Contract
NO.
W-7405-eng-26
METALLURGY DrVIS I O N
COREOSION ASSOCIATED WITH FLUORINATIOW I N TI-E OAK RIDGE NATIONAL LABORATORY FLUORIDE VOLATILT'
PROCESS
A. P. L i t m a n and A. E. Goldman
OAK X I E E NATIOT\IAL LABOMTORY Oak Ridge, Tennessee o p e r a t e d by UNION CARBIDE C O W O M T I O N for %!le U. S . A'l'OMILC ENERGY COMMISSION
3 445b 0363460 3
ii i
CON'ER'L'S
1.
B.
5 5 6
C.
12
A.
12
16
21
D.
25
25
25
31 32
35 37
IT.
Mark II V o l a t i l i t y P i l o t P l a n t L Nickel Fluorinator------------
A. B.
c.
37 40 40
41 44 44 49 5151
D.
62 62 67
P
69 '70
70
iv
'7 1 '77 79 '79
80 84
84 89
95 95
96 3-08 108 113
13-3
119 i23 125
125
126 129
129
130
1-31 153 3-55 159 166 1'13
174
CORROSIOPJ ASSOCIATED WITH FLUORINATION I N TEE OAK RIDGE NATIONAL L4BORriTORY FLUORIDE V O L A T I L I T Y PIIOCESS A. P. Litmsn and A . E . Goldman
T h i s r e p o r t e v a l u a t e s chemical c o r r o s i o n on r e a c t i o n v e s s e l s and equipnient used dul-lng t h e f l u o r i n a t i o n of fused-salt f u e l s a n d su’oseciu.ent, a s s o c i a t e d o p e r a t i o n s i n t h e Oak liidgc Ndtional Laboratory (ORNL) F l u o r i d ? V o l a t i l i t y Process and i s a c o n t i n u a t i o n and expansion o f the Metal-lurgy
D i v i s i o n assistance t o t h e Chemical Technology D i v i s i o n i n -this regard
The f l u o r i n a l i i o n phase c o n s i s t s o f c o n v e r t i n g uranium t e t r a f l u o r i . d e t o
volatile uranium liexaf luoride b y fl u o r i n e s p a r g i n g of molten f l u o r i d e s a l t s and s u b o e q w n t d.ecoritamination and recovery o f the uranium h e x a f l u o r i d e .
For convenience i n r e p o r t i n g , t h i . s document i s d i v i d e d i n t o s i x s e c -
tions.
S e c t l o n s I and, I1 d e s c r i b e t h e corrosi-on behavior o f Yull-size
f l u o r i n a t i o n v e s s e l s fabricated fr-om I, n i c k e l and used d u r i n g Vo1.ati-lity
P i . l o t P l a n t (WY) o p e r a t i o n s .
S e c t i o n 111 covers c o r r o s i o n e v a l u a t i o n s OY
bench-scale f1uorinal;or.s made o f A n i c k e l , Liiconel, and INOE-8, which w e r e o p e r a t e d by t h e V o l a t i . l i t ; y S t u d i e s Group, Chemical Development
of t‘ne Chemical Technology Division.
S e c t i o n A,
S e c t i o n I V describes s c o u t h g tests
of many p r o p r i e t a r y and n o n p r o p r i e t a r y m a t e r i a l s exposed t o t h e p l l o t
~1mi-l
f l u o r i n a t o r environments and the r e a c t i o n s o f t h e v a r i o u s materi.als t o
those s e r v i c e c o n d i t i o n s .
Appendix A shows s e l e c t e d photomicrographs of
t h e c o r r o s i o n specimens d e s c r i b e d i n S e c t i c n I V .
For comparison, r e s u l t s
of some oT t h e coi-rosi-on t e s t s performed by t h e Argonne N a t i o n a l Laboratory
on metal coupons under s i m u l a t e d f l u o r i n a t i o n coriditions are r e p o r t e d i.n S e c t i o n V.
S e c t i o n V I arid Appendix B deal w l t h r e s u l t s of examinations o f
supplenientary VPP equipment i n c l u d i n g a r a d i o a c t i v e - p r o d u c t s t r a p , a
waste-salt l i n e , t h e a b s o r b e r s , v a l v e s and f i t t i n g s , t h e f l u o r i n e - d i s p o s a l system, and process-gas 1Ines.
I n t h i s r e p o r t , c o r r o s i v e a t t a c k i s r e p o r t e d as m i l s p e r month ba,rd
on molten s a l t r e s i d e n c e t i m e o r mils p e r hour based on f l u o r i n e exposure
time.
These r a t e s a r e incl.uiled s p e c i f i c a l l y l'or coiaparison Fta-poses, a r e
n o t e x a c t , and s h o u l t 3 n o t be e x t r a p o l a t e d i i i t o longer Lice periods Tor design
WOi-:i
c r o t h e r applicaiions.
Tvo f l u o r i n a t o r s were iAsed i n the W P t o c a r r y out t h e T l u o r i n s t i o n
reacti~ons. Tlicse ve:;sel.s, Mark 1 a n d Mark T I , were fabr-i.cated -into 'I c;,l-i.ncYcr:;, nicliel.
apy,rox L.-l/'2
f'L .in h e i g h t ,
f r o x tlie szme lient oi' L (low c a r b c p )
Tlie f i r s L vessel. c c ~ n t a i n e dequiiiiclar ThF-ZrE,
or MaF-7~~~F, -UFjL
1 1
(b&!k&--!t illole
57 500
0 ~ 7 ~ 5 "over ~ .a
$) f o r approx 1250 h r a t
perioci
s t a n d a r d 1.liters oi' F, were suarged i n t o -ihe s a l i s .
4-
01'
161
iir,
T h i s coiictiiuLec
a F .U no1.e r a t i o of 3: 1 beyond t h e o r e t i c a l . reipii-emeri-Ls. The Marl: 11 2' fluorinator contained- f l u o r i d e s ~ 1 . ot f~ a p p r o x i m a t e l y the same c c m p o c i t i o n s
plus m a l l a d d i L i o n s oi' PLIF)~ dL;l-i.ng
at
5 l C c ~ ; j o ~i'or c
t h r e e runs.
The r , a l t c were liegt :noltcn
approx 1950 ilia and aboitt CO 500 s t a n d a r d liters oi Fp>vere c
sparsed i n t o the Mark T I m e l t s in 92 h r . Bot.!i f l u ~ o r i n a t o r ss a s t a i red
s i v e .wall t h l r i n i ng.,
severe‘
larce
corrcsior: l o s s e s c o n s i s t i c ; ;
0;'exten-
i n t c r i o r j-ntergi-anular a t t a c k , and a moueri;-te
e s t e r i o r oxidstion attack.
Maximum d e t e r i o r a t i o n on t h e Mark 1 vessel oc-
c u r r e d i n %lie middle vapor r e g i o n a t a calculai,ed rate o f 1 . 2 m i l s / h r . ,
on Ylcorine sparge time, o r
ten sal-ts.
46
m i l s / r c n t h , based on time o f
expoS1Jj:C
'us:;ed
t o niol-
The second v e s s e l showed maxi mum a-ttack i n t h e sal.t-con.iai n i n z
r e g i ~ o nat, s i m i l a r l y cal.cu1ait.d r a t e s o f I.1 t n i . l s / h r and 60 mjLls/month.
Some
evidence was found -to j n d i c a t e that, the intergrai?iilar r,'i,tack may iwve r e s u l i e i j
â‚Źrom sull'ur i n ~Lhe sys'ce:::~.
BUl.1: metal losses Yron the vcssel.'s walls x r e
b e l i e v e 6 t o be t h e resuJ.t of cyclic l o s s e s o f IViF " ~ r o t e c t i v ~film:;. " '!The 2 f i l m s were Tormed on t h e i n t e r i o r walls o f the i'l.uorinators during conGitioni.ng and f 1uoririati.on tree~ir::ents and 3.ost as t h e result oi i-upt;lring, spbl.ling, , ' l u x i n g , washing a c t i o n s , and/or d i s s o l u t i o n i n higi-L1.y c o r r o s i v ~concknsa-tes lorincd during opera+.,i.ons. The s h i f t i n rnaxiniun c o r r o s i o n a-l;Lacl; gcouiciry
i n t h e two f l u o r i n a t o r s i s beli-eved to have r e s u l t e a f r o m diyfererices i n
opera-1;: ng cond7-tlons.
The Mark 11 v e s s e l experienced hi;r,her LeriperaLures,
longer fluorine exposure tinies, and extended uranium i-esidence times i n iLts salt baths.
Speciinr-ns removed from t h e w a l l o f t h e Cirst i ' l u o r i n a t o r showed. a
v a r i a t i o n i n average MTM g r a j n - s i z e number o . ~ ~6 he:i..izg i?ound In t h e n1Ldd.k vapor reggion.
t o > 1, WE l a r g e s t g r a i n s
Tlne second. v e s s e l had a more uiiiforrn
grain-si ze pa-Ltern, average ASYM g r a i n - s i z e nurribers v a r y i n g from
-3-5
~ 4 .
to
T'ne v a r i a t i . o n s i n g r a i n sizes a r e b e l i e v e d t o have r e s u l t e d from v a r i a b l e
heati.ng rates d u r i n g i n i t i a l usage. stxess recovery
Low rate:; permit more complete i n - t e r n a l
pri.or t o the star-L o f r e c r y s t a l l i z a t i o n whl.ch results i n
fewer r i u s l e a t i o n s i t e s and t h e r e f o r e lalager graj-ns during r e c r y s t a l l i ~ , : a t i o n .
Metallographic examinations d i d n o t provide evid-ence of a cau.sal r e l a t i o n s h i p between grain s i x arid f l u o r i n a t o r wall c o r r o s i o n .
Exnm.inations of bene h- scale r e a c t o r s , vhe re s l m u l a t e d f l u o r inati on
env-ironment;7 were provided t o s t u d y p r o c e s s v a r i a b l e s and c o r r o s i o n , shoved i l i . a t A n i c k e l had 'the h i g h e s t degree oi' c o r r o s i o n r e s i . s t a n c e as a rluorina-Lor
materi.a.1 of constructj.ori when. coinpared. with I n c o n e l and INOR-8. I n t e r g r a n u l a r
penetration arid subseqiien-t sloughing or" whole gmi.ns seerned
dominant mode of' corrosive a t t a c k on the I n c o n e l vessel.
.to be t h e pre-
A t t h e higher t e a t
temperatures, 600째C, INOR-8 i n i n i a t i ~ r ef l i i o r i i i a t o r s shoved lar.ge b u l k metal
l o s s e s plus select-ive l o s s e s o:C chromium, molybd.enum, and iron from t h e exposed. a l l o y su-rfaces.
EvId.ei-ice of a mzrlied r e d u c t i o n i n a t t a c k on ni~ckeland
450-525"C.
was found d a r i n g lower terripera-tiu*es t i t d i e s a t
INOR-8
These lower tempera-
t u r e ope r a t i o n s were made p o s s i b l e by adding 1L-Lhium f l u o r i d e t o t h e sod.j-~i:m f l u o r i d e - zirconi.um tetrar"luoi-i.c3.e s a l t mixtures. Scouti.ng corrosiori t e s t s w e r e performed
j
n t h e VPP's fluorina-Lors using
rod, sheet, or wire specimens of e o m i e r c i a l and. developmental alloys. b e s t s were siibjectt?d Lo s e r i o u s l i m i t a t i o n s du.e t o t h e
'These
lack of control over
o p ? r a t i n g c o n d i t i o n s arld thus c o n s i d e r a b l e va-ri.ation i n Lhe c o r r o s i o n of I,
n i c k e l c o n t r o l specimens r e s u l t e d
and. cobal.1; showed some s u p 1, n i - c k e l specimens
e
and c oba l i Cluori d-e:s
Those
iii ckrel-
r i c h alloys containi.ng i.ron
i.ori.ty -i n c o r r o s ion r e s i s t a n c e when conqiired -w.i.th
"his was p r o b a b l y becai.l.:;e of the low v o l a t i l i t y o:? i.ron
.
n i l c ke 1-ri eh a1loy s e o n t aining ino lybd e num add.it i o n s
showed v a r i a b l e bzhavior i n the i'lu.ori.nai,i on erivironment. sug;i'esl;ed.
Some of the data
i.mprov-ed r e s i s t a n c e 0-ver L riickel while o t h e r t e s t s showed tile r e v e r s e .
-4Since b o i h o f t h e k n o w molybdenum f l u o r i d e s Lhat could be formed a u r i n g
Y l u o r i n a t i o n have v e r y h i g h v o l a t i l i t y , one would not expect inrproved r e s i s t a n c e
from molybdenum a d - d i t i o n s .
Tne experiments emphasize t h a t t h e p r e s e n t method
o f s e l e c t i o n O P test m a t e r i a l s based on t h e OW v o l a t i l i t y of metal fluorides
t h a t may f o r i n during C h l o r i n a t i o n c o n t i n u e s t o have m e r i . 1 .
A d d i t i o n a l ex-
pe r i m e n t a l n i cke 1.-base a 1l o y c o r r o s i o n specimens , c o n t a i n i n g riiagne s i u m , alumi num, iron, c o b a l t , o r manganese, have been fabri.cated and w i l l be used i n fui?xre s c r e e n i n g t e s t s i n a subsequent p i l o t p1an.i; f l u o r i n a t o r . A review o f one Y l u o r i n a t j on t e s t s e r i e s conducted. by t h e Argonne
Nat i-onal Laboratory gave g e n e r a l agr?ement wj.th ORNL s c o u t i n g c o r r o s i o n Lest specimen r e s u l t s , al.thougii comparisons were hampered by d i f f e r e n t t e s t con-
.
di-tions
The Argonne Nat,ional- Laboratory has suggested t h a t t h e corrosrion
probI.em be a t t a c k e a by I l r t h e r s t u d i e s on t h e use of c o l d wall vessel...;,
spray
towers, or 1.ow-metti ng s a l t s f o r vel-atility p r o c e s s e s .
Visus.1 am? metallographic examinations p l u s u l t r a s o n i c measurements of
o i h e r VPP v e s s e l s and equipment i k b r i c a t e d g e n e r a l l y I’mm Monel. o r l n c o n e l
showed a wide v a r i . a t i o n i n r e s i s t a n c e -bo t h o s e v a r i o u s l o c a l s e r v i c e c0nd.itions.
The s t u d i e s suggest t h a t l n c o n e l can continue t o be used a s a m a t e r i a l
o f construction f o r some components b u t f r e q u e n t i n s p e c t i o n s a r e indicated..
Monel ayjpears g e n e r a l l y s a t i s r a c t o r y f o r t h e applilcations t o d a t e .
From a corrosi-on stand~poi.nt, the € l u o r i n a t i o n v e s s e l i n t h e VPP continues t o be t h e most v u l n e r a b l e t o a - t t a c k due t o t h e n a t u r e of t h e con’iaiLned vironixent and t h e high temperature necessary f o r f l u o r i n a t i o n .
en-
The continued
use of L n i c k e l f o r t h c fln.orina-kion vessel. d e s n o t appear p r o b i b i i i v e f o r batch. o p e r a t i o n s only di2e t o t h e p r e s e n t h i g h value of t h e p i l o t plai-1.l;’~ product.
A-t p r e s e n t , the only guarantee f o r jrnproved s e r v i c e l i f e Cor n i c k e l
f l u o r i n a t o r s seeins t o be u t i l i z a t l o n of the lowest p r a c t i c a l temperature *
Although not conclusi.vely proven f o r t h e f l u o r i n a t i o n v e s s e l s , i-eduction o f
s u l f u r contami.iiation and t h e e n s u r i n g OC a unifo-mi, smal.l--grai i l si..,e i n t h e
v e s s e l s may improve v e s s e l p e r f o m a n c e .
or long-iziine f l u o r i n a t o r i.ntcgrj.ty,
s e l e c t i o n o r development o f a new material of c o n s t r u c t i o n , the use o f s a l t s
with losrier m e l t i n g points, or the use o f a c o l d wall vessel., seems necessary.
The e v a l u a t i o n of p r o c e s s c o r r o s i o n t h a t occurred druring the d.eveI_op-
menl; s t u d i e s of hyd-rogen f 1uori.de d i s s o l u t i o r i of u.raniiim-inear.lng f u e l elements, tile head.-end cycle of t h e v o l a t i l i t y process, wri..LI be covered i n a separa-Le
report.
1
I. Mark I V o l a t i l i t y P i l o t ; P l a n t L Nickel. F l u o r i n a t o r M a t e r i a l S e l e c t i o n and F a b r i c a t i o n
A.
I__
T'ne s e l e c t i o n oi' riiaterial f o r t h e f i r s t p i l o t pl.ant Yluor'inator was
made by members of the Chemical Technology L).i.vision afte.r a s t u d y of the avai.1-
a b l e corrosi-on l i t e r a t u r e and t h e AS&% B o i l e r and Pressure Vessel. Code.
2, 3 ,J-1
Nickel seemed t o be t h e most l i k e l y eandiclate material o f c o n s t r u c t i o n , adltliough
a t 600-700째C,
t h e a n t i c i p a t e d o p e r a t i n g ternplirzture range o f the f l u o r i n a t o r ,
Myers and. IIeI.org repported p e n e t r a t i o n rates of f l u o r i n e on nickel. o f 16-34 mils/rnonth.
The ASME Code all-owable d e s i g n s t r e s s dat,a above approx 31.5"C
were n o t available f o r commercial p u r i t y A n i c k e l ( O . O > O . l 5
brl;
$
C).
This
was because of the known e f f e c t s of enibrittlem.ent through i n t e r c r y s t a l l i r i e
p r e c i p i t a t i o n of g r s p l i i t e i n nickel c o n t a i n i n g carbon af-Ler l o n g - t l nie exposure
t o h i g h tetnperatures.
However, s a t i s f a c t o r y d e s i g n data were a v a i l a b l e f o r
low-carbon L n i c k e l at, approx 650"c,so t h i s material w a s s e l e c t e d Cor. -the f i r s t pilot p l a n t f1uori.nator.
'The Mark 7: Y l u o r l n a t o r w a s fabricated at ORPSL from 1, n i c k e l using
h e a t w i t h t h e vendor s a m l y s i s of
0.0416 Si-O.OO$
S.
1 L
I-_-_
Annealed p l a t e
8
99.36% Ni-O.O2$ C-O.2$ Fe--O.O6$ CIYO 26$ Mns t o c k of 1/4-1ns thjickness w a s r o l l e d i n t o
A. E. Goldnian and. A. P. Litmaa, Corrosl.oro Associated with iry-drogen Fliro??id.e D i s s o-l u t i o n i n the F l u o r i d e V o l a t j - l i t y Process ORNTJ-28:3:j (Lo b e p u b l i s h e d ) . --2 2
(May,
H. Myers 1948).
W.
and. W.
B. &Long,
"Fluorine Corrosj.on, " (:hem. Engr. Prog.
3ffEngineering P r o p e r t i e s o f Nickel, " Tech. B~11.T-15, T h e I n t e r n a t i o n a l Nickel company, Tnc., New York, Revised, p. 21, J u l y , lgh9. "'Rules f o r Constructi.on of U r i f i r e d Pressire V e s s e l s , ASME: B o i l e r arid Pyessu-re V e s s e l COIF;., S e c t i o n VIIT, .Am. Soc. Meeh. ~ n g . 15156 E < t - t i o i i . . __I
%I. A. &li.id.ge, "Xieke1 ami Rickel-Copper, N;Tri ckel-Msnganese, and. rielated Xt&t-N:i.ck.el Alloys, " The Corrosion iIai~.dbooli (ed.. by T I . H. Uhli.g), p . 683, John Wiley an.d. Sons, Iric., New .York, 19&3 ~
- 6 -
B.
Operational l l i s___.. tory
_I___
___I
r wac csed b;; tiic iiiiit O p r a t i o i i s Scc-kioii ai'
i;he Chemical '!i'ech:iolo~:y D i v i s i or. t u r i q;;,p i - e l i z i c a r y r'lcor.ination e q u Lpiwri-L s t u d i e s for a p e r i o d oI' aboilt, tliree m o r i i h s .
DLiri.c;: t h a t L i m e > , no i'li;cirine o r
uranium-contaii-iin~r-lol~tens a l t s were i n c o r i t s c t w i - L l i the v e s s e l .
Tu;: Le 1.
c i t e s the process c o n u i t i o n s i n deiai.1 fi:r those s t u d i e s 2nd â&#x201A;Źor t h e more
e x t z n s i v e "M"
e qui prnent slid<?down an6 "C I ' proce s s de mons tration ru~.inbLJerrorme d
l a t e r i n t h e VPP.
F i g i r e ? SilowS t h e position o f t n e Marl: T f l u o r i n a t o r during the W P
pJns while Fi~g. 3 shows tile i n t e r i c r pi.pLrLg, >;as d.ispersion asseillbl5, arid t h e
pLaccrnent or a n early groul>
01'
corrosion % e s t sgeciircns.
t h e fluorjfnaLion v e s s e l was surround-ed Is;; 1-,,,st,ance 0ci
8
Tile l o v e r ha1 i" oi"
v z r t i cal Lube-type e l e z i r i c -
fiirnace of 3 0 - l ~rating t o provide tlie necessary lieai (600--y25"c)
f o r operations.
During t h e pilot F l a n t r-ms, rod-type e l - e c t r i c r e s i s t a n c e
h e a t i n g elements w i i h a tubal rad,iI;g of t c r i o r walls oâ&#x201A;Ź t h e f l u o r i n s t a r .
3
Iiw were i n s t a l l e d on the upper
ex-
P r i o r t o exposing -tile f l u o r i n a t o r t o elerr-ental f I.uorine duriog actual.
f l u o r i n a t i o n o f t:ie fused salts, a "ccndi.ti onling" c y c l e was performed wherein
f l u o r j n e was inti-ocluced i.nto t h e vessel. %rliicn was h e a t e d io 2 0 - l ~ O " C t o
"protecti.ve'I f i h s . F l u o r i n e used Til t h e V~PP 2 was obtaaincd i n s t e e l tank t r a i l e r s Yrom t h e Oak Ri.dge CaseoGs D!'i'fusion induce t h e foraiai;ion o f Nil?
Plant ( ORGDP) f l u o r i - n c g e n e r a t i n g s t a f ,j-on.
A -il.owing stream sample analyzed
by OHGDP _.. p z r s o n n e l i n d i - c a t e d t h e a n a l y s t s o f t h e f l u o r i n e was
958 F2, < 5% W,
R. M. Evans (ea. ) I__..__.___ Oak Ridge Na'cional Lriboratory, R e a c______ tor Materials TID-IO17, pp, 117-128 w o b e r 23, 1-958).
-S . p .e c.i r i c a t i o n s ,
-7-
U NCLASS I F I ED PHOTO52707
i N C O N E t TOP F L A N G E I N C O N E L S L I P - O N FLANGE
Y4-in. L NICKEL S H E' L L __
d
SEAL
L I
-GIRTH %3/8-in.
WELD
L NiCKEL D I S H E D HEAD
Fig. 1. Mark I: Volatility Pilot Plant Fluorinatar.
Table I.
Process Conditions f o r Mark I V o l a t i l i t y P i l o t P l a n t F l u o r i n a (Unit Operations, V o l a t i l i t y P i l o t P l a n t "M" and "C" Funs)
Phase I Unit Operations Runs Temperature; m a x ("C) Thermal cycles (room temperature t o 600-725"~) Time of exposure a t temperature ( s a l t s molten-hr) S a l t composition (nominal mole $)
600-700
-
Phase I1 "M" Runs (1-48) 600-72 5
600-725
20
10
445
715
20
90
N
(- 30 w i t h N sparge)' (- 60 withou? N2 s p a r g e ) NaF-ZrF4 (50-50)
Phase I11 "C" Runs (1-15)
NaF-ZrF4 (50-50) NaF-ZrF4-UF4
Total 60~725
(d)
None
35 i n 14 h r
(48-48-4) 530 i n 0.5 hr
Operations fluorine input b (liters)
None
16 775
40
UF 6 exposure
None
None
Conditioning fluorine input (liters a
(hr)
10 h r
in
830 i n 5 1
-
20 h r
1250
565 i n 14.5 h r hr
57 500 i n 6 1 h r (7-33 l i t e r s / m i n )
-
20 h r
a
These o p e r a t i o n s were done a t 20-150째C f o r t h e purpose of inducing an i n i t i a l " p r o t e c t i v e " f i l m of n i c k e l f l u o r i d e on t h e w a l l s of t h e f l u o r i n a t o r .
bAn average of 3:1 mole r a t i o (F2:U) beyond t h e o r e t i c a l requirements w a s used i n o r d e r t o reduce t h e f i n a l uranium c o n c e n t r a t i o n i n t h e s a l t t o a few p a r t s p e r m i l l i o n , C
Top f l a n g e removed,
-5
hr.
% a l t s were used p r e v i o u s l y i n u n i r r a d i a t e d loop s t u d i e s and t h e r e f o r e contained s i g n i f i c a n t amounts of c o r r o s i o n products as shown below. Ref: C. L. Whitmarsh, A S e r i e s of Seven Flowsheet S t u d i e s with Nonradive S a l t , V o l a t i l i t y P i l o t P l a n t Runs, C-9 Through C-15, p. 10, CF-58-5-113 (May 12, 1958). Component: 0.08-0.18 w t $ N i , 0.06-0.10 w t $I C r , 0.01-0.02 w t $I Fe, 0.01-0.60 w t $ T i , 0.002-3.4 w t Si.
i
a3 I
N
N
11.
