03 03813 (1)

Page 1

WCDMA P6 AIR INTERFACE Chapter 3: WCDMA Physical Layer


Objectives of Chapter 3 After this module the participants will be able to:

1.

Describe the 3GPP Standardization Committee and specification structure.

2.

Explain the concepts of logical, transport, and physical channels.

3.

Explain details of the WCDMA physical layer.

4.

Explain the different aspects of the WCDMA downlink.

5.

Explain the different aspects of the WCDMA uplink.

Š Ericsson AB 2007 03_03813 LZU 108 6909 Rev. A

Figure 3-2

WCDMA Physical Layer

2007-12-03


WCDMA (ETSI/ARIB/3GPP)  Third Generation Partnership Project (3GPP) TSG ORGANIZATION

Project Co-ordination Group (PCG) TSG GERAN

GSM EDGE Radio Access Network

GERAN WG1 Radio Aspects

GERAN WG2

Protocol Aspects

GERAN WG3

Terminal Testing

TSG RAN

Radio Access Networks

RAN WG1

Radio Layer 1 specification

RAN WG2

TSG SA

Services & System Aspects

SA WG1 Services

CT WG1 (ex CN1) MM/CC/SM (lu)

SA WG2

Radio Layer2 spec & Radio Layer3 RR spec

Architecture

RAN WG3

SA WG3 Security

CT WG3 (ex CN3)

lub spec lur spec lu spec & UTRAN O&M requirements

RAN WG4

SA WG4

CT WG4 (ex CN4)

SA WG5

CT WG5 (ex CN5)

Radio Performance & Protocol Aspects

RAN WG5 (ex T1)

Mobile Terminal Conformance Testing

Codec

Telecom Management

Interworking with External Networks

MAP/GTP/BCH/SS

OSA Open Service Access

CT WG6 (ex T3)

September 2005

© Ericsson AB 2007 03_03813 LZU 108 6909 Rev. A

TSG CT

Core Network & Terminals

Smart Card Application Aspects

Figure 3-3

WCDMA Physical Layer

2007-12-03


WCDMA (ETSI/ARIB/3GPP)  Specifications referenced in this presentation WCDMA UTRAN Network 3GPP TS 25.401-v590: UTRAN Overall Description 3GPP TS 25.832-v400: Manifestations of Handover and SRNS Relocation 3GPP TS 26.071-v500: AMR Speech Codec; General Description

This presentation is current as of TS-25 Rel-6 (3GPP June 2006 Release)

WCDMA Radio Transmission and Resource Management 3GPP TS 25.101-v5140: UE Radio Transmission and Reception (FDD) 3GPP TS 25.104-v590: BS Radio Transmission and Reception (FDD) 3GPP TS 25.133-v5140: Requirements for Support of Radio Resource Management

WCDMA Physical Layer Specifications (FDD and TDD) 3GPP TS 25.201-v520: Physical Layer General Description 3GPP TS 25.301-v540: Radio Interface Protocol Architecture 3GPP TS 25.302-v570: Services Provided by the Physical Layer

WCDMA FDD, TDD Mode Standards: 3GPP 3GPP 3GPP 3GPP 3GPP

TS TS TS TS TS

25.211-v560: Physical channels and mapping of transport channels onto physical channels (FDD) 25.212-v590: Multiplexing and channel coding (FDD) 25.213-v550: Spreading and modulation (FDD) 25.214-v5100: Physical layer procedures (FDD) 25.215-v560Physical layer - Measurements (FDD)

© Ericsson AB 2007 03_03813 LZU 108 6909 Rev. A

Figure 3-4

WCDMA Physical Layer

2007-12-03


WCDMA (ETSI/ARIB/3GPP)  Both FDD (2x 5 MHz) and TDD (1x 5 MHz)modes supported – – – –

Operation specified in bands between 1850 and 2170 MHz BS time synchronization not required for FDD mode GPS not required Fast Synchronization Codes allow asynchronous operation and handover

 Multi-Code and Variable Spreading Factor modes supported  Network interface compatible with GSM - MAP / GPRS – To be made compatible with ANSI-41 per OHG requirement

 Physical Parameters: – – – – –

Chip rate = 3.840 Mcps RF Bandwidth = 5 MHz Physical Layer data rates of 15, 30, 60, 120, 240, 480, 960, and 1920 kb/sec Frame length = 10 mSec Fast Power Control: Bi-directional; 1500 updates/sec

© Ericsson AB 2007 03_03813 LZU 108 6909 Rev. A

Figure 3-5

WCDMA Physical Layer

2007-12-03


WCDMA FDD Frequency Bands

2.1 GHz 1900 MHz & 850 MHz

2.1 GHz

© Ericsson AB 2007 03_03813 LZU 108 6909 Rev. A

Figure 3-6

WCDMA Physical Layer

2007-12-03


FREQUENCY BANDS Operating Band

UL Frequencies UE transmit, Node B receive

DL frequencies UE receive, Node B transmit

Duplex distance

I

1920 – 1980 MHz

2110 –2170 MHz

190 MHz

II

1850 –1910 MHz

1930 –1990 MHz

80 MHz

III

1710-1785 MHz

1805-1880 MHz

95 MHz

IV

1710-1755 MHz

2110-2155 MHz

¤400 MHz

V

824 – 849MHz

869-894MHz

45 MHz

VI

830-840 MHz

875-885 MHz

45 MHz

VII

2500-2570 MHz

2620-2690 MHz

120 MHz

VIII

880-915 MHz

925-969 MHz

45 MHZ

IX

1749.9-1784.9 MHz

1844.9-1879.9 MHz

95 MHz

X

1710-1770 MHz

2110-2170 MHZ

400 MHz


UMTS and the WCDMA RAN GSM/GPRS Core Network (CN)

PSTN ISDN Internet

GPRS Service Node

MSC

Iu

Iu RNS

UTRAN= WCDMA RAN (UMTS Terrestrial Radio Access Network)

