ORNL-3282

Page 1



R. B. Briggs, Program Director

Date Issued .

--

;

'

.i

3 4 4 S b 03b11525 0



... Ill

1.

MSm

Design

Introduction.--1”here was no significant change in the &ISRE design concept during the past s i x months; nearly a11 t h e design ideas described in the preceding semiannual report remain unchanged. This repoyt period W&E concerned with detailing t h e many parts of the system, the kind of activity that precludes lengthy description here. Major Components.--DesLgn of all major components (reactor, pmp, heat exchanger, radiator, and drain tanks) was completed, and shop drawings were issued. A model of the control-rod drive was built, and tests are just beginning on the operation of the mechanism. Since some quest b n s arose regarding the stability of unclad graphite in the core, a design study was made of a c o ~ cthat incorporated clad graphite, Secondary Conqonents.--me designs of the thermal shield, radiatordoor drive mechanism, heat exchanger support, and pwmp support were completed in detail. Revisions were made to the layout, of electrical, instrument, and auxiliary gas and water connections t o the reactor c e l l . Pumplubrication package drawings were completed. Pressure-Suppression System for the Reactor CeZl.--FLzrthcr stuay of the hazard associatea with a s a l t spill in the reactor celA indicated the desirability of providing a pressure-suppression system in ordler to ensure that no accident could raise the c e l l pressure to an unsafe l e v e l . A preliminary design wizs made for such a system. Electrical Distribution System.--The system was “c’horoughly investigated, and the complete e l e c t r i c a l supply including emergency and standby power w a s diagrammed, Detailing of the electrical heater circuits for bringing the system up to operating temperature is 5076 complete;, Instrumentation and Controls Design,--Wide-rangeservo-positioned fiss-lon chambers w i l l be used in the system in order to provide continuous coverage of reactor operations from startings to f u l l power, Compensated ion chmbers will. be used t o provide an accurate, linear monitor of reactor power and t o p r o v i d e a f l u x signal f o r the servo controller, The conceptual design o f a servo controller, which. will be used to control reactor “cnperatures at l o w power level”, was tested on the analog computer and peyformed satisf actorily

.

,.:.?


iv

The p r e p a r a t i o n of ins"ien,l-,-application drawings i s n e a r i n g comThe t a b u l a t i o n i s almost '75% Nine drawings have been approved. pletion. complete The d e s i g n of e l e c t r i c a l c o n t r o l c i r c u i t r y i s continuing The l a y o u t of t h e main c o n t r o l a r e a w a s r e v i s e d to provide more space in t h e data 1-oom. A u x i l i a r y inst:mment panels w i l l be located i n a t r a n s m i t t e r room a d j a c e n t t o the r e a c t o r , i n t h e s e r v i c e room at. t h e n o r t h end of the service t u n n e l , and. i n t h e cooling-water room. "zle inain control.-board. l a y o u t was approved after several. r e v i s i o n s , and a l/4-scal.e model w a s constructed, S p e c i f i c a t i o n s aye b e i n g prepared POT the procurement of a d i g i t a l data sys-t;em t h a t h a s the capability of perf onning o n - l i n e computations, d e t e c t i n g and alarming a b n o n a l condi-t;i.ons, and logging p r o c e s s d a t a automaticall.y and on demand. The MSRE i n s t r m e n t a t i o n and control. system i s b e i n g designed t o ensure t h a t failure of t h e d a t a system w i l - l not comprar~mise the safety o r o p e r a b i l i t y of the reactor. Requirements f o r process and persomiel r a d t a t i o n m o t z i t o m are b e i n g investigated a

S p e c i f i c a t i o n s have been comple-Led for f i v e t y p e s of i n s t m e n t components, f o u r of wli'ic'hl. have been approved. Preparation af seven specific a t i o n s i s n e a r i n g coxnpl..etion. Tns~tnmentatiioncomponents are b e i n g procured. Some equipment will be o b t a i n e d from Homogeneous Reactor Experiment No. 2 . 2e

Component Development

.--Two s e t s of MSHX;: prototype flanges were fabri i n g ms s t a r t e d . A f t e r completion of t h e m 1 d i s t o r t i o n and seal. leakage measurements, t h e flanges will be i n s t a l l e d i n the thez?ml.-cycl.e t e s t f a c i l i t y and in the p r o t o t y p e punp t e s t , Loop.

Fxperirnents were conducted t o determine the " c q e m t u r e d i s t r i b u t i o n and d i s t o r t i o n c h a r a c t e r i s t i c s of a 6-111. Inconel.. freeze f l a n g e , u s i n g e l e c t r i c a l - r e s i s t a n c e h e a t f n g i n t h e b o r e t o siniulate o p e r a t i o n with sal.%. The freeze p o s i t i o n of t h e mol4;en. s a l t was 4.8 i n . froom t h e b o r e when t h e b o r e was a t llcOO"F, whereas the p r e d i c t e d p o s i t i o n w a s 2,7 i n . from t h e bare. The rna.xirnurn observed d i s t o r t i o n v a r i e d f r o m 0.024 i n , a t 1000째F t o 0.063 i n . a t 1400째F. No permanent d i s t o r t i o n w a s noted a f t e r 40 cycles t o 1300"~.

.

Control-Rod. Developmnent --A simple chain-driven control-rod mechanism u s i n g gas as a c o o l a n t , i s b e i n g developed. Conrrplete u n i t replacement is planned f o r maintenance.

R 28-in.-~ong,11200-w section of removable h e a t e r s f o r 5 i n . pipe was b u i l t an& tested. A heat l o s s of 450 w per l i n e a r f o o t of heater w a s measured a t o p e r a t i n g c o n d i t i o n s ,

P


V

Beater Tests.--The r e a c t o r v e s s e l h e a t e r s have o p e r a t e d s a t i s f a c t o r i l y f o r 3750 hr, w i t ? 700 h r a t 1425째F. However, t h e heater s u p p o r t s and I n c o n e l r e f l e c t o r buckled due to an inadequate support d e s i g n . Corr e c t i o n s w i l l be made and t h e t The p r o t o t y p e c o o l i n g bays t s f o r removing f u e l after-heat I n t h e d r a i n t a n k s have o p e r a t e d f o r 3 0 h r and l+S t h e m 1 shock cycles, w i t h out s i g n i f i c a n t damage. Each Bayonet can remove 6 , 3 kw .from 1300째F s a l t , .--A f e w s i m p l i f y i n g changes were incorporate l e r - e n r i c h e r system i n sraer t o reduce maintenance problems and i n c r e a s e syste eliability. A d g a t e v a l v e was opened md c l o s e d 100 times by hand, with l e a k r a t e s of less t h a n 0,3 cc of helium per minute a t o p e r a t i n g c o n d i t i o n s . A doubles e a l i n g , b u f f e r e d , sliding seal. f o r oxygen e x c l u s i o n during i n s e r t i o n and removal of t h e sample t r a n s p o r t c o n t a i n e r was mechanically cycled 1400 tlmea, w i t h a leak rate <1 ce/min with 15-psig helium buffer pressure. M S E Core DeveZopment.--!K%e pressure v e s s e l f o r t h e f u l l - s c a l e PERE c o r e modelwas i n s t a l l e d i n i t s t e s t loop, and measurements were mnde o f %he flow d i s t r i b u t i o n in t h e e n t r a n c e volutee, ??he r e s u l t s ag previous measurements e on the 1 / 5 - s c a l e model t o w i t h i n -the p r e c i s i o n of" t h e s c a l i n g f a c t o r . Helium ~ r i f i c ~ t i o n . - - G o n s L r m c t i o nof' a f u l l - s c a l e oxygen-removal wft is about TC$ complete, and a n e l e c t r o l y t i c type t r a c e oxygen a n a l y z e r vas purchased for t e s t i n g t h e oxygen-removal u n i t .

MSRF3 Engineering Test L o o e . - - I n t e r p r e t a t i o n o f t h e e f f e c t i v e n e the oxide f l u s h i n g runs i n t h e Ehgineering T e s t h o p was complicate t h e presence of zirconium f l u o r i d e , which. had been i n a d v e r t e n t l y i n c l u d e d in the salt mix, The slow-drain d i f f i c u l t y was the r e s u l t of an rzddition p e l l e t s which migrated t t h e d r a i n l i n e a d f a m e d 8 -viscous plug, later removed by r a i s i n g the l i n e temperature 60째F. P

Oxide sludge was m u a l l y r e r s v e d from the p bowl a f t e r efforts t o d i s s o l v e it had f a i l e d , The t r e a t m e n t of t h e s a l t I n t h e d r a i n t a l c with a mixture of 'hydrogen and R1F removed t h e e q u i v a l e n t o f 3-02? ppm of oxygen without e x c e s s i v e c o r r o s i o n of t h e con-Lainer. The 8-PrZ.-diam g m p h i t e c o n t a i n e r ms f a b r i c a t e d fmm IIYOR-8 and i n s t a l l e d i n t h e loop. A dry-box f o r l o a d i n g and unloading g m p h i t e samnpbes was f a b r i c a t e d and i s undergoing L e s t ,

bER3 Maintenance Development,--A p r ~ g r m nto produce an i n v e n t o r y of torsls and procedures t o cover i n t e n a n c e problems w a s i n i t i a t e d , A h y d r a u l i c a c t u a t o r system was successfully demonstrated f o r t i g h t e n i n g the clamps on t h e f r e e z e f l a n g e , "he prablem of removal and aceinstallat i a n o f f l a n g e ring: g a s k e t s was resolved, and t h e d e s i g n of" t o o l s was s t a r t e d , Tools vere teGted f o r a l i g n i n g flanges, j a c k i n g p i p e , and r e moving the pump. A E-5/8-ine-dim wide-angle p e r i s c o p e w a s s u p e r i o r to s i m i l a r smaller-diameter d e v i c e s previousl.y t e s t e d ,


vi

which reduces t o approximately 0.001 in, a f t e r the braze i s fomed. U l t r a s o n i c and metallographic inspect-kon of completed prototype j o i n t s i n d i c a t e d 81. t o 86% bonding. A r e p r c s e n t a t i v e braze j o i n t ims h e l d a t 2 - 2 5 0 " ~a n d i n t e r m i t t e n t l y exposed to r e a c t o r s a l t fsz- 74 hr.

and b

Mechanical-Joint Development. --Tools for rernotel..y c u t t i n g , tapering, p i p e j o i n t were r e c e i v e d and tiesting s t a r t e d .

A mechanical. j o i n t , w i n g t r a p p e d gas -to keep s a l t out o f the gasket a r e a d u r i n g i n t e r m i t t e n t usc, i s b e i n g designed f o r u s e i n crowded areas,

f o r use i n a r e - e n t m n t - . t u b e s t e m gexieratoorA r n o i ~ t ~ u rseparator e s u p e r h e a t e r was t e s t e d axxl fo1;lna t o carxy over app14oximate1.y 'r.6water. Fuxther work i s postponed

.

Purn-EDevelopment --The d e s i g n d r a ~ n g sf o r t h e WHX f u e l punp were approved, and t h e themla1 a n a l y s i s of t h e f u e l and c o o l a n t punq tanks vas completed. Water t e s t i n g of the model of' t h e coaling pwnp was completed, F a b r i c a t i o n of Yne r o t a r y el-ement for t h e prototype f u e l pump was completed, and f a b r i c a t i a n of the pump tank was nearly completed. Design drawings f o r t h e l u b r i c a t i o n stands and. drive motors were submitted f o r review, A d d i t i o n a l m 0 ~ - 8castixigs of i m p e l l e r s and volutes f a r t h e fuel. and c o o l a n t pumps are being made, and d i s h e d heads for the p u p t a n k s are being inspected. MSRE Instrument Development.--A s e r i e s of' t e s t s I s b e i n g made bo e v a l u a t e me%ods of a t t a c h i n g thermocouples, A t e s t 15.g w a s assembled f o r developmental t e s t i n g of mechanical themoco1ql.e attachments f o r use on the radiator tubes i n t h e MSRE. Development of a thermocouple s c a m i n g system, u s i n g a merciiry- j c t coxmutator, i s c o n t i n u i n g , A n o i s e pmblern w a s e l i m i n a t e d by the use of

mke-before-break switch a c t i o n .

I n v e s t i g a t i o n of methods of economically obta,ini.ng s i g n a l s which rel i a b l y i n d i c a t e the operat,ing status of freeze f l a n g e s and freeze valves i s continuing. A monitoring system, manufac.t;uu.ed by t'nc E l e c t r a Systems Corporation, and a c o n t r o l re1ay, manufactured by Daystrom Sncarporated, are being evaluatcd e

Developinexit of a cont, inuous-2evel- clement f a r use i n measurement, of mol-ten s a l t I-evcls i s c o n t i n u i n g . Several high-temperature d i f f e r e n t i a 1 t r a n s f o r m e r d e s i g n s have heen i n v e s t i g a t e d , two a l t e r n a t e level-el-ement designs were developed, and a level test, I ' a c i l i t y i n c o r y o r a t i n g the two level. element d e s i g n s w a s f a b r i c a t e d . T'esbing of the p r o t o t y p e l-cvcl elements i s i n n d c m y .


vi i

T e s t i n g of a p r o t o t y p e s i n g l e - p a i n t Level i n d i c a t o r was continued. A p r o t o t y p e of t h e s i n g l e - p o i n t level i n d i c a t o r t o be used i n t h e PE3RE: i s being f a b r i c a t e d f a r test,

3.

Reactor EngLneering Analysis

Reactor Physics.--Further a a l y s l s a f t h e WW temperature c o e f f i cients was done t o ob-t;airm estimates o f t h e e f f e c t o f r e t a i n i n g f i s s i o n product xenon and samarium i n the co g r a p h i t e , a d of i m s e d i n g a nonI/v absorber such as rhodium. Since t h e p r i n c i p a l c o n t r i b u t i o n the t e m p e r a t w e c o e f f i c i e n t is the increase i n leakage Mth, increasing temperakure, and s i n c e the major effect of poison i n s e r t i o n i s a change i n t h e temperature variation of t h e m 1 u-tiLiza;t;ion, the calculated temperature coefficients are not a p p r e c i a b l y changed by poisoning i n the COTE?,

Results o f simplified r e a c t o r - k i n e t i c s calculations indicate t h a t a peak. pyessure rise of 64 p s i w i l l result f m m a o.$% step r e a e t i v t t y i n i peak i n t h e p r e s s u r e rise, and a ion; $1 1% s t e p produces a 2 the pressure rise. In the Large step 0.6% step produces a 13-psi pe a d d i t i o n s t h e p r i n c i p a l removal of' r e a c t i v i t y res.ul2;s from heating the fuel salt,

An EBEarl7oyl program, 2 X E , f o r the ca2c.rn8ation O F grumna-ray heatd e p o s i t i o n rates was checked. a u t and put into service. Results sf a heating s w e y in the t o p head of the MSRE v e s s e l show a nxxximwn heat, g e n e r a t i o n of 0.12 w/cm3 a t the lower end o f the o u t l e t p i p e ,

D y n m i c Corrosion Stm%ies.--Tests are I n progress %s dete e f f e c t of o x i d i z i n g i m p w l t i e on the c o r r o s i o n behavior of fu

A loop c o n t a i n i n g I\Ja3i"-ZrF4 a c o n t m l r r a t e d with HI? had w l l f ~ ~ r r attack n to E %ion a depth of" l/2 mil after appraximtely 200 h r of apesation. ite of an IN OR-^ t h e r m a l convection loop c o n t a i n i n g meslybd.enaun and. i n s e r t s was completed m d corrosion d a t a are repofled. 'The previausly repo&ed embrittlemen-t; af molybdenum specimens appears to be a s s o c i a t e d w i t h surf ace contamination A series of t e s t s were i n i t i a t e d t o evaluate the e f f e c t s of CF4 on core materials. No significant reaction was noted between CF4 and 8 at the temperatures studied. ~ n a. ~ l a i y s Ti ~~ made S o f data 0 b i r z i ~ c 2 from corrosion t e s t s c o n t a i n i n g s e r t s ; the analysis indica-bes that ch~~~ipxw1, a l t h o u g h a small f m c t n af the t o t a l metal loss, plays a m j ~ r r o l e i n the c o r r o s i o n pw"ocess,

rpIsRE

Weldlng and Brazing S t u d i e s , - mvements mae in the design of the t u b e - t o - t u b e - s h e e t joints f o r t h e IdEXEC heat exchanger. Weld. " r o l l over" w a s minimized. and .the braze t r e p a n vas deepened. i n or&ey ta permit


...

Vlll

t h e preplacement of an adequate mount of bi-azing a l l o y . Small mock-up t e s t s e c t i o n s were brazed, and it appears t h a t satisfactory brazes c m be A obtained. over a razxe of temperature r i s e fmm '.(5"C/'nr t o 225"C/hr. sleeve-type b r a z e joint, was developed- for MSW use, a d . suitab1.e b r a z i n g c o n d i t i o n s were determined which wi.1.X pernit good. bonding along ,the joint l e n g t h . I n s p e c t i o n methods are b e i n g developed f o r Ymis j o i n t , Ini-t;ially, d i f f i.cul_"r,.es were experienced i n cpaJlifying welders for INOR-8 work, b u t refinemciats i n welding procedures have resulted i n t h e production of s a t i s f a c t a q welds The r"o8m- and elevated-tempernture rnechmicaI. p r o p e r t i e s of d i s s i m i l a r - m e t a l weias c o n t a i n i n g 1N013-8 were d e t e m h e d . In g e n e r a l , these welds e x h i b i t e d s a t i s f a c t o r y i n t e g r i t , y , and fail-ures occurred i.n the s t a i n l e s s s t e e l , n i c k e l , o r I n c ~ n e l . ,OX" a t "cbe i n t e r f a c e between t h o s e nnetals axld t h e lqeld aetrzl.

are b shorter xwptuure l i f e and h i g h e r minimim creep r a t e s than Tisought INOR-$. E v a l u a t i o n a f XYRE Graphite --A sample of CGD-X g r a p h i t e similar t o g r a p h i t e to be used f o r the MSliE was evaluated, iasi-ng I4SI-B evrtl-ua-tian t e s t s , Salt permeation t e n d s t o h e r e s t r i c t e d t o shal-low (less tkan 0.1 i n . ) p e n e t r a t i o n below t h e s u r f a c e s a t a pressure of 150 p s i , about t h r e e t i m e s .that expected i n t h e MSRE. There appears t o be n s l i g h t he-Lerogeneity i n the a c c e s s i b l e pore spaces. a

T e s t s i n d i c a t e d t h a t a simple mercury impregnation t e s t a b room ternp c r a t u r e can be a s u i t a b l e q u a l i t y - c o n t r o l test f o r r e l a t i n g standard nndten fluoririie perneation into graphite

.

m ~ ~ t , y - h o u ~P- W i ~Q~~ g Sd t h the thel-mlai aecomposition products of I!E~FoEF i.n the temperature range from 1300 t o 930째F removed oxygen contamirzatiorn f r o m high- and moderately low-permeability grades o f g r a p h i t e (AGOT and R-0025) t o such an ex%ent t h a t "there was no detectable uranium oxide p r e c i p i t a t i o n from ai. molten TJiF'-BeF&Ul?4 mixture vhen i t was e q o s e d t o the purged g r q h i t e s f o r 4000 h r a t l3OO"F. ZO%RT purging temperatures ana smaller q u a n t i t i e s of T\IT-Z4F*KFa l s o appeared promising f o r the removal of oxygen fmm these g r a d e s o f g r a p h i t e ,

A p r e c u r s o r y t e s t ; showed t h a t r e f r a c t o r y monocl.lnic ZrO2 can 'se conv e r t e d t o a less r e f r a e t o q y f l u o r i d e compound by exposing it t o NH4F~IP at 1300"~.

1 n t e : r a c t i o n of--- F i s s i o n i n g R ~ e 1w i t h Graphite :

I_

T e s t No. ORNL-MTR-

47-3. --An experiment d.esig;ned t o deternine whether f i s s i o n i n g fuel- i n con-

t a c t with graphjte e x h i b i t s i n t e r f a c i a l c h a , r a c t e r i s t i c s d i f f e r e n t from t h e nonwetti-ng behavior shown o u t of p i l e *ms opemt;ed for 1580 hr at a finel power d e n s i t y of 200 w/cc. The f u e l , LiF-BeF*-Zr;P4-'EPbF~-W~~ (69.5-23-51-1.5 mole $), contained i n encapsulated g r a p h i t e b o a t s , reached m a x i m temperatures of about 900째C i n undergoing 8.9 burnup of U235 and s t i l l remained. nonwet-ting toward g r a p h i t e . The g r a p h i t e w a s v i r t u a l l y undamaged


ix

Supplemental o b s e r v a t i o n s , some of which are still i n progress, revealed t h a t CF4 was produced, that t h e f r o z e n f u e l appeared black because of d i s c o l o r a t i o n by beta r a d i a t i o n , and t h a t several other unusual or p u z z l i n g phenomena had o c c u r r e d , The p e r s i s t e n c e of CF4"tms contrary to themodpamic e q u i l i b r i u m and may have been favored by the experimental arrangement. The escape of CF4 i n t h e offgas i s p o t e n t i a l l y a serious problem, mainly because the e f f e c t i s the s m e as i f a strong reducing w e n t were a c t i n g on t h e f u e l . I n - P i l e Testin&.--A d e s c r i p t i o n of the a p p a r a t u s and the t e s t cond i t i o n s f a r i n - p i l e t e s t No, ORNL-m-47-4 i s g i v e n , The t e s t i s des i g n e d to t e l l whether CF4 can exist i n t h e cover gas over the fuel, when "che g r a p h i t e i s submerged i n such a way t h a t the CF4 formed at, the f u e l g r a p h i t e i n t e r f a c e must pass t h m u g h t h e f u e l before escaping into t h e ewer gas. Also, t h e experiment was. planned t o f u r t h e r demonstrate the c o m p a t i b i l i t y of the fuel-graphite-INOR-8 system under thermal. condlitions a t least as s e v e r e as t h o s e expected d u r i n g M Sm o p e r a t i a n ,

6. Chemistry

Phase-Equilibrium S t u d i e s . - - P r o g r e s s was made i n t h e elucidation of phase e q u i l i b r i u m r e l a t i o n s f o r the system LiF-BeFz-ZrF4, a i c h pravid-es an analogue of I n i t i a l f r e e z i n g behavior of t h e MSJB f u e l , A p a r t i a l phase diagram f o r t h e system and a nmber of invariant points were established, The t e r n a r y compound, 6 L i ~ B e F p Z r F 4 , t h e f i r s t phase t o separate ( a t 441째C) on c o o l i n g t h e MSRE fuel, was s u b j e c t e d t o crystallog StU.dya Equilibrium b e h a v i o r i n an imporbant composition section from the five-component system which c o n t a i n s t h e E F U 3 f u e l was s t u d i e d ; the s e c t i o n shows t h e e f f e c t s of d i l u t i n g the f u e l with the coolant m d of renoving 2LiF.BcF2 by d i s t i l l a t i o n . Refeyences are given to other phase e q u i l i b r i u m and c r y s t a l l o g r a p h i c s t u d i e s of fluoride systems and cornpounds of i n t e r e s t .

Oxide Behavior i n F'uels,--The purification o f f l u a r i d e melts vas demonstrated by the removal o f an e s t i m a t e d 1200 ppm of oxide contamihad been studied in the Lhgin a t i o n from a charge o f LIF-BeF s water by t r e a t i n g %he m e l t , neering T e s t h o p . The o ng 2~$$byamgel-n, L i t t l e corat 565째C f o r 70 h r w i t h gaseous HF atxtent , Labora$oJ.y studies rosion ms observed as a r e s u l t of' contaminant of fuel raw materials, of t h e behavior of' sulfate, a CQ i n fluoride melts a t temperatures showed that sulfate i o n i s n o t s t The b e h a v i o r sf various i n ~ r g m l csulfates i n between 500 and 800째C. EfF-BeFz melts was e q l o r e d a t 600째C,

Physical and Chemical Properties ~f Molten Salts;.-- e estimation of repo:r%ed values sf the d e n s i t i e s of molten f l u o r i d e s t o w i t h i n


X

Crgposcopic axid c a l o r i m e t r i c s t u d i e s of f l u o r i d e systems veTc cxtcndcd t o i n c l u d e f r e e z i n g - p o i n t d e p r e s s i o n s i n sodium fl.uoride c o n t a i n i n g m i - and t r i v a l e n t s o l u t e s and in mixtures of Na;F-Lih', and enthalpy changes from 874.0"C t o 0 째 C f o r KF, LIF, and v a r i o u s mixtures i n between. Refined thermodynmi-c v a l u e s for the e q u i l i b r i w n , NiF2 + rt. 2HF t- Ni, at e l e v a t e d temperatures, w e r e o b t a i n e d and i n t e r p r e t e d . The theory of m o l t e n - s a l t behavior vas extended by studies u s i n g mol-t,en n i t r a b e sysbeans

.

Graphite CampatAbiliLX. --The b e h a v i o r of CF4 i n contact With n o m 1 6oo0c w a s studied i n s t a t i c and i n gasr e c i r c u l a t i o n systems. hkidence w a s o b t a i n e d t h a t CF4 can react wj_'c'n oxide contaminants t o produce C02. Based on i n d i r e c t evidence, t h e s o l u b i l i t y of C F ~ i n M S f~u e l a t 6 0 0 " ~cannot be greater than 1 x molts of C F ~ p c r cubic centi-meter of melt per atmosphere. w l ~ lp a r t i a l l y reauceb MS'RF: f u e l at,

Chemical Aspects of MSH3 Safetx.--Chernical a s p e c t s of MSRE s z f e t y were stud-ied. =sudden i n j e i t i o n of molten fuel i n t o water gave no substant i a l h y d r o l y s i s of the f u e l , according t o p e t r o g r a p h i c o r x-ray d i f f r a c t i o n examination of the pmducts of the r e a c t i o n , but t i t y o a t i o n of Yne o f f g a s i n d i c a t e d a 2$ y i e l d of ID% The solublil.ity of MSRE f u e l s a l t components i n water was studied^ f m m 25 to 90째C; the m t e of uranium s o l u b i l i t y a,n& t h e amount of uranium dissol_ved implied t h a t neutron poisons should be provided .i.n any water wbich might come i n c0ntac.t;with -the fuela To permit safety c a b c u l a t i o n s on c r i t i c a L i L y hazards a r i s i n g from s e g r e g a t i o n by partial. f r e e z i n g o f t h e f u e l , a h y p o t h e t i c a l cmystalbization p a t h was defined", and d e n s i t y of t'ne concentrated f u e l ~ m sest,t.mitcd.

Fluoride SEalt SrePducLion. --The time required f o r t h e pinrif i c a t i o n o f fl-uoride s a l t s i n t h e F1.uorid.c Production Facility was shortened by the adoption sf a combined XP-E2 t r e a t m e n t Current m o d i f i c a t i o n s i n tihe size of s a l t - t r a n s f e r c o n t a i n e r s w i l l give a ?CY$increase in the p r o ~ u c t i o n rat& The a d d i t i o n of premelting f u r n a c e s i s beinz s t u d i e d a s a p o s s i b l e means t o a furt'acr incyeasc of 64$ i n the px-oauction r a t e .

.

- - A n a l y t i c a l studies i n c l u d e d (1) e v a l u a t i o n o f aethod.s f o r the d e t e r m i n a t i o n of oxygen i n the n o n m d i o a c t i v c K9RE fuel.. and ( 2 ) a survey of nethods a p p l i c a b l e t o the complete a n a l y s i s of f u e l samples from the r e a c t o r tlu-P.ing c r i t l m L L o p e r a t i o n .

MSI3.E Flowsheet. --Spent N5RI3 f u e l ~2-1.1 be f l u o r i n a t e d t o recover uranium, Methods f o r disposal of t h e exccss f l u o r i n e are being inzvcsiigated.. 1_1__

than 59.9% e f f e c t h e i n seven m s . Solid and l i q u i d products -were trapped from t h e offgas, which contained 52.(; mole CF4.

4


p

xi

C 0N T E NTS

................................................... ...........................s............... ................................ 1.3 Primary Heat Exchanger ................................. 1.4 R a d i a t o r ............................................... 1.5 F u e l - S a l t Drain Tanks .................................. 1.6 Equipment Layout ....................................... 1.7 Cover-Gas System ....................................... 1.8 S y s " ~ mHeaters ........................................ 1.9 Maintenmce Design, Assembly Jigs, and F i x t u r e s ........ 1.10 Reactor Procurement and I n s t a l l a t i o n ................... L K L l Major Modifications to Building 7503 ........... 1.10.2 C o n s t r u c t i o n Outside Building 7503 ............. l.10e3 Planning and Scheduling of t h e rv4sKE I n s t a l l a t i o n ................................. 1.10.4 Procurement of Materials ....................... 1 . 1 0 ~ 5 Procurement of Components .............. ....... 1.11 Reactor I n s t m e n t a t i o n and C o n t r o l s System ............ 1.11,1 Nuclear Control System ......................... 1.11.2 Instnument-Application D i a g r a m s ................ l.ll.3 E l e c t r i c a l Control C i r c u i t r y ................... 1.11.4 k y o u t of I n s t m e n t a t i o n and Controls System ........................*..... 1.11.5 Control Panels .................... ............. 1.11.6 Data Bandling ................. ....... .........

1, MSRX DESIG'N 1.1 1.2

Introduction Reactor Core and Vessel

e

LllJ

Process and Personnel R a d i a t i o n Monitoring

1.11.8 Procurement Stakus

.....

..........9..................

1 1

2 3

4,

4 4 6 6 7 7 7 9

9 7 1-0

10 10

14

15

15 17

18 18 19


xi i

.............. .............. .................................. .......................... ...................

2*5.3

Removal Seal. for Sample C o n t a i n e r D e t a i l Design of Sampler-Enricher 2.5 MSR?;: Core Development 2,6.1 Ful.1-Seal .e Core Model 2 62 C o r e - I n l e t Flow DistribixLion 2.7 H e l i u m P u r i f i c a t i o n 2.8 PEN Engineering Test ~ a o p(ETL) 2,Q.l I l O O P Opera.t;-ions 2.8.2. Operation of Freeze Val.ve 2.8.3 oxide 3liemovaI 2.8.1-1- IW Treatment 2.8.5 T;;TL G r a p h i t e Facil.iZ;y PERV Naintenance Development 2.9 2,g.l Placement and Removal of Freeze-Flange Clamp 2.9.2 Flange Alignment and Pipe-Jacking T a o l s 2.9.3 Gasket-Ixeplacement Procedures 2,9.11. Miscellaneous Disconnects 2.9.5 Remote Viewing 2.9.6 Corqmnent Removal 2.10 Brazed-Joint Development 2.10.1- J o i n t Design 2.10.2 Brazed-Joint Testing 2 J O . 3 Remote F a b r i c a t i o n af Braze Joint 2 . 1 1 Mechanical-Joint Development 2.12 Steam Generator 2.13 m n p Development 2.13.1 MSIW fie1 b p 2.13.2 MSRE Coolan% Pump 2.1.3.3 Advanced Molten-Salt P-unps 2 I4 MSW I n s t m e n t Development 2.11CJ “hemocouple RtLachments 2.14,2 a’emperatzlre Scanner 2.14.3 Slngle-Point Tempe~ature-L41amSystem

2.5.4

..

.................................... ....................... ................................ ...................... .................................... ................................... .......................... ........................... ........ .................. ...................... ................................. .............................. ............................... ................................... ........................... .............. ........................... ........................................ ....................................... ................................. .............................. ..................... . ............................ ....................... ............................ .......... 2.14.4 Pump-Bowl.-LevelIndicator ...................... 2.1-4 “5 Single-Paint Level I n d i c a b o r ................... 3 . I3.EACTQR E=NGmEER3%E\TGANALYSIS .................................. 3.1 Reactor physics ........................................ 3.1.1 Analysis of KRE Tewq?eratixre C o e f f i c i e n t ....... 3.1.2 R e a c t o r - K i n e t i c s Studies ....................... 3.1.3 Ganma-Heating Survey ........................... A

.

.

P M T II MATFEmS STWIES mTALLUXGY” 4.1 Dynamic-Corrosion Stindies /+ I- I Fluoride-Salt Con”r;mn-ination SJi;udies 4.1.2 Molybdenum-Cyaphite Corripa-Libil-ity Tests lk.l-3 Corrosion Effects of Carbon Tetrafluorride 4.1.4 Examri.natri.on of Corrosri.on I n s e r t s :from I N O R - 8 Forced-Convection Loops 4.2 Welding and Braz:ing Studies 4.2-1 Heat Exchanger F a b r i c a t i o n /+.2,2 Remote Brazing

*..

.................................................... .............................. .. ............ ........ ...... ...................... ............................ ..................... .................................

31 32 32 32 32 33 34 35

35

37 37 37 L,1

41 Li.l

41

4.3 43 4-4

45 4.5 45 46 51 5151 52 55 56 58

5 3 58 60

61 66

68 68 68 68 ‘/O 72 72 72 '71f 77

79

81 81

811-

.


...

Xlll

4.3 4.4

.............................. ....................... ........................ ....................... ..............

Welding OS I R o R - ~ Mechanical Properties of INOR-8Dissimilar-Metal Welds Mechanical Propedies of INOR-8 Evaluation of MS'EIE Type Graphite 4.4.1 Coqarison of the Permeation of Graphite by Mercury and Molten Fluorides Removal of Oxygen Contamination from 4.4.2 Graphite with Themnal Decomposition Products of NH*F*IIF Reaction of Zr02 w i t h T h e m 1 DecompoIc.4.3 sition Products of l!l&F*â‚ŹE'

4.2.3

4.2.4

86

88

89 89

72

.......................... 74 ................... 74 'j. IN-PILE TESTS ................................................. 77 Interaction of Fissioning Fuel with 5.1 Graphite: Test No . ORNL-?OR-47-3 .................... 97 5.1.1 Description of Experiment ...................... 97 5.1.2 Dismantling of I n - P i l e Assembly ................ 97 5.1.3 Temperatures ................................... 100 5.1.4 Gas Analyses ................................... 100 5.1.5 Test Effects on Graphite ....................... 105 5.1.6 Analyses of Graphite ........................... 106 5.1.7 Test Effects on Coupons ........................ 106 5.1.8 Test Effects on Fuel ........................... 106 5.1.9 Conclusions .................................... 110 5.2 WRE In-Pile Testing ................................... 110 6 . Cm4'IISTRY ..................................................... l l L + 6.1 EJlzasc-Equilibrium Studies .............................. 114 6.1.1 The Sys-bern LiF-BeFZ-ZrF4 ....................... 114 6.1.2 The System LiF-BeF2-ZrF4-3CkF*-W* .............. 116 6.2 L

6.3 6.4 6.5

6.6 6.r7

6.1.3

...................................... ................................ ............. .................................... ....... ................................. .......................... ........................

Rase Equilibrium Studies in Fluoride Systems Oxide Behavior in Fuels 6.2.1 Remval of Oxide f r o m a Flush. Salt 6.2.2 The Behavior of Sulfates in Molten Fluorides mysical and Chemical Properties of Molten Salts Graphite Coqpatibility 6.1I..1 The Behavior of Carbon TetrafI-uoride in Mol-ten Fluorides Chemical Aspects of MSRE Safety 6.5.1 Physical Effects of Mixing I b l L e n f i e 1 and >?ater 6.5.2 Solubility of Fuel-Salt Components i n Water 6.5.3 Solubility of M Sm Coolant in Water 6.5.4 Partial Freezing of WRE Fuel Fluoride-Salt Production 6.6.1 Production Rates Analytical Chemistry 6.7.2 Oxygen. in Nonradioactive WRE Fuel

............................... ..................................... ............ .................. ............................... ............................... ................................... .............

116 117 1-1-7

118

121 122

122 124 124

127 127 130 130 130

131 131


.

xiv

6.7.2

Adaptation o f Analytical Methods to Radioactive Fuel_

.......................... . FUEL PROCESSING ............................................... 7.1 MSIU ~ i o ~ h e ......................................... e t 7.2 F l u o r i n e Di.spoaal Tests, Using Charcoal, ................

132

.

134 1 3 ~

134


1

ART 1. M S R E DESIGN, COM ONENT D AND ENGI ERING A 1. MSRE DESIGN

.

1.1 1N"RODUCTION

Accomplishments i n t h e p a s t si.x months were mainl.y i n t h e f i e l d of working drawings, and t h e r e were v e r y few d e s i g n s t u d i e s s i n c e no change was made i n t h e system concept. A l i t t l e more work t h a n was a n t i c i p a t e d r e s u l t e d from moving t h e pump off the top of t h e r e a c t o r . Design of a s a t i s f a c t o r y pump mount, which provided s u f f i c i e n t degrees of freedom f o r the pump, t o o k more efPort t h a n expected. T h i s mount has now been detsi7.ed and wil-1 b e t e s t e d on a hot-pump-test s t a n d . S i n c e no l m p - s w n b i d d e r could be foimd for component f a b r i c a t i o n , t h e s e items were schedil.l_ed f o r l o c a l f a b r i c a t i o n . 'Ilhi s necessi tated. t h e making of shop drawings f o r components showing weld d e t a i l s , etc., which o t h e r w i s e would have been l e f t t o a vendor. While a c c e s s t o t h e t o p of t h e r e a c t o r i s r e l a b i v e l y ixnenciutibered, t h e c o n t r o l - r o d t h i m b l e s m u s t bend s l i g h b l y i n o r d e r t o c l e a r t h e g r a p h i t e sampling-port f l a n g e . T h i s bend made i t necessary t o have some f.lexibi1i-ty i n the c o n t r o l - r o d d r i v e mechanism. S i n c e c e l l atmosphere i s used t o cool t h e c o n t r o l rod, sorile means of containment of" f u d salt, i n case of a c o x i t r o l - r o d - t h i m ~ l e r u p t u r e imposed c e r t a i n r e s t r a i n t s i n t h e cont 1-01rod and i t s d r i v e mechanism. It; was decided t o b u i l d and t e s t a model b e f o r e i s s u i n g formal d e s i g n drawings f o r the d r i v e mechanism and a s s o c i a t e d c o o l i n g and contaimriclnt p i p i n g . Tne inodel h a s j u s t been completed, and t e s t i n g has s t a r t e d . Tne a u x i l i a r y r e a c t o r - c e l l work i s n e a r i n g completion. The therrnals h i e l d d e s i g n i s f i n i s h e d . Most, o f the support steel w i t h i n t h 2 c e l l has been d e t a i l c d . Analyses of stresses i n hold-down b o l t s and contai m e n t c e l l s k i r t cy1 i n d e r were made. Pipe-support d e t a i l s were designed, b u t the drawings a r e n o t y e t fi n i s b e d . Perietrations, d i s c o n n e c t l o c a t i o n s , and assembly tool a c c e s s o r i e s have been e s t a b l i s h e d . Circui-t layouts f o r the e l e c t r i c a l s y s t e u adre approxi-matcly ((5% complete, and no problem remains o t h e r than p r e p a r i n g t h e n e c e s s a r y drawings * Layouts have been made _COY' t h e d r a i n - t a n k h e a t e r s . Fower and c o n t r o l p o i n t s f o r the h e a t e r c i r c u i t s have been d e s i g n a t e d on e l e c t r i c a l oneline diagrams.