- 9 -
t-r
I
cu M
-
10
UNCLASSIFIED PHOTO 52706
THERMOCOUPLE W E L L
-9 ,
i ir
FLUORINE INLET L l L E
NITROGEN I N L E T LINE-
AVERAGE OF VA P 0R - SALT I N T E Rf ACES ( 3 5 in. BELOW S L I P - O N F L A N G E ) --+
DIFFUSER GONE
_ I
DRAFT T U B E
CO R R OS IO N S P EC I PA E NS
CORROSION SPECIMENS
s i o n Assembly, and Placement of the Mark I VPP Fluorinator.
-
11
-
and 1-2% N2 and/or 02. P r i o r to use of' t h e f l u o r i n e i n t h e WP, t h e gas w a s passed through a f i x e d NaF p e l l e t bed a t approximately ambient temperatures. Under t h e s e c o n d i t i o n s , t h e hydrogen f l u o r i d e content i n t h e Tluorine was lowered t o approx 20 ppm. ( r e f 7) A f t e r conditioning, t h e system w a s purged w i t h commercial grade nitrogen dried t o
<
1 ppm H20.
which w a s n o t removed.
T'ne n i t r o g e n contained approx 100 ppm 0,
-
The f l u o r i n a t o r w a s heated to approx 600°C along with
t h e s a l t f r e e b e valve and s a l t i n l e t l i n e . heated by a u t o r e s i s t a n c e .
The l a t t e r two component,s were
Then a b a t c h of € l u o r i d e s a l t w a s melted in t h e
charge melt tank and d r a i n e d by g r a v i t y flow i n t o t h e I l u o r i n a t o r . F l u o r i n e w a s bubbled through t h e molten s a l t t o convert an:/ UF4 in t h e s a l t t o v o l a t i l e uF6.
During f l u o r i n a t i o n , t h e v e s s e l o p e r a t e d w i t h
approx 25% of i t s volume f i l l e d with about maining
75%
50 l i t e r s of f u s e d s a l t s .
The r e -
of t h e volume contained v a r i a b l e q u a n t i t i e s of f l u o r i n e , uranium
h e x a f l u o r i d e , n i t r o g e n , and v a r i o u s metal f l u o r i d e s of high or interniediate volatility. of
During t h e process demonstration "C" runs, an average mole r a t i o
3 : l (F2 : U ) beyond t h e o r e t i c a l requirements w a s used i n o r d e r t o r e h c e t h e
f i n a l uranium c o n c e n t r a t i o n i n t h e s a l t to a €ew p a r t s p e r m i l l i o n .
While t h e v e s s e l w a l l i n t h e s a l t - c o n t a i n i n g r e g i o n of t h e Tluorina-
t i o n v e s s e l reached temperatures of 6 0 & 7 2 5 " ~ , t h e upper vapor r e g i o n remained
a t lower temperatures.
The maximum temperature recorded on a thermocouple
a t t a c h e d t o t h e e x t e r i o r w a l l of t h e J l u o r i n a t o r 1 2 i n . down from t h e s l i p - o n f l a n g e w a s 500°C.
The average temperature i n t h i s same r e g i o n was about 400°C.
A f t e r completion of f l u o r i n a t i o n , t h e waste s a l t l e f t i n t h e Yluorin a t o r w a s p r e s s u r e t r a n s i ' e r r e d through a f r e e z e valve i n t o a waste c o n t a i n e r ;
and t h e gas from t h e f l u o r i n a t o r w a s passed through an I n c o n e l t r a p , c o n t a i n i n g e i t h e r n i c k e l mesh o r NaF p e l l e t s , which w a s maintained a t approx 400°C.
Prior
t o Run C-9, t h e t r a p contained n i c k e l mesh f o r t h e purpose of c o l l e c t i n g ZrF "snow,
I'
4'
and t h e r e a f t e r t h e u n i t contained NaF p e l l e t s to t r a p e n t r a i n e d s a l t ,
chromium, and zirconium f l u o r i d e s .
During and a f t e r Run C-9,
the t r a p was
termed a "CRP" or complexible r a d i o a c t i v e products t r a p .
'F. W. Miles and W. H. C a r r , Engineering E v a l u a t i o n of V o l a t i l i t y P i l o t P l a n t Equipment, CF-60-7-65, S e c t i o n 15, p. 228.
-
-
12
Downstream from t h e Snow-CRP t r a p , t h e product stream w a s d i v e r t e d through a b s o r b e r s c o n t a i n i n g NaF a t 6 5 - 1 5 0 " ~ t o absorb t h e UF
6'
The un-
absorbed gas, mostly f l u o r i n e , w a s r o u t e d through a chemical t r a p (a NaF bed
a t ambient temperature) t o r e t a i n any r e s i d u a l UF
6 and
subsequently through
a KOH gas d i s p o s a l u n i t t o n e u t r a l i z e t h e f l u o r i n e b e f o r e being exhausted t o t h e atmosphere.
The product, UF6,
w a s desorbed from t h e a b s o r b e r bed by
h e a t i n g it t o approx 400째C i n a f l u o r i n e atmosphere and t h e n passed through two cold t r a p s maintained a t -40째C and
-55째C where t h e uF6 condensed.
The
c o l d t r a p s were i s o l a t e d from t h e r e s t of t h e f l u o r i n a t i o n system and heated
t o approx 80째C t o l i q u a t e t h e UF
C.
Reaction t o Environment
6 which
d r a i n e d i n t o a h e a t e d product c y l i n d e r .
U l t r a s o n i c - t h i c k n e s s measurements of t h e f l u o r i n a t o r were made w i t h an "Audigage," a n u l t r a s o n i c - t h i c k n e s s measurement device, a f t e r t h e Unit O p e r a t i o n ' s p r e l i m i n a r y f l u o r i n a t i o n equipment s t u d i e s .
No detectable m e t a l
l o s s e s could be found i n e i t h e r t h e s h e l l of t h e v e s s e l o r i n t h e bottom head; t h i s could be expected because no f l u o r i n e , uranium-bearing s a l t s , o r UF6 w a s p r e s e n t d u r i n g t h e s h o r t p e r i o d of o p e r a t i o n a t e l e v a t e d temperature and whate v e r a t t a c k occurred w a s so s l i g h t as t o be undetected by t h e measuring equipment. 1.
Chemistry
During VPP Run C-6, a s t u d y w a s made o f t h e i n t e r i o r d e p o s i t s
which formed on the w a l l of t h e f l u o r i n a t o r .
Figure
subsequent chemical a n a l y s e s of t h e s e d e p o s i t s .
4
shows t h e l o c a t i o n and
These d a t a i n d i c a t e a tendency
f o r chromium, presumably from impure f e e d s a l t s , and uranium t o c o l l e c t i n t h e middle vapor r e g i o n o f t h e v e s s e l .
The v a l u e s shown f o r n i c k e l i n d i c a t e t h a t
e x t e n s i v e c o r r o s i v e a t t a c k had occurred i n t h e system during o p e r a t i o n s . A f t e r completion of t h e "M"
and "C"
r u n s d e s c r i b e d i n Table I,
t h e Mark I f l u o r i n a t o r w a s t u r n e d over t o Metallurgy f o r c o r r o s i o n e v a l u a t i o n .
Figure 5 shows t h e i n t e r i o r of t h e f l u o r i n a t o r a f t e r r e t i r e m e n t .
Most o f t h e
i n t e r i o r w a l l s o f t h e v e s s e l below t h e molten s a l t l e v e l s w e r e f r e e of s u r f a c e
UNCLASSIFIED O R N L - L R - D W G 49156
ANALYSES OF DEPOSITS FROM VPP MARK-I FLUORINATOR AFTER RUN C-6
SLIP-ON
Sample Location
I/
ii
!
I 35 in.
si
n.
VAPOR- SALT
Region
Component (wt %j(')
Description
U
Underside of lnconel top flange
Top vapor
Pale blue-green
Interior wall-7 in. below slip-on flange
Upper vapor
Bright bluegreen scale
Interior woIi-8/,o in. below slip-on flange
Upper vapor
Dirty yellowgreen scale
Interior w a l l - ' $ B in. below slip-on flange
Middle vapor
Bright yellowgreen scale
Interior waII-25/26in. below slip-on flange
Lower vapor
Dirty yellowbrown scale
Underside of diffuser cone
Vapor- salt interface
Yellow-green scale
Outside of draft tube
Salt
Pale yellowgreen deposit
scala
No
Ni
Zr
2.45 1.59 49.7 2.00
1.28
8.19 3.3
1.66 3.66 2.30
3.36
27.8
1.6 0.98 15.1
4. Analyses
F 40.4
1.23 33.0
14.4 34.2 3.65 37.5
7.2 48.2 0.75 38.0 10.2 43.3
0.51
38.3
0.15 3.50 23.2 45.0 0.87 41.0 0.26
3.50 33.3
16.3 0.08 40.5
(')ORNL Analyses.
Flg.
Cr
of Deposits from N&rk I W P Flumioator After.Rur: C-6.
I
P w I
-
14 -
ln
r-i I
u
-
15
-
d e p o s i t s b u t t h e r e g i o n s above t h e i n t e r f a c e s were covered w i t h heavy s c a l e A s o l i d r i n g of material, about 1 in. i n c r o s s sec-
and c o r r o s i o n p r o d u c t s .
t i o n , w a s p r e s e n t on t h e i n t e r i o r of t h e vessels w a l l a t about t h e same e l e v a t i o n a s t h e e x t e r i o r rurnace s e a l .
This was a f e w inches above t h e
average e l e v a t i o n of t h e v a p o r - s a l t i n t e r f a c e s .
Samples of some of t h e s e
i n t e r i o r d e p o s i t s w e r e submitted f o r chemical a n a l y s e s &nd i d e n t i f i c a t i o n by x-ray d i f f r a c t i o n .
The r e s u l t s are shown i n Table 11.
Table T I . The Oak Ridge N a t i o n a l Laboratory Analyses of S c a l e from t h e V o l a t i l i t y P i l o t P l a n t Mark I F l u o r i n a t o r a f t e r Run C-15a Component, w t O r i g i n of Sample
U
PTa
N i
Cr
% Zr
F
Approx Composition I n d i c a t e d by X-ray Diffraction I n t e n s i t i e s
Underside o f I n c o n e l slip-on flange
1.95 0.78 45.54 0.79 0.72 39.60
From A Nickel F2 i n l e t tube, approx 2 1 i n . below slip-on flange
0.98 5.10 33.76 0.09 0.64 41.15
From A Nickel F2 0.13 6.64 i n l e t tube, a t vapor-salt interface
90% NiF,10% NaF N i p 2 - 2ZrF4
-
60% NiF2
-
-
30% TsF NiF2 2ZrF4 10% p2*2NaF.ZrF4
8.36 0.02 1.18 43.30
-
a
C. L. Whitmarsh, A S e r i e s of Seven Flowsheet S t u d i e s w i t h Nonradive S a l t , V o l a t i l i t y P i l o t P l a n t Runs, C-9 Through C-15, p. 14, CF-58-5-113 (May 12, 1958).
Most o f t h e s a l t d e p o s i t s were removed by washing t h e i n t e r i o r
0.7 M
H 0 1.8 M KOH, and 0.4 _M Na2C4FI4O6 2 27 room temperature, a i d e d by hand chipping. A f t e r cleaning, a n o t h e r v i s u a l
of t h e v e s s e l w i t h a mixture of
i n s p e c t i o n w a s made and t h e r e s u l t s are given as follows:
at
- 16 Results
Region Vapor
Smooth, e t c h e d appearance n e a r t h e t o p of t h e v e s s e l w i t h i s o l a t e d , shallow p i t s . A yellow-to-green d e p o s i t e n c i r c l e d t h e v e s s e l from a p o i n t approx 10 i n . down to a p o i n t approx 20 i n . from t h e t o p . S e v e r a l small areas of f l a k i n g and s c a l i n g were noted a t approx 16 i n . from t h e t o p i n t h e d e p o s i t zone. The area from 20 i n . down t o approx 24 i n . from t h e t o p had a b l u i s h c a s t and w a s rougher i n t e x t u r e t h a n t h e t o p s e c t i o n .
Vapor-salt interface
Smooth m e t a l l i c appearance w i t h d i s t i n c t i n d e n t a t i o n s e n c i r c l i n g the vessel a t several levels.
Salt
Smooth m e t a l l i c appearance. c o r r o de d
.
F l a n g e - t o - v e s s e l weld n o t n o t i c e a b l y
I n t h e middle vapor region, a t i g h t l y adherent, yellow-to-green d e p o s i t remained on t h e w a l l of t h e f l u o r i n a t o r .
Samples of t h i s d e p o s i t , s u r f a c e , and
subsurface m i l l i n g s , were removed and submitted f o r chemical a n a l y s e s .
Figure
6
d e t a i l s t h e r e s u l t s which i n d i c a t e t h a t chromium which had p r e v i o u s l y been round t o c o l l e c t i n t h e upper vapor r e g i o n of t h e f l u o r i n a t o r had p e n e t r a t e d i n t o t h e v e s s e l w a l l to some depth g r e a t e r t h a n 10 m i l s .
This chromium con-
c e n t r a t i o n g r a d i e n t w a s found b o t h i n t h e upper and middle vapor r e g i o n s a l -
though h i g h e r c o n c e n t r a t i o n s were found i n t h e former r e g i o n .
No e x c e s s i v e
q u a n t i t i e s of s u l f u r over t h a t p r e s e n t i n t h e base material were found. 2.
Dimensional Analysis Micrometer measurements w e r e t a k e n i n t h e t h r e e major r e g i o n s of
t h e f l u o r i n a t o r i n a l l quadrants and show t h e g r e a t e s t w a l l - t h i c k n e s s l o s s e s t o be c o n c e n t r a t e d i n t h e vapor r e g i o n of t h e v e s s e l s h e l l .
Figure
7 shows
a schematic drawing of t h e v e s s e l and denotes t h e s e c t i o n s t h a t were removed
from t h e v e s s e l f o r t h e s e measurements and f o r metallographic study. d a t a are given i n Table 111. the northeast-by-east
The loss
A f u l l - l e n g t h v e s s e l s e c t i o n w a s removed from
quadrant and micrometer measurements t a k e n every v e r t i c a l
inch t o e s t a b l i s h a corrosion wall-thickness-loss p r o f i l e .
Figure 8 shows t h i s
p l o t and p i n p o i n t s t h e maximum metal loss of 47 m i l s as approx 1 2 i n . below t h e bottom of t h e s l i p - o n f l a n g e .
.
- r7 -
- 18 UNCLASSIFIED ORNL-LR-DWG 49158
F U L L LENGTH SECTION REMOVED HERE
-
-AVERAGE OF OR SALT INTERFACES
@
CIRCULAR COUPONS TREPANNEO FROM VESSEL W A L L
Pig. 7. Schematic of Mark I VPP F l u o r i n a t o r Showing Areas Rernoved f o r Netallographic Examination and Micrometer Measurements.
- 19 Table 111.
-._..
-
a
Wall-Thickness Tosses on Couldoiis Perfloved f r o m t h e Mark I V o l a t i l j t y P i l o i 321 a n t JJ N i c k z l Flimri n a t o r b
_I___
Loc a t i o n __ E Ievat i.on Sample (Tnches be low Number sli-p-on flange) Quadra.r.t
Wa 1. 1- ‘i’hnj~ ckne s s
Loss
Region
(mils)
N- 1
12
Nortii
Vapor
38
E-l
l?
East
Vapor
29
13
South
12
We sL’
Vapor
33 7
33 35 35 35
North
S-1
w--1 N- 2 E-2
S-2
w-2
45 l+5
3 E-3 N-
s- j w-3
45 45
Vapor
Vapor-salt i n t e r r a c e
!dan t
Vapor-s a l t i n t e r f a c e
6 !+
South
Vapor-salt i n t e r f a c e
8
West
Vapor-salt i r i i e r f a c e
10
East
Salt
Salt
10
South
Salt
West
Salt
I1-
North
.-
By rnicrotiieter mea surcment .
a
bOriginal w a l l thickness
250 m i l s .
8
.._I-.-
15 I
-
20
-
UNCLASSIFIEU ORNL-LR-DWG 40728
SLIP-0 I FLANGE
-4
0
I
5 $0
45
-.e
I
w CY
20
z
4 LL
z
25 30
P
9
m 3
i
H5 1 J
w I m
0
E z 5
35 40
Y 2
45
50 55
DOITOM
Fig. 8. Corrosion P r o f i l e and Typical. Microstructures from the Mark T VPP Yliiorinator. ( P r o f i l e based on microme1,er measurements from n o r t h e a s t quadrant full-length s h e l l s e c t i o n . )
3.
21 -
Metallographi c Study Bzsed on -the c o r r o s i o n wall-ihi.ckne3s-loss p r o f i l e p l o t , 8 r e a s
were s e l e c t e d frorii t h e f u l l - l . e n g t h s e c t i o n of the f l u o r i n a l , o r and from p r e v i o u s l y trepanned samples for metalJ-ographic study.
a r e a s i s shown i n F i g . 8.
The l o c a t i o n o f these
I n the a s - p o l i s h e d c o n d i t i o n , some s l i g h t roughening
of t h e s i u f a c c s of t h e samples Lias noted.
No grai.n-boundary rnodificatlons
s u c h as i s commn t o i n t e r g r a n u l a r c o r r o s i v e a t t a c k
A f t e r e t c h i n g w i t h an 0.5% Xl, approx
could. be found,
60% HC,Ii30,
and approx
HNO mixture, t h e g r a i n boundaries of t h e i n t e r i o r s u r f a c e samples appeared 3 darkened below t h e exposed. s u r f a c e s t o depths v a r y i n g from 4 'LO 25 m i l s .
Fi-gyre
40$
8 iI.l.ustrai;es t h e t y p i c a l struc-Lures found a t v a r y i n g e l e v a t i oris on
t h e i n t e r i - o r s u r f a c e s of t h e f l u o r i n a L o r w a l l - .
Tlie deepest penetra1,i ons were
found on sarruples from -ihe middle vapor r e g i o n of the v e s s e l , t h e v a p o r - s a l t
i n t e r f a c e , and t h e s a l t reg;i.on of t h e f l u o r i n a t o r .
The e x t e r i o r s u r f a c e sam-
ples a l s o showed i n t e r g r a n i i l a r a t t a c k v a r y i n g from 3 t o 8 m i l s i n d.epth.
Widely v a r i a n t grai.n s i z e s were found i n t h e m e t a l l o g r a p h i c s a m -
p l e s examined.
A siimrnary o f these s i z e s , converted t o averaze ASTM g r a i n - s i z e
nuuibers, i.s shown i n T a b l e I V .
Sullimary of Grain S i e s i n Samples Removed from t h e Mark 1 V o l a t i l i t y Pilot P l s t i t F l u o r i n a t o r a
IT3b'Le TV.
Distancr
down f r o m
slip-on i l a n g e (in. )
-_-.
1
3
13- I./?
70
24
~ 91/2 35 43
Re@ on
.____
Vapor Val~oe Vapor Vapor Vapor Vapor Vapor- s a l t i n t e r f a c e Sali
AS V4
Grain s i e n i m b e r
5-6
2-3 >1
1 2
5 5
F G
a Grain s i z e s from i n t e r i o r w a l l and e x t e r ? o r w a l l sampI_es were approxi mately e qisal
.
- 22 A t a l a t e r da.te, rln an attenip-t t o determine the reasons Tor t h e v a r i a n t g r a i n s i z e , d i f f r a c t o m e t e r t r a c e s were o b t a i n e d on sel.ected. samples removed from the w a l l of t h e Mark I f l u o r i n a t o r , .
Samples were taken from
t h e I-, 12-1/2-,and 43-5.n. l e v e l s , respecti-vely, below t h e bottom o f i h e vessel slip-on flange.
The maximum amount of r e s i d i i a l s t r a i - n w a s noted f o r
t h e 1 - i n . sample w i t h l i t t l . e ,
i€ any, evidence of r e c r y s t a l l . i z a t i . o n having
t a k e n p l a c e d u r i n g t h e Mark I o p e r a t t o n s .
A very l i m i t e d . amount of r e c r y s t a l -
l i z a t i o n appeared t o have occurred i n t h e l2-1/2--in.
sample s i n c e t h e r e seemed
o n l y sli.ght.1.y 1.~3:;~ s t r a i n presenl, i n t h i . s sample when compared. t o t h e one above.
Tie 11-3-i.n.-sample t r a c e s showed c o n s i d e r a b l y I.ess r e s i d u a l s t r a i n
p r e s e n t t h a n e i t h e r of t h e o t h e r sauples.
The i n d i c a t i o n s were t h a t p a r t i a l . ,
i f n o t compl.et,e, r e c r y s t a l l i z a t i o n had taken p l a c e i n t h e lower p o r t l o n of
t h e f l u o r i n a t o r wall. Figure
9
shows a s e c t i o n through t h e g i r t h weld which was
l o c a t e d i n t h e s a l t phase of t h e f l u o r ? - n a t o r . A f t e r e t c h i n g , t h e specT-men showed no c o r r o s i v e a t t a c k a t ].ow magnificatj-on.
A t hj-g’ner magnifi-cation,
t h e ilreld d e p o s i t showed a. grain-boundary a t t a c k similar t o t h a t found i n t h e
base metal., b u t t o a l e s s e r degree of s e v e r i t y .
E a r l y work on L n i c k e l corros-ion rods p l a c e d i n t h e Mark I
f l u o r i n a t o r i n d i c a t e d s u l f u r contamination was probably a f a c t o ? i n t h e cor-
rosive a t t a c k of t h e .vessel.
8 I n view of
t h e l a c k of evidence frorn chemical.
analyses, o t h e r aLternpts were made t o prove t h e presence of suli”ur a t -the grai-n boundaries of i n t e r i o r w a l l specimens from t h e Mark I f l u o r i . n a t o r .
The use of s u l f u r p r i n t papers d i d not provi.de p o s i t i v e evidence
of t h e e x i s t e n c e of sulfur compounds a t t h e mating s u r f a c e s of t h e g r a i n s .
One sample from t h e middle vapor r e g i o n of t h e f l u o r i n a t o r d i d prese1i-L -tile c o l o r s d e s c r i b e d as needed. for t h e i d e n t i f i c a t i o i i of n i c k e l s i i l P i d e .
F i g u r e 10 shows t h e grain-boundary d e p o s i t a t t h e 1 2 - i n . l e v e l below t h e bottom of t h e s l i p - o n f l a n g e a f t e r etch5 ng w i t h cyaiiri d e - p e r s u l f a t e and. p a r t i - a 1
repolishing .Lo show t h e d e p o s i t t o i t s best, advantage.
However, d u p l i c a t e
res11.I-ts could n o t be o b t a i n e d w i t h t h e method. a u L. R. T r o t t e r and E . E. Hoffman, P~ogressReport on V o l a t i l i t y P i l o t P l a n t Corrosion Problems t o April 21, 1-95I, OHNL-2&95 (September 30, 7 958).
-
23
-
I
Exterior
Interior ( c o n t a c t with s a l t phase
(contact with
air)
I
F i g . 9. Macrostructure of S e c t i o n Through G i r t h Weld 47 i n . Below Top Flange of Mark I VPP F l u o r i n a t o r . Etchant: Acetic, n i t r i c , h y d r o c h l o r i c a c i d . 10 X.
-
24
-
0)
W
I
V
z-
f
-
I
002
00: -
9
X
0
0
0
.oo
F i g . 10. Photomicrograph of Sample T r o m I n t e r i o r Surface of Mark I VPP L Nickel F l u o r i n a t o r 12 i n . Below S l i p - o n Flange (Vapor Phase) Showing Grain Boundary Deposit. Deposit w a s p a l e yellow under nonpolarized i l l u m i n a t i o n and b l a c k under p o l a r i - e d l i g h t i n accordance u i t h H a l l ' s method ? o r i d e n t i i y i n g n i c k e l sulf'ide d e p o s i t s . Etchant: Potassium cyanide-ammonium p e r s u l T a t e , p a r t i a l l y r e p o l i s h e d . IOOOX. Reference: A . M. H a l l , " S u l f i d e s i n Nickel and Nickel A l l o g s , " Trans. Met. SOC. AIME 152, 2&3, 1943.
- 25
-
S u l f u r i n almost any chemical form i n c o n t a c t w i t h n i c k e l a t h i g h temperatures w i l l r e s u l t i n t h e formation of a low-melting n i c k e l - n i c k e l s u l f i d e e u t e c t i c p r i m a r i l y along g r a i n boundaries, l e a d i n g t o embrittlement
of t h e material.9 bend t e s t e d .
Consequently, samples of t h e f l u o r i n a t i o n v e s s e l w a l l w e r e
'The samples d i d n o t show b r i t t l e behavior.
Two o t h e r t e c h n i q u e s were c o n s i d e r e d as i d e n t i f i c a t i o n methods f o r t h e grain-boundary d e p o s i t s d e s c r i b e d .
One w a s t h e use of a m i c r o c h i s e l ,
p r e s e n t l y under development by t h e Metallography Group of t h e Metallurgy Division, by which some of t h e grain-boundary d e p o s i t could be removed and subsequently submitted f o r x-ray d i f f r a c t i o n a n a l y s i s .
The v e r y s m a l l s i z e
of t h e grain-boundary d e p o s i t s prevented t h e m i c r o c h i s e l ' s usage i n t h i s
situation.
