.
. . ..
OR NL-5176 ’*
HOME
HELP
Engineering Tests of the Metal Transfer Process for Extraction of Rare-Earth Fission Products from a Molten-Salt Breeder Reactor Fuel Salt H. C . Savage J. R. Hightower, Jr.
Printed in the United States of America. Available from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road, Springfield, Virginia 22161 . Price: Printed Copy $4,50; Microfiche $3.00 This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the Energy Research and Development AdministratiodUnited States Nuclear Regulatory Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibilityfor the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privatelyownedrights.
Y
ORNL-5176 D i s t . C a t e g o r y UC-76
C o n t r a c t N o . W-7405-eng-26 CHEMICAL TECHNOLOGY DIVISION
ENGINEERING TESTS OF THE METAL TRANSFER PROCESS FOR EXTRACTION OF RARE-EARTH F I S S I O N PRODUCTS FROM A MOLTEN-SALT BREEDER REACTOR FUEL SALT
H . C . Savage J . R. H i g h t o w e r , Jr.
Date Published: February 1977
OAK ZIDGE NATIONAL LABORATORY Oak R i d g e , T e n n e s s e e operated by UNION CARBIDE CORPORATION for the ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION
t/
TABLE OF CONTENTS
I
Page
............................ INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . METAL TRANSFER PROCESS . . . . . . . . . . . . . . . . . . DESCRIPTION OF METAL TRANSFER EXPERIMENTS MTE-3 AND MTE.3B . 3.1 Process Vessels and Equipment . . . . . . . . . . . . 3.2 Experimental Procedures . . . . . . . . . . . . . . . ANALYSIS OF DATA . . . . . . . . . . . . . . . . . . . . . EXPERIMENTAL RESULTS . . . . . . . . . . . . . . . . . . .
ABSTRACT
. 2. 3. 1
4
.
5
.
5.1
Overall Mass-Transfer C o e f f i c i e n t s and Equilibrium D i s t r i b u t i o n C o e f f i c i e n t s f o r Neodymium Entrainment S t u d i e s i n Experiment MTE-3B Neodymium and 147Nd Inventory i n Experiment MTE-3B Lithium Reductant i n t h e Bismuth S o l u t i o n s i n t h e Contactor and S t r i p p e r System Performance
....... ....... .. ................ 5.5 .................. 6 . DISCUSSION OF RESULTS . . . . . . . . . . . . . . . . . . . 7 . CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . 8 . ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . 9 . REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . APPENDIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2 5.3 5.4
1
1
3 6
6 11 14
18 19 36 38
40 42 44
..
51 53 54 56
-1ENGINEERING TESTS OF THE METAL TRANSFER PROCESS FOR EXTRACTION OF RIIW-EARTH FISSION PRODUCTS FROM A MOLTEN-SALT BREEDER REACTOR FUEL SALT H. C. Savage J. R. Hightower, Jr.
ABSTRACT I n t h e metal t r a n s f e r process f o r removal of r a r e - e a r t h f i s s i o n products from t h e f u e l s a l t of a molten-salt breeder r e a c t o r (MSBR),the rare e a r t h s are e x t r a c t e d from t h e molten f u e l s a l t i n t o a molten bismuth s o l u t i o n c o n t a i n i n g l i t h i u m and thorium m e t a l r e d u c t a n t s , t r a n s f e r r e d from t h e bismuth i n t o molten l i t h i u m c h l o r i d e and, f i n a l l y , recovered from t h e l i t h i u m c h l o r i d e by e x t r a c t i o n i n t o molten bismuth c o n t a i n i n g l i t h i u m reductant. Engineering experiments using mechanically a g i t a t e d , nond i s p e r s i n g c o n t a c t o r s w i t h s a l t and bismuth flow rates [Q 1% of t h o s e required f o r processing t h e f u e l s a l t from a 1000-MW(e) MSBR] have been conducted (1) t o study t h i s process, (2) t o measure t h e removal rate of a r e p r e s e n t a t i v e r a r e - e a r t h f i s s i o n product (neodymium) from MSBR f u e l s a l t , and (3) t o e v a l u a t e t h e mechanically a g i t a t e d c o n t a c t o r f o r use i n a p l a n t processing f u e l s a l t from a 1000-MW(e) FISBR. The experimental equipment and procedures are described. R e s u l t s obtained during f i v e experiments i n which t h e rare e a r t h neodymium w a s e x t r a c t e d from MSBR f u e l s a l t are presented. Removal rates and mass-transfer c o e f f i c i e n t s between t h e s a l t and bismuth phases were determined f o r neodymium and are discussed i n terms of t h e processing requirements f o r a 1000-MW(e) MSBR.
1. INTRODUCTION The Oak Ridge National Laboratory h a s been engaged i n developing 232m-233u a molten-salt breeder r e a c t o r t h a t would o p e r a t e on t h e f u e l c y c l e t o produce low-cost power while producing more f i s s i l e
material than is consumed.
The r e a c t o r would u s e a molten f l u o r i d e
s a l t mixture as t h e f u e l and g r a p h i t e as t h e moderator.
I n order for
t h e r e a c t o r t o be operated as a breeder, i t would be necessary t o remove t h e r a r e - e a r t h f i s s i o n products on a 25- t o 100-day c y c l e and i s o l a t e 233Pa from t h e region of high neutron f l u x during i t s decay
"
-2t o 233U.
Thus
an o n - s i t e processing p l a n t t h a t contfnuously removes
t h e protactinium and rare e a r t h s i s required f o r t h e r e a c t o r t o perform as a breeder. The f u e l s a l t f o r a s i n g l e - f l u i d MSBR1 has t h e composition 71.6746-12-0.33
mole % LiF-BeF2-ThF4-UF4
r a r e - e a r t h f l u o r i d e f i s s i o n products.
and c o n t a i n s 233PaF
and 4 I n t h e r e f e r e n c e flowsheet
f o r t h e processing p l a n t , f u e l s a l t i s removed from t h e r e a c t o r a t
a rate of about 0.9 gpm.
The s a l t i s f i r s t fed t o a f l u o r i n a t o r
where-about 99% of t h e uranium is removed as UF6.
The s a l t stream
l e a v i n g t h e f l u o r i n a t o r i s contacted w i t h bismuth that c o n t a i n s l i t h i u m and thorium r e d u c t a n t s i n o r d e r t o e x t r a c t protactinium and t h e remaining uranium.
The s a l t stream, e s s e n t i a l l y f r e e of uranium
and protactinium but containing t h e r a r e - e a r t h f i s s i o n products, is then fed t o a r a r e - e a r t h removal system where t h e r a r e - e a r t h f i s s i o n products are e x t r a c t e d before r e t u r n i n g t h e f u e l s a l t t o t h e r e a c t o r . The equilibrium c o n c e n t r a t i o n of t h e rare e a r t h s i n t h e s a l t from t h e r e a c t o r i s . a b o u t 100 ppm f o r a 1000-MW(e) MSBR; r a r e - e a r t h ~
removal times range from 25 t o 100 days. Engineering experiments t o study a r e c e n t l y developed r a r e - e a r t h removal
c a l l e d t h e metal t r a n s f e r p r o c e s s , have been
conducted over t h e p a s t s e v e r a l years.
I n t h i s method, t h e rare e a r t h s
are e x t r a c t e d from t h e f u e l salt i n t o bismuth c o n t a i n i n g l i t h i u m and
thorium r e d u c t a n t s , t r a n s f e r r e d from the.bismuth i n t o molten l i t h i u m c h l o r i d e and, f i n a l l y , recovered from t h e l i t h i u m c h l o r i d e by e x t r a c t i o n i n t o molten bismuth c o n t a i n i n g l i t h i u m r e d u c t a n t . Mechanically a g i t a t e d salt-metal c o n t a c t o r s have been i n v e s t i g a t e d495 f o r use i n t h e MSBR processing systems based on r e d u c t i v e e x t r a c t i o n . This type of c o n t a c t o r is of p a r t i c u l a r i n t e r e s t f o r t h e metal t r a n s f e r process since adequate mass-transfer rates may be p o s s i b l e without d i s p e r s a l of t h e s a l t and bismuth phases.
Eliminating phase d i s p e r s a l
considerably reduces t h e problem of entrainment of bismuth i n t h e processed f u e l carrier s a l t and subsequent t r a n s f e r t o t h e r e a c t o r , which i s constructed of a nickel-base a l l o y t h a t i s s u b j e c t t o damage by metallic bismuth.
The bismuth i n t h i s type of c o n t a c t o r would be
a near-isothermal, i n t e r n a l l y c i r c u l a t e d , c a p t i v e phase t h a t would minimize t h e occurrence of mass-transfer corrosion.
Also, i t i s believed
I
t h a t a processing system employing t h i s type of c o n t a c t o r can be more e a s i l y f a b r i c a t e d of g r a p h i t e , which is required f o r bismuth containment, than one using packed columns. Operation and test r e s u l t s of engineering-scale experiments, u t i l i z i n g t h e metal t r a n s f e r process and mechanically a g i t a t e d c o n t a c t o r s ,
are described i n t h i s r e p o r t .
These experiments incorporated a l l t h e
s t e p s i n t h e metal t r a n s f e r process using s a l t flow rates t h a t were
about 1% of those r e q u i r e d f o r processing t h e f u e l s a l t from a 1000The g o a l s of t h e experiments were (1) t o study t h e v a r i o u s
MW(e) MSBR.
s t e p s of t h e process, (2) t o measure t h e rate of removal of r e p r e s e n t a t i v e r a r e - e a r t h f i s s i o n products from t h e molten-salt r e a c t o r f u e l , and (3) t o determine t h e s u i t a b i l i t y of mechanically a g i t a t e d c o n t a c t o r s f o r t h i s process.
For t h i s e v a l u a t i o n , mass-transfer c o e f f i c i e n t s between
t h e s a l t and metal phases i n t h e system w e r e determined using r e p r e s e n t a t i v e r a r e - e a r t h f i s s i o n products. 2.
METAL TRANSFER PROCESS
I n t h e metal t r a n s f e r process, f l u o r i d e f u e l s a l t t h a t - i s f r e e of uranium and protactinium is f i r s t contacted with molten bismuth c o n t a i n i n g l i t h i u m and thorium as r e d u c t a n t s a t concentrations of The rare e a r t h s are
about 0.002 and 0.0025 m.f.,
respectively.
e x t r a c t e d i n t o t h e bismuth.
The bismuth t h a t c o n t a i n s t h e rare e a r t h s
and thorium is then contacted w i t h molten l i t h i u m c h l o r i d e ; and, because of highly f a v o r a b l e d i s t r i b u t i o n c o e f f i c i e n t s , t h e rare e a r t h s d i s t r i b u t e s e l e c t i v e l y , r e l a t i v e t o thorium, i n t o t h e LiC1. The f i n a l s t e p of t h e process c o n s i s t s of e x t r a c t i n g t h e rare e a r t h s from t h e L i C l by c o n t a c t w i t h molten bismuth containing l i t h i u m r e d u c t a n t a t c o n c e n t r a t i o n s of 5 t o 50 a t . %. The chemical r e a c t i o n s t h a t r e p r e s e n t each s t e p of t h e process
are given below, using a t r i v a l e n t rare e a r t h as a n example: Reductive e x t r a c t i o n : Re3+(fuel salt) + 3Li(Bi) Bi--0*2
at' % Li+ 3Li+(fuel s a l t )
T r a n s f e r t o Li C1: RE(Bi)
+ 3Li+(LiC1)
LiCl
3Li(Bi)
+ RE3+
(LiC1);
+
(1) RE(Bi);
I
-4S t r i p p i n g i n t o Bi-Li: FS3+(LiC1)
+ 3Li(Bi)
(3) Bi--5
at' % Li
b
3Li+(LiC1)
+ RE(Bi).
The e q u i l i b r i a f o r t h e s e r e a c t i o n s have been measured and expressed
as d i s t r i b u t i o n c o e f f i c i e n t s f o r t h e rare e a r t h s between t h e f u e l carrier s a l t and bismuth c o n t a i n i n g l i t h i u m as a r e d u c t a n t and as d i s t r i b u t i o n c o e f f i c i e n t s of thorium and rare e a r t h s between l i t h i u m c h l o r i d e and bismuth containing l i t h i u m . y 7
The d i s t r i b u t i o n
c o e f f i c i e n t i s defined as
where
DM = d i s t r i b u t i o n c o e f f i c i e n t ,
5 = mole f r a c t i o n . o f metal M i n t h e bismuth phase, hn= mole f r a c t i o n of t h e metal h a l i d e i n t h e s a l t phase. Under c o n d i t i o n s of interest, t h e d i s t r i b u t i o n c o e f f i c i e n t s have been found t o be dependent on t h e l i t h i u m c o n c e n t r a t i o n s as follows: l o g DM = n l o g
si+ %,* log
(5)
where n = valence of metal Mn+ i n t h e s a l t phase,
si
= mole f r a c t i o n of l i t h i u m i n t h e bismuth phase,
$ = constant
a t a given temperature.
Calculated v a l u e s of rare earth--thorium
separation factors between t h e bismuth and L i C l s a l t range from about lo4 t o 108 f o r d i v a l e n t and t r i v a l e n t rare e a r t h s based on t h e measured d i s t r i b u t i o n coefficients. One v e r s i o n of a flowsheet f o r removing rare e a r t h s from MSBR f u e l s a l t using t h e metal t r a n s f e r process i s shown i n Fig. 1. Using t h i s method, uranium- and protactinium-free f u e l s a l t from t h e protactinium removal s t e p is fed t o a series of c o n t a c t o r s t a g e s thraugh which bismuth c o n t a i n i n g d i s s o l v e d r e d u c t a n t is c i r c u l a t e d . The bismuth i n each of t h e s e f u e l - s a l t c o n t a c t o r s t a g e s a l s o c i r c u l a t e s through a corresponding l i t h i u m c h l o r i d e c o n t a c t o r s t a g e w i t h i n a
series of c o n t a c t o r s through which a l i t h i u m c h l o r i d e stream flows. This l i t h i u m c h l o r i d e stream, i n t u r n , c i r c u l a t e s through a s i n g l e
ORNL
FROM
DWG
76-685
U, Pa-FREE SALT Pa-REMOVAL STEP
‘I f
“YDROFL~8RlNATOR
06
STRIPPER
\
BISMUTH -LITHIUM STRIPPER SOLUTION
4
/
PROC4ZES;$EfALT RECONSTITUTION STEP,
Fig.
1.
Metal transfer
/
L. RECIRCULATING i ;SR$JTz
process using multiple
MTE-3--type
contactors.
