mode) Sample type Powderdrift / solid / liquid Sample type Powder / solid / liquid / gas Chemical and structural Chemical and structural investigation of an absorbing investigation of an absorbing element; providing oxidation state, Applications/ element; providing Applications/ local coordination oxidation number, state, Research Field local coordination number, Research Field interatomic distance and type of interatomic distance and type of neighboring atoms neighboring atoms
Table2.8 2.8DCM DCMcrystal crystalandandenergy energyrange range Table Table 2.8 DCM crystal and energy range 2d spacing Photon energy Photon energy Crystal type 2d spacing Crystal type (Å) range (eV) (Å) range (eV) KTP(011) 10.955 1250-4780 KTP(011) 10.955 1250-4780 InSb(111) 7.481 1830-3700 InSb(111) 7.481 1830-3700 Si(111) 6.271 2180-8350 Si(111) 6.271 2180-8350 Ge(220) 4.001 3440-10000 Ge(220) 4.001 3440-10000 Si(220) 3.840 3570-10000 Si(220) 3.840 3570-10000
45
4141
46
11 Na 12 Mg 13 Al 14 Si 15 P 16 S 17 Cl 18 Ar 19 K 20 Ca 21 Sc 22 Ti 23 V 24 Cr 25 Mn 26 Fe
Element
K 1s 1070.8 1303.0 1559.6 1839 2145.5 2472 2822.4 3205.9 3608.4 4038.5 4492 4966 5465 5989 6539 7112
L1 2s
L2 2p1/2
42
L3 2p3/2
M1 3s
M2 3p1/2
M3 3p3/2
M4 3d3/2
M5 3d5/2
TableTable 2.9 Electron binding energies, in electron volts, for the elements in their natural forms (1-10 keV). 2.9 Electron binding energies, in electron volts, for the elements in their natural forms (1-10 keV).
47
27 Co 28 Ni 29 Cu 30 Zn 31 Ga 32 Ge 33 As 34 Se 35 Br 36 Kr 37 Rb 38 Sr 39 Y 40 Zr 41 Nb 42 Mo
Element
K 1s 7709 8333 8979 9659 10367
L2 2p1/2
1044.9 1143.2 1248.1 1359.1 1474.3 1596 1730.9 1864 2007 2156 2307 2465 2625
L1 2s
1008.6 1096.7 1196.2 1299.0 1414.6 1527.0 1652 1782 1921 2065 2216 2373 2532 2698 2866 1021.8 1116.4 1217.0 1323.6 1433.9 1550 1678.4 1804 1940 2080 2223 2371 2520
L3 2p3/2
43
M1 3s
M2 3p1/2
M3 3p3/2
TableTable 2.9 2.9 Electron binding Electron bindingenergies energies (continued). (continued). M4 3d3/2
M5 3d5/2
48
43 Tc 44 Ru 45 Rh 46 Pd 47 Ag 48 Cd 49 In 50 Sn 51 Sb 52 Te 53 I 54 Xe 55 Cs 56 Ba 57 La 58 Ce
Element
K 1s
L1 2s 3043 3224 3412 3604 3806 4018 4238 4465 4698 4939 5188 5453 5714 5989 6266 6549
L2 2p1/2 2793 2967 3146 3330 3524 3727 3938 4156 4380 4612 4852 5107 5359 5624 5891 6164 44