RNC

Iub

Iub

RBS

Iu

RNS

Iur

RNC

Iub

Iu

RBS

RBS

Iub RBS

Uu

User Equipment (UE)

© Ericsson AB 2007 03_03813 LZU 108 6909 Rev. A

Figure 3-8

WCDMA Physical Layer

2007-12-03


UMTS and the WCDMA RAN

3GPP TS 25.401 ¶ 3.0 3GPP TS 25.401 ¶ 3.0

 RNS (Radio Network Subsystem) – –

A full or partial network offering access between UE and Core Network Contains one RNC

 RNC (Radio Network Controller) –

Element of the RNS that controls physical radio resources

 RBS (Node B in specification) –

Logical Node controlling transmission and reception from one or more cells

 Uu Interface –

Interface between UE and RBS

 Iu Interface –

Interface between CN and RNS

 Iur Interface –

Interface between one RNS and another RNS

 Iub Interface –

Interface between RNC and RBS

© Ericsson AB 2007 03_03813 LZU 108 6909 Rev. A

Figure 3-9

WCDMA Physical Layer

2007-12-03


UMTS and the WCDMA RAN WCDMA RAN Operational Functions (partial)

3GPP TS 25.401 ¶ 7.1 3GPP TS 25.401 ¶ 7.1

 Functions related to overall system access control – – –

Admission Control, Congestion Control System information broadcasting Radio channel ciphering and deciphering

 Functions related to mobility – –

Handover SRNS Relocation

 Functions related to radio resource management and control – – – – – – – – –

Initial (random) access detection and handling Radio resource configuration and operation combining/splitting control Radio bearer connection set-up and release (Radio Bearer Control) Allocation and de-allocation of Radio Bearers Radio protocols function RF power control Radio channel coding Radio channel decoding

© Ericsson AB 2007 03_03813 LZU 108 6909 Rev. A

Figure 3-10

WCDMA Physical Layer

2007-12-03


WCDMA RAN OSI Model CTRL

USER DATA RRC

USER DATA

CTRL RRC

Signaling Radio Bearer

L3

Radio Bearer

RLC

RLC

MAC

Logical Channel

RLC

RLC

Transport Channel

PHY

MAC

L2

PHY

L1

Physical Channel

UE

© Ericsson AB 2007 03_03813 LZU 108 6909 Rev. A

WCDMA RAN

Figure 3-11

WCDMA Physical Layer

L2

2007-12-03


Physical Layer Requirements Services provided by Physical Layer • Data and RF Processing Functions − − − − − − − − −

3GPP TS 25.201 ¶ 4.1.2 , 25.301¶ 5.2.2 3GPP TS 25.201 ¶ 4.1.2 , 25.301¶ 5.2.2

FEC encoding/decoding of transport channels Error detection on transport channels and indication to higher layers Rate matching of coded transport channels to physical channels Power weighting and combining of physical channels Closed-loop power control Modulation/demodulation and spreading/de-spreading of physical channels Multiplexing/de-multiplexing of coded composite transport channels Mapping of transport channels on physical channels Macrodiversity distribution/combining

• Operational Functions − − − −

Cell search functions Synchronization (chip, bit, slot, and frame synchronization) Soft Handover support Radio characteristics measurements including FER, SIR, Interference Power, etc., and indication to higher layers − Uplink timing advance (TDD mode) © Ericsson AB 2007 03_03813 LZU 108 6909 Rev. A

Figure 3-12

WCDMA Physical Layer

2007-12-03


WCDMA Physical Channels Common channels P-CPICH - Primary Common Pilot Channel

P-CCPCH- Primary Common Control Physical Channel SCH - Synchronization Channel

S-CCPCH - Secondary Common Control Physical Channel

Radio Base Station

PICH - Page Indicator Channel

User Equipment

AICH - Acquisition Indicator Channel

(RBS)

MICH – MBMS Notification Indicator Channel

(UE)

PRACH - Physical Random Access Channel

Dedicated Channels DPDCH - Dedicated Physical Data Channel DPCCH - Dedicated Physical Control Channel

© Ericsson AB 2007 03_03813 LZU 108 6909 Rev. A

Figure 3-13

WCDMA Physical Layer

2007-12-03


WCDMA Physical Channels HSDPA Channels HS-PDSCH High Speed Physical Downlink Shared Channel HS-SCCH High Speed Shared Control Channel

Radio Base Station

HS-DPCCH High Speed Dedicated Physical Control Channel

EUL Channels (RBS)

E-DPDCH - Enhanced Dedicated Physical Data Channel

User Equipment (UE)

E-DPCCH – Enhanced Dedicated Physical Control Channel E-AGCH – Enhanced Absolute Grant Channel E-HICH - Enhanced HARQ Indication Channel E-RGCH – Enhanced Relative Grant Channel

© Ericsson AB 2007 03_03813 LZU 108 6909 Rev. A

Figure 3-14

WCDMA Physical Layer

2007-12-03


WCDMA Downlink Physical Channels 3GPP TS 25.211 3GPP TS 25.211

Common Downlink Physical Channels  P-CCPCH Primary Common Control Physical Channel – -Broadcasts cell information

 S-CCPCH Secondary Common Control Physical Channel – Transmits control information and packet data to UE’s

 P-CPICH

Primary Common Pilot Channel

– Used for channel estimations

 S-CPICH cells)

Secondary Common Pilot Channel (sectored

© Ericsson AB 2007 03_03813 LZU 108 6909 Rev. A

Figure 3-15

WCDMA Physical Layer

2007-12-03


WCDMA Downlink Physical Channels (cont’d) Dedicated Downlink Physical Channel

3GPP TS 25.211 3GPP TS 25.211

 DPDCH Dedicated Downlink Physical Data Channel – – –

Transmits user dedicated data to RBS DPCCH Dedicated Downlink Physical Control Channel Transmits connection-mode signaling and control to UE’s

Downlink Indication Channels  AICH Acquisition Indication Channel – –

Acknowledges that RBS has acquired a UE Random Access attempt Echoes the UE’s Random Access signatur