The second technique c o n s i d e r e d w a s t h e u s e of an e l e c t r o n probe
microanalyzer which could p o s s i b l y i d e n t i f y a s m a l l p o r t i o n of t h e d e p o s i t by
--
x-ray d i f f r a c t i o n analysis, i n s i t u .
Such an i n s t r u m e n t i s n o t y e t a v a i l a b l e
at ORNL and it w a s n o t p o s s i b l e t o o b t a i n s e r v i c e time on t h e f e w i n s t r u m e n t s c u r r e n t l y i n o p e r a t i o n i n t h i s country.
Consequently, t h e n a t u r e of t h e Mark I
f l u o r i n a t o r grain-boundary d e p o s i t s w a s l e f t i n doubt.
4.
Summary of Corrosive A t t a c k Table V summarizes t h e maximum c o r r o s i o n l o s s e s of all t y p e s
found i n t h e t h r e e major r e g i o n s of t h e VPP Mark I f l u o r i n a t o r . a t t a c k w a s c a l c u l a t e d t o be s a l t s d u r i n g t h e VPP "M"
46
runs
The maximum
mils/month based on exposure time t o molten
(1-48) and "C" runs (1-15) or 1 . 2 m i l s / h r based
on f l u o r i n e sparge t i m e d u r i n g f l u o r i n a t i o n of molten salts.
The maximum
a t t a c k o c c u r r e d i n t h e middle vapor r e g i o n .
D.
D i s c u s s i o n of R e s u l t s 1.
I n d i v i d u a l Actions of F
&Q
and Fused F l u o r i d e S a l t s
Major c o r r o s i v e a g e n t s i n c o n t a c t w i t h t h e VPP L n i c k e l f l u o r i n a t i o n v e s s e l , Mark I, were e l e m e n t a l f l u o r i n e , uranium h e x a f l u o r i d e , and
'W. A. Mudge, "Nickel and Nickel-Copper, Nickel-Manganese, and R e l a t e d High-Nickel A l l o y s , " The Corrosion Handbook, (ed. by H. H. W i g ) , p. 679, John Wiley and Sons, Inc., New York, 1948.
Table V.
Summary of Maximum Corrosive Attack i n Each Major Region and Quadrant of t h e Mark I V o l a t i l i t y P i l o t P l a n t L Nickel F l u o r i n a t o r
Location Elevation (inches below slip-on flange )
Quadrant
Region
North
Vapor
East
Vapor
South
Vapor
12
West
Vapor
35
North
35
East
35
South
35
West
45 45 45 45
North
Salt
East
Salt
South
Salt
12
12
West
Vapor- s a l t interface Vapor-salt interface Vapor- s a l t interface Vapor- s a l t interface
salt
Intergranular Wall Penetration thickness I n t e r i o r Exterior lossa wall wall (mils) (mils) (mils)
38 29 33 47
Attack (mils)
T o t a l Rate Lossesb
mils/
mils/hr (Molten (F2 sparge s a l t time)c time)d month
21
3 4 3 5
65 53 59 73
33 37 46
6
18
7
31.
20
0.5
4
17
6
27
17
0.4
8
23
5
36
23
0.6
10
17
8
35
22
0.6
10
25
3
38
25
33 40 42
0.6
11
4 4 5
24 25
0.7 0.7
8
15
24
Tot a1 Corrosive
20
23
21
22
41
21
26
%y micrometer measurement,
b C
Includes e x t e r i o r i n t e r g r a n u l a r p e n e t r a t i o n .
(1-48) runs
Based on molten s a l t residence t i m e during VPP "M"
and "C"
s a s e d on f l u o r i n e sparge time during f l u o r i n a t i o n of molten s a l t s .
8
4
(1-15) m n s .
1.1
0.9
1.0
1.2
0.5
I
Iu o\ I
- 27
-
molten f l u o r i d e salts, genera1l.y of t h e NaF-ZrP -UF
4
4 type.
'The c o u i p a t i b i l i t y
of each of t h e s e agents i n c o n t a c t wi.th metals has r e c e i v e d increased. a-titen-
t i o n duying t h e past, decade, b u t a composite system has riot been s t u d i e d e x t e n si.ve1y
.
F l u o r i n e , a most a c t i v e elerrlent, was known -Lo r e a c t w i t h v i r - t u a l -
ly every metal under su~itab1.e c o n d i t i o n s . fe1.t t o be i m p a r - L e d . by p a s s i v e f l u o r i d e
Resistance t o f u r t h e r a t t a c k was
rilrns
which form on m a t e r i a l s .
10,11,12
For nickel, t h e only known b i n a r y conipou.nd w i t h f l u o r i n e w a s found t o be nickelous f l u o r i d e , NTF2 (ref 13) The melting p o i n t of Ni.F
2
e
had been r e p o r t e d
t o be about lGOG째C, -dell i n excess of t h e operati-ng tempera;tures 114
The vapor p r e s s u r e of NiF2' approx 1 x lo-' 650째c, appeared s u f f i c i e n t l y low s o -that li.Ltle v o l a t i l i z a t i o n of
of -the f l u o r i n a t o r
I
t i v e f i l m would occiir.
15
(600-725~~) null
Kg at
tlx p r o t e c -
Kecen-t; experiments at t h e Argoi-me National Laboratory had i n -
d i c a t e d .that t h e r e l a t i v e amounts oE f l u o r i n e consumed by
8
n l c k e l v e s s e l and
the change i n r a t e - l a w behavi-or w i t h temperature can be represented. as shown i n F i g . 11. A t lower temperatures,
300 t o 4OO0C, a l o g a r i t h m i c rate l a w ap-
peared t o hold, b u t a t hi.gher teuiperatures, 500 t o
6oo0c,
a p a r a b o l i c behavior
seened p r e v a l e n t .
10
__.
M. J. S t e i n d l e r and R. C. Vogel, Corrosion of Materials i n the Presence of F l u o r i n e a t E l e v a t e d Ternpcratitres, Argonne National Labora3,ory Report, ANT,- 5x62 ( January, 1957 )
.
11.
1 _ -
C . S l e s s e r and S. R. Schram, Pi-eparati.on, P r o p e r t i e s , arid Technology of F l u o r i n e and Organic Fluoro Compounx, Natioiial Nuclear Energy S e r i e s , Div. VIL, Vol. 1, pp. 173, McGraw-Hill, New York, 1951.
"E.
I .
15'7,-
J. Bm-ber and. 11. A. Rernhardt, K-1421 ( A p r i l 9, 1 . 9 5 9 ) ( c l a s s l f i e d ) .
- 7,
13:1. J . Emel-eus, F l i m r i n e Chemistry ( e a . by J. iI. Simons), 1, Acaderriic Press, Tnc. , New York, 1950. 11 .L
Lau.rer,ce L. Qpill ( e a . ), Chemistry and Metallurgy of M i s c e l l a m o u s Materials: Thermodynamics, National- Nuclear E n e r g y S e r i e s , Div. I V Y Vol. I9b, p. 207, McGraw-Hill, New York, 1950.
l 5 M . Faber, R. T. Meyer, and J. L. Margrave, "'lhe Vapor P r e s s u r e of Nickel F l u o r i d e , " 3. Phys. Chem. -62, 883 (1914-8). 1 1 1 -
_ I
- 28 UNCLASSI FlED 55786
ORNL-LR-DWG
20 18 16
14 12
10
8 6
4 2
0
0
1000
2000
3000
TIME ( m i n )
Pig. 11. Consiirrptioii of Fluoriiie by a Nickel Vessel, R e f e r e n w : R. K. Steunenberg, T,. Seiden, and fi. E . Griffin, "The Reaction of P'luorine wi-tli N i c k e l Surfaces, Argome National..L a b o r z i o q Chemical Engifieering Division Summa-ry Report, July, August,, September, 1958, NL-59?41 pp 42-43. ~
.
- 33
-
More d e t a i l k d work i n t h i s f i . e l d has been r e p o r t e d by ORGDP.
16
Nickel w a s fou.nd t o form a continuous, ad.herent fl-imride f i 1 . m w-ith a-n und i l u t e d f l u o r i n e atmosphere a t temperatiires up t P about
980째C. Rl.ectron
microscopy i n d i c a t e d t h a t t h e n i c k e l f l u o r i d e f i l m s had few f l a w s i n t h e i n di-vidual c r y s t a l s which would p e r m i i d i r e c t access o f t h e flii.oride t o t h e
n i c k e l s u r f a c e ,underneath.
The s t i i d l e s a l s o i n d i c a t e d t h a t , as t h e n i c k e l
f l u o r i d e f i l m thickened, more r e s i s t z n c e t o a t t a c k w a s obtained.
However,
oraconsi-derable i n t e r g r a n u l a r a t t a c k of the m e t a l l i c n i c k e l w a s noted a t -tenii:~.-
815 and 980째C ( F i g . 12). Tne d.epth of i n t e r g r a n i i l a r p e n e t r a t i o n w a s esti.mated t o be 5 t o 8 t i m e s t h e average a t t a c k as c a l c u l a t e d from t u r e r of approx
s c a l e formation.
The r e p o r t i n d i c a t e d t h a t -tile primary mechanism of a t t a c k
appeared i o be d i f f u s i o n al.ong t h e c r y s t a l boundaries.
?lk second major c o r r o s i v e a g e n t p l a c e d i n c o n t a c t with tile
Mark I f l u o r i n a t i o n v e s s e l d u r i n g operations w a s UP,-. 0
The e f f e c t of this
compound. o n rile-tal5 had. undergone i n v e s t i g a t i - o n i n connection with t h e rksi.gn,
c o n s t m c t i . o n , and o p e r a t i o n of t h e ORGDP."'
Sone r e c e n t work a.t t h e same s i t e
i n d i c a t e d t k i a 1 ; on A n i c k e l samples which were coated wi.t;li nickel. f l . u o r i d e f i I.ms
of 37 000 a n d
714-000
A, t h e average p e n e t r a t i o n o f t h e n i c k e l by UF
6
a t about
815"C, c a l c u l a t e d from the average n i c k e l f l u o r i d e scale formation, appea.rt:d
t o be about one t h i r d oi" LhaL experiericed w i - L h Yluorine a t about 700째C. ( r e f 1.6)
L a t e r work by t h e same group i n d i c a t e d tha-'i a t times one o r d e r of rc1agnitu.d-e
grea-ter (hundrecls of h o u . ~ sversu.s t e n s of hours) NiP
2
i s l o s t by v a p o r i z a t i o n
and/or a r e a c t i o n p r o c e s s s o t h a t c a t a s t r o p h i c a t t a c k can occur by additional. UF/ c o n t a c t . C)
18
The n i c k e l exposed 'io t h e I F 6 a t those e l e v a t e d temperatures ex-
hlibl-ted a grain-boundary a t t a c k beneath t h e f l u o r i d e s c a l e q u i t e siml.lar t o I__..
l6C. F. Kale, E . J. Barber, SI. A. Rernhardt, and Karl E. Rapp, High Temperature Corrosion Study, I n t e r i m Report for t h e Peri-od. November, 1958, Through May, 1959, K - L - ~ Y (~J u l y 28, 1959). -I___
Ir'J. J. K a t z and E. Rabinowitch, The Chemistry oP Uranium N a t i o n a l Nuclear En-ergy S e r i e s , Div. V I I I , Vol. 5, pp. j-L1~15--!t6>McGraw-Hill, New York, 1951. 18E. J. Earber, Technical Division, ORGDP, Jan. 7, 1960, P r i - v a t e communi c a t i o n
-
30
-
F i g . E. M i c r o s t r u c t u r e s of A Nickel Coupons ( a ) A s Received; (b) A f t e r Exposure to F2 at 81'j"C: for 4 hr and f o r 32 hr a t Lower Temperatures; ( c ) A f t e r Exposure t o F2 at 980째C f o r 35 hr a n d f o r 350 hr a t Lower Temperatures. Etchant: Soldium cyanide, ammonium p e r s u l f a t e . IOOX. Reference: C. F. H a l e , E. J. Barber, R. A. Bernhardt, and K a r l . E . Rapp, High Temperature Corrosion Study, .Interim Repol-t f o r the Period, November, 1958, Tarough May, 1359, ~ ~ - 1 1 9 8 -(July 28, 1959).
.-
31- It wah a l s o obsemwd that
that, experienced i n t h e exposures t o f l i i o r i n f .
both ni c k c l f l u o r i d e and UF
G
c o r r o s l o n p r o d u c t s ha4 a p p r e c i a b l e vapor p r e s -
surf's ai, Lhose L e s t ieniperaL1ires aod w e r e observed t o migrate i o t h e c o o l e r
portions or Lhe r e a c t o r by vapor-phase i r a n s f c r ,
Tn a d d i t i o n t o F a n d IJY 2 6' f u s e d - f l u o r i d e s a l t s were a l s o ia c o n t a c t ?/it11the Mark I VPP â&#x201A;Ź l i i o r i n a t o r . A t ORPSL, ronsiderabbe p r o , ~ ~ e s has s
been mati? i n determining ma ttJrial corflpaiibi Ii t y i n v a r i o u s f u s e d - f l u o r i d e -
s a l t systems throuzh the z \ i r c r a f L Rearto r Experiment aqd Molten-Sali R e a c t o r
I'l*c,j:icLs.I$'
Nickel -base a l l o y h were found iu be,
i n g e n e s s i ; s u p e r i o r i o other
commercial a1 1 nys ror t h e containnieot of' â&#x201A;Ź l u o r i d e s a l t mixtures under dynamic
1'10 J condi t,i ons 2.
.
C o l l e c t i v e Attack iXl-riaS :FR.uoriuati.on _I___..... _____
I...~.
The f 1iior-in.ati-on cycle of t h e i"luoi?ide v o l a t i l i - t y p r o c e s s pro-
tliiced E r e a t E r cor:rosive a t - t a c k by t h e coll.ective system of F,, I'iiioTid? s a l t s on ili
...
UF6,
aiid f u s e d
ckcl than had^ been r e p o r t e d f o r h e indivi.dual c o n s t i t u e n t s .
D i r i n g WP o p e r a t l o n s , t h e Mark I L-nickel f l . u o r i n a t o r d i s p l a y e d Inaic-imum
rosion r a i e I-osses o f 1.2 miI.s/hr,
based on E'
2
b m e d on m o l t e n - s a l t r e s i d e n c e t i m e dur-lng VPP
(1--15).
sparge -i;irne, o r
"M" runs
COT-
46 mils/month,
(1-J-La) and
"C" r u n s
These r a t e s i n c l u d e wal~lt h i c k n e s s o r meial l o s s e s as detemnlned by
dimenslonal. analysis p l u s i n t e r g r a i l u l a r p e n e t r a t i - o n as d.eterniinF:d by metallo-
graphic examination.
The rates a r e g e n e r a l l y c o n s i s t e n t w i t l i e a r l y bench-scale
work on t h e v o l a t , i I . i t y procesc.
20
For convenience i.n r e p o r t i n g , the proposed reasons for t h e high
c o r r o s i v e a.-tkack on t h e E!-ii.orina.tion
headings:
v r s s e l w i l l be d i s c n s s e d under four major
(a) I n t e r i o r Bulk Losses, ( b ) I n - t e r i a r T n t e r g r a i u i a r ,flt.tack,
( c ) Exterior I n t e r g r a n u l a r Aktack, and
(a)
Grain-Size V a r i a t l o n s
.
" C o n s i m c t i o n MateriaJ-s for Molten-Sal t, Reactors, I ' "14. D. Manly et al. N - u i d Fuel R c a c t o j r c zd. by Lane, MacPherson, and Maslan) Chap. 13, Addisoni%sley,
a.
32
-
I n t e r i o r Bulk Losses The f i r s t p o r t i o n of t h i s s e c t i o n d e s c r i b e d "conditioning"
treatmen-ts whereby n i c k e l f l u o r i d e vas induced on t h e wa!.ls f l u o r i n a t o r p r i o r t o ac-Lual hish- teniperai;ii.i'e o p e r a t i o n s .
oi' t h e Mark I
This v-as i n iiarmo:t~y-
w i t h p r e v a i l i n g generalizat5.ons concerning p a s s i v e f luoi-ide f i l m s , which, when
formed on exyosed rnietnl s u r f a c e s may i n h i b i t Yur-Lher at-Lack by elemental fluorine.
However, based. upon ORGDP and.Arg:on.ne National L&ora-toi*y work, l 6 , 2 l
it appears t h a t p a s s l v a t t o n temperature should. have been equal t o , o r g r e a t e r than., the o p e r a t i n g temperature, r a t h e r than m-150째 C y i n o r d e r t o induce g r e a t e r Y i h thicknesses.
The work b y Iiale et, -a] .. 09
i n d i c a t e d t h a t while cor-
r o s i v e attack on n i c k e l by f l u o r i n e d5.d n o t cease a f t e r t h e n f c k e l f l u o r i d e
f i l m thickened, a d d i t i o n a l r e s i s t a n c e t o a t t a c k m.s obtained at, t e s t temprra-
t u r e s up t o 9 8 0 " ~ . Considering t h e very high ra-Le losses round
removed Trorn t h e wall of t h e f i r s t WP f l u o r i n a t o r ,
011
sainpl.ec
i.t would appear t h a t
c o n d i t i o n s were present; i n t h e v e s s e l vhicii (1) d i d n o t al.low s u f f i c i e n t f i l m
thickeni-ng t o occur,
( 2 ) reduced t h e p r o t e c t i v i t y o r thickened. n i c k e l fluorri.de
films, or (3) p e r m i t t e d c a t a s t r o p h i c l o s s e s of t h e n i c k e l f l u o r i d e f i l m s .
Free f l u o r i n e w a s present, p e r i . o d i c a l l y , during a l l of tile
Vl?P o p e r a t l o n s i n q u a n t i - t i e s above those arnoi.ints necessary t o o x i d i z e any UF
4 in
t h e f l u o r i d e s a l t mixtures t o I F 6 .
Tnus, even though c a t a s t r o p h i c
l o s s e s of o l d n i c k e l f l u o r i d e films might occur, n e w f i l m s would. have opport u n i t y t o form,
Therefore, a continimiis cycle of i . n i t i a l l o s s , reformati-on,
and secondary l o s s of the n i c k e l f l u o r i d e f i l m s forming on t h e walls of t h e
f l u o r i n a t o r i s proposed as t h e method whereby the large losses of bulk metal
occurred.. This proposed l o s s cycle could be i n i t i a t e d and maintained i n s e v e r a l ways depend.ing on t'le region of t h e f l u o r i n a t i o n v e s s e l under consideration.
2h.
I n t h e s a l t region, fused~f l u o r i d e sal:; b a t h s could d i s s o l v e Lhe
K. Steunenber& L. Seiden, and H. E, G r i f f i h , "The Reaction o f F l u o r i n e w l i t h Nickel Su.rTaces, " Argonne National 1,ahoratory Chemri.cal Engineering Dlivision, Sunlriiary Xeport, July, August, Septem'mr, 1958, ANL-5924, pp. 11.2-43.
- 33 n i c k e l f l u o r i d e films u n t i l s a t u r a t i o n ot t h e b a t h s w i t h n i c k e l fluo-ride
It has been r e p o r t e d t h a t Nj.F2 i s s o l u b l e i n equimolar NaF-ZrF 4 ( r e f 22) t o t h e e x t e n t of 1.8 wt % at 7OO"C.
occurred.
A t t h e v a p o r - s a l t i n t e r f a c e , similar d i s s o l u t i o n could have
occurred t o remove p r o t e c t i v e w a l l f i l m s .
A l s o , a washing a c t l o n caused by t h e
fl-uorine sparge a g i t a t i o n and t h e rise and f a l l of t h e b a t h l e v e l could ai.d
f i l m removal.. I n t h e vapor region, w-liere maxj.mum metal l o s s e s occurred, n i c k e l f l u o r i d e f i l m s that have l i m i t e d p l a o - t i c i l y a t t h e lower o p e r a t i n g Lecnperatures rnri.ght be lost through cracking o r r u p t u r i n g .
Also, t h e d i f -
f e r e n c e i n l i n e a r c o e f P i c i e n t s of' thermal expansioii o f n i c k e l and ni-ckel
f l u o r i d e would be s u f f i cien'c to exaggeraLe the s p a l l i n g -t;end.ency. These
a c t i o n s may also occur i n the o t h e r t w o major r e g i o n s of t h e Yluorination
v e s s e l , b u t t h e o t h e r l o s s mechanisms d e s c r i b e d f o r those a r e a s would proba-
b l y predoml na-l;e,
Cathers has suggested an a d d i t i o n a l mode of fi.lrn l o s s for
t h e vapor r e g i on, i. e.,
di.ssolu.tion of n i c k e l f l u o r i d e i n very h i g h l y c o r r o s i v e
l i . q u i d s whi ch condense i n .the c o o l e r zones of t h e f l u o r i n a t o r .
Fluoride
cornpounds of intertnediate v o l a t i l i t y such as "chose conthining high-valent chromium, s u l f u r , titaniuui, and/or s i l i c o n . , might be r e s p o n s i b l e .
This con-
densate i s p i c t u r e d as belng extremely v a r i a b l e i n composition ( p o s s i b l y
i n c l u d i n g KF arid. water vapor, i.f t h e y were 1mintentionall.y admitted into t h e
system) and i n d i s s o l u t i o n a b i l i t y .
A f b e r t h e condensate forms i n
; i
rela-
t i v e l y c o l d r e g i o n o f -the v e s s e l , i t would ruii down t h e w a l l toward a h i g h e r temperature zorte, where i t could t h e n d i s s o l v e the n i c k e l f l u o r i d e s u r f a c e
films.
P r o g r e s s i n g f u r t h e r down the walls of t h e v e s s e l , it would eventual.ly
r e a c h a temperature zone where it could r e f l u x , and l e a v e w i t h t h e product stream or re-enter. i n t o t h e v e s s e l c o r r o s i o n eiivirorment *
2?
C. L. \\kitmarsh, Uranium Recovery from Sodium-Zirconium F l u o r i d e - S a l t Mfxtures, V o l a t i l i t y P i l o t P l a n t RGns L-1. Through L-9, CF-59-9-2-(September 30, 1959). I
23
G. I. Cathers, ORNL Chem. Tech. Div., Private communication.
Support is given t o t h e C a t h e r s ' sugge:;-t,ion i n view o f
the design u s e d for t h e VPP f l u o r i n a t i o n vessel. and t h e r e s u l t s of t h e cherlii-
c a l s t u d i e s on t h e i n t e r i o r w a i l d.eposi~t,sfrom ,the vapor r c g i o n of tile vessel..
The Marl.; T f l u o r i n a t o r lleati ng system was designed Lo p i ~ ~ d u cceo o l e r tempera-
t u r e s i n the upper r e g i o n s OP t h e vessel.
The maximuin teniperature recorded
on a thermocouple a t t a c h e d t o t h e e x t e r i o r v e s s e l wal.1. 17 i n . below t h e sl-i.p-on f l a n g e was 500째C, while the average temperature i n t h ? same r e g i o n
was l+OO"C.
The thought was t h a t a c o o l e r t o p v e s s e l zone wou3.d pennit,
depositioii of low v o l a t i l i t y compounds thaL m i @ t
entl*ap ut-anium products.
A f t e r some i n d e f i n i t e time oP tleposjti-on, i t w a s f e l t t h a t t h e s e l a y e r s
would. gmd1.ml.l-y f z l l back i n t o t h e sliLt b a t h s and become ava-ilable f o r f u r t h e r f l u o r i n a i, ioil. I n support of t h e condensab1.e corrosi-ve 1jLquid theory, chemical a n a l y s e s o f r e s i d u a l w a l l . d e p o s i t s and m i l l i n g s kern the f I..uorina-i;or vessel w . l l s i n t h e mi.ddle vapor regj.on (Fip. c o n c e n t r a t i o n s o f uranium arid chroiniurn.
4
and^
6)
s'nowed h i g h
Thus, i.t would seem t h a t en-Lrain-
men-t o f uranium and redeposi.tion of materials c o n t a i n i n g uranium d i d occur and -ilia?, chromium vas a p a r t of t h e eatrappiny; &gent, or a g e n t s . Rather t h a n d e s c r i b i n g tb.e agents which seem t o have a l d e d t h c c o r r o s i o n progress i n t h e m i d d l e vapor region as condensah12 l l q u i d s
which dissoJ.ve nickel f l u o r i d e , favor i s given t o -iiie i d e a t h a t t h e n i c k e l f l u o r i ~ d ecomplcxed w i t h o.ther
iiiore
vo7.atj.le
f l u o r i d e s , t h e combina.tion of
which have lower rr,elt-j.ng p o i n t s t h a n n i c k e l f l u o r i d e .
i t has been r e p o r t e d
24
t h a t n i c k e l f l u o r i d e complexes eaa L1.y anit t h a t m n y combtiiati.ons are known.
A complex o f N i F , and. high v a l e n t chrom-;.i.im P l m i - i d e appears t o be a parti...
cu1arl.y good p o s s i - b i l i t y
.
O f i n t e r e s t i n d i s c u s s i n g ?,he wal.l..-thi~ckness l o s s e s on t h e
Marrk 1 f l u o r i n a t o r i s t h e regi.on s1ightI:j- above t h e s a l t - v a p o r i n t e r f a c e where very low losses were Found. 2?c H.
