04 03813 (1)

Page 1

WCDMA P6 AIR INTERFACE Chapter 4: WCDMA Procedures


Objectives of Chapter 4

After this chapter the participants will be able to:

© Ericsson AB 2007

Explain base station downlink timing

Explain the synchronization procedure

Explain the random access procedure

Explain the establishment of dedicated channels

Explain soft handover timing

04_03813 LZU 108 6909 Rev . A

Figure 4 2-

WCDMA Procedures

2007-12-03


Downlink Transmission Timing 10 ms Frame

SCH (PSC+SSC) P-CCPCH S-CCPCH PICH AICH DPCH HSDPA

Primary SCH Secondary SCH Common Pilot Channel

CPICH (Common Pilot Channel) P-CCPCH, (SFN modulo 2 = 0)

Primary CCPCH (Broadcast Data) Secondary CCPCH (Paging, Signaling)

τS-CCPCH,k τPICH

Paging Indicator Channel Dedicated Physical Control/Data Channel

P-CCPCH, (SFN modulo 2 = 1)

k:th S-CCPCH PICH for n:th S-CCPCH

τDPCH,n

n:th DPCCH/DCDPH

MBMS Information Channel

MICH

Secondary CCPCH (MBMS Traffic channel)

τMICH

S-CCPCH

τ

High Speed Shared Control Channel High Speed Physical Downlink Shared Channel

S-CCPCH,k

E-AGCH 10ms

Enhanced Relative Grant Channel (non-serving cell)

E-RGCH 10ms

AICH access slots © Ericsson AB 2007

τ

DPCH,n

τHS-PDSCH,n = τE-AGCH,n = τE-RGCH = 2 slots

Enhanced Absolute Grant Channel (serving cell)

Enhanced HARQ Indication Channel

3GPP TS 25.211 ¶ 7.0 3GPP TS 25.211 ¶ 7.0

τ

PICH

= N x 256 chips

= N x 256 chips

= 7680 chips (3 slots)

τ MICH = 7680 Chips (3 slots)

τ

= 2 slots

HS-PDSCH,n

E-HICH 8ms

τE-HICH,n #0

#1

04_03813 LZU 108 6909 Rev . A

#2

#3

#4 Figure 4 3-

#5

τE-HICH,n = see 3GPP 25.211 #6

#7

#8

#9

#10

#11

#12

WCDMA Procedures

#13

#14 2007-12-03


Downlink Scrambling Codes 3GPP TS 25.213 ¶ 5.2.2 3GPP TS 25.213 ¶ 5.2.2

 Used to distinguish different cell transmissions on Downlink  Each Cell is assigned one and only one Primary Scrambling Code  (Secondary Scrambling Codes may be used over part of a cell, or for other data channels) 8192 Downlink Scrambling Codes Each code is 38,400 chips of a 218 - 1 (262,143 chip) Gold Sequence

Code Group #1

© Ericsson AB 2007

Code Group #64

Primary SC0

Primary SC7

Primary SC504

Primary SC511

Secondary Scrambling Codes

Secondary Scrambling Codes

Secondary Scrambling Codes

Secondary Scrambling Codes

(15)

(15)

(15)

(15)

04_03813 LZU 108 6909 Rev . A

Figure 4 4-

WCDMA Procedures

2007-12-03


Synchronization Codes, PSC and SSC 3GPP TS 25.213 ¶ 5.2.3 3GPP TS 25.213 ¶ 5.2.3

256 Chips

PSC SSCi

2304 Chips

P-CCPCH (PSC + SSC + BCH)

Broadcast Data (18 bits)

Broadcast by RBS  

© Ericsson AB 2007

 First 256 chips of every P-CCPCH slot Allows UE to achieve fast synchronization in an asynchronous system Primary Synchronization Code (PSC)  Fixed 256-chip sequence with base period of 16 chips  Provides fast positive indication of a WCDMA system  Allows fast asynchronous slot synchronization Secondary Synchronization Codes (SSC)  A set of 16 codes, each 256 chips long  Codes are arranged into one of 64 unique permutations  Specific arrangement of SSC codes provide UE with frame timing, Scrambling Code Group 04_03813 LZU 108 6909 Rev . A