 PICH Page Indication Channel –

Informs a UE if it should monitor the Paging Channel

 MICH MBMS information channel –

Informs a UE about MBMS

© Ericsson AB 2007 03_03813 LZU 108 6909 Rev. A

Figure 3-16

WCDMA Physical Layer

2007-12-03


WCDMA Downlink Physical Channels (cont’d) HSDPA Downlink Physical Channels  HS-PDSCH High Speed Physical Downlink Shared Channel –

Transmits high-speed data to multiple users

 HS-SCCH High speed Shared Control Channel –

Transmits control information about HS-DPDSCH

EUL Downlink Physical Channels 

E-AGCH Enhanced Absolute Grant Channel –

Transmits Scheduling grants to UE in serving cell

 E-HICH Enhanced Indication Channel –

Transmits ACK/NACK to the UE

 E-RGCH Enhanced Relative Grant Channel –

Transmits overload indicator to UE in non-serving cells

© Ericsson AB 2007 03_03813 LZU 108 6909 Rev. A

Figure 3-17

WCDMA Physical Layer

2007-12-03


WCDMA Uplink Physical Channels Common Uplink Physical Channels  PRACH Physical Random Access Channel

3GPP TS 25.211 3GPP TS 25.211

Used by UE to initiate access to RBS

Dedicated Uplink Physical Channels 

DPDCH –

Transmits dedicated user data to RBS

 DPCCH –

Dedicated Uplink Physical Data Channel Dedicated Uplink Physical Control Channel

Transmits user dedicated control information

 HS-DPCCH High Speed dedicated Physical Control Channel –

Transmits response signaling of HS-PDSCH

 E-DPDCH Enhanced dedicated physical data channel –

Transmits High Speed Uplink data

 E-DPCCH Enhanced dedicated physical control channel –

Transmits high speed uplink control information

© Ericsson AB 2007 03_03813 LZU 108 6909 Rev. A

Figure 3-18

WCDMA Physical Layer

2007-12-03


WCDMA Downlink (FDD) Logical Channels (Layers 2+)

Null Data BCH Broadcast Ch.

BCCH Broadcast Control Ch. MTCC MBMS Control Ch.

Data Encoding Data Encoding

FACH Forward Access Ch.

MCCH MBMS Traffic Ch.

PCH Paging Ch.

PCCH Paging Control Ch. CCCH Common Control Ch.

Data Encoding

FACH Forward Access Ch.

CTCH Common Traffic Ch. DCCH Dedicated Control Ch. DTCH Dedicated Traffic Ch.

Physical Channels (Layer 1)

Transport Channels (Layer 2)

Data Encoding

DCH Dedicated Ch.

Data Encoding Data Encoding

M U X

Pilot, TPC, TFCI bits Access Indication data Paging Indication bits MBMS Indication bits

HSDP A

HS-DSCH High Speed DL Shared Ch.

EUL

Data Encoding Data Encoding

TFRI, UE Identity, HARQ

Activation flag Power ratio

S/P Cch 256,0

P-CCPCH(*) Primary Common Control Physical Ch. S-CCPCH Secondary Common Control

Data Encoding ACK/NACK

Relative grant

© Ericsson AB 2007 03_03813 LZU 108 6909 Rev. A

Gain

Cch 256,1

Sdl,n

Cch

Sdl,n

Gain

PSC Gain

GP

S-CCPCH Secondary Common Control

M U X

Sdl,n

Sdl,n

Cch

PICH (Paging Indicator Channel )

S/P

MICH (MBMS Notification Indication Ch. )

S/P

Downlink RF Out

Gain

C256,n

Sdl,n

C256,n

Sdl,n

Gain

C256,n

Sdl,n

Gain

Gain

Figure 3-19

SS SS

I+jQ

Σ

I Q

Filter Filter

I/Q Modulator

* Note regarding P-CCPCH and SCH

HS- PDSCH (one or more per UE)

E-RGCH (non-serving cell) (E-DCH Relative Grant Channel)

GS

Gain

Σ S/P

E-AGCH (<=4 per UE, serving cell) E-DCH Absolute Grant Channel

SCH (Sync Channel)

S/P

AICH (Acquisition Indicator Channel)

High Speed Physical Downlink shared Channel HS-SCCH (<=4 per UE) High Speed Shared Control Channel .

Σ

SSCi

S/P

DPCCH (one per UE) Dedicated Physical Control Ch.

E-HICH (E-DCH Hybrid ARQ Indication Channel)

Sync Codes(*)

S/P

Physical Ch.

DPDCH (one or more per UE) Dedicated Physical Data Ch.

Sdl,n

S/P

Physical Ch. Cch Data Encoding CCTrCH DPCH (Dedicated Physical Channel) One per UE

DCH Dedicated Ch.

DCH Dedicated Ch.

CPICH Common Pilot Channel

S/P C16

Sdl,n

Gain

C128

Sdl,n

Gain

C256,n

Sdl,n

Gain

C128,n

Sdl,n

Gain

Sync Codes are transmitted only in bits 0-255 of each timeslot; P-CCPCH transmits only during the remaining bits of each timeslot

S/P

S/P

Σ

WCDMA Physical Layer

2007-12-03


Downlink Logical Channels Common Downlink Logical Channels

3GPP TS 25.301¶ 5.3.1.1 3GPP TS 25.301¶ 5.3.1.1

 BCCH (Broadcast Control Channel) –

Broadcasts cell and system information to all UE:s

 PCCH (Paging Control Channel) –

Transmit paging information to a UE when the UE is in idle mode

 CCCH (Common Control Channel) –

Transmits control information to a UE when there is no RRC connection

 CTCH (Common Traffic Channel) –

Traffic channel for sending traffic data to to a group of UE:s

 MCCH (MBMS Control Channel) –

Transmits MBMS control information

 MTCH (MBMS Traffic Channel –

Transmits MBMS Traffic data

© Ericsson AB 2007 03_03813 LZU 108 6909 Rev. A

Figure 3-20

WCDMA Physical Layer

2007-12-03


Downlink Logical Channels Dedicated Downlink Logical Channels  DCCH (Dedicated Control Channel) –