-6c o n t a c t o r , where t h e l i t h i u m c h l o r i d e i s contacted w i t h a bismuthlithium stripper solution. An advantage of t h i s arrangement i s t h a t t h e f u e l salt--bismuth c o n t a c t o r s and t h e l i t h i u m chloride--bismuth
c o n t a c t o r s can be
constructed contiguous t o one a n o t h e r , and t h e bismuth can be made t o flow between t h e two by t h e pumping a c t i o n of t h e a g i t a t o r s (described Thus i n t h i s method, t h e
i n experiments MTE-3 and MTE-3B i n Sect. 3 ) .
need f o r e x t e r n a l bismuth pumps i s eliminated. Another advantage i s t h a t t h e bismuth i s t h i s t y p e of c o n t a c t o r would be a near-isothermal, c a p t i v e phase t h a t would minimize t h e occurrence of mass-transfer corrosion. Although o t h e r v a r i a t i o n s can be synthesized, t h e removal rates of neodymium measured i n experiment MTE-3B are discussed i n terms of
processing requirements f o r a 1000-MW(e) MSBR u s i n g t h e flowsheet shown i n Fig. 1. 3.
DESCRIPTION OF METAL TRANSFER EXPERIMENTS MTE-3 AND MTE-3B
3.1
Process Vessels and Equipment
The b a s i c equipment used i n t h e experiments (shown diagrammatically i n Fig. 2 ) , c o n s i s t e d of t h r e e carbon steel v e s s e l s : (1) a 14-in. (0.36-m)-diam f l u o r i d e s a l t r e s e r v o i r c o n t a i n i n g t h e f u e l carrier s a l t (72-16-12 mole % LiF-BeF2-ThF4),
metal c o n t a c t o r , and a 6-in.
a 10-in.
(0.25-m)diam
salt-
(0.15-m)-diam r a r e - e a r t h s t r i p p e r .
photograph of t h e process equipment i s shown i n Fig. 3.
A
The salt-
m e t a l c o n t a c t o r is divided i n t o two equal compartments by a carbon
steel p a r t i t i o n t h a t s e p a r a t e s t h e f l u o r i d e and L i C l salts. (13-mm)-high
A 1/2-in.
s l o t a t t h e bottom of t h e p a r t i t i o n i n t e r c o n n e c t s
t h e c a p t i v e pool of bismuth-lithium-thorium
solution i n t h e contactor.
Mechanical a g i t a t o r s i n both compartments of t h e c o n t a c t o r and i n t h e s t r i p p e r were used t o i m p r o v e c o n t a c t between t h e s a l t and bismuth phases.
Four-bladed t u r b i n e s , 2-7/8-in.
(73 mm) i n diameter and having
a p i t c h of 45", were located i n each phase. a g i t a t o r s i s shown i n Fig. 4.
A photograph of t h e
The blade mounting and s h a f t r o t a t i o n
w e r e such t h a t t h e s a l t and bismuth flows were d i r e c t e d toward t h e interface.
The engineering drawings used i n t h e c o n s t r u c t i o n of t h e
metal t r a n s f e r experiments are l i s t e d i n Table 1.
ORNL-DWG-71-147-RI
VENT
ARGON SUPPLY
I
4
I
LiF-BeFZ- ThFe FLUORIDE SALT RESERVOIR
SALT- METAL CONTACTOR
RARE EARTH STRIPPER
Flow diagram for metal transfer experiment MTE-3.
-8-
Fig. 3 .
Photograph of processing v e s s e l s for metal transfer experiment MTE-3B with heaters and thermocouples i n s t a l l e d .
Fig. 4.
Photograph of agitators used for promoting mass transfer between the s a l t and bismuth solutions i n metal transfer experiments MTE-3 and MTE-3B.
-10Table 1. Engineering drawings used i n c o n s t r u c t i o n of t h e m e t a l t r a n s f e r experiment Drawing number
Description
F-12172-CD-116E
Flowsheet
M-12172-CD-OZD
Fluoride s a l t tank
26D
Details of pump nozzle, viewing p o r t , s a l t funnel and d r a i n
27E
A g i t a t o r d e t a i l s of assembly
2 9E
Contactor vessel assembly
30E
Contactor v e s s e l p l a n view
31D
Contactor vessel s e c t i o n s
3 2E
Contactor vessel d e t a i l s h e e t 1
33D
Contactor vessel sampler d e t a i l s
34D
Thermowell d e t a i l s
35E
Acceptor vessel assembly
36D
Acceptor vessel s e c t i o n s A-A,
37D
Acceptor vessel d e t a i l s
38D
Transfer l i n e i s o l a t i o n f l a n g e assembly and d e t a i l s
39D
D e t a i l s f o r brazing copper s h e a t h t o steel p i p e
46D
Heat t r a n s f e r l i n e subassembly
47D
A g i t a t o r -blades assembly and d e t a i l s
48E
Vessel s t a n d and mounting d e t a i l s
49c
Samplers
51D
Details of s a l t t r a n s f e r l i n e piping
52E
F l u o r i d e s a l t pump assembly and d e t a i l s
53c
Sample l a d l e body d e t a i l
M-12053-CD-83C
S a l t and bismuth f i l t e r
B-B,
and C-C
c.i
-11The o u t s i d e s u r f a c e s of t h e carbon steel vessels were coated w i t h 'L
0.015-in.
(0.4-mm)-thick
chromium--nickel--6%
aluminum oxidation-
r e s i s t a n t material (METCO* No. P443-10) using a plasma spray gun.
This
prevented a i r o x i d a t i o n of t h e carbon steel vessels a t t h e o p e r a t i n g temperature of
'L
923 K.
Fuel s a l t w a s c i r c u l a t e d between t h e f l u o r i d e s a l t r e s e r v o i r and one s i d e of t h e c o n t a c t o r by means of a s p e c i a l l y designed gas-operated pump u t i l i z i n g molten bismuth check valves.
Lithium c h l o r i d e w a s
c i r c u l a t e d between t h e s t r i p p e r and t h e o t h e r s i d e of t h e c o n t a c t o r by a l t e r n a t e l y p r e s s u r i z i n g and venting t h e s t r i p p e r vessel.
The bismuth
phase i n t h e c o n t a c t o r w a s c i r c u l a t e d between t h e two compartments in t h e c o n t a c t o r by t h e a c t i o n of t h e a g i t a t o r s , and no d i r e c t measurement of t h i s flow rate w a s made during experiments. However, measurements made i n
a mockup using a mercury-water system i n d i c a t e d t h a t t h e bismuth flow rate between t h e two compartments would be high enough t o cause t h e raree a r t h c o n c e n t r a t i o n s i n t h e compartments t o be e s s e n t i a l l y equal. 8 The s a l t flow rates used were about 1% of those required f o r processing t h e f u e l s a l t from a 1000-MW(e) MSBR. Approximate q u a n t i t i e s of s a l t and bismuth used i n t h e experiment
were t h e following: (1) 110 kg of f l u o r i d e s a l t and 64 kg of bismuthlithium-thorium (containing about 0.0018 atom f r a c t i o n l i t h i u m and 0.0014 atom f r a c t i o n thorium) i n t h e contactor, and (2) 1 0 kg of l i t h i u m c h l o r i d e and 44 kg of bismuth-lithium
(containing 0.05 atom f r a c t i o n
lithium) i n the s t r i p p e r .
3.2
Experimental Procedures
Procedures f o r t h e makeup, p u r i f i c a t i o n , and a d d i t i o n of t h e
s a l t and bismuth phases t o t h e process v e s s e l s were designed t o minimize contamination of t h e s e materials w i t h ' o x i d e ( a i r , water, and any oxides p r e s e n t i n t h e carbon steel process vessels).
P r i o r t o t h e a d d i t i o n of
t h e s a l t s and bismuth, t h e i n t e r n a l s u r f a c e s of a l l vessels were t r e a t e d w i t h hydrogen a t 923 K t o reduce r e s i d u a l i r o n oxides.
(Most of t h e s e
oxides had been removed by s a n d b l a s t i n g during f a b r i c a t i o n . )
After
t h i s treatment, a p u r i f i e d argon atmosphere (Q 0.1 ppm of H20) was maintained i n t h e vessels t o preclude f u r t h e r o x i d a t i o n . *METCO, Inc., 1101 Prospect Avenue, Westburg, Long I s l a n d , N.Y.
-12The s a l t and bismuth s o l u t i o n s were made up i n a u x i l i a r y vessels ( a l s o t r e a t e d w i t h hydrogen) a t hygrogen t r e a t e d a t
'L
Q
923 K t o remove oxides).
The bismuth w a s
923 K, while t h e f l u o r i d e s a l t and LiCl s a l t
were contacted w i t h bismuth containing thorium f o r oxide removal.
After
makeup and p u r i f i c a t i o n , a l l s o l u t i o n s were f i l t e r e d by passing through a s i n t e r e d molybdenum f i l t e r
('L
30-p pore-diameter) during t r a n s f e r
from t h e a u x i l i a r y vessels i n t o t h e process vessels.
A f t e r t h e process
v e s s e l s had been charged w i t h t h e s a l t and bismuth s o l u t i o n s , t h e e n t i r e system w a s maintained a t temperatures above t h e l i q u i d u s temperature
(1890 K)
of t h e s o l u t i o n s .
The experimental procedure w a s e s s e n t i a l l y t h e same f o r each run. The rare e a r t h f o r which t h e mass t r a n s f e r rate and o v e r a l l mass t r a n s f e r c o e f f i c i e n t s w e r e t o be measured was added t o t h e f l u o r i d e s a l t , t h e a g i t a t o r s were s t a r t e d and a d j u s t e d t o t h e d e s i r e d speed, c i r c u l a t i o n of t h e f l u o r i d e s a l t and L i C l w a s started, and t h e s a l t and bismuth phases
were p e r i o d i c a l l y sampled d u r i n g t h e run period and analyzed f o r rareI n each r u n , trace q u a n t i t i e s of a r a d i o a c t i v e i s o t o p e
e a r t h content.
wereincluded i n t h e r a r e - e a r t h a d d i t i o n , and counting of t h e radioa c t i v i t y of t h e samples w a s used t o f o l l o w t h e t r a n s f e r rate. ('L
Samples of t h e s a l t and bismuth phases were taken u s i n g a small 0.4-cm 3 ) s t a i n l e s s steel sampling capsule w i t h a s i n t e r e d metal
filter
(Q
20-p pore-diameter).
A 1/16-in.
(0.16-mm)-diam c a p i l l a r y
t u b e a t t a c h e d t o t h e c a p s u l e w a s used f o r i n s e r t i n g i t i n t o t h e s o l u t i o n t o be sampled ( s e e Fig. 5).
During i n s e r t i o n , t h e c a p s u l e w a s
continuously purged w i t h p u r i f i e d argon g a s u n t i l i t w a s p o s i t i o n e d i n the solution.
The flow of purge gas w a s then stopped, and a sample w a s
taken by applying a vacuum t o t h e capsule.
When t h e molten s a l t o r
bismuth s o l u t i o n reached t h e upper, c o o l s e c t i o n of t h e c a p i l l a r y tube, i t solidified.
The sample w a s t h e n withdrawn i n t o t h e sample p o r t and
allowed t o c o o l under a n argon atmosphere b e f o r e removal. A l l runs i n t h e second experiment, MTE-3B, were made using t h e rare e a r t h neodymium.
I n t h e s e r u n s , trace amounts ( 5 0 t o 150 m C i ) of 147Nd
were included i n t h e neodymiqm added t o t h e experiment.
Neodymium
c o n c e n t r a t i o n i n each phase was determined by counting t h e 0.53-MeV gamma emitted by t h e 147Nd i n t h e sample.
I n addition, t h e t o t a l .
neodymium c o n t e n t s of s e l e c t e d samples were determined by a n i s o t o p i c d i l u t i o n mass spectrometry technique.
This proved t o be a v a l u a b l e means
-13-
PLASTIC TUBING
-TO
ARGON AN0 VACUUM SUPPL IES
ORNL DWC NO. 72-10406
VENT 1/16 i n . STAINLESS STEEL CAPILLARY TUBING - 40 i n . LONG
3/16 i n . ORILL
OF VESSEL
1/4 i n . OlAM STAINLESS STEEL ROO
POROUS METAL FILTER, 20+ PORE S I Z E ,
SALT LEVEL
347 STAINLESS STEEL
- B 1 LEVEL
Fig. 5 .
Schematic diagram of sample capsule and sample port used i n experiment MTE-3B.
-14of checking on t h e tracer counting r e s u l t s and w a s e s p e c i a l l y u s e f u l f o r those samples w i t h v e r y low neodymium c o n c e n t r a t i o n s (< 1 ppm), where counting techniques were inadequate. For runs i n t h e i n i t i a l experiment MTE-3, i n which t h e rare e a r t h s europium, lanthanum, and neodymium were used, counting of t h e 1.28-MeV gamma emitted from t h e 154Eu tracer w a s used t o follow t h e t r a n s f e r
rate, and t h e lanthanum c o n c e n t r a t i o n w a s determined by neutron a c t i v a t i o n and subsequent counting of t h e 14'La
produced.
This r e p o r t p r i m a r i l y d e s c r i b e s t h e r e s u l t s obtained using t h e rare e a r t h neodymium i n t h e second m e t a l t r a n s f e r experiment, MTE-3B.
The
f i r s t experiment, MTE-3, was conducted by o t h e r s and r e p o r t e d r e s u l t s are summarized f o r comparison w i t h MTE-3B
previously ; results.
4.
ANALYSIS OF DATA
Experiment MTE-3B involved t h e s u c c e s s i v e t r a n s f e r of rare e a r t h from a f l u o r i d e s a l t t o a bismuth-lithium-thorium pool, t o a l i t h i u m c h l o r i d e s a l t , and, u l t i m a t e l y , t o a bismuth-lithium pool.
The rate a t
which t h e rare e a r t h w a s t r a n s f e r r e d through t h e several c o n t a c t o r s t a g e s
w a s governed by t h e equilibrium d i s t r i b u t i o n c o e f f i c i e n t of t h e rare e a r t h , t h e s a l t and bismuth flow rates, and t h e mass-transfer coefficients.
The determination of t h e s e mass-transfer c o e f f i c i e n t s w a s
one of t h e major requirements f o r meeting t h e o b j e c t i v e s of t h e experiment.
An i d e a l i z e d s k e t c h of t h e c o n t a c t o r arrangement f o r t h e experiment is shown i n Fig. 6. From a r a r e - e a r t h material balance i n each of t h e seven regions i n d i c a t e d i n Fig. 6, t h e following equations governing t h e movement of
rare e a r t h through t h e regions were derived:
V3 dt dx3 = K 1A1(X 2
x3 DA
- F 2 ( ~ 3- ~ 4 1 ,
O R N L D W G 76-716
e
FLUOR1 SALT
J x6
Fi
F3
-Li
Fig. 6 .
Idealized diagram of the metal transfer experiment showing the regions used for mass transfer calculations.