2

D r a i n - t a n k - c e l l p i p i n g has been l a y e d out and s l i g h t l y s i m p l i f i e d . Drai n-’Lank support s t r u c t u r r w i t h wei gh eel 1 s h a s been completed. Work has n o t y e i s t a r i e d on t h e d e t a i - 7 ed layout o f p i p i n g and support i n t h e coolant c e l l . However, the r a d i a t o r with i t s e n c l o s u r e and hea,ter c i r c u i t s i s completed. Tnstrumentati on and c o n t r o l design e f f o r t was conccntratetl on t h e

f i n a l phases of conceptual design and on s p e c i f i c a t i o n w r i t i n g , tabu1 a t i ons, and similar procedures required t,o produce d e t a i l e d desi-gn drawings C o n c ~ p t u a l d e s i g n w a s v i r t u a l l y completed, and, i n some ayeas, coniporient procurement w a s ini t k t e d .

.

1...2 I W C T O R CORE AND VESSEL ‘The r e a c t o r core and v e s s e l underwent no d e s i g n changes. For i n f o r rnation, t h e cutaway drawing shown in t h e l a s t r c p o r t i s r e p e a t e d i i i Fig+ 1 .J

S A M P L E ACCESS P O R T

F L E X I B L E C O N D U I T TO /CONTROL ROD D R I V E S

-COOLING AIR L I N E S

JACKET S FUEL O U T L E T C O N T R O L ROD T H I M B L E S

, REACTOR

ACCESS PORT

-

CORE CENTERING GRID

.OW DIS T R I B U T O R GRAPHITE-MODERAT STRINGER -

FUEL INLET REACTOR C O R E C A N R E ACTOR V E S S F L-/

ANTI-SWIRL VANES VESSEL. DRAIN L I N E

F i g . 1.1.

PPQWT G R I D

C u t a w a y D r a w i n g o f MSRE Core and Core V e s s e l .


3 Although no changes were made i n t h e r c a c t o r , tniich des;ign e f f o r t was s p e n t i n d e t a i l i n g welds, j o i n t s , e t c . , and i n d e f i n i n g shop procedures, because of t h e nccessj-ty f o r l o c a l f : i b r i c a t i o n . The drawing ( F i g . 1.l)does n o t show the nicthod of supporting Lhe r e a c t o r vessel-. S i n c e t h i s i s the anchor point i n t h c f u e l system, t h c v e s s e l is s t a t i o n a r y and i s hung from t h c t o p of -the thermal. s h i e l d . ffanging i s e f f e c t e d by twelve l - 1 / 4 - i n . -d.Larn rods which cng means o f a cylindrical.. p i n p a s s i n g through t h e e a r s of t h c i l u g s anti t h e suspension b o l t . The bo1 ts a r e of t h e turmbuckle type, which permits l c v e l i n g o f the r e a c t o r v e s s e l . Thc l u g s a r e wel-ded t o the v e s s e l j u s t above the f u c l - i r i L e t volu'rJe. A l l d e s i g n drawings on t h e core a r e complete, and f a b r i c a t i o n has begun in t h e Y - 1 2 shops.

Althougti f a b r i c a t i o n of the r e a c t o r vessel i s proceeding, r e s u l t s o f a r e c e n t i n - p i l e t e s t i n t r o d u c e d a new u r i c e r t a i n t y i-nto opem-t;j_oylof a r e a c t o r w i t h a n u n c l a d - g r a p h i t e c o r e . Some CF4 w a s found in Lhe gas space i n c a p s u l e s whj ch had been i r r a d i a t e d w i t h I43133 f u e l i n c o n t a c t w i t h

g r a p h i t e a t temperatures and power d e n s i t i e s c o n s i d e r a b l y g r e a t e r t h a z t h o s e of t h e M31i.E. T h i s f i n d i n g i s not; y e t fuJ1y understood- or e v a l u a t e d , and- i t w i l l be s e v e r a l rnonths b e f o r e d a t a can be obtai-ned from t e s t s under MSPGZ colidi t i o n s . O n t h e u n l i k e l y chance t h a t a d d i t i o n a l inforirmtion woixl-d show the PERF: Lo be i n o p e r a b l e w i t h unclad g r a p h i t e , a> conceptin1 d e s i g n was prepared for a graphi te core which could be i n s t a l l e d i n t h e present design of t h e r e a c t o r v e s s e l . A c a l a ria t y p e of core was designed. This core i s niade With hexagorml Eraphi t e b l o c k s s t a c k e d around TNOR-8 t u b e s 3 in. i n diameter, 0.065-in. w a l l . The tubes a r e welded t o a s t a t i o n a r y header on the bottom and. t o a f l e x i b l e header on Lop, both made of INOR-8. A 10-in.-dia tube p r o v i d r s a n open volwrie i n t h e c e n t e r of t h e core, The p r e s e n t c o n t r o l - r o d thirrbl-es and c l a d - g r a p h i te or unclad-graphi t,e r,am-ples or thhe same d e s i g n as used i n %he p r e s e n t core can be i n s e r t e d i n this opening. With t h i s a l t e r n a t i v e design, t h e f u e l i s i n tirrbul-ent flow i n the c y l i n d r i c a l fuel- passages i n t h e core, and t h e temperatures of tine f u e l and g r a p h i t e a r e s l i g h t l y h i g h e r t h a n w i t h t h e unclad core ' r i u t a r e s t i l l w e l l w i t h i n an a c c e p t a b l e range. The c r i t i c a l mss i s about twi-ce t h a t of t h e unclad c o r e . Eriough crzlculatiosis have been made t o ensure t h a t the a l t e r n a t i - v e desi gn w i l l be a c c e p t a b l e . D e t a i l e d calcul a t i o n s a r e i n progress.

2.3

PRIMARY H23AT EXCHARGER

Shop drawings were r e l e a s e d f o r f a b r i c a t i o n o f t h e h e a t exchanger. A d e t a i l e d stress a n a l y s i s o f t h e exchanger w a s comnpleted.

T'nis exchanger i s of conventional t u b e - a n d - s h e l l design, with the fuel. flowing i n t h e she1.l s i d e . The i n s i d e diameter o f thhe cyl-ind-rical s h e l l i s 1..5-3/4i n . The siiel-1 has an o v e r a l l l e n g t h of 8 fL, and t h e a c t i v e heat t r a n s f e r l e n g t h i s 6 f t , The tubes are l.? i n . i n o u t e r diameter, wi:th a 0 .Ok?-in. - t h i c k wall. There are 163 t u b e s arranged i n


4 a U-bend c o n f i g u r a t i o n , each end t e r m i n a t i n g i n o p p o s i t e h a l v e s of a tube s h e e t . F u e l i s d i r e c t e d i n t h e s h e l l s i d e by six baffle p l a t e s , The volume o f the holdup i n t h e h e a t exchanger i s 6 ft3. The volume o f t h e cool a n t holdup i n i h e h e a t exchanger i s 5.7 f t 3 . 'l'he h e a t exchanger when i n s t a l l e d and f u l l of f u e l and c o o l a n t weighs 3500 l b . Heat exchanger mounting w a s designed t o allow f o r movement of the exchanger w i t h l o a d and w i t h t,hermal expansion o f t h e system.

1.14

RADIATOR

Work on t h e r a d i a t o r , .?xcept f o r thermocouple attachments, has been f i n i s h e d f o r s e v e r a l months. The r a d i a , t o r e n c l o s u r e and door d r i v e mechanism r e q u i r e d a d c i i t i o n a l d - e t a i l i ng. Attachmeut o f h e a t e r s i n s i d e t h e r a d i a t o r e n c l o s u r e r e q u i r e d many drawings. 'This was true also of t h e door d r i v e mechanism. 'The e n t i r e r a d i a t o r package i s now complete, and some f a b r i c a t i o n on t h e s u p p o r t s t r u c t u r e has a l r e a d y t a k e n p l a c e . l'hermocouples wzre added t o each o â‚Ź the 120 r a d i a t o r t u b e s n e a r t h e c o l d end of t h e r a d i a t o r i n o r d e r t o monitor as a c c u r a t e l y as p o s s i b l e t h e low s a l t temperature i n o r d e r t o prevent f r e e z i n g i n t h e radia-tor t u b e s .

Some changes were made i n the d r a i n tanks. 'The volume o f t h e t a n k s was t o o s m l l T O allow ample margin i n the f r e e b o a r d i n case uiiforseen e x c e s s i v e temperatures should o b t a i n . 'Therefore t h e diarneter of t h e t a n k s w a s i n c r e a s e d from 48 to 50 i n . t o provide ample margin of s a f e t y i n f r e c board volume f o r every reasonable e v e n t u a l - i t y

.

One o t h e r change i n t h e d r a i n - t a n k d e s i g n i n v o l v e d the a d d i t i o n

of a p c q e t r a t i o n i n t h e t a n k dome â‚Źor t h e i n s e r t i o n o f l i q u i d - l e v e l

probc;. With these changes, t h e shop drawings were compl-e'ced and i s s u e d f o r const r u e Lion. 'l'he support s t r u c t u r e f o r t h e drairi t a n k s , i n c l u d i n g the weigh-

c e l l -mount d e t a i l s , was compl-eted.

The concept o f employing a batchinp; o p e r a t i o n i n the F l u o r i d e Volat i l - i t y P i l o t P l a n t for fuel p r o c e s s i n g was abandoned i n favor of e v e n t u a l i n s t a l l a t i o n of f a c i l i t i e s f o r o n - s i t e f l i x o r i n a i i o n of t h c f u e l i n t h e s p e n t - f u e l s t o r a g e t a n k . T h i s w i l l r e s u l t i n t h e e l i m i n a i i o n o f t h e "fuel!. t r a n s f e r c e l l " f r o m t h e l a y o u t p l a n s . A waste t a n k w i l l be r e q u i r e d f o r s t o r i n g c a r r i e r s a l t a f t e r removal of uranium.


5 Layout w i t h i n t h e r e a c t o r c e l l i s cowrplete b u t vi11 b e undergoing constant m o d i f i c a t i o n t o a SI-ight degree as more compl-ete i n f o r m a t i o n on m?,i-ntena,nce t o o l s and p r a c t i c e s becoucs available . An overflow pipe was addet3. from t h e pump bowl t o the d r a i n l i n e downstreala of the f r e e z e valve t o e l i m i n a t e a n y p o s s i b l e danger o f o v e r f i l l i n g t h e pump gas space because of sorue i n a d v e r t e n t or unforseen r i s e i n f u e l temperature Layout i n t h e drain-tail., c e l l i s in. $he sane staJcus as that, w i t h i n t h e r e a c t o r cell. The salt, p i p i n g here bas been completely redone, bctcaiice t h e f i r s t layout, was thought t o be i n t o l e r a b l y crowded and complex. A l l a u x i l i a r y systerns have now r e c e i v c d some at;-tention. The pw~ipl i i b r i c a t i o n l a y o u t i s cornple-te The component c o o l i n g system, w a t e r c o o l i n g syst,ern, and e l - e e t r i c a l s e r v i c e t o t h e cell a r e b e t t e r t h a n 7O$ complete

.

Work has b a r e l y s t a r t e d or1 s u p p o r t d e t a i l s f o r t h e coolarit p i p i n g .

8

A vapor-suppression system vas added as p a r t of the containment

(Fie;1 . 2 ) . The l a r g e r e a c t o r - c e l l v e n t i l a t i o n line has a t e e which takes o f f from t h e c e l l s i d e o f the two l a r g e v a l v e s . This l i n e goes t o a

wrtt;er-.filled t:mk s o t h a t discharge gases f r o m t h e line pass through a l a r g e volumie of w a t e r . The w a t e r - f i l l e d %a& v e n t s into a n o t h e r closed. volume i n 6he form of a shiel-ded t a n k for c o n t a i n i n g rzoricondensabl e gas which escapes from t h e f i r s t t a n k . ?‘aqerat;ures, pressures, r e q l - i r e d

I J NCLASS I F1ED ORNL- LR-DWG 67162R

+

2-in.-DIA VENT LINE TO FILTERS AND STACK ._I__ .... .......-_I___

\.................

SPECIAL EQUIPMENT R O O M IN REACTOR BLDG:

\

FLOOR ELEV. 852 f t

......

GROUND ELEV. 851 ft-6in.

..............

40 f t

..................

I _ _ I

I

................

-

II II 1,

ELEV. 858 f t ..........

\I1

ELEV. 848 f t

!I

BURSTI N G D I s K

ELEV. 836

L!.

0 - f t DIA x 5 4 - f t LONG

FIT 3

-

............

4-in. LINE

.

.............

Jr

100 f t

30-im-DIA REACTOR CELL VENTILATION DUCT ............

.......

I . . . .

Fig. 1.2.

IO-ft D I A x 23-ft HIGH 4800 f t 3 - t 2 0 0 f t 3 OF WATER

D i a g r a m of

MSRE

P r e s s u r e - S u p p r e s s i o n System.


6 holdup capaci by, and shield;ng requirements were calcul a t e d , and a p r e l i m i n a r y l a y o u t was made showing arrangcment, pipe and tank sizes and 1-ocations, and shi el d i n g .

1 _ .'(

COVE:<-GAS SYSTEM

Work was continued on d e t a i l i n g of system p i p i n g and components. Design memoranda were i s s u e d on the oxygen-removal u n i t s , t h e iiel i u m s u r g e tank, and t h e secondary conmirimeni and s h i e l d i n g f o r t h e off-gas l i n e and charcoal a d s o r b e r p i t . The cover-gas system i s about 60% comp l e t e . Houbing o f pipe between major co~riponents c o n s t i t u t e s t h e major remaining der, i gn.

. 5.8

SYSTEM HFATERS

Heaters f o r t h e c o o l a n t c i r c u i t , were l.ayzd o u t for t h p e n t i r e p i p i n g system. These w i l l be conventional c_l_amshell-type ceramic h e a t e r s . They a r e not r e q u i r e d t o be remotel-y removable; s o conventi o n a l - type i n s u l a t i on wiJ7- be i n s t a l l e d over t h e h e a t e r s on t h e p i p e . For p i p e s r e q u i r i n g remote maintenance, t h a t i s , a l l the salt p i p i n g i n t h e r e a c t o r and d r a i n - t a n k c e l l s , some k i n d o f removable h e a t i n g and i n s u l a t i n g "package" must be made. Desj gn has taken the e m p i r i c a l approach. A fiXLJ- r e p o r t on p i p e - h e a t e r design i s given i n t h e Chap. 2 . Design of t h e a c t u a l p i p e - h e a t e r module t o be used i n t h e E K E has just s t a r i e d . Drawings w i l l be based e n t i r e l y on t h e mockup u n i t . Heaters f o r the r e a c t o r vessel a l s o fo3.l owed t h e empirical approach, and desigii drawings a r e b e i n g made of a ihoroughly t e s t e d p r o t o t y p e h e a t e r . IIeaters have been designed f o r t h e drain t a n k s . These c o n s i s t of s t a n d a r d h e a t e r u n i t s a r r a n g e d i n s e c t o r s which, when combi ned around a t a n k , e f f e c t i v e l y p l a c e the t a n k w i t h i n a n electrically h e a t e d f u r n a c e . S i n c e t h e pump, w i t h i t s r a t h e r l o n g i n l e t pipe, c o n s t i t u t e s a n odL1-y shaped unit, a d i f f e r e n t h e a t i n g method has been eniployed. Here an i n s u l a t e d f u r n a c e i s c o n s t r u c t e d around i h e pimp, enc7 o s i n g the i n l e t p i p e . l n t o t h e t o p of t h i s e n c l o s u r e and around t h e p e r i p h e r y of t h e pimp bowl, arrangements have been made t o i n s e r t commercial-type bayonet h e a t e r s . T h i s makes t h e pi;lmy-heating p l a n s i m i l a r t o t h e one uscd f o r the r e a c t o r v e s s e l , except, t h a t t h e a c t u a l h e a t e r u n i t s w i l l be of comm e r c i a l d e s i g n and w i l l be purchased i t e m s .

All h e a t i n g d e s i g n s f o r -the salt, s y s t e m have now been deiermined; drawings a r e i n v a r i o u s s t a g e s of completion, bu'L none a r e y e t ready for issue e


7

l .7 MAIrJTENL4PJCE DESIGN, ASSEMBLY J I G S , AND FIXTUIaS The d e s i g n of t h e j i g s and f i x t u r e s f o r t h e assembly of t h e i n i t i a l and replacement components w a s h a l t e d , a w a i t i n g f i r m e r system d e s i g n . It has been r e s t a r t e d and i s proceeding on t h e basis of u s i n g ogti-cal t o o l i n g

methods f o r t h e p r e c i s i o n l o c a t i o n of mating parts. O p t i c a l t o o l i n g w i l l be used t o make i n - c e l l . measinrements of mating p o i n t s a t t h e time t h a t component replacement becomes n e c e s s a r y . T h i s procedure w i 1 . l r e v e a l any deforma,tion t h a t may have occurred â‚Źrorn o p e r a t i o n .

1.10 REACTOR PROCUIIEMENT AND INSTALLATION

1.10.1 W j o r Modifications t o Buildixig

7503

The p r i m c o n t r a c t t o make major m o d i f i c a t i o n s t o B u j l d i n g 7503 vas awarded t o t h e Kazniner C o n s t r u c t i o n Corporation o f A t l a n t a , Georgia. The major p o r t i o n s of t h i s work i n c l u d e rnodificatiowis t o the 2k-f.t-diam containment vessel, n i o d i f i c a t i o n o f the d r a i n - tank cell., m o d i f i c a t i o n t o t h e coolant-system c e l l , i n s t a l l a t i o n of the b u i l d i n g venti 1 a t i o n sysbem, arid e r e c t i o n of t h e secondary c o n b a i m e n t walls i n s i d e t h e highbay a r e a . C o n s t r u c t i o n work s t a r t e d i n November 1961 and is scheduled f o r cornp l e t i o n about October J-y, 1762. T o date, t h e f o l l o w i n g work has been accompli shed by t h e c o n t r a c t o r :

1. Excavation of t h e d r a i n - t a n k c e l l was comp1et;ed. The s t r u c t u r a l s t e e l hold-down beams, b o t h v e r t i c a l and horizontaJ-, were w c l arid a c o n c r e t e l e v e l i n g pad- was poured on t h e fl oox’ of t h e d r a i n t a The r e i n f o r c i n g s t e e l i s b e i n g et p r e p a r a t o r y t o pouring t h e concrete f l o o r of t,he t a n k . 2. Demolition o f t h e penthouse wall, above t h e coolant-system c e l l , w a s completed; the s t r u c t u r a l s t e e l was s e t i n p l a c e and t h e fo.rrrls were e r e c t e d f o r pouring the new c o n c r e t e w a l l f o r t h e penthouse.

3. Off-sit;e f a b r i c a t i o n o f t h e stairiless s t e e l . grid and l i n e r for t h e d r a i n - t a n k cell i s al..mosZ; complete. T h i s w i l l - be i n s t a l l e d in Pkirch.

4. O f f - s i t e f a b r i c a t i o n o f t h e 7-fb e x t e n s i o n of the 24-ft-diam containment v e s s e l i s i n p r o g r e s s , as a r e t h e s t a i n l e s s s t e e l d i a p h r a and t h e s h i e l d i n g s u p p o r t beams On-sit e work on t h i s contai n r w r i t vesse3 i s scheduled t o start i n March. 5. O f f - s i t e f a b r i c a t j o n o f t h e c a r b o n - s t e e l structure and w a l l s for the secondary containment; i s i n p r o g ~ ~ s s e

F i g u r e I.3 shows coristruction p r o g r e s s i n t h c d r a i n - t a n k c e l l .


8

Fig. 1.3.

Installation o f I--1old-Down B e a m s i n t h e Drain-Tank Cell.


9

1.LO.2 C o n s t r u c t i o n Outside B u i l d i n g 7503 Design drawings and s p e c i f i c a t i o n s f o r t h e c o n s t r u c t i o n work e x t e r i o r

'7503a r e completed, and. t h e work w i 2 . l be a d v e r t i s e d f o r b i d s i n March. The major p o r t i o n s o f this work a r e t h e o f f - g a s : f i l t e r pit, t;he e r e c t i o n of a 1 0 0 - f t - h i g h c a r b o n - s t e e l s t a c k , and t h e i n s t a l l a t i o n of tz c o o l i n g tower. The work i s expected t o be done c o n c u r r e n t l y w i t h t h e exist,ing work under c o n t r a c t w i t h Karniner C o n s t r u c t i o n Corporation and i s expected t o be completed a t about t h e same t i m e . t o Building

1.lo.3

Planning and Scheduling o f t h e M3RE 1 n s t a l J . a t i o n

A d e t a i l e d review has been mde of t h e a , c t i v i t i e s r e q u i r e d f o r procuring and f a b r i c a t i n g components f o r t h e lGRJ3 a,nd for i n s t a l l i n g t h e r e a c t o r system i n B u i l d i n g '(503. The i n f o r m a t i o n wi3,s u s e d . t o develop a c r i t i c a l - p a t h diagram and schedule for t h e =RE: work. The i n f o r m a t i o n was coded f o r t h e PBM r[090 computer, and prel-irmina,ry r e s u l t s i n d i c a t e a complebion d a t e of' JULY 1963. A more d e t a i l e d review i s being mmde of t h e c r i t i c a l and n e a r - c r i t i c a l a c t i v i t i e s t o v e r i f y t h i s e s t i m a t e d comp l e t i o n d a t e and t o determine i f an e a r l i e r d a t e i s possible.

The schedule i s based on t h e f o l l o w i n g assumptions: 1. T h a t the lump-sim c o n t r a c t work w i l l be comp1eLed and i;he cells will. be available f o r ecpipment i n s t a l l a t i o n 'uy Noveluber 1, 1.362.

T h a t about 80% of the reactor and d r a i n - t a n k process and s e r v i c e p i p i n g w i . 1 1 be p r e f a b r i c a t e d between J u l y 1, 1962, and December 30, 1962.

2.

3 . T h a t about 50% of t h e process piping, s e r v i c e piping, power and thermocouple c a b l e w i l l be i n s t a l l e d i n t h e r e a c t o r arid d r a i n - t a n k cel_l_s p r i o r t o t h e i n s t a l l a t i o n of the process eqyipment. The r e a c t o r components a r e t o be preasserfibled on a 3i-g o u t s i d e the r e a c t o r cello I n o r d e r t o minimize t h e e f f e c t s on t h e sche(Iul_eof t h i s preassembly, as w c l l as the e f f e c t o f any uriariti.cipated d e l a y i n t h e completion of t h e buildinE5-modification work, t h e process and s e r v i c e l i n e s will be p r e f a b r i c a t e d as i n d i c a t e d . D e l i v e r y of ZNOR-8 p l a t e , rod, and we1-d rod s t a r t e d i n Novcxrher 1761; 1962, about; 80$ of %he ma'cerial had been r e c e i v e d , Approxi m a t e l y 1.1-1,OOO 1-b of thi-s m a t e r i a l w a s manufactured by Hapies S t e Z l i t e Company a t a n average p r i c e of $3.58 p e r pourid.

by February 15,

C o n t r a c t s were awarded i n Septerriber 1961 t o I n t e r n a t i o n a l Nickel Company, Michigan Seaudess Pipe and Tube Company, and WaJ 1. Tixbe Company f o r manufacture of 18,000 l i n e a r f e e t o f INOR-8 seamless pipe and. t u b i n g . T h i s material weighs approximately .1.8,000lb and i s b e i n g manufactured f o r an average p r i c e of about $18 per pound. The p i p e and 'cubing a r e scheduled for d e l i v e r y .in May 1962.


10

T a y l o r Forge Company was awarded a c o n t r a c t i n September 1961 f o r the manufacture o f 420 PNOR-8 pipe and t u b i n g f i t t i n g s f o r am averazp p r i c e o f $260 each. Del i v e r y of t,hesc fi t,i,ings i s scheduled t o b e g i n i n March 1962, w i t h completion by May 1362.

The Natiorial Carbon Company w a s awarded a c o n t r a c t i n September f o r the manufacture of a p p r o x i r m t e l y 9000 1 b o f moderxtor g r a p h i t e , completely machined t o s p e c i f i c a t i o n s and t,olei-anccs, f o r an average p r i c e of $21 p e r pound. I t i s scheduled f o r d e l i v e r y i n SUI-y 1963.

1961

ConLr-acts have also been awarded f o r t h e manufacture oP 150 f l e x i b l e Tnconel metal hoses â‚Ź o r t h e f u e l d r a i n t a n k s . 1..lo. 5

Procurement of Components

S i n c e e f f o r t s t o o b t a i n I - u p - s u n b i d s f o r fabricabinp; PGRF compon e n t s were u n s u c c e s s f u l , because o f i n d u s t r y ' s l a c k of f a m i l i a r i t y w i t h INOK-~,t h e f a b r i c a t ?on o f t h e major W R E components ( r e a c t o r , rad.i a t o r and e n c l o s u r e , h e a t exchanger, f i l l and d r a i n t a n k s , and pump p a r t s ) i s b e i n g performed i n t h e Y-12 Maciiine Shops, where experierice has been gained in Ti!$Oli.--8 f a b r i c a t i o n and w e 1 d i n g d u r i n g t h e p a s t t h r e e o r f o u r years I

Fabricat,ion i s s t a r t e d i n t h e shop as m a t e r i a l becomes a v a i l a b l e arid a s f a b r i c a t i o n drawings, prepared â‚Ź o r o u t s i d e vendors, a r e modified f o r use i n t h e Y - 1 2 Machine Shop. Work was s t a r t e d i n January on the r a d j a t o r enclosure and i n Fcbriar'y on ilie r e a c t o r .

By February

15, about

18 men were worktng on t h e s e two jobs. This mmnpower l o a d w i l l i n c r e a s e t o a peak o f about 1225. Completion of t h c f : a b r i c a t i o n of a l l t h e major r e a c l o r componeuts i s scheduled f o r October 1962.

S u b c o n t r a c t s f o r f a b r i c a t l n g IN OR-^ have been awarded t o t h e 'l'aylor Forge Compaiiy f o r forgjrig t h e heat-exchanger t u b e s h e e t ; t o t h e UCNC Paducah Machine Shop f o r fonning the r e a c t o r i n l e t volute, r a d i a t o r h e a d e r s , and djshcd heads f o r tile h e a t exchanger, r a d i a t o r , and r e a c t o r vessel ; and to t h e 1,ukcns S t e e l Corilpany and Phoenix S t e e l Company 'LO form d i s h e d heads f o r Lhe various fill and d r a i n tanks and pumps. The d i s h e d heads f o r the r a d i a t o r , hezzt exchanger, and pumps have been d e l i v e r e d . Scheduled d e l i v e r y of ilie o t h e r INOR-8f a b r i c a t e d i terns i s f o r March t3,r-d A p r i l 7962.

1 11 e

REACTOR lT'JSTIIUMF,NTA'lYON AND CONTROLS SYSYKM

1 .11.1 Nuclear Control System 'i'he n u c l e a r i n s t r u m e n t a t i o n and c o n t r o l s system i s block-diagrammed i n Fi p;. 1 . ) I . Tlic wide-range s e r v o - p o s i t i oned f i s s i o n chamber channels

are expected t o provide continuous coverage of t h e f u l l range o f r e a c t o r


.

I

. __ ..

Y r

0 U

A

t

....

-..

I

S

:i

E+

......

3 2

I

I

*-

*--I

L

-1----I

-... ..........

m

AT

...............

I I

---I '+-

I

00-+

I

I

J[:l

i T zBP

(-&?

I_Ic

t

...

I

I I I I I

I I

I I

I

I

r~-..-I

_ . I -

f


12

o p e r a t i o n , â‚Źrom s t a r t u p t o full power. The l i n e a r channels, w i ' L h compensat,ed chambers as ihe s i g n a l source, a r e t h e most a c c u r a t e n u c l e a r i n f o r m a t i o n channels and are used t o monitor r e a c t o r power and 'LO provide t h e flux siznal f o r t h e s e r v o c o n t r o l l e r . These channels have a span o f f o u r decades; and, by combining range s w i t c h i n g and chamber r e l o c a t i o n , t h e y a r e useful over EL wide range. 'The l i m i t channels will be used t o providc a ' ' r e v e r s e " mode flux s i g n a l whi ch w i l l cal 1 f o r all- t h e rods t o be i n s e r t e d a t an average r a t e o f 0.046% Ak/k per second. F i g u r e I .5 diagrams t h e r e a c t o r power ranges of t h e above n u c l e a r insiriiment . During j n;ti81 c r i t i c a l p e r i o d s , two iernporary counting

UNCLASSIFIED O R N L - L R - DWG 6 0 5 7 5

FIS SION-CHAMBER CHANNELS

( S E E NOTE 2)

(SEE NOTE 5 )

SEE NOTE 4

NQTES 1. Consists

o f compensated chamber t o micromicroammeter. Used for servo f l u x input signal a s w e l l as recorder input. Lower threshold, possibly one decade below thut shown, i f a l l conditions optimized. Range switching not shown.

2 . These are servo-operated f i s s i o n channels and can be used t o provide a l l readouts shown. 3. Under ideal conditions ( l o w e l e c t r i c a l n o i s e and r e l a t i v e l y clean f u e l ) the servo w i l l control i n the 10-Mw region. 4. Range o f servo-operated f i s s i o n channel dependent on inovement i n attenuating medium (1-1 20), prov i d e d that no gross f l u x distortion e x i s t s i n mediurn traversed by chamber.

5. T h e two-decade span

Fig. 1.5.

m a y b e located over a wide range.

R a n g e s of MSRE P o w e r and N u c l e a r I n s t r u m e n t s .


13

c h a n n e l s w i t h BF3 chambers l o c a t e d i n t h e composite s h i e l d w i l l be used. Except f o r the BF3 c o u n t e r s , a l l nuclear insti-iments w i l l be l o c a t e d i i i the l a r g e 36-in. -diarn w a t e r - f i l l e d p e n e t r a t i o n , i n c l i n e d approximatel-y 45" ( r e f 2 ) . The s e r v o c o n t r o l system w i J 1 be d e r i v e d from a conceptual d e s i g n ( F i g . .1-.6) proposed by E. R . ? t n n . Servo c o n t r o l o f t h e MSRX i s r e q u i r e d , because i t s extremely c o n s e r v a t i v e o p e r a t i o n yields a v e r y hip$ v a l u e f o r the r a t i o o f h e a t c a p a c i t y t o power d e n s i t y . I n h e r e n t s e l f - c o n t , r o l by temperature c o e f â‚Ź i c i e n t i s t h e r e f o r e sluggish and produ-ctive os" power o s c i l l a t i o n s which, while n o t dangerous, a r e not acceptizbl-e from a n opera t i o n a l s t a n d p o i n t . The need f o r servo c o n t r o l w i l l diminish r a p i d l y i f r e a x t o r power i s allowed t o exceed. t h e p r e s e n t 1.0-Mw I..imilation. UNCLASSIFIED ORNL - L R - D W G 68576

RE GIJ L AT IN G ROD

F i g . 1.6.

B l o c k D i a g r a m of

MSRE R e a c t o r C o n t r o l l e r .

F u n c t i o n a l l y , %'ne servo c o n t r o l l e r sirnpl y augrients t h e ternperature c o e f f i c i e n t of t h e r e a c t o r ; i n the power range it i s n o t used to cont,rol r e a c t o r power on o p e r a t o r denBnd e

The conceptual d e s i g n was t e s t e d on t h e a n a l o g computerc3 and performed s a t i s f a c t o r i l y . The t r a n s l a t i o n of Yne cont,rol.lcr from co-ticeptval design t o hardware js i n process and c o n s i s t s o f s u b s t i t i k i n g arid packaging s u i t a b l e i n d u s t r i a l -grade component,s f o r cornput c r - operat i o n a l anipli f i..ers and t,he


14

L

a d d i t i o n of a power arnpl-ifier t o match t h e shim-rod motor. The c o n t r o l package w i l l be thoroug'nly t e s t e d and w i l l be used i n c o n j u n c t i o n w i t h the anal-og si mu1 a t o r f o r o p e r a t o r t r a i n i n g .

1.L1..2 Tnstrwiient-Appli c a t i o n Diagrams During t h e p a s t r e p o r t period, the 7 3 i n s t r u m e n t - a p p l i c a t i o n flow diagraius l i s t c d i n 'Table 1 .7 were r e v i s e d and i s s u e d f o r comment. I n geiieral, t h e r e s u l t , of the r e v i s i o n s w a s a r c d u c t i on of t h e nurxiber o f i n s t r u m e n i s and thermocouples r e q u i r e d . Nine drawings were approvcd f o r c o n s t r u c t i o n . It i s e s t i m a t e d t h a t t h i s b a s i c p a r i o f t h e i n s t r u mentation e f f o r t i s 90% c o r n p ~ e t e . "

Table 1.I. i n s t r u m e n t - A p p l i c a t i on Flow Diagrams . " I .

No. of' F1 ow JXagram

Application ___I ---I.

y_.

-.-.

F u z l - s a l t ci.rcui_t,

P-M-R-lr 0 5OOa

40501 a

Coolant - sal t system

40502a

Fuel, f l u s h , and d r a i n - t a n k l f a u l t system

!,0y13~ 40 501!'

Cover-Sas system

)IO50

Fuel-sal t-pump l u b r i e a t i n e - o i l system

5&

Fuel sampler-enri @ h e r system

40506~

Liquid-waste sysiern

40508"

Coolant-sal t-pimip l u b r i c a t i i i g - o i 1 system

4050(ja

Water system

40>1.0a

O f f -gas system

4051-3

Fuel, f'f.iil and t r a n s f e r system

4051.4

I n s t r u m e n t - a i r and s e r v i c e - a i

'10515

__^-.-

P

systems

Containment a i r

a Project-approved drawings .

.___-_.

A t a b u l a t i o n o f all i n s t r u m e n i s shown on t h e flow diagrams, g i v i n g i d e n t i f y i n g numbers, 1 o c a i i o n , Tunction i n process, arid a b r i e f d e s c r i p Lion, w a s also r e v i s e d i n accordance w i t h t h e l a t e s t r e v i s i o n o f the a p p l i c a t i o n diapjrams T h i s tabulat,i on i s n e a r l y 75% complete.

.


15

Although 11 thermocouple-locati on drawi ngs were approved â‚Źor constrinc ,t ion, t h e y were r e v i s e d because of the r e d u c t i o n i n the nurn'i3er of thcrniocouples r e q u i r e d . A l i s t of a11 thermocouples, showing t h e t y p e and. l o c a t i o n of t h e readout d e v i c e f o r each o m , was issued for conin~ent.

1.11.3 E l e c t r i c a l C o n t r o l C i r cu.it r y Control-circislj t, d e s i g n i s c o n t i n u i n g . Elerneniary schematic, drawings showing basic, el e c t r i c a l control- and t h e s a f e Ly c i r c u i t s were made f o r t h e sampler e n r i c h c r , f u e l - and coolant-pump 1 u b r i c a t i n g - o i 1- s y s - k r n , water system, containment-ai r system, and t h e c o o l a n t - s a l t r a d i a L o r ,

1.11.1-1 Layout of I n s t r u m e n t a t i o n and C o n t r o l s System

The l a y o u t of t h e i n s t r u m e n t a t i o n and c o n t r o l s system i s conbirxirig a c c o r d i n g t o t h e general scheme o u t l i n e d i n t h e last r e p o r t . " The l a y o u t w i l l permit all routine o p e r a t i o n s t o be performed i n t h e main c o n t r o l room a r e a . A n e P f o r t i s b e i n g made t o c e n t r a l i z e insLtuuieritation, and f i c l d p a n e l s w i l l be used o,ril_ywhere t h e n a t u r e of t h e o p e r a t i o t i d i c t a t x s %hat control s and instrumenLs be l o c a t e d i n the f i el d . 'Thc arrangemerit o f t h e mill c o n t r o l area was r e v i s e d as shown i n Fig. 1 . 7 . The d a t a rooru a r e a i s larger by 225 square feet,, a l l o w i n g more space for t h c da,t;zh a n d l i n g system The m i n c o n t r o l and auxi l-i-ary control a r e a w e ~ eshi f t e d t o t h c s o u t h . The instrutiieril; shop was moved from t h e l o c a t i o n shown p r e viousl..y5 t o t h e s o u t h e a s t c o r n e r o f t h e b u i l d i n g a t -the same (8>P ft) e

level

e

A second major c o n t r o l area i s t h e t r a n s m i t t e r room, which i s 1-ocated on t h e 8110-ft l e v e l a d j a c e n t t o t h e r e a c t o r . I n s t r u m e n t s â‚Źor t h c l e a k - d e t e c t o r system, wei gh system, and t h e gas -purge s y s t e m f o r t,he f u e l and cool-ant c i r c u i t s w i l l be rnowited on a u x i l i a r y panels i n L h i s area S o l c n o i d v a l v e s through which a i r i s supplied t o s a l t - s y s t e m g a s - c o n t r o l vaLves are t o be l o c a t e d i n t h i s a r e a , a1 ong w i t h arnpli Ciers arid power suppl i e s f o r t h e p r o c e s s - v a r i a b l e t r a n s m i t t e r s .