L3 2p3/2 2677 2838 3004 3173 3351 3538 3730 3929 4132 4341 4557 4786 5012 5247 5483 5723 1006 1072 1148. 1211 1293 1362 1436
M1 3s
1002.1 1071 1137 1209 1274
M2 3p1/2
1003 1063 1128 1187
M3 3p3/2
Table 2.92.9Electron bindingenergies energies (continued). Table Electron binding (continued). M4 3d3/2
M5 3d5/2
49
Element
59 Pr 60 Nd 61 Pm 62 Sm 63 Eu 64 Gd 65 Tb 66 Dy 67 Ho 68 Er 69 Tm 70 Yb 71 Lu 72 Hf 73 Ta 74 W
K 1s
L1 2s 6835 7126 7428 7737 8052 8376 8708 9046 9394 9751 10116 10486
L2 2p1/2 6440 6722 7013 7312 7617 7930 8252 8581 8918 9264 9617 9978 10349
L3 2p3/2 5964 6208 6459 6716 6977 7243 7514 7790 8071 8358 8648 8944 9244 9561 9881 45
M1 3s 1511 1575 1723 1800 1881 1968 2047 2128 2207 2307 2398 2491 2601 2708 2820
M2 3p1/2 1337 1403 1471 1541 1614 1688 1768 1842 1923 2006 2090 2173 2264 2365 2469 2575
M3 3p3/2 1242 1297 1357 1420 1481 1544 1611 1676 1741 1812 1885 1950 2024 2108 2194 2281
Table 2.92.9Electron bindingenergies energies (continued). Table Electron binding (continued). M5 3d5/2 1027 1083.4 1127.5 1189.6 1241.1 1292.6 1351 1409 1468 1528 1589 1662 1735 1809
M4 3d3/2 1003.3 1052 1110.9 1158.6 1221.9 1276.9 1333 1392 1453 1515 1576 1639 1716 1793 1872
50
75 Re 76 Os 78 Ir 78 Pt 79 Au 80 Hg 81 Tl 82 Pb 83 Bi 84 Po 85 At 86 Rn 87 Fr 88 Ra 89 Ac 90 Th
Element
K 1s
L1 2s
L2 2p1/2
L3 2p3/2
46
M1 3s 2932 3049 3174 3296 3425 3562 3704 3851 3999 4149 4317 4482 4652 4822 5002 5182
M2 3p1/2 2682 2792 2090 3027 3148 3279 3416 3554 3696 3854 4008 4159 4327 4490 4656 4830
M3 3p3/2 2367 2457 2551 2645 2743 2847 2957 3066 3177 3302 3426 3538 3663 3792 3909 4046
Table 2.9 Electron binding energies (continued). Table 2.9 Electron binding energies (continued). M4 3d3/2 1949 2031 2116 2202 2291 2385 2485 2586 2688 2798 2909 3022 3136 3248 3370 3491
M5 3d5/2 1883 1960 2040 2122 2206 2295 2389 2484 2580 2683 2787 2892 3000 3105 3219 3332
51
91 Pa 92 U
Element
K 1s
L1 2s
L2 2p1/2
L3 2p3/2
47
M1 3s 5367 5548
M2 3p1/2 5001 5182
M3 3p3/2 4174 4303
Table 2.9 Electron binding energies (continued). Table 2.9 Electron binding energies (continued). M4 3d3/2 3611 3728
M5 3d5/2 3442 3552
SECTION 3 MISCELLANEOUS Physical constants and unit conversion Table was taken from “The NIST Reference on Constants, Units, and Uncertainty” (http://physics.nist.gov/cuu/Constants/index.html.)