- Bi
-16-
I
v7
dt = K3A3(X6 -
I
TIâ&#x20AC;&#x2122;
where t = time, s e c , x = molar concentration of rare e a r t h i n region i, i = 1,2,...7 i 3 Vi= volume of f l u i d i n region i, i = 1 , 2 , * . . 7 , c m ,
F1 = flow r a t e of f l u o r i d e s a l t , g-moles/sec, F2 = flow rate of bismuth between c o n t a c t o r compartments, g-moles/sec, F3 = flow rate of l i t h i u m c h l o r i d e between t h e s t r i p p e r and t h e c o n t a c t o r , g-moles/sec, DA = equilibrium d i s t r i b u t i o n c o e f f i c i e n t f o r t h e rare e a r t h
between f l u o r i d e s a l t and bismuth-lithium-thorium,
g-mole/g-mole,
DB = equilibrium d i s t r i b u t i o n c o e f f i c i e n t f o r t h e rare e a r t h between
bismuth-lithium-thorium and l i t h i u m c h l o r i d e , g-mole/g-mole, DC = equilibrium d i s t r i b u t i o n c o e f f i c i e n t f o r t h e rare e a r t h between
l i t h i u m c h l o r i d e and bismuth-lithium s t r i p p e r s o l u t i o n , g-mole/ g-mole, A1 = i n t e r f a c i a l area between f l u o r i d e s a l t and bismuth-lithiumthorium, cm 2 , A2 = i n t e r f a c i a l area between bismuth-lithium-thorium
and L i c l ,
2
cm 9 A3 = i n t e r f a c i a l area between L i C l and bismuth-lithium s t r i p p e r a l l o y , c m2 , K1 = o v e r a l l mass-transfer c o e f f i c i e n t a t t h e f l u o r i d e salt--
bismuth-lithium-thorium
i n t e r f a c e (based on c o n c e n t r a t i o n i n
t h e f l u o r i d e s a l t phase), cm/sec, K2 = o v e r a l l massLtransfer c o e f f i c i e n t a t t h e bismuth-lithium-
thorium-4iC1 i n t e r f a c e (based on c o n c e n t r a t i o n s i n t h e bismuth phase), cm/sec,
-17Kg = o v e r a l l mass-transfer c o e f f i c i e n t a t theLiC1--
a/
bismuth-lithium i n t e r f a c e (based on concentrations i n t h e l i t h i u m c h l o r i d e phase), cm/sec. The o v e r a l l mass-transfer
c o e f f i c i e n t s are dependent on t h e
i n d i v i d u a l mass-transfer c o e f f i c i e n t s f o r each phase and t h e equilibrium d i s t r i b u t i o n c o e f f i c i e n t s f o r t h e rare e a r t h between t h e salt and bismuth They are expressed as follows:
solutions. -1 = - + +1-
1
K1 k2
k3DA
-=
1
-1+ - , DB
K2
k4
-1= -
1
K3
kg
â&#x20AC;&#x2122;
kg
+-,1 k7DC
where k2..-k7 = i n d i v i d u a l mass t r a n s f e r c o e f f i c i e n t s f o r each r e g i o n i n t h e c o n t a c t o r and s t r i p p e r vessels ( s u b s c r i p t s correspond t o t h e numbers assigned t o each phase i n Fig. 6). Overall mass-transfer c o e f f i c i e n t s f o r each run were c a l c u l a t e d by
s e l e c t i n g v a l u e s f o r K1,
K2, and K3 which r e s u l t e d i n t h e b e s t agreement
between c a l c u l a t e d time-dependent c o n c e n t r a t i o n s f o r each region and t h e experimentally measured time-dependent concentrations. The a p p r o p r i a t e known v a l u e s f o r t h e i n i t i a l c o n c e n t r a t i o n i n each
region, xi; the f l u i d volume of each region, Vi;
the area of each of the
t h r e e i n t e r f a c e s , AI, A2, and A3; and t h e t h r e e equilibrium d i s t r i b u t i o n c o e f f i c i e n t s , DA, DB, and DC were s u b s t i t u t e d i n t o Eqs. (6)-(12). estimates of K1,
Initial
K2, and K3 were a l s o s u b s t i t u t e d i n t o t h e s e equations,
which w e r e then solved using a computer program.
The c a l c u l a t e d r e s u l t s
were subsequently compared with t h e measured r e s u l t s , new estimates f o r K1,
K2, and Kg were chosen, and t h e s e were s u b s t i t u t e d i n t o t h e
d i f f e r e n t i a l Eqs. (6)-(12). v a l u e s f o r K1,
This process w a s repeated using a d j u s t e d
K2, and K3 u n t i l t h e c a l c u l a t e d r e s u l t s reproduced satis-
f a c t o r y measured r e s u l t s .
The v a l u e s f o r K l , K2, and K3 determined i n
t h i s manner w e r e taken as t h e experimentally p r e v a i l i n g o v e r a l l mass-
W
transfer coefficients.
-18 -
5. Four runs (Nd-1,
EXPERIMENTAL RESULTS
-2, -3,
and -4) u s i n g t h e rare e a r t h neodymium as
a r e p r e s e n t a t i v e f i s s i o n product were completed i n metal t r a n s f e r Neodymium w a s chosen as t h e r e p r e s e n t a t i v e rare-
experiment MTE-3B.
e a r t h f i s s i o n product f o r t h e s t u d i e s i n MTE-3B f o r several reasons: 1. Neodymium is one of t h e more important t r i v a l e n t f i s s i o n products t o be removed from a molten-salt breeder r e a c t o r f u e l salt. 2.
The u s e of 147Nd tracer w i t h i t s r e l a t i v e l y s h o r t h a l f - l i f e (11 days) would prevent excessive l e v e l s of r a d i o a c t i v i t y i n t h e experiment ( a d d i t i o n a l neodymium, containing 147Nd tracer, w a s added during t h e s t u d i e s ) .
3.
R e s u l t s could be compared w i t h those obtained using neodymium i n t h e f i r s t experiment, MTE-3.
D a t a f r o m Nd--1, -3, and -4, w e r e analyzed, and o v e r a l l mass-transfer
c o e f f i c i e n t s a t t h e t h r e e salt-metal i n t e r f a c e s were determined.
Mass-
t r a n s f e r c o e f f i c i e n t s were n o t determined i n experiment Nd-2 due t o unexpected entrainment of f l u o r i d e s a l t i n t o t h e L i C l i n t h e c o n t a c t o r . Entrainment of f l u o r i d e s a l t i n t o t h e L i C l a f f e c t s t h e equilibrium d i s t r i b u t i o n c o e f f i c i e n t s of t h e rare e a r t h s and thorium between t h e L i C l and bismuth phases such t h a t thorium is t r a n s f e r r e d i n t o t h e LiC1.
11
Entrainment a l s o occurred during run Nd-1; however, t h e amount of f l u o r i d e s a l t entrained w a s r e l a t i v e l y s m a l l (Q 1.3 wt % F i n t h e L i C l ) , and t h e d i s t r i b u t i o n c o e f f i c i e n t s measured a t t h e end of r u n Nd-1 were n e a r t h e expected values.
During run Nd-2,
of f l u o r i d e s a l t entrained
(Q
t h e cumulative amount
3 wt %) became s i g n i f i c a n t .
The
d i s t r i b u t i o n c o e f f i c i e n t s ( p a r t i c u l a r l y f o r thorium a t t h e LiC1-bismuth i n t e r f a c e i n t h e contactor) were reduced, and a s i g n i f i c a n t q u a n t i t y of thorium w a s t r a n s f e r r e d i n t o t h e L i C l and w a s subsequently c i r c u l a t e d i n t o t h e s t r i p p e r , where i t r e a c t e d w i t h t h e l i t h i u m r e d u c t a n t i n t h e Bi-Li solution.
This r e a c t i o n continued u n t i l most of t h e l i t h i u m r e d u c t a n t
was l o s t from t h e s t r i p p e r and t h e neodymium was no longer e x t r a c t e d
i n t o t h e Li-Bi i n t h e s t r i p p e r ,
E x t r a c t i o n of neodymium stopped a f t e r
about 50 h r of o p e r a t i o n of run Nd-2; t r a n s f e r c o e f f i c i e n t s could be made.
t h u s no determination of mass-
-19Because of t h e entrainment of f l u o r i d e s a l t i n t o t h e L i C l during runs Nd-1 and Nd-2,
i t became necessary t o remove both t h e L i C l from t h e
c o n t a c t o r and s t r i p p e r and t h e bismuth--5 a f t e r run Nd-2.
a t . % L i from t h e s t r i p p e r
Fresh L i C l and bismuth-lithium s o l u t i o n were charged t o
t h e system b e f o r e s t a r t i n g r u n Nd-3. 5.1
Overall Mass-Transfer C o e f f i c i e n t s and Equilibrium D i s t r i b u t i o n C o e f f i c i e n t s f o r Neodymium
Operating c o n d i t i o n s and system parameters f o r r u n s Nd-1 through Nd-4 i n metal t r a n s f e r experiment MTE-3B are shown i n Table 2.
R e s u l t s of
t h e determinations of o v e r a l l mass-transfer c o e f f i c i e n t s f o r t h e rare e a r t h neodymium f o r runs Nd-1,
are given i n Table 3.
-3,
and -4 i n metal t r a n s f e r experiment MTE-3B
Values f o r t h e equilibrium d i s t r i b u t i o n
c o e f f i c i e n t s f o r neodymium measured a t t h e completion of each run, during p e r i o d s of no s a l t c i r c u l a t i o n , are shown i n Table 4. Previously r e p o r t e d v a l u e s f o r o v e r a l l mass-transfer c o e f f i c i e n t s f o r europium, lanthanium, and neodymium obtained i n t h e experiment, MTE-3,
are shown i n Table 5 f o r reference. Values f o r o v e r a l l mass-transfer c o e f f i c i e n t s f o r neodymium a t t h e t h r e e salt-bismuth i n t e r f a c e s i n metal t r a n s f e r experiment MTE-3B (Table 3)
were obtained by s e l e c t i n g v a l u e s f o r t h e mass-transfer c o e f f i c i e n t s which r e s u l t e d i n a "best f i t " between t h e experimentally obtained c o n c e n t r a t i o n s d u r i n g each run and t h e c a l c u l a t e d c o n c e n t r a t i o n s as discussed i n S e c t . 4. The experimentally measured v a l u e s f o r t h e equilibrium d i s t r i b u t i o n c o e f f i c i e n t s f o r neodymium between t h e s a l t and bismuth s o l u t i o n s w e r e used i n c a l c u l a t i n g t h e "best f i t " case. R e s u l t s are shown i n Figs. 8-18.
I n t h e s e f i g u r e s , t h e experimental
d a t a p o i n t s are i n d i c a t e d f o r each s o l u t i o n , and t h e l i n e shown r e p r e s e n t s t h e "best f i t " f o r t h e c a l c u l a t e d c o n c e n t r a t i o n s during each run.
Excellent
agreement w a s obtained f o r t h e f l u o r i d e s a l t s o l u t i o n and t h e bismuth--5
a t . % l i t h i u m s o l u t i o n i n t h e s t r i p p e r f o r each run.
For t h e s e s o l u t i o n s ,
t h e d a t a obtained by counting t h e 0.53-MeV gamma emitted by t h e 147Nd
tracer (with r e s u l t s expressed i n d i s i n t e g r a t i o n s p e r minute p e r gram) were used.
Equally good agreement w a s obtained f o r t h e d a t a obtained by
a n a l y s i s f o r t o t a l neodymium i n t h e s e two phases. by t o t a l neodymium a n a l y s i s (&g)
The r e s u l t s obtained
are shown f o r t h e bismuth-thorium-
l i t h i u m s o l u t i o n i n t h e c o n t a c t o r and t h e L i C l i n t h e c o n t a c t o r and s t r i p p e r .
-20-
__
T a b l e 2. Operating conditions f o r runs Nd-1 through Nd-4 i n m e t a l t r a n s f e r experiment MTE-3B
2
1
Run number Run t i m e , h r .
140a (l15.7>b
5.0
A g i t a t o r speed, r p s
138
165. 2a (107. 8Ib
5.0
4.17
1.67
0
0
Fluoride s a l t c i r c u l a t i o n rate, m3/sec
5.8 x
5.8 x
L i C l c i r c u l a t i o n rate, m3/sec
2.0
2.0
Average temperature, K
923
2.0
923
165a (109.5Ib
2.0
92 3
923
Q u a n t i t i e s of S a l t and Bismuth (g-moles) Fluoride f u e l s a l t i n reservoir
1535
1535
1535
1535
Fluoride f u e l salt i n contactor
161
161
161
161
Bi-Li-Th i n f l u o r i d e s a l t compartment of contactord
132
132
129
132
.Bi-Li-Th i n L i C l s a l t compartment of contactor
161
161
156
156
101
101
101
101
132
132
114
114
190
190
190
190
L i C l i n contactor
e
LiCl i n stripper
Bi--5
at. % Li i n s t r i p p e r f
â&#x20AC;&#x2122;
a T o t a l t i m e of f l u o r i d e s a l t and/or L i C l s a l t c i r c u l a t i o n p l u s e q u i l i b r i u m t i m e with a g i t a t i o n but no s a l t c i r c u l a t i o n . bTime of f l u o r i d e s a l t and/or L i C l s a l t c i r c u l a t i o n . %ole w t = 42.4 g; p = 1.48 g/cm3; 1.1 = 0.016 P a t 923 K. 12
%ole w t = 63.2 g; p = 3.30 g/cm3; 1.1 = 0.0088 P a t 923 K. 13
eMole w t = 209 g; p = 9.66 g/cm3; 1.1 = 0.016 P a t 923 K. 14 fMole w t = 199 g; p = 9.28 g/cm 3 ; = 0.0094 P a t 923 K.
-21-
Table 3.
Overall mass-transfer c o e f f i c i e n t s a f o r neodymium i n metal t r a n s f e r experiment MTE-3B
Overall mass t r a n s f e r coe ff i c i e nt s (ma/ sec)b
Run number
Agitator speed (rps)
Run time (hr)
Nd-1
5.0
116
0.006
0.20
0.06
Nd-3
4.17
108
0.018
0.030
0.035
Nd-4
1.67
110
0.0040
0.020
0.0055
K1
K2
K3
a The mass-transfer c o e f f i c i e n t s K1 and K3 are based on t h e r a r e - e a r t h concentration i n t h e s a l t phase, and K2 is based on t h e rare e a r t h conc e n t r a t i o n i n t h e bismuth phase. bDefined by Eqs. (13)-(15).
..
..
.. .
.
. . . .. . . . .
.-..-
. .
..
.. . ..
..
.
~..
.
..
..
-
. .- . . - ._.
. . ..
Table 4. Neodymium equilibrium distribution coefficientsayb Run number
D*
DB Calculated Experimental
D,
Calculated
Experimental
Calculated
Experimental
Nd-1'
0.03e
0.027
1.67e
0.94
3.5 x 104=
>I
lo3
Nd-3'
0.017f.
0.022
0.9qf
0.98
3.5 x 104g
>I
lo3
Nd-4'
0.017f
0.027
0.9qf
1.0
Eu-6, -7d
0.0088h
0.012
0.49
0.30
aCoefficients are defined as follows: neodymium in bismuth, m.f. neodymium in salt, m.f. b DAY DBY DC = equilibrium-distribution coefficients between phases (A) bismuth-thorium/fluoride salt, (B) bismuth-thorium/LiCl , (C) bismuth-5 at. % lithium/LiCl.