Transmits control information to a UE when there is a RRC Connection

 DTCH (Dedicated Traffic Channel –

Traffic channel dedicated to one UE

© Ericsson AB 2007 03_03813 LZU 108 6909 Rev. A

Figure 3-21

WCDMA Physical Layer

2007-12-03


Downlink Transport Channels 3GPP TS 25.301¶ 5.2.1.1 3GPP TS 25.301¶ 5.2.1.1

Common Downlink Transport Channels  BCH (Broadcast Channel) – Continuous transmission of system and cell information

 PCH (Paging Channel) – Carries control information to UE when location is unknown – Pending activity indicated by the PICH (paging indication channel)

 FACH (Forward Access Channel) – Used for transmission of idle-mode control information to a UE – Control signaling during call set-up – Packet data transmissionNo closed-loop power control

© Ericsson AB 2007 03_03813 LZU 108 6909 Rev. A

Figure 3-22

WCDMA Physical Layer

2007-12-03


Downlink Transport Channels Common downlink Transport Channel  HS-PDSCH (High Speed Downlink Shared Channel) – – – – – – – –

User data in short TTI (2ms Packet data transmission No power control, coding rate controlled by UE:s CQI One transport block of dynamic size per 2 ms TTI. Supports link adaptation and hybrid ARQ with soft combining. Always associated with a DPCH. Never in soft handover. Mapped to one or several HS-PDSCH (SF=16).

Dedicated Downlink Transport Channels  DCH (Dedicated Channel) –

Carries dedicated traffic and control data to one UE

© Ericsson AB 2007 03_03813 LZU 108 6909 Rev. A

Figure 3-23

WCDMA Physical Layer

2007-12-03


Channelization code index 3GPP TS 25.201 ¶ 4.3 3GPP TS 25.201 ¶ 4.3

C4,0 C2,0

1 1 1 1 C4,1

1 1 C1,0

1 1 -1 -1

1

C4,2 C2,1

1 -1 1 -1 C4,3

1 -1

1 -1 -1 1

SF = 1

SF = 2

SF = 4

Designation: cch, SF , code number

© Ericsson AB 2007 03_03813 LZU 108 6909 Rev. A

Figure 3-24

WCDMA Physical Layer

2007-12-03


Common Pilot Channel, CPICH 3GPP TS 25.211¶ 5.3.3.1 3GPP TS 25.211¶ 5.3.3.1

1 timeslot = 2560 Chips = 10 symbols = 20 bits = 666.667 uSec

Pilot Symbol Data (10 symbols per slot)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1 Frame = 15 slots = 10 mSec

© Ericsson AB 2007 03_03813 LZU 108 6909 Rev. A

Figure 3-25

WCDMA Physical Layer

2007-12-03


Sync Channel, SCH Primary Common Control Physical Channel, P-CCPCH 3GPP TS 25.211¶ 5.3.3.1 3GPP TS 25.211¶ 5.3.3.1

BCH Spreading Factor = 256 1 Slot = 0.666 mSec = 18 P-CCPCH data bits / slot

SCH

P-CCPCH

256 Chips

2304 Chips

PSC

Broadcast Data (18 bits)

SSCi

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1 Frame = 15 slots = 10 mSec

© Ericsson AB 2007 03_03813 LZU 108 6909 Rev. A

Figure 3-26

WCDMA Physical Layer

2007-12-03


Secondary Common Control Physical Channel, S-CCPCH 3GPP TS 25.211¶ 5.3.3.4 3GPP TS 25.211¶ 5.3.3.4

Spreading Factor = 256 to 4 1 Slot = 0.666 mSec = 2560 chips = 20 * 2 k data bits; k = [0..6]

0, 2, or 8 bits

TFCI or DTX

1

2

3

0, 8, or 16 bits

20 to 1256 bits

Data

4

5

6

7

8

9

Pilot

10

11

12

13

14

15

1 Frame = 15 slots = 10 mSec

© Ericsson AB 2007 03_03813 LZU 108 6909 Rev. A

Figure 3-27

WCDMA Physical Layer

2007-12-03


Paging Indicator Channel, PICH 3GPP TS 25.211¶ 5.3.3.10 3GPP TS 25.211¶ 5.3.3.10

– Each UE looks for a particular Paging Indicator, PI, in the PICH – A PI consists of 2, 4, 8 or 16 bits dependent on how many PIs that are defined – A paging indicator set to “1” indicates that the UE should read the SCCPCH 288 bits for paging indication

12 bits (undefined)

b0 b1

b287 b288

b299

One radio frame (10 ms)

© Ericsson AB 2007 03_03813 LZU 108 6909 Rev. A

Figure 3-28

WCDMA Physical Layer

2007-12-03


Dedicated Physical Control and Data Channel DPCCH/DPDCH 3GPP TS 25.211¶ 5.3.2 3GPP TS 25.211¶ 5.3.2

1 Slot = 0.666 mSec = 2560 chips = 10 x 2^k bits, k = [0...7] SF = 512/2k = [512, 256, 128, 64, 32, 16, 8, 4] DPDCH

DPCCH

Data 1

1

2

DPDCH

TPC

3

4

TFCI

5

6

7

DPCCH

Data 2

8

9

10

11

Pilot

12

13

14

15

1 Frame = 15 slots = 10 mSec

The TheDPDCH DPDCHcarries carriesuser userdata, data,layer layer22overhead overheadbits, bits,and andlayer layer33signaling signalingdata. data. The TheDPCCH DPCCHcarries carrieslayer layer11control controlbits: bits:embedded embeddedPilot, Pilot,TPC, TPC,and andTFCI TFCI Inner Innerloop loopPower PowerControl Controlsteps stepsofof1dB 1dB

© Ericsson AB 2007 03_03813 LZU 108 6909 Rev. A

Figure 3-29

WCDMA Physical Layer

2007-12-03


Downlink Data Rates examples Channel Bit Rate (kbps)