I n t h i s same region, a r i n g 01deposited m a t e r i a l
J . Z:meI.eus, F l u o r i n e Chemistry 1, .... ..._ (cd. b y J. 11. S i m n s ) , Academic P r e s s , Inc., New York, 1350. I_
7,
- 35 WAC
found a f t e r o p e r a t i o n s .
tained on t h e & p o s i t .
-
U n f o r t i x ~ a t e l y , chemical a n a l y s e s w e r e n o t ob-
However, t h e f a c t t h a t this t h i c k r i n g was p r e s e n t ,
probably continuously d u r i n g operations, i s bel3 eved
'GO
have prevented i n t e r -
a c t . i o n s w i t h t h e n i c k e l f l u o r i d e " p r o t e c t i v e " s u r f a c e f i l m s u.nderrleath and thereby prevented high l o s s e s i n t h a t region.
The reason f o r t h e formation
and cont.i.nued presence o f t h e r i n g i s a s s o c l a t e d w i t h t h e l o w teniperatuu'es tha'i. predominated. i~nt h i s r e g i o n .
The l o c a t i - o n i s between the furnace windings
and t h e tubul.ar-type iieatiiig elements a t t a c h e d Lo t h e upper p o r t i o n of the
vessel.
Also, t h e presence o f t h e furnace s e a l on t h e e x t e r i ~ o rof t h e f l u o r i -
n a t o r a t t h i s s a m elevaii.on probably affec-Led tempera1;u:re by acti.ng as a s i n k for conducted h e a t i.n t h i s reg.'>ion. h
.
T n t e r i o r I.I._._. ntergramrlar Attack
I n the "as-poli.sbed" condjttion, iiiteri.or s u r f a c e samples from t h e Mark I f l u o r i n a t o r showed no s i g n of i n t e r g r a n u l a r corrosj-ve a t t a c k .
After
e t c h i n g with a s t r o n g a c i d s o l u t i o n , a mix.ture o f O.5$ HCI, approx )-IO$â&#x201A;ŹIN0 a n d apprclx
60%
HC H 0
3'
t h e s u r f a c e g r a i n boundaries t o depths of from 1k-25 m i l s
P 3 2' were a t t a c k e d more s e v e r e l y and. r a p i d l y t h a n grain boundaries c l o s e r t o t h e i n t e r i o r of t h e specimens.
Using a mild e-Lcliant, KCN- (NH4)~Spo8, and p a r t i a l . --
...
r e p o l i s h i n g , a p a l e yellow d e p o s i t was observed a t t h e mating s u r f a c e s of t h e grains.
T'ne appearance o f t h e i n t e r g r a n u l a r attack on Liie f l u o r i i i a i m r wa1.1.s
was di.stinciAy d i ~ f f e r e n tt h a n t h a t produced i-n n i c k e l by f l u o r i n e o r UF
25 an i n i t i a l n i c k e l f l u o r i d e f i l m ) and r e p o r t e d by Sale e t al.
6
(with
c -
Wie forniati on o f grain-boundary compounds o r obher changes i n
graj.a-boundary regions,
such as t h o s e observed, and. which a r e g e n e r a l l y cs-Lego-
y.i-zed a s i n t e r g r a n u l a r corrosion a t t a c k , o f t e n r e s u l t i.n 'the loss o r "sloughing"
of entire g r a i n s fsom tile exposed s u r f a c e of t h e m a t e r i a l ,
Rowever, m e t a l l o -
g r a p h i c exami.nations o f specirnens from t h e f l u o r i n a t o r r e v e a l e d r e l a t i v e l y snioo-Lh s u r f a c e s
.
25C. F. Kale, E.' J. Barber, H. A. Bernha-rdt, and K a r l E . Rapp, High Il'emperature Corrosio7.i Study, I n t e r i m R e ~ ~ o fr ot r t h e P e r i o d November, 1958, -_-_---_-..I__ Through May, I . ~ ~ ~ ; - - K V @ T ( Z28, CL~ 1959). Y
Some circunistari-tial evi.d.ence w a s a v a i l a b l e t o i n d i c a t e t h a t sul.-fur contamination produced t h e grain-boundary rmrlj.ficatio-ns observed.
a d d i t i o n -Lo p r e v i o u s l y r e p o r t e d work
26
In
where micros:;-,,ii.ctures of n i c k r l speci.-
mens purpose1.y ernbri t t l e d w i t h sulfur were compared w i t h e a r l y W P L n i c k e l
coi-rosion specimens, a comriiunication from ORGDP, which s u p p l i e d the VTP w i t h
p r o c e s s f l u o r i n e , i n d i c a t e d t h a t as much as 200 ppm of s u l f u r as s u l f i n y l f l u o r i d e hacl o c c a s i o n a l l y been d e t e c t e d i n t h e i r maiiuEactured f l u o r i n e . Contamination from t h e coumercial sodi im fl.uori.de used t o s t i * i p hydrogen
f l u o r i d e arid water from t h e p r o c e s s f l u o r i n e coi.ild a1.m be a source of s u l f u r .
S u l f u r could a l s o be i n t r o d u c e d into t h e system from impure f e e d s a l t s o r from t r a c e q u a n t i t i e s containec? i n c o r r o s i o n Lest speci.mens.
Attempts t o prove t h e presence of s u l f u r i n L h e ::luorinator w a l l samples i . n q u a n t i t i . e s greatei- t h a n tMt; p r e n z n i i n iiie base metal by u s i n g su1fu.r p r i n t papers, chemical anal.yses o f s u r f s c e rni~l.J.ingsand w a l l d e p o s i t s , bend t e s t s , and various uietaTl.l.o~.L.aphi_c teclhiij~quese i t h e r met w i ti1 f a i l u r e o r produced inconeLusi.ve r e s u l t s .
Thi.s was p a r t i c u l a r l y Trustrati.iTg
i n v-iew of e a r l y r e p o r t s t h a t f r e e N i S had. beell i d e n t i y i e d i i i nFckel micro3 2 28,29 scoyi.cally when 0-05 and 0.005 wt $I S, r e s p e c t i v e l y , were p r e s e n t . Exalll-
i n a t i o n of 'ihu nickel-sul.Wxr constit;uti.oii d.liag:ram indi-cated that Ni. 5: would 32 be the compound t o seek i.n i d e n t j - f y i n g low p e r c e n t a of sulYi.ir coatarfilnation 7
i n n i c k e l . 30
It w a s considered t h a t chromiuni and/or o t h e r s y s t e n contamina_n-ts
may have complexed t h e Ni S described me?,iiod.s.
32
a n d t h u s prevented i d e n t i f i c a t i o n by some o f the
However, consi-dering the e x t e u s i w e f f o r t s empI.oyed on t h e
f l u - o r i n a t o r s a m p k s , i f sulfur were the tnajor agent responsi-bie f o r t h e i n t e r -
g r a n u l a r a t t a c k , more posit-i.ve i - n d ~ i c a t i o n sshould have been found.
26L. R . T r o t t e r and E. E . Hoffniao, Progrpss H e p o d on V o l a t i l i t y P i l o t
.--_ PlariL Corrosion Problems t o A p r i l 21,-- ..... 1957, .. 0 7 c. I
ORNL-2493
( S e p t p m n b e ? - - ~ ~ ~ ~ .
11. J. Cu.llbert, Process Engineering Division, OEGDP, P r i v a t e communi c a t i o n .
28
G. Masing and I,. Koch, Z . Metal1.k.urid.e
29
2,278-279
(1gPr7).
I
1'. D. bkrrica and R. .C; Waltenberg, T'rans. Met. S o c . APME N a t i o n a l Bureau of Standards Technical Paper 281, 1 5$y& -57 1 _ 1
3A
71 709-71.6 (1925);
-'"M. Iiansen a n d K. Alidcrko, C o n s t i t u i i o n of Binat.y Alloys, p. McGraw-Hi 11, New York, 1958.
1035,
- 31
-
'The n a t u r e o f t h e grain-boundary deposri-ts may n o t be d e t e r -
mined u n t i l t h e y a r e s t u d i e d by an e l e c t r o n probe microanalyzer QT some oLher TJever.l;lieless, because o f t h e p o t e n t i a l effec-t; on c o r r o s i o n and
precise tool.
t h e cumulative and i r r e v e r s i b l e e m b r i t t l i n g t e n d e n c i e s o f t h e ni-ckel-nickel s u l f i d e e u t e c t i c , r e d u c t i o n o f s u l f u r i n VPP n i c k e l f l u o r i n a t o r ' s environments t o the lowest possi-ble l e v e l s i s e s s e n t i a l .
Exterior I n t e r g r a n u l a r Attack
e.
I I -
A s dpscribed, t h e e x t e r i o r of t h e Mark 1 fluorinator s h e l l
a l h o s u f f e r e d i n t e r g r a n u l a r a t t a c k , b u t t o a l e s s e r degre? thau the i n t e r i o r . P e n e t r a t i o n on t h e e x t e r i o r s u r f a c e s v a r i e d from 3-8 m i l s . o f t h i s a t t a c k a t high magnification,
The apL)earancc
t h e e x t e r i o r environment, and t h e
found on the second VPP f l u o r i n a t o r o p e r a t e d under similar 2 c o n d i t i o n s , i n d i c a t e t m i . c a l high- t,emperature inLergranular o x i d a t i o n o f
preseiicr of N i O nickel. d.
Grain- S i z e Var..i.ations Metallographic examination of samples removed from t h e s h e l l
o f t h e Mark I f l u o r i n a t o r discl.osed widely v a r i a n t g r a i n s i z e s . g r a i n s of
5-6
Small, iiniyorm
average ASTM g r a i n - s i z e number p r e v a i l e d i n t h e s a l t and salt,-
vapor i n t e r f a c e regions, w'nil-e much l a r g e r g r a i n s were observed i n most of t h e
vapor region.
The l a r g e s t grai.ns found i n t h e vapor regiori were a t
ti.on of approx 12 i n . below t h e bottom of t h e s l i p - o n f l a n g e .
eleva-
The average
ASTM graj-n-size nurflber a t t h e 12 i n . e1evat;ion w a s g r e a t e r t'nan 1.
eter
at:i.
Di.ffractom-
t r a c e s were o b t a i n e d on vessel samples removed from t h e 1-, 12-1/2-,and
43-in. l e v e l s i n o r d e r t o compare t h e r e s i d u a l s t r a i n remaining i n t h e samples. The r e s i d - t s i n d i c a t e d approximately no recrystalli.zal;i.on h a d occurred a t t h e
1-in. level, only a very l i m i t e d amount o f r e c r y s t a l l i z a t i o n took p l a c e a t the lP-l/P-in.
level-, and p a r t i a l , i f not complete, r e c r y s t a l l i z a t i . o n occurred
i n the s a l t - p h a s e sample.
The c l a s s i c a l . f a c t o r s which determine c r y s . L a l l i t e growth upon
heatj.:ng a r e amount of p r i o r c o l d d.eformation, anneali.ng temperature, and
a n n e a l i n g -time: Gener-ally, l a r g e r arnouiits o f c o l d deformation provide f o r
s m a l l e r resul.iaiit g r a i n sizes a f t e r isotilermal. and c o n s t a n t t i m e mneal.ing. Higher -Leniperatures and, t o a k s s e r degree, longer times r e s u l k i n 1-arger p a l n s i z e s on m a t e r i a l containfny; some fi-sed amount of c o l d work.
I n maiiy ma-ierials a small amoun-t o f p r i o r co1.d deformation
r e s u l t s i n Lhe prod.ucti.on of exaggerated gi-ai.ns a f t e r a.iineaLing at o r d i n a r y t i m e s and temperatures.
1111
t h e s e cases, t h e t e r m " c r i t i c a l . sti-ai.n" has been
given t o t h e quan"i,ity of c o l d work o r l g i n a l l y in-traduced.
i.nvolved here have been s t u d i e d and r e p o r t e d i n detai.1. 31
The mechanisms
The VPP Mark I fluorilia-Lor was f a b r i c a t e d from L n i c k e l by
conveyting a f l a t , annealed, l / h - i n .
by roll forming.
p l a t , e i n t o a 14-in.-diam
righl; c y l i n d e r
During forming, cold. deforma-tion was induced i n t h e o u t e r -
most f i b e r s or t h e shell t o a c a l c u l a t e d maxi.iiiurn of approx 2%.
This amount
oi? cold work i s a t t h e r i g h t level. t o 'ne termed " c r i t i c a l . strai:rll' I"or most
metals and presumably was pyeseiit along t h e e n t i r e lengbil o f -the fl.uori n a t o r shell.
Howe-ve.r, exaggerated g r a i n s i z e s were observed o n l y i n a p o r t i o n o f
phase of t h e v e s s e l a f t e r p i l o t p l a n t operatTons.
tihe vapo:r
Therefore, an.
a d d i t i o n a l vayiabI.c, r a t e of h e a t i n g a f t e r p r i o r deformatlon, has been sug-
ges-Led as the most i.nfluenti.al f a c t o r i n prodircihg t h e grai.n s i z e s found i n t'he Ma&
.
i flimrri n a t o r 32
The f i r s t time t h e fluor'inator w a s heaLed was dui.i~ngpre-
l i m i n a r y fluoi.iiiat,i on equipment s t u d i e s .
-During those c y c l e s , t h e lower
23 i n . of t h s v e s s e l w a s surrounded by a iliigh h e a t - f l u x 30-k1.r e l e c t r i c -
r e s i s t a n c e furnace which rai-sed t h e t e q x r a t u r e o f the enclosed p o r t i o n of t h e v e s s e l t o approx
450째C.
No external. h e a t or i n s u l a t i o n was i n c l o s e
proximity w i t h t h e upper porti.on o f t h e f l u o r i n a t o r .
the same p r e l i m i n a r y stud.i-es were done w i t h
%I
coveri-ng t h e t o p p o r t i o n s of -tile f l u o r i i i a t o r . gions o f the v e s s e l reached
L a t e r c y c l e s duri.ng
g;i.ass-Iii-ied heati.ng mantle Temperatures i n t h e lower re-
600-700째C, w h . i l e 'ieniperatures i n t b e ilppei- r e g i o n s
of t h e v e s s e l were much lower.
.
37 J E Burke, "The Ebndarwntal s of R e c r y s t a l l j Lsl,ion a n d G r a i n Growth, G r a i i i Co i t r o l i n I n d u s t r i a l Metallurgy, Arneri-can S o c i e t y fo-t. Metals, Cleveland, _--..
Ohio, l9k9.
~
"L, K. J c i t e r and C. J. McHargue, ORNL Metallurey Divisjon, P r i v a t e comm-unication.
.
- 3Y
-
I n vi.ew of t h e i n i t i a l Mark I h e a t i n g c y c l e s , and confirmed by the d l f f r a c t o m e t e r t r a c e s , t h e s a l t r e g i o n o f t h e T l u o r i n a t o r appears .Lo have experienced thermal l e v e l s where recovery and a t leas-t, p a r t i a l . r e c r y s t a l l i z a t i o n occurred
The r e c r y s t a l l i z a t i o n teuiperature f o r ni.ckel v a r i e s from
apip.-ox 600째C f o r A nickel.,
99.4
p u r i t i - e s of' e l e c t r o l y t i c n i c k e l ,
$ ( N i i- Co) t o 370--'~70"Cf o r i99.9 Fi-t 4 ( N i -I- Co) a f t e r 50%
wb
various r e d u c t i o n by
c o l d rolli..ng and. annealirig f o r 1 h r a t t h e temperature indi-cated. 33
Jetter
and Mc:-Iargue have suggested t h a t d u r i n g t h e i n i t i a l h e a t i n g the r a p i d rake
of h e a t i n g d i d noL all-ow complek r e l i e f of i n k r n a l stresses which at; h i g h e r
temperatures served as n u c l e a t i o n s-iten for r e c r y s t a l l i z a t i o n .
Tne r a t e of
''
appearance of t h e s e n u c l e i i s know71 t o i n c r e a s e w i t h time, exponenti.ally with
temperature, a n d w i t h i n c r e a s i n g amounts of p r i o r cold deformation.
After
n u c l e a t i o n , s t a b l e nucleus growth occurred. and t h e presence of so many g r a i n s growing i n a f i x e d vol.ixne l i m i t e d t h e s a l t r e g i o n g r a i n s i z e .
L a t e r heat
c y c l i n g of t h e f l u o r i h a t o r was done at approximatkly t h e sal;.ie temperatixre
levels as t h e hi.g'nest o r i g i n a l heati-ng ( 6 0 c y 2 5 ~ c )s o t h a t probably l i - t t l e , i f ' any, grai-n-boundary rni.gration occurred a f t e r r e c r y s t a l l i z a t i o n t o i n c r e a s e t h e
grain s i z e i n t h e I-ower p o r t i o n s of t h e v e s s e l . The top h a l f o f t h e Mark I f l - u o r i n a t o r sustai-ned lower tempera-
t u r e s d u r i n g t h e f i r s - t h e a t c y c k s as t h e r e s u l t o f h e a t l o s s e s by r a d i a t i o n and convectlon f'rom t h e upper p o r t i o n s of t h e v e s s e l wall.
terflperature of
<
A steady s t a t e
200째C a t t h e 1 2 - i n . l e v e l l?as been
The upper
porti.ons of the vessel. a l s o experi.enced sluggi.sh h e a t i n g r a t e s when compared
t o t h a t p o r t l o n o f -the vessel enclosed b y t h e h e a t i n g flmnace.
It has been
suggested t h a t t h e l a t t e r influenced- t h e g r a i ~ ns i z e i n the vapor r e g i o n by
permi-tting more complete recovery and r e s u l t i n g i.n few n u c l e a t i o n s i t e s . k r i - n g l a t e r o p e r a t i o n s i n t h e p i l o t p l a n t , rod-type e l e c t r i c h e a t i n g elements w i t h a t o t a l r a t i n g o f 9 kw were i n c o n t a c t with t h e vapor
3%, M. Wise and R. H. Shafcr, "The P r o p e r t i e s of Fure Nickel - I, I T , 111," Metal..:; and Alloys, Sepi., p . lC24, Nov., p. 891, Dee., p. 1067, 1942. I
34S. 8. S t a i n k e r , ORNL, Chemical Technology Division, P r i v a t e comflunication.
.
r e g i o n e x t e r i o r surYaces of the f l u o r i n a - t o r
A therriocouplc at; approxj-mately
t h e 12-in. l e v e l ind-icated average temperatures of 400째C and a inmimum o f 500째C.
Such thermal l e v e l s p e r m i t t e d o n l y a sinal-l_ amount o f r e c r y s t a L l i z a t i . o n
bo occur, as i.ndi.cated by t h e d i f f r a c t o m e t e r s-Ludies.
A.n exti-emely coarse
g r a i n s i z e r e s u l t e d from t h e d e s c r i b e d c o n d i t i o n s .
Examination of samples removed from t h e Mark
I fluorinatoy
r e v e a l e d Ynat the m e t a l - l o s s p r o f i l e and g r a i n - s i z e p r o f i l e c l o s e l y p a r a l I.eI.ed one a n o t h e r except f o r t h e r e g i o n j u s t below t h e t o p f l a n g e oi? t h e vessel.
3ecause of t h e evidence o f corrosi.on by i n . t e r g r a m l a r a t t a c k during
exposure t o t h e v o l a t i l i t y f l u o r i . n a t i o n environiiient, a c a u s a l r e l a t i o n s h i p
i s suggested.
Thus, loss of a l a r g e g r a i n by e f f e c t i v e l y l o s i n g graj-n-boundary
material u n t i l t h e g r a i n sloughs o f f wou1.d mean g r e a t e r l o s s e s t h a n for the same procedui-e happening i n f i n e - g r a i n r e g i o n s
However, sloughing of gra-ihs
was n o t observed and o n l y a sl-ig'nt widening o f tile boundarrtes was no-Led a t t h e j u n c t i o n of the bouiidarries and the exposed metal s u r f a c e s .
Also; the
d e p t h o f inte-rgranular p e n e t r a t i o n i n c o a r s e - g r a b r e g i o n s w a s aboui; the sam
a:; i n most of t h e f i n e - g r a i n r e g i o n s .
The concl.i~sioni.s t h a t me'ial. loss and
grai-n si.ze do no-t seem t o be i n t e r r e l a t e d i n t h e c o r r o s i o n o f t h e Mark 1 fluorinator.
HoTvever, for two reasons, t h e a u t h o r s recommend using f i ~ n e -
g r a i n e d material f o r f l u o r i . n a t i o n v e s s e l s .
One, a h i g h e r s t r e n g t h l e v e l w l l l
be achieved i.n n i c k e l , a material n o t noted f o r superi.or s t r e n g t h ; and. t w o , one varlab1.e w i l l be removed i n a system r e p l e t e w i t h v a r i a b l e s .
Pine-grained
materia.1. can be provided by modificatj.on o f t h e s p e c i f i c a t i o n s of purchased s t o c k and by r e v i s i n g t h e anneali.ng c y c l e a f t e r fa5rj.cati.on. 35
311. Mark I1 V o l a t i l i t y P i l o t P l a n t L Nickel Fluorinator A. Materia,l S e l e c t i o n and Fabrication-Design ... _. _. . Changes While L n i c k e l seemed d e f i c i e n t i n i t s c o r r o s i o n r e s i s t a n c e f o r long-
-time s e r v i c e , no o t h e r con~iierciallya v a i l & l e mat,erial. had, a t t h a t t h ~ proved , ""Anneal.i.ng o f Nickel, Monel, and Inconel, I' Tech. Bull. T-20, The In-LemaLional Nickel Compan.y, Inc *, N e w York, A p r i l , 1.953.
- 41 i t s e l f on t h e basis o f s c o u t i n g o r o t h e r t e a t s t o be worthy of immediate sub-
s t i t u t j - o n as a f l u o r i n a t o r m a t e r i a l of c o n s t r u c t i o n .
Moreover, t h e heavy
vapor-phase a t t a c k on the Mark T f l u o r i n a t o r was s t i l l under i n v e s t i g a t i o n ,
so t h a t t h e u s e o f t h e same construct?.on m a l e r i a l seemed e s p e c i a l l y a p p r o p r i a t e
t o a s c e r t a i n more a.bout t h i s c o r r o s i o n p r o b k m .
Consequently, the Mark I7
?'luorj.nator was f a b r i c a t e d i.n t h e QHNL shops from t h e same h e a t oi" l / k - i n . -
t h i c k L n i c k e l as w a s used i n t h e previous p i l o t p l a n t v e s s e l . f a b r i c a t i o n technri ques were used.
Figure
13 shows
Analogous
t h e second VPP f l u o r i n a t o r ,
t h e v e s s e l furnace, and t h e cornplexible radi.oacti.ve products ( C F P ) t r a p . C e r t a i n d e s i g n changes were i n c o r p o r a t e d i n t h e second p i l o t pl.ant Pluorina-Lor.
I n o r d e r t o provi.de f o r remote h m d l i n g and t o allow d e s i r a b l e
upward flow through t h e CRP t r a p ,
i.ts l o c a t i o n was changed from t h e o r i g i n a l
si.& p o s i t i o n shown i n Fig. 1 t o an e l e v a t i - o n completely above t h e Mark I1
fluorinstor.
Other p r o c e s s design changes included some m o d i f i c a t i o n OF t h e
draCL tube assembly, r e p o s i t i o n i n g of t'ne off-gas l i n e , and t n s t a l l a t i o n o f a
sinall p o r t i.n t h e t o p blind. f l a n g e of t h e f l u o r i n a t o r f o r o b s e r v a t i o n and e n t r y .
R.
b e r a t i o r i a l History
The Mark I1 fl1.aorinator was placed i n s e r v i c e a t the beginning of
t h e '!EE1 runs durring wh.ich t i m e f u e l used. i n t h e A i r c r a f t Reactor Experiment
was reprocessed. 3'-7 The use of t h e v e s s e l w a s continued d u r i n g t h e "L" (oyiked) mns and during t h e gas-entrainment s t u d i e s , history,
M-62 through M-64. The process
summarized i.n Table V I , has been d i v i d e d i n t o t h r e e phases f o r con-
venience i n r e p o r t i n g t h e Vidigage i n s p e c t i o n s on t h e v e s s e l a t th.e completion
oP Runs L-It and L-9.
''
The "L" o r s p i k e d runs were made i.n t h e VPP t o extend process develop-
ment da-ta and used a n o n i r r a d i a t e d s a l t w i t h F u l l y enricb.ed. u.ranium.
Some
36F. W. Miles and 17. 11. Carr, Engineering E v a l u a t i o n of V o l a t i l i t y P i l o t P1.ant Equipment, CF-60-7-65, pp. 43-145. I -
n-
j f W . H. Carr, V o l a t i l i t y P r o c e s s i n g of t h e ARK Fuel,
14, 1958).
I
CP-;8-11-60 (November
38C. L. Whitmarsh, Uranium Recovery from Sodlum Zirconium Fluol-7.d.e S a l t Mi.xtures, V o l a t i l . i t y P i l o t Pla111; lhns L-1 Through L-9, CF-59-9-2 (September
30, 1959).
--
36
- 42 -
Unclaesified
ORNL Photc
Fig. 13.
45554
Mark I1 WP F l u o r i n a t o r and CRP Trap.
Table V I .