I
re h)
I
C
Experiment MT.E-3B.
dExperiment MTE-3. eBased on 60 ppm of lithium in bismuth. fBased on 50 ppm of lithium in bismuth. gBased on 5 at. % lithium in bismuth. hBased on 40 ppm of lithium in bismuth.
c
c
Table 5. Overall mass-transfer c o e f f i c i e n t s a f o r lanthanum, europium, and neodymium i n metal t r a n s f e r experiment MTE-3
Rare earth
Agi t a t or speed (rps)
La-1
La
2.50
La- 2
La
Eu-1
Run number
Eu-2, -3 Eu-4,
C
r
Eu-7,
K1
K2
Kg
15.2
0.0014
0.0011
0.12
3.33
15.4
0.002
0.0013
0.2
La Eu
1.67
14.3
0.0006 0.001
0.00039 0.000015
0.062 0.011
La Eu
3.33
15.0
0.002 0.003
0.0013 0.000048
0.2 0 033
3.33
12.2
0.002
0.020
0.2
La Nd
3.33
64.6
0.002 0.002
0.020 0.065
0.2 0.2
La Nd
5 .O
15.4
0.0026 0.0032
0.032 0.11
0.2 0.2
-5
Eu-6 -8 '
Overall mass t r a n s f e r c o e f f i c i e n t (mm/sec)
b
a The mass-transfer c o e f f i c i e n t s K 1 and K are based on t h e r a r e - e a r t h c o n c e n t r a t i o n i n t h e s a l t phase, and K2 i s based on t h e r a r e - e a r t h concentra&on i n t h e bismuth phase.
bSee f o o t n o t e (b) i n Table 3. C
A f t e r argon sparging i n t h e L i C l s i d e of c o n t a c t o r (bismuth-thorium/LiCl phases, K2).
I
ORNL D W G 7 6 - 8 7 8
2.0
I
I
I
1
I
I .5
1.0 0 0-
2
0.5 t
-RESERVOIR A CONTACTOR 0
-
0
I
I
I
1
20
40
F i g . 7.
I
I
60 80 TIME (hr)
I
I00
0
Neodymium concentration i n the fluoride s a l t i n the reservoir and contactor during run Nd-1.
c
c O R N L O W 0 76-884
I
I
I
I
7
L i C l IN THE CONTACTOR L i C l I N THE S T R I P P E R 7
t OO
I
STOPPED FLUORIDE SALT CIRCULATION
I
STOPPED LiCl CIRCULATION
0
e
A
0
A
20 F i g . 8.
40
= CONTACTOR = STRIPPER
60 80 RUN T I M E (hr)
I00
Neodymium concentration i n the L i C l i n the contactor and stripper during run Nd-1.
120
,
-.
..
0.4Q
".
I
. . .. .
. ...
..
I
I
1
"
"
~. .
..
I
I
ORNL O W 0 76-882
I
CI
? Q,
4
z
0.30
' I
-
STOPPED FLUORIDE
0 t-
STOPPED
e
p: I-
z 0.20 w 0
a
z
0 0
-I3 0.10 t c3
0
w
z O,
J A a
I
E
1
A A
I
20 Fig. 9.
@ = F L U O R I D E SALT S I D E OF CONTACTOR ~ s L i C lSIDE O F CONTACTOR I I 1 I I 40 60 80 I00 120 RUN TIME (ht)
1I
I
I h)
Q\
I
I
Neodymium concentration i n the bismuth-thorium i n the contactor during run Nd-1.
c
-27-
ORNL O W 0 76-899
I
I
I
I
I
I
I
I
I
I
I
I
I
1
5.0
4.0
3.0
2.0
1.0
OO
TIME (hr) Fig. 10.
Neodymium concentration i n the bismuth-5 at. % lithium i n the s t r i p p e r during run Nd-1.
ORNL DWG 76-350 5.0
1
-
STOPPED FLUORIDE -SALT CIRCULATION
4.0
STOPPED Li Cl CIRCULATION
3.0
2.0
I ,o
0
0
TIME ( hr ) Fig.
11.
Neodymium concentration in the fluoride contactor during run Nd-3, MTE-3B.
salt
in the
R2
ORNL
0.5
I
1
I
I
I
I
DWG
I
?c)-884
I
STOPPED LiCl CIRCULATION
0.2
l
STObPED
l
FL%l!YDE
CIRCULATION
A 0
0.1 -
0
I 20
Fig.
. * FLUORIDE or * LiCl SIDE I 40
12.
I 60
A
SALT
I 80 RUN
SIDE
I 100 TIME (hr)
I 120
Neodymium concentration in the bismuth-thorium the contactor during run Nd-3.
I 140
solution
I 160
in
ORNL D W G 76-911
2.5 a = CONTACTOR A = STRIPPER
2.0 STOPPED F L U O R I D E SALT CIRCULATION
I
.5
STOPPED LiCl C IRC U L A T IO N
A
I
A
1
1
W
.o
0.5
0
0
I
/
/
i.
I
20 Fig. 13.
I 40
I
60
I
I I 80 100 120 R U N TIME ( h r )
t
I
140
160
Neodymium concentration i n the LiCl in the contactor and stripper during run Nd-3.
A
180
ORNL DWG 76-351 4.07
I
I
I
I
I
I
.
STOPPED FLUORIDE 3.0 - - SALT CIRCULATION
I
I 0
I
0
/
1
(
I
I 60
-
f
0
0
STOPPED LiCl CIRCULATION
I
I 80
I 100
I 120
I
!
I
140
TIME (hr) Fig.
14.
I
l
.
2.0 -
I
I
Neodymium concentration in the bismuth-5 the stripper during run Nd-3, MTE-3B.
at.
% lithium
in
I 160
R2
ORNL DWG 760352Rl
5.0
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
-
4.0 -
STOPPED Li Cl CIRCULATION
STOPPED FLUORIDE SALT CIRCULATION
3.0
2.0 -
I .o
) -
-
I
I
20
I
I 40
I
I 60
I
I
I
80
I
I
100
I 120
140
TIME (hr) Fig.
15.
Neodymium concentration in the fluoride during run Nd-4, MTE-3B.
salt
in the contactor
160
I
I
I
I
-
0.5 b \ D
1
Y
g 2
-
0.4
z
W
o
0.3
-
0.2
i t
0
0
3
I
FLUORIDE SALT SIDE CI SIDE
A 0
0
A
0
0
A
A I
0
sz 0. I
0 0
-
0
I
;t
I
I
A = Ll
~e
t-
I
STOPPED L l C l SALT CIRCULATION 0
A
a
I
I
STOPPED FLUORIDE SAL7 CIRCULATION
20
40
60
00
100 RUN TIME
120
I40
160
(hr)
Fig. 16. Neodymium concentration in the bismuth-thorium in the contactor during run Nd-4.
180
ORNL O W 0 7 6 - 8 9 6
2.0 =CONTACTOR A =STRIPPER
S T O P P E D FLUORIDE SALT CIRCULATION
I/
1.5
a
t-
z
W
0
>
u 1.0 I*
-
3-
/
f
o W
/
/
2o m
0
STOPPED L i C l C I R C UL AT ION
0.5
z
-/
I
e
/-
e A A
I 20
0
A
0
0
I
0
I 40
I 60
I 80
I
100
I 120
A
I
I
140
160
R U N T I M E (hr)
Fig. 1 7 .
Neodymium concentration i n the L i C l i n the contactor and stripper, run Nd-4.
A
1 80
ORNL DWG 76-353RI
5.0
I
I .I
I
I
I
I
I
I
I
I
I
I
I
I
-
4.0
3.0
2.0 STOPPED FLUORIDE -SALT CIRCULATION
STOPPED Li Cl CIRCULATION
--
1.0
20
40
60
80
120
I00
140
TIME (hr) Fig.'18.
Neodymium concentration in the bismuth-5 stripper during run Nd-4, MTE-3B.
at.
% lithium
in the
160
, -3 6More s c a t t e r and fewer p o i n t s appear i n t h e s e d a t a .
However, i t i s f e l t
t h a t t h e f i g u r e s f o r t h e t o t a l neodymium content more n e a r l y r e p r e s e n t t h e t r u e c o n c e n t r a t i o n i n t h e s e s o l u t i o n s s i n c e t h e r e s u l t s obtained by t h e counting of samples from t h e s e s o l u t i o n s were u n r e a l i s t i c a l l y high (by a The d i f f i c u l t y seemed t o be a b i a s i n t h e counting d a t a
f a c t o r of 3 ) .
a t t h e s e very low neodymium c o n c e n t r a t i o n s (< 1 ppm). Tabulations of t h e concentrations of 147Nd t r a c e r and t h e t o t a l neodymium f o r a l l samples removed during r u n s Nd-1 through Nd-4 are included i n t h e Appendix. 5.2
Entrainment S t u d i e s i n Experiment MTE-3B
Based on previous s t u d i e s i n -awater-mercury system,15 i t w a s concluded t h a t entrainment of f l u o r i d e s a l t i n t o t h e bismuth and L i C l phases i n t h e mechanically a g i t a t e d c o n t a c t o r would occur i f t h e a g i t a t o r s w e r e operated a t speeds of 5.0 r p s o r higher.
However, i n t h e f i r s t metal
t r a n s f e r experiment, MTE-3, entrainment w a s not observed a t 5.0 r p s but w a s seen a t 6.7 r p s . 16 Since f l u o r i d e s a l t entrainment occurred a t a n a g i t a t o r speed of 5.0 r p s i n experiment MTE-3B, a series of tests were made t o determine t h e
maximum allowable a g i t a t o r speed t h a t could be used i n experiment MTE-3B without entrainment.
The tests were conducted by o p e r a t i n g t h e a g i t a t o r s
i n t h e c o n t a c t o r a t s e v e r a l d i f f e r e n t s p e e d s (3.3, 4.6, and 5.0 r p s ) f o r
time p e r i o d s ranging from
'L
50 t o
'L
140 hr. During each test a t
c o n s t a n t a g i t a t o r speeds, samples of t h e L i C l salt w e r e removed from t h e c o n t a c t o r and analyzed f o r f l u o r i d e content.
An i n c r e a s e i n f l u o r i d e i o n
c o n c e n t r a t i o n would i n d i c a t e entrainment of f l u o r i d e s a l t i n t o t h e L i C 1 . Figure 19 shows t h e f l u o r i d e i o n Concentration i n t h e L i C l as a f u n c t i o n of time f o r each a g i t a t o r speed. i o n of
'L
The i n i t i a l c o n c e n t r a t i o n of f l u o r i d e
4 w t % r e p r e s e n t s t h e amount of entrainment t h a t occurred over
a period of
'L
250 h r during r u n s Nd-1 and Nd-2.
The sequence of a g i t a t o r
speeds shown i n F i g . 1 9 r e p r e s e n t s t h e o r d e r i n which t h e tests were run. An i n c r e a s e i n t h e f l u o r i d e i o n c o n c e n t r a t i o n is c l e a r l y i n d i c a t e d i n t h e 'L
50-hr test a t 5.0 r p s .
A t a g i t a t o r speeds of 3.3 and 4.6 r p s , no
entrainment (within experimental l i m i t s ) appears t o have occurred over t h e 'L
200-hr combined test p e r i o d s a t t h e s e two speeds.
ORNL DWG 76-349Rl
5
.
4 +
3
5.Orps-rcr I 40
0
3.3 rps -+â&#x20AC;&#x2DC;pI 80
4.6rps I 120
I 160
I
w
I
I
200
240
TIME (hr) Fig. .19.
Results of tests to determine the entrainment rate of fluoride salt into LiCl as a function of agitator speed, MTE-3B.
280
-38These r e s u l t s i n d i c a t e d t h a t experiments cauld be c a r r i e d o u t a t a g i t a t o r speeds up t o about 4.5 r p s without entrainment,and experiments
t
Nd-3 and Nd-4 were conducted u s i n g a g i t a t o r speeds of 4.2 and 1.67 r p s . It w a s a l s o concluded t h a t r a p i d determinations of f l u o r i d e i o n c o n c e n t r a t i o n
i n t h e L i C l duringexperimen:ts were needed t o v e r i f y t h a t no entrainment w a s occurring.
For t h i s purpose, an Orion Model 801A pH/mV meter* equipped w i t h
s p e c i f i c i o n ( f l u o r i d e ) e l e c t r o d e s was obtained f o r r a p i d analyses of L i C l samples. The mV meter could a l s o be used t o continuously measure and record t h e emf between t h e two bismuth phases i n t h e c o n t a c t o r and s t r i p p e r vessels t h a t contained d i f f e r e n t c o n c e n t r a t i o n s of l i t h i u m r e d u c t a n t (0.0015 and 0.050 atom f r a c t i o n l i t h i u m ) .
A change i n emf would
i n d i c a t e a change i n t h e l i t h i u m c o n c e n t r a t i o n r a t i o i n t h e s e phases (Sect. 5.3) w i t h a r e s u l t a n t change i n t h e equilibrium d i s t r i b u t i o n c o e f f i c i e n t f o r neodymium and thorium between t h e s a l t and bismuth phases. 5.3
Neodymium and 147Nd Inventory i n Experiment MTE-3B
Weighed amounts of neodymium, as NdF3, c o n t a i n i n g 147Nd tracer w e r e added t o t h e f l u o r i d e f u e l s a l t i n t h e f u e l s a l t r e s e r v o i r on t h r e e occasions during o p e r a t i o n of m e t a l t r a n s f e r experiment MTE-3B.
The NdF3
and 147Nd tracer were prepared by t h e I s o t o p e s D i v i s i o n of ORNL.
The
NdF3 containing t h e tracer w a s placed i n a s p e c i a l l y designed charging capsule used t o add t h e neodymium t o t h e f u e l s a l t (Fig. 20).
The
capsule w a s s e a l e d by a spring-loaded d i s c which w a s soldered t o t h e capsule.
When i n s e r t e d i n t o t h e molten f u e l s a l t (Q923 K ) , t h e s o l d e r
melted and opened t h e capsule, allowing t h e NdF3 t o d i s p e r s e i n t o t h e f u e l salt.
Capsules w e r e i n s p e c t e d a f t e r each a d d i t i o n t o ensure t h a t
a l l of t h e neodymium had been t r a n s f e r r e d i n t o t h e f u e l s a l t . 147Nd and t o t a l neodymium inventory during each run i n metal t r a n s f e r experiment MTE-3B w a s followed by both counting and chemical a n a l y s e s of samples of t h e s a l t and bismuth phases.
The c o n c e n t r a t i o n of
147Nd w a s determined by counting t h e 0.53-MeV gamma emitted, while t h e concentration of t h e t o t a l neodymium w a s determined by a n i s o t o p i c d i l u t i o n mass-spectrometry technique. *Orion Research, Inc., Cambridge, Mass.
Ld
-39-
O R N L D W G 76-874
- 0. D. x 0.028 WALL 316 STAINLESS STEEL TUBING WELD TUBE TO CAP
ALL DIMENSIONS IN INCHES
STAINLESS STEEL SINTERED METAL FILTER
STAINLESS STEEL SPRING IN COMPRESSION
WELD SPRING TO TUBE WALL AND DISC
,
Fig. 20.
i
'-THICK CARBON STEEL DISC. 2 SOLDER TO TUBE USING S O - 5 0 LEAD-TIN SOFT SOLDER
Capsule used to add neodymium containing 147Nd tracer t o the f u e l s a l t i n experiment MTE-3B.