Figure 4 5-

WCDMA Procedures

2007-12-03


Primary Synchronization Code, PSC 3GPP TS 25.213 ¶ 5.2.3 3GPP TS 25.213 ¶ 5.2.3

let a = <1, 1, 1, 1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1, 1> PSC(1...256) = < a, a, a, -a, -a, a, -a, -a, a, a, a, -a, a, -a, a, a > Note: PSC is transmitted “Clear” (Without scrambling)

SCH

P-CCPCH

256 Chips

2304 Chips

PSC

Broadcast Data (18 bits)

SSCi

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

1 Frame = 15 slots = 10 mSec

© Ericsson AB 2007

04_03813 LZU 108 6909 Rev . A

Figure 4 6-

WCDMA Procedures

2007-12-03


Slot Synchronization 3GPP TS 25.214 Annex C 3GPP TS 25.214 Annex C

 Slot Synchronization using Primary Synchronization Code 10 mSec Frame (15 slots x 666.666 uSec) PSC [1]

BCH Data

PSC [2]

BCH Data

PSC [3]

BCH Data

PSC [4]

BCH Data

PSC [15]

BCH Data

Matched Filter (Matched to PSC)

P-CCPCH (PSC) Matched Filter Output

time © Ericsson AB 2007

04_03813 LZU 108 6909 Rev . A

Figure 4 7-

WCDMA Procedures

2007-12-03


Secondary Synchronization Code Groups

3GPP TS 25.213 ¶ 5.2.3 3GPP TS 25.213 ¶ 5.2.3

 16 Fixed 256-bit Codes; Codes arranged into one of 64 patterns SSC1 SSC2 SSC3 SSC4 SSC5 SSC6 SSC7 SSC8 SSC9 SSC10 SSC11 SSC12 SSC13 SSC14 SSC15 SSC16

Scrambling Code Group

slot number #1

#2

#3

#4

#5

#6

#7

#8

#9

#10

#11

#12

#13

#14

#15

Group 1

1

1

2

8

9

10

15

8

10

16

2

7

15

7

16

Group 2

1

1

5

16

7

3

14

16

3

10

5

12

14

12

10

Group 3

1

2

1

15

5

5

12

16

6

11

2

16

11

15

12

SSC1

SSC15

Group 62

9

10

13

10

11

15

15

9

16

12

14

13

16

14

11

Group 63

9

11

12

15

12

9

13

13

11

14

10

16

15

14

16

Group 64

9

12

10

15

13

14

9

14

15

11

11

13

12

16

10

0

1

2

3

4

5

6

7

8

9

10

11

12

1 Frame = 15 slots = 10 mSec Note: The SSC patterns positively identify one and only one of the 64 Scrambling Code Groups. This is possible because no cyclic shift of any SSC is equivalent to any cyclic shift of any other SSC.

© Ericsson AB 2007

04_03813 LZU 108 6909 Rev . A

Figure 4 8-

WCDMA Procedures

2007-12-03

13

14


Frame Synchronization, SCG ID 3GPP TS 25.214 Annex C 3GPP TS 25.214 Annex C

 Frame Synchronization using Secondary Synchronization Code 10 mSec Frame (15 slots x 666.666 uSec) SSC [1]

BCH Data

SSC [2]

BCH Data

SSC [3]

BCH Data

SSC [4]

BCH Data

SSC [15]

BCH Data

Matched Filter SSC 1

SSC1 1

SSC 2

SSC 8

SSC 9

SSC 10

SSC 15

SSC 8

SSC 10

SSC 16

SSC 2

SSC 7

SSC 15

SSC 7

SSC 16

Matched to SSC code group pattern 1

SSC Code Group Pattern provides Matched Filter Output

• Frame Synchronization • Positive ID of Scrambling Code Group Remember, no cyclic shift of any SSC is equal to any other SSC

time © Ericsson AB 2007

04_03813 LZU 108 6909 Rev . A

Figure 4 9-

WCDMA Procedures

2007-12-03


Acquisition and Synchronization  Physical Layer Procedures

P-CCPCH (PSC + SSC + BCH)

1) UE Acquisition and Synchronization Initiate Cell Synchronization

UE Monitors Primary SCH code, detects peak in matched filter output Slot Synchronization Determined ------> UE Monitors Secondary SCH code, detects SCG and frame start time offset Frame Synchronization and Code Group Determined ------> UE Determines Scrambling Code by correlating all possible codes in group Scrambling Code Determined ------> UE Monitors and decodes BCH data BCH data, Super-frame synchronization determined ------> UE adjusts transmit timing to match timing of BS + 1.5 Chips

Cell Synchronization Complete

Š Ericsson AB 2007

04_03813 LZU 108 6909 Rev . A

Figure 4 10 -

WCDMA Procedures

2007-12-03


Random Access  Random Access Attempt and AICH Indication

3GPP TS 25.211 ¶ 7.3 3GPP TS 25.211 ¶ 7.3

RACH AICH

4096 chips (1.066 msec)

UE

Preamble

BS

© Ericsson AB 2007

Preamble

Preamble

No Ind.