Summary o f Process Conditions for Mark I1 V o l a t i l i t y P i l o t P l a n t F l u o r i n a t o r Vpp f?E,ff ffL,f! and "Mfl (62-64) Runs
,
Temperature O C Thermal c y c l e s Time of exposure a t tempera t u r e , s a l t s molten-hr Fused salt, nominal mole %
Phase I Runs E - 1 Through E-6; L - 1 Through L-4
Phase I1 Runs L-5 Through L-9
-
10
900
~ 1 - ~NaF-ZrF, 6 -UFL (c, d)
4535 i n 18 hr (2.8-6.9 s t a n d a r d
Conditioning f l u o r i n e a input, s t a n d a r d l i t e r s
l i t e r s/min) 44 470 i n 74 h r (1.6-20.2 standard liters/min)
Operating f l u o r i n e i n p u t , standard lit e r sb
25
UF6 exposure, h r
Total
60~-690 17
54G7 30
-
Phase I11 Runs M-62 Through M-64
725
NaF-ZrF4
( 5G501 750 i n 3 h r standard l i t e r s/min) 16 000 i n 18 h r
(2.5-7
-
10
none none
none
5285 i n 2 1 hr (2.5-7 standard
Iiters/min) 60 470 i n 92 hr (1.&20,2 s t a n d a r d l i t e r s /min )
-
I
& I
35
aThese o p e r a t i o n s were done a t '2G150째C f o r t h e purpose of inducing an i n i t i a l " p r o t e c t i v e " f i l m o f n i c k e l f l u o r i d e on t h e walls of t h e f l u o r i n a t o r . bAn average of approx 3 : l excess F2 over t h a t q u a n t i t y necessary f o r t h e o r e t i c a l requirements was used i n o r d e r t o reduce t h e f i n a l uranium c o n c e n t r a t i o n i n t h e s a l t t o a few p a r t s p e r m i l l i o n , CUranium was f u l l y enriched. Feed s a l t s contained t h e following ranges of i m p u r i t i e s : Component: 0.031-0.056 wt % C r , 0.017-0.138 wt $ N i , 0.033-0.078 wt % Fe, 0.0015-0.080wt $I Si, < 0.001- < 0.005 b r t '$ Mo, dC. L. Whitmarsh, Reprocessing o f ARE Fuel, V o l a t i l i t y P i l o t Plant,Runs E-1 and E-2, CF-59-5-108, (May, 1959) and Reprocessing of ARE Fuel, V o l a t i l i t y P i l o t P l a n t , Runs E - 3 and E-6, CF-59-8-73 (August, 1959). Feed s a l t s contained t h e following ranges o f i m p u r i t i e s : eTen milligrams of puF4 added i n Run L-3-4. Component: 0.0183-0.0345 w t % C r , 0.035-0.236 w t % M i , 0.013~0.030 wt '$ Fe, < O.OOl-O.OO5 w t '$ Si, < 0.001- < 0.0052 wt '$ Mo, and 0.010 wt % T i for L-l,-3, and -5 only. n
-
IC. L, Whitmarsh, Uranium Recovery from Sodium-Zirconium F l u o r i d e Salt Mixtures, V o l a t i l i t y P i l o t Plant,Runs L - 1 Through L-9, CF-59-9-2 (September 30, 1959).
gUranium was f u l l y enriched. One gram of FuF4 added i n Run L-6; 10 grams of PuF4 added i n Bun Same f e e d s a l t i m p u r i t i e s and r e f e r e n c e as d e t a i l e d i n ( d ) above.
L-8.
-
44 -
of t h e runs were s p i k e d w i t h h i g h burnup s a l t , t h u s t h e name of t h i s series.
During t h r e e of t h e "L" runs, s e l e c t i v e a d d i t i o n s of
puF4
were added t o the
r e e d s a l t so as t o g a t h e r information on t h e behavior of plutonium i n t h e Previous experiments had i n d i c a t e d t h a t some v o l a t i l i -
v o l a t i l i t y p r o c e s s . 39 z a t i o n of PuF
6 would
occur.
However, g r e a t e r t h a n
99% o f t h e plutonium
remained i n t h e s a l t i n t h e f l u o r i n a t o r during t h e "L" runs.
S e v e r a l months a P t e r t h e "L" r u n s were completed, t h e Mark I1 f l u o r i -
n a t o r w a s used t o s t u d y gas-phase entrainment problems i n t h e VPP.40
runs, M-62 through phase.
M-64, i n v e s t i g a t e d
Barren equimolar NaF-ZrF
w a s not present. C.
These
ZrF4 s o l i d condensation i n t h e vapor
4 s a l t was used i n t h e s e s t u d i e s and f l u o r i n e
Reaction t o Environment
1. V i s u a l and Vidigage I n s p e c t i o n s During t h e f i r s t p o r t i o n of t h e "L" runs, 1 through
l i n e plugging occurred.
4, p e r s i s t e n t
Presumably t h i s w a s due t o n i c k e l contamination i n
t h e Peed s a l t s p l u s c o r r o s i o n l o s s e s which allowed t h e c o n c e n t r a t i o n of n i c k e l f l u o r i d e i n t h e s a l t t o exceed t h e s o l u b i l i t y l i m i t .
After run
L-4, t h e
plant
w a s s h u t down and approx 200 l b of a high-melting s a l t complex w a s found i n t h e bottom of t h e Mark I1 f l u o r i n a t o r .
See Fig.
14.
P e t r o g r a p h i c and x-ray
d i f f r a c t i o n a n a l y s e s showed t h e mass t o c o n t a i n 20-30 w t
50-60
wt
%
NaF-NiF2-2ZrF4.
$
NiF
2
and
I n o r d e r t o continue u s i n g t h e v e s s e l , t h e f r o z e n
s a l t w a s chipped o u t w i t h a pneumatic hammer. R e s u l t s of a v i s u a l i n s p e c t i o n of t h e Mark I1 VPP f l u o r i n a t o r
a f t e r exposure t o "E" and L-1 through
cited:
Vessel walls
L-4 r u n s
and cleanup o p e r a t i o n s are
Free of s a l t on t h e i n t e r i o r . E x t e r i o r s u r f a c e s were covered w i t h a d u l l g r a y f i l m . Those p o r t i o n s of the w a l l n e a r t h e g i r t h weld had s c a r s on t h e i n t e r i o r surf a c e s presumably caused by g l a n c i n g blows of t h e pneumatichammer blade
.
39R. A. Cross and C. L. Whitmarsh, Plutonium Behavior i n t h e F l u o r i d e V o l a t i l i t y Process, CF-59-9-5. I. 4v J. B. Ruch, V o l a t i l i t y : F l u o r i n a t o r Design FV-100, Z r - U F u e l Element P r o c e s s i n g Phase, CF-59-5-89. n
- 46 Longitudinal seam weld
I n t e r i o r s u r f a c e s were s h a r p l y d e f i n e d by c o r r o s i v e a t t a c k . Corrosion of t h e weld metal (INCO 61) appeared t o have been as s e v e r e or more severe t h a n t h a t of t h e w a l l (L n i c k e l ) .
G i r t h weld
I n t e r i o r s u r f a c e s were s h a r p l y d e f i n e d by c o r r o s i v e a t t a c k . Corrosion of t h e weld metal ( I N C O 61) appeared t o have been as s e v e r e o r more s e v e r e t h a n t h a t on t h e w a l l or t h e dished head.
Dished head
I n t e r i o r s u r f a c e s e x h i b i t e d many s c a r s on s i d e s and bottom of t h e head, presumably caused by t h e pneumatic-hammer b l a d e . E x t e r i o r s u r f a c e s were bulged approx 1/16 i n . i n about s i x p l a c e s corresponding t o t h e deeper i n t e r n a l s c a r s .
Vidigage ( u l t r a s o n i c t h i c k n e s s ) measurements were made t o a s s e s s t h e damages d u r i n g s a l t removal p l u s t h e w a l l - t h i c k n e s s l o s s e s t h a t had occurred during previous process cycling.
A maximum w a l l - t h i c k n e s s l o s s of
i n the salt-containing region o f t h e f l u o r i n a t o r .
68 m i l s w a s found
Complete r e s u l t s of t h e
Vidigage examination a r e shown i n Tahle V I 1 along with o t h e r d a t a . Despite t h e high-corrosion l o s s e s i n d i c a t e d , a d e c i s i o n w a s made t o use t h e v e s s e l f o r an a d d i t i o n a l f i v e runs s o as t o complete t h e scheduled p r o c e s s development s t u d i e s . t h e subsequent "L" r u n s
No plugging d i f f i c u l t i e s were encountered during
5 through 9.
This w a s accomplished by d i l u t i n g t h e
f e e d s a l t with an e q u a l amount of n i c k e l - f r e e b a r r e n s a l t . Figure
run L-9.
1 5 shows t h e i n t e r i o r of t h e
Mark I1 f l u o r i n a t o r a f t e r
The r e s u l t s of a v i s u a l i n s p e c t i o n a f t e r hand chipping and decon-
t a m i n a t i o n were as follows: Vessel w a l l s
Free of s a l t on t h e i n t e r i o r . Vapor r e g i o n appeared rough and p i t t e d and had an adherent green d e p o s i t i n t h e r e g i o n 10-20 i n . below t h e s l i p - o n f l a n g e . E x t e r i o r s u r f a c e s were covered w i t h a d u l l gray f i l m . The s c a r s caused by t h e pneumatic-hammer blows a f t e r Run L-4 were s t i l l p r e s e n t .
Longitudinal seam weld
I n t e r i o r s u r f a c e s were more s h a r p l y d e f i n e d by c o r r o s i v e att a c k t h a n p r e v i o u s l y noted. Corrosion of t h e weld metal appeared -Eo have been more severe t h a n t h a t of t h e base
metal.
G i r t h we I d
I n t e r i o r s u r f a c e s w e r e more s h a r p l y d e f i n e d by c o r r o s i v e a t t a c k t h a n p r e v i o u s l y noted. Corrosion of t h e weld metal appeared more severe t h a n t h a t of t h e base m e t a l .
Dished head
I n t e r i o r and e x t e r i o r s c a r s from previous chipping o p e r a t i o n s were s t i l l p r e s e n t .
T&le V U .
Conparison of Vidigage Thickness Readings, i n Inches, a n the V o l z - t i l i t y Pilot l P l a n t Marl; 11 .L ~ i c k e Fliiorinatora
?T. W. Qzadrant M .E, Qdadrant Area B AreE C Area A ( i n . below Heading Reading Reading Reading Readlng Reading after after after after after after slip-on flange) Region RUE L-? Run L-4 Run L-9 Run L-li. Run L-9 3m L-4 0.e48 0.248 0.248 0.250 0.248 5 c 7
I
I
0.250 0.248
-
0.246
-
0.243 0.232 G.230 0.229
0 .248 -
0.235 0.230
0.234
0.225 0,210
-
41 43 45 47
0.198 G.194
o.ig?F 3.296 0.210 0.238
0.247
-
9.224 0.2240.207
0.222 G .224 0,205 0.236
0,221 0.210 0.198
0.196
0.192
G.20b 0.20;
0.230 0.234 0.24-2 0,248
0.240
0.252
0.192
0.234
0.232
-
0.236 0.230 0.227 0.224 0.227 0.242
0.24.6
-
0 250
0.230
O.23'c 0.234
c
0.247 0,242
-
0.2130
0.228
.-
0.234
0.240 -
-
9.23'; -
0.230 0,240
37 39
S .X
S ,Id. @adrant
Elevation
-
0.196 0.198 0.208
0.236
-
-
a Accuracy of readings e s t i m a t e d to be k 0.003 i n .
0.230
-
0.189
0 .167 0 * 184
0.188
0.250 -
0.249 0.248 0.241 0.235 0.234 0.232 0.236
-
0.240 0.230 0.230 0.218 0.204
0.196 0,212 0,215 0 210
0.202
0,20L 0.204
Area D
Reading after
Run L-9 0.250
. Qisdrant
Area E Reading Reading Reading after ayter sfter Run L-4 Run L-9 Run 2-11.
-
0.248 0.250
-
0.250 0.2$
0.248
-
-
-
-
0.238
-
0.238
9.234 0.236
-
0.236 0.2lcG
-
-
-
0.230 0.226 G.210
0.230 0.222
0,198 0.193 0.189 0.136
0.206
0.195
0.192
0.192
0.198
0.194
0.238
0.236 0.228 0.202
0.1186
0,243
o.iyiC.184 0.184
c
-
0.210
o,igp 0.2gC 0.200
0.196
-
a
-4-8-
- 49
-
Decontamination w a s done by a l t e r n a t e washings u s i n g a mixture of
1.8 M KOH, and 0 . 4 M N a C H 0 a t room temperature and 4 2 4 4 6
0.7 M
H 0 2 2' M (NF4)2C204 a t 100째C.
A t t h a t time Vidigage r e a d i n g s were o b t a i n e d and a r e r e p o r t e d i n Table VII, along w i t h t h e p r e v i o u s r e a d i n g s o b a t i n e d a f t e r Run L-4.
No s i g n i f i c a n t ad-
d i t i o n a l w a l l - t h i c k n e s s l o s s e s w e r e found.
The c o r r o s i o n c o n d i t i o n s e s t a b l i s h e d d u r i n g t h e gas-entrainment s t u d i e s , Runs M-62 through
M-64,
which were done a t a l a t e r d a t e u s i n g t h e
Mark I1 f l u o r i n a t o r , were n o t f e l t t o be s u f f i c i e n t l y s e r i o u s t o warrant a n o t h e r complete Vidigage i n s p e c t i o n . 2.
Chemistry Samples of t h e d u l l g r a y f i l m p r e s e n t on t h e e x t e r i o r w a l l of
t h e Mark I1 f l u o r i n a t o r a f t e r Iiuns L-4 and L-9 were analyzed by x-ray d i f f r a c -
I n a d d i t i o n , samples of t h e adherent, green t i o n t e c h n i q u e s t o be NiO 2. d e p o s i t which remained on t h e i n t e r i o r w a l l of t h e v e s s e l i n t h e vapor r e g i o n were submitted for x-ray d i f f r a c t i o n a n a l y s e s .
The presence of NiF
2,
NiO,
and
Z r O w a s noted. 2 S u r f a c e and s u b s u r f a c e m i l l i n g s were t a k e n from t h e i n t e r i o r w a l l
of t h e v e s s e l i n t h e r e g i o n where t h e green d e p o s i t seemed t h i c k e s t ,
14-17
in.
below t h e bottom o f t h e s l i p - o n f l a n g e , and submitted f o r a d d i t i o n a l chemical analyses.
For comparison purposes, subsurface m i l l i n g s were also t a k e n from
t h e e x t e r i o r v e s s e l w a l l a t t h e same e l e v a t i o n . chemistry are shown i n Fig.
The r e s u l t s of t h e m e t a l
16, and i n d i c a t e an i n c r e a s e i n chromium con-
c e n t r a t i o n i n the m i l l i n g s n e a r t h e s u r f a c e o f t h e i n t e r i o r w a l l of t h e vessel.
No s i g n i f i c a n t i n c r e a s e i n s u l f u r i n t h e vapor r e g i o n o f t h e f l u o r i n a t o r
over. t h a t q u a n t i t y p r e s e n t i n the base material w a s found.
However, on
specimens removed from t h e s a l t r e g i o n of t h e Mark I1 f l u o r i n a t o r , which were
l a t e r analyzed by B a t t e L l e Memorial I n s t i t u t e (BMI), an i n c r e a s e i n t h e s u l f u r
c o n t e n t of t h e i n t e r i o r w a l l specimens w a s noted. results
.
Figure
16
a l s o shows t h e s e
I
L
oz 1 W
s 4
09 1
D r
<
ul
rn VI
OPZ
oz 1
D
%
0 W Z
I
r
z
D r
I
5 rn v,
OP
SP
s9 01 1
s9
OP
ss 1
oz
-f 'U!
61
6S16b 3 M Q - t l l - l N U O Q313lSSV13Nn
- 51
3.
-
Dl.mensiona1 RriaLysis .-A f t e r decontam:i n a t i o n and o t h e r cleanup o p e r a t i o n s ,
samples
were trepanned Crom t h e Mark I1 f l u o r i n a l m r and sent t o BMI f o r dimensional a n a l y s i s and m e t a l l o g r a p h i c examination. d-isplayed i.n F i g .
1-7.
The l o c a t i o n o f t h e s e coilpons i s
I n a d d i t i o n , a f u l l - l e n g t h s e c t l o n from TI-E a r e a ,
s o u t h e a s t quadrant, w a s removed and micrometer measurements t a k e n a t OIIl'sL t o pl-ot a complete c o r r o s i ~ o nprofile o f wal-l-thickness l o s s .
This plot i s shown
i n Fig. 18 and i n c o r p o r a t e s BMI micrometer measurements on t h e trepanned samples from t h e o t h e r qimdrants o f t h e Yluorinator..
For comparison, Vidi-
cage read.ings of t h e D-E a r e a a f t e r r u n s T,-4 and. T.,-9 a r e also p l o - t t e d i.n
u
F i g . 18.
The maximum wall.-thickness l o s s e s Found were i n t h e s a l t r e g i o n
of Mark I1 f l u o r i n a t o r .
111 a r e g i o n 40-43 i n . bel-ow t h e bottom of tile slip-
on f l a n g e of the v e s s e l , a w a l l - t h i c k n e s s l o s s o f 82 m i l s was recorded.
Fair
c o r r e l a t i o n belxeen t h e Vi-digage r e a d i n g s and. t h e micrometer measurements was no-ted
4.
Metallographic S-tudy
R m e t a l l o g r a p h i c study w a s made on t h e trepanned samples from t h e Mark
TI f l u o r i n a t o r by personn.el o f .the RMI Corrosi-on Research Division. 41
At
low magnification, 20X, t h e s u r f a c e s from t h e t o p vapor ( T ) sectli.ons showed a l i - g h t e t c h and some o u t l i . n e oâ&#x201A;Ź g r a i n boundaries.
The mid.dle vapor r e g i o n
specimens ( l a and l b ) were e t c h e d t o a g r e a t e r e x t e n t and were covered w i t h a
t h i n green c r y s t a l l i n e d e p o s i t .
Prevtous chemical a n a l y s e s of t h i s d e p o s i t
at ORNL i n d i c a t e d that, t h e s c a l e c o n t a i n e d NiF,, N i O , and ZrO 2
2'
The vapor-
s a l t i n t e r f a c e (2a and 2 b ) and s a l t r e g i o n specimens (3a and 3b) seemed t o
have been s e v e r e l y etched, and, i n t h e l a t t e r , areas of i n t e r g r a n u l a r a t t a c k could be seen. 'Typical photomicrographs o f s e c t i o n s from t h e Mark I1 f l u o r i n a t o r
can be s e e n i n F i g s . 19 through 2 3 *
I n t e r g r a n u l a r attack w a s p r e v a l e n t i n a l l
"Letter Report from E'. W. Fink, B a t t e l l e Memorial Institu-Le, t o R. P. M i l r o r d , ORNL Subcontract N o . 988 (October 7, 1959).
-
52
-
CELL NORTH
UNCLASSIFIED ORNL LR-DWG 4 9 ( 6 0
S
+VAPOR
F i g . 17. Location of Specimens Xeuloved from the Mark I1 WP L Nickel Fluorinator for Dimensional Analysis and Metallographic Study.
LMCLASSIFIED O R k L- LR- DWG 49964
* I -
___t
t
LENGTH SECTION FROM AREA D-E, SOUTHEAS? QUADRANT
ViDlGAGE SEAD1kGS A F T E R L-4 AREA D-E
A
-
ViDIGAGE READINGS A F T E R i-9 AREA D-E
0
TR E PAN N ED SPEC I MENS
GIRTH WELD-
0
5
10
15
20
25
30
~
35
W A L L TPICKNESS
40
45
LOSS Irnils)
50
55
Fig. 18. Corrosion P r o f i l e of N a k I1 IFP L Nickel Fluorinator.
60
65
70
- 54
-
Fig. 19. M i c r o s t r u c t u r e of Sample f u ~ aI n t e r i o r Surface of Mark I1 VPP F l u o r i n a t o r 3 i n . Below Slip-on Flange (Vapor Phase, Area A ) Etchant: N i t r i c - a c e t i c acid. 1OOX.
.
F i g . 20.
Microstructure of Sample from Jn-terior Surface of Mark I1 Slip-on Flange (Vapor Phase, Area A). Etchant:
VPP Fluorinator 19 in. &Low Nitric-acetic a c i d .
1OOX.
Fig. 21. M i c r o s t r u c t u r e of Sample from I n t e r i o r Surface of Mark I1 VPP F l u o r i n a t o r 31-1 i n . Below SLip-on Flange (Vapor-Salt Interface, Area A ) , Etchitnt: n i t r i c - a c e t i c a c i d . LOOX.
.
F i g . 22. M i c r o s t r u c t u r e o f Sample from Interior Surface of Mark I1 VPP F l u o r i n a t o r 42 i n . B l o w SI-ip-on Flange ( S a l t Phase, Area C ) . Etchant: N i t r i c - a c e t i c a c i d . lOOX.
t
Fig. 23. M i c r o s t r u c t u r e of Sample from I n t e r i o r Surface of Mark 11 WP F l u o r i n a t o r Approx 47 i n . Below Slip-on Flange ( S a l t Phase, Area A) V i c i n i t y of Girth Shell. t o Bottom Head Weld. E t c h a n t : Nitric-acetic acid. 100 x.
- 59
-
s e c t i o n s i.n a l l regioiis b u t p e n e t r a t i o n was deepest i.n t h e samples from t h e i n t e r f a c e and sal-t regions.
Maximurn grain-boundary a.2-ttack was found to be
33 m i l s i n the s a l t - p h a s e sample A-3b which was i n the v i c i . n i t y of t h e s h e l l
t o head g i r t h weld.
Some sl.i.ght vari-a-Lioii i n g r a i n sizes wzs fourid i n the metallo-
graphLc samples.
nator.
The l a r g e s t g r a i n s were i n t h e sa1.t r e g i o n of t h e Yluori-
Table V I 1 1 summarizes t h e grain-si.ze d a t a i n t e x i s of average ASml
g r a i n - s i z e number.
Table ViII. Summary o f Grain S i z e s in Samples Removed from t h e Mark 11 V o l a t i l i t y P i l o t Plant [, Mi cliel F l u o r i n a t o r " I _ -
Location ( i n c h e s dowr~from bottom o f slip-on flange)
ASTM grainsize number
Region
3
Vapor
15 19
Vapor
3-5 3-L 3-1.'
Vapor
29
Vapor- s a l t i n t e r Face
34
Vapor- s a l t i n t e r face
3-5 3-4
J I?
Salt
2 4
47
Salt
2-4
a Grain s i z e s Prom i n t e r i o r w a l l arid exierior w a l l saniplcs were approximately equal. A p i t t i n g a t t a c k w a s Eound
OA
the i n t e r i o r wall near
Area C i n
t h e vapor region, about 3 i n . dowu from the hottom of' t h e s l i p - o n f l a n g e .
Figure 24 shows t h e appearance O S t h e surPaee a t 3X, and Fig.25 shows a metallogr'aiphic s e c t j o n through t h i s pitted area.
The l a t t e r i n d i c a t e s a level of
i n1,ergranular p e n e t r a t i o n simi-lar t o t h a t found i n o thpr upper-vapor r e g i o n s .
The depth of i n t e r g r a n u l a r attack d i d not appear t o vary from top t o 'uottom of
the p i t s .
Unc l.ass i f i e d EM1 N59673
F i g . ? ] i n Photograph of Sample from I n t e r i o r Surface of Mark I1 VPP F l u o r i n a t o r 3 in. B e l o w S l i p - o n Flange (Vapor Phase, Area C ) Showing Vitting-Type A t t a c k . 3X.
- 61 -
Fig. 2 5 . M i c r o s t r u c t u r e of Sample from I n t e r i o r Surface of Mark I1 VPP F l u o r i n a t o r 3 i n . Below S l i p - o n Flange (Vapor Phase, Area C) i n Region of Prftting-Ty-pe Attack. Etchant: N i t r i c - a c e t i c a c i d . 1OOX.
- 62
-
In t h e s a l t r e g i o n of Area C, a few small in-tergranii1.a~c r a c k s
were found on t h e i n t e r i o r of t h e v e s s e l wall.
A typical. crack i s shown i.n
t h e unetched condi.tion i n F i g . 26 a n d i n t h e e t c h e d c o n d i t i o n i.n Fig, 22.
Very pronounced darkening of t h e g r a i n boundaries t o approxi-mately t h e same depth as the crack was evi.dent a f t e r e-tching.
Cross s e c t i o n s from t h e f l . u o r i n a t o r s h e l l longitudi.na1 weld a r e
shown i.n Fig. 27 (Samples B-8T and A-3b) which d e p i c t s s e c t i o n s i.n t h e vapor
and sal..t phases, r e s p e c t i v e l y .
The weld. j o i n t from t h e s a l t regi.on shows
This confirrns t h e
what, appears t o be a n i n c r e a s e d a t t a c k a t tile weld r o o t .
v i s u a l examinations of t h e Mark 11 f l u o r i n . a t o r .
Examination of t h e weld from
t h e s a l t s e c t i o n a t bigk inagnif i c a t i o n r e v e a l e d pronounced grai.n-boundary
darkening a f t e r e t c h i n g t o a maximum depth o f 10 mils,
Similar, deeper g r a i n -
boundary darkening occurred rin t h e base metal a d j a c e n t t o the weld metal, extending t o a maximum depth of 33 m i l s .
The e x ' i e r i ~ o rof t h e vessel d i s p l a y e d a c o r r o s i v e a t t a c k which
appeared t o be i n t e r g r a n u l a r i n nat71re.