Two i n s t r u m e n t p a n e l s a r e 1-ocated i n -the s e r v i c e room a t t h e mrth end. o f the s e r v i c e t u n n e l * 'l'hese panels house instmmenLation and. controls equipment a s s o c i a t e d w i t h t h e l u b r i c a t i n g - o i l systems for tlic pimps t h a t c i r c u l a t e t h e f u e l and c o o l a n t . Both pumps a r e 1 ocat,ed i n t h e s e r v ri ce tunnel. Radiation-monitor in^ i n s t r u m e n t s s e r v i n g t h e s e r v i c e -turincl w i l l also be mounted on t h e s e parie1.s.

One more instrurrient panel w i l l be l o c a t e d i n t h e water room near t h e r a d i a t o r blowers a t t h e southwest corner o f B3uiJ-d.ing 7503. 1 n ~ t ~ r . u ments connected t o the cooling-water system a r e t o be l o c a t e d on thcsc panels "


I

H

16

3

Ill

I n z

c

LL w

w u

l l I

r

n

LL

6 W

LL W


17

1.11.5 Control- P a a e l s T’ne main-control-hoard I-ayout w a s approved a f t e r several revisions. A l / h - s c a l e model of t,his board as r e v i s e d is shown i n Fjc;. 1.8. T h c design o f t h e control console was issued for corxunent; and is :;hewn in Fig. 3 .3. D e t a i l drawings of the c o n t r o l - c i r c u i t r e l a y a ~ i dthe Lherr o c o u p l e cab i n c t s loca’ced i n t h e auxiliary cori1;rol area we-re a l s o approved-. Detail ed fabri c a t i o n d-rawi ngs showing instrwrient l a y o u t s , pariul - c u t o u t detail s, and w i r i n g and piping diagrams are almost 60% complete. Tlnese dmwi ngs w il.1 riot be cornpl-::Led until exact dirrcrisions of purchased ecpi i pmerit a r e known.

Fig. 1.8.

One- Fourth-Scale Model of MSRE Control Panel. UNGLBSSIFIEO ORNL-LR-GWG 68578

Fig. 1.9.

Conceptual Design of MSRE Console.


a

1-.11.6

Data Handling

A s t u d y of I S R E daLa-handling requi-rerfients was completed and i s s u e d f o r comment. The s t u d y i n d i c a t e d % h a t t h e MSW could advanta-

geously use a digital d a t , a - c o l l e c t i n g and -handling system t o process the d a t a from t h e r e a c t o r . The d a t a system woillld be used i n c o n j u n c t i o n w i til t h e conventional instrument and c o n t r o l system. The s t u d y r e p o r t was reviewed by b E R p r o j e c t pcrsonnel, and a d e c i s i o n w a s mad-e t o procure a d i g i t a l d a t a system w i t h t h e c a p a b i l i t y of performi-ng o n - l i n e comput a t i o n s , d e t e c t i n g and a1 arrning off-normal c o n d i t i o n s , and 1 o g g t n g t h e process d a t a a u t o m a t i c a l l y and on demand, The MSRE i n s t r u m e n t a t i o n and c o n t r o l system i s beine; d e s i p e d Lo ensure t h a t f a i l u r e of t h e d a t a system wiJ 1- n o t compromise t h e s a f e t y o r o p e r a b i l i t y of t h e r e a c t o r . All d a t a n e c e s s a r y f o r t h e o p e r a t i o n and s a f e t y of t h e r e a c t o r w i l l be a v a i l a b l e from t h e c o n v e n t i o n a l instrurnent a t i o n system. The f u n c t i o n o f t h e d a t a - h a n d l i n g f a c j l i t y w i l l be t o implement t h e conventional system by r e c o r d j ng d a t a needed f o r experirneni a n a l y s i s i n a more convenient form. P r o v i s i o n s haw been made i n t h p d e s i g n o f t h e i n s i r u r n e n t a t i o n system t o permit expansion o f t h e convent i o n a l d a t a d i s p l a y and r e c o r d i n g system shoul-d t h e need ari s e . The s t u d y of i,he W W d a t a - h a n d l i n e requirements w a s extended and cxtlrnined i n more d e t a i l i n o r d e r t o p r e p a r e s p e c i f i c a t i o n s f o r t h e d a t a system. A rou& d r a f i o f t h e s p e c i f i c a t i o n s was completed and d i s t r i b u t e d f o r revi ew and comment. The r e a c t o r o p c r a t i on and experimental anal y s i s groups are reviewing i h e i r r e s p e c t i v e d a t a col 1 e c t i o n and d i s p l a y requirements. These reqiii rements and t h e comnents on t h e p r e l irninary s p c c i f i c a t i o n s w i l l be i n c o r p o r a t e d i 11 t h e f i n a l speci-fi c a t i o n s . A t thi.s time it a p p e a r s t h a t approximately 242 process v a r i a b l e s w i l l b e t r a n s m i t t e d t o t h e d a t a system.

I. l 1 . 7

Process and Personnel. R a d i a t i o n Monitorri.ng

An i n i t i a l - s t u d y o f t h e E R E r a d i a t i o n i n s t r u n e n t a t i o n requirements w a s made, and a p r e l i m i n a r y t a b u l a t i o n o f Lhe d e t e c t o r s 7 was i s s u e d f o r cornmeni . The memorandum w a s reviewed by p r o j e c t personnel, and t h e comients wcre i n c o r p o r a t e d into Lhe i n s t r u m e n t a p p l i c a t i o n diagrams.

The process monitors are t h o s e d e t e c t o r s used t o monitor t h e r e a c t o r system process lines, some r e a c t o r components, t h e two s t a c k s , t h e r e a c t o r c e l l , t h e d r a i n - t a n k c e l l , and t h e r a d i a t o r p i t . The personnel monitors are those normally r e q u i r e d â‚Źor personnel p r o t e c t i o n throughout t h e inhabi t e d a r e a s of the b u i l d i n g . These rnonitors would normally be such items

*


19

as hand and f o o t c o u n t e r s , door monitors, continuous a i r monitors, e t c . , as r e q u i r e d by h e a l t h physics p r a c t i c e s . The requirements f o r b o t h t y p e s of monitoring i s a g a i n b e i n g reviewed i n o r d e r t o determine t h e s p e c i f i c d e t e c t o r and a s s o c i a t e d e l e c t r o n i c equipment, r e q u i r e d f o r each l o c a t i o n . The possible d e t e c t o r l o c a t i o n s a r e b e i n g s t u d i e d i.n o r d e r t o determine t h e ambient o p e r a t i n g c o n d i t i o n s so t h a t adequate s h i e l d i n g , c o o l i n g , and choice of m a t e r i a l s and compon e n t s can b e made,

J_

.II.8 Procurement S t a t u s

S p e c i f i c a t i o n s were w r i t t e n f o r t h e f o l l o w i n g eqinri pment d u r i n g the report period : 1. Weigh t r a n s n l i t t e r s . 2 . Thermocouple p a t c h p a n e l s . 3. Valves â‚Źor r a d i o a c t i v e - g a s s e r v i ce 4. P r e s s u r e and di f f e r e n t i a l - p r e s s u r e t r a n s m i t t e r s , weld s e a l e d . 5. Venturi flow elenient for t h e cool ant-salt system. 6. Mi neral. - i n s u l a t e d Inconel-sheathed thermocouples

.

The s p e c i f i c a t i o n s â‚Ź o r i t e m s 1, 2, 3, 4, were approved, and a purchase o r d e r was placed for i t e m 2 . Purchase r e q u i s i t i o n s werc wri-bten f o r iLerns 1 and 3. Items 5 and 6 were i s s u e d f o r commeniJs. I n s t r m e n t c a b i n e t requirements were d e k r m i n e d and o r d e r s f o r cabi n e t frames, panels, and a s s o c i a t e d hardware were i s s u e d t,o t h e ORNL stores department. (These a r e OPQJL st,ores c a t a l o g i t e m .) W r i t i n g of s p e c i f i c a t i o n s f o r t h e f o l l o w i r i g items i s continuing,

a n d t h e y w i l l he i s s u e d f o r approval e a r l y i n t h e next r e p o r t p e r i o d .

1. S t a n d a r d v a l v e s . 2. Standard p r e s s u r e and a i f f e r e n t i a l - p r e s s u r e t r a n s m i t t e r 3 . V a r i a b l e - a r e a flowmeters. 4. P r e s s u r e r e g u l a t o r s . 5 . Recorders, i n d i c a t o r s , and c o n t r o l l e r s . 6. Pressure switches. 7. D i f f e r e n t i a l - p r e s s i n r e t r a n s m i t t e r , NaK f i l l e d f o r h i g h temperature (1500"~) s e r v i c e on the v e n t u r i fl ow element. e

Equipment t h a t can be ecoriornically salvaged from HRT f a c i l i t i e s and t h a t meets E l B s p e c i f i c a t i o n s w i l l be used.


20

3

1. J-. L . Anderson. and E. E Wintenburg, Instrurrrentation and. C o n t r o l s D i v i s i o n , Ann. Progr. R e p t . J u l y 1, L m , - OWL-2787, pp 145-1-50. I

2.

E R P Progr. Rept. Aug;.31,

196.1., OH_r;SsJ-j2l5,

p

9, F i g . 1..5.

'.

0 . W . Burke, MSRE Analog Computer S i m u l a t i o n of t h e System w i t h a Servo Control-1-er, ORNL CF-62-12-50.

4.

WRP Progr. Xept. Aug.

31, 1961, ORNL--J215,

p 21.

I bi d . , F i g . 1...1.5, p 22. 5. -

6.

.

'-{

G . 11. Burger, MSRE Data CollecLjng and _l_.-.--l Handling Requirements, A Study Report, mii-61-1112 e

G. H . Burger, E 1 U Process and Personnel.. Radi-aiion Moni _.I t o r i n g ,

PER-61-108.


21

2. COMPONENT DEVELOPMENT 2 1 FREEZE-FLANGE DEKELOPMEXT 0

MSNE 5-in. Flanges"

2.1.1

Two s e t s of INOR-8 f l a n g e f o r g i n g s and f o u r r i n g - j o . i n t g a s k e t s were Some purchased f o r p r o d u c t i o n and t e s t i n g of p r o t o t y p e PGI# f l a n g e s d i f f i c u l t y w a s encountered i n machining t h e s u r f a c e s of t h e ring grooves t o p r e c i s e dimensions. Successive c u t s of l e s s t h a n O.Ol5-in. r e s u l t e d i n r a p i d tool- wear, and f r e q u e n t sharpening w a s r e q u i r e d .

.

A p a i r of t h e f l a n g e s i s b e i n g i n s t a l l e d i n t h e s e a l - t e s t f a c i l i t y 2 f o r t h e r m a l - d i s t o r t i o n and gas-leakage measurements. A f t e r completion of t h e s e t e s t s , t h e f l a n g e s w i l l be i n s t a l 3 ed i n t h e therrnal-cycle t e s t l o o p and t h e p r o t o t y p e - f u e l - p u l p t e s t f a c i l i t y . A s e t of gages w a s designed t o a s s i s t i n o b t a i n i n g a c o n s i s t e n t overall. t h i c k n e s s of t h e f l a n g e - g a s k e t assembly. This t h i c k n e s s c o n t r o l i s necessary because of t h e l o a d - d e f l c c Lion c h a r a c t e r i s t i c s of t h e s p r i n g clamps used t o load t h e f r e e z e f l a n g e . These gages were f a b r i c a t e d arid used i n t h e f a b r i c a t i o n and i n s p e c t i o n of t h e p r o t o t y p e f l a n g e p a r t s . 2.1.2

Freeze-Flange-Seal T e s t F a c i l i ty"

' J e s t i n g of the 3-l/Z-in. f r e e z e f l a n g e , u s i n g v a r i o u s r i n g g a s k e t s and a r e s i l i e n t clamp, w a s d i s c o n t i n u e d a f - t e r it w a s found tha-t i n s u f f i c i e n t s t r e n g t h i n t h e fl-arigc body p e r m i t t e d t h e ring-groove dimensioris t o b e changed by r e p e a t e d thermal c y c l i n g . Experiments were conducted t o determine t h e temperature &isLribu-tion and t h e d i s t o r t i o n c h a r a c t e r i s t i c s of t h e 6 - i n . Inconel f r e e z e f l a n g e . The f l a n g e and clamp were s i m i l a r t o -tile 5 - i n . ?.ISRE f r e e z e - f l a n g c assembly p r e v i o u s l y described-, except f o r t h e fo1.1 owing: p i p e s i z e ( 6 - i n . sched-40 f o r ? - i n . sched-40), m a t e r i a l (Pnconel fox* LNOR-8), arld t h e absence of s p r i n g a c t i o n i n t h e clamp. Gar, width between f l a n g e f a c e s w a s maintained by a %0-3/G-in. diam r i n g of 1/;4-in. Incoriel w i r e .

'I'wo s e p a r a t e h e a t s o u r c e s were necessary t o o b t a i n even h e a t i n g of Twelve s i l i c o n c a r b i d e h m t j ng elements were connected i n series and mounted i n t h c bore, c e n t e r e d a t the flange f a c e s . Clam-shell r e s i s t a n c e h e a t e r s were a l i g n e d along Lhe e x t e r i o r of t h e p i p e s t u b s beginning 2-1/4 i n . f:rom -the fl-ange f a c e , with t h e i n s u l a t i o n b e v e l e d a t a 45O a n g l e away from t h e f l a n g e f a c e s . Various combinat i o n s of Cal-rods, clam-shel-1- h e a t e r s , and- i n d u c t i o n h e a t e r s were t r i - e d i n

I:1-ange:; and p i p e e x t e n s i o n s

.


22

a r r i v i n g a t t h i s comSDinati.on b u t thcy f a i l e d e i t h e r t o reach temperaiure g o a l s o r t o m a i n t a i n them Tor extended p e r i o d s . A s shown i n F i g . 2.1, the s t a t , i c temperature d i s t r i b u t i o n w a s rneasu r c d f o r b o r e temperatures of 850, 1000, 1100, 1200, 1300 and 1400°F. “he f r e e z e p o s i t i o n of t h e molten s a l t was 4.8 i n . r a d i d l y outward. froin The average i n c r e a s e i n t h e flange b o r e w h e n t h e b o r e w a s a t l ) i O O ° F . r a d i a l p o s i t i o n of t h e f r e e z i n g temperature w a s ‘(/8i n . f o r each 100Fo i n c r e a s e i-n b o r e temperature UNCLASSIFIED ORNL-LR-DWG 68579

1

--

(400

I200

io00

CL

O

800

W

az

t-3

U

a w

5I-

600

400

200

0

0

2

4

6

8

40

DISTANCE FROM THE C E N T E R L I N E OF P I P E (in.)

F i g . 2.1.

T e m p e r a t u r e D i s t r i b u t i o n s i n the C e n t r a l P l a n e o f the & i n ,

Freeze Flange

for \/arious Bore T e m p e r a t u r e s .

A t 1400°F, t h e renul ts were chccked a g a i n s t t h e Sturm-Krousc‘ a n a l y t ical p r e d i c t j o n s . Experimentally t h e freez,c p o i n t w a s 7.8 i n . from t h e p i p e c e n t p r 7 i n e , whereas the a n a l y t i c d prcclj-cti on was 5.7 i n. ‘ b e assumptions of c o n t i n u i t y between fl ange and clamp and of r a d i a l temperature n r i a t i o n are s o u r c e s f o r t h e discrepancy.


23 With a b o r e texperature of 1300째F and of llrOOoE', a l l pawe-r to the assembly was c u t o f f t o s i m u l a t c a s a l t dump and t o note the e f f e c t on t e r n p e r a t w e d i s t r i b u t i o n . Tne b o r e cooled t o t h e s a l t freezing point of

8 5 0 i~n ~27 min

and i n

34.5

mi.n a f t c r shutdown, r e s p e c t i v e l y .

When t h e f l a n g e s were at e l e v a t e d tcmperaturen, t h e r e was n dimens i o n a l d i s t o r t i o n of t'ne p l a n e f a c e s of t h e f l a n g e s , SQ t h a t they tended t o assime a more c o n i c a l shape. This i s i l l u s L r - a t e d i n Fig. 2.2, w h i c h shows t h e d i s t o r t i o n when t h e b o r e temperature w a s 1300째F. The maxinlwn d i s t o r t i o n v a r i e d from 0.024 i n . a t a LOOOOF Fore temperature t o 0.063 i n . a t lI+OO*F; t h i s i s r e l a t i v e t o a n i n i t i a l . spacing of 0.062 i.n. bc'cween t h e f l a n g e faces No pexmanent d i s t o r t i o n was noticed, al'tnough the f l a n g e s were c y c l e d 40 times from ZOOOF t o 1300째F. e

IJNCLASSIFIED ORNL- L R - D W G 68580

I

FEMALE SECTION

MACE SECTION

1

-RING

o

rm

THE

AIR

POSITION

THROUGH

CI-AMPS

e 15cfm

THROUGH

EACH CLAMP H A L F

WITHOUT A I R

1

80

40

0

40

RO

20

GAP (thousandths of an i n c h )

Fig. 2.2.

D i s t o r t i o n of

6-in.

F r e e z e F l a n g e O p e r a t i n g a t a Bore T e m p e r a t u r e of

130O0F.

'The t r a n s i e n t d i s t o r t i o n c h a r a c t e r i s t i c s were checked d u r i n g a s h u t down from 1300째F. F i f t e e n minutes a f t e r power shutdown, t h e maximum f l a n g e d i s t o r t i o n had decreased from 0.061.i n . t o 0.034 i n . , w h i l e t h e p o s i t i o n of t h e f r e e z i n g - p o i n t temperature moved i n 1 i n . The s i g n i f i cance of t h e r a p i d d e c r e a s e i n d i s t o r t i o n , c o q a r e d with t h e s l o w change i n salt freeze p o s i t i o n , i s that; %he amount of s a l t lodged between t h e f l a n g e f a c e s i s reduced d u r i n g coo.l.ing, and t h e tendency f o r perinanent d i s t o r t i o n of t h e f l a n g e gap i s l e s s e n e d .


24

L a s t l y , t h e e f f e c t s of c o o l i n g a i r were noted by pdssing 1> cfm of i n s t r u m e n t a i r through each clamp h a l f ( b o r e temperature of 1300°F). (See F i g s . 2.2 and 2 . 3 . ) Whereas t h e d i s t a n c e from the p i p e c e n t e r l i n e t o t h e p o s i t i o n of t h e f r e e t , i n g p o i n t temperature d e c r e a s e d froiri 6.8 in. t o 5.8 i n . , the d i s t o r t i o n i n c r e a s e d from a maximum of 60 m i l s (without .tir) t o -LO7 m i l s (with a i ? - ) . I t w a s concluded t h a t t h c teinperat,ure g r a d i e n t vas t‘rie dominant factor l e a d i n g t o t h e di s L o r t i o n of t h e f l a n g e . A developrnent program similar t o the one j u s i d e s c r i b e d w i l l b c conducted on .the INOR-8 5 - i n . freer,e f l a n g e . Also, t h e s e a l i n g p r o p e r t i - e s * of two n i c k e l ring g a s k e t s (one ova3 and t h e o t h e r oct<zgonal)w i l l be determined when used w i t h the s p r i n g clamp. U NCl.ASSI FI E D O R N L - L R - D W G 60501

1400

1 200

1000

LI

0

800

(r: W

3

tCY: w

a 2

t

600

400

200

0

2

0

4

DISTANCE F R O M CENTER

6 LINE

8 OF

PIPE

10

(in.)

Fig. 2.3. C o o l i n g E f f e c t s on 6-in. F r e e z c F l a n g e .

2.2

COSJTROL-ROD DE:VF=LOP’MEI\1’IC

A simple c h a i n - d r i v e n c o n t r o l - r o d mechanism i s b e i n g developed for use i n the MSHE. Figinre 2.4 shows t h e s y s t e m which i s b e i n g b u i l t r o r t e s t i n g . The weight of t h e f l e x i b l e metal hose and the p o i s o n elements


25

c

UNCI ASSlFlFD

ORNL-LR-DWG

6~35~3%

/\ ,

REV E R S I E3 L E - D R II/E MOTOR

I N G - G A S CONTAINER

Fig. 2.4.

MSRE Control-Rod-and-Drive Assembly.

combined i s 6 to 8 lb. The drive u n i t i s overdesigned, with t h e c a p a b i l i t y of exerting a 20-lb downward t h r u s t arid a 25-lb upward p u l l . “he t o t a l t r a v e l of the poison elements is 66 i n . , a t a r a t e of 1 in./scc.


26

The r o d p o s i t i o n i s i n d i c a t p d by a c a l i b r a t c d d i g i t a l v o l t m e t e r conn e c t e d t o a synchro-operated 1 5 n e a r r c s i s t o r coupled t o Lhe. chai n - d r i v e s p r o c k e t s h a f t . R 12-v dc supply i s f u r n i s h e d t o t h e r e s i s t o r . The rod p o s i L i o n i s read out as a v o l t a g e , f o r convenience i n data logging. For maintenance, it i s planned that, Llrie e n t i r e u n i t w i l l be r e p l a c e d and d i r e c t maintenance performed i n a "ho-L" shop. The e n t i r e c o n t r o l - r o d assembly can bc removed by u n b o l t i n g t h e cooJ ing-gas c o n t a i n e r and d r i v e u n i t b a s e from t h e f i x e d s u p p o r t s t r u c t u r e . Manila1 ly o p e r a t e d electrical and a i r d i s c o n n e c t s w i l l permi-L withdrawal of the u n i t , l e a v i n g t h e thimbl e ancl c'nai-n c o n t a i n e r i n posi Lion. Reactor c e l l a i r w i l l b e pumped to the %as c o n t a i n e r t h e d r i v e motor and- -the c o n t r o l rod. P a r t of this stream the f l e x i b l e - m e t a l d r i v e hose by means 01 a l o o s e - f i t t i n g c o n c e n t r i c a l l - y i n t h e hose. All t h e gas leaves through a a t the t o p of t h e contai-nment t h i m b l e . 2.3

HEATER 'TESTS

2.3.1

P i p e Heatzrs

i n order t o cool i s diverted i n t o t u b e mounted common exhaust

A f u l l - s c a l e s e c t i o n of removable h e a t e r s f o r 5 - i n . pipe. w a s b u i l t and t e s t e d . The t e s t s e c t i o n i s shown i n 3'iSe 2 . 5 . Each h e a t e r u n i t i s

Fig. 2.5.

Pipe-Heater Test.


27

28 i n . l o n g and c o n t a i n s six f l a t - p l a t e 700-w h e a t i n g elements, which can be seen i n Fig. 2.6. A &in. yoke p i e c e which i s l a p p e d t o f i t t h e h e a t e r - b o x ends is i n s e r t e d betwccn h e a t e r s e c t i o n s t o make a snug c l o s u r e . m c h h e a t e r u n i t can b e r e p l a c e d by first withdrawing the yoke at) each end o f t h e h e a t e r , and t h e n simply l i f t i n g t h e box. "he heatcr base i s shown i n Fig. 2.'[. It c o n t a i n s no h e a t e r s and is a permanent p a r t of the support s t r u c t u r e .

I

F i g . 2.6.

P i p e - H e a t e r Section.


28 UNCLASSIFIED PHOTO 37975

F i g . 2.7.

1600

P i p e Shown Mounted on H e a t e r Base. UNCLASSIFIED ORNL-LR-DWG 6 8 5 8 3

I

-q /PIPE

-WALL

I

I

AVERAGE T E M P F R A T U RE

I

I

REVERSE SIDE O F HEATER

1400 POWER INPUT ( w o t t s per linear f o o t )

n

1200

.-.

UNION ASBESTOS 8 RUBBER CO.

LL

( 1 2 0 0 ° F RATING)

0

n w

3

a W a

~~

IO00

2

345

4 t

1 I--:

UNARCOBOARD

800

I NSU L AT10 N

W 5

t

600

I

OUTSIDE

-

SKIN

TEM PE RAT U RE

400

0 . 0 0 5 - i n . ALUMINUM F

-

I

200

SUPERTEMP I N S U L A T I O N (19OOOF RATING)

I

I

~-(EAGLE-PICHER

1

0

0

1

2

3

4

5

DISTANCE FROM PIPE W A L L ( i n . )

F i g . 2.8.

T e m p e r a t u r e D i s t r i b u t i o n i n 5 - i n 0 P i p e H e a t e r and I n s u l a t i o n .


29 T e s t s i n d i c a t e a maximum 10째F v a r i a t i o n i n temperature around t h e p i p e s u r f a c e , duc t o t h e unheated b a s e s e c t i o n . F i g u r e 2.8 i s a p l o t of temperature d i s t r i b u t i o n through t h e i n s u l a t i o n a t v a r i o u s power i n p u t s There i s a h e a t l o s s of about 1150 w p e r l i n e a r f o o t of p i p e a t o p e r a t i n g temperature.

.

2.3.2

Reactor Vessel R e n t e r s T

The r e a c t o r vessel- h e a t e r s have o p e r a t e d a t o t a l of 3750 h r . The h e a t e r - s u r f a c e was h e l d a t l b 5 O F f o r TOO h r t o m a i n t a i n 1325OF on t h e h e a t - s i n k f a c e . The system was t h e n opened f o r v i s u a l i n s p e c t i o n , and t h e g e n e r a l c o n d i t i o n w a s t h e sCmc as b e f o r e . However, t h e upper guide-Lube r a c k w a s i n a d e q u a t e l y supported t o c a r r y t h e l o a d of t h e guide t u b e s a t t h e h i g h e r teniperature, and it had buckled. The b u c k l i n g had n o t af .Cected t h e h e a t e r o p e r a t i o n b u t had caused misalignment between t h e g u i d e tubes, t h e h e a t e r p i n s , and t h e t h e r m a l - s h i e l d p e n e t r a t i o n s . This c o n d i t i o n c o u l d c r e a t e s e r i o u s d i f f i c u l t i e s f o r remote maintenance and p o s s i b l y cause burnout of t h e h e a t e r s . After t h e rack i s r e a l i g n e d , a d d i t i o n a l s u p p o r t s w i l l b e i n s t a l l e d and t h e t e s t continued.

The 30-gage I n c o n e l r e f l e c t o r had buckled t o some extent; i n s p i t e of p r e c a u t i o n s t a k e n t o a v o i d it. Hanging t h e r e f l - e c t o r maLerial and. banding it i n p l a c e w i l l b e t r i e d i n o r d e r t o reduce t h i s d i s t o r t i o n .

2

4 DRAIN-TANK COOI,F_;RS

'

The p r o t o t y p e c o o l i n g bayonets' f o r removing fuel- a f k r h e a t i n t h e MSRE d r a i n t a n k s have o p e r a t e d f o r a t o t a l of 3860 h r . Each l - l / Z - i n . c o o l i n g t h i m b l e has t h e c a p a b i l i t y of removing 6.3 k w wherz i n s e r t e d i n t o 1300째F molten s a l t t o a 60-in. depth. The bayonets have been t h e m a l l y shock t e s t e d through IcO c y c l e s , without a p p a r e n t damage t o t h e c o o l i n g t u b e s except f o r minor warping o f the 1 - i n . I n c o n e l b o i l e r . p i p e . Thermd shocking vas accomplished by d r y i n g t h e steam system o u t com@.etely, a l l o w i n g t h e bayonet temperature t o approach t h e s a l t temperature, and t h e n adding water to t h e steam d n m . The thermocouples .for measuring pipe t e m p e r a t u r e s were s h i e l d e d i n s t a i n l e s s s t e e l t u b e s and s t r a p p e d t o t h c pipe surfaces Attempts to u s e bare-wire thennocoup1 es arc-welded- to the p i p e were n o t s u c c e s s f u l .

.

The t e s t system i s b e i n g modified -Lo permit automatic thermal shocki n g as d e s c r i b e d above for l i f e t e s t i n g of t h e bayonets.

2

Fig. are :

.5.1

General Concept

The p r e s e n t concept of t h e MSRE sampler-enricher systmn i s shown i n 2.9. The p r i n c i p a l changes made t o t h e system previously- reporteds

1. A b u f f e r e d , d o u b l e - s e a l i n g g a t e v a l v e r e p l a c e d the s o l d e r f r e e z e v a l v e as t h e primary containment v a l v e d u r i n g sampler maintcnarice

.


30

UNCLASSIFIED

SAMPLE TRA N S P O R T CONTAINER

i

{

ORNL- LR- D W G C3318R2

7

1

/

LEXPANSION I JOINT

LATCH STOP CAPSULE UlDE

PUMP B O W L

T A I N M E NT V E S S E L SHELL.

F i g . 2.9.

MSRE Sampler-Enricher System.

-OUTER

S T E E L SHELL


31

2. A f l a n g e d s e a l i s o l a t e s t h e upper manipulator area a r e a of t h e v a l v e s (ZB) i n p l a c e of a s l i d i n g seal.

3.

(3) from t h e

The seal. between the containment vessel ( a r e a 211) arid- a r e a ZB

w a s flanged.

4. The p e r i s c o p e was changed t o a m-irror system e x t e r n a l t o Lhe o u t e r compartment, with a q u a - r t z window f o r viewing e

'The mainterrance v a l v e was changed because of the u n r e l i a b i l i t y of the s o l d e r f r e e z e valve t e s t e d earli e r and t h e complicaQions produced by the gas c o n t r o l s necessary t o makc a double solder seal .lo A d o u b l e - s e a l i n g gate valve s i m i l a r t o t h e operational- v a l v e ( s e e 2.5.2) w i l l be used. 'The o t h e r changes were made to s i m p l i f y aiaintenance procedures and t o increascl general r e l i a b i l i t y . 2

.5.2

Operational. Val-ve

A bell-ows-sealed, 2-in., Crane doub7 e - s e a l i n g p a t e v a l v e considered f o r use as t h e o p e r a t i o n a l a n d maintemnce val-ves w a s received and t,esled. As received, t h e S t e l l i t e - P a c e d g a t e d i d n o t s e a t propcrJ y a g a i n s t Lhe S t e l l i t e - f a c e d - s e a t s and had t o be lappcd to fit. After the valvc w;zs reworked, it w a s opened and closed by hand 100 times. A torque ~~rei-leh was used t o a p p l y a r e p r o d u c i b l e t o r q u e of 75 f t - l b on c l o s i n g , considered Lo be a n a c c e p t a b l e c l o s i n g force. P e r i o d i c checks of b u f f e r - g a s Icakage t o atmosphere through the seals were made. W i t h a biiffcr prc.ssure of 40 psi.g of helium, t h e t o t a l leakage w a s 0.3 cc/min. iifter 100 c y c l e s the lcak r a t e d i d not appear t o be i n c r e a s i r i g . A motor o p e r a t o r was o b t a i n e d for t h e valve, and leak r a t e s w i l l be d.et,emined f o r motorized o p e r a t i o n .

2

e

.

53

Removal Seal f o r Sam2l.e Container

R b u f f e r e d , double-setzJ i s being tested f o r use as t h e samplcc o n t a i n e r removal seale 'fie s e a l , located be Lween t h e sample-transpo-rtc o n t a i n e r removal v a l v e and the t r a n s p o r t cask, p r e v e n t s oxygen coritani. n a t i o n of t h e o u t e r compartment while the c a p : x l e i s beii-ig i n s e r t c d o r removed from the o u t e r compartment. 'The s e a l c o n s i s t s 06 t w o rubber O - I ~ K ~ S l, u b r i c a t e d w i t h a l i g h t f i l m of s i l i c o n e g r e a s e and buffered with 1 5 - p s i g heli_um. For t h e seal t e s t , t h e sample t r a n s p o r t c o n t a i n e r o r rod i s moved through the s e a l by a h y d r a u l i c c y l i n d e r ; i t pauses f o r 1 min and i s t'ncn withdrawn from t h e seal. Total leakage o f b u r f e r gas through the 0-rirgs i s measured p e r i o d i c a l l y whfle t h e rod i s at, r e s t . Aftcs 1400 cycles, t o t a l - l e a k a g e was <1 cc/min with a l 5 - p s i g helium b u f f e r p r e s s u r e . Scve r a 1 s c r a t c h e s from p r e v i o u s tests d i d n o t appear t o a f f e c t t h z s c a l i n g . The r o d - i s c o a t e d w i t h a l i g h t fil-m

or s i l i c o n e l u b r i c a n t .


32 Detai-1 & s i g n of Sampler-Enricher

2.

Detail d e s i g n of t h e various comnponcnts of %he sampJ c r - e n r i c h e r system i s continuing. P r e l i m i nary d e s i g n of t h e t r a n s f e r tub?, o p e r a t i ona1 and mai-ntenance v a l v e s , valve z n c l o s u r c , i nner c o n p r t m e n i , manipulator, periscope, sampl e - t r < m s p o r t - c o n t a in e r removal sea3 and t r a n s p o r t cask a r e complete. TZet~ail i ng of t h e o u t e r compartment and o t h e r cornponenis i s i n 2rogress. A l a y o u t i s b e i n g made of t h e s h i e l d i n g and vacuum pump area. Revisions t o t h e i n s t m e n t flowsheet a r e i n p r o g r e s s .

2.6.1

Fb11.-Scalc Core Mode1

The p r e s s u r e v e s s e l â‚Źor t h e f u l l - s e t t l e MSRE c o r e model was i n s t a l l e d i n i t s t e s i loop. Hecause of d i f f i c u l t i e s i n e x t r u d i n g iht. aliminurri rnockup of t h e g r a p h i t e c o r e b1ock.s t o t o J e r a n c e , d e l i v e r y of Lhe c o r e i n t c r n a l s ( i n c ?uding t'ne c o r e she1 1 and support s t r u c t u r e ) was delayed f i v e months. 'They have just been r e c e i v e d and a r e being i n s t a l - l e d i n the model.

2.6.2

C o r e - I n l e t FII ow D i s t r i - b u t i o n

Wi thout t h e c o r e i n t e r n a l s , t h e o n l y h y d r a u l i c t e s t that, could b e perforrned was t h e measurement of the flow d i s t r i b u t i on i n t h e e n t r a n c e v o l u t e . These d a t a v e r e o b t a i n e d a t 100, 50, and 257; of [,he r e a c i o r flow r a t e of 1225 gpm a n d appear i n Fig. 2 . 1 0 . UNCLASSIFIED ORNL-LR-DWG 68584

0

45

90

135

180

225

270

315

360

8 , ANGLE FROM I N L E T TANGENT ( d e g )

Fig. 2.10,

Center-Line V e l o c i t y Distribution in Volute of

MSRE F u l l - S c a l e Core Model.

L


33 Since water was used. for. t h i s t e s t , t h e MS1N Reynolds number w a s n o t reproduced e x a c t l y . However, t h e Reynolds numbers i-n Lhe voliit,e are w e l l i n-ta the t u r b u l e n t r m g c , and s i n c c t h e v a r i o u s c o e f f i c i e n t s involved a r e weak f u n c t i o n s of the Reynolds number a t these high values, t h e e r r o r . i n v e l o c i t y d i s t , r i b u t i o n i s expected t o bc smdll Y h c v e l o c i t i e s reporied heye a r e about 9 0 o h i g h e r t h a n t h o s e p r e d i c t e d Prom runs made in the j-/T-sccile model." m i s d i f f e r e n c e i-s a t t r i b u t e d t o i n e x a c t s c a l i n g of t h e model. Tlie uniform d e c r e a s e of v e l o c t t y i r i khc voluke w i t h t a n g e n t i a l position i n c l i c a t e s t h e d-csircd unifomi supply of f l u i d t o the v e s s e l .

.

2 .'7 H'E=LIUM PURIFICATION

Work on t'tie c o n s t r u e t,i on of a f i d 1 - s c a l e oxygen-removal unit, i s about 5076 complete. 'l'he design:, i l l u s t r a t e d on F i g , 2.13, provides f o r a t i t a n i u m getter tube encased in a c y l i n d r i c a l resistance h e a t e r which i s i n t u r n surrounded by an o u t e r p r ~ s s u r cv e s s e l . 'lhc outer. ~ m l il s prot e c t e d f m m c x c e s s i v c t e r i p c r a t u r c s by an annular. 1ayer of high-temperature:

i n s u l a t i o n . 'The p r e s s u r e v e s s e l i s 4-in. sched-110 p i p e and i s about 30 i n . lorig. m e unit, w i l l operate a t 250 psig, I ~ O O O F , and 10 l i t c r s l m i n of helium flow, that i s , at design c o n d i t i o n s f o r t h e r c a c t o r gas system. UNCLASSIFIED ORNI. - 1 R-DWG 68585

THERMOCOUPI. E

i 0GET

@)

.

@ (?)

(3

265/, in.

i *'

I

@) @

in.

[ER TUBE

HEATER, IOOOw HIGH-TEMPERATURE INSIJLATION PIPE, 4 - i n . S C H E D - 4 0 SS F L A N G E S , 4 - i n 1500-lb ? S , W E L D I N G NECK, RING JOINT INSULATION KEFLECTOR

I THERMOCOUPLE

.,Tti

0-4 THERMOCOlJPLE

F i g . 2.1 1.

II

]

EKMOCO?I P L E

I

L....

TI-1ERMOCOUPLE

O x y g e n - R e m o v a l Unit,

MSRE Cower-Gas S y s t e m .


34 An e l e c t r o l y t j c - t y p e t r a c p - o r y g e n anz1y;er w a s pi-lrchased f o r u s e i n monitoring helium sampl-es â‚Ź?om t h e oxygen-rcmoval m i t . T e s t s w i t h heJ i.um of known oxygen c o n c e n t r ; i t i o n showed t h e a n a l j i ~ t l u - t o bJork sati sfltc torily i n t h e r a n e ~of 0 to 1 0 pprn of oxygen, provided t h a t f l u c t u a t i o n s i n sample g a s tenipe.r,itirrc a r e small.

'l'he f i - r s i I.un o f thc E'I'L (F-Eg. 2.12) was intended t o e v a l u a t e t h e e f f e c t i v e n e s s of t h e C1 ushing operation by fo11 owi ng t h e oxide c o n t e n t of the s a l t d u r i n g extended o p c r a t i on. P T h i s o b j c c t i v z was c o q r o m i s e d by t h e discovery, aâ‚Źt,c!r 31 50 h r of o p e r t h i on, Lhai ,om zirconium fl u o r i d e UNCLASSIFIED 0 R N L .L R- DWG 5 I 49 2 A

had l n a d v e r t e n t l y been i n c l u d e d i n the s a l t rni-x, a n d Zr02 had p r e c i p i t a t e d . The b a l a n c e of Lhe r u n w a s devoted t o a n i n v e s t i g a t i o n of v a r i o u s means of

rcmovi-ng Zr02 from t h e system and the accompl..ishmelit of t h e removal.