-4 0Table 6 compares t h e neodymium and 147Nd inventory i n metal t r a n s f e r experiment MTE-3B based on t h e amounts added t o t h e system and those c a l c u l a t e d from t h e c o n c e n t r a t i o n s i n a l l phases determined by sampling.
As seen i n Table 6, t h e inventory of neodymium and 147Nd tracer
determined by sampling was'in good agreement w i t h t h e amounts added, varying between 84 and 100% f o r each of t h e f o u r runs. These r e s u l t s i n d i c a t e t h a t (1) t h e l o s s e s of neodymium were i n s i g n i f i c a n t , (2) t h e neodymium remained d i s p e r s e d i n t h e s a l t and bismuth s o l u t i o n s , and (3) t h e sampling procedures provided samples t h a t adequately represented t h e c o n c e n t r a t i o n s of neodymium in t h e s a l t and bismuth solutions. 5.4
Lithium Reductant i n t h e Bismuth S o l u t i o n s i n t h e Contactor and S t r i p p e r
The equilibrium d i s t r i b u t i o n c o e f f i c i e n t s f o r neodymium (and o t h e r rare e a r t h s ) between t h e s a l t and bismuth s o l u t i o n s i n t h e m e t a l t r a n s f e r
process are dependent on t h e l i t h i u m r e d u c t a n t c o n c e n t r a t i o n s i n t h e bismuth s o l u t i o n s (Sect. 2).
Therefore, mass-transfer c o e f f i c i e n t s f o r
t h e rare e a r t h s are dependent on t h e s e equilibrium d i s t r i b u t i o n coefficients. During t h e runs i n experiment MTE-3B,
t h e c o n c e n t r a t i o n s of l i t h i u m
r e d u c t a n t i n t h e bismuth s o l u t i o n s were known i n i t i a l l y .
The relative
c o n c e n t r a t i o n s of l i t h i u m i n t h e bismuth i n t h e c o n t a c t o r (Q 0.0015 m.f.) and i n t h e s t r i p p e r (Q 0.05 m.f.)
were determined during t h e experiments
by measuring t h e emf between t h e s e two bismuth s o l u t i o n s .
The c o n t a c t o r
and s t r i p p e r v e s s e l s are e l e c t r i c a l l y i s o l a t e d from each o t h e r by an e l e c t r i c a l l y i n s u l a t e d " i s o l a t i o n f l a n g e , I ' and t h e bismuth s o l u t i o n s
are connected by t h e molten L i C l t h a t circulates between t h e c o n t a c t o r and s t r i p p e r .
The relative c o n c e n t r a t i o n s of l i t h i u m i n t h e bismuth
s o l u t i o n s can be c a l c u l a t e d from t h e emf measurement by t h e following 17 equation : emf = -RT/nF I n C1/C2,
(16)
where emf = emf developed between t h e two s o l u t i o n s , V, n = valence, R = gas c o n s t a n t = 1.987 cal/mole*K, F = Faraday = 23,050 cal
f1(g-equiv)
-1
,
Table 6.
Neodymium and 147Nd inventory and mass balance i n metal t r a n s f e r experiment MTE-3B
Nd by sampling Nd added T o t a l Nd Nd-14 1 Start md Start Fnd ~~~~~~
Nd added t o system Nd Nd-147
Nd determined by sampling T o t a l Nd (21Nd-147 (mci) Start End
,e",
1
2.24
71.4
2.10
2.11
63.1
59.9
93.7
94.2
88.4
83.9
2
4.61
83.5
4.10a
--
73.0a
--
88.9
--
87.4
--
3
5.91
148.9
4.98
5.03
144.1
144.1
84.3
85.1
96.8
96.8
4
5.91
148.9
5.12
5.32
150.9
131.5
86.6
90.0
100.3
88.3
%rial
inventory n o t determined due t o f l u o r i d e s a l t entrainment.
I P
I
C1,
C2 = concentration's of l i t h i u m i n t h e two bismuth s o l u t i o n s .
For t h e c o n c e n t r a t i o n s of l i t h i u m r e d u c t a n t i n t h e bismuth phases i n experiments conducted i n MTE-3B, t h e expected emf w a s
'L
275 mV.
Measurements of emf taken i n t e r m i t t e n t l y during r u n s Nd-1 and Nd-2 gradually decreased from
'L
300 mV t o
'L
25 mV n e a r t h e end of run Nd-2,
i n d i c a t i n g l o s s of l i t h i u m reductant i n t h e s t r i p p e r (see Table 7). (This l o s s of l i t h i u m i n t h e s t r i p p e r w a s caused by t h e entrainment of f l u o r i d e f u e l s a l t i n t o t h e L i C l and by subsequent r e a c t i o n of t h e
It r e s u l t e d i n no f u r t h e r
thorium i n t h e f u e l s a l t w i t h t h e l i t h i u m . e x t r a c t i o n of neodymium as w a s observed.)
I n t h e f i n a l two experiments, Nd-3 and Nd-4,
t h e emf between t h e
c o n t a c t o r and s t r i p p e r w a s followed continuously by using a recording millivolt-meter.
No entrainment of f l u o r i d e f u e l s a l t occurred during
t h e s e runs,and t h e emf between t h e bismuth s o l u t i o n s remained e s s e n t i a l l y constant a t
'L
250 mV, i n d i c a t i n g no s i g n i f i c a n t change i n t h e
c o n c e n t r a t i o n s of l i t h i u m r e d u c t a n t .
5.5
System Performance
I n s t a l l a t i o n of metal t r a n s f e r experiment MTE-3B w a s e s s e n t i a l l y complete i n February 1975.
During March 1975, t h e process v e s s e l s w e r e
p r e s s u r e t e s t e d (both a t room temperature and a t an o p e r a t i n g temperature of
'L
923 K); and t h e i n t e r n a l s u r f a c e s of t h e process vessels and
charging vessels w e r e hydrogen t r e a t e d a t oxides.
'L
923 K t o remove r e s i d u a l
A f t e r t h e hydrogen treatment, a l l v e s s e l s w e r e maintained under
p u r i f i e d argon (Q 0.1 ppm of H20) t o prevent o x i d a t i o n .
The a d d i t i o n of
a l l s a l t and bismuth s o l u t i o n s t o t h e p r o c e s s vessels w a s completed during May 1975 w i t h t h e system a t t h e o p e r a t i n g temperature of
Q
923 K.
The i n i t i a l experiments (Nd-1 and Nd-2) were c a r r i e d o u t i n June 1975, and, a f t e r removal of t h e L i C l from t h e c o n t a c t o r and s t r i p p e r and t h e removal of t h e bismuth--5 L i C l and bismuth--5
a t . % l i t h i u m from t h e s t r i p p e r , f r e s h
a t . % l i t h i u m were added t o t h e system.
The f i n a l
two experiments (Nd-3 and Nd-4) w e r e conducted during January 1976. The system was n o t cooled t o room temperature u n t i l t h e f i r s t week of A p r i l 1976; t h u s t h e system w a s maintained a t t h e o p e r a t i n g temperature of
'L
923 K f o r about l l m o n t h s .
The t h r e e a g i t a t o r s i n t h e c o n t a c t o r
and s t r i p p e r v e s s e l s were operated f o r about 700 h r a t speeds ranging
-43-
Table 7.
Measurements of emf between t h e bismuth s o l u t i o n s i n t h e c o n t a c t o r and s t r i p p e r v e s s e l s during runs Nd-1 and Nd-2 i n metal t r a n s f e r experiment MTE-3B
Calculated l i t h i u m concentration Li-Bi i n s t r i p p e r b (atom f r a c t i o n ) Run Nd-1
0 6.8 18 49 71 108
0.052 0.020 0.015 0.015 0.014 0.014
300 225 200 200 195 195 RUG Nd-2
0 11.5 30.8 48.1 63.6 78.1 100.1
165 165 155 124 100 88 25
0.0095 0.0095 0.0084 0.0057 0.0042 0.0036 0.0016
aRun t i m e = t i m e f r o m start of f l u o r i d e s a l t c i r c u l a t i o n .
bBased on t h e assumption t h a t t h e i n i t i a l c o n c e n t r a t i o n of l i t h i u m (0.0012 at. %) i n t h e bismuth-thorium phase i n t h e c o n t a c t o r remained c o n s t a n t throughout runs Nd-1 and Nd-2. The i n i t i a l c o n c e n t r a t i o n of l i t h i u m i n t h e bismuth-lithium a l l o y i n t h e s t r i p p e r was Q 0.050 at. X .
-44between 100 and 300 rpm (1.67 t o 5.0 r p s ) during t h i s period. f l u o r i d e s a l t pump w a s i n o p e r a t i o n f o r maintained f o r
%
475 hr.
%
The
295 hr,and L i C l c i r c u l a t i o n w a s
With t h e exception of one of t h e a g i t a t o r seals
which developed a l e a k and allowed inleakage of argon b u f f e r gas i n t o t h e system s h o r t l y a f t e r t e r m i n a t i o n o f t h e last run (Nd-4),
a l l equipment
functioned without i n c i d e n t throughout t h e l i f e of t h e experiment. S p e c i f i c a l l y , no h e a t e r , thermocouple 3
o r c o n t r o l system malfunctions
occurred.
Also, no leakage of s a l t o r bismuth from t h e system w a s
observed.
The o u t s i d e s u r f a c e s of t h e carbon s t e e l process vessels were
inspected a f t e r shutdown t o determine t h e e f f e c t i v e n e s s of t h e oxidationr e s i s t a n t spray coating (METCO No. P443-10) i n p r o t e c t i n g t h e s e s u r f a c e s a g a i n s t o x i d a t i o n a t t h e o p e r a t i n g temperature.
The o u t s i d e s u r f a c e s
were found t o be i n e x c e l l e n t c o n d i t i o n , w i t h only a small amount of oxide present. During the f o u r runs conducted i n m e t a l t r a n s f e r experiment MTE-3B, 807 samples of t h e salt and bismuth s o l u t i o n s were taken f o r analyses.
As discussed above, t h e sampling procedures adequately obtained r e p r e s e n t a t i v e samples of t h e process s o l u t i o n s . 6.
DISCUSSION OF RESULTS
The o b j e c t i v e s of metal t r a n s f e r process experiments MTE-3 and WE-3B were t o measure t h e rate of removal of r e p r e s e n t a t i v e r a r e - e a r t h f i s s i o n products from a molten-salt breeder r e a c t o r f u e l s a l t and t o e v a l u a t e t h e s u i t a b i l i t y of mechanically a g i t a t e d c o n t a c t o r s f o r t h e
metal t r a n s f e r process.
Thus
it w a s necessary t o determine t h e o v e r a l l
mass-transfer c o e f f i c i e n t s f o r rare e a r t h s a t t h e t h r e e salt-bismuth i n t e r f a c e s i n t h e system and t o study t h e e f f e c t of a g i t a t i o n on t h e t r a n s f e r c o e f f i c i e n t s i n s t i r r e d contactors. I n metal t r a n s f e r process experiments MTE-3 and MTE-3BY only t h e o v e r a l l mass-transfer c o e f f i c i e n t s were measured, as discussed i n Sect. 4. R e s u l t s of i n d i v i d u a l mass-transfer c o e f f i c i e n t s i n s t i r r e d c o n t a c t o r s i n 5, 18-20 In which t h e phases are n o t dispersed have been reported. t h e s e s t u d i e s , mass-transfer c o e f f i c i e n t s i n organic-water, mercury-water, and LIF-BeF2-ThF4
salt-bismuth systems were determined, and c o r r e l a t i o n s
were developed which relate t h e i n d i v i d u a l mass-transfer c o e f f i c i e n t s f o r
b
-45-
LJ
each phase t o t h e p r o p e r t i e s of t h e s o l u t i o n s and system parameters such
as t h e s i z e and speed of t h e stirrer.
The r e p o r t e d dependence of t h e
mass-transfer c o e f f i c i e n t on t h e a g i t a t o r speed v a r i e d widely. The o v e r a l l mass-transfer c o e f f i c i e n t s obtained f o r neodymium a t t h e t h r e e salt-bismuth i n t e r f a c e s i n t h e f i v e r u n s i n experiments
MTE-3 and MTE-3B a t a g i t a t o r ( s t i r r e r ) speeds ranging from 1.67 r p s t o 5.0 r p s are show inlog-log p l o t s i n Figs. 21-23.
D i r e c t c o r r e l a t i o n of t h e
e f f e c t of a g i t a t o r speed on mass-transfer c o e f f i c i e n t s cannot be made because o t h e r system parameters
- particularly
t h e equilibrium
d i s t r i b u t i o n c o e f f i c i e n t s f o r neodymium -were not t h e same f o r a l l runs. Also, s i n c e t h e o v e r a l l mass-transfer c o e f f i c i e n t s w e r e determined by simultaneous s o l u t i o n of seven d i f f e r e n t i a l equations t o determine mass balance, p r e c i s e v a l u e s f o r t h e t h r e e c o e f f i c i e n t s
c a l c u l a t e d f o r each
r u n are not p o s s i b l e . Although t h e r e i s a g r e a t d e a l of scatter i n t h e d a t a shown i n Figs. 21-23,
t h e o v e r a l l mass-transfer c o e f f i c i e n t s g e n e r a l l y i n c r e a s e with
i n c r e a s i n g a g i t a t o r speed as p r e d i c t e d .
D i r e c t comparison of s e l e c t e d
v a l u e s from t h o s e r u n s i n which only t h e a g i t a t o r speed w a s changed (e.g.,
runs 3 and 4) c l e a r l y shows an i n c r e a s e i n t h e o v e r a l l m a s s -
t r a n s f e r c o e f f i c i e n t s when t h e a g i t a t o r speed w a s elevated from 1.67 t o 4.17 r p s .
S i m i l a r l y , a comparison of runs 6 and 7 (conducted i n a
previous experiment MTE-3) shows an i n c r e a s e when t h e a g i t a t o r speed w a s e l e v a t e d from 3.33 t o 5.0 r p s .
A dashed l i n e of s l o p e 1 i s included on
t h e s e f i g u r e s f o r r e f e r e n c e purposes only.
Various c o r r e l a t i o n s developed
i n t h e c i t e d r e f e r e n c e s i n d i c a t e t h a t mass-transfer c o e f f i c i e n t s â&#x20AC;&#x2DC;are p r o p o r t i o n a l t o a g i t a t o r speed r a i s e d t o a power between 0 . 9 and 1.65. The o v e r a l l mass-transfer c o e f f i c i e n t s f o r rare e a r t h s a c r o s s t h e
s a l t and bismuth phases determined i n experiments MTE-3 and MTE-3B were only about 1 t o 50% of those t h a t would b e p r e d i c t e d by c u r r e n t l y a v a i l a b l e c o r r e l a t i o n s , w i t h t h e l a r g e s t discrepancy occurring a t t h e l i t h i u m chloride--bismuth
interfaces.