04_03813 LZU 108 6909 Rev . A

No Ind.

Figure 4 11 -

RACH message part (UE Identification)

Acq. Ind.

WCDMA Procedures

2007-12-03


Random Access Procedure 3GPP TS 25.214 ¶ 6.1 3GPP TS 25.214 ¶ 6.1

Prior to initiating a Random Access attempt, the UE receives:  The preamble scrambling code for this cell  The available random access signatures and set of available RACH sub-channels  The available spreading factors for the message part  The message length (10 ms or 20 ms)  Initial preamble power parameter  The power-ramping factor Power Ramp Step [integer > 0]  The parameter Preamble Retrans Max [integer > 0]  The AICH transmission timing parameter [0 or 1]  The power offset DPp-m between preamble and the message part.  Transport Format parameters

© Ericsson AB 2007

04_03813 LZU 108 6909 Rev . A

Figure 4 12 -

WCDMA Procedures

2007-12-03


Random Access Preamble Signatures 3GPP TS 25.213 ¶ 4.3.3.3 3GPP TS 25.213 ¶ 4.3.3.3

Random Access Preamble Signature Symbols

© Ericsson AB 2007

Signature

P0

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

P13

P14

P15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1

1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1

1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1

1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1

1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1

1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1

1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1

1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1

1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1

1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1

1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1

1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1

1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1

1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1

1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1

Preamble codes are 16-long Orthogonal Codes.

Preamble = [ P0, P1, … P15 ] repeated 256 times (4096 chips total).

Preamble codes help the BS distinguish between UE making simultaneous Random Access Attempts.

04_03813 LZU 108 6909 Rev . A

Figure 4 13 -

WCDMA Procedures

2007-12-03


Random Access Scrambling Codes 3GPP TS 25.213 ¶ 4.3.3 3GPP TS 25.213 ¶ 4.3.3

 Random Access Preamble Scrambling Codes

 Preamble Scrambling Code is a 4096-chip segment of a 225-long Gold Code  The UE targets one BS by using the BS’s indicated preamble scrambling code “All UE accessing this cell shall use Random Access Preamble Spreading Code n1 ”

© Ericsson AB 2007

04_03813 LZU 108 6909 Rev . A

Figure 4 14 -

“All UE accessing this cell shall use Random Access Preamble Spreading Code n2 ”

WCDMA Procedures

2007-12-03


Uplink Scrambling Code Uplink Scrambling Code Type depends on the Application

Random Access, Packet Access

Dedicated Traffic Connection

• Cell-specific Scrambling Code(s)

• UE-specific Scrambling Code(s)

• Code(s) are assigned by UTRAN

• Code(s) are assigned by UTRAN

• Code(s) are conveyed to UE via the BCH or FACH

• Code(s) are conveyed to UE via the FACH • 224 possible codes

• 8,192 PRACH codes • 32,768 PCPCH codes • Code allocation corresponds to the cell’s DL scrambling code group

© Ericsson AB 2007

04_03813 LZU 108 6909 Rev . A

Figure 4 15 -

Note: Note: Short (256) Scrambling Codes may be used in place of the Short (256) Scrambling Codes may be used in place of the long scrambling codes. This is to support operation of long scrambling codes. This is to support operation of advanced BS receivers (e.g., multi-user detection receivers). advanced BS receivers (e.g., multi-user detection receivers). See TS25.213 Section 4.3.2 See TS25.213 Section 4.3.2

WCDMA Procedures

2007-12-03


Random Access Offset Timing

3GPP TS 25.211 ¶ 5.2.2.1.1 3GPP TS 25.211 ¶ 5.2.2.1.1

 Random Access Procedure Set of available RACH sub-channels determined by upper layers, sent over BCH. UE derive available access slots in the next full access slot set and selects slot based on pseudo-random algorithm radio frame: 10 ms SFN mod 2 = 0 AICH access slot RX at UE