35

.

2.8 1- Loop o p e r a t i o n s

Operation with the ETL inc3-udcd (1)t e s t s t o v e r i f y t h e cause of t h e i n i - t i a b slow d r a i n , l 3 ( 2 ) a t t e m p t s t o d i s s o l v e p r e c i p i t a t e d Zr0,r by temp c r a t u r e c y c l i n g of t h e s a l t and by i n c r e a s i n g - t h e ZrF, c o n t e n t , and ( 3 ) oval- of ZrO;l manually from t h e p m p bowl and chei?iical-.l.y (with HF) &om t h e d r a i n t a n k . A f t e r t h e treatment of t h e s a l t in t h e d r a i n tank w i t h HF, the loop w a s s h u t down f o r major a l t e r a t i o n s , i n c l u d i n g t h e i n s t a l l a t i o n of t h e INOR-8 g r a p h i t e contai.ner. A summary of t h e e n t i r e

o p e r a t i o n i s g i v e n i n Table 2 . 1 . The e l a p s e d time b e g i n s with t,he s t a r t u p of the loop on A p r i l 20, 1.961.

2.8.2

Operation of ~reezeValve

I n t h e previous period it w a s reported t h a t t h e i n i t i a l draining Tes 6s were performed o p e r a t i o n r e q u i r e d a n e x c e s s i v e amount of time. t o s e p a r a t e two p o s s i b l e c a u w s . The f i r s t t e s t r a n f o r a l o n g p e r i o d , d u r i n g which d r a i n - l i n e t e m pera-turcs were k e p t a t o r below p r e v i o u s s e t t i n g s t o see whether t h e l i n e would a g a i n p l u g as the r e s u l t of normal o p e r a t i o n . The l o o p o p e r a t e d c o n t i n u o u s l y f o r 560 hr, a f t e r which t h e loop w a s drairied i n a nomtal time w i. th no d i f f i c u l t y

.

?“ne second t e s t d u p l i c a t e d ‘ihe B e 0 a d d i t i o n made p r e v i o u s l y . An rAddition of 30 of B e 0 i n p e l l e t form w a s made t o the pump bowl as b e f o r e , r e q u i r i n g ovcr 200 h r . A t 3150 h r , o r 320 hr a f t e r t h e Be0 a d d i t i o n , d i f f i c u l t y w a s again experienced i n drai-nirig t h e loop. Fxtra h e a t a p p l i e d t o t h e v a l v e d i d not h e l p d r a i n the l o o p . However, when e x t r a heat, w a s a p p l i e d t o t h e 1 / 2 - i n . d r a i n l i n e t o r a i s e i t s tcmpcrature from the range 920 t o 11300~t o the range 980 t o 11700~,t’ne l o o p d r a i n e d . (TIE: f r e e z i n g p o i n t of t h e s a l t was 8 5 O O F . ) From t h i s and o t h e r evidence, it w a s concluded t h a t the d i f f i c u l t y w a s duc d i r e c t l y t o t‘ne Be0 a d d i t i o n . P o r t i o n s of t h e p e l l e t s ( o r i g i n a l s i z e , 0 . i ~ i n . diarri x 0.5 i n . 1.0ng) l e f t t h e capsule’, e n t e r e d the pump s u c t i o n and. s e t t l e d i n -the s t a t i c s a l t of t h e l / Z - i n . d r a i n l i n e , t h e r e forming a s l u d g e due t o s e g r e g a t i o n and r e a c t i o n w i t h t h e Z r F 4 i n the system. Examination”“ of t h e sludge formed d i r e c t l y bcneath t h e a d d i t i o n p o r t revealed t h e presence of 7,r.02, 2Li F.BeF2, and 2TJi F*ZrF’,. The 2T,iF=BeF;, phase m e l t s a t 850, and the ZLiF*ZrE‘, phase melts at 1105°F. ‘lhc presence of t h e h i g h e r - m e l t i n g 2Lih’.’LrF4 phase, along w i t h tlie ZrOz, formed enough of a p l u g so t h a t t h e loop T . J O U ~not ~ d r a i n . By r a i s i n g t h e tempcrat,ure of the d r a i n l i n e 60°E’, t h e sludge b e c a m s u f f i c i e n t l y l e s s v i s c o u s t o a l l o v the loop t o d r a i n . I n t o t a l , t h e loop la:; drained and r e f i l l e d 711times, without d i f f i c u l t y except f o r t h e two above-mentioned occasions.


36 Table 2 . 1 .

Operating H i s t o r y of t h e ETZ,

Time (hr1

Remarks

1.967

0

Begi-nning of t h e o p e r a t i o n , Apri-1 20,

9h-0-1140

F i r s t a d d i t i o n of Be0 pell..ets

1.280

Loop d r a i n e d t o b e g i n f r e e z e v a l v e t e s t s . Excessive time r e q u i r e d t o open valve"

1280-1670

O p e r a t i o n a l t e s - t s perfoirncd on f r e e z e v a l v e s

16?0-22 50

Operation for 560 hr t o a t t e m p t d u p l i c a t i o n o f the p r e v i o u s s l o w d r a i n

2250-2830

Addi Lional o p e r a t i o n a l t e s t s performed on freeze valve

2830-3050

Second a d d i t i o n of Be0 pe71.el;s

31-49

S a l t samp3 c ~ Zr02 crystals

3150

Drain time a g a i n e x c e s s i v e after B e 0 addition

3200-3 500

lrerappraiure cyclli-ng of sa.1 t, from ~ O > O O F i n d r a i n tank Lo 1200째F i n the loop, f o r oxidet r a n s f e r attempt

3820

Additions of 7,rF, were begun in o r d e r t o linc r e a s e o x i d e c o l u b i l i ty

4180

T h i r d a,dcli ii on of ZrF'. w a s madc, bi-i nging salt coaipositi o n t o LiE'-BeF2-ZrF4, 62-3'1-4 mole :5

41-80-1380 4

C i r c u l a t i o n for 200 hr. at, t e m p e r a t u r e s up t o

12000F

438O - 1-1-O68

Loop drai-ncd, cooled, and pump removed T o r cxami.na t i on Sal I; t r e a t e d . i n drain Link w i t h mixture ol" HL3

r/'00-5200

I-

5200 -5860 ~

aSee r e f

_II......_......_

1.3.

~ r , - 6reveal 9 ed presence of

_.

HI?

D r a i n tsnk. k e p t h o t f o r ad.d.ri.t i ona,1. s a l t sampl-es; f i n a l . sample (grl1~.,--~.j3) extracted. and. l o o p o p e r a t i o n ieruiinated f o r a l t e r a t i o n s ..........._.._._... ______ __ ~

.-_.____.

.............._I ..- l._____l____l

~

..... . ...__._____ ~

.

.-


37

.

2 8.3

Oxide Removal.

Sludge had been s e e n and sampled through t h e 1..-1/2-in. sampler conneet i o n t o t h c pump-bowl l i d while t h e system w a s a t temperature ( 3 . 1 0 0 ~ ~ ) TWO methods of r e d i s s o l v i n g t h e sludge were t r i e d , and v i s u a l i n s p e c t i o n was used as t h e method of e s t i m a t i n g t h e i r e f f e c t i v e n e s s . F i r s t , a "cold t r a p " type of removal w a s a t t e m p t e d by c i r c u l - a t i n g s a l t over t h e sludge a t 1200°F, d r a i n i n g and c o o l i n g i n t h e d r a i n tank t o 1050OF. This ~ y c l ewas r e p e a t e d t h r e e t i m e s dur.irg t h e i n t e r v a l 3200 t o 3500 h r (see Table 2 . 1 ) . Second, ZrF, w a s ndded i n t h e form of ZrF,-LiF (119-51 mole 8) on t h r e e occasions t o i n c r e a s e t h e expected oxide so1ubil.i t y . According t o t h e v i s u a l observations, t h e sludge deposit w a s not a f f w t e d appreciabl y by e i t h e r of t h e s e a t t e m p t s . The loop w a s d r a i n e d i n t o t h e f l u s h t a n k f o r cooldown and manual removal of t h e sludge from t h e pimp.

.

The rcsil_ts of t h e oxide a n a l - y s i s of samples t a k e n between the time tha.t Z r F , w a s d i s c o v e r e d (3150 h r ) and t h e pimp w a s removed (l+iiOO h r ) averaged 363 ppxn oxygen, as shown i n Fig. 2.13.

2.8.4

HF Treatment

P r i o r to t h e compl-ete shutdown of the: loop f o r a l t e r a t i o n , apparatus vas s e t u.p and o p e r a t e d by t h e Reactor Chemistry Division. for t h e t r e a t mcnt of t h e s a l t i n o r d e r t o remove t h e p r e c i p i t , a t e d oxide b e l i c v c d t o b e i n t h e d r a i n t a n k . The t r e a t m e n t , c o n s i s t i n g of p a s s i n g a mixture of hydrogen and liF through Lhe salt, i s d e s c r i b e d i n See 6 of t h i s r e p o r t . The t r e a t m e n t took p l a c e over a p e r i o d of 500 h r and removed t h e equival e n t of lo25 ppm of oxygen from t h e s a l t . F i g u r e 2.13 shows Lhe resul-ts of t h e oxide a n a l y s i s of s a l t t a k e n d u r i n g the 'creatxnent p e r i o d ( b 7 O O t o 5200 h r ) and a f t e r w a r d s ( u n t i l 5900 h r ) , while t h c d r a i n t a n k was kept h o t . 'The chcmge i n oxide c o n c e n t r a t i o n and t h e amount of oxide removed by t r e a t m e n t i n d i c a t e s t'nat a c o n s i d e r a b l e amount w a s p r e c i p i t a k d i n t h e drain t a n k . TThe amount of concomitant c o r r o s i o n I n the I n c o n e l d r a i n tar-& i s i n d i c a t e d in F i g . 2.111 by t h e i n c r e a s e i n t h e chrorwiium c o n t e n t of the samples t a k e n betweeri 4700 and 5200 h r . Tllis i n c r e a s e i s e q u i v a l e n t t o t h e removal o f a l l t h e chromium t o a depth of 0.0005 i n . over t h e e n t i r e OB d r a i n - t a n k s u r f a c e ; although t h e p a r t i a l d e p l e t i o n of chromium extends deeper, t h e a t t a c k i s not e x c e s s i v e .

Examination of f i v e I n c o n e l d i p tubes used f o r bubbling the 1-IF arid Iâ‚Ź;? through t h e s a l t reveal-ed orily v e r y l i g h t t o moderate surface rougiiening and pitting

.

2.8.5

ETL G r a p h i t e F a c i l i t y

with a I o n g i t u d i n a l f r o z e n - s a l t The 8 - i n . - d i a m g r a p h i t e c o n t a i n e r , The c o n t a i n e r was i n s t a l l e d i n t o t h e s e a l a c c e s s , was mnadc O S LNOR-8. loop as ind-icated s c h e m a t i c a l l y i n Fig. 2 - 1 2 . The upper p o r t i o n of the contairier i-s shown i n Fig. 2.15. A t t h e same time, most of the loop p i p i n g ~ f l schanged froiri l n c o n e l t o INOR-8.


:300

1200 1 ?OO

I000

900

z W G -

$

800 700 600 500

400 300 200 100

0

Fig. 2.33. R e s u i t s o f O x i d e A n a i y s i s

ZrF,

a d d i t i o n s and

HF

- Engineering T e s t Loop.

treatment ( f o u r months).

O x i d e content of s a l t v s number

04

hours s i n c e b e g i n n i n g ob t e s t , i n c l u d i n g


39

1

-___I___-

T

-

UNCLASSIFIED

~

0 R N I-LR - DW F 6 R 5 0 7 ...... ....

t W z kV 0

I

1 H

0

CY

0 I

0

1000

3000

2000

4000

.5000

6000

CHROMIUM CONTENT (ppm in flush salt) v s HOURS SINCE BEGINNING OF ETL OPERATION

F i g , 2,14,

R e s u l t s of Chromium A n a l y s i s

f l u s h s a l t ) v5 hours s i n c e beginning of t e s t .

Fig.

2.15,

-

E n g i n e e r i n g T e s t Loop.

Chromium c o n t e n t ( p p m i n

E n g i n e e r i n g - T e s t - L o o p G r a p h i t e Container, Showing F r e e z e Joint.


40

The d r y box has b c e n fabricated .ind has rclceived prc!lirn-i nary t e s t i n g , F i g u r p 2.16 shows ihe loop and g r a p h i t e c o n i a i n e r d u r i n g c o n s t r u c t i o n , 2nd. t h e dry box i n t h e unmounted p o s i t t o n . PJL(:r o p e r a t i o n of the loop, the dry box w o u l d be rnountcd o v ~ rthe c o n t a i n e r f o r a c c e s s t o t h c p;rLphite through t h c f l ange.

Fig. 2.16.

Engineering-'Test-Loop

Graphite F a c i l i t y i n Construction.


41

The o b j c c t i v c of t h e maintenance dcvcloprnent program i s t o ensure t h e c a p a b i l i t y of r e p l a c i n g any i t e m of equipment which f a i l s a f t e r t h e r e a c t o r

.

R e a c t o r - c e l l equipment problems a r e b e i n g s t u d i e d i n t h e mainterlance mockmp.”6 The product of t h i s program w i l l be (1) an i n v e n t o r y of t o o l s o r tool- d e s i g n s which have been a p p r o p r i a t e l y t e s t e d and demonstrated and (2) procedures and techniques f o r performing t h e MSRE maintenance w i t h i n t h e c a p a b i l i t i e s of t h e ava:i-lable h a n d l i n g equipment and t h e known o p e r a t i n g requirements. ‘l3.cf o l l o w i n g s e c t i o n s (2.9.1 t o ‘2.9.6) s w m a r i z e p r o g r e s s made on s p e c i f i c o p e r a t i o n s . ha:; become r a d i o a c t i v e

2.9.1-

Placement and Removal. of Freeze-Flange Clamp

Tae f i r s t concept for p u t t i n g clamps on f r e e z e f l a n g e s c a l l e d f o r u s i n g I - I / % - i n . bolts and t r u n n i o n n u t s . This method was abaridoried because of r e p e a t e d s e v e r e t h r e a d g a l l i n g .

A second method, u t i l i z i n g h y d r a u l i c c y l i n d e r s ( s e e Fig. 2.17), i m s s u c c e s s f u l . The clamps were d r i v e n on and o f f t h e f l a n g e s many times, w i t h no t r o u b l e . A f u r t h e r advantage i s t h a t t h i s method does n o t r e q u i r e t h e c l o s e l y h e l d p a r a l l e l - i s m between t h e upper arid lower d a m p s t h a t t h e screw-thread system does The equipment; r e q u i r e d t o o p e r a t e t h e clamps remotely i s b e i n g desigried arid f a b r i e a t c d .

.

2.9.2

Flange Alignment and Pipe-Jacking Tools

These are used t o p r o v i d e f o r c e t o 1liov~3t h e flaxiges, as shown i n Fig. 2.18. The jack moves a x i a l l y t o open o r make up t h e j o i n t and t o hold t h c j o i n t c l o s e d w h i l e t h e f l a n g e cl-amps a r e d r i v e n on, and t h e a l i g n ment t o o l p r o v i d e s f o r c e v e r t i c a l l y and laterally, t o overco.mc d i s t o r t i o n and p r e l o a d i n g of the spring s u p p o r t s . Both tool-s were t e s t e d and were able t o move t h e p i p e f l a n g e s of t h e s i m u l a t e d MSRE l i n e i n t h e prescribed d i r e c t i o n s and amounts.

2.9.3

G;7.sket-ReplacemenC Procedures

The t i m e i n t e r v a l i n t h e maintenarzce procedure while t h e f l a n g e s are open i s c r i t i c a l because of t h e p o s s i b i l i t y of darnage t o t h e g a s k e t and groove, because of t h o danger of spreading p a r t i c u l - a t e contlz i o n from the r e a c t o r i n t e r n a l s t o t h e c e l l atmosphere, and because of Che danger of coritaninating t h e r e a c t o r system w i t h rriaterialc i ri t h e eel It i s b e l i e v e d t h a t f o u r t o o l s w i l l be requ-jred f o r g a s k e t (1)Some form of d u s t c a t c h e r must be u t i l i z e d u n t i l t h e o covered, (2) a t o o l capable of f r e e i n g a s t u c k r i r g g a s k e t must be used t o remove t h e e x i s t i n g gasket, (3) two s e p a r a t e covers must be pl-aced t o landling tool- is need seal t h e two p i p e openings, and ( I t ) and lock t h e new g a s k e t i n place. The flange covers were r e c e i v e d and are b e i n g improvcd with r e s p e c t t o handling, space requirements, and. s e a l i n g a b i l i t y . The s t u c k - r i n g t o o l i s being f a b r i c a t e d . The remainder of t h e tools will b e designed i n t h e near f u t u r e .


42

Fig. 2.17.

Hydraulic Clamp Operators.


43

. C

F i g . 2.18.

2

.9.4

F l a n g e A l i g n m e n t and P i p e - J a c k i n g

Tool,

Miscellaneous Disconnects

S e v e r a l components a r e d i r e c t l y a c c e s s i b l e i n t h e p l a n view, and t h e i r removal c o n s t i t u t e s u n i t reraote o p e r a t i o n s t h a t do n o t r e q u i r e coordination with other operations These are : power, thermoco~nple and e l e c t r o n i c d i s c o n n e c t s , m d p i p e l r i ne andl r e a c t o r h e a t e r s liernote hand l i n g of one of thesc component:; g e n e r a l l y c o n s i s t s i n engagi some sort, i m p a r t i n g e i t h e r a l i f t i n g o r t w i s t i n g motion t o f and then t r a n s p o r t i n g i t t o t h =;tarage p o s i t i o n . Seveyil of tktese hook tools have been b u i l t and t e s t e d . A best of a n e l e c t r i c - p o w e r d i s c o n n e c t inclicated t h e need for r e f i n i n g t h e viewing and handling techniques, with insul.-ated ]-ea&. s p e c i a l emphasis on p r o t e c t i n g t e

2.9.5 in some maintenance work,

Hemote Viewing

viewing will. be r e q u i r e d . A as borrowed f o r t e s t i n g d i s c o n n e c t o p e r < i t i o n s . This d e v i c e w a s s to a n 0.875-in. -dinin p e r i s c o p e Used e a r l i e r , e s p e c i a l l y i n its a b i l i t y t o "see" i n dimly lit, areas. P r c l i m i nary quo-tations have been received- on a s i m i l a r modular periscope capab7.e of working i n t h e MSKE r a d i a t i o n environment.

1 . 6 2 5 4 1-ciiarn ~ wide-angl e peris


44

2.9.6

Component Removal.

The only work done on t h i s phase has been t o p r a c t i c e t h e d i r e c t v i s i o n handling of t h e c i r c u l a t i n g pumps using t h e s p e c i d l i f t s l j - n g and Lhe overhead- c r a n e ( s e e F i g . 2.19). All a u x i l i a r y p i p i n g will be added t o t h e pump mockup as f i n a l - d e t a i l s become known, and. a full replaccment procedure will be t e s t e d .

Fig, 2.19.

Simulated M S R E Pump w i t h L i f t i n g Sling,


45 2 010 BRAZED-JOINT DEVEL0PiWI\jT”7 2.10.1. Joj-nt Design The t a p e r e d b r a z e j o i n t for 1-1./2-in. sched-)iO p i p e was fuu-ther modif i e d (Fig. 2 . 2 0 ) t o u s e O.OOj-in. - t h i c k s h e e t - b r a z e preform Lhat, places braze metal- throughout the j o i n t . Axial p r e s s l i r e i s maintained on t h e j o i n t members during b r a z i n g s o t h a t when t h e b r a z e metal- melts, t h e j o i n t Lhickness i s reduced t o 0.001 t o 0.002 i n .

Fig.

2.20.

B r a z e d P i p e Joint, Showing t h e Sectioned, C o m p l e t e d J o i n t (Above) and S t a r t i n g M a t e r i a l s

(Bel ow).

2 .lo.2

Braze-Joint Testing

U l t r a s o n i c and m e t a l l o g r a p h i c i n s p e c t i o n of completed j o i n t s made with p r o t o t y p e equipment on t h e bench i n d i c a t e d 81 t o 86% bonding. One completed l - l / Z - i n . joirrl, was s u b j e c t e d t o t e n s i l e loading, with the f o l l o w i n g results: a t 1300°F it h e l d a 28,000-lb load, IL1el.d a 10,000-1F load at l.500°F for 5 min, an 8000-lb l o a d a t 1600OF for. 5 min, and f a i l e d a t l’700°E’ under a n 8000-lb load. Visual i n s p e c t i o n of t h e s e p a r a t e d j o i n t i n d i c a t e d complete or n e a r l y complete w e t t i n g of -tile mating IlUOH-8 s u r faces by t h e b r a z e m e t a l .


46 A r e p r e s e n t a t i v e b r a z e j o i n t w a s h e l d a t 12>0°F and exposed t o r e a c t o r s a l t f o r a t o t a l of '(4 h r of i n t e r m i t t e n t exposure, si-mulating drain-1 i n e c o n d i t i o n s . A t t h e conipletion of t h e test;, t h e j o i n t w i l l be examined m e t a l l o g r a p h i c a l l y .

2.10.3

Remote F a b r i e a t j on of Braze J o i n t

Tools f o r i h e v a r i o u s mechanica.1 operations r e q u i r e d t o f a b r i c a t e a b r a z e j o i - n t remotely were recelved and- s a t i s f a c t o r i l y o p e r a t e d . The funct i o n s of t h e t o o l s and t h e sequence of operati-ons are as f o l l o w s : 1. The t r a v e l i n g v i s e i s lowered over a continuous run of The v i s e p i p e and b o l t e d t o t h e b a s e p l a t e ( F i g " 2 . 2 1 ) . j a w s a r e t h e n c l o s e d on t h e p i p e . 2.

The p i p e c u t t e r i s lowered over t h e p i p e onto i t s supp o r t on t h e t r a v e l i n g v i s e ( F i g . 2 . 2 2 ) .

3.

The p i p e - c u t t e r d r i v e i s operated, c a r r y i n g t h e c u t t e r around t h e p i p e . The k n i f e i s a u t o m a t i c a l l y f e d by t h e s t a r wheel and p i n dtwice ( F j g . 2.23) about 0.009 i n . each r e v o l u t i o n . A f t e r the c u t i s completed, t h e c u t t e r i s opened and removed.

1.b

.

5.

Af'ter t h e component i s removed, t h e t a p e r i n g t o o l i s placcd on t h e b a s e p3 at,e. The travel-i ng v i s e f e e d s t h e p i p e in'co t h e r o t a . t i n g shaprld c u t t e r ( F i g . 2.24), which macbi ncs a 6" included-angle t a p e r t o a depth of 1 i n . When the cut i s f i n i s h e d , t h e p i p e i s withdrawn and t h e i d p e r i n g tool removed. One p o r t i o n of the furn;Lce can now b e p l a c e d over t h e ta-p e r e d male-pipe s t u b .

6. The

new component with 'LIE f e r a l - e - j o i n t h a l f , c o n t a i n i n g t h e b r d z e preform, and t'nz remainder of t h e â‚Źurflace a r e i n s t a l 1 ed.

.

'-(

The f i x e d vise i s i n s i , a l l e d over t h e f e r n a l o - j o i n t h a l f to h o l d and a l i g n it ( F i g . 2.25).

8. 'The sl j d i n g

v i se t h e n i n s e r t s t h e male i n t o t h e female p i p e j o i n t s , t h e f u r n a c e i s assembled ovcr the j o i n t , and t h e thermocouple l e a d s a x e connected t o t h e r e c o r d i n g i n s t r u m e n t s . A f t e r a n adequ&te i n e r t - g a s purge, t h e , j o i n t i s i ~ d u e t i v e l yh e a t e d t o 1850~~1~ w h i l e axial f o r c e i s maintdincd; i t i s h e l d a t that 'ceinperaiure f o r a minute and ?hen p e r m i t t e d t o c o o l .


47

Fig. 2.21.

S l i d i n g V i s e B e i n g L o w e r e d Over C o n t i n u o u s Pipe,


48

Fig. 2.22.

P i p e C u t t e r Being Mounted on S l i d i n g V i s e over Continuous Pipe,


49

Fig. 2.23. each revolution.

Pipe Cutter.

D r i v e shaft r o t a t e s cutter around pipe.

Star wheel and p i n

feed t h e k n i f e w i t h


50 Ih C L A S S I F I F D

P H O T O 37708

Fig.

PIJRbF I INE

F E E D SCREW

DRIVE

2,24,

----.* P

Pipe-Tapering Machine.

d

'.Q---

LNLLASSIFIED

THERMOCOUPLE

P H O T O 37967

LEADS

-+ .t-----------V

Fig.

2.25,

J o i n t and F u r n a c e R e a d y for A s s e m b l y .

l S t - JAW

DRIVE


51

2011 MECSIANICAL-JO1NT DEVELOPMENT The overfl-ow l i n e t o t h e fuel-pump bowl d e s c r i b e d i n the d e s i g n s e c t i o n of this r e p o r t i s r o u t e d through a n a r e a t o o crowded t o perrr1.i-t naking a b r a z e j o i n t a f t e r conqonent replacement. Tlierefore, a mechanical j o i n t i s b e i n g developed f o r t h i s s e r v i c e . Since t h e j o i n t w i l l be exposed t o s a l t f o r onley short pc2r.iods d u r i n g r e a c t o r - f i l l operati.ons and d u r i n g i n f r e q u e n t overflow f r o m the pmp, a trapped-gas pocket w:i.ll b e on of the g a s k e t . I n i t i a l l y , t h e overused t o keep s a l t o u t of t h e r f1ow l i n e will be c o n t i nuous with j o i n t h a l v e s i n s t a l l e d , and p r e p a r a t i o n s w i l l be made for c u t t i n g a t t h e a p p r o p r i a t e p o i n t s f o r i n s t a l l - a t i o n of t h e mechanical j o i n t A prototy1)e wil-I. b e te:;ted,

2.12

STEAM GENl3RLZTOE~

A stem1 s e p a r a t o r â‚Źor a bayonet-tube steam gencrator-sul?erlleatcr was c o n s t r u c t e d and t e s t e d i n t h e s e p a r a t o r t e s t chamber previous7 y reported .18 The flow a r e a s w i t h i n "tie t e s t seyaraLor were as Eo17 ows:

" ~ o i . . ~ - i n gaririifius " - 0.312 i n . S w i r l i n g - s e p a r a t o r annul-us - 0.0638 lin. S-Learn-outkt nozzle - 0.0283 i n - 2 Water-return tube - 0.1452 i n . 2

S w i r l vanes 1-7/8-in. wcre used.

long a n d having n 30'

angle with t h e separator a x i s

A i r and water were c i r c u l a t e d through t h e r a t e s and r a t i o s of ffl ow rates. l n a1 3 cases, very h i g h . A s an exarnple, with a n a i 6 flow of 0 5 gpm, t h e w a Ler carryover w a s approxiniatcly

s e p a a t u r a t v a r i o u s flow t h e water c a r r y o v e r w a s 3 cfrri arid a water flow of 0 . 2 gpm.

F u r t h c r work was postponed due t o a s h o r t a g c of manpower.

Tne d e s i g n drawings f o r thc MSRE f u e l pump were approved, and the thermal a n a l y s i s of t h e f u e l and cool-ant pump t a n k s was completed. Water t e s t i n g of t h e c o o l a n t pump model- w a s completed. F a b r i c a t i o n of the r o t a r y element f o r t h e p r o t o t y p e f u e l pump was completcd, and f a b r i c a t i o n of t h e pump t a n k was n e a r l y completed. Tksign drawings f o r the l u b r i c a tion s t a n d s a n d - the dri.vc motors were submitted for review. A d d i t i o n a l ll\go~-8castings of inqiellers and v o l u t e s f o r t h e f u e l and coolzint, pumps a r e b e i n g m a d e , and d i s h e d heads â‚Źfor the pimp tanks a r e b e i n g i n s p e c t e d .


52

‘Yhis t e s t pump” was p l a c e d back i n oper:ttion t o o b t a j n more testinpi of t h e r e s i s t a n c e of t h e lower shaft seal- and of t h e i m p e l l e r t o c a v i t a h i o n darnage and t o o b t a i n a d d i t i o n a l observdtiuris on l u b r i c a r i t invenmole $I) a t 1225°F’, t o r y . ‘The pimp c i r c u l a t e d I,iE’-BeF2-ThF4-UF4 (65-30-4-1 510 gpm, and 1950 p r n , and h a s o p e r a t e d f o r (88 h r . The d i f f e r e n t i a l p r e s s u r e a c r o s s t h e lower shaft, s e a l w a s maintained at 3/11 p s i , and no measurable oi 1 leakage was noted. P r o t o t y p e Fuel Pimp and Hot-Test F a c i l i t y ~

F a b r i c a h i o n OS the r o t a r y elementz0 w a s comple Led, and di-mensional checking, assembly, and bench t e s t i n g were s t a r t e d . Fabricat,lon of t h e pump tank i s about 80;0complete. M o d i f i c a t i o n s were made t o t h e s u p p o r t s t r u c t u r e of tllc t e s t facili t y 2 1 t o accorxmodate t h e f l e x i b l e mount, designed f o r t h e f u e l pwrip. Seve r a l o t h e r r n o d i f i c a t i a n s were compl e t e d t o accommodate t e s t s of v a r i o u s items i n c l u d i n g (1) t h e bubble l i q u i d - l e v e l device, (2) t h e f r e e z e f l a n g e , ( 3 ) a s e c t i o n of p i p e h e a t e r , ( 1 1 ) o p e r a t i o n of tile sampler-enricher devicc i n t h e pump tank, and ( 5 ) t h e comparison b e h e e n temperature r e a d i n g s Tor thermocouples instal l e d i n a t h e m o w e l l and a t t a c h e d t o the e x t e r n a l s u r f a c e of t h e p i p i n g . Thermal Ana1ysi.s of E R E l 4 ~ 1 -a n d Coolant 12umps ..............-.-.--.-______.

‘lhe thermal s t r e s s and s - t r a i n fat,iguc a n a l y s i s 2 2 of t h e s e t\nio pwxps h a s been completed. The thermaJ s t r e s s e s i n t h e fucl pimp d u r i n s r c a c t o r o p e r a t i o n a t 7 0 Mw which werc p r e v i o u s l y reporicci httve been r c v i s e d t o i n c l u d e t h e e f f e c t s of t h e merid-ional h e a t flow a l o n g t h c s u r f a c e of t h e p m p tank. The maximum p r i n c i p a l s t r e s s e s are shown i n Figs. 2 . 2 6 and 2-27, and i n F i g s . 2.28 and 2.29 f o r t h e f u e l and c o o l a n t pumps, r e s p e c tivel y e Cal c i i l a t i o n s werc completed, showing that, a constant, cooling- a i r s ” l o w of 200 c f m on t h e upper s u r f a c c of the f u c l pimp tank w i l l p r o v i d e adequate l-i re; t h e r e f o r e , t h e p r e v i o u s l y proposed- automj.i,ic, a i r - f l a w c o n t r o l s j s t e m w i l l not be used. A foi*ced-convcction a i r - c o o l i n s system i s n o t r e q u i r e d f o r t h e c o o l a n i - s a l t , pump. The p r e d i c t e d toCal usage f a c t o r of t h e fuel and c o o l a n t pumps a r e 0.36 and 0.57, r e s p e c t i v e l y , compared w i t h a s a f e d e s i g n value of 0.8. A d e t i t i l e d report’? reviewed.

covering t h e a n a l y s i s was w r i t t e n a n u i s being

MSKE Fuel. Pump

The d e s i g n of t h e r o t a r j e l e r n e ~ i was t ~ ~ completed and approved. Four each of tlic r o t a r y elements were p l a c e d f o r f a h r i c a t i o n by o f f - a r e a fabric a t o r s . The d c c i g n o f t h e pump tank was complctcd arid approverl, and


53 30,000

20,000

- ! I -7 ....

...

UNCLASSIFIED ORNL-LR- DWG 64496 ..........

. .

10,000 c

a VI

Y

m

w

o

v)

m I-

-10.000

- 20,000

- 30,000

-6

Fig. 2.26.

-4

-2

0 2 A X I A L POSITION (in.)

8

6

4

P r i n c i p a l T h e r m a l S t r e s s e s i n C y l i n d e r of F u e l Pump.

I

4000

ORNL-LR-DWG

64497

2000 0

a

-2000

VI v

-4000 n W

-6000

- 8COO - t 0,000 -42,000 I

0

Fig,

2.27.

2 3 4 MERIDIONAL POSITION (in.)

P r i n c i p a l T h e r m a l S t r e s s e s in Sphere

5

6

of F u e l Pump.

p a r t i a l f a b r i c a t ion w i l l precede the d e l i v e r y o f the I N O R - 8 v o l u t e cas t i ngs and & l i e r e q u i s i t e INOR-8 p i p e and tubing. The d i s h e d heads f o r t h e pwrzp tank were r e c e i v e d and a r e being inspectt!d. Three p a i r s of impeller and v o l u t e c a s t i n g s of IlVOR-8 a r e being pourcd by t h e f o u n d e r of t h e c o o l a n t salt pimp c a s t i n g s . Design drawings of the drive motors were reviewed and r e t u r n e d t o t h e inxiufac t u r e r f o r r evi. si on

.


54 UNCLASSIFIED ORN L - L X - DWG 64498

30.000

+

I

IOLUTE

20,000

I

I -

-

POWER NO EXTEt3NAL

(0 MN NO E X T E R N A L COOLING

- t 0,000

- 20,000

I

t

-30,000

-4

-6

-2

0

4

2

6

8

A X I A L POSITION ( i n )

Fig.

2.28.

Principal Thermal Stresses i n Cylinder

of C o o l a n t Pump,

UNCLASSIFIED ORNL-LR-DWG 6 4 4 9 9

60

40

20

0

- 20

0

1

2 MERIDIONAL

Fig, 2.29.

Principal

3

4

POSITION (in.)

5

6

Thermal S t r e s s e s i n Sphere of C o o l a n t Pump.

M S M Lub 1-5cal;ion Starids 'The d e s i g n of thc J u h r i c d t i o n s t a n d s for t h e MSIW fuel and c o o J a n t pimps h a s been completed. The pumps, f i l t e r s , and valves have been procured f o r t h e iwo stands.


55

A

R s t a n d vas c o n s t r u c t e d for proof t e s L i n g t h e canned-rotor-typc pumps t o be used in the l u b r i c a t i o n s t a n d s , and one pump was opemt,ec? C o r a 1428 hr, c i r c u l a t i n g a t u r b i n e - t y p c oil ai, 160°F, 70 gprn, and 3500 V m . D i s c o l o r a t i o n of t h e o i l was noied, and examimLion of the putrip reveala 3 a v a r n i s h - l i k e coating on m o s t of t h e s u r f a c e of t h e r o t o r , indicating an i n s u f f i c i e n t f l o w of c o o l i n g o i l through t h r motor c a v i t y . ' h e pump support b e a r i n g s were m o d L € i e d by addirig t h r w axial grooves spaced a t 12O0 t o Lo reduce resistxncc: t o t h e flow of c o o l i n g oZ1 O'clrough t h e motor cavity The flow was i ric reased several € o l d a r i l the tenipcra.tiirc of thc, external s u r f a c e of t h e motor s t a t o r w a s reduced from 270 t o 195'F. An endurance t e s t w i l - 1 b e rmde.

.

Coolant -Pump Water T e s t s The MSRE coolant-pump wctteu. have been completed, and the irnpell-cr d i a x n e k r has been t e n t a t i v e l y set at, 10.3 i n . t o provide a flow r a t e of 850 t o 920 gpm, assurniny; thc actual bend l o s s i n t h e coolatlb-ssal-t system i s w i t h i n flog of the design valuc of '(8 €t. The h y d r a u l i c chara c t e r i s t i c s of t h e purtip w e shown i n Fig. 2.30, and the e f f i c i e n c y of the pump at, operat,ing c o n d i t i o n s i s app r o x i m ~ t c l y'(89.

UNCLASSIFIED ORNL-LR-DWG 68588

110

-

100

PREDICTED

/WITH

90

-

FLOW

RANGE

S Y S T E M RESISTANCE

80

.-. 7 0 t I-

Q

U W I

60

-

c-

*T a

./ t-

a

50

LL

I

v)

...................................

I

I

40

SHAFT

Hp AT

SG = 1 . 9 2

I

IC

7 1 t-

__

30

I / I

2o

I

IMPELLER

F+

0.0: 1 0 . 2 7 in.

C A L C U L A T E D FROM H Y D R A U L I C TEST DATA WITH IMPELL.ER 0 . D : 9.90i n .

~

....

~

0 0

200

400

600

800

1000

1200

CAPACITY ( g p m )

Fig.

2.30.

Hydraulic Characteristics of

MSRE C o o l a n t Pump.