55
Boltzman constant pi number natural number
Avogadro constant
classical electron radius
fine-structure constant
permeability of free space
permittivity of free space
electronic charge electronic mass
Quantity speed of light Planck constant conversion constant
NA k π e
re = e / 4πε 0 mec
2
α = e2 / 4πε 0 h c
μ0
ε 0 = 1 / ( μ0 c 2 )
2
Symbol equation c h hc e me
49
1.380 650 3(24) ×10-23 J K-1=8.617 342(15) ×10-5 eV K-1 3.141 592 653 589 793 238 2.718 281 828 459 045 235
6.022 141 99(47)×1023 mol-1
2.817 940 285(31)×10-15 m
1/137.035 999 76(50)
4π×10-7 N A-2 = 12.566 370 614…×10-7 N A-2
8.854 187 817 …×10-12 F m-1
1.602 176 487(40) ×10−19 C = 4.803 204 27(12) ×10−10 esu 0.510 998 902(21) MeV/C2 =9.109 998 902(21) ×10-31 kg
Value 2.997 924 58×108 ms-1 (1010 cm s-1) 6.626 068 76(52)×10-34 J s(10-27erg s) 197.326 960 1(78) MeV fm (=eV nm)
Physical Constants Physical Constants
Unit conversion 1 in. 1 A0 1 fm 1 barn 1 newton 1 joule 1 cal 1eV 1 eV/c2 hc(1 eV) 1eV/h 1eV/k 1 coulumb 1 tesla 1 atm 0o C
= = = = = = = = = = = = = = = =
2.54 cm 10-8 cm 10-13 cm 10-24 cm2 105 dyne 107 erg 4.184 joule 1.602 176 5x10-12 erg 1.782 662x10-33 g 1.239 842 Âľm 2.417 989x1014 Hz 11 604.5 K 2.997 924 58x109 esu 104 gauss 1.013 25x106 dyne/cm2 273.15 K
56
Useful Equations Useful Equations Relation ship between wavelength and photon energy E[eV] = 1239.842 / λ[ nm] Bragg’s law nλ = 2d sin θ Bragg’s law with refraction correction for multilayer ⎛ 4δ d 2 ⎞ ⎟ nλ = 2d sin θ ⎜⎜1 − nλ2 ⎟⎠ ⎝ where
δ
is the period-averaged real part of refractive index
Synchrotron Critical photon energy ε c [keV] = 0.665 B[T ]E 2 [GeV] Energy loss/turn U 0 [ keV] = 88.54 E 4 [GeV] / ρ[ m] Relativistic factor E γ= = E[MeV ] / 0.511 me c 2 Undulator strength K = 0.934 B[T ]λU [cm] Fundamental wavelength of undulator ⎞ λ ⎛ K2 + γ 2θ 2 ⎟⎟ λn = U2 ⎜⎜1 + 2γ n ⎝ 2 ⎠
57
51
SECTION 4 USER INFORMATION
How to apply for beamtime at SLRI
To apply for the beamtime please follow the following steps 1. Go to SLRI webpage (http://www.slri.or.th/en/), select ‘Login’ tab and login to your account. If you do not have the username and password, please register your account. 2. Select ‘Beamtime application’ (which will appear after logging in). 3. Fill in the beamtime application form. 4. The technical proposal for the project is required to be attached with the application form. The proposal form can be downloaded from the beamtime application page. 5. Click ‘submit’ to send your beamtime application form online. Technical data and specification of beamlines and end-stations are provided for your information on the web pages (under the ‘Beamline’ tab). You may need to take a look at these pages to make sure that the technique is applicable for your project proposal. For further information please contact the User Office or the beamline manager.
Contact SLRI
Web Site: www.slri.or.th E-mail: useroffice@slri.or.th Tel: 66 4421 7040 Fax: 66 44 217047 Post Address: PO. Box 93 Nakhon Ratchasima 30000 THAILAND Location: 111 University Avenue, Muang, Nakhon Ratchasima, 30000
Bangkok Office
Address: 75/47 Ministry of Science and Technology, Rama VI Rd., Tungpayathai, Ratchathewi, Bangkok 10400 THAILAND Tel: 66 2354 3954 Fax: 66 2354 3955 61
SLRI extension phone numbers User Office Safety Office Emergengy
1605, 1606 1515, 1516, 1517 1555
Contact beamlines Beamline BL manager
Tel.(ext.)
BL1 Dr. Yingyot yingyot@slri.or.th Puarporn BL2.2 Dr. Supagorn supagorn@slri.or.th Rugmai BL3.2a Dr. Hideki hideki@slri.or.th Nakajima BL3.2b Dr. Chanan chanan@slri.or.th Euraksakun BL4.1 Dr. Wanwisa wanwisa@slri.or.th Pattanasiriwisava BL6a Dr. Rungrueng rungrueang@slri.or.th Pattanakun BL6b Dr. Somchai somchai@slri.or.th Tancharakorn BL7.2 Dr. Chompunuch chompunuch@slri.or.th Songsiririthikul BL8 Dr. Wantana wantana@slri.r.th Klysubun
62
1487 1491 1483 1477 1480 1407 1476 1485 1490
How to get to SLRI SLRI is located inside the campus of Suranaree University of Technology (SUT) which is approximately 20 km from the city of Nakhon Ratchasima (or normally called Korat). Korat is 250 km north-east of Bangkok.