F u r t h e r s t u d i e s are r e q u i r e d i n
o r d e r t o o b t a i n c o r r e l a t i o n s t h a t would r e l i a b l y p r e d i c t â&#x201A;Źhe o v e r a l l masst r a n s f e r c o e f f i c i e n t s f o r s t i r r e d c o n t a c t o r s i f t h i s type of c o n t a c t o r i s t o be used i n a f u l l - s c a l e processing p l a n t t o remove t h e r a r e - e a r t h
b,
f i s s i o n products.
I n a d d i t i o n t o t h e i n f l u e n c e of a g i t a t o r speed and
p h y s i c a l p r o p e r t i e s of t h e s e v e r a l s o l u t i o n s ,
t h e e f f e c t of scale-up
t o l a r g e r processing equipment r e q u i r e s f u r t h e r i n v e s t i g a t i o n .
-46-
O R N L D W G 76-883
100 I
I
150
200
250
300
I
1
I
I
I
/â&#x20AC;&#x2122; / 0
I â&#x20AC;&#x2122;
J J
a
a
W
>
0
4
Fig. 21.
I
I
I
I
I
I
overall mass-transfer coefficients for neodymium at the fluoride salt-bismuth interface at agitator speeds of 100-300 rpm. Numbers in parentheses refer to run numbers. The datrhed line of slope = 1 shown for reference purposes only.
-4 7-
bd
ORNL D W G 1 6 - 8 7 9
A G I T A T O R SPEED ( r p m )
100 I
I
150
200
250
300
I
I
I
I
(1) E
i
(31 E
I
a
(4)
W
E
LL v)
z a (L
I-
:IOâ&#x20AC;&#x2122;? 2
-t J
a a W >
0
to-; Fig. 22.
I
2 .o
I
I
I
I
I
2.1
2.2
2.3
2.4
2.5
L O G A G I T A T O R SPEED ( r P m )
Overall mass-transfer c o e f f i c i e n t s for neodymium at the lithium chloride-bismuth interface i n the contactor a t agitator speeds of 100-300 rpm. Numbers i n parentheses r e f e r t o run numbers. The dashed l i n e o f slope = 1 i s shown for reference purposes only. *
-48-
ORNL DWG 76-81?
C\GITATOR SPEED ( r p m l
lo-’
100
150
200
I
I
I
.
250 I
300 I
0
Y
n
\
E
u
10-
I-
t
-0 W
I ’
/’ /’
LL LL
w 0 V
I ’ I ’
U W IL
(3)
v)
2
a a
+
v) v)
a
I -J
lo-,
-J
a
a W
>
0
10-
1.9
I
I
I
I
2.0
2.1
2.2
2.3
1
I
I
2.4
2.5
L O G A G I T A T O R SPEED ( r p m )
Fig. 23.
Overall mass-transfer c o e f f i c i e n t s for neodymium at the lithium chloride/bismuth--5 a t . % lithium i n the stripper a t agitator speeds of 100-300 rpm. Numbers i n parentheses r e f e r to run numbers. The dashed l i n e of slope = 1 i s shown for reference purposes only.
-4 9An important f e a t u r e of t h e metal t r a n s f e r process i s t h e selective s e p a r a t i o n of thorium from t h e rare e a r t h s a t t h e bismuth--lithium
Rare earth-thorium s e p a r a t i o n f a c t o r s , defined as
chloride interface. ’RE-Th
(17)
DTh’DRE’
have been determined t o be i n t h e range of d i v a l e n t rare
earth^.^
lo4
to
lo8
f o r t h e t r i v a l e n t and
Thus n e g l i g i b l e l o s s of thorium from t h e f u e l
s a l t occurs i n t h e process.
Because of entrainment of t h e f l u o r i d e s a l t
i n t o t h e L I C l i n experiment MTE-3B, i t w a s not p o s s i b l e t o determine t h e separation f a c t o r .
However, during s t u d i e s i n t h e f i r s t experiment
MTE-3, i n which t h e rare e a r t h s europium, lanthanum, and neodymium were used, t h e s e p a r a t i o n f a c t o r s were estimated based on t h e t o t a l amount of ‘L
thorium (< 10 w t ppm) found i n t h e bismuth--5 stripper DTh/DRE
at. % lithium alloy i n the
a f t e r about 400 h r of operation.
Separation f a c t o r s f o r t h e s e rare e a r t h s i n t h e o r d e r of 1 04 t o 1 06 w e r e i n d i c a t e d .
Preliminary c a l c u l a t i o n s , using a computer code developed by W. L. Carter21 a t ORNL, have been made t o e s t i m a t e t h e contactor s i z e and o p e r a t i n g c o n d i t i o n s t h a t would be required i n o r d e r t o remove t h e r a r e - e a r t h f i s s i o n products a t t h e design rate22 from t h e r e f e r e n c e MSBR. For t h e s e c a l c u l a t i o n s , t h e rare e a r t h neodymium w a s chosen as a r e p r e s e n t a t i v e example, moles
(‘L
The d e s i g n removal rate of neodymium i s
174 g) per day f o r a breeding r a t i o of 1.06.
‘L
1 . 2 g-
(Note: Reducing
t h e r a r e - e a r t h removal rate would n o t have a p r o h i b i t i v e ‘ d e l e t e r i o u s e f f e c t on t h e breeding r a t i o
-a
r a t i o by about 0.01.)23
t h r e e f o l d reduction would lower t h e breeding I n t h e s e c a l c u l a t i o n s , t h e e f f e c t s of s e v e r a l
parameters (mass-transfer c o e f f i c i e n t s , i n t e r f a c i a l area, s a l t and bismuth flow rates, and number of e x t r a c t i o n s t a g e s ) on t h e removal r a t e of neodymium were evaluated, and a combination of parameters t h a t would be required t o meet t h e d e s i g n removal rate w a s determined. R e s u l t s of t h e s e c a l c u l a t i o n s are summarized i n Table 8 .
The
cases shown were s e l e c t e d t o i n d i c a t e t h e e f f e c t of several v a r i a t i o n s on neodymium removal rates. The f u e l - s a l t flow rate of 0.9 gpm (5.7 x loh5 m3 /see) w a s held c o n s t a n t f o r a l l cases s i n c e i t is t h e design f u e l - s a l t flow rate f o r t h e r e f e r e n c e processing p l a n t .
8.
Three c o n t a c t o r s t a g e s
were used f o r a l l b u t one case s i n c e t h i s seemed t o be a reasonable compromise
b,
based on preliminary c a l c u l a t i o n s .
For c a s e 1, t h e v a l u e s of o v e r a l l m a s s -
’r
-5 0t r a n s f e r c o e f f i c i e n t s a t t h e t h r e e salt-bismuth i n t e r f a c e s (K1,
K2, K3)
are r e p r e s e n t a t i v e of those obtained i n our experimental s t u d i e s .
The
i
area of 1 f t 2 (0.093 m2) p e r s t a g e , t h e bismuth flow rate of 3 gpm
(1.9 x lom4m3/sec), and t h e L i C l flow rate of 30 gpm (1.9 x m3/see) were chosen as a b a s i s f o r f u r t h e r e x t r a p o l a t i o n . As seen i n Case 1, t h e neodymium removal rate of 0.003 g-mole/day is about a f a c t o r of 400 below t h e d e s i g n v a l u e of 1 . 2 g-moles/day.
Increasing
o v e r a l l mass-transfer c o e f f i c i e n t s a t t h e LiC1-bismuth i n t e r f a c e s i n t h e c o n t a c t o r and s t r i p p e r by a f a c t o r of 5 (case 2) increased t h e removal rate by about a f a c t o r of 4.
The e f f e c t of i n c r e a s i n g t h e
i n t e r f a c i a l c o n t a c t areas t o 1 0 and 20 f t 2 (0.94 and 1.9 m2) is seen i n cases 3 and 4, and t h e e f f e c t of i n c r e a s i n g t h e number of s t a g e s
from 3 t o 6 is seen by comparing 4 and 5.
The r e s u l t s from i n c r e a s i n g
t h e bismuth and L i C l flow rates t o 6 gpm (3.8 x 60 gpm (3.8 x
m3/sec)
m3/sec) and
is seen i n cases 7 and 9.
In case 8 ,
t h e o v e r a l l mass-transfer c o e f f i c i e n t , K, a t t h e f l u o r i d e salt--bismuth i n t e r f a c e is increased by a f a c t o r of 10. F i n a l l y , t h e d e s i r e d removal r a t e i s reached by u s e of t h e parameters shown i n c a s e 11. For t h e choices made, a neodymium removal rate â&#x20AC;&#x2DC;of 1.37 g-moles/day i s i n d i c a t e d f o r t h e following system: 2 s a l t and bismuth i n t e r f a c i a l a r e a s / s t a g e = 20 f t 2 (1.86 m ), f l u o r i d e s a l t flow rate = 0.9 gpm (5.7 x bismuth flow rate = 18 gpm (1.1 x L i C l flow rate = 60 gpm (3.8 x
m2/sec),
m2/sec),
m2/sec),
K1 = 0.16 mm/sec, Kg = 1.0 mm/sec, and K3 = 4.0 mm/sec.
The v a l u e s f o r K1 and K2 a t t h e f l u o r i d e f u e l salt--bismuth
and LiC1--
bismuth i n t e r f a c e s i n t h e c o n t a c t o r (case 11) are about a f a c t o r of 1 0 higher than t h o s e observed i n m e t a l t r a n s f e r experiments.
Results
from s t u d i e s i n t h e water-mercury c o n t a c t o r s i n d i c a t e t h a t an i n c r e a s e of about a f a c t o r of 10 i n t h e mass-transfer c o e f f i c i e n t might be expected w i t h increased a g i t a t o r t u r b i n e diameter over t h o s e used i n t h e
metal t r a n s f e r experiments (1.4 m v s 0.073 m).24 t h e i n t e r f a c e between t h e LiC1--bismuth
The v a l u e f o r K3 a t
and t h e 5 at. % l i t h i u m i n t h e
s t r i p p e r (case 11) is about a f a c t o r of 100 higher than t h a t observed i n
metal t r a n s f e r experiments.
This l a r g e i n c r e a s e would l i k e l y r e q u i r e
b
-51increased a g i t a t i o n t o t h e p o i n t of some degree of d i s p e r s i o n of t h e s a l t and bismuth i n t h e s t r i p p e r ; however, t h i s would probably be a c c e p t a b l e s i n c e t h e l i k e l i h o o d of bismuth entrainment back i n t o t h e f u e l s a l t is minimal i n t h e s t r i p p e r vessel. Other combinations of t h e v a r i o u s parameters could be used t o achieve t h e required removal rate of neodymium.
Calculated r e s u l t s , shown i n
Table 8, are intended t o i n d i c a t e t h e e f f e c t of s e v e r a l parameters on t h e removal rate i n a f u l l - s i z e d m u l t i s t a g e metal t r a n s f e r process f o r t h e removal of r a r e - e a r t h f i s s i o n products (using neodymium as a n example) from a 1000-MW(e) MSBR.
7.
CONCLUSIONS
The o b j e c t i v e s of t h e m e t a l t r a n s f e r process experiments were (1) t o study t h e v a r i o u s s t e p s i n t h e process, (2) t o measure t h e rate of removal of r a r e - e a r t h f i s s i o n products from t h e molten-salt r e a c t o r f u e l , and (3) t o e v a l u a t e t h e s u i t a b i l i t y of a mechanically a g i t a t e d c o n t a c t o r f o r u s e i n t h e process. Conclusions r e l a t i n g t o t h e s e o b j e c t i v e s are as follows: 1. During 15 experiments i n engineering-scale process equipment, r e p r e s e n t a t i v e r a r e - e a r t h f i s s i o n products (europium, lanthanum, and neodymium) were e x t r a c t e d from molten-salt breeder r e a c t o r f u e l s a l t (72-16-12 LiF-BeF2-ThF4)
mole X
and t r a n s f e r r e d i n t o bismuth-lithium a l l o y i n
t h e s t r i p p e r vessel. 2.
I n t h o s e e x p e r i m e n t s i n which entrainment of f l u o r i d e s a l t i n t o <
t h e L i C l s a l t d i d n o t occur, t h e rare e a r t h s w e r e s e l e c t i v e l y t r a n s f e r r e d (with r e s p e c t t o thorium) i n t o t h e bismuth-lithium 4 6 a l l o y . Separation f a c t o r s of about 1 0 t o 1 0 estimated i n t h e s e experiments compare favorably w i t h p r e d i c t e d v a l u e s of about 104 t o 1 08 f o r t r i v a l e n t and d i v a l e n t rare e a r t h s . Thus n e g l i g i b l e ' l o s s of thorium from t h e f u e l s a l t would occur i n t h e process.
3.
Overall mass-transfer c o e f f i c i e n t s measured a t t h e t h r e e saltbismuth i n t e r f a c e s ( f u e l salt-bismuth, bismuth-LiC1, and LiC1-bismuth-lithium) i n t h e process were lower than would be required f o r f u l l - s c a l e metal t r a n s f e r process equipment of reasonable s i z e .
Table 8. Summary of c a l c u l a t i o n s on t h e e f f e c t of various parameters on neodymium removal rate i n t h e metal t r a n s f e r process using mechanically a g i t a t e d c o n t a c t o r s
Case number
c
Nd removed p e r day (g-moles)
S a l t and B i flow (m3/sec)
Fuel salt
Bismuth
LiCl
Mass t r a n s f e r coef. (mm/sec ) Y1 K2 K3
1
0.003
0.016
0.030
2
0.013
0.016
0.15
3
0.11
0.016
4
0.18
5
Area 2 (m / s t a g e )
Number of s t a g e s
0.040
0.093
3
0.20
0.093
3
0.15
0.20
0.93
3
0.016
0.15
0.20
1.86
3
0.24
0.016
0.15
0.20
1.86
6
6
0.37
0.016
0.75
1.0
1.86
3
7
0.55
0.016
0.75
1.0
1.86
3
8
0.67
0.16
0.75
1.0
3
9
0.61
0.016
0.75
1.0
1.86 1.86
3
10
1.05
0.16
1.0
40.0
1.86
3
11
1.37
0.16
1.0
40.0
1.86
3
,
'
I
u
h3
I
c
-53-
4. The o v e r a l l mass-transfer c o e f f i c i e n t s i n c r e a s e d w i t h i n c r e a s i n g a g i t a t i o n ( a g i t a t o r speed) as expected, b u t meaningful c o r r e l a t i o n s w e r e n o t p o s s i b l e w i t h t h e l i m i t e d d a t a obtained.
5.
I n t h e equipment used i n t h e s e experiments, t h e degree of a g i t a t i o n ( a g i t a t o r speed) was l i m i t e d by entrainment of f l u o r i d e s a l t i n t o t h e L i C l i n t h e contactor.
This
would r e q u i r e f u r t h e r e v a l u a t i o n and c a r e f u l design of mechanically a g i t a t e d c o n t a c t o r s f o r u s e i n t h e metal transfer
.
The e f f e c t of i n c r e a s e d equipment size (diameters of t h e process vessels and a g i t a t o r paddles) on t h e o v e r a l l mass-transfer c o e f f i c i e n t s and r a t e of removal f o r t h e rare e a r t h s w a s n o t s t u d i e d and need additional investigation. 8.