I400


56

Reactor Cool.int Purrp The d e s i g n drawings a r e being checked p r i o r t o review. One sat,isfac-t o r y vol u t e and two sdti sfactory i m p e l l e r c a s t i n g s of liu'OR-8 were r e c c i v e d . Weld repai-rs a r e b c i n g made t o one i m p p l l e r and v o l u t e t o r a j s e the c a s t i n g qua,lity t o Clas; T l e v e l . The o t h e r i m p e l l e r i s Class 1 q u a l i t y , without r e p a i r . An a d d i t i o n a l v o l u t e c a s t i n g of 11\10~-8 was poured by ' L h e founcJ.e1*, who r e p o r t s t h a t r a d i o g r a p h i c and dye-penetrFLnt i nspecti-ons i n d i c a t e a n acceptable casting. 2 .l3.3 Advanced Molten-Salt Purlips

Pump w i t h --_.. One Mol t e n S a l t L--u b r i c a t e d 8cari.ng __._________ Thc t e s i of t h i s pmp2" was tel-minated a t 12,500 h r of o p e r a t i o n during which T , i F-BeF2-UF4 (62-3 (-1mol c $) vas c i r c u l a t e d a t 122>OF, '(5 gpm, and.. 1-200 r p m ; 92 s t a r t - s t o p o p e r a t i o n s were s u s t a i n e d . For t h c 1 , i . s t two s % a r t - s t o p o p z r t t i o n s , rubbing c o u l d be d e t e c t e d while the pimp s l i - f l , was r o t a t e d by hand; however, no evidence of '(,he rubbing could be found i n the recorded t r a c e of t h e power i n p u t t o pump-drive motor. Exailiinati on of t h e journal and. b e a r i n g s u r f a c e s i n d i c a t e d s l i g h t rubbing. The b e a r i n g assembly i s shown i n F i g . 2.37. Each of t h e two s e t s of cimbals s u p p o r t i n g t h e b e a r j ng were S a t i s f a c L o r i l y operable a t t h e c o n c l u s i o n of t h e te:;t. During d i sassembly, d i f f i cul'Ly w a s experienccd w i i h t h e removal of t h e INOR-8 journal s l c e v e from t h e I n c o n e l pump s h a f t . 'lke difficu-1t y r e s u l t e d from self-welding of the IN OR-^ sJ e w e and t h e Tiiconcl s h a f t , and i s shown i n F i g . '2.32. The b e a r i n g and journal w i l l b e rep1 aced f o r f u r t h e r endurance t e s t i n g . bNCLA5SIFIED P H O i O 17393

Fig.

2.31.

Gi mba Is-Mounted, Molten-Sa I t - L u b r i c a t e d Journal Bearing.


57

Fig,

2.32, Self-welding

Between lnconel

Shaft and INOR-8.


58

.

2.1 )I- 1

Themnocoipl-(2 A t tachmeiits

Welded thermocouple attachments rmdc wi t h H e l i a r c we?ded, Lid01<-8 a d a p t o r l u g s of d i f f c r c n t weights and shapesz7 a r e b e i n g e v a l u a t e d i n a s e r i e s of t c s i s a I n i t i a l t e L ; t s were made i n o r d e r t o d e t e i m i n e t h e bonding s t r e n g t h and e f f e c t s , i f any, on t h e cal ibrdtti on. Attachments made w i t l i s i d e l u g s welded a1 ong t h e edzp p a r a l l e l t o t h e a x i s of t h e sheath2‘ withstood t h c g r e a t e s t p u l l , bend, and p r y i n g f o r c e b e f o r e separati on occurred. Seven thermocouples were a t t a c h e d t o a s e c t i o n of _ L N O R - ~p i p e by the methods t e s t e d above and t h e n checked for cal i _ b r d t i o n accuracy under s t a t i c c o n d i t i o n s between 700 a n d 1400°Fa The g r e a t e s i e r r o r noted f o r any couple t e s t e d was +6OF, which i s w i t h i n t h e 3/45 t o l e r a n c e s p e c i f i e d f o r t h e Chromel-Alumel m a t e r i a l used i n t h i s t e s t . These thermocouples, whi ch arp now b e i n g soaked a t 1 20O0F, will be rechecked i n several weeks. Addi t i o n a l thermocouples are b e i n g p r e p a r e d f o r t e s t i n g under simu!aey uill bc ’~e:; ked on t h e Engineering T e s t l a t e d o p e r a t i ng condi t i ons Loop, f r e e z e - v a l v e test, and a p i p e h e a t e r s e c t i o n i n t h e p i m p - t e s t loop.

.

A t e s t r i g was assembled f o r dcvel-opmental tes-Ling of mechanical.. at,taclments f o r use on t h e r a d i a t o r t u b e s i n t h e N5lU3. The procedure cons i - s t s of h e a t i n g a 4 i n . sectrion of 7/8-i.n. OD x 0.065-Ti.n.-waJl.l.. 11.~0~-8 t u b e wTL :ih a c a r t r i d g e - t y p e h e a t e r which w a s i n s e r t e d i n a si.l.ver-pla,ted Reference theirnocouples a r e l o c a t e d copper s l u g loca-ked i n s i d e t h e tube between h e a t e r a n d slug, s l u g and tube wallJ and on t h e o u t s i d e wa3..1. of t h e t u b e . The l a t t e r is a 30-gage bare-wirc thermocouple, spot welded. t o t h e tube wa.7-.1.. The r e s u l t s of a p r e l i m i n a r y t e s t made w i t h a 1/8-i.n.-0~ Inconel-sheathed, iY&Q-insulated themocoupl.e a r e as f 011-ows:

.

Air Flow

0

80-90 f p s

Jnrier-Wall Temp. (OF)

1230

1230

Outer-Wall Temp. (OF) Referencc Couple T e s t Couple ...I. 1 . . 1

I..060

1150 1040

850

A s i n d i c a t e d by t h e results, t h e i n n e r - w a l l thermocouple was not measuring t r u e w a l l t e m p e r a h r e . This w i l l . b e c o r r e c t e d b e f o r e f u r t h e r t e s t s a r e conducted. A l s o , t h e h e a t e d section w i l l b e purged with i n e r t gas t o prevent, c r a c k i n g of the plating on t h e copper s l u g . T e s t therrnocouples have been Ifladle with t h e j u n c t i o n ground t o the s h e a t h ’ s wal.]., which w t 1 - 1 b e placed next, t o t h e h e a t e d s u r f a c e .

2.14..2

Temperature Scanner

Development of a thermocouple scanning systcm, c o r n t a t o r , i s continuing.

‘’u s i n g

a mercury-jet


59

During t h e e a r l y dcvelopnient of t h e system, t h e method of switching created c o n s i d e r a b l e n o i s e . The switch was t h e n b e i n g opcratcd i n a break-before-make switching mode. Operation i n t h i s rnanrier r e s u l t e d i r i t h e g e n e r a t i o n of 0.25 v and. g r e a t e r n o i s e p u l s e s , with piilsc d u r a t i o n s about, 1 t o 2 psec. Further examiriation of t h e s w i t c h o u t p u t s i g n a l rcv e a l e d t h a t t h e n o i s e p u l s e s always occurred d u r i n g the b r e a k p o r t i o n of 6hc-t switch a c t i o n . It w a s p o s t u l a t e d t h a t t h e pulses were caused by s t a t i c charges g e n e r a t e d by t h e mercury j e t i n t h e i n s u l a t e d region between t h e signal- p i n s . The n o i s e p u l s e s d i d not, appear when the j e t was i n c o n t a c t w i t h t h e signal p i n because t h e source irnpedance (thermocouple and l e a d - w i r e r e s i s t a n c e ) w a s about 100 ohms or l e s s . However, whcn t h e j e t moved away from t h e s i g n a l pi-ri, tlhc i n p u t irripedance became very large, and the n o i s e p u l s e s appeared i n that edge of the O u t I J U t signal

.

‘The switch manufacturer v e r i f i e d t h e ~ ( t u s eand e x i s t e n c e of t , k noi-se pulses

.

The problem was e l i m i n a t e d by changing t h e switch o p e r a t i o n t o makebefore-break, r e s u l t i n g i n a low i n p u t impedance atJ a l l time:;. The outllut s i g n a l from t h i s t y p e of operatiori is d i f f e r e n t from t h c break-before-make a c t i o n because, d u r i n g the make p e r i o d , t h e mercury j e t i s i r i coritact wLt,h two s i g n a l p i n s sirni~.l-taneouslyf o r about 10% of t h e o u t p u t - s i g n a l wi dt‘rl. During tinis time, the o u t p u t s i g n a l i s t h e average of two a d j a c e n t j-nput s i g n a l s . However, i n t h e b r c a k p r t , i o n , the j e t i s a g a i n on n sirrgle s i g n a l pin, and t h e o u t p u t s i g n a l i s equal t o t h e emf of a s i n g l e thermocouple. This t y p e of output, signal i s accepltable as an i n p u t t o the proposed alarm d i s c r i m i n a t o r and docs not m x t e r i al 1-y a l t e r t h e d i s p l a y and i d e n t i f i c a t i o n of s i g n a l s on the o s c i l l o s c o p e .

The development h a s p r o g m s s c d t o t’xw po i r i t t h a t a p r e l i m i n a r y d o s i g n h a s been completed. ‘The system design appear:; tc:, be workable, and An a l a r m - d e t e c t o r c i r c u i t i s d e t a i 1ed c i r c u i t d e s i g n i s i n p-regress loejn~;designed and is expected t o be cornplet,:x3, b y A p r i l . One compl-ete 100-point scanning system i s b e i n g b u i l t f o r t e s t i n g .

.

7-t a p p e a r s t h a t at t h i s p o i n t i n instrument-systcm dcsign, a p p r o x i mately 400 thermocoupl-.es w i l l be r e q u i r e d to be scanried by the scanning s y s t cm

.

The radi ator-t,cmpcrature monitoring s y s k m w i l l require 1 2 0 p o i n t s . niese wiI.1 u t i l i z e two s c a n n e r s OP 60 p o i n t s each, w i t h pr-ovisions f o r d e t e c t i n g and alarming on low r a d i a t o r - t u b e Lempcrature. ‘the remaining 2 8 0 p o i n t s w i l l u t i l i z e t h r e e s c a n n e r s . Orie scanner each, w i t h p r o v i s i o n s for producing high o r low a l a i m s w i l l be used on ihe f u e l system, t h e c o o l a n t system, and the d r a i n t a n k systein.

The f i n a l arrangement, operation, and i n t e g r a t i o n of t h e f i v e scann e r s inl,o a system w i l l await, testing of ihe f i r s t p r o t o t y p e u n i t , ~iow b e i n g b u i l t . It should be cornpl.cbed i n April

.


60

2 .lit.3

Singl-e-Point Teniperature-AI arm System

l n v e s t i g a t i o n of methods of economically o b t a i n i n g s i g n a l s which r e l i a b l y i n d i c a t e t h e o p e r a t i n g s t a t u s of f r e e z e f l a n g e s and f r e e z e v a l v e s i s continuing. R e s u l t s i n d i c a t e t h a t t h e E l e c t r a Systems Corporation monitoring system, d e s c r i b e d p r e v i o u s l y , w i l l b e s u i t a b l e f o r monitoring f r e e z e flange temperatures but, w i l l noi b e sui-table f o r t h c f r e e z e - v a l v e operat i o n s because of t h e l o c k - i n ( s e a l ) f e a t u r e i n h e r e n t i n t h i s system. I n t h e f r e e z e - f l a n g e monitoring system, only high-temperature-a1 arm monitori n g i s r e q u i r e d , and s i n c c all temperatures would normal-ly be below t h e alarm p o i n t , a n a l a r m would occur i f any f r e e z e - f l m g c t,eniperature r i s e s above t h e a1 arm p o i n t . However, i n t h e freeze-valve-monitoring opcrat i o n s , bot,h h i g h - and low-teinperatiire s i g n a l s m-c r e q u i r e d Lo i n d i s a t e whether the v a l v e i s open o r closed, and the monitor i s r e q u i r e d t o i n d i c a t e immediately when t h e o p e r a t i n c state of t h e v a l v e i s changed. The l o c k - i n f e a t i r e would p r e v e n t t h e chinge of s t a t e of t h e alam- monitor u n t i l t h e monitor i s manually o r a u t o m a t i c a l l y r e s e t . This r e s e t a c L i o n i s c o n s i d e r e d u n d e s i r a b l e as i t w o u l d producc s p u r i o u s signa7 s L4hich could i n t e r f e r e wi t h the o p e r a t i o n of s a f c t y i n t e r l o c k s a n d which would bc annoying t o t h e o p e r a t o r .

''

Other methods of monitoring the f r e e z e val ves a r c b e i n g i n v e s t i g a t e d . One d e v i c e which a p p e a r s promisins i s a magnetic r z l ay, Daysirorn Magsense C o n t r o l Relay, Model 11-82, manirfac t-ured by Daystrom, l n c o r p o r a t c d , I a J o l l a , Cal i f orni a .

The unit, i s a complete s o l i d - s t a t e device c o n s i s t i n g of a m,g;netic arrplifier wit'n a n i s o l a t e d . winding f o r the i n p u i s i g n a l and a s i l i c o n control l e d r e c t i f i e r t o f u r n i s h t h e output switching a c t i o n . 'The r e l a y o p e r a t c s from a 25 Lo 30 v dc supplj-. "he signal inpixt range i s 0 Lo 100 pa de, s t a n d a r d . The i n p u t r e s i s t a n c e i s a ~ i u ~ n i n a l 360 ohms. 'l'he r e l a y h a s a rcspol-lse time oâ‚Ź 200 rnsec, standctrd. The a l a r m s e t p o i n t i s a d j u s t a b l e with ' 1 % of' t h e f u l l r a t e d i n p u t r a n z r by a potent i o m e t e r or by exterm1 means. 'Yne o u t p u t i s analogous t o a s i n g l e - p o l e double-throw r e l a y r a t e d a t 1 amp a t 25 t o 30 v de. 'I'his can be considered as iwo outpu"cs, one e n e r g i z e d above the s e t p o i n t and one bel ow s e t p o i n t . The r e p e a t i b i l i t y of t h e alarm s e t p o i n t i s 21 pa o r k l 5 0 of t h e i n p u t range. 'L%e h y s t e r e s i s i s l-css t h a n 2 pa and can be i n c r e a s e d or d e c r e a s e d by USP of a n e x t e r n a l r e s i - s t a n c e . The o p e r a t i n g teiriperature range i s 3) t o 100°F a t full o u t p u i r a t i n g and a t s t a t e d o p e r a t i n g s p e c i f i c a t i o n s . An FXectra Systems Corporation monitoring system has bcen p1;ltccd OD o r d e r . I t w i l l be t e s t e d t o deterrninc whether i t meets 'die o p e r a t i o n a l and re1 i a b i l i t y requirements of t h e MSN.

Onc A-82 c o n t r o l r e l a y i s on hand and b e i n g t e s t e d . 'l'hc r e s u l t s t o d a t e i n d i c a t e t h a t i t performs t o s p e c i f i c z t i o n s a n d would be s i r i i a b l e f a r use i n monitoring t h e f r e e z e v a l v e s .


61 The freeze-valve-monitoring o p e r a t i o n will- r e q u i r e t3riree r e l a y s f o r each valve. I n t e g r a t i o n of t h r e e A-82 r e l a y s i n t o a monitoring system would r e q u i r e a d d i t i o n a l d e s i g n t o supply i n d i c a t o r larcps, power supply, and a c a l i b r a t i o n method. IIowever, a t t h i s time it a p p e a r s t h a t this type of system o f f e r s t h e g r e a t e s t r e l i a b i l i t y and b e s t o p e r a t i n g c h a r a c t e r i s t i c s a t the l e a s t cost.

2.1.4.4

.

Pump-Bowl-Level I n d i c a t o r

Development of a c o n t i n u o u s - l e v e l 31 clement f o r use i n measurement, of molten s a l t levels i n t h e M f u e l axid cool-ant s a l t p u q ) l)ow_1..s has con-t;inued. D u r i n g t h e p a s t r e p o r t p e r i o d several high-temperature d i f f e r e n t i a l t r a n s f o r m e r d e s i g n s were i n v e s t i g a t e d , t w o l e v e l - e l e m e n t d e s i g n s were developed, and f a b r i c a t i o n of a l e v e l t e s t f a c i l i t y i n c o r p o r a t i n g t h e two l e v e l - e l e m e n t d e s i g n s was completed. T e s t i n g of t h e p r o t o t y p e l e v e l elements i s underway.

The major e f f o r t in t h e program d u r i n g t h i s r e p o r t p e r i o d w a s devoted

t o t h e development of a d i f f e r e n t i a l t r a n s f o r m e r which wai~ldo p e r a t e r e l i a b l y (without e x c e s s j ve s h i f t s i n c h a r a c t c r i s t i c s ) i n t h e tcinperntiire several v a r i a t i o n s i n t h e design of the range from 850 to 1300~~. transforrriers were i n v e s t i g a t e d , and t h r e e d e s i g n s were s e l e c t e d f o r fixrt h e r t e s t i n g . These i n c l u d e d the nickel-wound l a v a - i n s u l a.ted t r a n s f o r m e r p r w i o u s l y r e p o r t e d , 31 a t r a n s f o r m e r simi 7 a r t o t h e nickel-wound transforrrier b u t with Inconel windings, arid a q i ~ a ~ t z - i n s u l ~ a tt cr adn s f o r m e r with IIastelLoy C windings.

Alt'nough p r e v i o u s t e s t s of the nickel-wound t r a r i s f o r ~ e r 31 s were promi s i n g , the knowri and t e s t e d d u - r a h i l i t y and low temperature c o e f f i c i e n t , of r e s i s t i v i t y of I n c o n c l , the lower r e s i s t i v i t y (compared with I n c o n e l ) of H a s t e l l o y C, and thc negJ-igible tcniperatur*e c o e f f f i c i e n t of r e s i s t i v i t y of Hastel-1 oy C i n d i c a t e d t h a t tlicce m a t e r i a l s should be t r i e d . N e i t h e r Inconel- nor H a s t e l l o y C were as s a t i s f a c t o r y as n i c k e l . Vie Inconcl_ t r a n s f o r m e r was dumble, b u t t h e ternperdtiux e f f e c t s on. t h c o u t p u t s i g of t h i s t ransf'onner were g r e a t e r than on t h e nickel -wound Lransf ornier ( s e e Fig. 2 . 3 3 ) . The Hastelloy-C transfor-rner a l s o e x h i b i t e d c x c c s s j v e temperature e f f e c t s on t h e o u t p u t signal. 'lhc wire i n Lh is trailsf ormer becane v e r y b r i ttl e and broke d u r i n g a â‚Ź i rs I, i n s p e c t i o n made a 1 i e r onc h e a t cycl e t o 14OO0E'.

'lko unf orsccn d i f f i c u l t i e s were encouuterccl while f a b r i c a t i n g and t e s t i n g the transfoimcrr,. One was caused by the use of u n f i r c d F i b e r f r a x i n s u l a t i n g m a t e r i a l , Lhe othrr by t h e magnetic cha.r.actw*istics of t h e Lube f u r n a c c used i n the t e s t . A l l t r a n s f o r m e r s t e s t e d were encased i n a n Inconel- c o i l form which gave mechanical- p r o t e c t i o n t o the coi-1s and. i n s i i l a t , i o n . F i b e r f r a x paper was p l a c e d betwccn <,tie traxzsformcr and- t h e surrounding case t o absorb mechani e31 shock. When t h e n i c k e l t r a n s f o r m e r assembly w a s heated, the organi c b i n d e r i i i the Fi'berfrax irisulat,ion cvapo r a t e d , conclenscd on the Lava fomns a n d on the ceramic i n m 1 a L i n g bends on t h e 1 ead wires, permeated t h e i n s u l a t i o n , and carhonizcd The r e s u l t i n g carbon d e p o s i t s e f f e c t i v e l y shortcd t h p t r a n s f o r m e r ; measured r e s i s t ance t o p o u n d from e i t h e r primary o r secondary vas l e s s t h a n 10 ohms.

.


62

50

~

1

40

a

_1

v) V

0

-I

-

, , , - INCONEL

IIJ

I.L

UNCLASSIFIED ORNL-LR-DWG 68589

..............

~

30

a____

s-” (3

z -

n Q

LO

20

I

I

t--

u:

a

CONSTANT

V I

EXC ITA T ION

VOLTAGE

BOTH

TRANSFORMERS

CORE

MOVED W H I L E

INDICATED

600

25%

OF

800

700

ADJUSTED

4T

TRANSFORMER SCALE

1

1050°F

WAS AT

900

105OOl- SO

I

4000

I

I

I

THAT

~

RECORDER

! 100

I

1200

1300

T E M P E R A T U R E (OF)

F i go 2,33.

T e m p e r a t u r e C h a r a c t e r i s t i c s of Hi y h - T e m p e r a t u r e D ifderentia I

N i c k e l and lnconel Wire. w h i l e transformer w a s a t

Tro nsforrnrrs Wound w i t h

C o n s t a n t v o l t a g e e x c i t a t i o n ; b o t h transformers a d j u s t e d t o

1050°F

s o t h a t recorder i n d i c a t e d

105OOF; core m o v e d

25% of scale..

T h e nickel winding w a s a t t i c k e d and, f o r a l l p r a c t i ea1 purposes, destroyed a ‘Yhc t r o u b l e w a s c o r r e c t e d by cornpl e t e l y d i s m a n t l i n g %lie transCormer, baking t h e l a v a f o m s a t 1500°fi’ and t h e n reas.:embling, ixsi-ng new i n s u l a t i n g beads, nickcl wire, and F i b e r f r a x p a p e r whi-ch had hcen p r c f i r e d i n a i r t o d r i v e o u t t h e organic h i n d e r .

Thring i n i t i a l ’Lestifig of t h e transl’ormers c o n s i d e r a b l e d i f f i c u l ty was encountered i n c o n t r o l l i n g t h e f u r n a c e temperature *ind i n o b t a j ning u s e a b l e d a t a . It w a s noted t h a t , when the f u r n a c e w a s on, t h e Honeywell t erilp t‘ratu r e rec o rde 1-- c on 1,ro11e r i nd i_ c a t ed t empe rat1I re va r i‘itions of ab011 6 200°1i’ but d i d not c o n t r o l the fiirnctce. Tt w a s a1 s o noted that t h e Dynalop; r e c o r d e r , used t o indicatp t h e d i f f e r e n t i a l t r d n s f o m p i - output, beca,me i n s e n s i t i v e arid lockpd i n one p o s i t i o n when t h e h e a t e r s were on and t h a t the temperature of t h e t r a n s f o r m e r c o r e was 30 to 50°F h i g h e r than t h e owtei. trarisfoniic:r temperature. I n v e s t j g a t i o n showed t h a t the h e a t e r s i r i t h e Marshal 1 t u b e f u r n a c e were sp?-r i l l y wound. ‘fie 60-cycle magnetic f i e l d . produccd by t h i s s p i r a l c o n f i g i r a t i o n induced vol-tages i n t h e secondary of the i r a n s f o r m e r and 9 .n the thcrmocouples s i i f f i c i e r i t io s a t u m t e ihe amp7 j Pi ers of the Honeywell and Qynal o g r e c o r d p r s

.

The d i f f i c u l t y w a s avoided 9.n subsequent t e s t s by h e a t i n g the t r a n s forrilcr above t h e ieinper<.it,urer e q u i r e d , t u r n i n g o f f tile h e a t e r s , and t a k i n g


63

(Care w i l l b e t a k e n i n the crl.er,ip;n of r e a c t o r - s y s t e m h e a t e r s t o e n s u r e t h a t t h i s d i f f i c u l t y does no'c occur i n t h c reacbor level-element i n s t a l l a t i o n . ) data as t h e t r a n s f o r m e r cooled.

During t e s t i n g of the transformers, a n i n t e r e s Ling phenomenon v a s observed. When the t r a n s f o r m e r s were heated above t h e c u r i e p o i n t of the i r o n c o r e arid t h e n allowed t o c o o l s o that the ternpcrature passcd back through the c u r i e p o i n t , the s i g n a l o u t p u t f r o m t h e d i f f e r c n t i a l t r a n s former increased. v e r y r a p i d l y t o a h i g h peak valuc a t t h e c u r i e p o i n t of the i r o n and t h e n decreased r a p i d l y to a much lower valur, thins producing a spike on t h e recorded t i a c e a t t h e c u r i e p o i n t of the core rmtc3rial. The s p i k e s occurred r e p e a t e d l y 3% t h e same temperature ( s e e Fie;, 2.34). 'l'hcrc i s a p o s s i b i l i t y t h a t t h i s phenoinenon could be used to obtairi an a c c u r a t e tcsflperature cal i b r a t i o n check p o i n t or as t h e b a s i s f o r a, simple high - t e n i p r a t u r e -czlami device. The Lernperature at which the s p i k e occurs could b c v a r i e d by the use of corc m a t c r i a l s of d i f f e r e a t c u r i e p o i n t s . U NCL ASS1 FI ED ORN L- L R - DWG 68590

60

50

0

zQ

4o

a W

OT I-

OT

a

30

0 W

13a 2

>-

13

20

10

0

1301

1300

I 400

400

T EM PE RAT URE (" F

Fig, 2.34,

Temperature E f f e c t on Output Signal of D i f f e r e n t i a l Transformer

a s Iron Core P a s s e s Through I t s C u r i e P o i n t ,

While t h c t r a n s f o r m e r s were b e i n g t e s t e d , t h e d e s i g n of the levelt e s t f a c i l i t y was modified t o p e r m i t t e s t i n g of a n a d d i t i o n a l l e v e l i n d i c a t i n g system. A new tank and head assembly w a s added, arid provisions


64

were made f o r t h e detection of m o l t e n - s a l t l e v e l with a s p a r k p l u g probe. Provi si ons were a1 s o made for f u t u r e a d d i t i o n of a bubbl er-type l e v e l device. A s shown i n Fige 2,35, the new head assembly i s designed i o mount a differential t r a n s f o r m e r above t h e t a n k . The core f o r Lhis t r a n s f o r m e r p r o j e c t s from t h e top of the f l o a i -through t h e gas space above t h e f l o a t

UNCLASSIFIED O R N L - L R - D W G 68594

Fig.

2,35.

S i m p l i f i e d D i a g r a m of

MSRE L e v e l T e s t F a c i l i t y .


65 arid inCo the core t u b e i n s i d e the d i f f e r e n t i a l t r a n s f o r m e r . T h i s d i f f e r e n t i a l transfolmer i s i n s u l a t e d b u t a t present, i s not h e a t e d . The end of the transfoi-rner next t o t h e f u r n a c e i s o p e r a t i n g between 980 and 1000*F, LIE o t h e r end between 480 and 500'F. While unnecessarily severe, t h i s o p e r a t i n g condi t i o r i docs provide every o p p o r t u n i t y f o r the l e v e l system t o fail. I f there arc t o be any deposi ts of s o l i d s from t h e vapors above the molten sa1.t i n t h e temperature range 1200 t o 50ook', tkie p r o p e r coridit i o n e x i s t s . If t h e r e are d e p o s i t s , t h e y presumably w i l - 1 accumulate on the c o w and core t u b e t o t h e exteiit t h a t t h e c o r e w i l l no l o n g e r rmve. C o n s t r u c t i o n of t h e Level t e s t f a c i l i t y and f a b r i c a t i o n of t h e two p r o t o t y p e Level--el ernent asserriblies w a s corn@-eted, and t e s t i a g of the level cl-emcnts i s proceeding. A photograph of t h e conqdeted t e s t f a c i l i t y , made p r n i o r t o i n s t a l l a t i o n of i-nsul-ation, i s shown i n Fig. 2.36. I n t h i s photogrnph, t h e d i f f e r e a t i a l trar.tsâ‚Ź'ormer.s can b e seen above the tar& 011 t h e l c - R , and below t h e t a n k on t h e r i g h t . c

Fig,,

2,36,

Mo\ten-Salt L e v e l T e s t F a c i l i t y .


66

The system h a s o p e r a t e d t h r e e weeks a t temperature. S a l t , was a d d e d a f t e r t h e first, week of o p e r a t i o n a t terriperature. P r e l i m i n a r y resuli,s are v e r y encouraging. Thcy i n d i c a t e t h a t t h e tern-pzrature e f f e c t s on span and em, over the range 800 t o 1200°F, a r e a c c e p t a b l y 1 ow and t h a t t h e r e i s no p r e s s u r e e f f e c t and negl-igiblc h y s t e r e s j s . There h a s been no evidence of s a l t a b s o r p t i o n by t h e g r a p h i t e flozt,. ‘ b e tests a r e b e i n g continued t o determine the e f f e c t s of continuous high-temperature o p p r a t i o n on t h e c h a r a c t e r i s t i c s of t‘ne t r a n s m i t t e r s . 2.111.5

S i n g l e - P o i n t Level I n d i c a t o r

’‘

‘LYE t e s t of ttie s i n g ] e - p o i n t l e v e l i n d i c a t o r p r e v i o u s l y r e p o r t e d w a s t e r m i n a t e d a f t e r two months o p e r a t i o n . A t t h e 2nd of t h i s p e r i o d t h e r e w a s a n 117; r e d u c t i o n i n t h e amplitude o f t h e s i g n a l Due t o the on-off c h a r a c t e r i s t i c s of t h e d e v i c e t h i s was n o t o b j e c t i o n a b l e . When removed from the s a l t pot for i n s p e c i i o n , t h e p o r t i o n of t h e probe which was i n s i d e t h e p o t b u t above s a l t l e v e l had a n even d e p o s i t of g r e e n mat,erial a d h e r i n g t o it. The p o r t i o n which w a s below s a l t l e v e l was c l e a n and s h i n y . The probe w a s darnaged d u r i n g t h e i n s p e c t i o n , and t e s t s were d i s c on”ii nue d a

.

A p r o t o t y p e of t h e probe assembly t h a t will b e used i n t h e MSRE33 b e i n g f a b r i c a t e d and will- b e t e s t e d .

js

1. MSRP Progr. Rept. Auy;. ..-Ibid.,

2.

31, 1961,

ORNL-3215,

pp 28-32.

p 28.

3 - MSRP Q u a r t . Progr. Hept. -July 31, 1960, ORNI.,-3Olh-, p 2 1 1 ~ P

4.

MSRP l‘rogr. Rept. Feb. 28, 1961, OHNL-3l22, p 51.

5.

I b i d . , p 27.

6.

Sturm-Krouse, I n c Analyses and- Design Su_ggcstions f o r -.Freeze E’lange Assemblies €or MSRE I W .

‘7

MSRP Progr. Xept. Aug. 31,

7

1961,

ORlVL-3215, p 33.

1.961,

ORraTJ-31Z2,

1 _ _ _ _ 1

8. -___ Ibid.,

p

9.

Xbid.,

p 37.

10

ibid.,

p

11

MSKP Frogr. Rept. Feb. 28,

12

WRP -.-... P r o g r . Rept. Aug.

. 0

L

37.

40. p

3(-33.

31, 1-961, ORTJL-323-5, pp 54-55.


67

13.

Jbid., -

14. R. E. 15.

p

55.

Thoma,

"2240 Service Samples (10/19/61)," p r i v a t e communication.

MSRP Yrogr. Rept. Rug.

16.

Ibid.,

p

58-61.

1&

rbid.,

p

61.

18.

mid., -

p

65.

31, 1361, ORNL-3215,

p

57.

19

mid.,

p

46.

20

Tbi-d., p

1+8.

23

C. H. Cabbard, Thermal Stress and S t r a i n F a t i g u e Analysis of t h e MSE Fuel and Coolant Pumps, ORF&-TM-'78 (to be issued).

. 21 . 22. 24.

Ibid.,

p

$4.

27

Ibid.,

p

78.

28.

Ibid.,

p

79, Fig. 2.41.

29

Ibid.,

p

'77.

25

26

.

30.

.

31 32

33

Ibid., p

76,

Fi-g.

2.39.


3.1.1

Analysis of FJERE Temperature C o e f f i c i e n t

'i'ne p r e v i o u s l y r e p o r t e d anal-ysis' of %lie temperature c o e t t i c i e n t s of r e a c t i v i t y i n t h e MSRE w a s crxtended to i n c l u d e t h e e r i ' e c t s of retai-nT.rig f i s s i o n - p r o d u c t xenon and sarmriurn i n t h e c o r e g r a p h i t e arid t h c c.-fY'cct of i n c l u d i n g a sina.1-1 amount of a non-l/v absorber f o r Lhe purpose o f i n c r e a s i n g tile s i z e o f t n e temperature c o e f f i c i e n t .

Since t h e r e a-re low-lying resonances i n both )ielZ5 and Sm'"", t h e average thermal - a b s o r p t i o n cross s e c t i o n for 'diese n u c l i d e s decreases vi lh i n c r e a s i n g tempera.i,ure above about 200째C; i n c e r t a i n s i t u a t i o n s this can lead t o a p o s i t i v e c o n t r i b u t i o n t o tine Lerqwrnture coefficient, due t o t h e reduced poison a b s o r p t i o n s re3 ZLive t o fliel 2bSOrptionS. l ' h e r e ai-e c e r t a i n n u c l i d e s ( e .c;. , iihXo3) Xor which t h e average therim1 c r o s s s e c t i o i i d e c r e a s e s slowly with i n c r e a s i n g 'cempcrature; i n s e r Lion o f such an absorbe r woin3..d l e a d t o an i n c r e a s e i i i t h e s i z e of t h e ternperature c o e f f i c i e n t due t o t i i c change i n Liierilial ut i l i z n t i o n W i t h tcn-peraturc I


69

176 st-cp i n s e r t i o n ( s t a r t i n g .Prom 10 Mw) in Fid. 3.2; peak pressures are p l o l t e d as a f u n c t i o n of step size in Fig* 3.3. UNCLASSIFIED ORNL-ILR-DWG 6 0 5 9 2

w

K

I> I-

-4

K

n w LIJ H

t-

Fig. -2

0

Poi son

0

0.04

0.02

Io ( R h ) / c ,

Coefficients vs

0.03

LJNCLASSIFIED ORNL LR-DWG 68533

POWER

4000

-

Temperature

( O R I G I N A L CORE)

5000

.-

3.1. Level.

,FUEL

500

400

LL

300 0 w

3000

II

cc

1~

3

E W

0

F3

2000

200

2

W

a I

\

0

0 0

3.2.

L

too

{OOO

Fig.

W

0.1

0.2

0.3 TIME I s e c )

0.4

0.5

P o w e r , F u e l Ternperoture Rise, and G r a p h i t e Temperature

R i se.

Relative


UNCLASSIFIED

O R N L - L R - D W G 68594

IO00

+-I

i

0.6

0.8

I

i

500

200 -

-1

too -

I

50

20

10

5

-+

2

1

0

0.2

0.4

STEP R E A C T I V I T Y INSERTION (70)

Fia. 3.3,

Peak P r e s s u r e R i s e v s Stew R e a c t i v i t y Insertion.

1 .O


71

.

.

d i s t r i b u t i o n mus’c be one-dimensional I n a d d i t i o n , some rnodifi.c:;zLiuns were made i n t h e input and output formats R e s u l t s o f gTa;tuna-heating c a l c u l a t i o n s with 2DGK f o r various l o c a t i o n s i n the t o p head of the MSRE vessel are shown i n Fig. 3.4. The recl;anbxl-ar blocks o u t l i n e the r e g i o n s used i n the r e a c t o r iciodcl i n t h e l3QUZPOISE-3 calculations. Energy-deposition r a t e s ( i n w/cm”) are 1is‘r;ed f o r ITijOR-8 i n several l o c a t i o n s .

UNCLASSIFIED

ORNL-LR-

DWG 6 8 5 9 5

3

L

0.792 w / c m 3

1 0 . 8 8 2 w/crn3

Fig. matical

3.4.

Top Head of MSRE Vessel, Showing R e s u l t s of G a m m a - H e a t i n g C a l c u l a t i o n s and the Mathe-

Model Used.

HEFERENCES

2,

S . Jaye and 14, P. L i e t z k c , Power Response Following R e a c t i v i t y Addit i o n s t o t j i e IIZIT, ORNL CF-9-12-106( ~ e c 30, . 1-99).

3.

P. R . Kasten, Homogeneous Reactor Safety, ORI\TT, CF->’j->->l

b,

T. B. Fowler anfi-14. L o Tobias, EQUIPOISE-3: A Two-Dirncnsionrzl, ‘.I%OGroup, Neutron Diffusion Code f o r t h e 11314-7090Computes, OXILL-3199 (Feb. 7, 1962).

-al., NIG€i”WBE -

’j. 14, L e Tobias e t

(May

9, 1955).

An 11314-7090 Code for t h e C a l c u l a t i o n (Feb. 9, 1362).

o f G a m a Heating i n Cylindrical Geometry, OBNL-3198


72

T

4.1.1

It.

F I x o r i d e - S a l t Contamination St,udies

A program has lieen i n i t i a t e d to examine t h e e f f e c t s of oxidizing impwi.tTes on the colrrosioii behavior of fused f l u o r i d e m i x t u - ~ e sa d to establish tolerances for these impurities i x n bhe MSEE cover-gas system. I n i t i a l - studies have been concerned vi&h t h e h y h 3 l y s i . s (by water vapor) of fLuoridc me1Ls andl wfth t h e eolarosive p m p e r t i c s of the h y d - m l y s i s byproducts, i n parti.cular W e


73

4.1.

Fig.

Corrosion of

INOR-8 T u b i n g F o l l o w i n g Exposure t o HF-Saturated Molten

F l u o r i d e Salt.

had been i n c o r p o r a t e d i n the h o t t e s t s e c t i o n of the loop for the purpose of weight-loss determinations; however, s e l f - w e l d i n g prevented t h e i r removal i n t a c t . These i n s e r t s , whose s u r f a c e s had been c a r e f u l l y ined, than surfaces of the loop proper. exhibited n o t i c e a b l y less a t t a

Chemical a n a l y s e s of the salt were o b t a i n e d during and after test; r e s u l t s are shown i n Table 4.2. The c o n c e n t r a t i o n of nickel i n c r e a s e d t o Table

4.2.

Sample

a

Chemical Analysis of S a l t C i r c u l a t e d i n Loop 1252

Time

(hd

Nf

Constituent

Cr

(ppm)

Sample obtained w5Lh 25-g copper f i l t e r stick.

Fe

bSample o b t a i n e d by melting salt from m e t a l l o g r a p h i c

specimens.