Flying to Thailand
The main airport of Thailand is the Suvannabhumi International Airport. There are frequent Airport Link trains from the airport to the center of Bangkok, which take approximately 15-30 minutes. N RA -NAKHOชสีมา รา ANGKOK WAY (B กรุงเทพฯ-นคร P HIGH าพ MITRAPA ถนนมิตรภ
TCHASI
MA)
PAK THONG CHAI JUNCTION สามแยกปักธงชัย NA
พฯ ไปกรุงเท BANGKOK GO TO
KH
ON RA ถนน TCHA นคร SIM ราช A - P สีมา AK -ปัก THO 1 ENUE ธงช NG AV TY SI ัย 1 CH UNIVER หาวิทยาลัย AI ถนนม
3 UE EN 3 AV าลัย ITY ิทย RS าว IVE มห UN ถนน
4 ENUE SITY AV ย 4 UNIVERนมหาวิทยาลั ถน UNIV ER ถนนม SITY AVE หาวิท NUE ยาลัย 3 3
Figure 4.1. SLRI map.
63
From Bangkok to SLRI By Car
From Suvannabhumi Airport
Get to the Bangkok-Chonburi Motorway (No. 7). From the Motorway turn right into the Eastern Ring Road (Kanchanapisek Rd.) going north to Bang Pa In. At the end of the Eastern Ring Road get into the Highway Number 1 (Phahon Yothin Road) going to Sara Buri. Just before reaching Sara Buri, turn right into the Highway Number 2 (Mittraphap Road) going to Nakhon Ratchasima. Just before reaching the city of Nakhon Ratchasima there is an intersection, left turn to Khon Khan, right turn to Pakthongchai and straight ahead to Nakhon Ratchasima. Turn right at the intersection into Pakthongchai Road (No. 304) going to Pakthongchai. Approximately 7 km from the intersection make a right turn into University Avenue. Approximately 5 km down the road is the main entrance of Suranaree University of Technology.
From the north of Bangkok
Get into Vipavadee-Rangsit Road and then into Highway Number 1 (Phahon Yothin Road) going to Sara Buri. Then follow the same direction as from the airport.
From the south of Bangkok
The first option is to get into the Eastern Ring Road (Kanchanapisek Rd.) going north to Bang Pa In and then follow the direction as from the airport. The second choice is to get into Suvintawong Road (Number 304) going to Chacherngsao - Kabin Buri - Wang Namkiew - Pakthongchai Nakhon Ratchasima (practically just stay on 304). You will reach the left turn into University Avenue, approximately 20 km after Pakthongchai.
The trip from Bangkok will take approximately 3 hours. 64
By Bus
The buses leave from the North-Northeast Bus Terminal (generally called Mor Chit Mai). The best way to get to the bus terminal is by a taxi (from the airport or from the center of Bangkok). At the terminal there are direct buses to Nakhon Ratchasima. Three companies run the direct buses, Air Korat Pattana, Ratchasima Tour and Suranaree Air. Their ticket booths are on the second floor of the terminal. You should get the ticket to New Korat Bus Terminal (or Bor Kor Sor Mai, in Thai). The ticket costs 198 Baht. A direct bus will take 3 hours. There are also non-direct buses which stop many places along the way. A non-direct bus will take around 5 hours. From Korat Bus Terminal there are buses to Suranaree University of Technology (the bus costs around 20 baht). There are also taxis available at the bus terminal (the taxi costs around 200 Baht).
By Taxi
It is possible to take a taxi directly from Bangkok to Nakhon Ratchasima. The taxi cost around 3000 Baht.