ACKNOWLEDGMENTS
The a u t h o r s g r a t e f u l l y acknowledge t h e a s s i s t a n c e of many Oak Ridge National Laboratory s t a f f members during t h e course of t h e two metal t r a n s f e r process experiments.
The design, i n s t a l l a t i o n , and o p e r a t i o n of
of t h e f i r s t experiment MTE-3, t o g e t h e r w i t h t h e a n a l y s i s of t h e r e s u l t s ,
were done by E. L. Youngblood, L. E. McNeese, W. L. Carter, and W. F. I
Schaffer, Jr.
The following members a s s i s t e d g r e a t l y w i t h t h e second
experiment MTE-3B:
J. Beams, C. H. Brown, Jr., R. M. Counce, R. B.
Lindauer, and R. 0 . Payne, experimental o p e r a t i o n ; W. R. Laing, H. A. Parker, and R. L, Walker, chemical a n a l y s e s ; and W. L. Carter and E. L. Youngblood, d a t a a n a l y s i s and i n t e r p r e t a t i o n . of Carol Proaps is g r e a t l y a p p r e c i a t e d .
The secretarial a s s i s t a n c e
-54-
7.
REFERENCES
1.
R. C. Robertson (ed.), Conceptual Design Study of a SingleFluid Molten-Salt Breeder Reactor, ORNL-4541 (June 1971).
2.
L. E. McNeese, Engineering Development S t u d i e s f o r Molten-Salt Breeder Reactor Processing No. 5 , ORNL/TM-3140, pp. 2-15 (October 1971).
3.
U. S. P a t e n t No. 3,853,979 (Dec. 1974).
4.
L. E. McNeese, Engineering Development S t u d i e s f o r Molten-Salt Breeder Reactor-Processing No. 9, ORNLITM-3529, pp. 196-215 (December 1972).
5.
C. H. Brown, Jr., e t al., Measurement of Mass-Transfer C o e f f i c i e n t s i n a Mechanically Agitated: Nondispersing Contactor Operating w i t h a Molten Mixture of LiF-BeF2-% and Molten Bismuth, ORNL-5143 (November 1976).
6.
L. M. F e r r i s e t a l . , " D i s t r i b u t i o n of Lanthanide and Actinide Elements Between Molten Lithium Halide S a l t s and Liquid Bismuth Solutions," J. Inorg. Nucl. Chem. 34, 2921 (1972).
-
7.
L. M. F e r r i s e t a l . , "Equilibrium D i s t r i b u t i o n of Actinide and Lanthanide Elements Between Molten Fluoride S a l t s and Liquid Bismuth S o l u t i o n s , J. Inorg. Nucl. Chem. 32, 2019 (1970). c
8.
L. E. McNeese, Engineering Development S t u d i e s f o r Molten S a l t Breeder Reactor Processing No. 10, ORNL/TM-3352, pp. 57-59 (Dec. 1972).
9.
E. L. Youngblood e t al., ORNL-4832, pp. 168-71.
10.
Chem. Tech. Div. Annu. Progr. Rep. Mar. 31, 1973, ORNL-4883, pp. 23-25.
i n MSBR Semiannu. Progr. Rept. Aug. 31, 1972,
11. L. M. F e r r i s e t al., " D i s t r i b u t i o n of Lanthanide and A c t i n i d e Elements Between Liquid Bismuth and Molten LiC1-LiF and LiBr-LiF Solutions," J. Inorg. Nucl. Chem. -934 313 (1972). 12.
G. J. Janz e t a l . , Molten S a l t s : Vol. 1, Electrical Conductivity, Density and V i s c o s i t y Data, NSRDS-NBS 1 5 (October 1968).
13.
MSRP Semiannu. Progr. Rep. Aug. 31, 1969, ORNL-4449, Tables 13.12, 13.13, p. 146 (February 1970).
14.
R. N. Lyon (ed.), Liquid Metals Handbook, NAVEXOS P-733, O f f i c e of Naval Research (June 1, 1950).
15.
L. E. McNeese, Engineering Development S t u d i e s f o r Molten-Salt Breeder Reactor Processing No. 10, ORNL/TM-3352, pp. 53-57 (December 1972).
-55-
16.
Chern. Tech. Div. Annu. Progr. Rep. Mar. 31, 1973, Om-4883,
17.
D. D. Sood and J. Braunstein, "Lithium-Bismuth Alloy Electrodes f o r Thermodynamics I n v e s t i g a t i o n of Molten LiF-BeF2 Mixtures," J. Electrochem. SOC. 121 (2) 247 (February 1974).
18.
J. B. Lewis, Chem. Eng. Sci. 3, 248 (1954).
19.
D. R. Olander, Chem. Eng. Sci. 18, 123 (1963).
20.
W. J. McManamey e t al., Chem. Eng. S c i .
21.
W. L. Carter, ORNL, personal communication.
22.
W. L. Carter and E. L. Nicholson, Design and Cost Study of a
p. 25.
-
28, 1061
(1963).
Fluorinator-Reductive Extraction-Metal Transfer Processing P l a n t f o r t h e MSBR, ORNL/TM-3579 (May 1972). 23.
L. E. McNeese and M. W. Rosenthal, "MSBR: A R e v i e w of Its S t a t u s and Future," Nucl. News (12), 52-58 (September 1974).
24.
J. R. Hightower, Jr., Engineering Development S t u d i e s f o r MoltenS a l t Breeder Reactor Processing No. 24, ORNL/TM-5339 ( i n p r e p a r a t i o n ) .
17
c
-56-
APPENDIX A:
SAMPLE ANALYSES FOR EXPERIMENT MTE-3B
The c o n c e n t r a t i o n s of 147Nd tracer and t o t a l neodymium i n each of t h e seven s a l t and bismuth phases i n metal t r a n s f e r experiment MTE-3B during r u n s Nd-1 through Nd-4 are t a b u l a t e d i n Tables A-1 through A-8. The 147Nd tracer c o n c e n t r a t i o n s were determined by counting t h e 0.53-MeV gamma emitted by t h e 147Nd tracer.
Values are c o r r e c t e d f o r decay during
t h e run (t = 11 d ) . R e s u l t s f o r t o t a l neodymium w e r e obtained by 112 chemical a n a l y s e s using a n i s o t o p i c d i l u t i o n m a s s spectrometry procedure. A l l samples were counted f o r 147Nd c o n t e n t s .
Analyses f o r t o t a l
neodymium were done on alimitednumber of r e p r e s e n t a t i v e samples (1) t o e s t a b l i s h t h a t t h e 147Nd-tracer d a t a represented t h e t o t a l neodymium c o n c e n t r a t i o n , (2) t o v e r i f y t h e adequacy of t h e sampling procedure, and (3) t o check on t h e accuracy of t h e inventory of t h e neodymium i n t h e system.
CJ
-57Table A-1.
Concentrations of 147Nd i n t h e s a l t and bismuth phasesa d u r i n g r u n Nd-l,b WE-3B
Run time (hr)d
FSV x
FSC6 x 10
IO6
0 1.6 4.8 6.8 9.6 12.6 15.6 18.1 22.6 25.6 29.1 33.1 37.1 41.1 45.1 49.1 55.8 61.6 71.6 79.6 85.8 96.8
1.37 f 1.31 1.18 1.20 1.15 1.23 1.21 1.18. 1.22 1.27 1.18 1.25 1.19 1.14 1.20 1.16 1.20 1.16 1.16 1.10 1.03 1.07
O
96.9 98.8 100.8 103.8 106.8 108.8 112.8 113.8
1.09 1.04 1.08 1.11 1.01 1.23 1.16
1.03 0.94 0.93 0.84 0.78 0.71 0.71
1.05 1.01 1.02
0.62 0.63 0.56
I
0.60 1.05 1.14 1.13 1.18 1.13 1.13 1.17 1.18 1.11 1.22 1.11 1.12 1.17 1.18 1.17 1.12 1.15 1.09 1.06 1.07
115.8 Ae Be Ce
147Nd c o n c e n t r a t i o n j d i s min-1 g -1)c BTF BTC csc . css 104 104 104 104
BLS 105
0 1.40 1.93 2.26 2.11 1.96 1.53 1.03 1.59 2.50 1.50 1.76 1.66 1.87 0.99 1.52 1.95 2.33 2.10 2.19 1.84 1.16
0 0.044 0.17 0.29 0.48 0.53 0.85 1.0 1.13 1.19 1.50 1.71 1.63 1.81 1.68 2.35 2.68 2.94 3.60 3.45 3.58 4.35
0 0.63 1.20 1.20 1.30 1.37 1.28 0.93 1.29 1.29 1.12 0.99 1.53 2.34 1.24 1.29 1.53 1.75 1.47 1.66 1.41 2.28
0 1.12 2.41 3.36 0.77 3.42 3,41 4.08 2.09 4.57 2.95 2.82 2.32 3.52 3.97 3.50
0 0.68 2.42 2.57 2.84 2.42 2.92 2.61 2.28 2.97 2.93 4.13 3.84 3.08 2.21 2.84
5.11 3.35 4.02 3.78 4.85 3.98
2.40 2.82 2.81 2.87 1.80
--
Stopped f l u o r i d e s a l t c i r c u l a t i o n 1.78 0.98 2.19 2.39 0.91 1.20 4.26 2.05 0.93 1.16 3.12 <6.79* 1.42 1.25 3.24 <5.27* 1.80 0.83 2.24 _i5.8* 0.91 1.08 <6.59* 518.4* <7.31* <14.8* 1.52 0.93 Stopped LiCl c i r c u l a t i o n 0.93 <12.9* <4.74* 1.04 <4.11* 52.11* 0.47 0.56 0.25* 8.98* 0.57 0.77
-
-
-
-
4.60 6.50 4.66 4.66 4.92 5.45 5.06
5.18 4.56
5.13
aFSV = f l u o r i d e s a l t i n t h e r e s e r v o i r ; FSC = f l u o r i d e s a l t i n t h e c o n t a c t o r ; BTF = bismuth-thorium i n t h e f l u o r i d e s a l t s i d e of t h e c o n t a c t o r ; BTC = bismuth-thorium i n t h e LiCl s i d e of t h e c o n t a c t o r ; CSC LiCl i n t h e cont a c t o r ; CSS = LiCl i n t h e s t r i p p e r ; BLS bismuth-lithium i n t h e s t r i p p e r .
-
-
b A g i t a t o r speed = 5.0 r p s . k s i n t e g r a t i o n s p e r minute p e r gram of s o l u t i o n c o r r e c t e d f o r decay. dRun t i m e = t i m e e l a p s e d after start of f l u o r i d e s a l t c i r c u l a t i o n . e Equilibrium c o n d i t i o n s w i t h no s a l t c i r c u l a t i o n . -1 -1 'This v a l u e is read as 1.37 x lo6 d i s min g *These v a l u e s are q u e s t i o n a b l e due t o u s e of d i f f e r e n t procedure and counting equipment.
.
-58-
Table A-2:
Run time
0 9.6 18.1 22.6 25.6 29.1 33.1 41.1 49.1 55.8 79.6 96; 8 100.8 103.8 106.8 115.8 115.8 d
FSV
FSC
21.6
0 17.8 17.6
Neodymium c o n c e n t r a t i o n ( u g f g ) BTF BTC csc
0 0.15
0 0.15
0 0.14
0.36
0.06
0.57 0.25 0.35 0.27
css
0
0.03
0.11 0.91
18.3
17.6 17.2
BLS
0
17.9 16.5
c
Neodymium c o n c e n t r a t i o n s i n t h e s a l t and bismuth phasesa during run Nd-l,b MCE-3B
0.57
1.96
0.27 16.9 21.3
0.17 0.10
0.11
0.14 0.38
0.25
2.24 5.04
Stopped f l u o r i d e s a l t c i r c u l a t i o n 0.31
15.8 16.7
17.4
16.1
0.11 0.08
9.2
Stopped L i C l c i r c u l a t i o n 0.08 0.17 0.78
0.10
0.32
0.31 3.22
<o .0 1
3.36 -
a
FSV = f l u o r i d e salt. i n t h e r e s e r v o i r ; FSC = f l u o r i d e s a l t i n t h e c o n t a c t o r ; BTF = bismuth thorium i n t h e f l u o r i d e s a l t s i d e of the c o n t a c t o r ; BTC = bismuththorium i n t h e L i C l s i d e of t h e c o n t a c t o r ; CSC = L i C l i n t h e c o n t a c t o r ; CSS = L i C l i n t h e s t r i p p e r ; BLS = bismuth--5 a t . % l i t h i u m i n t h e s t r i p p e r .
bAgitator speed = 5.0 r p s . 5 u n time = time elapsed a f t e r start of f l u o r i d e s a l t c i r c u l a t i o n . dEquilibrium conditions w i t h no s a l t c i r c u l a t i o n .
-59Table A-3.
Run time (hr)d
Concentrations of 147Nd i n t,.e s a l t and bismuth phasesa during r u n Nd-2,b MTE-3B 147Nd c o n c e n t r a t i o n ( d i s min
lo6
x
0 2.2 7 .O 11.o 15.0 19 .o 23.0 27 .O 31.O 35.8 42.1 49 .O 57.0 63. 3e 70.8 78.8 87.3 94.5 102.5 110.8 121.3 130.3 138.3 139 .O 146.8 145.1 164 .O
171.0
1.61f 1.48 1.43 1.47 1.38 1.41 1.35 1.36 1.35 1.41 1.37 1.31 1.27 1.25 1.28 1.31 1.19 1.37 1.26 1.38 1.35 1.40 1.36 1.47 1.39 1.42 1.61
FSC+ x 10
0.058 1.02 1.26 1.44 1.35 1.35 1.38 1.30 1.26 1.27 1.34 1.22 1.22 1.19 1.25 1.43 1.52
--
1.34 1.39 1.22 1.36 1.44
BTP
csc
BTC
104
104
0.12 1.92 2.96 2.82 1.73 0.98 1.76 3.61 2.05 2.68 2.35 1.49 2.50 2.19 2.35 3.48 3.45 2.98 2.23 2.05 3.70 2.43 2.45
0.11 1.03 1.88 1.62 0.89 0.89 1.41 1.39 1.38 1.45 1.47 1.45 2.14 1.42 1.78 2.37 2.60 2.48 1.95 1.34 1.78 2.33 1.95
Stopped f l u o r i d e s a l t 1.42 2.13 1.51 2.04 1.16 1.42 2.29 1.53
css
104
104
KO. 56
<0.38 -
.c.