74

a l e v e l of 1800 ppm w i t h i n about 200 hr of opersttion, Imcreases were a l s o foixnd. i n t h e c o n c e n t r a t i o n s o f the i r o n and chromium, but t o a leb2, CPer extent t h a n t h e increases for nickel. Analyses of t h e a f t e r - t e s t salt, de,termined. f rmi sam-pl.es tznken from t h e metallographic specimens, showed 1-t,ered s igni f ic axitly lornY" CQ r m si o n -p rodu c..t co nc e n-Lrat io11 s than d i d f i s m q l e s removed shortly before t h e tes-t; was termina-l;ed. V i s u a l cxamination of the a f t e r - t e s t salt x ~ v e a l e devidence of marked phase s e g r e g a t i o n , As a result o f .t;his observation, a specimen of t h e s a l t w a s rcmoved fmm an area near t h e o r i g i n a l plug and submitted x-ray d i f f r a c t i o n stud.ies. E e s u l t s showed the frozen s a l t to be composed of two phases: TNa,F*6%rf?4 and. N ~ . F - N ~ J ? ~ . ~ % iTnF ~almost ., e q u a l concentrations S t u d i e s conducted by Blood2 0x1 the s o l u b i l i t y of NiF2 in. t h e NaF-ZrF4 s a l t system showed. the sabumting phase for NiF2 4x1be Na,F-NiF2-2XrF+ 1% was a l s o found t h a t , as this phase i s formed, it i m i e d i a t c l y p r e c i p i t a t e s , "lixs, it appears that the c o n c e n t r a t i o n o f NiFz in .the s a l t during %he t e s t exceeded the sohubibity Iirnlt, under %hc ccmditioris of operation; consequently, NiF2 p r e c i p i t a t e d from s o l u t i o n , causing the plug. Taese p r e c i p i t a t e s no doubt also account f o r t h e d i f f e r e n c e s in t'ne m m l y - t i c a l results of filtered and a-Ctcr-tesI; samples

As a result, of t h i s i n i t i a l test, the program w a s revised t o utilize s t a t i c c a p s u l e s rather than c i r c u l a t i n g loops, The s t a t i c - t e s t method w i l l f a c i l i t a t e the remavnl+ af sal'i, m d metal samples and all allow better c o n t m l o f impurity additions. Design of 'the s t a t i c p o t s and auxiliary equipment is coniplete, and f o u r innit,s are being assembled. 4,l.Z Mol.ybdenuumz-Graphite C o m p a t i b i l i t y T e s t s An examination of t h e second of two INOR-8t h e m l - c o n v e c t i o n loops operated. with mlyhden~.minserts r e v e a l e d essentially t h e silsnc3 findings 3 as were d e r i v e d from the f i r s t loop t e s t 1250, reported prcvi-ously. Operating c o n d i t i o n s far t h i s second Loop (1251 which were similar tcn t h e first loop, are summarized i n Tahle 14.3. Both Poops contained g ~ a p h it,e sleeves" aiijacent t o the moiybaenm inserts; IXXEV~T, t h e VOIAUII~ o f g r a p h i t e i n the second loop was twice that i n the f i r s t ,

>:

Metaklograpliy of tknc INOR-8 specimens yemoved froan the second loop revealed heavy suPface roughening and pitting, b u t , l i k e t h e first loop, specimens sf the a s - r e c e i v e d t u b i n g r e v e a l e d a. sim5 1-ar pitted c o n d i t i o n . Fsanination of t h e DKIRm%3s p a c e ~ s ,which held the molybdenum in c o n t a c t w i t h th2 g r a p h i t e , exhibited a t t a c k in the fsm of s u r f a c e roughexling and p i t t i n g to a m a l m depth of 1. m i 1 along t h e i n n e r surf'ace which had becrn exposed to salt, Evidence of scat,'ceyeiP carb7;srize.d areas t o a m a x i m i depth of 5 mils w a s found on t h e outer a u x f a c @ s of t h e spacers. These c a r b u r i z e d spots coyresponded to areas where Lhe INOR-8 WEIS i n diyect; cont a c t w5th t h e g r a p h i t e , A s u r f a c e l a y e r , s i m j l a r t a t h a t ~ e n e z n a l l ypresent afteer P o n p t c m INOR-8 tests, r n ~ found along the o u t e r surfaces which were i n c o n t a c t with the lrriolybdemxm. The maximm depth of this layer was

1/4 m i l .


Table

4 3 e

.

75 Operating Conditions for Graphite-Molybdenum C o m p a t i b i l i t y T e s t (Loop 1251)

Molybdenum:

Universal-Cyclops a r c - c a s t Mo + 0.5 T i alloy; t h e molybdenum w a s used i n t h e as-rolled. c o n d i t i o n

Graphite:

N a t i o n a l Carbon

COe

Grade R-OW5

Max. s a l t - m e t a l i n t e r f a c e temp,, Max. s a l t temp,, Mine s a l t temp.,

Loop

m, "F

"F "F

"F

13m 1140 160

5545

Operating time, h r

Salt used

1:1

S a l t - t o - g r a p h i t e volume r a t i o

Examination of t h e a f t e r - t e s t molybdenum s t r i p s r e v e a l e d na change wchen compared with t h e m i c r o s t r u c t u r e of the a s - r e c e i v e d specimens, a f t e r the t e s t , as shown in Table 4.4, Chemical a n a l y s e s of t h e molybde likewise compared c l o s e l y w i t h a s - r e c e i v e d specimens. However, t e n s i l e t e c t s of t h e specimens, as i n t h e c a s e of the f i r s t loop, i n d i c a t e d v e r y l o w room-temperature d u c t i l i t i e s ,

Table

4.4,

Specimen

Before-and-After Chemical Analyses of Molybdenm S t r i p s Contained. i n Loop 1252

Mo

w t s'.

As r e c e i v e d

99.65

As tested"

99.7

Component (ppm)

Ti

Ni

Cr

Fe

c

N2

0.49 0.44

67

40

252

390

100

loo

200

380

5 5

02 3.00

100

a

Average of f o u r specimens,

Further e v a l u a t i o n s of t h e anolybdenurn specimens from both loops lement t o s u r f a c e e o n t d n a t i o n prest r a c e d t h e cause of a p p a r e n t en% i n t h e a s - r e c e i v e d molyb ock. Ebidence of s u r f a c e contaminants had been i n d i s c e r n i b l e i n t h cold-worked micr'ostrmctures of the a s - r e c e i v e d and a f t e r - t e s t s s. However, f o l l o w i n g an annealing effected recrystallization t r e a t m e n t i n vacuum a t 2400" taxninated areas but d i d not d i s t u r b " i m p u r i t y - s t a b i l i z e d ' ' areas, a contami-


76

--

Fig.

4.2.

.

Comparison of Microstructures of A s - R e c e i v e d and A n n e a l e d Specimens of

Molybdcnvm Sheet Used for L o o p s n e a l e d i n vacuum at

24OQOF.

1250 and 1251. ( a ) A s - r e c e i v e d microstructure; ( b ) an10 g K3Fe(CN)6, 10 g KO{-i, 100 c c H20.

Etchont:


77

Two a d d i t i o n a l molybden graxned to study the e f f e c t o ments on molybdenum compatib aenum specimens w i l l a l s o be 1 i n order t o permit standard me

4.1.3

i t e loop experiments have been pros surface preparations and heat t r e a t m p h i t e - s a l t systems The molybthose used i n previous experiments roperty evaluations.

.

Corrosion E f f e c t s of Carbon Tetrafluoride

A s discussed i n another s e c t i o n of t h i s report (see Sec, 5.1), ev2derice of a reaction between graphite and f l u o r i d e ions, leading t o the production of CF4, was indicated i ecent graphite-fuel s a l t i n - p i l e capsule experiment conducted a t 16 1&)0"F, If signi-ficmt, such a ropreaction would detrimentally a .t both t h e chemlca3, md nucl e r t i e s of the f u e l salt. Its c t s mjght be circumvented, h r, by maintaining an overpressure of CF4 on the primary system. Since obvious corrosion considerations l i e behind t h i s expedient, a series of tests haw been i n i t i a t e d t o e v d u a t e t h e e f f e c t s of CF4 on M Sm core mteriala.

Three such experiments, incorporating specimens of INOR-8, Inconel, nickel, molybdenum, and ty-pe 304 s t a i n l e s s s t e e l , were recently completed a t 1112, 1292, and 1472'F, respectively. The tests were operated f o r 500 h r i n 2-in.-diam n i c k e l pots c o n t a i n i n g CF4 vapor a t 6 p changes accompanying exposures a t each temperature are compared i n Table 14.5 None of t h e material showed s i g n i f i c a n t reaction with CF4 a t 1112 o r 1292째F. A t ll7k72'F, INOR-8 nickel s t i l l exhibited l i t t l e attack, while Inconel, molybdenum, and e 304 s t a i n l e s s s t e e l specimens showed r e l a t i v e l y heavy reaction films. Deep s were a l s o evident i n one of t h r e e molybdenum specimens i n this t e s t . (Some seal leakage w a s encount e r e d during t h e lI+72"F t a s t and may have contributed t o the attack.)

.

Table

4.5.

Weight Changes of Metal Coupons Exposed 5 0 0 H r i n 6 psig CF4 Vapor Weight Gain (mg/cm") 1112O F E 9 2 "F 1472"F

Type of Coupon

TNOR-8(4 specimens)

..

Maximum Minimum Average

+o

Nickel (2 specimens)

Average

Inconel ( 2 specimens)

Average

-0 02

Molybdenum (4 specimens )

Maximum Minimum

304 SS (1 specimen)

Average

-1-026 00 4-0 12

.

.

-0 03

4-0* 13

.065 -to .04 -0 * 02

3-0

%eaction film was subject t o s p a l l i n g ,

+o 28

. +O 25

-t

-t-

0.40

i-0 40

I-

0.50

- t - ~05

.

4-0.55 -to. OQ

-0 04 -I-0.00

4-1.58

4-

0.59 0.22

-+ 0.70 f

3.44

-12.57

-

0.11

1.06~

-I-


78

*

*

II

*.

.

.

.

t

*

. . 8

. 1

b

P r*

a

f.

.

'

!! U N C L A S S I F I E D

Fig. 4.3. at

Photomicrographs of I N O R - 8 Specirrieris E x p o s e d for 500 hr t o C F 4 Vapor

1292 and 1492OF.

( a ) Exposed at 1292째F; ( 6 ) exposed a t 1472'F.

HCl, 2 p a r t s H20, 1 part 107; G O 3 .

Etchant:

3 parts


79

a l l t e m p e r a t u r e s , No evidence of c a r b u r i z a t i o n of these o r other s p e c i Electron-diffraction mens w a s d e t e c t e d metallographically (Fig, 14.3) s t u d i e s of t h e s u r f a c e s of INQR-8 and molybdenum specimens indicated t h e presence of both f l u o r i d e and oxide reac-biomn pradructs, t h e l a t t e r undoubtedly r e s u l t i n g from COz impurity in the test gas.

.

Equipment i s being asseuibled f o r a second series of t c s t s i n which the colrribined effects of CF4 and. fluoride s a l t wi1II. be studied, S % a t i c pots c o n t a i n i n g CF4-saturated s w i l l be use4 f o r these experiments, INOR-8 disks w i l l be placed i n both the l i q u i d and gas-phase regions o f the p a t s and ~5.11. be withdram through a, gas lock af%er n series of test intervals

4.1.4

Examination of Corrasnion 1mz;efis f m m mOR-8 Forced-Convection Loops

Information is being assembled Tor a t o p i c a l r e p o r t QZZ the r e s u l t s expe merits eonauctea in S U ~ P O ~ of C % ; k ~ MSRX. Data obtained. from corrosion inserts located in t h e hot legs of faixr o f these loops were ana zed, and the results indicate an i n t e r e s t i n g ~ ~ of corrosion ~ r a t e~ on time ~and temperature a ine these s ~ ~

of

m 0 ~ - 8forced-convection loop

r i z e s the; wei -LOSS aata. ( ~ o t ethat there wm-e d, that the inserts were withdrawn at a succession t h r e e i n s e r t s per loop of time i n t e r v a l s ranging from TOOQ t o J^5,0OO 'far.) In two test loops operated at 1 3 0 째 F , weight losses a f t e r 10,000 hr were in Vae range 2 t o em2, Weight lasses a t 1400 and. at JS0OoF were only in %he r a g e 8 t o 10 mg/cm" after 10,000 hr. Thus, from. t h e standpoint of t s t d metal 1os% from the wall, co aid not vary a p p r e c i a k w with temperature (over the range ever, according t o the metallograp analyses th. appearance of t h e ~uxfrecesof the specimens t h a t n t corrosion losses was noticeably influenced by the teest temperat ubsurface voids, caused by chromium c%epletlon, appear t o a depth of" 4 mils in the 1500째F li, trast, i n s e r t s fr the 1480째F and 1 00째F tests displaye el., 112 to 213 mr51 thick,

,

53

The apparent discrepancy between the metalllogm-phic md might-Loss finaings implies t h a t corrosfon losses Znvolved not only chramiwm but o-bfiiler components of INOR-8 as w e ~ 1 . In fact, an analysis of the chromium lwses (based on diffusion studies) shawe t their contrlb .t;ota*l weight l o s s in tihe 150o"F t e s t , ass selective rem0 chromium, could not have exceedea 1.7 mg/cm" i n 10,O The involvement of elements o t h e r than chromium i n d i c a t e s t h a t t h e chemicals leading t o corrosion i n these t e s t s were r e l a t i v e l y strong oxidants, rather than the components of t h e f u e l , It is f u r t h e r i n f e r r e d t h a t t h e losses due t o these i ri-by reactions were only sli a f f e c t e d by t h e test temperature,

The wall-thickmess losses calculated ora the basis of imiforan surface val are seen i n the Table 4,G t o be r e l a t i v e l y insignificant, l~bus,

~


a 0 0

80

.

br-i M

cu

M

M

0 0

4-

"--4

0

L cr)

Ln

0

r

0 0

cu

L n

rf

0

co

a -*

r-i

0

CI

Ln

r--.

0

a3 cu M

0.l

. .

(-t

h

0 rl

CD

0

8 Ln

h

0 I M

3 0

M

Ln-

czfF-1

o\


81

chxsrmium depletion such a6 occurred i n the l'j0O"F t e s t , i n s p i t e of being a small f r a c t i o n of the t o t a l metal loss, is t h e single most inportant consequence o f the corrosion process r e l a t i v e to mechanical-property e f f e c t s ,

4.2.1 Heat-~xchangerFabrication Modifications -were made on the design of -the primary heat exchanger o f the MSEE i n order t o improve %be i n t e g r i t y and inspectability of the tube-Lo-tube-sheet connections, A general discussion of t h e welded-and-

back-brazed design proposed f o r these j o i n t s has already been presentede6

The w e h h e t x d . portion o f the j o i n t shown i n Fig. 4.4 now has a contozzr Lo minimize weld "rolloverP~ i n the tube bore, a31 umlesirable candition t h a t constrEcts flow ma c l i c a t e s inspection o f the brazed join%* The new weld con%our w a s ed by positioning the welding Q i e c t m a e OV~X the outside cage o r an l i p instead of over the fayirag surface between the Z i p a d the tube. This method aT welding practically eliminates rollover while ill giving ade t*e weld penet m t i o n . The welding conditions that 11. provide the sirable penetmxkicran (one %ube-mll thickness) are listed i n Table 4.7'.

Previous Welding current,

Welding speed, in ./min Electrode dim, in, Are length, in.

I n e r t gas

45

83 1/16

PIT!sent

$5 8.5

1/16

0.050

Argon

Argon

Eactallography of welds made using these conditions revealed the def e c t shown i n Fig. 4.5, Since tbis d ect, did not i n t e r s e c t the surface amlard dye-penetrant. inspection. cs the wela, it ww not roma b The photomicrograph illustrates the adtrantage of brazing between tbe tube m d . t h e tube sheet t o provide E% backup s e d f o r a welded j o i n t t h a t canno% be inspected adequately.


82 U M C L A S S IF I E D ORNL-LR-DWG 65682R

TREPAN GROOVE WITH B R A Z I N G A I L OY RING

Fig.

4.4.

P r e s e n t Method of Joining.

(a) Before

and ( 6 ) after brazing and welding.

A L a r g e Pore in a Seal Weld, I l l u s t r a t i n g the Importance of Back B r a z i n g as a Backup Seal. 3 parts HCI, 2 p a r t s 1H20,1 part 10% CrO3* 30X.

Fig. 4.5. Etehant:

A.


83

The braze portion of t h e j o i n t was also modified t o ensure the presence of s u f f i c i e n t alloy t o completely fill the annulus and form a f i l l e t . Calculations showed that t h e trepan should be deepened t o aeeommodate t h i s amount of alloy. S p l i t rings of braze m e t & were used i n order t o simplify assembly, and t o ensure t h a t the brazing a U o y was retained in the trepan when the tube sheet was inverted t o make the seal welds Experiments were conaucted t o investigate t h e influence of variations i n rates of temperature rise during brazing, using t e s t asseniblies similar t o t h a t shown i n Fig. 4.6. Rates of 75, 150, and 225"Clhr were used, with no apparent variations i n brazed-joint quality. The degree of bonding along t h e 1-1/2-in, j o i n t length approached lo& i n every one o f 16 j o i n t s from four d i f f e r e n t t e s t assemblies sectioned t o d a t e ,

Fig. 4.6,

T y p i c a l Heat-Exchanger T e s t Assembly.


84

If a discontinuous f i l l e t should be tmint,entionally obtained upon b r a z i n g , it woula be very desirable Lo detxmGne the qual_ity of t h e B r a z e in the joint, Such a determination might e l i m i n a t e the need f o r plugging t h e tubes o r possibly rebrazing -the coql22te unit. Slnce previous work7 indicated t h a t ultra,sonic inspection techniques muld be capable of making such an eval.\mtIan, their use is being invesl5"gated 91

4,2,2 Rem-@@ Brazing The carditions neeessauPgr for remotely 1 - e j ~ i ~ h E . gR E piping components are being determined i n a cooperative program conducted by the Welding and BrazZng Graup of t h e Metals and Ceramics D i v i s i o n and the Remote Maintenance Group o f the Reactay DivisLon. This method of remotely brazing IN OR-^ pipe connections i s prapasca as a means f o r replacing r e a c t o r components i f t h e need should arise.

The sleeve-type j o i n t vhich appears .to be mast promising from t h e nestuaies conducted t o date evolved f l g o m the steps shs-tan in ~ i g 4 . ~ . s i g n ( b ) succeeded the o r i g i n a l design ( a ) because 2% eliminated prchlerns UNCLASSIFIED 0RNI.-LR-DWG 64750

SLEEVE JOIN^ WITH WIRE INSERT

( 0 )STRAIGHT

( b ) TAPERED JOINT WITH WIRE INSERT

( c ) TAPERED JOINT WITH D R A Z I N G A L L O Y COATING

( d ) TAPERED JOINT WITH SPOT-WELDED, BRAZING ALLOY, S H E E T INSERT

Fig. 4.7.

E v a l u a t i o n o f J o i n t D e s i g n s for R e m o t e B r a z i n g .


85

i n j o i n t fit-up.' Design ( c ) minimized t h e necessity of obtaining excell e n t alloy f l o w because a l l o y was already everywhere i n the j o i n t , The l a s t design (a) was a simplification of ( c ) , since it requlred only the cutting of the braze i n s e r t from brazing-alloy sheet and spot welding it t o -the j o i n t component.

An I.mersed pulse-echo ultrasonic technique was developed f o r t h e detection of unbonded areas i n t h e brazed tube-to-sleeve j o i n t , U l t r a design (a) revealed various sonic exmination of a j o i n t of' the uribonded areas Three longitudinal ographic sections were cut through the worst of these areas, an results were compared with t h e ultrasonic-examination znesul.ts. Correlation of t h e two methods was extremely good, giving t h e ultrasonic inspection technique a high degree of c r e d i b i l i t y . The measurements on these sections indicated that t h e bonding was between 80 and C3C$ of t h e j o i n t length. A t y p i c a l photomicrograph of a portion of one of these j o i n t s i s shown i n Fig* 4.8 and i l l u s trates t h e o v e r a l l adequacy of the remote bmze. Inspection of the j o i n t by remote methods w i l l be more diS'ficuJ_t. A conrbact ultrasonic technique would, not be f e a s i b l e because a frequency o f 25 Me (hence a very t h i n and f r a g i l e transducer) i s required t o resolve

Fig. 4.8.

A T y p i c a l Section of a Remote J o i n t B r a z e d with a 5 M i I Sheet-Alloy Insert. 87%. E t c h a n t : 3 p a r t s HCI, 2 p a r t s H,O, 1 part 10%CrOg.

t h i s portion i s a b o u t

Bonding on


86

r e f l e c t i o n s fmrn t h e brazed area, Also, it, would not be recamended Ynat t h e j o i n t be immersed i n 8 l i q u i d csuplant i n s i d e the r e a c t o r . Promising r e s u l t s have been obtained, however, i d t h a maditied immersion technique i n which a c o n t a i n e r f i l l e d with water w a s used t o couple sound i n t o t h e dry t e s t p i e c e through a rubber diaphragm, Mare development work wTi.th t h i s system i s necessary b e f o r e a conclusive a p p l i c a t i o n can be made. The 1300째F s h e a r - s t r e n g t h data p x s e n t c d i n a previous reporta showed that t h e INQR-8 j o i n t s brazed w . . t h the 82 Au--18 N i ( w t $) a l l o y exhTbited an average s h e a r s t r e n g t h of 18,100 p s i and a miniimrusn sf 12,500. S i m i l a r specimens ere t e s t e d a t room temn-pezlature (Table 4.8), andl t h e resul.ts i n d i c a t e average j o i n t s t r e n g t h s of over 70,000 p s i , Table IC. 8.

Miller-Peaslee Shear-Strength Data a t Room Temperntum

Base metal: Brazing a l l o y : Brazing temperature: Brazing t i m e 1 Brazing atmosphere : T e s t i n g atmosphere :

IHOR-8 82 AU-18 N i ( w t

1830"~

10 min Bel.iim Air

Brazing Gap

Nmber of Spc c imeti s

0

1

(Imils )

2

4)

Shear S t r e n g t h (Psi 1

1

71,1.00 '93,000

4

1

72,600

6

3

73,700

4.2.3

Welding of 'DiIOR-8

Assistance i n the s o l u t i o n of veld-cracking d i f f i c u l t i e s on i n i t i a l w ~ k d e r - ~ ~ a l i f i c a t ~ - it _e os txsi vas provided t o the shops t h a t w i l l fabm*xate mon-8 components. The i n i t i a l welds wcxqpc d e f i n i t e l y unsatisfactory, as de-teslmjned by bend t e s t s , Severe cracking was observed i n the root-bend specimens, and, i n some cases, t h e y fractu-r.ed i n h a l f . The m t e r i a l being used f o r these q u a l i f i c a t i o n t e s t s had s a t i s f a c t o r i l y met -the w e l d a b i l i t y requirements s p e c i f i e d i n P4ET-Wli-4 and t h e r e f o r e were considered t o possess adequate w e l d a b i l i t y f o r r e a c t o r c o n s t r u c t i o n .

From a =view of t h e s i t u a t i o n i - b appeared t h a t t h e major t r o u b l e w a s a s s o c i a t e d wi.t;h overheat,ing of t h e metal dilnring welding. r\?lodif<.caLion of t h e j o i n t design and strict a d h c r m c e t o t h e welding p~oeedure provided a n apparent s o l u t i o n t o t h e problem, Wclds are now being produced- which e x h i b i t no cracking i n root-bend t e s t s , and a t l e a s t three


87

welders have demnstmted c a p a b i l i t y f o r producing welds of this quality. Figure 4.9 illustrates the r o o t and side bends of welds mde befare and a d j u s t i n g the welding technique. The e a r l y weld exhibits fissures, while wel.ds in the l a t e r bend t e s t s are free fr indications.

Fig.

4.9.

INQR-8 Qualification Weld Bend T e s t s .

( a ) INOR-8

root and side-bend

s h o w i n g root cracking in w e l d area.

(b) INOR-8 root and side-bend t e s t s of an acceptable qualification weld, showing no c r a c k s

t e s t s of an unacceptable

or other detrimental signs.

qualification weld,


88

4.2h

Mechanical P r o p e r t i e s of ~OR-~issimi.1_ax.-Mc.tal Welds

Procedural s p e c i f i c a t i o n s f o r T3\JOR-8-to-stainless s t e e l (PS-35), INOW-8-t;o-nickel ( P S - ~ ~ Cand ) , TNOR-8-ts-Inconel. (PS-33) were prepared and q i n a l i f i c a t i o n tests weye completed Specimens were prepared from the qual..i.fi(3 ati o n -%es t we1 . d ~.for room- and el e v a t ed.-t, e w er a t u r e me chan ic a l tests All. j o i n t s were prepared by using the c o m e r c i a 1 nickel-base fiI1.e-r rrmi;ez*ial, P K I C C X E ~ 82, which i s vexy v e r s a t i l e i n the webaing of several disslmilar-metal coia'oinations 'The results of .the room-temperature tensile tests, using t r a n s v e r s e specimens, are presented in Table h.9. The room- and c l e v a t e d - t e r ~ ~ e r a t e~n~s~i lee - t e s t r e s u l t s f a r sampbes -taken from the ~OH-8-ta-type-3li-7-c-t;ainl@ss-steel joints a x e presented. in Tab1-e 4.10. T e s t s were perfoilnned at mom temperatuiy, 1000"F, m d 130Q째F, an transverse samples o f t h i s joint. A l l these welds exhibited satisfac-tcn:x*y i n t e g r i t y , and a l l failux-s occurred o u t s i d e the weld-metal area in -the nickel, Inconcl., or stainless s t e e l base metal. I,

e

Table

4,9.

Eesults of Room-Tenperatxre Tests on Dissimilar-Metal Welds

Tensile Strcn&s. (Psi>

Yield Strength (psi)

Elongation

($ in 2 in.)

22

22

9 8


39

Elevated-temperature creep t e s t s on transverse s q l e s from the XNOR-$--t;o-typ~-347-stainless-s-teel welds were tested at 1000째F ana 1200째F, and the r e s u l t s are shown i n Table 4.1.1. Preliminary examination of the specimens indicates t h a t a11 failures occurred a t t h e stainless steelInco-82 interface, V e r y l i t t l e s t r a i n , as indicated by reauction i n area, was seen i n these specimens. Those specimens which ruptumd on loading aid so i n the type 304 E;%ainless s t e e l - b a s e matexlial. Table IC. 11. Elevated-Temperature Creep Tests of Ir\roR-8-to-Type-347S t a i n l e s s - S t e e l Dissimilar Welds, Using Tnco-82 F i l l e r Material

11-13 6 7 8

1000 1000

1000

40,000-lO~,000

Ruptured on loading

55, 50, 000

186

93113

1200

39, ~ 0 35 , 000 29, ooo

II,

1200

25, OOQ

222

12

1200

22,000

320

9 10

1200

1200

0

14

128

k . 3 MECH.AJIJTCAS; PROPERTIES OF 1.D013-8 A cursory examination has been made o f %he creep p r o p e r t i e s of c a s t INOE-~. The results of t h e i n v e s t i g a t i o n a r e shown in Table 4.12.

I n comparing t h e t e s t results with d a t a f o r wrought TNOR-8 (ref lo), it was observed t h a t rupture times were considerably s h o r t e r and. t h a t minimum creep r a t e s were appreciably higher forp c a s t material. The data p o i n t s are too f e w t o permit a q u m t i t a t - i v e evaluation of these propert i e s , b u t it appears t h a t the difference i s roughly equivalent t o r a i s i n g the t e s t temperature 1 0 0 " ~ .

A sample of CCB-X graphite, t y p i c a l of t h e E R E material., w a s evaluated with respect t o t h e requirements o f t h e Molten-Salt Reactor E x p e r b e n t . TZ-re sample was cut; from. a t r e a t e d and f u l l y gSrap3nLtized 4-izz,-dia cylinder.

Microscopic examination of a polished section from appraximately the central longitudinal axis of' the CGB-X sample indicated "chat the pore s t r u c t u r e w a s not uniformbut t h a t pores were l a r g e r i n some zones than


90

Ta'n1.e 1-/-. 12

a Cast-Metal Creep Data.

30,ooo

1100

30,ooo

3.3 x 102,6 x lo-'

816.0 Rb 0" 2087 1-38" 0 H

12 000

5.4 x UI-"

205 8

1.bO0

20,000

l.200

20,000

I200

1200

J

20,000

1,300 1300

12,000

2.0 x lo-3

2 , o x 10-O

11.8 x

7(.1 x

l.o-3

1400

8,ooo

1.9 x io-* 2,5 x io-"

1500

5,000

7.6

3,000

l.4 x

1.400

3-29 000

1.500

8,000

1650 1-65 0

5,000

3,000

1800

2.1..

x lo-'

3.2 x 18-l

5.0 x

'-c30.0 R

D 3-98* 0 H '71r-190 I? 2-98 0 R D 2087 R 162 9

494

H

119 * 7 R 3"O 3 H 0

329

R

aAnnealed a t 2150째F f a r 112 hr in hydrogen p r i o r

t o testing.

R' C

D

1=

ruptured-.

=

discontinued.

i n o t h e r s . The general s t r u c t u r e of t h e CGB-X g r a p h i t e appeared t o be intermediabe between t h a t of c q c r l m e n t a l g r a p h i t e s ( g r a d e s B - l and S-4 LE^) p r e v i o u s l y t e s t e d . l1 A me~~cury-imn~regn%tion test; used in l i e u of' a molten-salt permeation t e s t and ouLlined i n t h e S p e c i f i c a t i o n for Graphite B a r f a r Nuclear Rea c t o r s , MEl'-AW-k, ms conducted 0x1 an evacuated, t r a n s v e r s e s e c t i o n f m m CGB-X graphite. T h i s specimen gained 0,44$by w e i g h t \&en e q o s e d -to mercury f o r 20 hr a t room temperature under" a pressure of 4'70 p s i g o m e s p e c i f i e d m i r m ; u i n i i m i t , i.s 3.5%.


91

rzccess€blc pore spaces was indicated by t h e d i f f e r e n t degrees of salt permeation i n individual specimens. The resistance of CGB-X. graphite t o permeation by mol-ten f l u o r i d e w a s as goad as t h a t of b e s t experimentaL graphite t e s t e d (grade B - l ) , ” despite t h e low bulk density of 1.83 g/ec. A l l t h e previous grades t h a t met MSRE permeation requirements had bulk d e n s i t i e s g r e a t e r than 1.87 g/cc, Apparently, CGB-X graphite w a s fabricated i n such a manner as t o produce maxim m o u n t s of (1) small-diameter entrances t o accessible pores and ( 2 ) closed pores.

In an attempt t o determine salt d i s t r i b u t i o n i n t h e graphite, radiographs were made of t h i n sections from the salt-permeated specimens of the standard f l u o r i d e salt-screening t e s t reported above. The t h i n sections were mehined t;ra;nsversely and longitudinally from specimens having t h e smallest and g r e a t e s t amounts of salt permeation. “he specimen with t h e l e a s t permeation had a small, s c a t t e r e d amount of salt at t h e o r i g i n a l surfaces, with a maximum penetration below t h e surface of approximately 0.01 i n . The sections from t h e specimen t h a t haa t h e g r e a t e r mow1 of pemea t i o n had t h e same type of salt d i s t r i b u t i o n except f o r t h r e e small pockets of s a l t , Two were a t the s u r f a c e s and penetrated to depths o f 0.02 and 0.04 tn. The t h i r d po e t of salt was located i n the i n t e r i o r of the t h i n section, with t h e deepest s a l t penetration of 0.18 i n , W i t h . t h e exception of t h e pockets of salt, the salt d i s t r i b u t i o n was similar t o t h a t previously reporteedl2 f o r grade B-1, t h e b e s t experimental graphi t e t h a t has been t e s t e d , This indicates t h a t t h e heterogeneity of t h e pores is not severe. It would be expected t h a t this can be reduced o r eliminated i n t h e f a b r i cation of the smaller M;RE graphite bars. The quantity o f s a l t t h a t m y penetrate t h e accessible pores of graphite i s a function of pore-size d i s t r i b u t i o n and t h e pore-entrance s i z e d i s t r i b u t i o n , The l i m i t i n g pore-entrance diameter through which salt can be forced f o r a, given pressure, s a l t surface tension, and wetting angle can be calculated by a r e l a t i o n c i t e d by Washbum. 13 To evaluate t h e s u s c e p t i b i l i t y t o salt penetration f o r CGB-X graphite, the pore-entrance-diameter d i s t r i b u t i o n s of the accessible pores of two specimens were determined by using a mercwy porosimeter. The data indicated t h a t a t approximately 65 psig, t h e maxirmun operating pressure expected i n t h e E R E , 0.12% of t bulk voZwne of the graphite should be permeated by s a l t . (Under t h e conditions o f a standad fluoride screening permeation t e s t , 0.16% of t h e bulk volune of the graphite should be permeated )

The pore-entrance-diameter d i s t r i b u t i o n indicated %hat most of the accessible pores of CGB-X gyaphite had entrance diameters l e s s than 0.34 Since t h e o r e t i c a l l y , the molten-salt pressure would have t o be 265 p.


92

p i g to f o r c e s a l t thmugh sk O.$+ capillary, t h e prcssurc r e q u i r e d t o the major porkion o f the acc3es;sihl.e pores w c m l d have t o be permeate g r e a t e r than 265 psigm These are q u a l i t a t i v e d a t a because of t h e limited. sampling (only two specirnens ) of the graphiteJ .LIE i r i ~ ~ ~ e r elimitakions nt of the mercury porosimeter, t h e lack af a c c u r a t e d a t a on t h e surface t e n s i o n of t h e salt, and the s a l t - t o - g r a p h i t e w e t t i n g angle e

Howeve-P, t h e r e s u l t s should r e p r e s e n t the worst conditions, because the specimens were small and oriented i n such a way as t o expose t h e maxiThe overall. volume permeated by moltden rmfl-n quantity of accessibl..e p o r e s , f l u o r i d e s in a f'uLL-scale PISRE g r a p h i t e bar should be less than -the q u a l i -Lative, t h e o r t i c a l . valu,es above because of (1)b e t t e r pare-space o r i e n t a t i o n i n the bar and (2) because the shal.10~~ permeation by s a l t s as desex-ibed above i n the raxi.Iographic ex;l;Minations woul.d h e " d i l u t e d " by t h e large s a l t - f r e e core of the graphite b a r .

4.4.1

Comparison of t h e P e m e a t i o n of Graphite by Mercury and Mol ten E'l-uorides

The permeation of a par%icular grac3.e of g r a p h i t r by a molten s a l t i s the p r e f e r r e d my t o d e t e - m h e the s u i t a b i l i t y of the g r a p h i t e *Lo be used in t h e special conditions found i n a molten-salt r w c t o r . However, th-Is woul4 be a somewhat ci_a-Mhe~-so,meq u a l i t y - c o n t r o l test for a g r a p h i t e vendor. A rnercuiy-impregnation test w a s pyaposed as a method t h a t could be related Cad]c u l a t i o n s showed t h a t Lo t h e ma&ten-salt permeation of the graphi Le a 452-psig p r e s s u r e on mercury a t room iem-pei*atuz*eshoul_d cause it Lo penmate graphi Le t o t h e same e x t e n t as docs IJiF-ReF2-ThF4-eTF4 (67-18.5llr-0.5 mole $) salt at 150 psig and a t 1.300"E'i n t h e standard salt-pez-meatiion screening Lest. T e s t s have been niade with various grades of graphi-Le to e v a l u a t e t h e p e m e a b i l i t y rc1at;ionshi.p 'octveen the mercury and salt, (I

In tinesc t e s t s , the specimens veri7 evacuated to 50 p Hg p r i o r t o being sixbme-rged i n mercury at, room temperature; p r e s s u r e of 1152psig w a s appl-ied and held f o r 20 h r , SimilaPly, p i e c e s of the specimens w e ~ esubj e c t e d to the s t a n d a d fluoride-salt-pePmeation screening t e s t . The results are sixmarized i n Table 4.13. Comparison o f the bulk vol~umes of 'che d i f f e r e n t grades of g-raphitc permeated i n d i c a t e d t h a t the r n e r c u ~ - i ~ r ~ ~ it ae s~t i was o ~ iapproximately e q u i v a l e n t t o t h a t of' t h e standard screening t e s t , 'l%e g r e a t e s t &iffex-cnce betsaecri the percentcage of t h e bulk vol-me permeated. by rnercwiy or" by molten salt, was observed i n CGB-X g r a p h i t e . Hcre mercuqy took up mu,^ voliime than the molten salt,. It i s believed Chat this may be due t o t h e h e t e r o g e n e i t y of the pore d i s t r i b u t i o n of t h i s grade and/or Ymat the surf a c e t e n s i o n assumed f o r t h e molten salt, i s 1ot.r.

In t h e S p e c i f i c a t i o n f o r Graphite B a r for Nuclear lieactors, P@iY-IIW-T (5-lO-61), tile mercury pressure r e q u i r e d i s 2170 p i g , and t h z nnZwi.rmm

pePYnissible weight gain i n Yne g r a p h i t e specimen due: t o me-rcuxy impregn a t i o n i s 3.576. On t h i s basis o n l y grad-cs B-l and CGB-X would meet .the mercury- reqixirememnZ, of the s p c c i f icaLian.


93

Table

4.13. Comparison af .the Permeations by Mercury and Molten Fluorides I n t o Various Grades of Graphite

Test Conditions :a Molten Saltb Temperature, "F: 1300 T e s t period, hr:

PressuTe, p s i g :

Merctnry

70

100

20

452

150

Bulk v01me Grade of

Gxaphite

Dimensions o f Specimens ( i n . )"

Salt

Mercury 0 . og3

0.05

0.06

0.6 0.8

0.7 0.9 2.8"

3.2" 5 .23 14 4" Q

Weight Cain of Graphite Permeated with Mercuq ($1


94


95

*ether the oxygen 0% t h e Z N 2 could be replaced, bgr fluorine, This would reduce the refractoriness of the sludge and make it easier to r e ~ n ~ vf reo m the ppump bowl.

The conversion of the refractory oxide sludge t o t h e flusride form as descrLbe8. above should. permit i t s removal- from the loop by t h e use aP B. mlt,en-fluoride flush salt

.

M. Blood, S o l u b i l i t y and S t a b i l i t y aP S t r u c t u r a l Metal Difluorides i n ~%oLtenS a l t ?fixtures, O ~ I CF-61-5-4, L p 23 (Sept. 21, 1961).

2,

C,

6.

If. G o MacPherson P 63-65

7.

K. V. Cook and R. W. MeClm

9.

The htematiional Nickel Co, , Inconel Welding Electrode "182''and Inconel F i l l e r Metal qT821t (April lg6l).


om-3122, p 93.

Priva%e cornmmica.tian from J. 1;. Crstaley.