By Train
There are a few trains leaving from the Hua Lampong train station in Bangkok to Nakhon Ratchasima. The train takes approximately 5 hours. From the Nakhon Ratchasima train station there are tri-cycle taxis (Tuk Tuk) to anywhere in Korat.
By Air
There are planes flying from Bangkok and some other cities (such as Chiang Mai and Phuket) to Nakhon Ratchasima. The details should be checked with the airlines.
65
Useful phone numbers in Nakhon Ratchasima Post Office Poklang Police Station Muang Nakhonratchasima Police station Taxi service center Tourist Police Train station Bus station (old) Bus station (new) Happy Air travellers company Hospital Maharaj Hospital Khai Suranari Military Camp Hospital Bangkok Ratchasima hospital St.Mary Hospital Korat Memorial Por Pat Hospital Hotel Dusit Princess Khorat K.S. Pavilion Orchid Hotel Pang Rujee Resort Ratchapruk Grand Hotel Rayagrand Hotel Sima Thani surasammanakarn 66
044 - 242031 044 - 211191, 044 - 211879, 044 - 211403 044 - 242485, 044 - 255563 044 - 342255, 044 - 371777 044 - 341777 044 - 242044 044 - 242899 044 - 256006-9 044 - 252992, 044 - 252997 044 - 254990-1 044 - 273370-5 044 - 429-999 044 - 242385 044 - 242662 044 - 230530 - 3 044 - 256629-35 044 - 261944-5, 044 - 263039 044 - 278323 044 - 933591-2 044 - 262325-9 044 - 354354 044 - 213100 044 - 224880
67
Synchrotron Worldwide .
68
Synchrotron Worldwide (continued).
69
Synchrotron Worldwide (continued).
70
Synchrotron Worldwide (continued).
71
Raja Ramanna Centre for Advanced Technology, Indore, India
LSU, Louisiana, US
PAL, Pohang, Korea
Indus 2
CAMD
PLS
India
2.5
1.5
2.5
280.56
-
36
1994
-
2005
http://paleng.postech.ac.kr/
http://www.camd.lsu.edu/
www.cat.gov.in/technology/accel/atdh ome.html
Synchrotron Worldwide (continued).
88
H1 Li3 Be4 1303 Na Mg 11 12 3068 4039 K19 Ca 20 1804 1940 Rb Sr 37 38 5012 5247 Cs Ba 55 56 3000 3105 Fr Ra 87
Edge energy
X-ray Absorption Edges accessible at BL- 8 2472
7790
8071
F9 2822 Cl 17 1550 Br 35 4557 I 53 2787 At 85 7514
O8 2472 S16 1434 Se 34 4341 Te 52 2683 Po 84 7243
N7 2146 P15 1324 As 33 4132 Sb 51 2580 Bi83 6977
K-edge B5 C6 S16 Symbol L3-edge 1560 1839 M5-edge Atomic Al Si14 number 13 4492 4966 5465 5989 6539 7112 7709 8333 8979 9659 Se Ti22 V23 Cr Mn Fe Co Ni Cu Zn Ga Ge 21 24 25 26 27 28 29 30 31 32 2080 2223 2371 2520 2677 2838 3004 3173 3351 3538 3730 3929 Y39 Zr40 Nb Mo Tc Ru Rh Pd Ag Cd In49 Sn 41 42 43 44 45 46 47 48 50 5483 1662 1735 1809 1883 1960 2040 2122 2206 2295 2389 2484 La Hf Ta W Re Os Ir77 Pt78 Au Hg Tl81 Pb 57 72 73 74 75 76 79 80 82 3219 Ac 6761
1589
6459
8944
6208
8648
5964
Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 58 59 60 61 62 63 64 65 66 67 68 69 70 71 3332 3442 3552 Th Pa U92 90 91
5723
8353
89
Lanthanide series Actinide series
Ne 10 3206 Ar 18 1678 Kr 36 4786 Xe 54 2892 Rn 86