PRACH access slot TX at UE

RACH sub-channel number

© Ericsson AB 2007

{

#0

#0

#1

#1

#2

#2

#3

#3

#4

Access slot set 1 #0 #1

#4

#5

radio frame: 10 ms SFN mod 2 = 1

#5

#6

#6

#7

#7

#8

#8

#9

#9

#10

#10

#11

#11

#12

#12

#13

#14

P P

#3 • • # 10

+ every 12th access slot + every 12th access slot

P P

P

+ every 12th access slot + every 12th access slot

P

+ every 12th access slot

P P

# 11

04_03813 LZU 108 6909 Rev . A

#14

Access slot set 2

P

#2

#13

Figure 4 16 -

WCDMA Procedures

+ every 12th access slot

2007-12-03


Establishing a Dedicated Channel, Mobile terminated call

UE in Idle Mode

1. PI on the PICH 2. PCH message on the S-CCPCH 3. UE ramps up the power by sending preambles 4. RBS responds on the AICH 5. UE sends the RACH message 6. FACH message on S-CCPCH 7. DL-DPCH ramp up 8. UE sends UL-DPCH DPCH established Š Ericsson AB 2007

04_03813 LZU 108 6909 Rev . A

Figure 4 17 -

WCDMA Procedures

2007-12-03


The WCDMA Soft Handover Problem... 

WCDMA Base Stations have Asynchronous timing references 

IS-95/cdma2000 RBSs are synchronized to GPS! 0.666 msec DPCCH/DPDCH slot Data 1

1

2

3

TPC

4

5

TFCI

6

7

Data 2

8

9

10

11

Pilot

12

13

14

15

10 msec DPCCH/DPDCH frame

RBS 2 RBS 1

10 msec frame

CPICH 2

CPICH 2

CPICH 2

CPICH 2

DPCCH/DPDCH

DPCCH/DPDCH

DPCCH/DPDCH

DPCCH/DPDCH

CPICH 1

CPICH 1

CPICH 1

CPICH 1

DPCCH/DPDCH

DPCCH/DPDCH

DPCCH/DPDCH

DPCCH/DPDCH

Toffset

© Ericsson AB 2007

04_03813 LZU 108 6909 Rev . A

Figure 4 18 -

WCDMA Procedures

2007-12-03


WCDMA Soft Handover 

Soft Handover Initiation (1)

(2)

(3)

(4)

RNC informs UE of neighboring cell information

UE measures CPICH power and time delay from adjacent cells

UE Reports measurements to RNC

RNC decides the handover strategy

RBS 2 RBS 1

CPICH 2

CPICH 2

CPICH 2

CPICH 2

10 msec frame CPICH 1

CPICH 1

CPICH 1

CPICH 1

DPCCH/DPDCH

DPCCH/DPDCH

DPCCH/DPDCH

DPCCH/DPDCH

UE Reports Toffset to RNC

Toffset

RNC

© Ericsson AB 2007

04_03813 LZU 108 6909 Rev . A

Figure 4 19 -

WCDMA Procedures

2007-12-03


WCDMA Soft Handover  Soft Handover Execution (8)

(5)

(6)

(7)

UTRAN Commands RBS2 to adjust DPCH timing by Toffset

UE Rake Receiver Synchronizes to RBS2 DPCCH/DPDCH

UE in soft handover with RBS1 and RBS2 DPCCH/DPDCH’s

When RBS2 sufficiently strong compared to RBS1, drop RBS1. (Handover complete)

RBS 2 RBS 1

CPICH 2 10 msec frame

CPICH 2

DPCCH/DPDCH

DPCCH/DPDCH

CPICH 1

CPICH 1

CPICH 1

CPICH 1

DPCCH/DPDCH

DPCCH/DPDCH

DPCCH/DPDCH

DPCCH/DPDCH

UE Reports Toffset to RNC

CPICH 2

DPCCH/DPDCH

04_03813 LZU 108 6909 Rev . A

Figure 4 20 -

DPCCH/DPDCH

Toffset

Toffset

UTRAN Commands RBS2 to adjust DPCH timing by Toffset

RNC

© Ericsson AB 2007

CPICH 2

WCDMA Procedures

2007-12-03


Š Ericsson AB 2007

04_03813 LZU 108 6909 Rev . A

Figure 4 21 -

WCDMA Procedures

2007-12-03


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.