5.1

I W T W C T P O N OF FTSSIONENG ETIEL WITH GWITCTE:

Since MSFU3 fiel- and graphike a r e chemically i n e r t and themodynmic a l l y e o q a t i b l e , w i t h respect t o each other, i n t h e absence of radiation, rel.atively extreme exposure conditions were used t o accentuate t h e e f f e c t s of f i s s i o n i n g i n t h e i r r a d i a t i o n L e s t OWL-MTR-47-3.3- A power density of 206 W/GC was developed by adjusting t h e concentration of f u l l y enriched U2""F4 t o 1.5 mole $ instead of the <0.3 mole $ t o be used in the MSRE. Con.sequently the four 3-week cycles i n the MTR, accumulating 1580 h r a t power, gave a, burnup of 8.5% i n comparison w i t h t h e 6% per year a n t i c i pated f a r the MSRE a t 10 Mw. Because so l i t t l e i s known about w h y some molten salts w e t graphite

and some do not, and about changes i n i n t e r f a c i a l behavior t h a t might occur i n a f i s s i o n i n g fuel, t h e primary purpose of" t h e experiment was t o t e l l whether or not permeation o f the graphite by f i e 1 w a s t o be e q e c t e d . Out-of-pile tests had indicated t h a t it was not and t h a t i n clean systems

penetration occurred only i n response to pressure i n t h e nx-mner expected from t h e pore spectrum of the graphite and t h e surface tension of t h e nonwetting liquid.

The contact angle o f t h e f'uelmeniscus was chosen as a convenient and r e l i a b l e index o f possible changes i n wetting. A v e r t i c a l blade of graphite dipping i n t o a pool of f'uel i n a graphite boat allowed room i n the same capsule f o r coupons o f INOR-8,py~oly-ticgraphite, and molybdenum. !Ihe choice of a boat with a dished inside contour w a s influenced by the need f o r a container which could accomodate freeze-thaw cycles without stress, Capsules in previous e e r h e n t s (47-1, 47-2)z had, ruptured from freeze-thaw cycles. A s t e p along a portion of t h e length of the bottom o r submerged edge of the blade extended t o within 1/16 in. of the f l o o r of the boat; normal f u e l , with a surface tension of almost 200 dyneslcm, doers not penetrate such a sm21 crevice and thus another device f o r det,ectiing wetting behavior was provided.

5.1.1

Description of Experiment

As described elsewhere i n greater detail,3 each of four sealed I capsules, depicted i n Fig, 5.1, contained a 3/16-in. -thick R-0025 graphite blade (7.3 g ) dipping i n t o a shallow pool of f i e 1 (11.4 g o r 5 c c ) held i n a graphite boat 3 i n . long a 1-1/4 in. wide. Two of t h e boats were o f R-0025 graphite (75 g ) > a r e l a t i v e l y impervious grade, and t h e other


98 UNCLASSIFIED ORNL-LR-DWG 56754

METAL SPECIMENS ,

MESAL SPECIMENS,

MOLTENSA1.T FUEL

f--

1

GRAPHITE BODY/

Fig. 5.1.

lhO \L, , , , ,

PERMFARll I T Y

GRAPHITE

'THERMOCOUPLE

WE1.L

MSRE Graphite-Fuel Capsule T e s t OF?Nl--M~l*R-47-3.

two were of AGOT graphite (66 g) which had been p m h p r e p a t e d w i t h 9 g of f u e l . 19ie capsu'les, horizontally ali,gned in a v c r t i c a l diamond array, were contained in a sodium b a t h which served as a hen% transfer rnedii1-m. rIlzemocoupl.e wells, which. were a f f i x e d through one end of each capsul-e, measured the graphite tcrfiperatwes at, EL p o i n t rpoir_ghly midway between the bottom of the f i e 1 m d *the capsule wall.. C C X Q O ~ S of INOR-8, p ~ o l y t i c g r a p h i t e , and molybdenum were a t t a c h e d to the bladc and were par-LLa1l.y submerged i n t h e fuel.


99

did occur in the in-pile capsules. The composition of? the vapor seems t o be s l i g h t l y t o the BeFZ-rich side of' t h e stoichiometry f o r M;;BeF4, and al.tha@ the vapor i s much poorer i n quaclrivalent cations than the liquid fuel, Z r F 4 i s present perhaps t o an extent of a f e w t e n t h s of a percent, To a very good approximation, d i s t i l l a t i o n of t h e fie1 corresponds If an estimated 2.5 g were l a s t from t h e l i q t o t h e removal o f Zi.&M?.+ wid fie1 i n capsules such as 15 o r 16, leaving 8.9 g of a f i e l , t h e ZiF-BeF,-ZrF,-ThF,-U4 proportions would have been a l t e r e d from 69,5-235-1-1.5 mole $ t o about 7O-l7-7.5-l.5-2 mole $I. Several e f f e c t s of the d i s t i l l a t i o n were noted. The condensation occurred predominantly a t cool metal walls, firmly e walls in a manner that required t h a t cementing t h e boats to t h e cap t h e walls be sawed off i n s-tsi t o open t h e capsules. This involved som s l i g h t mechanical damage t o t h e contents. Enough d i s t i l l e d salt was l o s t md f'uel s a l t scattered t o prevent obtaining a s a t i s f a c t o r y mater i a l balance on e i t h e r t h e m o d i s t i l l e d QT t h e amount remining in t h e f i e 1 pool, Some condensation occurred i n cooler p o r t s of t h e graphite and precluded i n t e r p r e t a t i o n af the weight changes of the graphite i n terms o f l i q u i d permeation. 'Irhe concomitant change i n f u e l composition engendered a c r y s t a l l i z a t i o n path with L i F as t h e primary phase. A considerable amount of t h e distilled salt w a s found i n t h e forn of condensed d r o p l e t s , resembling pearls, t h a t evidently dislodged from the c a p u l - e walls and fell onto o r among t h e broken pieces of f r o z e n f i e L

5.1.2

Dismantling of In-Pile Assembly

After i r r a d i a t i o n was cmpleted, on J u l y 27, l$1, the i n - p i l e assemb l y was shipped t o t h e 33aZ;Z;elle Memorial I n s t i t u t e Hot Cell. F a c i l i t y f o r t l i n g . The outer water jacket was sawed o f f , and t h e s~diurnt a n k wits cut by a machining device which avoided tumbling the capsule contents. The sodium was melted under mineral o i l , and t h e capsule assembly was l i f t e d out. m e capsules appeared t o be i n good condition. The individual capsules were cut loose from t sodium-tank bulkhead and. t h e dosimeter wires were removed, Micrometer measurements o f t h e outssi&e diameters of t h e capsules showed no change from o r i g i n a l dimensions. No bulging, bowing, nor d i s t o r t i o n was noticeable. Af%er d r i l l i n g for gas sampling, each capsule was opened by c u t t i n g through -the welds on t h e recessed end caps with a specially designed c u t t e r i n which the capsule was clamped i n a stationary v i s e and the c u t t i n g t o o l revolved around t h e work, The end caps were pried o f f w-ith the help of a prying bar and a split c o l l a r w i t h a tongue seating in the groove milled

by the c u t t e r .

As mentioned previously, t h e graphite boats were sealed t i g h t l y i n t o the Xr\rOR-8 capsules by salt which had v o l a t i l i z e d i n t o t h e narrow space between them; therefore, t h e boats could not be pushed out of t h e capsule. A remotely operable c u t t i n g m c h h e w a s designed and built which permitted t h e capsule t o be clmrped horizontally on a milling table and t o be moved


100

past a side-milling c u t t e r t u r n i n g at low speed, Fhch c y l i n d r i c a l capsule wall was cut longitvldinally i n t o t h e e sections which then were pried loose, exposing t h e graphite boatn

Becausc of t h e m 1 convection in t h e sodium ba'r;h i n which the caps~il~es were imnersed, t h e upper eapsuIe, No. 3, operated. at higher tcarrperatu-es than i t s duplicate, NO. 8, which was at the battorz o f -the diamond array. Capsules 15 m d 16 were cooler because of the absence of preinipregnated f i e 1 in t h c boat. The operating temperatures are given i n Table 5.1. "be temperatures ran 40 t o 45% higher I n i t i a l - l y t h a n a t the end; almost half the decrease accwred i n t h e first 70 h r , possibly as a cansequence o f improved heat conduction as salt-vapor condensate accmulatecl. 5.n t h e gas gag betweern the graphite and t h e cassule wall... The nominal v s l m ~of: t h e gas space in t h e seal-cd capsules, nat, counti n g about k.5: cc o f voids i n %he p a p h i % , ms ahout 16 c c ; thc i n i t i a l . mount of capsule gas, though not hewn, vas es-@ima-t;ed a s about 17 cc (STY) by assuming an average gas temperalure of 50% at the instant of

sealingc

W s smples were obtained by d r i l l i n g the end of the capsules i n an evacuated chamber which enclosed both the driilli-ng apparatus a d the capsule. Before d r i l l i n g was started, leak rates T T ~ T T reduced to acceptably 3 . o ~va,l..ues. The released gas m.s transferred by a Toepler pump a d an assaciated manifold. i n t o sample bul..bs equipped w i t h " b ~ e a k - s e a l ."~ .(


L

Table 5.1

Capsule

Number

15

16

Time-Averaged Operating Temperatures and Identification of IrraSliated C ~ p s u l e s

Graphite“

Pretreatment

3-0025

2000’~ in vaeum

8

AGOT

Pre impregnat ed with 9 Q of fie1

3

*&GOT

Prehpregiated With 9 Q of f u e l

$:

Average Operating Temperatwe (OC) Fuel, Max. Blade-Fuelb Boat-Fuelb Thermocouple (estimated) (estimated) (estimated) in Graphite

$35

79

“x-0025 graphite is relatively impervious compared to AWT. %terface

temperatures; no allowance fer films at the f i e 1 interface was m3e.

730

710

1


102 Table 5.2

O f f - G i s Compositions in V o l ~ m i ePercent

Averaged values from mass spectrometric resu.1.I;~obtained a t ORNL armd BM

15

1.0

5.8h

80.6

9.85

0.012

~ 4 - o 0.04

2.29

16

19

22.75

61.45

8.73

0.003

1.14.

4.73

8

7

11.82

0.11

4.20

17

4.59

76.9

2-32

3

5.36

1.62

0.67

11.43

0.10

0.g

Controld

10

7.38

O.a_*;p

5.54

79.6

87

<0.0003

1.96

1.'78

'Argon w a s supplied as a blanket gas f o r the weI.ding arc used in a helium-atmosphere glove box t o seal the capsul.es. 'The control- was heated- through cycles roughly corresponding t o t h e thennocouple reading vs .Lime f o r capsules 1-5 and 16.


103

prcswna'uI-y graphite machining dust, a c c m d a t e d on. t h e surface o f the fuel.. ingot. In any case the conswnipt,ion reaction did not proceed rapidly enough t o r e s t o r e equilibrium conditions. A possible reaction mechanism which accounts Tar the faster cons tion r a t e i n t h e capsules t h a t contained -the prepemeated boats proposes %hat CF4 r e a c t s mast rapidly by means of three-phase contact ( g a s , graphite, and f u e l ) which allows a heterogeneous reaction; t h i s J-eczns on h ~ ~ the f a c t t h a t t h e reduction of CF4 even by "wared.uuced" fuel i s t i c a l l y favored, Regions of three-phase contact were much more abundant i n t h e prepermeated boats. The higher temperature of the fuel-graphite interfaces i n t h e prepemeated cases was azlsa sf impor-tmce i n accelerating t h e consumption reaction. ~~~~~~~~~

The consumption of CE4 by dissolution i n the f u e l and subsequent homogeneous reaction is probably slow, but even for t h i s me~hani~m, t h e area o f fuel-gas i n t e r f a c e w a s greater la the prepemeatud boats.

The point of concern out the CF4 generation. i s t h e rernsvrtl of fluar i d e ions from the fuel-the reduction o f the f u e l as CF4 i s carried amyi n t h e off-gas, I T t h i s removal of fluoriehc occurs in. a s merged graphite l i k e e MZ;PXE, the I-IIQS~ reaclily recogpi of' t h e reduction waul e -the conversion o f W4 -to W3. t i o n of W3 increases, t h e disproportionation reaction 4 leads t o the formation o f metallic wmium. a l l o y s with the container and a l s o to the fomat:i-on of uranium carbid.es by reaction w i t h p a p h i t e e Although the presence of a rneasurab1.e a.rmUn$l o f reducing power in the f u e l from t h e capsules has no% been s a t i s f a c t o r i l y confirmed, it i s instsuet i v e t o compare t h e amounts of CF4 accumulating i n the ~apsul.eson the basis of the cal@Uatedpercentage conversion o f lJB'* to W3 in the f u e l , This wns done i n Table 5.3; no allowance has been mde far =the anticipated reduction due to the f a c t t h a t the f i s s i o n i n g process produces a, t o t a l ca2;ion valence requhwnent greater than c a n be matched by t h e faur cquivalen2;s of fl.uorides from a gram atom ST fissioned uranium*

The missing xenon has no% been loca-ted, but there i s 8 p o s s i b i l i t y t h a t it was somehow s e l e c t i v e l y absorbed i n some 4 f e e t of gum rubber tubing t h a t was used i n t h e gas-collecting system. A l s o an attempt f s u n d e m y t o analyze the irradiated graphZt;e for xenon, b u t since %he parts have been exposed to a i r several months there is small p r o b a b i l i t y t h a t the, graphite analyses w i l l rocsolve the question. !â‚ŹThere were Bfgnifidifferences i n t h e isotopic d i s t r i b u t i o n of the xenon recovered from t h e POW @ZL~Sld..E?S.

c

~


104

23.5

0.157

2.32

21.1

0.49

15

9.8

1.62

8.3

16

16.5

8.73

20.5

1.79

9.1"

8

C

0.45

0.67

3

.41

I..

According t o stoichiometry of klE4 + C ---> CF* + IJF3> including impregnated UF4 i n c a l c u l a t i o n .

3

11.43

23.5

2.69

2.86

8

&a. 82

21.1

2.52

2.83

I..5

0.01.2

16.fs

0.0020

le59

1-6

0 007

20.5

0 . QO1-4

I.. 6.1


105


106

m-lge;ma-t;ea

GXYLPI~X - - .m e

I X I ~ K L I D ~ X T ~ @ ~ " ~ C Imaphibte

seemed

'CO

not been penetrated by the fbel, althouyh there was considerable radioact i v i t y present The principal. gamma a c t i v i t y w a s foruad t o be Zr-.Nbg5 (frequently 106 d i s min-I- mg-l), which appeared t o have been dispersed. by distillation of the fuel; relatively high readAngs in the lower-temperature portions of t h e graphite were fairly cornone The beta a c t i v i t y , which was roughly paralleled by the Ru m3-xo6 a c t i x i t y generally diminisbed g ~ a d u a l l y with distance from t h e r U e 1 interface; t h e r e were shaiT lines on -the autoradiographs i n d i c a t i v e of pronouurnced a c t i v i t y at i n t e r f a c e s , stranger f o r liquid t h a n for vapor exposwe. 1___..

,

O n the 'nasi-s of experience in an e a r l i e r t e s t 5 wiZ;'n fuel t h a t did not contain ~ r ~ C4 S, ' ~m~d csl"7 activity was e q e c t e d i n the graphite a t per~iaps1-05d i s mrin-1- m g - 1 . Surprisingly, the cesi-uxn a c t i v ' t y cippears to have been swamped; no111 m.s found, "Lhough 109 d i s ~ L z z mg - ~ for cesium should have been detectable. The autoradiographs had a p a i q y appearance, as though t h e a c t i v i t y had a c c w d a t e d in f i n e l y dispersed but relatively large pores.

-f

Preiapregnated C - r a p h i t --With ~~ t h e exception o f tbbe absence of Ce'44 'and o f ruthenium a c t i v i t y , there were no recognizable abtasml.i6t:EesI n the spectrum of t h e preimpregmted graphite* Both the b e t a and %he 7395 gtxana a c t i v i t y were uniformly present at more -tkr(m 100 t i m e s the i n t e n s i t y encountered w i t h the m:'uapre$nzatcd graphite Attempts t o understand t h e failure to f i n d Cex44 or ruthenium. have been i n i t i a t e d .

.

5.1.7

T e s t E f f e c t s on Coupons

Metrzllogaphic examinations of coupons on 1~013-8, pyrolytic, graphite, and mnskybdenm, which were attached to t h e blade, have Z Z O ~been completed, but v i s u a l inspection revealed t h a t the mol-ybdenim had been severely corroded, having l o s t about h a l f i t s thickness while t h e other specimens appewed unaffec-ted, SNOB-8 wirer; binding t h e coupons to t h e blade had becane brittle.

5.1.8

~ s - E k f f e c t s on

mea.


107

Chemical Analyses QSI.

Because of the bad e f f e c t s wMeh a s t r o n g l y reduced m e 1 would have IGRE operatlon, the most irrapox%ant question posed f o r chemical whether or not the f u e l was reduced Lo the extent inplied by t h e m o m t Although the feasibility of such a d e t e m i n a t i s n w a s was made and is s t i l l in progress.

"a preserve t h e reducing power of t h e samples, single ch mmts representing a complete cross section of the f u e l ipags-1; to t h e dissolver without grind g. Facil-i-ties f o r grind d transferring powder in an i n e r t a-t;;mosphe ailable, but complete dissolution of the s here was a-btaira. 1-e i n about 4. hr. Dissolution i n RCIder a n atmosphere of helium or argon gave an evalutisna o m t of which was ascertained by m8s spectrometry of

Resulks from dissolutions in the new apparatus are not yet a v a i h b k ; t h e earlier r e s u l t s can be t e n t a t i v e l y interpreted as indicating t h a t only evidence of reduced species, i n capsz;ike 14 (two samples) d this i s not certain. W5. ion of 0.1% CH* in the gas from capsule 15, f o r which duplication has not y e t been attempted, none o f s scwrples gav-e dleZ;eet;abI.e aown-ts of hydrocrtrbam ( l i m i t of detec.01$) which w e r e sought as evidence sf t h e presence 09 c:arbidcsm


108

'x?le? results 09 .the anal-yses P a r major constituents, shown i n Table did not provide a good basis ~ Q S "conclusions regarding the oveml-L conrposltion of the ingots and- suggested. t h a t rather extensive segregation has ostcmrea, six E K X ~ s ~ I . E ? giving ?s, a t o t a l of - t w e ~ ~ are e , scheauiedi. for dissolution, but, t h e results are not y e t available.

5.5,

S i n c e t h e scatter of t h e results in Table

5.5 w a s somewhat larger w a s i n i t i a t e d t o validate the h o t - c e l l procedures f o r uranium analysis, using reference s m p 1 ~ sfrom a lazge batch of n o m 1 (usnenricbed) fuel.. A fuel. which on the basis of previous routine analyses on t h r e e d i f f e r e n t dates was believed to contain 5.8 f 0.2% uranium (mean deviation) was used for reference s m q l e s that were reported by routine f a c i l i t i e s t o contain 5 57% uranium asad by h o t - c e l l procedures to contain 5.8 k O.l$ urmium. me sslu.tion I?Mch ms used In obtai,maing the 5.57$ value in t h e routine f a c i l i t i e s g a ~ ea v a h e o f 5.7% when. cheeked at the hot-cell site. Y%e implied bias, i f w-,between routine an& h a t - c e l l analyses f a r uranium vas regardecl as negligible f o r ingot s a u ~ l e so f present i n t e r e s t than e q e e t e d , a pro=

.

e

Results of spectrographic analyses f o r corrosion. products are shown in Z'ab3.e 5.6. %'he chromium results, i f interpreted as Cr2+, were comarab l e with, though s l i g h t l y hi&er than, equilibrium values that have been fouzzd f o r t h e isothermal corrosion sf I N O R - ~ i n t h e absence of i r r a d i a a t i o n ; they at i-eas.t; ZKI order of mmi%vadeh i g ~ ~t em ~. Q ~ C Lf a ~r a~ tfreaumvt fu~l En the absence of i r r a d i a t i o n , INOR-8 corrosion equilLbriurnl conccnt r a t i o n s f o r Fez'" any greater than 2C$ aP the Cy2+ c o ~ e n t ~ ~have ~ t ibeen ~ n questioned; t h e i r o n concentrations i n Table 5.6 were so hi@ t h a t e f f o r t s to establish t h e p a s s i b i l i t y af accid-ental contamination are indicated, As far as t h e d i r e c t inteqxrelation of the analytical td.a%a on CF4 mid OR c~rrosiomnproducts SO far axailable were concerned, -the f i s s i o n i n g process was Qxidizing. According t o f i s s i o n yields t h e fissioning process, even i f s l i g ~ x t , ~oxidizing, _y is not s u f f i c i e n t l y so ( f o r 10% b m ~ ~ ~ p ) to correspond t o the mmun.t o f CF, found i.n capsules 15 and- l&

,


109

Tbble 5.5 Preliminary Results of Chemical, Analysis of Fuel Salt from MSRE T e s t

ORm-m-4'9-3

Original batchc

6.08

4.57

Uni.rrad iated Controld

10.4

5-1

11.1

4.8f

(7.77)

(13.3)

(3.3)

5-17

11.Q

4.5

h

10.8

4.8

h

14.5

5.4

Capsule 3

8.6

4.1

Capsule 3A

--h

11..5

11.3

3.2-3.5

~ a p s u l e8

7.59

Pa

Capsule 15

a

11..8

4.8

Spectrographic determimaat ion.

@ ~ n a l y s - iobtained s fram original preparation.

dAnalysis of portion of i n g a t f r m mirradiated control saaple,, ePol-arographic analysis of uranium (the other uranim analyses were by t h e coulometric method).

%%.lculated approximate camposition based on distillation a f 2.5 g of LipBeF4 from. o r i g i n a l 11.4 g sf f u e l s a l t and lC$ bumup of uranim.. h P r c c i p i t a t i o n occurred i n o r i g i n a l s o l u t i o n before analyses were completedt


-

a

Cr

0.064

0.077

0.06

0.05

Fe

0.095

0.12

0.21

0.l.j

Mn

<(0.(314)a < ( O * O K 3 )

MQ

<(O.l-l.)

Ni

40.14)

<(0.007)

<(0.006)

<(0.1.1")

<(O.OS>

<(().OS)

40.13)

<(0.07)

<(0.06)

<(----) i n d i c a t e s below the detectable limit shown.

5.1.9

Conclusions

'pane nonwetting behavior of f i s s i o n i n g f u e l t o w ~ dgraphite has been demonstrated, and the nature af radiation e f f e c t s which m i g h t a.rise d w i n g MSKE o p ~ r a - t ; i ~ has n been disclosed.

Only the evolu-hion of @Fapromises t o be a p o t e n t i a l l y sei-iaus problem, and t h i s e f f e c t m y have been p e a t I - y amxntuated by t h e boat-,md-pool conf i g u r a t i o n chosen f o r ZIhc experiment. In any case the gas oceupyimag t h e voids in g r a p h i t e exposed Lo f i s s i o n i n g f u e l w i l l contain several percent o f CF4; in r e a c t o r aperation, however, -the graph5v.%ei s submerged, f ~ m i s h favorable E L I T P ~ I I ~ W E I If~o r the r ~ ~ c t i of ~ kCx;l, ? with t h e b e l , ing a and the l o s s of CI?* to the offgas 1x1 these circwtaiccs should. bc considerably less, ox" perhaps negligible.


111

w i l l f i r t h e r demonstrate t h e compatibility of t h e fuel-graphite-INOX-8 system under thermal conditions a t least as severe as those expected &.Ei n g MSRE operation.

‘The 47-1-1 experimental assembly contains s i x capsules. Each of four larger capsules (Fig. 5 . 2 ) i s 1 i n . i n diameter and 2.25 i n . long and cont a i n s a CGB g r a p h i t e core (1/2 i n . i n diameter 1 in. long) su~~merged UNCLASSIFIED ORNL-CR-DWG 67714R

Cr- AI THFRMOCCUPLE

-

NICKTI.. POSlTlONlNG IIJGS (2). NICKEL FILL LINE,

NICKEL VENT L INE

- INOR - 8 CAN PtJNCTURF AREA FOR GAS S4MPI ING

F i 9. 5.2.

Su bin e r g ed Graphite- Mo I ten- Sol t Cap su I es

.

CGB GRAPHITE 2.1 c m 2 INTERFACE NOR-8 CENTERING PIN INCH

1

NICKEL POSITIONING LUG

approximately 0.3 i n . i n -25 g o f f i c 1 . The fix1 t a i 1 1 generate from 62 t o 76 w/cc, depending upon t h e capsule location. The expected surfaceaveraged temperatures a t t h e graphite-fuel i n t e r f a c e and t h e fuel-INOR-8 vessel i n t e r f a c e are respectively 1340 and 1120°F. Ho~~ever, t h e INOR-8 used t o f a s t e n the graphite core i s a l s o e q e c t e d . t o be i n contact with t h e Sue1 a t 13400F. The two smaller capsules (Fig, 5.3) are designed t o study t h e e f f e c t of power density and temperature on t h e formation of CF4. These capsules contain 1/2-ine - d i m cylindjrical crucibles which contain f i e 1 EL% yj W/CC m a 130 W/CC are expected to operate a t -l32OoF and -U$O*Frespectively. These d e s , which contain exposed graphite i n contact with f u e l , should aIsa provide ;a basis f o r comparison w i t h t h e previous experiment t o evalua-te the effectiveness of? graphite submersion i n preventing t h e net generation of CF4. The experiment i s to be irradiated i n t h e MTR from March 1 2 t o June 4, 1962.

Out-of-pile tests with d w capsules were utilized i n t h e development of a h o t - f i l l i n g method and apparatus t o enswe t h a t the salt properly


112 UNCLASSIFIED O R N I L L R - D W G 67745

HELIUM COVER GAS

(2.1 c m 3 )

PUNCTURE AREA FOR GAS SAMPLING

MOLTEN-S4LT FUFl 110 g ) HELIUM GAS GAP

cm

GRAPHII~ CRUCIBLE

Fig. 5.3.

INOR

0

Crucible-Molten-Salt C a p s u l e .

8 CAN

'/2

INCH

NICKEL POSITIONING LUG

covem the g m p h i t e and to minimize contanination of the f u e l t o be i r m d i ated. A l s o , -the results f:iam three ty-pes of thermal cycling t e s t s on d.immy capsules indicate "cat the i n - p i l e capsules should swvive .Ithe press u e stresses created by the expansion o f mel-ting fuel (ca.used by t h e thermal cycling anticipated from MTR react;or shutdowns startups d u i n g irr%diation).


113

1961, ORNL-3122, p 108.

5.

MS€Q Progr. Rept. Feb. 28,

6.

MSRP Progr. Rept. Feb. 28, 1$1,

7.

MSRP Frog. Rept. Aug. 31, 2..gf>l, ORNI,-3215,

ORWP1-3122, pp 101-102. pp 117-18.


114

New imformat;ion on liquidus con-tou~sin t h e bsw-me1ting sregians i s included i n the expanded, b u t still. incsmple-Le, diagmrn f o r the LiF-BcF2zrF4 system shawl i n Fig. 6.1.~ and valses f o r i n v a r i a n t p o i n t s are listea in Table 6.1.


115 U N C L A SSI F I E 0 O R N L - L A - DWG 6 5 8 5 2

Fig. 6.1.

Table 6.1.

The

System L i F - B e F i Z r F

4'

I n v a r i a n t Equilibria i n the System LiF-BeFp-ZjrF4

Solid Phases Present

Composition (mole $) LiF BeF4 ZrF4

Invarian-t Behavior

Temperature

("a

3LiF ZrF4, MF3 2LiF. ZrF4

'I5

5

20

Per it ec t i c :

-11-80

L i F , 2LiF ZrF4,

6 L i *BeFz* ~ ZrF4

74

12

Peritectic

470

6LiF*BeFz*ZrFB

67

14

30

3

Peritectic

435

64

32

4

Peritectic

428

-45

4 7

Eutectic

470

LiF, 2LiF.BeF2,

2LiFoBel?2, Z r F 4 , BeFz

-28


116

A n impar-t;an-bcomposition s e c t i o n from t h e fivc-component system which contains the WKE f u e l i s shown i n Fig, 6.2, This section, established with quenched sam;iples from high-temperature cqu.ilibra,ti ons, includes 2JjiF.BcF2 a d the nominal fuel composition LiF-BeF2-ZrF4-m4-W4 (70-23-5-1-1mole $). The dilution of' t h e f u e l with coolant (approximately ~ L ~ P ~ B ~ F as Z ) a , p o s s i b l e r e s u l t af a lealc i n t h e MSRE Pleat exchanger, gives compositions t h a t l i e between the fuel and 2LiF.BcF2, as shawl in Fige 6.2. The l i q u i d u s tcmpcratuure varies linearly with n i o ~ e f r a c t i o n between the fuel and the c a a l m t , 'l'he presence of l mole of coolant in 25 moles of fuel. changes t h e p ~ i m r yphase fmm 6LiF.ReF24rF4 t o 2LiP.IReF2. UNCLASSIFIFD O ? N L - L R - D W G 65684

_ _ ~ 1

525

1

500 IIJ

+

CK

3

9

a I

475

w

4 50

425 UF4

>

. - - ~ - - - . " ~ ThF4

Fig. 6.2. The System LiF-BrF2-ZrF4-UF4-ThF4 ' The section c o n t a i n i n g MSRE fuel and 2L.iF.BeF2.

E O /

0

J

A

5

1 0

15

20

25

30

33y3

BeF2 (mole 70)

D i s t i l l a t i o n of the fuel, as exemplified i n the hi@-temperature i r r a d i a t i o n described i n Chap. 5, c l ~ o s e l ycorresponds to thc reinoval of 2LiF.133eF;2 :fmm -the f u e l ; the e f f e c t of t A i s on pliase behavioT i s ~ L S Q Relativeby l i t t l e d i s t i l l a t i o n occurs b e f o ~ eL i F shown i n Fig 6.2 becomes the primary phase and t h e liquidus temperature rises sharply. fl

6.1.3 Thase Equilibrium Studies i n

Fluoride Systterns


117

Correlations based on relative c a t i o n s i z e s l e a d t o the expectation t h a t RbF.SrF2, CsF~CaF2, and CsF.BaF2 could occur as s t a b l e compounds. These expectations were confirmed, some of t h e o p t i c a l c h a r a c t e r istics of t h e c r y s t a l s were e ~ t a b l i s h e d . ~

6.2 OXIDE BEXMVIOR 6.2.1

nC;r FUELS

Removal of Oxide f r o m a Flush S a l t

The use of gaseous KF' containing 20% hydrogen t o remove oxide from a f l u s h s a l t was demonstrated. on a charge of LiF-BeFZ-ZrFg (62-31:-lc rn $) for t h e Engineering T e s t Zoop.' I n t h e course of operation of the loop, treatments of t h e charge with known m o u n t s of Be0 (&XI p p m ) had resulted i n s a t u r a t i o n with oxide." Presumably 600 ppm of dissolved oxide (a figure from chemical a n a l y s i s ) w a s p r e s e n t a t s a t u r a t i o n with ZrQ2. When n e i t h e r temperature cycling nor an i n c r e a s e i n t h e ZrF4 concentration from 1 t o 4 mole $I w a s e f f e c t i v e i n d i s s o l v i n g t h e oxide, an e f f o r t t o remove dissolved oxide from t h e f u e l with HF was i n i t i a t e d . The equation i s 2XF + 0"- -+ 2F- i- H,&'T. To minimize corrosion of' the Snconel d r a i n t a n k which h e l d the salt mixture, 20$ hydrogen w a s used to h e l p maintain red.ucing conditions, This concentration of hydrogen ~ m sadequate t o keep n i c k e l and i r o n , b u t not chromium, reduced t o t h e m e t a l l i c stateo7 the induced corrosion, judged both by t h e 50-ppm i n c r e a s e in t h e C FI~ concentration i n the f u e l , and by metallographic examination of d i p legs from -the d r a i n tank, was within t o l e r a b l e limits .6 The amount of oxide removed from t h e melt a t 565째C 'over a period of 70 h r , as p l o t t e d i n Fig. 6.3, was monitored by estimating the m o u n t of

-

UNCLASSIFIED

0" 200

w n

2

50

(r

Fig.

6.3.

T e s t L o o p by

H&

Removal

H F-H

of O x i d e s from

Treatment a t

Engineering

1050O F.

w 0

X

0

0

0

10

20

30

40

50

60

70

H F TREAT NENT TIME ( h r )

i n t h e off-gas, Since there was 176;kg of salt i n t h e t a n k , t h e 215 g of oxide removed corresponded t o a decrease i n oxygen content of about 1200 ppm, Although t h e material balance on oxide i s POOP, t h e procedure does seem t o have been e f f e c t i v e because less than 200 ppm of oxide w a s found by chemical analy 4; of t h e s a l t after the HI? treatment. ec;t-ted


118

The Behavior sf Sulfates i n Moltern F1.norid.e~

6.22

UNCLASSIFIED ORNL-LR-DWG 68597

450, 4

AT 500째C FOR -1

WEEK

400

-: z

I

I

I

i

350

I N I T I A L SULFUR CONCENTRATION: .< 3 p p m

300

SULFUR ADDED AS Li,SO, = 920 p p m TIME AT E A C H TEMPERATURE: -,24 hr S A M P L E D 8 h r A F T E R EACH TEMPERATURE E L E VAT I 0 N

-

250

3 II

cn 0

P

(L

200

3

LL J

cn 3 150

100

50

0 500

550

600

650

700

750

eo0

850

TEMPERATURE ("C 1

F i g . 6.4.

Apparent

Thermal

B o F 2 (63-37 mole 7;) i n Copper.

D e c o m p o s i t i o n of S u l f a t e Ion i n M o l t e n L i F -


119 c

at 'j00"C for about a week under nts a continuous the temperato f@ooco helium 'I"ne sparge, w ~ s t u r e was elevated in 50" incre each temperature l e v e l for approximately 24 hr. Eight hours teqerature increase, a f i l t r a e o f the mc9-t w a s obta ~ u content, r sham1 i n F i g , 6.4, chemical analysis. "he decrea ity ionin?the fluoride indicates an apparent thermal. solvent

.

In a second eqeriment L i s 0 4 was added to a pwrifi.ed mixture o f LIFBeF2 (66-34mole $) containing 2 w t $ uranium as UF4 i n an attempt t o v e r i f y the following reaction aechanism: SQ4"-

--3

02- c

so3

Following a 48-hr e q u i l i b r a t i o nriment, at 5oO째C, daily temperature inwasthe repea-t;ed, Filte r e d saples crease of 'jO째C, as i n the first e an& urmiwn, and t h e effluen$~ i T a s of the melt were analyzed for s u l stream was also analyzed by mass spectrometry. The results of c l m e ~ e a l analyses of the salt, illustrated in Fig. 6.5, show the anticipated removt23. af sulfur m d uranium fmm solution, but somewhat more s u l f u r was

Fig.

6.5.

from Solution i n

D e c o m p o s i t i o n of

Li2SD4 and A s s o c i a t e d R e m o v a l o f Uranium

Li F - B e F 2 (66-34 m o l e %)"


120

l o s t than prescribed by the stoichiometry of V i e pos-t;ula-t;ed r e a c t i o n mechanismn Analyses of 'che gas, given i n Fig, 6.6, show the presence of SO2 and H2S in addition t o t h e anticipated SO3. UNCLASSIFIED

7 --

cn

7

0 R N L- L R - D WG 6 859 9

~~

1

1

' O I

L

0

400

TEMPERATURE

("C)

Fig. 6.6. G a s e o u s P r o d u c t s from S u l f a t e s i n M o l t e n Li F - B e F 2 (66-34 mole

Table

6.2. Behavior of Metal SuLfai,es i n f4elts of Purified- LiF-BcF;! (66-34mole $ ) at 600째C -..._

--.-

Sulfate *---- , -- . --

Added

-..

Equivalent Sulfur Added-

(PP)

.....

L i 2?04

2881

K7S04

1818 2631 23% 1045 1984

Na$04

wo4

Cas04

m SOB cuso4 NiSOB FeSO4 C x - 2(

SO^? 3

Alp( So4)3

C 4so4?3

2232

___cI__c_

sui-furFound in S o l u t i o n

(PP"?

823

1900 7-810

1780

1240 3 130 lh00

2048

1) IO0

2426 27'19

445 1830

208j

1601

1650

936


121

a

I n a third experiment t h e behavior of some me-talsulfakes i n purified ally at 600째C in gla LiF-&F2 (66-34nlale was observ preparation for ehemica F i l t e r e d samples were tL.;en from e Of these mixtures, p r e c i The r e s u l t s are shovn i n Table 6.2 FeSO4, C P Z ( S O ~ ) and ~ ~ Zr(SO*),. v i s u a l l y abselrvcd a f t e r additions

9)

,

Because of' t h e re]-ative complexity revealed by these exploratory experiments, fust,her studies w i l l be required before conclusions can be

A nwnbcr of studies of t h e physical chemistry of molten salts, recented the f o l l o w h g suxnrmry pa ly reported in some detail, pro of i n t e r e s t as a backgrou *ich describe fundmental rese ical problems r i s i n g f r o m t h e use of molten salts i n reactors, an molten fluoride mixtures were reAll the published density da examined. in order ts develop a mare useful method of pr-ediet; sf related systems, TO a good imation, the molar volumes of these n d d i t i v e i b c t i o n of the components, melts weye found. -to be e,xprcsse sing empirically adJusted for the molar volwncs o n e n t s of the melt and ass i v i t y , the densities could be calculated to wtthin 2$ of' the reported experimental values. Densitles of solid, complex, metal fluorides were calculated with an average e r r o r of 5 .sQ by assuming t h a t the molar volume of the complex is the sum of t h e molar volwnes of the simple fluorides that formed the complex. This method of' estimti ensities facilitated the choice f o r complex fluorides W ~ Q S E ?st t h e n w e r of molecules per u n i t tures v e ~ eunder investigation

.

Further studies of f r e e z i n t depressions of sodium wed t h a t t r i v a l e n t fluorides cause negative deviations fro smaller the solute cation the greater the deviation, and a l fluorides caused mainly p o s i t i v e deviations ( a t t r i b u t a b l e to changes andon dispersion f o r c e s ) ] Al i fluorides caused P essians i n lithium fluoride somewhat d i f f e r e n t from those I n sodium fluoride because s P differences in coulombic forces, Excess part;ial molal f r e e energies of mixing, calcu2ated :from liquidus temperatures i n t h e system Nfl-LiP, were expressible i n t e r n of concentration and two constants

.