P e n e t r a t i.on v s r i e d Prom
1-6
mils, t h e
maximum o c c u r r i n g a t o r below Lhe v a p o r - s a l t i n t e r f a c e (Fig.. 28, Samp1.e A-3b). However, t h e r e w a s one e x c e p t i o n t o t11ri.s pa+,tern.
A grain-boundary peaetrat,ion
of approx 1 2 m i l s i.n depth was found on -the e x t e r i o r s u r f a c e o p p o s i t e tile
p i t t e d r e g i o n i n t h e vapor n e a r Area C.
5.
Summary o f Corrosive Attack ____ Table I X summarizes t h e corrosion l o s s e s of al..l. t y p e s found i n
the t h r e e major r e g i o n s of t h e Mark I1 VPP
L nickel fluorinator.
?'he ma-ximum
a t t a c k w a n cal-culated t o be 60 mils/month based on exposure -Lo molten s a l t s durring t h e VPP "E" r u n s
(1.-6) and "L" mils (1-9)
o r 1.1 rnils/hr based on
f l u o r i n e sparge time d u r i n g f l u o r i n a t i o n of molten s a l t s
e
The maximum a t t a c k
occiirred in t h e s a l t region.
Y.
Discussion o f R e s u l t s The Mark I1 VPP L n j c k e l f l u o r i n a t o r d i s p l a y e d a rnaximurn c o r r o s i o n
a t t a c k d u r i n g t h e d e s c r i b e d VPF runs o f 1.1 mils/hr, based on F sparge time 2 during flixorinaiion, o r 60 mils/month, based on molten- s a l t r e s i d e n c e tiiiie
- 63 -
IJnc I.as sifi.ed m1: c668
FIg. 26. Photomicrograph of Sample from I n t e r i o r Surfac:e of Mark I1 VPP F l u o r i r m t o r Ih2 i n . Below S l i p - o n Flaage (Salt Phase, A r e a C ) Showing Crack E a s i l y Visible Before S e c t i o n i n g . As-polished. 1OOX.
- 64 -
Unclassified BMl ~$9674
i 2,
F i g . 27. Photomacrographs o f Longitudinal Weld Sections Through Wall of Mark I1 VPP Fluorinatol- (a) From Vapor Phase 3 in. B e l o w S l i p - o n Flange, (b) From Salt Phase 47 in. B e l o w S l i p - o n Flange. Etchant: Nitric-acetic acid. 5X.
Unclassl fi.ed BMI cG18
F i g . 28. Mjcrostructure of Stmple f r o m E x t e r i o r Sui-Face o f Mark II WP F l u o r i n a t o r kpprox 47 i n . Below S l i p - o n Flange ( S a l t Phase, Area A) Showing Result of A i r Oxidation. Etchant: ?Xit r i c - a c e t i c a c i d . 1OOX.
Table I X .
LCJc a t i on Elevation (inches below slip-on flange ) Quadrant
3
Summery of Corrosive A t t s c k in Zac?l N a j o r Region of t h e Mark V o l a t i l i - c y P i l o t P l a n t L !lickel Fluorins-tor
77
7
ha ,i
Regi.on
-
T'hickness a loss (mils)
S.W.
1-5
Vapor
S.7.
Vapor
22
19
S.W.
Vapor
25
29
S :w.
Vapor-s a l t
29
N.W.
In2ergrafiulsr Pe ne t r stLon 1n t e r io r EX t e ri o r \,T&ll wall (rniisj (mils)
3
L
7 8
33 36
2G
0.k
22
3.4
28
4
2
39
23
0.4
53
I4
6
75
'L5
0.6
1&
L
77 59
46
0.8
100
60 53
1.1
59
n:.h'.
Salt
52
E.E.
Sslt
82
Salt
45
N.W.
Salt
52
16 16 33 16
Sslt
cj I;
23
N.E.
0.1
0.3
Sslt
47
5
I k 3
18
S.V.
47
8
i
2
6
1
3
84 63 90
e By nitrometer measurement. D
C
time)
30
L2
S.W.
-i;ine)
2
S.W.
L7
(miisj
8
34
42
T o t a l l o s s e s converted
Tot&: t o m i l s / u n i t :i2? b m i 1s/hrd c orro s~ v e nii s /noK t c. ztteck (molten s a l t (F sparge
23
Tnter-Cace V z - 0 ~s- a l t in%erf ac e V q o r - sal-t interface
42
IT
Includes e x t e r i o r L n t e r g r a m l a r p e n e t r a t i o n .
Based on molten s a l t residence t i n e during VPP E(l-6)
runs and L(1-9) r m s .
%asea on f l u o r i n e sparge t i n e curing f l u . o r i n a t i o n o f niolten s a l t s .
i; i
Ll
54
1
m e\ I
0.75 0.9
0.75 1.0
during STP "E" runs
(1-6)
and "L"
TUJX
(1-9).
Maximum a t t a c k occurred i n the
s a l t - p h a s e r c g i o n of' t h i s v e s s e l whereas t h e first VPP Yluorinatoy experienced
ma.ximum losses ri.n t h e vapor-phase rey;i.on,
w e r e of t h e sane o r d e r s of magnitude.
'Irk rates of attack f o r both vessels
'The cori-osi.ve a t t a c k i n t h e Mark I1
Pluorrinator, a8 wa,s t h e case f o - r t h e Mark 1 v e s s e l , can be c a t e g o r i z e d i n t o
bulk
irietal
losses from t h e i n t e r i o r wall. of .the ~ e s s e and l intergranular a t -
t a c k on b o t h t h e i n t e r i o r anti exter-ior walls of the u n i t .
1. I n t e r i o r Rulk Losses Bulk n e t a l lasses a r e b e l i e v e d t o be the r e s u - l t of continuous l o s s and. reformation o f 7vpr~.Li3ctive" NiF
fl.uorinator.
2
f i l m s on t h e i n t e r j - o r w n l l of the Mark 11
A s d i s c u s s e d i n S e c t i o n I, the n l c k e l f l u o r i d e films i"ormer3 on
t h e walls of t h e v-olati.li.ty flizorina,tors durlng c o n d i t i o n i n g and. f l . u o r i n a t i s n
operations could be removed by t h r e e and p o s s i b l y f o u r methods.
Taese a r e :
removal (1)by m-pturin.g o r s p a l l i n g , (2) by a f l u x i n g a c t i o n of t A e Yluoride s a l t baths,
( 3 ) b y a -mshi.ng a c t i o n of t h e m e l t s , and (4) by d i s s o l i r t i o n i n
certain h i g h l y c o r r o s i v e 1j.quids condensable i n t h e c o o l e r regions of t h e
vessel,
Maximum losses occurred in t h e s a l t r e g i o n oz" t h e Mark. I1 v e s s e l
whlich seems t o ind-icate that t h e f l u x i n g a c t i o n of t h e f l u o r i d e bat,hs was t h e
predoniinant method of removing t h e p r o t e c t i v e fil.ms Prom the w a l l s of t h e fhzorin.ator.
fluorinator
The high vapox. r e g i o n s losses d e s c r i b e d f o r t h e first VPP
were p a r t i a l l y a t t r i . b u t e d t o the presence of corrosive L t y u i d s
which condensed. i n t h e c o o l e r regions of that vessel. and some di.scussion o f whether s i m i l a r l i q u i d s i r e r e presenl; i n t h e second v e s s e l seems i n o r d e r .
Evidence of the presence o f -these con-d~ensable 1.iqui.ds i n the
rnl rlrlle vapor r e g i o n s of b o t h 'vessels were (1)the tenar:i,ous ml.1 d-eposi-ts,
( 2 ) t h e segregation of chromium i n surface a n d subsurface l a y e r s , and
However, t h e bulk metal l o s s maximum i n tile second v e s s e l occu.rrzd a few inches below that of t h e i n i t i a l f l u o r i n a t o r .
( 3 ) the bulk m.etal l o s s maxima.
O n e major di.ssi.milari.ty found was t h e lack o f uranium s e g r e g a t i o n
in t h e vapor pha:je of t h e Mark. T I v e s s e l wliZch vas i n c o n t r a s t t o . t h e ? behavior
of -the f i r s t f l u o r i n a t o r .
This l a t t e r f a c t may suggest -the reason :ror t h e
l e s s e r middle vapor r e g i o n a t t a c k i n the second f l u o r i n a t o r when compared with
Perhaps t h e a d d i t i o n a l o p e r a t i n g ex-perieiice of t h e VPP
t h e firs-L v e s s e l .
p e r s o n n e l p l u s t h e modi.fications i n t h e v e s s e l ' s i n t e r i o r p h m b i n g and ext e r i o r appendagps p e r m i t t e d UF
4 to
remain i n t h e sa7.t b a t h s u n t i l more o r
l e s s compl.ete oxidati.on t o v o l a t i l e UF
6 had
occurred..
The w a l l - t h i c k n e s s - l o s s p r o f i l e OT t h e Mark IT f l u o r i n a t o r shows smaller, maxi.mm a t a p o i n t 25 i n . below t h e bottom o f t h e
911 ad.ditiona!.,
sl.Sp-on f l a n g e .
This ai3dit;ional peak i n t h e upper- iii-terfacc r e g i o n i s
b e l i e v e d t o have becn induced by low ope:eational.. temperatures a f e w i n c h e s
below tile 2 5 - i n . level..
There was no d i r e c t methoci 0-f heai; a t
t h e bottom of tile sl-ip-on f l a n g e .
28 i n .
below
This r e g j o n w a s betwzen t h e f u r n a r c
windings used t o h e a t iiie s a l t regior, and t h e rod-iyqx h e a t i n g el.emeiits used
to heat, t i e vapor regi.on.
I n a d d i t i o n , t h e furnace s e a l was p r e s e n t a t i n i s
p o i n t , r e s u l . i i n g i.n a b u i l - i - i n h e a t s i n k .
Thus, t h e c o r r o s i o n p r o f i l e curve
probably would have continued i n a smoo-iii cu.rve f r o m t h e 25-in, e l e v a t i o n on
Ciown toward t h e s a l t r e g i o n except f o r t h i s low- 'cernpei~aturer e g i o n c i t e d . s i m i l a r I.ow-corrosion a r e a was found
a t approximnl;? 1-y t h e sa.me e l e v a t i.on
jinL the
A
im1.l. oC the Mark I i'l.uorinator
I
The corrosion .l.osscs Touncl 3.n t h c sa1.t regfon of t h e Mayrk Ti1
f l u o r i n a t o r were 'die maximum fouiid in t h e sys-Lem and on t h e o r d e r o f twice
t h a t n o t e c Tor t h e first f l u o r i n a t o r i n t h e same r e g i o n .
Two rea::;ons are
proposed f o r t h e h i g h e r sal-t-phase losses 5.n t h e secoild. T l u o r i n a t o r .
First,
t h e fl-i2orid.e s a l t b a t h s i n c o n t a c t with t h e lower regi.ons of t h e second fl.iiorj.nator contained uran.i.urfl â&#x201A;Źor a p e r i o d approx
f i r s t Yluorinator. UElIlil.Jiil
67% I.o:nger
than f o r the
A s w i 1 . l be described i n a latier seeti-on, -the presencc of
i n .PilSed fluoYiiie s a l t systems d u r i n g bench- s c a l e v o l a t i1.i ty cor-
r o s i o n s t u d i e s has en'nanced cor?-osive a t t a c k .
Secona, al~Lho-~~gh t h e to-La1
yirarrtity of f l u o r i n e sparged during M a r k TT was on1.y sl.i.ghtly higiier t h a n tha1; used during o p e r a t i o n s wi.Lh t h e Mark I vpssel, t h e to'cal t : h e of i"1uorin a t i o n f o r t h e Mayk I1 vessel w a s approx 50'11,l o n g e r than f o r t h e f i r s t fluorinator.
Since
iii
b o t h c a s e s an average of
3:l. excess f l u o r i n e over
that
q u a n t i t y necessary -Cor theore-Lieal. r e a c t i o n was used, fLuoririe probably had
o p p o r t u n i t y t o remain i.n t h e salt longer duri.ng Maxk I1 o p e r a t i o n s ,
This
would all-ow t h e c o r r o d e n t a l o n g e r period o f .tI.me t o a t t a c k 'the Tluo.r.iaator Wa1.l..
2.
1 n t e r i . o r Tntergranular PenetraLion Upon e t c h i n g s m p k s removed from t h e w a l l o f t h e Mark I1 f l x o r i -
n a t o r , the grai.si bouriclaries appear h e a v i l y darkened t o vari.ous depths. t h e vapor region, a maximum depth of
s a l t iriterface r e g i o n showed
; I
8mils
p e n e t r a t i o n w a s noted.
In
The vapor-
maximum of 16 m i l s whrile t h e s a l t r e g i o n d i s -
played p e n e t r a t i o n proceedring t o a rnaximim depth of 33
n1iJ.s.
Suspecting t h a t the i n t e r g r a n u l a r a t t a x k might be t h e r e s u l t o f
s u l r u r contamination, personnel a t BMI attempted -t;:m t e s t s t o make p o s i t i v e i d e n t i f i c a t i o n 01-{;begrain-boundary d e p o s i t s .
The sulfitilr-print technicpie,
whereby a c i d i f i e d photographic paper i s pressed a g a i n s t t h e metal. s u r f a c e ,
was used.
Sulfides could n o t be d e t e c t e d u s i n g this method..
Next, t h e re-
action of a s o l u t i o n of l e a d nI-Lrate and n i t r i c acid 11.pon constitu.ent;s a t t h e g r a i n boundari-es w a s observed uncle-r t h e microscope.
Tibe p r e c i p i t a t e
formed appeared t o be similar t o b u t weaker t h a n t h a t observed on a n i c k e l tube known t o be grossly contaminated w i t h s u l f i i r .
R a t t e l l e Memorial I n s t i t u t e
a l s o i n d i c a t e d t h a t the s-Lmctures observed a t t h e g r a i n boundaries resemble t h o s e found in L, n i c k e l rods t e s t e d and sixdj.ed a t ORm.
14-2
A s;ec-t,ion from t h e Mask 11 f l u o r i n a t o r w a l l . which liad been cx-
posed t o t h e s a l t phase was analyzed f o r su.lf11-r c o n t e n t a-t s e v e r a l depths
by &VI personnel,
(F7.g.
24).
Twice t h e weight p e r c e n t of aulYux was round
i n t h e i n t e r i o r w a l l a% a n 0 to ?-mil dep-t;h 80 t h a t found a t t h e same slep.i;ii
on t h e e x t e r i o r w a l l , 2bO vs I20 ppm.
SulTiir a n a l y s e s conducted a t ORNL on
wall m a t e r i a l removed. from various depths i n t h e middle vapor yegioii of t h e
vessel ( F i g . 16) did not disclose any i n c r e a s e in sul.Pim c o n t e n t on subsurface i n t e r i o r samples when compared to subsurface e x t e r i o r samples, 20 vs )-LOppm. Unfortunately, t h e poor correl.ati.on o b t a i n e d on. sul3n: a n a l y s e s
from BMT and ORNL on e x t e r i o r w a l l samples p l u s t h e weak case -for sul.fu-r
4.2
L. R. T r o t t e r m d E. E . Xoffmaiz, P r o g r e s s Report on Volal;il.i.ty P i l o t Plank Cormsion Problems t o A p r j . 1 21, 1957, 01:?&-2hg5, p p 22, 26, 29 (September 30, 1958) 1
e
contamination presented by o t h e r t e s t methods d i l u t e s a n y blarih:t
sialcment
rrhich could be made r e g a r d i n g t h e r o l e t h a t ~ i ~ l f playpd ur i n the i n t e r i o r i n t e r g r a n u l a r a t t a c k o f ihe M n ~ k11 f l u o r i n a t o r - .
However, t h e seri 011s
erlibrittlilig a n 3 p o t e n t i 21 roi-rosi ve e l f f e r t s of s u l f u r i n c o n t a c t w i t h n i c k e l
a t h i g h temperatures arc d e f i n i t e a u d known facts.
Thcrefure,
s u l f u r con-
tamination should be s t i - i n z t a t l ; , avoidpd i n a n ) or tn? W P i s n i c k e l p r o c e s s e qu 7 pljient
.
3.
E x t e r i (xI n t e....r._ g r a.... n u l a r Attack I-
The e x t e r i o r of t h e Mark I T f l u o r i n a t o r s h e l l a l s o underwent i n i e r g r a n u l a r aiiack.
This wab m i e d b y BMl personnel i n iheir examination " h e genepal depth 01 t h e a t t a c k , 1
of samfipler, remuved from til? v e s s e l ,
h
filils,
was o f t h e same o r d e r as t h a t r e p o r t e d â&#x201A;Źor t h e f i r s t VPP f l u o r i n a t i o n vessel.
Tn t h e nnalyscs o f s c a l p frorr tne e x t e r i o r w a l L o f
Mark T I , Hi0
was 2 rou~iili n d i c a t i n t i hal, tlic e x t e r i o r i n t e r g r a n u l a r attac-k o n t h e second 11uor-iLIE
n a t o r w a s due to ail o x i d a t i o n . )I.
Grain-Size Vari-ations Grain sj;es
found i n samples removed From the wall OC tnc Mark J
f l u o r i n a t o r v:_iried fYom an dverSEp MTM number of
5-6
to
o c n i r r e d exclusive13 i n h e vapor r e g i o n of ilie v e s s e l . f l u o r i n a 1 , o r showed a dj f f e r e n t t y a i n - s i
nuidwrs i n t h i s v e s s e l v a r i e d from
ZP
3-5 t o
salt region-
pattern,
2
1. The larse s i z e s
The second VPP
Average AS'IM L r a i i l - s i L e
t h c lsrgest occurriflg jn t h c
Althougn t h e second f l u o r i n a t o r vas â&#x201A;Źabt i c a t p d from tnt: s a w lieat of L n i c k e l and i n a s i m i l a r m a ?
cond t i o n s were q u i t e d i " f e r e n t *
ir?
r a s t h e Yirst vessel, i n i t i a l thermal
the r e s p e c t i v e vafi,or r e k i O M .
Initial
henlvp f o r t h c Mark J w a s done without t h e b e n e f i t o f a n external h e a t source i n t l i u vapor r e g i o n whilc LIE Mark IT had rod-type h e a t i n g elements w i t h a
t o t a l r a t i n g o f 9 kw a t t a c h e 6 t o t h e upper half of t o e v e s s e l .
,+cavy r e -
Trac t o r y i n s u l a t i o n coverpr? tile rod-type elemenLs.
From a c l a s s j c a l net tal h r g i cal vi eqpo i [it, i t , appears t h a t rnany
more nucleaLion s i t e s were p r e s e n i i n t h e vapor r e g i o n o f t h e second f l u o r i n a t o
- 71 as t h e r e s u l t o f the i n i t i a l r a p i d heatup and more o r l e s s incomplete recovery when compared w-i-th t h e â&#x201A;Ź i r s t vessel.
The many s i t e s a f f e c t e d . t h e
p r o d u c t i o n of many grai.ns i n c o n s t a n t voliume which could o n l y r e s u l t i n
COD
p a r a t i v e l y smaller g r a i n sizes.
The somewhat l a r g e r g r a i n s i z e s found i n t h e s a l t region o f t h e
Mark I T f l u o r i n a t o r Itflen compared t o -&,hesame r e g i o n of' t h e f i r s t v e s s e l s i l d t o tlie r e s u l t i n g gm3i.n s i z e s noted i n . the vapor r e g i o n of t h e Mark I1 seen!
t o be -Line r e s u l t ; of some coalescence d u r i n g o p e r a t i o n s . ti).at t h e f i r s t f l u o r i n a t o r was a t
600-725"~for
1-1;w i l l be r e c a l l e d
approx 1250
~
i
while r tile
second v e s s e l 'vas a<; about t h e same bempera'wre :range f o r over l9OO hr.
The s p e c i f i c e f f e c t o f grain size on c o r r o s i o n i n -the f l i i o r i -
m t i o n system h a s been reported I n S e c t i o n I as b e h g c o n j e c t u r a l .
However,
inaximum bi1l.k losses on t h e w a l l s of b o t h f l u o r i n a t o r s occurred a;t l o c a t i o n s
where t h e largest gra-in s i z e s predorntnated.
A s such, the p r o d u c t i o n a n d
s t a b i l i z a t i o n of small grai.n s i z e s i n nickel fluorri.ntition v e s s e l s seem
reasonable p r e c a u t i o n .
a
Open a n n e s l l n g c y c l e s :Tor L n i c k e l t o e m u r e small
g r a i n s i z e s have been r e p o r t e d . 43
E.
Corrosion -of In-ternal Components from--t h e Mark I1 WP F l u o r i n a t o r S e v e r a l i n t e r n a l components of t h e Mai-k I1 f l u o r i r i a t o r have been
zxaimi.ned and a n e v a l u a t i o n ol" t h e c o r r o s l v e attack on t h e s e p a r t s made by personnel of the Corrosion Research Division, BMI. (re-f
44)
Fi.gure 3 shows t h e
l o c a t i o n oii most of t h e s e componenLs w i t h r e s p e c t t o t h e t o p f l a n g e of the fluorina1;or.
01"p a r t i c u l a r i n t e r e s t are t h e d r a f t t u b e s and I"luorine i n l e t
'cubes which, by v i r t u e o f t k i r p o s i t i o n i n t h e system, weye s u b j e c t c d t o
i n i t i a l c o n t a c t by f l u o r i n e , and could. be ex.pected to s u s t a i n t h e g r e a t e s t ;
corroslve attack.
' I k ~ od r a f t
tubes, Mark ITA and Mark I I B , were used i n t h e
Mark II f l u o r i n a t o r d u r i n g Phase T: and Phase I1 of t h e Pluori..nator's l i f e t i m e , (Table V I ) .
The d r a f t t u b e s were f a b r i c a t e d a t OR?& from A n i c k e l .
Results
431'A1mea1ing of Nj ckel, Monel, and. I n c m P l , " Tech. Bill. T-20, The I n t e r n a t i o n a l Nickel Company, Inc., New York, A p r i l , 1953.
44
L e i t e r Report from I?. W. Fink, B a t t e l l e Menorial I i z s t i t u t e , t o R. P. Milford, ORNL Subcontract No. 988 (October '7, 1959).
of tile examinations of t h e drart tuber, and f l u o r i n e i n l e t l i n e s
;ir”
schemsti-
c a l l y d i s p l a y r d i n F i g s , 25 a n L l 30 and show t h e config%ration details of t h e
assenibl i ? s e Supporting p h o t o m i c r o g r y h s are p r e s e a t e d i n Figs, 31 and 32.
Considerable metal loss w a s f o i i o a on t h e Mark TTA drsft tube, buL
l i t t l e v i s i b l e in-i~rgrariiil a r a t t a c k was noted. &-ai’%
Conversely, the Mark I i R
tube showed l i t t l e dimensional chailgr b u t a r a t h e t- deep i n t e r g r a n u l a r
attack.
The eTchinc c h a r a c t e r i s t i c s and g e n e r a l microscopic appearanct- were
also q i ~ i te d i f f e r e n t .
While t h e Mark I13 Lube etclied mrma1-X~f o r n j c k l
usi ng a n i t r i c - a c e t i c a c i d mixture, tile o t h e r d r a f t tube d i d not, anti it vas n e c e s s a r y f o r EM1 p c r s o m e l t o use an HC1-HN0,
(3:1) C ’ L C ~ , which iliey commonld
3
usc f o r Tnconel t o develop grain-boundary d e t a i 1.. anal-ysis a t I341 showed t h e MW’I
114 n i cke 1
liowever, s p e c t r o g r a p h i c
I I B d r a y ! Lube c o n s t r u c t i o n l n a t e r i a l t o bc A
I
The iiiaxiwm b u l k m e t a l l o s s on the Mar.:..
I T A draf:, l u b e bj, micrometer
average measurement w a s 77 m i l s and oecurFP,l n e a r the upper support p l a t e o f t h e assembly.
Compai-ison o f the measured o u t s i d e aiamctcr of ihe L u h ~with
t h e o r i g i n a l dialnrter i n d i c a t e d t h a t most of t h e metal- l o s s occurred o n tiie
o u t e r s u r f a c e s o f t h e uni t.
Microme i ~ iriea’;lireiiienLs r on Uie Mark TTB draft.
tube showed m a x i m i m bulk l o s s e s of on13
6 mils
’OUZ a rnaxirlium total i n t e r -
ic,ranular p c n e t r a t i o n on b o t h t h e i i i t r r i o r and e x t e r i o r w a l l o f 29 mils.
Tne
f l u o r i r i e i n l e t lines a s s o c i a t e d w i t h t h e Mark TTB d r a f t tube ass-mbly showed s i m i l a r c o r r o s i v e behavior when coiiipared i o ihe d r a f t tube b o d i e s .
However,
ilie Mark ILA f h o r i n e i n l e t l i n e showed a much more severe intPr5rariiilar a t -
t a c k on t h e i n s i d e of ilie pipe when compared w i t h t h e o u t s j d e .
A high-probe l i n e and a thermocouple w e l l , b o t h mad:. Prom
3/&?-in.
sched-ilo A n i c k e l , were i n s p e c t e d a l s o by €341 personnel for c o r r o s i v e a t t a c k .
Both components opernLed a t temperatures s s s e n t , i a l l y t h e same a s thos;c. of tile I”luorinat,or w a l l .
The high-probe l i n e w a s a high-pressure l i q u i d l e v e l and
density-pl-obe combination which exienr?ed Y r o m t h e t o p f l a n g e of t h e f l u o r i n a t o r beneaih t h e molten s a l t l e v e l .