Channel Symbol Rate (ksps)

SF

Bits/Frame

60

30

128

600

120

60

64

1200

1920

960

4

19,200

TOTAL

Bits/ Slot

DPDCH DPCCH

TOTAL DPDCH

DPCCH TFCI

510

90

40

900

300

80

18,720

480

1280

34

TPC PILOT

0

2

4

60

8

4

8

1248

8

8

16

Channelization Coding =>3.84 Mcps) Coded Data 1.920 Mb/sec (19,200 bits per 10 mSec frame)

Š Ericsson AB 2007 03_03813 LZU 108 6909 Rev. A

S/P Converter

Figure 3-30

960 kb/sec

WCDMA Physical Layer

2007-12-03


Downlink DPDCH/DPCCH Slot Formats 3GPP TS 25.211¶ 5.3.2 3GPP TS 25.211¶ 5.3.2

Slot Channel Channel SF Format Bit Rate Symbol #i (kbps) Rate (ksps)

Bits/ Slot

DPCCH Bits/Slot

NData1 NData2 NTPC

0 0A 0B 1 1B 2 2A 2B 3 3A 3B

15 15 30 15 30 30 30 60 30 30 60

7.5 7.5 15 7.5 15 15 15 30 15 15 30

512 512 256 512 256 256 256 128 256 256 128

10 10 20 10 20 20 20 40 20 20 40

14 14A 14B 15 15A 15B 16 16A

480 480 960 960 960 1920 1920 1920

240 240 480 480 480 960 960 960

16 16 8 8 8 4 4 4

320 320 640 640 640 1280 1280 1280

© Ericsson AB 2007 03_03813 LZU 108 6909 Rev. A

DPDCH Bits/Slot

Figure 3-31

0 0 0 0 0 2 2 4 2 2 4

4 4 8 2 4 14 14 28 12 10 24

56 232 56 224 112 464 120 488 120 480 240 976 248 1000 248 992

NTFCI NPilot

Transmitted slots per radio frame NTr

2 2 4 2 4 2 2 4 2 2 4

0 0 0 2 4 0 0 0 2 4 4

4 4 8 4 8 2 2 4 2 2 4

15 8-14 8-14 15 8-14 15 8-14 8-14 15 8-14 8-14

8 8 16 8 8 16 8 8

8* 16* 16* 8* 16* 16* 8* 16*

16 16 32 16 16 32 16 16

15 8-14 8-14 15 8-14 8-14 15 8-14

WCDMA Physical Layer

Notes: 1) Zero-TFCI slot formats are used when there is only one data service on the DCH. 2) Slot formats A and B are used during compressed mode operation

2007-12-03


Compressed Mode Operation 3GPP TS 25.212 ¶ 4.4.3 3GPP TS 25.212 ¶ 4.4.3

1 to 7 slots per frame diverted for hard handover processes The complete TFCI word must be transmitted every frame, even in Compressed Mode. Compressed Mode Slot formats (A,B) contain higher proportion of TFCI bits per slot compared with normal slots.

10 mSec Frames (15 slots) Normal Operation 11

12

13

14

15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1

2

3

4

5

15

1

2

3

4

5

3

4

5

Compressed-Mode; single-frame method 11

12

13

14

15

1

2

3

4

5

11

12

13

14

Transmission Gap

Compressed-Mode; double-frame method 11

12

13

14

15

1

2

3

4

5

6

7

8

9

10

11

12 Transmission Gap

© Ericsson AB 2007 03_03813 LZU 108 6909 Rev. A

Figure 3-32

WCDMA Physical Layer

2007-12-03


Embedded Pilot Symbols  

3GPP TS 25.211¶ 5.3.2 3GPP TS 25.211¶ 5.3.2

DL: Time-multiplexed with DPDCH UL: Transmitted on Q-channel along with TPC, TFCI, FBI bits Embedded Pilot Bit Patterns

Npilot = 4

Npilot = 8

Npilot = 16

Symbol #

0

1

0

1

2

3

0

1

2

3

4

5

6

7

Slot #1

11

11

11

11

11

10

11

11

11

10

11

11

11

10

2

11

00

11

00

11

10

11

00

11

10

11

11

11

00

3

11

01

11

01

11

01

11

01

11

01

11

10

11

00

4

11

00

11

00

11

00

11

00

11

00

11

01

11

10

5

11

10

11

10

11

01

11

10

11

01

11

11

11

11

6

11

11

11

11

11

10

11

11

11

10

11

01

11

01

7

11

11

11

11

11

00

11

11

11

00

11

10

11

11

8

11

10

11

10

11

00

11

10

11

00

11

10

11

00

9

11

01

11

01

11

10

11

01

11

10

11

00

11

11

10

11

11

11

11

11

11

11

11

11

11

11

00

11

11

11

11

01

11

01

11

01

11

01

11

01

11

11

11

10

12

11

10

11

10

11

11

11

10

11

11

11

00

11

10

13

11

10

11

10

11

00

11

10

11

00

11

01

11

01

14

11

00

11

00

11

11

11

00

11

11

11

00

11

00

15

11

00

11

00

11

11

11

00

11

11

11

10

11

01

© Ericsson AB 2007 03_03813 LZU 108 6909 Rev. A

Figure 3-33

WCDMA Physical Layer

Note: Shaded portions are the Frame Synchronization Words (FSW)

2007-12-03


Transmit Power Control (TPC) Bits 3GPP TS 25.211¶ 5.3.2 3GPP TS 25.211¶ 5.3.2

 TPC Bits – 2, 4, or 8 bits per slot depending on slot format TPC NTPC = 2 Command

NTPC = 4

NTPC = 8

Up (1)

11

1111

11111111

Down (0)

00

0000

00000000

© Ericsson AB 2007 03_03813 LZU 108 6909 Rev. A

Figure 3-34

WCDMA Physical Layer

2007-12-03


TFCI (Transport Format Combination Indicator) Bits Data Channel 1

Channel Coding

Data Channel 2

Channel Coding

TFI 1

TFI 2 MUX

Coded Composite Transport Channel (CCTrCH)