The enthalpy changes f m m 874.0 La 0 째 C were measured with a Bunsen ice calorimeter far samples o f LiF, and mixtures containing O.l93, e calculated molar enthalpies of 0.385, and 0,747 mole fracti mixing when p l o t t e d vs compo an approximately symmetrical C U ~ T T ~w, i t h a maximum a t +O mole

Previously reported equilibrium constants f o r the reaction,


122

a-1; e l e v a t e d temperatures provided a b a s i s for r e f i n e d cal-culations leadi n g t o an e v a l u a t i o n of LiEIor~8.1s and e s t i m a t i o n of .Novalues a t o.l;her t e i x p r a t u r e s f o r t h e r e a c t i o n with c x y s t a l l i n e s o l i d and (hyyothet-i.ca1) supercooled l i q u i d N i p 2 as reference s t a t e s . F ~ o mt h e t , n e e q u i l i b r i u m constant, obtainable direc.tl_y f r o m these free energy values, and %he KN values, a c t i v i t y c o e f f i c i e n t s of NiF2 have Been obtained. These a c l i d t y c o e f f i c i e n t s and their changes with s o l v e n t composition, e s p e c i a l l y t h o s e with supercooled NiF2 as r e f e r e n c e s t a t e , o f f e r suggestions as t o the n a t u r e of such solutions, The tempera-ture c o e f f i c i - e n t s of' t h e associaLion c o n s t a n t s IC1

EC2,

and- KJm2 f a r t h e formation of .the s p e c i e s &Br, AgBr2*" +' and+A.,Hr+'in molten KN03 and, K,- and K2 f o r t h e :Porn?.t;.ion of C X B r , CdI , Cd13r2 and Cd,12 i n a l k a l i n i t r a t e mixtures i n d i c a t e t h a t t h e entrop-i-es of t h e s e as soc i a t ions are cons i st e n t wit;En .the " conf i g p m t io n a l " entropy la1c u l a t ed from the q u a s i - l a t t i c e model, The entropy of a s s o c i a t i o n of A g with t h e pol-yatornic i o n CN- i s much more p o s i t i v e than. f o r the associations t d t h monatomic c a t i o n s 'The i n f l u e n c e of sol-vent on the a s s o c i a t i o n cans-tants f o r t h e formation of t h e a s s o c i a t e d s p e c i e s AgBr o r A g C l in the malten s o l v e n t s NaN03 and KN03 i s c o n s i s t e n t with the r e c i p p c a l coulom'u e f f e c t . e

L_I__I_

The pei-turbabion theory of Reiss, Katz, and Kleppa f o r systems v i t h a cofimon anion was extended t o t h e t h i r d - and f o u r t h - o r d e r t e r n s -bo yield the equation f o r t h e excess f r e e energy of mixing of uni-univalent sal% mixturcs

.

where Xi i s a mole f r a c t i o n of c a q o n e n t i, 6 i s r e l a t e d to the i o n i c sizes, and P, Q, R, and S are c o n s t a n t s . The t h i r d - and fourth-ordber tcms are necessary t o r a t i o n a l i z e experimental measurements i n molten salts. An e s t i m a t e of the c o n t r i b u t i o n of TJondon d i s p e r s i o n energy L a bhc liea-ts of mixing of mixtures of a l k a l i n i t r a t e s with A g N 0 3 o r TlNO3 i s c o n s i s t e n t with t h e observed d i f f e r e n c e s between these mixtures and mixtures of a l k a l i n i t r a t e s , Thi-s suggests a method o f making e s t i m a t e s of thi-s e r f e c t i n mixtures containing o t h e r p o l a r i z a b l e c a t i o n s ,

6.4.1. "he

Behavior of Carbon T e t r a f l u o r i d e i n Molten F l u o r i d e s

Kccent p o s t i r r a d i a t i o n examinations of i n - p i l e t e s t capsules (ORTJTJ-

MTR-47-3)"" d.iscloscd t h e presence of' CY4 i n t h e

cove^" gas above 3,raphite boais c o a t a i n i n g MSRE f u e l . Carbon t e t r a f l u o r i d e was absent in uni r r d i a t e d ~ o n t 1 - 0 1CS~XX.&S a d r e p r e s e n t e d IZ T - I I E L I ~ C d~ ~e p a r t w e from themmdynilsnic equil lib~tunii n t h e irradi ated capsules


123

To study the k i n e t i c s of the reaction of CF4 with the Fuel, the CF.4 pressure over the f u e l (LiF-BeF~-ZrF~-ThFpW*, "(0-23-7-1-1mole $) i n closed s t a t i c systems w a s measured over a period of time. No evide reaction with e i t h e r n o m 1 o r reduced f u e l w a s found at 600째C, Si were not closely controlled and t h e conditions f o r pressure masu a slow rate of reaction could hav ed observation, mre refined e q e r i m e n t s were continued.

A gas mixture of CF4 and helium was recirculated continuously, bubb l i n g through a &in. depth of melt at 600째c, Accurately measured volumes of gas were i n i t i a l l y admitted t o the system, and gas samples were periodically withdrawn f o r analysis by mass spectrametry. Based on the CF4to-helium r a t i o (about k I : 6 0 ) i n the a n a y z e d samples, there again was no discernible reaction i n 25 h r at 600" with either reduced o r unreduced fuel. Two f a c t o r s &e these results t e n t a t i v e rather than conclusive. There seemed to be discrepancies in the gas analyses, and control samples of the reduced f u e l exhibited none OS the eharactex5.sti.c phases, colors, or reducing power expected on %he basis of the mount of zirconium metal adlaed as the reducing agent. &re d e f i n i t e r e s u l t s were obtained from c i r c u l a t i n g a CFa rend helium mixture through a salt mixture conta ing an i n a e f i n i t c amount of oxide. Figure 6.7 shows t h a t , an a per-mole-of-helium basis, 0.15 male of CFB vas consumed, and 0.007 mole of C 0 2 was produced, Although the stoichiometry of' the reac-tion i s q u i t e puzzling (a black deposit, presumably elemental carbon, was noted, and the munt o f GO has n o t y e t been determined), t h e evidence -that CFa r e a c t s w i t h oxide i n the f u e l i s e n e o ~ ~ i ~ ,

0 t-

0.60

0 020

0 56

0016

0012

0.52

W

LT

J

2

81" 0 I

K

0

z 0 a Ncm

0.48

0008

0.44

0 004

2 5

0 40

10

0

20

30

40

50

0 60

70

TIME ( h r )

Fig.

6.7.

Apparent Reaction of

Salt Contained in

Nickel at 60OoC.

CF

4

with Oxide Contaminants in

MSRE Fuel


124

Experimn-ts t o detemmtne t h e solubility of CF4 i n the molten fixe1 cmployed apparahus and techniques previously described in comec-tiori wi-t,ka determinations of the s o l u b i l i t y of noble gases i n molten fluorides l a “taa d e t c m n a t i o n s of the CF4 s o l u b i l i t y were made by s a t u m t i n g .the f u e l mixture a t 600°C with CF4 a t 1.3 a t m for. 6 br, A portion of s a t u r a t e d mel-t; was transferred to an isolated section of the apparatus and stripped with a h o w l quantity of dry helium, SpecLmgraphic analyses of the s t r i p gas railed to i n d i c a t e the presence of CF4; kowevcr, a small aeasurable q u a a t i t y of @02was Found, ‘Phe estimated so.lubil-i,ty of CF4 in the fluoride mixture was assmed t o be no greater than the value correspondfixlg t o t h e COz found i n the s t r i p gas, t h a t is, 1 x 1 6 ” moles of @Fa per cubic centimeter of -melt per atmosphere e

Additional d e t e m i n a t i o n s of t h e CE’4 s o l u b i l i t y at higher tenipe~*cs,tul-es have not been completed, ‘91.Zfe stripping section of thc s o l u b i l i t y apparatus has been thoroixghly h y d r o f l u o r i n a k d i n a;n attempt t o eliminate the postxlated- reaction of CF4 ~ L t hoxide cont%mniizan2;s

The overriding physical e f f e c t s f suddenly mixing molten MSITE fuel and water woul-d come from the steam pressure generated in the c e l l , A study made f o r %he A i r c r a f t Reactoy T e s t system included observations of the gross eEfcct of dwnp!ing o r i n j e c t i n g a s i z e a b l e mount (-h-OQ lb) of salt, composition No, 12 (NaF-LiF-KF, l.ln5-46.5-42,0 mole $I) into s e v e r a l hundred gal1on.s of water contained. i n ELXI open vessel,’’ These tests d i d not include pressure ~ ~ ~ a s u r e omr ~ a.na1.ysi.s ~ t . ~ of gaseous products , m e u n c e r t a i n t i e s in c a l c u l a t i n g t h e rate of lass o f heat, t o the MEXU3 c e l l , strxcture 1.~2 . t o a study of additional. mettmds of r e l i e v h g the pressure in case of an accident*

The appamtus shown in F i g . 6.8 w a s c o n s t m c t e d t o permit the observ a t i o n of the e f f e c t s of i n j e c t i n g a small..amount of Inal-ten sal-t i n t o water. The ha.zard involved was considered s m a l l s i n c e 2 g of s a l t (0.5 cal g-’ OC”, assimed) a t 6 0 0 ” ~ would convert o n l y 1 of water to s-tmm. T’ne salt (5 t o 6 g ) mas loaded i n t o the upper chamber (a l-/2-ine-d.5.am x 3-in,-long, flanged, Hastclloy tube). A small furnace mounted. around -the chmher was used to heat the s a l t Lo t h e desired -temperature. B e l i u m p r e s s u r e w a s t h e n applied t o f o r c e t h e molten salt i n t o water ( 2 to 5 cc) contained in an inverted nickel. cone in -\;he lower Pyrex-pipe chamber, whi.ch contained a n argon atmosphere. By meaxis of a high-speed (3 in./min) potentiometric r e c o r d e r and a switching arrangement, pressure bui.I..diap and temperature variations a t s e l e c t e d points could be f o l l o w e d .


125

F i g . 6.8,

Salt J e t A p p a r a t u s .

Data from a recent experiment are shown i n Fig, 6.9. The pressure in the water chamber rose ~ o m e10 lb above atmospheric and remained there a f t e r cooling. Therefore, the increase must have been due to the slight;


124

122

110

98

-

86

0

0

E

74

3

(L U

62 3 IW

50

38

26

14

VAPOR T E M P E R A T U R E LI ~

0

2

' 4

/ I 6

~

1 8

,~

1

io

12

TIME FOLLOWING INTRODUCTION OF MOLTEN S A L T TO WATER ( r n i n )

F i g . 6.9.

T e m p e r a t u r e V a r i a t i o n s in S a l t J e t A p p a r a t u s F o l l o w i n g I n t r o d u c -

t i o n of S a l t at 650째C ( 5 . 5 1 g of S a l t into 2 c c Water).

excess of helium used t o e f f e c t s a l t t r a n s f e r , The s a l t t r a n s f e r occurredi n some 6 t o 8 see and t h a t transfel-red- i n t o t h e water had an exploded (popcorn) appearance b u t vas u n a l t e r e d i n c o l o r . S a l t :flowing i n t o the n i c k e l cone a f t e r t h e water had a l l been vaporized appeared sol-id and dense, with a g r a y i s h fi.kn. I n a l l experiments, f i n e l y d i v i d e d d r o p l e t s of s a l t were found sprayed on the chamber w a l l s and top. No marked p r e s sure i n c r e a s e s were encountered i n e i g h t t r i a l s .

Petrographic examination of salt f r o m a previ.ous, s i m i l a r experiment showed a poorly c r y s t a l l i z e d . material- containing e u t e c t i c - t y p e grovths and e x h i b i t i n g r e f r a c t i v e i n d i c e s t y p i c a l of t h e f u e l . Oxides were no@ d e t e c t e d a,nd if p r e s e n t mixst have been <1 p in s i z e , The x-ray d i f f r a c t i o n p a t t e r n also i n d i c a t e d very- poorly c r y s t a l l i z e d material---no Zr02, ZrOF2, T h O 2 , or UO2. Following one experiment, t h e gas containedi n t h e water chardoer a f t e r i n t m d u c t i o n of the salt was swept gentl-y through stand.a:rd. NaOH. Titratiion of the c a u s t i c i n d i c a t e d t h a t some 4 millimoles of I F o r some substance w h i c h yeacted with N a O E w-as formed. T h i s r e p r e s e n t s about 2$ of the calculated- y i e l d for complete r e a c t i o n ; i n none of t h e experiments w a s any e t c h i n g of t h e glass r e a c t i o n chamber no-ked

e

Rxture experiments w i l l include much larger volunies of water in order t o conserve the heat lost, i n t h e f i n e l y divided s a 3 t seen t o spray throughout t h e r e a c t i o n chanfoer, hut the pi-ospecbs f o r o b t a i n i n g marked p r e s s u r e r i s e i n t h i s apparatus a r e poor, presumably because o f thc g r e a t d i f f i culty i n o b t a i n i n g s u f f i c i e n t l y r a p i d heat t r a n s f e r from s a l t t o water.


127

Qualitative and quantitative analysis of' the gaseous products i s a l s o planned

.

63.2

S o l u b i l i t y of F'uel-Salt Components i n Water

Following a hypothetical accident i n which molten f u e l and water were mixed i n t h e containment c e l l it might be necessary t o w a i t f o r weeks o r months before the radiation l e v e l s decrease s u f f i c i e n t l y to permit the roach of people f o r examination, decontamination, o r r e p a i r pur ing t h i s time even a slow r a t e of uranlwn leaching from the f u e l could, i f the equilibrium s o l u b i l i t y were s u f f i c i e n t l y high, lead t o a c r i t i c a l i t y accident.

-

The s o l u b i l i t y of uranium t e t r a f l u o r i d e i n water i s indicated t o be low a t 25째C (1.6 x 1 0 1 4 M ) . 1 3 This uranium concentration i s below t h a t necessary for c r i t i c a l i t y , but several f a c t o r s i n a r e a l s i t u a t i o n m y conibine t o give a higher concentration. The action of the oxygen from a i r o r the action of peroxide genera by beta-gamma radiation i n water could oxidize the uranium t o the very soluble hexavalent s t a t e . The temperature may well be considerably higher than 25째C f o r a long time. The a c i d i t y of the aqueous phase i n contact with the frozen salt m y be such as t o increase the uranium s o l u b i l i t y . Anions other than fluoride may be present. Cations other than U*+ are c e r t a i n t o be present. A s o l e produced, and it would create o r s l u r r y of uranium-bearing s o l i d cow t h e e f f e c t of a s d u t i o n b For these reasons measurements of t h e solub i l i t y of MSRE f u e l s a l t i n water a t a v a r i e t y of temperatures have been made available f o r evaluating t h e probable course of events i n t h e weeks following t h e postulated accident.

To maximize t h e s o l u b i l i t y and the rate of solution, a quantity of nominal. WRE fuel s a l t (from t h e Fluoride Production F a c i l i t y ) was gmund t o powder i n a glove box so t h a t it would present a large surface area Lo t h e aqueous phase. Portions of it were added t o flasks conta' ater, and t h e r e s u l t i n g mixtures were s t i r r e c o n t m i i e a temperatures; smnples of the supernatant solution we en a t appropriate i n t e r v a l s s t h a t , a t 25 O C , the uranium e a 1 analysis,14 Figure 6.10 concentration rose, within one day, t o approximately 0,002 ~ u 2and then slowly climbed t o O.OO275 m i n another week; the other compon l a r l y rose quickly t o values which t h e r e a f t e r changed only s l Figure 6 a 1 shows the solution concentrations a f t e r one-day expos d i f f w e n t temperatures, e t h e r with one v d u e for the uranium concent r a t i o n obtained previa .I5 The sequence of t e q e r a t u r e s i s indicated Eution concentrations were not by t h e arrows i n the f i reduced when t h e temperat;ure w a s lowered, the equilibrium expected f o r siraple s o l u b i l i t y behavior was not re-established on cooling, The t e s t s reported i n Figs. 6.10 a n d 6,11 were made without p a r t i c u l a r attenrpts t o protect t h e mixtures from contact with t h e a i r . Although t h e flasks were stoppered during equilibration a t a fixed temperature, they were opened Lo t h e air whenever samples were taken, Consequently some oxidation of uranium t o t h e hexavalent s t a t e prob occurred.


128 UNCI 4SSlFlED ORNL LR-DWG 6 6 9 3 5

'--I

-

3

0

--

-+.-*t 0 25

,

--

1

~

---

1

1

I

t

I

l

l

4.-.-4-

~

-

I

1

1

I

1

-

-~

,

~

-

~

7 - 7

I

-

1

I

--

Fig. 6.10. Solution Concentrations of U, Li, Th, Zr, and B e Found upon M i x i n g MSRE-Fuel Solid w i t h H 0 ; Concentration v s Time a t 25OC. 2

1

0

' 0

1

2

-1-1 3

i

I

4

5

6

~

7

8

9

10

TIME ( d a y s )

UNCLASSIFIFD ORNL-LB-DWG 6 6 9 3 6

0 3

Fig, 6*110 Solution Concentrotions of IJ, Li, Th, Zr, and Be Found upon M i x i n g MSWE-Fuel Sol i d w i t h H20; Concentration v s Temperature,

Be

I


123

Because of the appreciable uranium concentrations achieved in these neutron poisons w i l l be provided i n any water which might come in cantac-t w i t h f u e l . Sincc this pr~vi.sZonhas been e s t a b l i studies inn the presence of peroxide o r radiation have been postponed,

tests,

6.5.3

Solubiility of E R E Coolant in Water

I n experiments similar t o those reported above f o r the f u e l salt, the sabubil.ity o f t h e coolant; salt was survey~3d.. A quantity of" 2LiF.BeFz composf-tion (containing approximately 2 1st k excess L i F ) was obtained lity gromcJ_-t;o powdeu" in a+ glove box from the Fluoride Production F f a r use in the solubility experiments, Figuse 6.12 shows the aszalflical r e s u l t s a-t 2 5 O C , and Fig. 6.13 the agesubts a?? experiments over a range of temperatures up LO gO"C. To p i ~ x ? " o ~ t i relevant on purification o the behavior o f coolant i n contact processes for f l u o r i d e s as w e 1 a t i o n of phase e q u i l i b r i a i n the w$th water, a more thorough in system LiF-BeFZ-HzO has been i n i t i a t e d ,

Fig. 6.12.

F

and

Faund

Solution Concentrations o f L i , Be,

~

i

p Mixing ~ n L i 2 B e F 4 Solid w i t h

Wzo; Concentration

vs T i m e at

2SoC.

6.13. Solution Concentrations of Li, Be, F Found upon Mixing L i 2 B e F 4 Solid w i t h

Fig. 0

and

0

2- 0 2

H20;

0

E

0

20

30

40

50 60 70 T E PJ1 PER ATlJR F. ("C 1

80

90

100

Concentration v s Temperature,


130

6.5.4

TZai%iaL Freezing o f KSRE

Fuel

A hazard. could conceivably be produced. upon p a r t i a l i'rcezing of t h e r e a c t o r fuel w h i k -in t h e d r a i n La.&. If thc f r e e z i n g occins at a s d ficiexlt1.y slaw rate, the first solids depssiLed would not contain u-i.ani.am, and t h e rcmaining solution, enriched i n uranium, could cause t h e r e a c t o r -to he critical when only part]-y f u l l . To p c d t tentative calcuZaLians of the potential, though iuzlikel-y, condi-tion, the following h y p o t h e t i c a l crystal_l3mxtion path o f the MSW fuel:" and e s t i m t l . o n s of d e n s i t y of t h e molten l i q u i d remaining along this c x y s t a l l i z a t i o n path, have been proposed,

Fused f l u o r i d e ~ x t u l ~ eare s cur~en"c;ypuri.fi@a in ~ 3 = - ~batches, t? and. two batches per week are routinely obtained hy simltrznzeous operation of two i d e n t i c a l r i g s on a s i n g l e - s h i f t five-day week in accordance w t t h the following schedule, which takes advantage of c ~ f T - s h i P thours Tors i n t e r v a l s reqani~i-ngminimal a t t e n t i o n .


131

2 e r a ti o n

TLne ( h r )

I2 48 42

marge and m e l t down

â‚ŹI.F-H2 treatment â‚Ź12 stripping

Salt transfer

4

Reactor cool-&own f o r recharging

A-L the present rate o f approximately

67 weeks woula be required t o

e IEXE. For s t o r i n g an ing containers are av containers a r e being limited by t h e volume o f the E&. Lengthened by 12 i n , , thereby i m t e l y lk.2 ft" p e r week.

48

1.5

~6 r t 3 per week, a minimum

0%

ng the Gurifiea ~ Y C I Residual s a l t s from p d, Since the size of' a batch vas container, each vessel ing %he production ra.t;e

.

To f u r t h e r a c c e l e r a t e the rate of salt productton, consideration is being given to %he addition of a separate furnace assembly adjoining each batch f a c i l i t y . By proper scheduli this arrangement ate for GO ha" of waiting (cao~ng, rgingl and m e l t i with an increase in pro&uction about 6k$o A p r e l i m i study obtain c o s t estimates for this possible modifica%ian i s in plrogress *

'T"kae method commonly used for the determination of ti-alcles of axyf;n ( a s oxide) in =theMSRE f u e l i s the f l u o r i n a t i o n method, usirig KBrF4s

This procedure bas been in use for SQXE time and, f r o m the standpoint of developrnerital evalua-t;isnof the methad, has been s a t i s f a c t o r y .for concentrations o f oxygen in excess sP k30 ppm. (Application o f t h e method t o p r a c t i c a l problems in exprime 1ts has not yet been generally achieved because of r e c u r r i n g ES regarding the caixsc of tmexplained variances in the range above 40Q ppm.) At concentrations below COO ppm, precision is unsatisfactory. The source of t h e poor preeicion is not Paoxm. 'The l a c k of standard o r r e p r e s e n t a t i v e samples makes definitive s-tuaies extre~nelyd i f f i c u l t S a t i s f a c t o r y precision has been achieved, however, w i n g standard U3Qe smples. I

In order t o ascertain the source of possible error, alt;emative methods of de-temflining oxygen in the f u e l have been explored. No spec i f i c method, other than t h e KBrFa procedure, hac been thoroughly evalua t e d . An a c t i v a t i o n analysis method f o r oxygen, utilizing the


132

016(H",n)F'B r e a c t i o n , has been under s~tudy. This r e a c t i o n has been used prinm+rily for the determination of oxygen i n l i t k l m n , Fluorine-18 has a IbO-min h a l f - l i f e , sufficiently long for this application; its positron emission i s measured by w~ai-xso f EX seint;illat,ion counter. S~IIIP~ of'~ SMSRE f u e l t h a t had been m a l y z d by the KBrF4 me-1,lxod were analyzed by t h e a c t i v a t i o n procedure., The sampl.es h a d been s t o r e d in a mt,er-f ree eztntaosphere to avoid conkmnination ana subsequent hydml.ysis of the beyy-lli~imf l u o r i d e . The results indicated t h a t no bias existed, and t~xerewas an overall apyeemen-t; of about 20% at a csncentyation of appraximately 500 ppm. A chunk of s a l t (+ g ) vas divided into two parts and p o r t i o n s o f each analyzed by the t w o methods. '%Xze agreement in t h i s case was wi%hin 5% at a concentration level o f la50 ppm. Comparative carnplcs w i l l be analpea i n t h e f u t u ~ eto a s c e r t a i n orders af agreement at various concentration levels and imder various coiiditTons, An i r q o r t a n t advantage of t h e act?-vntion analysis mcthod is that the fluoride s a l t need be protec:l;ed from atmospheric contact only p r i o r t o irradiation. (The XSRE f u e l , due to t h e presence of BeFz, i s particul-arly senc,it;ive t o hydrolysis by contact with -the atmosphere. )

Upon i n s t a l l a t i o n a f a. neutron generatar, t h e fast-neutron reaction O ' ~ ( T I , ~ ) N FS~J_I. ~ ~ be exmined f o r the determination sf oxygen in -LIE MSRE fuel.

6.7.2 Adaptation of

A n a l y t i c a l Metlnods; t o Hadioactive fid.

rprlfle feasibility of any of these methods for oxygen d e t e m i n a t i o n i n radioactive f u e l i s being s t u a i e d . The proposed methods f a r analyses of o t h e r constit;uents of the MSRE fuel. are 8 s f ' o l l . 0 ~ ~ :

coulometry is probably t h e most 1, Total Uranium: ConLrollcd-potent~-al satisfactory method. An alternative method i s polarography. 2,

3.

4. 5.

6. Corr-osion Prodzncts-Fe,

N i , C r , Mo: hhission spectmscopy. metric methods itre available i f required.

7.

Calori-


133 REFERXI=PJCES

11. 20

3.

4. 5.

MSRP Quart. Progr. Rept. Feb. 28,

1961,

Phase Diagraas of Nuclear Xeactor Materials, R. EL 25h-8 (NQv. 6 , 1959). Reactor Chem. Div. Arm. Progr. Rept. Jan, 31, chap. 1.

1962, OH!Tb-3262,

Tbid., last pwe Of Chap. 1,

1 _ 1 (

KRP Quart. Pmgr. Rept. Aug. 31, 1961, OrWL-3215, p 54.

6 . MSW

Quart. Progr. Rept. Feb. 28,

1962, QRNL-3282.

7. 8,

9.

Reactor Chem. Div. Ann. Prspr. Rept., Jan. 31, chap, 5.

1962, Om-3262,

10* 11

0

12

W. R. G r i m e s . N. V. Smith,

and 6.

M. Watson,

.

-

13*

14* 15

.

16 17

Analyses performed by the haZy-tical C h e m i s t r y D i v i s i s n , OBXL. R. Apple, Analytical Chemistry Division, O m ,


134

Spent KSRR fuel. ~ 3 - 1be 1 fluorinated i n Building 7503 -eo F ~ C O V W uranium as UFe, and the waste s a l t wi13, be: stored i n ? a t a n k a t the reactor site, After 90 days' decay, ,the fuel. s a l t w i l l - be spar@ with fJ..uorine, while still i n t'ne fuel storage t m k . The We; evolved w i l l be passed through an addsorbing bed of N a F held at 400째C for removal af chromium m d the bulk of t h e v o l a t i l e fission-product fluorides, p r i n c i p a l l y niobium, 'i'lne IJFG will. then be a,dsorbed on NaF a-t; m e al~sorbersW ~ U - be tzmsported t o the VoLatil_i.t,y P i l o t P l a n t f o r desorption and cold-trapping of? -Lhe W G . ~

O

O

O

C

~

Excess f l u o r i n e will. pass through t h e ac2sorbers and be dispose& of by reacting with cbarcoal or SQz. (If not removed f ~ o mthe e x i t gas stxwn, a t t a c k on the F i b e r g h s f i l t e r s rni,e;lnt r e s u l t in the release of r a d i o a c t i v i t y t o the stack ) The? t e s t i n g of methods o f fI-uorine clisposal is in. progress. A method e>Lher than. c a u s t i c scrubbing i s desirable bccause of space I-irni t a t i o n s

. .

7.2 FI.,uorine Disposal Tests, Using Charcoal. Seven

3 1 ~ 2 swere

made in order t o drtennine the c h a r a c t e r i s t i c s of

t h e charcoal-fluorine r e a c t i o n and i t s possible use f o r a f l u o r i n e d.i-sposa~-system, h i average o f 5.89 g of f ~ - ~ o r i s rwas l e successfull-y combined

higher t h a n t h e NASA f i g u r e for w i t h 1,OO g of chmcoal, *ich is adsorption 1 The combustion reaction was nanexplosi.ve and- reached a steady-state temperature of - 4 5 0 ~independent ~~ o f t h e f l u o r i n e flaw rate between 1.00 and.2,25 stm..da,rd- l i t e r s p e r minixbe of lo@ f l u o r i n e ,

.

Rydmgen f l u o r i d e , solids, and condensable l i q u i d s were trapped frem off-gas before the mss-spectrogra+ph.ic savnples were t a k e n , During Lhe -three longest m n s an average of 0.816 Q ID' was produced per gram. of charcoal..consumed; -0.01 c; of s o l i d s was deposi.ted- in the off -gads line p e r gram o f charcoal consumed; and -0.1 g of l i q u i d was trapped p e r g y m of charcoal cansinnacd. 'The s o l i d s , sf a resinous na-ture, contained 29.3$ w t $6 carbon and 147.9 w t $ fI.uoyiinc atid rnel-Led over a range of 60 t o l 0 g " C but decomposed before a b o i l i n g temperature i m s reached ,. T'nc l i q u i d contained. $21 .O w t $ I F , '13 .@ B,-O, and a srml-1- amoun2, of high-molecular weight fluorocarbons; the liqiiid ha3 a densi t,y of -7_,25 g / c c . YIe


135 Although t h e commercial charcoal used w a s not homogeneous, an average composition was reported: 73.16% fixed carbon, 8.796 E$lJ ;Z.L3'$ ash, and 15 a 9 2 $ v o l a t i l e matter (all weight percentages) To reduce the IF, condensable l i q u i d s , and resinous s o l i d s entrained i n the off-gas, two runs The m o u n t of FIX' produced were m a d e with charcoal preheated t o 650% was reduced by a f a c t o r o f 2; a n e g l i g i b l e mnount of l i q u i d TELS noted, ff-gas l i n e t o plug i t . but; enough s o l i d w a s formed i n t h

.

Stuaies using a t h e m o g r a r a t e of weight loss occurred b t o 1000째C removed almost all t mineral-ash components.

tric balance i n d i c a t e d %hat the greatest en LtOO and 750째C. Heating the charcoal o l a t i l e matter, the 1120, and some of the

F l u o r i n a t i o n and thermal stress cauScd the s i z e of the charcoal pieces t o change f m m an i n i t i a l -1.0 in? t o an ash-charcoal resicluc 6.6% between 2 and 11 mesh, O.@$ bcsize d i s t r i b u t i o n of '77.9$0 32 8 and 25 mesh, 0.9@ between 25 and 50 tween 4 and 8 mesh, la23$ bet mesh, 1.31% between 50 and LOO mesh, and 0.81t% <LOO mesh ( a l l weight percentages)

,

.

c



137

OAK RIDGE KATIONAL LABORATORY

LT REACTOR ', 1962

FEBsUARY

Ii

ENGINEERING P. H. A. W. J. L.

H. R. N. C. H. V.

HARLEY PAYNE SMITH ULRICH WESTSIK' WILSON

1

I

MSRE DESIGN

MSRE OPERATIONS

'r i

R

W. C. R. A. J. L. C. W.

F.

W.

J.

C. C. A. R.

GEORGE HJRTT JONES KERR 0. NICHOLSON E. PEVITO1.i A. ROBERTS ROBINSJA L. RDJSE? G. STERLING A. WATTS

SITE PREPARATION G. W. N. T.

B. L. E. E. G. W. W. E. T. A.

CHILD DARIEUX DUNWDDDY NORTHUP RENFRO SALLEE WATSON

R R R R R R R R R R R R R

R

,

COMPONENT DEVELOPMENT I. SPIEWAK' D.SCOTT,,JR

-i

lac lac lac lac ISC lac ISC

1

7

I

PROCUREMENT AND FABRICATION

C. K. M c G L D T H L A ~ J. M. TEAGUE

I ac

IBC lac B8R l8C CTS

1-

R

SCHEDULING

I

1

F U E L PROCESSING

CT

J. P. JARVIS B. N. ROBARDS J. W. FREELS

ERM ERM EBM

1

1

REACTOR CHEMISTRY

METALLURGY A. TABOAOA

M

W. R. GRIMES'

RC

W. H. COOK J. H. DEVAN'

M M

5. CANTOR

F. F. BLANKENSHIP

RC RC RC RC RC RC RC RC RC RC RC RC RC RC RC RC RC RC RC RC

R.

G. DONNELLY

W. T. J. C.

J. K. T. H.

R. G. GILLILAND'

LEONARD' ROCHE* VENARD' WOOTKE G. D. BRADY' J. L . GRlFFlTH M. A. REDDEN

M M M

M. W. H. J. R.

M M

i i ~

j

M M

J. G.

5. J.

R. C.

~

KELLY' MARSHALL' MCDUFFIE' SHAFFER THOMA' R. CUNED A. DOSS E. EORGAN M. HEBERT 5. KIRSLIS E. SAVOLAINEN SLUSHER' F. WEAVER* W. K. R. FINNELL B. F. HITCH W. JENNINGS R. G. ROSS W. P. TEICHERT

REMOTE MAINTENANCE R R R R R

E. C. HISE* R. BLUMBERG P. P.HOLZ' R. F. BENSON J. R. SHUGART

-I

COMPONENTS

:

D. SCOTT, JR. M. RICHARDSON

41

J. L. F. H. E. 0.

F.

M

R. J. KEDL' B. J. YOUNG

-i

CONSTRUCTION

ANALYSIS

R. B. LINDAUER

E

1

J. R. ENGEL P. N. HAUBENREICH C. W. NESTOR

1

I

MSRE PROCUREMENT AND CONSTRUCTION W. B. MCDONALD

N. E. DUNWOODY' J. P. JACKSON 8. H. L. WEBSTER P. PUGH

i

R

i

D

INSTRUMENTATION AND CONTROLS R. L. MOORE J. R. BROWN G. H. BURGER 0. W. BURKE' T. M. CATE D. G. DAVIS P. G. HERNDDN B. J. JONES J. W. KREWSON C. E. STEVENSON 8. SQUIRES J. R. TALLACKSON R. WElS

MECHANICAL DESIGN W. M. BROWN

J. T. DlCKlE J. K. DUNCAN

j

R. B. BRIGGS, DIRECTOR

j

LOOPS J. L. CROWLEY R. 3. GALLAHER R. E. CARNES 'd. H. OJCKWORTH

BBR CT

BURNS 8 ROE CHEMiCAL TECHNOLOGY DIVISION

CTS CONTINENTAL TECHNICAL SERVICES 0 EBM lac

DIRECTOR'S DIVISION ENGINEERING AND MECHANICAL 0 VISION INSTRUMENTATION AND CONTROL, DIVISION

M METALS AND CERAMICS DIVISION RC R

REACTOR CHEMISTRY DIVISION REACTOR DIVISION PART TIME ON MSRP

RADIATION TESTING C. A. BRANDON J. A. CONLIN

I



139

1-.

2,

3.

4.

G. 14. Adamson I;. G. Alexander S . E. Beall C. E. BBcttis

5. E. S, Bettis 6.

D. S . B i l l i n g t o n

7. F. F. Blankenship 8, E. P. Elizard 9. A. E. Boch s. E. B o l t

1 o e

. J . Borkowski

11. C 12, G. 1.3. E. 14+ R. e

E. Boyd J, Breeding B. Briggs R. Bruce

1.5, F. 16. 0 . w. Burlte 17. D. 0 . Cmpbell 18, W, C. Cobb 19, J. A. Conliri

20,

21. 22.

23.

.

21.1.

25

26,

W. W. Cook @. A. Cristy J. I;, Crowley F. L. C U ~ L ~ T J. H. &Van R. G. Donnelly D. A. Douglas

2‘7. J. I;. &@ish

28, E. P. Q l c r 29. W. K. Ergen 30. A. P, Fraas

31. J. XI. F V ~ , SI-. 32, C . TI. Gabbad 33. w. K. Gall 34. R. B. Gallaher 35. W. R. G r i m e s 36* A. @. G r i n d e l l

37. C 4 38, M.

S. Earrill

R. E l i l l

E. C. Nise 4s. H. w. H a f f m 4L P. P. Holz 42, A. ‘Efollaender 43. A. S . Householder 44. L 4 N. H o w e l l

39.

.

45 w, 11. Jordan 46. R. G . Jordlarm

L

47. P. R. Kasten 48. €3. J. Ked1 4.9. G. W. Keillnoltz

M. T. Kellcy 8 . W. Kinyon 52, R. W. Knight 53. J. A. Lane 54. c. E. Larsan 55. T. A. Ldncokn 50.

51.

56.

S. C.

R. R. M. 60. H. 61. W.

57. 58. 59.

62.

63.

64. 65

.

Lind

13. T.dndauer S . Livingston

I. zmain

G o MacPherson

D. Manly

E. R. Nmn W. B. McDonald C. K. McGlothlan E. c Miller

.

66, R. 2. Moore 67. K. 2. Morgan

68, J. c. Moyers 69. J. P o Murray (K-25) 70.

M. I;. ~ e i s o n

72. 73.

T. E. D O ~ ~ U P E. Osbsrn

71. c.

74. 75 76.

.

w.

w.

Mestar

E. F. Parsly

P o Patriarca R. Payne

w.

7’7. D. Phillips

W. 23. Pike M. Richardson 80. R. C. Rober*tson 81. T. K. Roche 78 79. 0

H. w. Savage A. W, SavoLaincn D o Scott 85. H. E. Seagren 86* E. 13. Shipley 87* 0. sisman 88, M. J. Skinner 89. G. M. Slaughter PO. A . N. Smith 91. P. G. S d t h 92, A. H. SnelJl

82, 83.

$ 1 ~ 0


140

I, Spiewak C. D. Siasmo J, A. Swartout A, Taboada J. H. Tallackson

99

.

H. Taylor H. E. !I%sma B. R. Trauger E.

IO0 U1rich 101. w, 102 D. C . Watkiii 103 A, M. Weinberg I)

@.

0

a

1011.

lo5 106

. .. 108-1-09 a

107

110-113

114-158 1-59. 160-162 a

J. E. Westsi.k L. v, Wilson C.

EIa

lhdtke

Biology Library Reactor Dfvision Library ORNL - H - l 2 Technical. Librazy, Doeument Reference Section Laboratory Recon3.s Department Labcrratoorvy Records, BRT\;T.T..,R.C. C e n t r a l Research L i b r a r y

1.63-164. ID, F, Cope, AEC, OXO 165 J, F. Kaufmnn, AEC, Washington 166* â‚Ź3. W. McNamee, Manager, Research R d a i n l s t r a t i o n , 167. %. P. Self, AEC, OR8 3-68. Division of Research and Development, KEC, OR0

.

UCC, Mew Yowsk

169-771. Given distribution as shown in TD-1-~500 (17th ed., Rev.) und-er Reactor Technology c a t e g o r y

(75 copies

-

OTS)


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.