4.92 8.54 6.01 4.82 5.53 7.01 7.10 8.01 7.30 11.8 6.82 7.25 11.1 14.0 35.1 44.8 29.7 19.1 20.4 20.8 21.8 19.9
and LiCl 2.08 1.85 2.02 1.71
-1 g-l)c
1.41 1.68 3.29 2.68 4.40 5.16 4.27 4.86 3.12 4.09 3.81 5.22 9.42 14.1 44.6 50.3 28.2 20.3 22.4 21.7 22.6 19.8
salt circulation 22.1 22.4 21.9 55.6 21.0 20.7 17.4 23.5
BLS 105 0.56 0.53 0.89 1.16 1.49 1.80 2.21 2.57 2.78 3.29 3.87 5.02 4.90 6.42 5.98 5.39 1.65 0.57 0.43 0.46 0.42 0.46 0.39 0.39 0.44
0.40 0.46
~
a FSV = f l u o r i d e s a l t i n t h e r e s e r v o i r ; FSC = f l u o r i d e s a l t i n t h e c o n t a c t o r ; BTF = bismuth-thorium i n t h e f l u o r i d e s a l t s i d e of t h e c o n t a c t o r ; BTC = bismuth-thorium i n t h e LiCl s i d e of the c o n t a c t o r ; CSC = LiCl i n t h e c o n t a c t o r ; CSS = LiCl i n t h e s t r i p p e r ; BLS = bismuth--5 a t . % l i t h i u m i n t h e s t r i p p e r . b A g i t a t o r speed = 5.0 r p s . % i s i n t e g r a t i o n s p e r minute p e r gram of s o l u t i o n c o r r e c t e d f o r decay d u r i n g run.
t i m e from start of f l u o r i d e s a l t c i r c u l a t i o n . eI n c r e a s e i n 147Nd i n L i C l i n d i c a t e d loss of r e d u c t a n t i n s t r i p p e r .
dRun t i m e
5
f T h i s v a l u e is read as 1.61 x
lo6
d i s min
-1 -1 g
-60-
Table A-4.
Neodymium c o n c e n t r a t i o n s i n t h e s a l t and bismuth phasesa during run Nd-2,b MTE-3B
RUn
time. (hr)"
0 2.2 7.0 11.0 15 .O 19 .o 35 .O 42.1 57.0 78. Bd 102.5 130.3 138.3
FSV
FSC
Neodymium concentration (ug/g) BTF BTC csc
30.4
9.2
0.08
32.9
0.34 0.21
0.17
0.34
css <0.01 0.55
BLS
3.36
7.8 33.6 29.7 41.2 36 .O
139 .O 146.8 171.0 182 .O
29.1 26.3
0.03 0.25 0.45 0.32
0.10 0.06 0.06
11.9 1.33 0.92 0.88
0.42 0.32 0.71
7.6 15.1
32.8 8.0 5.3
0.59 0.83
Stopped f l u o r i d e s a l t and L i C l c i r c u l a t i o n 7.6 35.4 0.32 0.07 8.0
1.01
33.6 47.6 35.4
0.03 1.09 0.27
37 .O
= f l u o r i d e s a l t i n t h e r e s e r v o i r ; FSC = f l u o r i d e s a l t i n t h e c o n t a c t o r ; BTF = bismuth-thorium i n t h e f l u o r i d e s a l t s i d e o f t h e c o n t a c t o r ; BTC = bismuth-thorium i n t h e L i C l s i d e of t h e c o n t a c t o r ; CSC = L i C l i n t h e contact o r ; CSS = L i C l i n t h e s t r i p p e r ; BLS = bismuth--5 at. % l i t h i u m i n t h e s t r i p p e r .
%SV
bAgitator speed = 5.0 r p s . C
Run time dIncrease decrease stripper
= time elapsed a f t e r s t a r t of f l u o r i d e s a l t c i r c u l a t i o n . i n t h e neodymium concentration i n t h e L i C l i n t h e s t r i p p e r and of t h e neodymium concentration i n t h e Bi--5 a t . X l i t h i u m i n t h e i n d i c a t e d loss of l i t h i u m r e d u c t a n t i n t h e s t r i p p e r .
-61Table A-5.
Concentrations of 147Nd i n t h e s a l t and bismuth phasesa during run Nd-3,b MTE-3B 147Nd c o n c e n t r a t i o n ( d i s min -1 g-l)d
t iRun meC (hr)
0 1.5 4.3 11.5 18.8 19.8 27.0 35.7 43.8 51.0 59.5 68.0 74.8 83.5 92.0 99 .o 107.5 107.8 115.6 139.5 165.2
FSC
FSV
x 10
2.88
-----
-----
3.02
--
---
--
x 10
BTC
csc
lo4
x 10
0 0 0 0 1.88 3.55 1.94 0.7 3.07 4.22 3.62 3.63 3.00 4.85 2.50 3.87 Stopped F l u o r i d e S a l t C i r c u l a t i o n 2.78 4.55 3.21 21.7 2.77 4.04 2.56 26.6 2.52 4.20 3.01 19.4 2.26 2.71 2.49 13.7 2.29 3.53 2.03 16.7 1.99 3.38 1.96 21.0 1.90 2.39 1.84 12.0 1.84 2.62 1.63 22.4 1.63 3.73 1.52 12.5 1.49 2.53 1.54 9.3 1.48 3.00 2.26 11.8 1.31 1.46 1.08 7.4 Stopped LiCl C i r c u l a t i o n 16.4 2.01 5.33 1.54 1.24 1.24 15.5 1.26 1.36 1.44 12.0
0 0.7 1.35 3.33
--
3.31
css
10
x
3.67e 3.05 3.27 2.99
lo6
BTF
BLS x lo5 0
0 0 0
9.84 40.1 19.3 22.4 24.4 23.6 13.5 24.1 8.3 8.7 7.1 9.8
0.052 0.16 0.66 0.80 1.23 1.62 1.92 2.11 2.62 2.65 2.86 3.26
2.1 co.9 <0.8
3.16 3.13 3.15
-
a
FSV = f l u o r i d e f u e l s a l t i n t h e r e s e r v o i r ; FSC = f l u o r i d e f u e l s a l t i n t h e bismuth-thorium i n t h e f l u o r i d e s a l t s i d e of t h e c o n t a c t o r ; BTY contactor; BTC = bismuth-thorium in the LiCl side of the contactor; CSC = L i C l i n t h e c o n t a c t o r ; CSS = LiCl i n the s t r i p p e r ; BLS = bismuth--5 a t . X lithium i n the stripper.
bAgitator speed i n t h e c o n t a c t o r and s t r i p p e r was 4.17 r p s . 'Run
time = time elapsed after t h e s t a r t of flue-ride salt c i r c u l a t i o n .
d D i s i n t e g r a t i o n s p e r minute p e r gram of s o l u t i o n c o r r e c t e d f o r decay.
ernis v a l u e
.
is read as 3.67 x 1 06 d i s min-1 g-1
-62Table A-6.
Neodymium c o n c e n t r a t i o n s i n t h e s a l t and bismuth phases,a d u r i n g r u n Nd-3,b MTE-3B
RUn
timeC (hr) 0 1.5 4.3
11.5 18.8 19.8 27.0 35.7 43.8 51.0 59.5 68.0 74.8 83.5 92.0 99.0 107.5 107.8 115.6 139.5 165. 2d
Neodymium concentration (pg/g) BTF BTC csc cs s
FSV
FSC
47.3
34.2
0.28
0.15
0.34
0.34
0.56
44.7
0.32
0.36
1.20
0.46
0.53
47.7
46.3
Stopped F l u o r i d e S a l t C i r c u l a t i o n 0.42 0.59 2.24
40.9
0.08
0.34
1.67
35.7 30.7
47.2
22.3 20.7
0.56 1.53 2.27
0.11
0.25
1.08
1.82
26.5 21.7
BLS
4.34 5.05
0.20 0.14 0.71 Stopped L i C l C i r c u l a t i o n 0.85 0.18 0.85 0.17 0.10
0.50
5.17
0.03 0.03
7.28
aFSV = f l u o r i d e s a l t i n t h e reservoir; FSC = f l u o r i d e s a l t i n t h e c o n t a c t o r ; BTF = bismuth-thorium i n t h e f l u o r i d e s a l t s i d e of t h e c o n t a c t o r ; BTC = bismuth-thorium i n t h e L i C l s i d d of t h e c o n t a c t o r ; CSC = L i C l i n t h e c o n t a c t o r ; CSS = LiCl i n t h e s t r i p p e r ; BLC = bismuth--5 a t . % lithium i n the stripper. bAgitator speed = 4.17 r p s . â&#x20AC;&#x2DC;Run time = time elapsed after s t a r t of f l u o r i d e s a l t c i r c u l a t i o n . dEquilibrium c o n d i t i o n s w i t h no s a l t c i r c u l a t i o n .
-63-
Table A-7.
Run timeC (hr)
0 4.2 14.0 21.0 21.3 28.3 36.8 45.3 52.3 60.8 69 .O 76.3 84.8 93.2 100.5 109.4 109.5 117.0 135.8 165.9
Concentrations of 147Nd i n t h e s a l t and bismuth phasesa d u r i n g r u n Nd-4,b MTE-3B
FSV
FSC
x 10
x 10
3. 31e 2.80 2.73 2.76
1.26 2.75 2.67 2.72
---
--
2.77 1.88 2.39 2.38 2.23 2.28 2.47 2.36 1.88 2.21 2.12
----
2.34 2.37 2.35
---2.59
-----
147Nd concentration ( d i s min-1 -1)d BTF BTC csc css
x 10
x 10
x 10
1.36 1.44 12.0 4.63 2.20 8.32 3.32 2.45 6.16 4.49 3.22 10.5 Stopped F l u o r i d e S a l t C i r c u l a t i o n 3.98 2.67 8.93 3.30 2.16 5.96 2.84 2.30 6.35 5.42 2.49 8.83 3.37 2.49 7.22 2.19 7.11 3.76 5.69 2.47 7.86 3.01 2.51 11.0 7.37 2.31 8.04 2.59 2.25 5.72 2.61 5.15 3.03 Stopped L i C l c i r c u l a t i o n 3.62 2.59 11.4 3.30 2.41' 20.8 4.55 2.25 29.2
x 10
BLS x 1 05
<O .08 7.92 6.74 7.92
3.15 3.36 3.24 3.34
1.58 4.74 7.72 11.4 5.50 8.69 6.17 11.3 9.80 21.7 10.3
3.35 3.43 3.57 3.62 3.59 3.68 3.78 3.91 3.87 4.12 3.89
-3.3
4.15 4.06 4.27
22.3 -
42.2 -
a FSV = f l u o r i d e f u e l s a l t i n t h e r e s e r v o i r ; FSC = f l u o r i d e f u e l s a l t i n t h e c o n t a c t o r ; BTF = bismuth-thorium i n t h e f l u o r i d e s a l t s i d e of t h e c o n t a c t o r ; BTC = bismuth-thorium i n t h e LiCl s i d e of t h e c o n t a c t o r ; CSC = L i C l i n t h e c o n t a c t o r ; CSS = L i C l i n t h e s t r i p p e r ; BLS = bismuth--S a t . % lithium i n the stripper. bAgitator speed i n t h e c o n t a c t o r and s t r i p p e r was 1.67 r p s . C
Run t i m e = time elapsed a f t e r t h e s t a r t of f l u o r i d e s a l t c i r c u l a t i o n .
d D i s i n t e g r a t i o n s p e r minute p e r gram c o r r e c t e d f o r decay.
.
6 -1 -1 g eThis v a l u e i s r e a d 'as 3.31 x 1 0 d i s min
I
-64Table A-8. Run timeC (hr)
0 4.2 14.0 21.0 21.3 36.8 45.3 52.3 60.8 69 .O 76.3 84.8 93.2 100.5 109.4 109 .Sd 135. 8d 165.9 262. Od
Neodymium c o n c e n t r a t i o n s i n t h e s a l t and bismuth phasesa d u r i n g r u n Nd-4,b MTE-3B
FSV
FSC
47.2
20.7
Neodymium concentration (vg/g) BTF BTC csc 0.17
43.7
0.10
0.85
47.3
css
BLS
0.03
7.28
0.36
0.36 Stopped Fluoride S a l t C i r c u l a t i o n 0.42 0.39 41.6 0.35 0.38 40.2 0.35 0.46 0.29 37.2 37.8 0.34 0.36 0.25 36.1 0.35 Stopped L i C l C i r c u l a t i o n 34.7 0.29 1.05 36.0 0.34 0.85 36.1 0.29 0.25 1.34
LJ
7.73 0.48 4.27 0.45
9.13
0.63 7.46 1.96
6.58 6.50
0.11 0.03 0.03
8.54 8.40 9.24
a FSV = f l u o r i d e s a l t i n t h e r e s e r v o i r ; FSC = f l u o r i d e s a l t i n t h e c o n t a c t o r ; BTF = bismuth-thorium i n t h e f l u o r i d e s a l t s i d e of t h e c o n t a c t o r ; BTC = bismuth-thorium i n t h e LiCl s i d e of t h e c o n t a c t o r ; CSC = L i C l i n t h e c o n t a c t o r ; CSS = LiCl i n t h e s t r i p p e r ; and BLS = bismuth--5 a t . X lithium i n the stripper. bAgitator speed = 1.67 r p s . C
Run t i m e = t i m e elapsed a f t e r start o f f l u o r i d e s a l t c i r c u l a t i o n .
dEquilibrium c o n d i t i o n s w i t h no s a l t c i r c u l a t i o n .
-65-
OW-517 6 D i s t . Category UC-76 Internal Distribution L i s t 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17-20. 21. 22.
R. C. W. W. R.
F. J. F. J.
E. H. D. L. M.
L. M. L. R. L. R. E. M. R. W.
R. J. D. L. W. R. R. F. J. R.
c. w.
A. D.
Brooksbank 3rown, Jr. Burch Carter Counce Culler Dale Daley DiSt e f ano E g l i , ERDA-OR0 Engel Ferguson Ferris Grimes Glass Hibbs Hightower, Jr Kee Kelmers
.
23. 24. 25. 26. 27. 28. 29. 30-32. 33. 34. 35. 36-39. 40. 41. 42. 43. 44. 45-46. 47. 48-50. 51.
W. R. Laing J. A. Lenhard, ERDA-OR0
E. Leuze E. MacPherson P. M a l inauskas L. Matthews, ERDA-OR0 H. E. McCoy L. E. McNeese E. Newman H. Postma M. W. Rosenthal H. C. Savage C. D. S c o t t W. F. S c h a f f e r , Jr. D. B. Trauger R. G. Wymer E. L. Youngblood C e n t r a l Research Library Document Reference S e c t i o n Laboratory Records Laboratory Records (LRD-RC) R. R. A. C.
Consultants and Subcontractors 52. 53. 54. 55. 56.
W. K. Davis E. C. R. D.
L. Gaden, Jr. H. Ice B. Richards O'Boyle
External Distribution 57. 58.
59-60. 61-172.
,
Research and Technical Support Division, Energy Research and Development Administration, Oak Ridge Operations O f f i c e , P. 0. Box E, Oak Ridge, TN 37830 D i r e c t o r , Reactor Division, Energy Research and Development Administration, Oak Ridge Operations O f f i c e , P. 0. Box E, Oak Ridge, TN 37830 D i r e c t o r , Division of Nuclear Research and Applications, Energy Research and Development Administration, Washington, D. C. 20545 For d i s t r i b u t i o n as shown i n TID-4500 under UC-76, Molten-Salt Reactor Technology
ir U S GOVERNMENTPRINTINGOFFICE: 1977-748-189/166