The l i n e ~wa:; open at, ille boiiorn to
a l l ow c o n t a c t w i t h t h e f u s e d Lluoride salt baths, b u t p-essuri zed n i t r o g e n ,
i n s i d e t h e tubp, f o r t h e most p a r t prevented t h e s a l t s froiii e n t e r i n 2 tile t u b e ,
-
73 Unclass i f i e d M I A32545 840 mils1
I------
I
21 A
m-rnils thickness (average by micrometer)
Scale: Approximately 1/2 size
Fig. ?9. Corrosion Losses on t k Mark IU.Draft Tube and Fluorine Inlet from the Mark II WP F l u o r i c a t o r . Considerable metal l o s s has o c c u r r e d at all areas b u t most of the intergranularly attacked grains appear to have sloughed oPS.
Unclassified ,
EM1 C q y
Unc lassifie d
Brn c.574
d
a
,
Unclassified z3MJ
c673
Uncles s ified EM1 C672
9
'
I i
Fig. 31. M i c r o s t r u c t u r e s of Samples from A Nickel Draft 'Tubes Used (a) and (b) e x t e r i o r and i n t e r i o r s u r f a c e s i n Mark I1 WP F l u a r i n a t o r . of Mark I I A d r a f t tube at S e c t i o n 2LB; ( c ) and (d) e x t e r i o r and i n t e r i o r surfaces of Mark IIB draft tube a t S e c t i o n 11F. Etchants: (a) and ( b ) H y d r o c u o r i c - n i t r i c a c i d , ( e ) and (a) N i t r i c - a c e t i c a c i d . ~ O O X .
-
76 -
UnclassifLed BMT c676
"
I
. .
(a)
Unclass f r i e d Unclas s i fiea BMI e677 BMI c678
..
. .
. , * '
. I
. 4 *
. I
..
Fig. 32. Microstructures of Cross S e c t i o n s 3Thraugh A N l c k e l FluorPne I n l e t Tubes from (a) Mark IIA Draft Tube (b) Mark IIB Draft Tube. Etchants: N i t r i c - a c e t i c a c i d , 7OX.
- 77 Tl1.e the-mocouple w e l l was p o s i t i o n e d i n a si.niilar manner t o t h a t d e s c r i b e d
for - h e probe li.ne b u t t h e end w a s s e a l e d w i - L h an A n i c k e l p l u g -
Table X
ci.tes t h e c o r r o s i v e losses foiiizd on t h e high-probe l i n e and t h e n o w e l l as
w e l l as g i v i n g mom d e t a i l on t h e l o s s e s found 3.n t h e f l u o r i n e i n l e t l i n e s .
The i n t e r n a l components from t h e Mark I1 VPP f l u o r i n a t o r s u s t a i n e d
total c o r r o s i o n losses comparable .to t h e wal.ls of t h e f l u o r i n a t Z o n v e s s e l .
No i n c r e a s e d a t t a c k was noted on t h e f l u o r i n e i n l e t l i n e s or on the d r a f t
tube liodies as the result of t h e proximity t o e l e m e n t a l fluorine during operations.
Of i n t e r e s t i s t h e indi c a t i o n of rrruch more corros:i.ve c o n d i t i o n s p r e s e n t d u r i n g t h e L-L through L-4 rmns when compared t o
L-5
through L-9 rums.
E-3 through E-6 or
Extended times 0% s e r v i c e a t high -temperatures for
t h e early "L" runs may ex@a.in t h e s e d i f f e r e n c e s .
Corrosion control. s p e c i -
mens of L n i c k e l i.np l a c e during the run groups mentioned, an.d r e p o r t e d i n S e c t i o n TV,
c o r r o b o r a t e th.e v a r i a b l e corrosive behavior p r e s e n t during t h e s e
d i f i"er.er1-t o p e r a t i o n groups.
111. Bench- S c a l e Fluorination Corrosion S.67id-ies The V o l a t i l i t y S t u d i e s Group, Cheni%cal.Development S e c t i o n A o f t h e Chemical Technology Divtsion, has continued t o study p r o c e s s chemistry i n connection w i t h t h e v o l a t t l - f t y process s i n c e t h e i r e a r l y work i n d i c a t e d t h e
l a t t e r ' s fea.sibility.
These s t u d i e s have included t h e g a t h e r i n g of c o r r o s i o n
d a t a from s m a l l - s c a l e experiments.
A s s t a t e d i n Sec-Lion I, nickel-base alloys have shown s u p e r i o r cor-
r o s i o n r e s i s t a n c e t o f u s e d f h o r i . d e s a l t s under dynamic flow c o n d i t i o n s ,
and n i c k e l and. n i c k e l - b a s e a l l o y s e x h i b i t g e n e r a l l y good r e s i s t a n c e t o ele-
mental f l u o r i n e a,nd UFs.
In t h i s connection, corm-ercial purity n i c k e l and
Inconel have been the primary mater-ials of c o n s t r u c t i o n f o r f a c i l i t i e s u s i n g
the i n d i v i d u a l c o r r o d e n t s mentioned above
I
Extensive s t u d i e s a t ORNL on
Inconel i n c o n t a c t w i t h fused f l u o r i d e s a l t s have shown t h . a t a p p r e c i a b l e q u a n t i t i e s of chrornium were renioved through r e a c t i o n
w i t h UF
4 and
other
I
- '(8-
4
mop nl
r--I c? 0 I
L n L n
-3
c\o4
H
r--4
r-0.l
a, P
P
3
a,
H
G
r i
c?Mir)Ln
m ffl
a,
o x i d i z i n g impuriti-es. "c5 T'he chromium removal was accompanied by t h e fomat i o n of subsurface voids i n t h e me-Lal.
S u b s t i t u t i o n s of molybdenum i n an
approximate r a t i o of 2: 1 (MG: C r ) f o r about h a l f of t h e c'm-omium c o n t e n t i n
EL
t y p i c a l chromium-containine all.oy, p l u s o t h e r modifications, provide an a l l o y , INOE
8 , which has e x h i b i t e d
measurable a t t a c k when i n c o n t a c t with molten
f l u o r i d e s a l t s a t temperatures u.11 t o approx 700째C.
Also, INOR 8 has been used
as tfie m a t e r i a l of c o n s t r u c t i o n for the VPP Dissolver-,Yydrofluorinator, t h e
rn-ajor vessel f o r t h e head-end cycle of t h e V o l a t i l i t y Program. For t h e s e reasons, a 2-in.-diam
Inconel f l u o r i n a t o r ,
A n i c k e l f l u o r i n a t o r s , and f o u r 1-in.-diarn
t e n 1-in. -driam
IN@R 8 f l u o r i n a t o r s were t e s t e d
and. subsequently examined for comparative c o r r o s i o n behavior.
Inconel F l u o r i n a t o r
A.
1.
T e s t Method The Inconel f l u o r i n a t o r w a s used i n h o t - c e l l s t u d i e s and was
f a b r i c a t e d from 0.065-in. Table X I ,
stock a t OXNL.
P r i o r t o t h e exposure d e t a i l e d in
f l u o r i n e flowed i n t o the f l u o r i n a t o r as it w a s r a i s e d from ambient
Table X I .
Exposure Conditions for t h e Inconel F l u o r i n a t o r Vessel
Temperature
,
O
600-800
C
Time of exposure a t temperature, hr w i t h salt molten Thermal c y c l e s Fused s a l t , nominal mole
187
70
$
F l u o r i n e i n p u t , standard IXters
a
a
Uraniu-m i r r a d i a t e d , riot enriched.
45W. D. Manly e t al. , " M e t a l l u r g i c a l Problems i n Molten F l u o r i d e Systems, Progress i n Nuclear Energy, S e r i e s I V , Vol 2 - Technology, Engineering, and Safe ty, p - ~16b--l79, . Pergamon Press, London, 1960.
I'
- 80 room Lerqerature t o operai;.i.f i g temperature.
This was done For leak-.teskirig
piu-poses although, at t h e same t i m e , t h e in-teu.:ioi" v e s s e l walls w e i ~pi-obably "conditionedr' by prod-ucing f i l m s OF fliiori.d.es.
The to-tal.Lime -involved for
t h i s t e c t i . n f f - c o n d i t i o n i n ~i,.rea~l;mentw a s abou-t 2 hr.
A f t e r exposure o p e r a t i o n s , areas from the v e s s e l were se7.ected f o r
micrometer measiri*ements and metallograp,iiic examination.
c r o s s s e c t i o n o f the v e s s e l aj.id t h e l o c a t i o n o f stirdy.
Figure 33 shows a
ti^ sample a r e a s remcved f o r
A summary of c o r r o s i v e a t t a c k found i s shown i n Table
XI1 ishere total.
l o s s e s a r c repor-Led i n imi.1~pcr hour, based on fl.uorine sparge .Lime, and m i l s
p e r mon-Lh, based on residence -Lime in mo3.ten salts. mi c r n g a p h s are grouped i n Fi.g.
2.
$.
R e p r e s e n t a t i v e photo-
Discussion of R e s u l t s Maxi.inuii: c o r r o s i v e a-I;Lack i n t h e Tnconel f l u o r i n a t o r vas encoun-
tered. a t t h e vapor-sal-L i n t e r f a c e and occurred ai; a r a t e or 0.2lt mils/hr,
based
on PluorLnc spsrge -time, o r 118 mils/noni;ii, based. on molten- s a l t r e s i d e n c e t i . m e . I n t e r g r a n u l a r penetration seemed -the predoniiriaat nodc OP at'iack i n tiie salt
and vapoi- refilms b u t no evidence of i ~ n t e r g r a n u l a rcorros:ion was found a t tiie
vapor- s a l t i n t e r f a c e
In t h i s connection, -ihe i n t e r g r a m l a r - p,e1lctiVatioi? seemed d i s -
simri.I.ar t o t h a t fourid on t h e i n t e r i o r w a l - l s oT -the WP f1uori.nators.
on t h e Inconel. v e s s e l t h e r c
WRS
'That i.s,
evidence o f t h e sloughing of whobe g r a i n s of
materi.al_, a c o n d i t i o n noi; observed. on t h e â&#x201A;Ź u l l - s i z e L r-rickel. v e s s e l s .
ilhe
depth o f t h e interg.canu.lal- p e n e t r a t i o n on t h e Ihconel vessel was 0nl.y a single grab deep:,, The VYP f l u o r i n a t o r s d-emonstratedi.ntergranii,lar rnodj.fi.cations
many gralms i.n d e p t h on samyl.or, removed from corresponding s e r v i c e regions cont a i ni.ng s i m i l a r pai.n-.si_ze material.
In t h e Inconel bench i"l.uori.nator, it appears k h a t a f t e r i n t e r -
graniLLar penetrati-on had proceeded t o abowt o m g r a i n i n depth, many o f the a f f e c t e d grains could not be retained i_n p o s i t i o n by the remainder of t h e
grain-boundary material aiid sloughed o f f , l e a v i n g new mater-jal ready for corrosive attack.
Thi.s method of r e - t a l l o s s woii1.d seem devasLating t o t h e v e s s e l
- 81 UNCLASSIFIED
O R N L - L R - D W G 49462
-0.065-in. WAL THICKNESS
SPECIMEN
F L U0 R 1 NAT0 R
Fig.
33.
Fluorinator.
_. .....-.
Cross Section of t h e Chemical Cevelopolent Section A Inconel Metallographic specimcns TETE: rcmoved a s shown.
Table X I T .
Sumary of Maxirrm Corrosion Results on Chemical Develo3trient Irx o ne 1 F l ~;roicator ._
Speci-
nen
Estimate2 Wall Speciner; TeKp
Location
No.
( O C >
Wall
T h i ckne s s Loss
(miisla
250
500
3 3 8
2 vapor- s a i t
600-Soo
12
1
600-800
9
12 top vapor LO q p e r vspor L lower vapor in-krface S&lt
I
100
intergrsmlm Pe ne t re-ti OK. Interlor Ex-teri o r
To4Gai
Corrosion
3
2
5 -
li
24b
2
-
il
44
(KiiSj
-
3
(rnlls)
(ails)
10
F~
a ~ o - nmcrorr,eter measdrernents -Laker, i n eac'i srea.
b
Losses Converted t o Nils ';.nit ?$me xils/xonth n i l s / h r (mol-ten- (F2 s9arg.n sa12 time) tiixe)
wall
-$a11
Does not inclLide tae e x t e r i o r a t t a c k _'ound on 'che v e s s e l w a l l .
'E
Y2
0.36
40
0.12 0.20
0.22
I
-
Y-26551
83
-
UNCLASSIFIED 0 RN L- LR DWG 32069
-
Y-26548
6 t
INNER SURFACE, VAPOR AREA
**-
4 OUTER SURFACE-, VAPOR AREA
Y-26549
h
,NNER SIJRFAC:E, APPROX. SALT-VAPOR I N T E R FA C, E t
I N N E R SURFACE, SALT AREA
Fig. 34. Typical MicrostructlJres of Samples Removed Trorii Chemical Development Inconel Fluorinator. Etchant: Glyceria regia. 250X. Reduced 3276.
i n s e r v i c e , b u t t h e anoma1.y o f t h e s i t u a t i o n i s t h a t maximin w a l l - t h i c k n e s s l o s s e s occurred i.n t h e Inconel v e s s e l a t t h e v a p o r - s a l t i n t e r f a c e and a t -that p o i n t no evi-dence o f i n t e r g r a n u l a r a t t a c k could be found.
No e x p l a n a t i o n can be given f o r t h e i n t e r i o r w a l l i n t e r f a c e anomaly d e s c r i b e d nor can one be given f o r t h e heavy e x t e r i o r i n t e r g r a n u l a r
a t t a c k which has l o c a l i z e d i n a c o o l e r r e g i o n of t h i s Inconel f l u o r i n a t o r ( s e e ~ i g 34). .
B, A N i c k e l P l u o r i n a t o r s I
1.
T e s t Method. In a d d i t i o n t o t h e Inconel f l u o r i n a t o r r e p o r t e d lipon i n
S e c t i o n ITPA, t e n A n i c k e l m i n i a t u r e f l u o r i n a t i o n ?-essels, each 1 - i n . and 0.035-in.-wall.
-0.d.
ti?i.ck.ness, have been o p e r a t e d by the V o l a t i l i - t y Studi.es
Gi*oup, Chemical Development
Sec-Lion A,
i n o r d e r t o compare f l u o r i n a t o r cor-
r o s i o n u s i n g d i f f e r e n t process f l o w s h e e t s .
Figure 35 shows t h e uniJLs i n t e s - t
p o s i t i o n , while Table X I I T i s a summary of t h e imposed t e s t cofiditions. The v e s s e l s , j.n a l l cases, were charged w i t h 75 g of f l u o y i d e s a l t t h a t had been ground and cl-assified t o
-8 +20 mesh.
The v e s s e l s were
t h e n p l a c e d i n s p l i t ; tube-type Furnaces and.brought t o t h e s p e c i f i e d temperat u r e under a n i t r o g e n purge o f 0.05 l.iters/min.
A-l; temperature, t h e n i t r o g e n
w a s bypassed and f l u o r i n e was allowed t o bubble thiwugh t h e s a l t a t t h e same flow r a t e .
I n iliose c a s e s where urani.um w a s added t o t h e m e l t , 0.50 g
incret-nents of UF
added a t interva1.s o f 1 h r o r more.
4 were
As shown, some
r e a c t o r s were p l a c e d i n s e r i e s b o t h f o r conveni.ence and t o mini-mize t h e f l u o r i n e consumption.
50
The -total. e k r n e n t a l f l u o r i n e exposure i n each case
h r at, a rate of 0.05 I.iters/min.
a c t o r s Nos. 5,
6, and
Du-t.ing t h e s e 50-hr exposures on t e s t re-
10, twenty-five UF
were made.
7.7a-13
4 additions
and Uli'
6 volati.lizati.ons
I n a l l . t e s t s , t h e s a l t s were kept molten f o r over 200 h r while under a n i t r o g e n purge.
This w a s done t o f a c i l i t a t e t h e t e s t procedure, t h a t
i s , a v o i d r e m e l t i n g s a l t s f o r t h e next f l u o r i n e t e s t period. .Figures 36 and 37 i l l u s t r a t e the c o r r o s i o n r e s u l t s o b t a i n e d by rni.crometer measurements and
- a5 -
F2
i
-
--
ratus f o r Comparison of Fluorination Corrosion on A Nickel
Table XIII.
86 -
Process Conditions for A Nickel Bench-Scale Test Fluorinators
Hr of Molten H r of Molten Salt Exposure Salt Exposure Position in Vessel Fluoride Temperature ("C) With N2 Sparging With F2 Sparging Test Series No. Salt
* *
1
4
*
7
* *
8
2
5
9
450 525 525 525 600 600
2 +
0.5% U
**
525 525 600 600
3 + 0.5% U
10
H*
3
6
1 + 0.5% U
*2&37-37
**31-24-45
additions.
-5(j50
mole
%
222
238 240
1
1
1
240
2
238
2
222
240 240 222
238
2
3
1
3
1
LiF-NaF-ZrF4: Composition 31, plus LiF addition.
mole $I LiF-NaF-ZrF4: Composition 31, plus LiF and ZrF4
mole
%
NaJ?-ZrF4:
Composition 31, as received.
I
0 W
+
z
- 0
c
__I
2
-1 v)
I
M N
M
N
J
>-v, 0 0
10
N U
87 -
0
:: s-"
N+?2 0 M
i
,X a 111
+ L
> W
0 0
M
0 0 (0 N
M
M
-
N
M
_-
s-"
0
n+q3 m
W
0
m m
E
<
.........
.........-
- .
,-~.
> - w l
> - v ?
-
0
I n
0
u)
In
W
N + ? 3
In N
N
In
0
N
N
s-”
m
88 .-
> - G I
In N In
m
In
> ... In N
--
v?
e
0
<o+lqI’
2
> - v )
0
cti
- 89 metallographic examinations of specimens removed from t h e v e s s e l s .
The losses
are r e p o r t e d b o t h i n mils p e r hour o f f l u o r i n e sparge and m i l s p e r month based on t o t a l r e s i d e n c e time i n molten s a l t s f o r comparison t r l t h o t h e r s t u d i e s .
F i g u r e s 38 through
42 show r e p r e s e n t a t i v e photomicrographs from t h i s t e s t
series. 2.
Discussion of R e s u l t s The A n i c k e l f l u o r i n a t o r s showed widely varying c o r r o s i o n r a t e s
as a n t i c i p a t e d i n plaruiing t h i s t e s t s e r i e s .
6
Comparison of t h e r e s u l t s on t e s t v e s s e l No.
wit11 those of
v e s s e l No. 3 i n d i c a t e d t h a t uranium a d d i t i o n s t o equimolar NaF-ZrF
4. r e s u l t e d
i n i n c r e a s e d c o r r o s i o n o c c u r r i n g as i n t e r g r a n u l a r a t t a c k a t tl?e vapor- s a l t interface.
A r a t e o:f 0.1 m i l s / *
the i n t e r f a c e of No.
based on f l u o r i n e sparge
6.
Comparison of v e s s e l No. 2 w i t h v e s s e l No.
additi-on of 26 mole
tiine
of
was noted at;
3 indicated t h a t the
LIF caused i n c r e a s e d a t t a c k a t t h e v a p o r - s a l t i n t e r -
face, as evidenced by bulk metal l o s s e s .
Upon metallographic examination, no
evld.ence of i n t e r g r a n u l a r a t t a c k w a s found i n e i t h e r v e s s e l . The a d d i t i o n of u.rani.um t o t h e LiP-NaB'-ZrP4
(26-37-37 mole $)
s a l t i n v e s s e l No. 5 r e s u l t e d i n s i g n i f i c a n t l y i n c r e a s e d metal l o s s e s pliis intergyanular a t t a c k at the vapor-salt interface.
Additional intergranular
a t t a c k w a s noted i n t h e vapor phase of t h i . s v e s s e l . Lowering t h e tempera6ure of t h e r e a c t o r c o n t a i n i n g t h e same LiF-bearing s a l t , LiF-NaF-ZrFI corrosion r e s u l t s .
4
Two of t h e
(26-37-37 mole $1, to v e s s e l s , Nos. 4 and '7,
525째C produced e r r a t i c
showed uniform, compara-
t i v e l y s m a l l . metal. losses i n a l l r e g i o n s while v e s s e l No. 8 showed an i n c r e a s e d a t t a c k , especially a t t h e v a p o r - s a l t interfac!e
e x h i b i t e d by v e s s e l No. 8.
.
Intergranular attack was also
A s shown i n Table X l I 1 , v e s s e l No. 8 w a s i n a down-
stream p o s i t i o n from v e s s e l s N o s .
4 and
'-(, arid t h e d e v i a t i o n i n behavior may,
t h e r e f o r e , have been t h e r e s u l t of carry-over and c o l l e c t i o n of c e r t a i n cons t i t u e n t s conducive t o greeter c o r r o s i v e a t t a c k .
'
"
~
Y - 28366
- 90 -
UWCL 4 S S I F I E D ORNL-LR-DWG 49825
Y - 28369
~-2836 ..........-
...-.
’. I
..
. e
1
Y- 28367
’ .
.
INNER SURFACE,
A P P R O X l M AT E SALT - VAPOR I NT E R FACE
b.
c .-
A N
INNER S U R F A C E , S A L T A R E A
*--
- 92
u r J c L a ~ 5I E1 D~
-
ORNL-LR
3 ' N G 49828
Y - 28639
Y-28366
I
I
.i.
Y-28638
I
/
1.
'
A S R E C F I V F D MATERIAL
INNER S U A F n C E , VAPOR ARFA
f
Y - 28637
~
.........
INNFH SURFACE A P P R O X I M A l - k SAL T - V A P O R INNE HFACE
1 .-c
L
I
N
INNER S U R F A C E . SA1.T A R E A
%st
T y p i c a l Mj crostruc1,iires of Samples rroili A Ni eke1 Minia+,ure 110. r ' l u o r i n a t o r No. 6. E t c h a n t : Acetjc-nitric-hydrochloric a c i d . 200X.
Fig.
I
Y-28366
- 93 -
UNCLASSIFIED ORNL - L R - D W G 49823
.
A S RECEIVED MATERIAL
INNER SURFACE, A P P ROX IM AT E SALT - VA PO H IN T E RFACE
INNER SURFACE, SALT A R E A
F i g . 41, Typical Microstructures of Samples from A Nickel Miniature Test Flu-orinator No. 8. E t c h a n t : Aeetic-rLitr-i.c-hydrocUor1c acta. 2OOX.
- 94 ......
UNCLASSIFIED ORNL-LR-DWG 49830
Y-28613
P 0
f
- 4 +
A S R E C E I V E D MATERIAL
0.
r e
t
J
INNER SURFACE APPROXIMATE SALT-VAPOR IN NF R FACE
INNER SURFACE, S A L T A R E A
F i g . l+P. Ty-plcal Microstructures of Samples from A N i c k e l Miniat,ure T e s t Fluorinator No. 10. Etchant: Acetic-nitric-hydrocilloric a c i d . 200X.
,
- 95 Lowering t h e p r o c e s s temperature t o 450°C and u t i l i z i n g t h e same l i t h i u m - b e a r i n g s a l t (No. 2 ) reduced. c o r r o s i v e a t t a c k t o t h e lowest l e v e l s
found i n t h i s t e s t series.
These results were provided by v e s s e l No. 1 where
t h e approximate losses were 0.02 rnil/hr,
based on f l u o r i n e sparge time.
This
i s es p e c i a l l y si.gni f i c a n t since l i t h i u m - sodium- z irconiurn f l u o r i d e s a l t mix-
, t u r e s can be used i n t h e v o l a t i l i t y process a t lower o p e r a t i n g temperatures
t h a n t h e NaF-ZrF4 composite system because o f the lower l i q u i d u s l i n e of t h e li thium-beari-ng s y s t e r n .
Tes-ts Nos. 10 and
s a l t s , 31--2b-h$ mole
$J
9 at
LiF-NaF-ZrF4,
525°C used h i g h e r LiF- and ZrF4-content
wi.th and without 3-iranium, r e s p e c t i v e l y .
Vessel No. 9 showed s l i g h t l y i n c r e a s e d a t t a c k over v e s s e l s Nos. were o p e r a t e d at t h e same temperature.
4 and
*(‘ which
Metal1ographi.c examination of
v e s s e l No. 10 r e v e a l e d t h a t intergramil.ar p e n e t r a t i o n w a s p r e s e n t i n a l l phases of t h e i n t e r i o r w a l l . The A n i c k e l miniature f l u o r i n a t o r s demonstrated g e n e r a l l y lower r a t e s of corrosi.ve a t t a c k i n simulated f l u o r i n a t i o n environments when compared
t o t h e f u l l - s i z e d L n i c k e l v e s s e l s o r t h e l a t t e r ’ s A ni.cke1 i n t e r n a l components
x&-ich were exposed t o p i l o t p l a n t f l u o r i n a t i o n c o n d i t i o n s .
reasons can probably account f o r most o f t h i s dev-iatton:
The following t h r e e (1)t h e temperatures
of f l u o r j - n a t ?on g e n e r a l l y were somewhat lower i n t h e bench- s c a l e work than diiri-ng p i l o t p l a n t o p e r a t i o n s ;
( 2 ) somewhat b e t t e r c o n t r o l over thermal c y c l i n g
and o t h e r p r o c e s s c o n d i t i o n s w a s o b t a i n e d during bench-scale work; (3) t h e f e e d s a l t s used i n t h e p i l o t p l a n t w o r k were contaminated by having been used
i n previous loop s t u d i e s , the AEE, o r having been contained f o r long p e r i o d s
of time i n t h e p i l o t p l a n t type 347 s t a i n l e s s s t e e l charge melt tank.