Data Channel N

Channel Coding

TFI N

MUX

10 bits

TFCI Word 32 bits

Channel Coding

TFI: Transport Format Indicator TFCI: Transport Format Combination Indicator

Š Ericsson AB 2007 03_03813 LZU 108 6909 Rev. A

Figure 3-35

WCDMA Physical Layer

2007-12-03


Acquisition Indicator Channel 3GPP TS 25.211¶ 5.3.3.7 3GPP TS 25.211¶ 5.3.3.7

 Acquisition Indicator Channel (AICH)

 Transmits Acquisition Indicators in response to UE Access Attempts  AI’s are derived from the UE’s Access Preamble Signature  Identifies the UE which is the target of the AICH response AI part

1024 chips

15

a j = ∑ AI s bs , j

a0 a1 a2

a30

a31

(Transmission Off)

s =0

AS #14

AS #0

AS #1

AS #i

AS #14

AS #0

20 ms

© Ericsson AB 2007 03_03813 LZU 108 6909 Rev. A

Figure 3-36

WCDMA Physical Layer

2007-12-03


Downlink Speech RAB mapping RRC UM

136 136 144

20 msec of each subflow 81 81 93

103

158

86

2nd interleaving

119 510 34

34

CRC 16 8 tail bits

516 Rate 1/3 CC 136 (1/2) Convolutional coding 172 Rate matching 476 1st interleaving 172 1st interleaving Frame segmentation 119 119 119 119 86 86 2nd speech block 147 158 86 119 152

2nd interleaving

510 34

34

2 TPC 4 Pilot

2 TPC 4 Pilot

DPDCH 60kbps => SF=128

DPDCH 60kbps => SF=128

Š Ericsson AB 2007 03_03813 LZU 108 6909 Rev. A

16 bit RLC 4 bit MAC

148 164

8 tail bits

60

333 (1/3) 316 316 158 158

128 128 144

8 bit RLC 4 bit MAC MAC Layer

CRC 12

303 (1/3) 294 294 147 147 147

60

103

RRC AM or NAS DT normal 40 priority msec

Figure 3-37

WCDMA Physical Layer

167

68

#1 110

152

600

40

167

68

#2 110

600

40

600

2007-12-03

40

40

600


Downlink PS 384 RAB mapping RRC UM

Up to 12X320 TBs in 10 msec => max data rate = 384 kbps

320

16

320

16

16

320

16

16

320

16

16

320

16

16

320

16

16

320

16

16

320

16

16

320

16

16

320

16

16

320

16

16

Turbo Coding 12672 9025 1st interleaving

9025 2nd interleaving

320

16

16

16

RRC AM or NAS DT normal priority 40 msec 136 128 16 bit RLC 8 bit RLC 136 128 4 bit MAC 4 bit MAC 144 144 MAC Layer CRC 16 148 12 Trellis 8 tail bits 164 termination 516 Rate 1/3 CC bits 380 Rate matching 1st interleaving 95 95 95 95 Next 3 blocks 95

9120 608

608 8 TFCI 8 TPC 16 Pilot DPDCH 480ksps => SF=8 Š Ericsson AB 2007 03_03813 LZU 108 6909 Rev. A

Figure 3-38

600

WCDMA Physical Layer

600

2007-12-03

600


Multi-Code Transmission 3GPP TS 25.211¶ 5.3.2 3GPP TS 25.211¶ 5.3.2

 Downlink DPCCH/DPDCH Frame 1 Slot = 0.666 mSec = 2560 chips = 10 x 2^k bits, k = [0...7] Primary DPCCH/DPDCH

Data 1

Additional DPCCH/DPDCH

Data 3

Data 4

Additional DPCCH/DPDCH

Data N-1

Data N

© Ericsson AB 2007 03_03813 LZU 108 6909 Rev. A

TPC

Figure 3-39

TFCI

Data 2

WCDMA Physical Layer

Pilot

2007-12-03


BS Transmit Diversity 3GPP TS 25.211 ¶ 5.3 3GPP TS 25.211 ¶ 5.3

 TSTD (Time-Switched Transmit Diversity); SCH Only Antenna 1

PSC

PSC

PSC

SSCi

SSCi

SSCi

Antenna 2

PSC

PSC

SSCi

SSCi

Slot #0

Slot #1

Slot #2

Slot #3

Slot #14

STTD (Space-Time Transmit Diversity); All Other DL Channels Antenna 1 b b b b 0

Data bits

1

2

3

b0 b1 b2 b3 -b2 b3 b0 -b1

© Ericsson AB 2007 03_03813 LZU 108 6909 Rev. A

Figure 3-40

Antenna 2

WCDMA Physical Layer

Note: TSTD and STTD must be supported by the UE, but are optional in BS

2007-12-03


Closed-Loop Transmit Diversity 3GPP TS 25.214 ¶ 7 3GPP TS 25.214 ¶ 7

Closed-loop Transmit Diversity (DCH, PDSCH only) – –

UE sends Feedback Information (FBI) Bits to the BS over the DPCCH FBI bits tell the BS how to adjust antenna gain and phase for optimal reception at the UE CPICH1

Antenna 1

Σ

Antenna 2

DCH (or PDSCH)

DPCCH DPDCH

MUX

• S/P Demux • Channelization • Scrambling • I/Q Modulation

Σ

Weights W1, W2 are complex-valued: W2

Wi = ai + jbi gaini = square root (ai2 + bi2) phasei = tan-1(bi/ai)

© Ericsson AB 2007 03_03813 LZU 108 6909 Rev. A

W1

CPICH2 Calculate Gains, Phases

Figure 3-41

Decode FBI

WCDMA Physical Layer

2007-12-03


WCDMA Uplink (FDD) Logical Channels (Layers 2+)

CCCH Common Control Ch.

Transport Channels (Layer 2)

Physical Channels (Layer 1)

Data Coding

RACH Random Access Ch.

Chd

Gd

Chc

Gc

PRACH Physical Random Access Ch.

Σ

RACH Control Part DCCH Dedicated Control Ch. CCTrCH

DTCH Dedicated Traffic Ch. 1

DCH Dedicated Ch.

Data Encoding

DCH Dedicated Ch.

Data Encoding

DTCH Dedicated Traffic Ch. N

DCH Dedicated Ch.

DPDCH #1 Dedicated Physical Data Ch. DPDCH #3 (optional) Dedicated Physical Data Ch.

M U X

DPDCH #5 (optional) Dedicated Physical Data Ch. DPDCH #2 (optional) Dedicated Physical Data Ch. DPDCH #4 (optional) Dedicated Physical Data Ch.

Data Encoding

Chd,1

Gd

Chd,3

Gd

Chd,5

Gd

Chd,2

Gd

Chd,4

Gd

Chd,6

Gd

DPDCH #6 (optional) Dedicated Physical Data Ch. Ch256,0

Pilot, TPC, TFCI bits

HSDPA ACK, CQI

EUL

RSN E-TFCI Happy bit

E-DCH

ΣI UE Scrambling Code

Σ

I+jQ

ΣQ

Σ

Ch256

HS-DPCCH High Speed Dedicated Physical Control Ch.

Gd

j Ch

Data Encoding

256,1

Gd

E-DPCCH Ch

4,1

Ch

4,1

Gd

Data Encoding E-DPDCH #2

ΣI Σ

Gd

ΣQ j

© Ericsson AB 2007 03_03813 LZU 108 6909 Rev. A

Figure 3-42

WCDMA Physical Layer

I

Q

j

Gd

DPCCH Dedicated Physical Control Ch.

E-DPDCH #1

MAC-es MAC-e

j

2007-12-03

Uplink RF Out

Filter Filter

I/Q Mod.


Uplink Transport Channels  Common Uplink Transport Channels – RACH Random Access Channel - Carries access requests, control information, short data - Uses only open-loop power control - Subject to random access collisions

 Dedicated Uplink Transport Channels – DCH Dedicated Channel - Carries dedicated traffic and control data from one UE

© Ericsson AB 2007 03_03813 LZU 108 6909 Rev. A

Figure 3-43

WCDMA Physical Layer

2007-12-03


Uplink DPDCH/DPCCH 3GPP TS 25.211 ¶ 5.2.1 3GPP TS 25.211 ¶ 5.2.1

Dedicated Physical Data Channel (DPDCH) Slot (0.666 mSec) Coded Data, 10 x 2^k bits, k=0…6 (10 to 640 bits)

I

Dedicated Physical Control Channel (DPCCH) Slot (0.666 mSec) Pilot TFCI FBI

1

2

3

4

5

6

7

8

9

10

11

12

13

14

TPC

15

1 Frame = 15 slots = 10 mSec DPCCH: 15 kb/sec data rate, 10 total bits per DPCCH slot PILOT:

Fixed patterns (3, 4, 5, 6, 7, or 8 bits per DPCCH slot)

TFCI:

Transmit Format Combination Indicator (0, 2, 3, or 4 bits)

FBI:

Feedback Information (0, 1, or 2 bits)

TPC:

Transmit Power Control bits (1 or 2 bits); power adjustment in steps of 1dB

© Ericsson AB 2007 03_03813 LZU 108 6909 Rev. A

Figure 3-44

WCDMA Physical Layer

2007-12-03

Q


Uplink DPDCH/DPCCH slot formats 3GPP TS 25.211 ¶ 5.2.1 3GPP TS 25.211 ¶ 5.2.1

DPDCH (Dedicated Physical Data Channel) Slot Formats Slot Format #i 0 1 2 3 4 5 6

Channel Bit Rate (kbps) 15 30 60 120 240 480 960

Channel Symbol Rate (ksps) 15 30 60 120 240 480 960

SF 256 128 64 32 16 8 4

Bits/ Frame 150 300 600 1200 2400 4800 9600

Bits/ Slot 10 20 40 80 160 320 640

Ndata 10 20 40 80 160 320 640

DPCCH (Dedicated Physical Control Channel) Slot Formats Slot Form at #i 0 0A 0B 1 2 2A 2B 3 4 5 5A 5B

Channel Bit Rate (kbps)

Channel Symbol Rate (ksps)

SF

Bits/ Frame

Bits/ Slot

Npilot

NTPC

NTFCI

NFBI

15 15 15 15 15 15 15 15 15 15 15 15

15 15 15 15 15 15 15 15 15 15 15 15

256 256 256 256 256 256 256 256 256 256 256 256

150 150 150 150 150 150 150 150 150 150 150 150

10 10 10 10 10 10 10 10 10 10 10 10

6 5 4 8 5 4 3 7 6 5 4 3

2 2 2 2 2 2 2 2 2 1 1 1

2 3 4 0 2 3 4 0 0 2 3 4

0 0 0 0 1 1 1 1 2 2 2 2

© Ericsson AB 2007 03_03813 LZU 108 6909 Rev. A

Figure 3-45

WCDMA Physical Layer

Transmitted slots per radio frame 15 10-14 8-9 8-15 15 10-14 8-9 8-15 8-15 15 10-14 8-9

2007-12-03


FBI (Feedback Indication) Field 3GPP TS 25.211 ¶ 5.2.1 3GPP TS 25.211 ¶ 5.2.1

0, 1, or 2 bits total depending on Slot Format

S Field

D Field

0, 1, or 2 bits

0 or 1 bit

Used for SSTD signaling during soft handover

Provides feedback information for closed-loop transmit diversity

SSTD (Site Selection Transmit Diversity) is an enhanced soft handover process The UE determines the cell with the strongest received signal, and indicates this “primary cell” selection using the S Field. Cells other than the primary cell suspend transmission, so that overall downlink interference is reduced.

© Ericsson AB 2007 03_03813 LZU 108 6909 Rev. A

Figure 3-46

WCDMA Physical Layer

2007-12-03


Uplink Speech RAB mapping 20 msec of each subflow 103

81

CRC 12

81

103

93 1/3

1/3

303+1

333+1

304

334

152 152

152 167

167 68

2nd interleaving

RRC AM or NAS DT normal priority 40 msec 136 128 60 8 bit RLC 16 bit RLC 136 128 4 bit MAC 4 bit MAC 144 144 MAC Layer 8 tail bits CRC 16 60 148 8 tail bits Convolutional coding 164 1/2 Radio frame equalization 136 516 Rate 1/3 CC 1st interleaving 129 129 129 129 Frame segmentation 68 68 Rate match 140 140 140 140 2nd speech 152 167 68 block Rate match 460 140 136

167

Rate match 460

RRC UM

140

152

600

40

40

DPDCH 60kbps => SF=64 PILOT TFCI TPC Š Ericsson AB 2007 03_03813 LZU 108 6909 Rev. A

1st Interleaving

2nd interleaving

600

DPDCH 60kbps => SF=64

DPCCH 15kbps Figure 3-47

6 Q 2

2

68

#1 110

152

600

40

40

167

I Branch Q

WCDMA Physical Layer

600 bits (600 symbols)

2007-12-03

68

#2 110

600

40

40

167

40

40

600 bits (600 symbols)


Uplink PS 64 RAB mapping Up to 4X320 TBs in 20 msec => max data rate = 64 kbps 1 320

336

16

RRC AM or NAS DT normal priority 40 msec 2 3 4 136 128 8 bit RLC 16 bit RLC 16 bit RLC 136 128 4 bit MAC 4 bit MAC 144 144 CRC 16 336 336 336 MAC Layer CRC 16 148 12 Trellis termination bits Turbo Coding 4224 8 tail bits 164 320

16

RRC UM

16

320

16

16

320

16

16

16

1st Interleaving 4236 2118 2246

Rate matching

2246

2246 2nd interleaving

Frame segmentation

2118

2246

154 2400

160

160

DPDCH 240kbps => SF=16 PILOT TFCI TPC Š Ericsson AB 2007 03_03813 LZU 108 6909 Rev. A

154

2nd interleaving

160

DPDCH 240kbps => SF=16

Figure 3-48

152

2400

160

DPCCH 15kbps

516 Rate 1/3 CC 1st interleaving 129 129 129 129 154 154 154 154 2nd speech block

6 Q 2

2

167

68

#1 110

152

600

I Branch Q

WCDMA Physical Layer

600 bits (600 symbols)

2007-12-03

68

#2 110

600

40

40

167

40

40

600 bits (600 symbols)


Random Access Message 3GPP TS 25.211¶ 5.2.2 3GPP TS 25.211¶ 5.2.2

 Random Access Message  Sent only after positive AICH indication RACH Data (0.667 ms)

I

Random Access Message (10, 20, 40, or 80 bits per slot) RACH Control part (0.667 ms) Pilot (8 bits)

1

2

3

4

5

6

7

8

TFCI (2 bits)

9

10

11

12

13

14

15

1 Frame = 15 slots = 10 ms

© Ericsson AB 2007 03_03813 LZU 108 6909 Rev. A

Figure 3-49

WCDMA Physical Layer

2007-12-03

Q


Complex and HPSK Spreading 

QPSK Modulation Pattern Before Baseband Filtering

After Baseband Filtering

QPSK modulation pattern I,Q Equal Magnitude

Before Baseband Filtering

After Baseband Filtering Note: When the I and Q branches are imbalanced, the constellation becomes “rectangular”.

QPSK modulation pattern I,Q Non-Equal Magnitude

© Ericsson AB 2007 03_03813 LZU 108 6909 Rev. A

This worsens peak to average power ratio, as the signal looks more like BPSK modulation.

Figure 3-50

WCDMA Physical Layer

2007-12-03


Complex and HPSK Spreading 

Complex Spreading Modulation Pattern Before Baseband Filtering

After Baseband Filtering

Complex Spreading modulation pattern

Note: The complex spread patterns remain “circular”, or more nearly constant amplitude, even when the I and Q branches are unequal in amplitude.

I,Q Equal Magnitude

Before Baseband Filtering

After Baseband Filtering

This is because the constellation phase is constantly rotated in 45 degree steps.

Complex Spreading modulation pattern I,Q Non-Equal Magnitude

© Ericsson AB 2007 03_03813 LZU 108 6909 Rev. A

Figure 3-51

WCDMA Physical Layer

2007-12-03


Uplink Channelization Codes for HPSK C4,0

C2,0 1 1 C1,0

1 1 1 1

C4,1 1 1 -1 -1

1

DPDCH 1, 2

C4,2

C2,1 1 -1

1 -1 1 -1

Figure 3-52

DPDCH 5, 6

C4,3 1 -1 -1 1

Š Ericsson AB 2007 03_03813 LZU 108 6909 Rev. A

DPCCH

WCDMA Physical Layer

DPDCH 3, 4

2007-12-03


Complex and HPSK Spreading  Complex Spreading modulation pattern

Complex Spreading vs. HPSK spreading ComplexSpreading

HPSK

versus Note:

HPSK modulation pattern

The HPSK patterns have reduced incidence of zero-amplitude crossings as compared with the Complex PN spread patterns.

I,Q Equal Magnitude

Complex Spreading modulation pattern

Complex Spreading

This is due to the specific selection of orthogonal codes, which are selected to prohibit +/- transitions on consecutive bits HPSK

e.g., [++++ ]

versus

[++-- ]

HPSK modulation pattern I,Q Non-Equal Magnitude

Š Ericsson AB 2007 03_03813 LZU 108 6909 Rev. A

Figure 3-53

WCDMA Physical Layer

2007-12-03


Š Ericsson AB 2007 03_03813 LZU 108 6909 Rev. A

Figure 3-54

WCDMA Physical Layer

2007-12-03


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.