The A n i c k e l m i n i a t u r e s a l s o demonstrated g r e a t e r r e s i s t a n c e t o
c o r r o s i v e a t t a c k d u r i n g f l u o r i n a t i o n t h a n t h e I n c o n e l v e s s e l used i n Chemical Development h o t - c e l l s t u d i e s .
C.
INOR-8 P l u o r i n a t o r s 1. T e s t Method Four IN OR-^ t e s t f l u o r l n a t i o n v e s s e l s , e a c h 1-in.-0.d.
0.065-in.-wall
and
thLckness, and of similar d e s i g n t o t h e A n i c k e l r e a c t o r s
- 96 r e p o r t e d i n S e c t i o n IIIB were also f a b r i c a t p d a t ORM, ror bencii-srale
v o l a t i l i t y corrosion s t i i d j e s . n a t o r s wa,,'(4.5 wt
The composi t i o n of 1 N O R - 8 i ~ s e di n test T l u o r i -
$ Ni--15.3 wi $ Mo-6.5
wt
$ CP~.(
rvt
5
FP-0.02wi $ C.
A summary ol" ihe test, c o n d i t i o n s I"or tile IPJOR-8 riiiniatuie I'luo-rinal,c)rs, as shown i n Tab1.e X I V , i n d i c a i e s that 0 ~ 1 sv e s s e l No. 3 contained I s -o l e XTV.
r i
Vessel No.
Flucride Sal i
1
,*
2
Yr of Molten H r o f Molten Ti?mpPratiire Salt Exposure S a l t Exposure Posy-tion i n ("C) With N2 SpargLng With F2 Sparging T e s t S e r i e s
2 + 0*5$ IJ
4
-salt
4jo
2 36
50
h50
290
50 50
2 36
600
.3c)s
3
Process Coiidi t i o n s f o r INOH-8 Azr,ch-Scal e Te st Flu0 r i natai"s
600
3c
*2G3j7--37 mole
$I
1
50
290
2
1
1
-_ .............-
. ..................._
_.__ .
LiF-NaF-%rF4: From a d d i i i o n o f T,iF t o Composiiion 31.
~
**50-50 mole $ NaF-ZrFh:
urar;ium.
Vessel. TTo, 3 received 25 UE'
fLiJorinated t o UF ported.
Compositi.oa
Figs-t-es
6 ili
31, as
4 additions
l 7 . k maimer as t h e
1-ecci.ved.
which were s i i b s e q x n t l y
A n i c k e l miiiiatures p r e v i o u s l y re-
'13 and 44 i l l u s t r a t e t h e c o r r o s i o n losses obtained by microrn-
e t e y measuremenLs and rneta3-lographic examinations on specimens removed Tron
the wz~l.2.s of t h e vessel.
The l o s s e s have been converted io mils I s s t p e r
uni-i; tiiiie fol- compari.son purposes,
F i p p r e s '15 -tiwough
48 show
t y j ? i c a l etched
m i c r o s t r u c t u r e s found i n the INOR-8f l u o r i l i a t o r speci-mens. Discussion of 3 e s u l t s
The SNOR-.~ test T l u o r i n a t o r s showed a vari et) o P c o r r o s i o n
f e s t a l , 7 011s depending on t h e t e s t c o n d i t i o n s .
operated a t
6oo0c,
)+,
-
Consideriiig t h e t w o v e s s e l s w h i c h
vessel N o . ?, which c o n t a i n e d eqiiirnolar Na3-ZrF
less attac.1.c than v e s s e l N o .
inanj
)I'
which coniajiied LiF-NaF-ZrF), (26-37-37
showed
mole $I).
X
s'
Q
0 cf
01
N
IC)
0
L?
N t < 3
I
221
N
- 98 -
I
_..-
t
m
r: 0
F: 0
cn
?-I
k k
0
0
u
0
k
Y - 28800
-
99
-
UNCLASSIFIED O R M L - L R - DWG 49831
Y-2880'
Y - 29062
A S R E C E I V E D MATERIAL
Y-28803
f
Fig. 45. Typical Microstructures of Samples f r o m INOl3-8 Miniature T e s t Fluorinator No. 1. Etchant: Modified aqua regia. 200X.
- 100
Y-28801
s
UNCLASSIFIEC ORNL-LR-DWG 4 9 8 3 2
I
Y - 2906 2
.
,
I
!
i
;t I
I
I
\
AS RECEIVED MATERIAL
.
I
'I 1
I
,
.,
e--
).
I
I 1
.
1
*'
I
ll_l
SALT AREA
Fig. 46. Typical Mi-crostructures of Samples f'roin INOH-8 Miniature T e s t Fluorinator No. 2 E t c h a n t : Modified aqua regia, 20OX.
I
-
101
-
...._ -.
Y-28851 ______
._. .....
UNCLASSIFIED O R N L - L R - D W G 49833
Y-29062
I
t
I !
B
A S RECEIVED MATERIAL
Fig.
47.
Typical M l c r o s t i ~ @ t u r rof s Sampl-es f r o m ex0~.-8Miniature T e s t Etchasll;: Modified aqua r e g i a , 2OOX.
Fluorinator No. 3.
UNCLASSIFIED
O R N L - L R - DWG ese 3 4 ___..... Y- 591362
.-
- - --+
m___
MIDDLE VAPOR ARE&
J
AS RECEIVED klATERIAI. ...
~ i g .48. Typical Mierostruct;ures of ~ a m p l e sfrom ENOX-F) Fluoranator No. 14. Etchant: Modiffed aqua regia. 2OOX.
Miniature est
c
-
103
-
Maximum a t t a c k i n t h e l a t t e r v e s s e l o c c u r r e d a t t h e v a p o r - s a l t i n t e r f a c e a t
a rate of 30 mils/month,
based on r e s i d e n c e time i n t h e molten s a l t s .
was t h e max.imum a t t a c k r a t e f o r tine e n t i r e INOR-8 s e r i e s .
This
Reducing t h e o p e r a t i n g temperature t o 450째C and u s i n g the same
1ithium-bear.ing s a l t s i g n i f i c a n t l y reduced a t t a c k a s i n d i c a t e d f o r vessel. No. 1
43 and 44).
(Figs.
The maximum a t t a c k found i n t h i s v e s s e l was also a t t h e
5
v a p o r - s a l t i n t e r . f a c e a t a r a t e of
mils/month.
The a d d i t i o n of uranium t o
t h e l i t h i u m - b e a r i n g s a l t d e s c r i b e d p l u s o p e r a t i o n a t lt5O" C more t h a n doubled
the c o r r o s i v e a t t a c k when compared t o t h e nonuraniurn-containing s a l t .
This
3.
o c c u r r e d i n v e s s e l No.
Examination of t h e m e t a l l o g r a p h i c specimens i n t h e a s - p o l i s h e d
s t a t e , F i g . 49, d i s c l o s e d spongy l a y e r s on t h e s u r f a c e s of t h e vapor r e g i o n specimens from - v e s s e l s Ros. 2 and
t e m p e r a t u r e s of t h e t e s t seri.es. s o l u t i o n , 5:1, lIC1:EFNO
Figures
46
and
3,
4.
These .two v e s s e l s o p e r a t e d a t t h e h i g h e s t
Upon e t c h i n g w i t h a modified aqua r e g i a
t h e spongy r e g i o n s were f o r t h e most p a r t destroyed.
49 d i s p l a y t h e m i c r o s t r u c t u r e s f o r specimens from
the two
ves-
sels and show Yhat i n on.ly one region, the upper vapor a r e a o f v e s s e l No. 2 (Fig.
46) d i d
s i g n i - f i c a n t 8mounl;s of t h e spongy r e g i o n remain. C a r e f u l r e p o l i s h i n g on the upper vapor area s m p l e from v e s s e l
110. 2 and examination of t h e su.rface d i s c l o s e d a c o r r o s i o n product whj.ch r e -
s o l v e d i t s e l f i n t o t w o d i s t i n c t l a y e r s , as shown i n Fig. 50.
J u s t above t h e
INOR-8 b a s e metal was a spongy r e g i o n wh.ich w a s composed of voids and s o l i d
m e t a l intermixed.
Many of t h e voids appeared to be p a r t i a l l y f i l l e d w i t h
nonmetallic-appearing compounds.
Above t h e spongy region, on the outermost
s u r f a c e of t h e specimen, was an irregular l a y e r t h a t had t h e angular appear-
ance of m e t a l c r y s t a l s .
Upon e t c h i n g t h e specimen w i t h a mixture of lo$
lO$ (m4)2SeOp,,
XCB arid
1:1 r a t i o i n water, t h e outermost l a y e r of t h e s u r f a c e showed
d i f f e r e n t c h a r a c t e r i s t i c s -Liian t h e INOR-8base metal.
The comparatively m i l d .
e t c h a n t d e l i n e a t e d g r a i n boundaries i n the o u t e r l a y e r bu.t left t h e base metal
u n a f f e c t e d , as d i s p l a y e d i n Fig.
51.
- 104
.... .
-
-
F i g . "9. Typical. Spongy Surface Layers f r o m Vapor Region Samples of (a) IIIOR-~ T e s t F l u o r i n a t o r No. 2 (b) INOR-8 T e s t P l u o r i n a t u r No. 4. As-po3.i s h e d . 5OOX.
-
105
-
F i g . 50. Surface Layers on Sample from Vapor Region af INOH-8 Miniature Test Fluorinator No. 2. As-polished. TOOX.
-
3-06
-
Fig. 51. Surface Layers on Sample f r o m Vapor Region of I N O R - 8 Miniature T e s t Fluorinator No. 2 - E t c h a n t : Potassium cyanide-ammonium persulfate. 500x.
- 107 Samples of t h e o u t e r c o r r o s i o n product l a y e r and o r the spongy
su'rJsurf'ace r e g i o n were obtained by mechanical m i l l i n g and scr.appi.ng.
Most
of the m a t e r i a l comprising t'ne o u t e r l a y e r was fouixl t o 'tie s t r o n g l y f e r r o magieLic in contra&
These samples plus mi.lli.ngs removed
t o the base metal,
from the e x t e r i o r diameter of the No. 2 vessel w a l l , p l 0 mils below the
surface, were sinbm.i.tted.f o r spectrochemical analyses. A l l o f t h e samples
were q l l a n t i t a t i v e l y analyzed .Tor C r , Mo, Fe, and Ni by emission spectroscopy usi-ng a porous cup e1ectrod.e -method of sample exci.ta-Lion. s h o m i n Table XV.
The r e s u l t s a r e
Tdble XV. Analyses of Corrosion Produc-t:; and B a s e Metal Removed from IEJOR-8 Miniature F h m r i n . a t o r No. 2
Sample D e s c r i p t i o n and
Chromium
(d$4
Location
Outer c o r r o s i o n product l a y e r
3.9
Spongy subsurface l a y e r
7.6
Base m e t a l
6.6
I _
Iron (th
4)
3.3 3.8 3 '95
Molybdenum
(wt
$7)
8.4 16.3 15.h5
Nickel (7-J-t
$1
84.3 69.It
75.45
Examination of Table XV shows 'chat t h e o u t e r c o r r o s i o n product
layer w a s 13 w t
$I
r f c h e r i n n i c k e l when coinpared t o the base metal, INOR-8,
while the chromium, molybd.eiiim, and iron c o n t e n t s i n the c o r r o s i o n product decreased
40, 45, and
11 Wt,
$,
respectively.
The spongy suhs-urface layer
showed. generally s m a l l weight p e r c e n t h e r e a s e s Tor the ch.romi.um, molybdenum,
and iron, r e s p e c t i v e l y , when compared t o the base m e t a l a n a l y s i s " the subsurface l a y e r was approx 8 w t
%
Nickel i n
Less .than that fou.nd i.n t h e base metal.
The mode of c o r r o s i v e a.ti;aclc on INOR-8 i n c o n t a c t with t h e
sirmiula-Led v o l a t , i . l i t y process f l u o r i n a t i o n envirorment a i 6 0 0 appears ~~ to involve s e l e c t i v e l o s s e s of chromium, molybdenum, and i r o n from t h e n i c k e l s o l i d solution.
This may- oeci1r by formation of metal f l u o r i d e s on t h e b u l k
m e t a l siurface wIii.c?n subsequently v o l a t i l i z e , o r by t h e v a r i o u s retihods of Tluoride f i l m losses d e s c r i b e d i n S e c t i o n I.
- 108 T'he r e a s o n ( s) f o r the s l i g h t l y h i g h e r minor element coricentxat i o n s i n tiie spongy subsurface c o r r o s i o n l a y e r when compared w i t h t h e base
m e t a l a p p e a r ( s ) anomalous t o normal d i f f u s i o n p r o c e s s e s .
Concentratiori
gradi.ents produced by t h e i n i t i a l . s e l e c t i v e l o s s e s should become t h e driv-ing f o r c e For d i f f u s i o n of t h e mTnor alloy elements toward t h e exposed s u r f a c e
ol" t h e r e a c t o r and lower t h a n base metal c o n c e n t r a t i o n s of chromium,
molybdenum, and i r o n would be expected i n t h e subsurface region.
It may be
t h a t complex fluoride compounds aye formed i n t h e subsurface r e g i o n which do
n o t v o l a - t i l i z e under t h e t e s t co-nd~iti.onsand t h u s simply t i e up h i g h e r conc e n t r a t i o n s of chromi-um, molybdenum, and i r o n .
However, s i n c e x-ray
d i f f r a c t i o n p a t t e r n s on samples from t h e subhayer d i s c l o s e d only t h e presence of a f a c e - c e n t e r e d cubic material v e r y s i m i l a r t o tiie p a t t e r i i o b t a i n e d on t h e base metal-, s u p p o r t i n g evidence f o r t h i s t h e o r y has not been o b t a i n e d .
D e t a i l e d txeatment of t h e c o r r o s i v e a t t a c k on INOR-8deserves
s e p a r a t e s t u d y which may o r may n o t be m r r a n t e d conside1-ing t h e u l t i m a t e goal. of t h e e n t i r e t e s t s e r i e s covered
iii
t h i s s e c t i o n ; t h a t i.s, comparative
behavior of A n i c k e l , Inconel, and INOR-8i n c o n t a c t w i t h a v o l a t i . l l t y p r o c e s s f l u o r i n a t i o n environnient.
I n r e g a r d t o t h e l a t t e r , A n i c k e l had t h e b e a t
r e s i - s t a n c e t o a t t a c k a t p i l o t p l a n t i"1uorination temperatures of 600"~; but a t lL50"C INOR-8 p r e s e n t e d f a v o r a b l e competiLion t o t h e ilickel.
There are
s e v e r a l advantages a t t e n d a n t to u s i n g INOR-8 as a f l u o r i - n a t o r c o n s t r u c t i o n
m a t e r i a l i n c l u d i n g i t s h i g h s t r e n g t h and o x i d a t i o n r e s i s t a n c e .
Also,
since
t h e c o n s t m e t i o n material f o r t h e VPP h y d r o f l u o r i n a t o r i s TNOR-8, it might be p o s s i b l e t o c o n s o l i d a t e b o t h h y d r o f l u o r i n a t i o n and f l u o r i n a t i o n o p e r a t i o n s i n
a si-ngle v e s s e l . IV.
V o l a t i l i t y P i l o t P l a n t Scouting Corrosion Tests A.
Material Selection I n order. t o t a k e advanta,ge o f t h e s e r v i c e c o n d i t i o n s provided by t h e
VPP p r o c e s s runs
an;l t o achieve i n s i g h t i n t o t h e r e s i s t a n c e of o t h e r m a k r i a l s
t o tiie complex f l u o r i n a t i o n rnviropment, a s e r i e s of c o r r o s i o n specimens w a s l o c a t e d i n t h e Mark 1 and Mark T C f l u o r i n a t o r s l asld examined a t convenient
- 109 irrtervals.
As mentioned i n S e c t i o n 1, resistianee t o f u r t h e r attack by
f l u o r i n e on metals w a s felt t o be imparted by p a s s i v e f l u o r i d e -r"ilmswhich
form on t h e me-tal.
P r o t e c t i o n 1rs.s been shown. t o be dependen'i;
011
the proper-
t i e s of' t h e f l u o r i d e Y i l m s , e s p e c i a l l y v o l a t i l i t y , adherence t o t h e s u b s t r a t e
metal, mechanical and the.rrm.1 s t a b i l i t y , and t h i c k n e s s
For t h e s c o u t i n g c o r r o s i o n t e s t s d.escri.bed i n t h i s sec.tioa, selec-
t i o n of m a t e r i - n l s which contained c o n s t i t u e n t s known t o Porm low vol.ati1.e f l u o r i d e s seemed e s p e c i a l l y a p p r o p r i a t e .
A s a g 1 i d . e to v o l a t i l i t y , tile
m e l t i n g and b o i l i n g p o i n t s of t h e common i n g r e d i e n t s j.rt many commercfal
m a t e r i a l s o f c o n s t r u c t i o n were reviewed. i s shown i n Table X U .
146
A partj-al. l i s t l n g taken from Brewer
It can be seen t h a t chromium and molybileiium, commoo1.y
added f o r improved r e s i s t a n c e t o a i s o x i d a t i o n and/or iriiprovemcnt, of higbtemperature p r o p e r t i e s , form h i g h l y v o l a t i l e Fluorides, e s p e c i a l l y a t t h e i r higher oxidation s t a t e s .
Nevertheless, because of t h e previous use of n i c k e l -
base a l l o y s c o n t a i n i n g chromi-um ( I n c o n e l ) and/or mo1ybdenu.m (INOH-8) i n
the A i r c r a f t I'ieactor Experiment (ARE) and t h e Molten-Salt Reactor ( P E R ) studi-es,
a l l o y s c o n t a t n i n g t h e s e t w o c o n s t i t u e n t s were included i n t h e materials s e l e c t e d
f o r t h e scouting tests.
Table X V I I l i s t s t h e s p e c h e n materi.al.s, tlieTr tre.de names, where
a p p l i c a b l e , and -the g e n e r a l a l l o y c l - a s s i f i c a t i o n s Lo which they belong.
of t h e materials were n i c k e l - r i c h a l l o y s .
80 wt $ Ni-20
wt
$ Co
Th.e
90
7d-b
'$ Ni-10
Most
w t $$ Co and
a l l o y s were n o n p r o p r i e t a r y arid were f a b r i c a t e d from
melts made i n Metallurgy Division f a c i l i . t i . e s . o b t a i n e d from commercial s u p p l i e r s .
The remaining r m t e r i a l s were
The platinum specj-men served as an e l e c -
t r o d e probe i n a n attempt by VPP o p e r a t i n g p e r s o n n e l t o i n v e s t i . g a t e t h e
e l e c t r o c h e m i c a l e f f e c t s during t h e f l u o r i n a t i o n process.
Rovever, c u r r e n t
d i d n o t flow through t h e probe and c o r r o s i v e losses irere recorded i n a regu-
l a r manner for the platihum specimen.
~ scou-ting t e s t material:;. ti.ons f o a11
46
Table XVITI shows t h e no~i~L:nalcomposi-
L. Brewer, "The Fusion and Vaporization O a t s or^ tile Halides, '' The C h m i s t r y and MetaLlurw of M i s c e l l a n e o u s I a t e r i a l s : Thcrmodynamics (ed. ~ J J Laurence L. Q u i l l ) National Nuclear Energy S e r i e s , DI v. IV lyB, McGrav-Kill, New York, 1930.
Table XVI. Melting and B o i l i n g P o i n t D a t a of Various Metal F l u o r i d e s Consti t u e i i t s of Material s U s e d i n t h e Volati l i t y P i l o t P l a n t ScouLilig Corrosion Tests" (Convertetl from OK)
F:leme n t Ni
Fe
co
cu A l
Fluori de
Mn
FeF
1027
FeF2
3
1202
CoF
102 f b
3
CuF CUF2
3
w2
M2
3 'TiF 3 C1.F
2
CrF
3
CrP4
CrF
Mo
5
MOP 5
("C>
Disproportionatcs
947
82'ib
AlF
Boiling P o i n t
1102
CoE2
TiF4
Cr
b
io27
MnF 'I'i
("C)
NiF2
A1F
Mg
Melt i.ng P o i n t
73Yjb
1357b
> 1272
1272
1263
2227
856
2027~
lo77b
13Vb
122Tb
142Tb
42'rb
28J-t
1.102
1100
277
b
212-lb b
1427 2?7
b
102b
UTb
77b
22p
~
~
.~~.
Brewer, "The Fusion and Vapori-zation Data of t h e Halides," The Chemistry and Metal.lurgy of Mfscell.aneous M a t e r i a l s : Thermodynamics (ea. by Laurence L. Q u l l l ) National Nuclear Energy S e r i e s , D7.v. I V 19B, McGraw-Hill, New York, 1950. bEs-timated OP 0btai.tied by E x t r a p o l a t i o n of Experimental Data by L. Brewer. CBernard Weinstock and J. G. Malm, "Some Recent Studi.es w i t h Hexafluorides, ' I .Basic Chemi~stryi n Nuclear Energy 28, pp. l2$-l29, 2nd Uni-Led Nati.ons InteraL.
n a t i o n a l Conference on t h e P e a c e f u i T s e s o f Ato1ni.c Energy, Geneva, 1958.
-
111
-
Table XVII. Corrosion Scouting Test Specimeii M a t e r i a l s Used in tile V o l a t i l i t , y Pilot P l a n t Mark 1 and Mark TI Fluorinators P
Material
L Nickel INCO
-_
Classi-fication
Ni
61 Weld Wire
Gold-plated L N i c k e l
30 w t $ T'Tickel-10 irk, $I Cobalt 80 wt $ Nickel-20 w t 4 Cobalt,
Nj Ni Ni-Co
N i - Co
Cobanic
Ni-Co
D Nickel
Ni -Mn
Ni - Cu
Mone 1
Nimoni-c
80
Inconel
NF-Cr-Il'e PJi - Co-Cr (+ Ti, AI, and ~ e )
Waspalloy TITGO 700
Mi -Co-Cr
X p u 80
Hastelloy B HasteLLoy INOR- 2
w
INOR-8 Hastelloy X
OFIIC Copper
Pla t inum
Ni-Cr
N i - Fe -Mo
N i-Mo- Fe
Ni - Mo -Fe
Mi-140 - Cr
-
N i -140 - Cr Fe Ni-Mo- Cr-Fe
cu
Pt
Tabie XVIII. Nominal Composition o f Corroslon Specimens from t h e V o l a t i l i t y Pilot Plant Fluorinazor
KateTial
Ni
L Ni“
99.47
weid wire Au-plated
(min)
1mca 61
L DJib D Ni SFHC Cu
Hymu 80 Cobanic
m ! o 700
93.00
79 55
45
90 R’i-10 Coa 90.02
57.65 77‘
48
(ball
57
(sal)
3astclloy
65
Hastelloy
60
B
1.i
INOR-2
INOR-8“
79
69.8
Nimonic 80c 7k.28
Mn
1.5
0.17 1.0
-
16
9.63 0.17 30.30
1.01
2.3
0.64
5.1 0.6
C
d
V
16
0.75
0.1
0.005
0.05
0.01t
1.42
bLtase metal same as L N i above.
9“1..T)+
2.42
0.026 0.020 0.19
0.01
0.06
28
0.4
0.1
25
5
0.12
16 5 0.1 16.5 6.9 0.08
20.38 0.05
‘Veni‘.or ciiernical analysis.
1
B
0.01
0.: 0.08
0.007
0.008
0.20
3.1 0.03 (mx)
irnax)
0.08
.(
0.15
3 . k 5 18-21,G.l
0.83 0.5
SI
5
0.0075
0.01
8.82 21.81 0.11
2.5
Zr
-
0.023 0.15
0.05
15
0.20
5 5.5
3.0
0.98
0.1
2 (rnau)
Chemical a n a l y s i s .
e I n c l u d e s cobalt.
20.13
i 18,7h
4.0
2.5
29
1.k
2.0-3.5
0.50
45
1.i’
Pt
4.75
(bal)
Platinum
‘ORET
0.25
A1
Goid alate = 0.0015 in. 0.05 95.6.
80 ~ i - 2 0 Coa 79.59 NIonela Inc one 1 ibsteiloy XC Waspalloy
Cu
Co
?e
0.11 1.0
Nominal Composition wt $ Ti KO Cr
0.X 0.2
3.78 0.311
0.75
(max)
0.6 0.005 0.007
0.i‘+0.008 0.23
“Jestinghouse c:iemlcal a n a l y s i s (Iieat 8M3).
0.m a (ma.)
- 113 R.
Test Method The s c o u t i n g specimens c o n s i s t e d of l e n g t h s of rod, sheet, or s p l i t
p i p e stock, o r combinations t h e r e o f , each approx
48-56 i n . long. They were
h e l d i n p l a c e i n th.e f l u o r i n a t i o n v e s s e l s by two methods.
Tluring t h e Mark I
f l u o r i n a t o r s opera-Lions, a l l specimens were welded t o t h e top b l i n d f l a n g e of bhe v e s s e l as shown. i n Fig.
I
When t h e Mark I1 v e s s e l was i n use s e v e r a l
3.
specimens were welded t o t h e i n s p e c t i o n p o r t f l a n g e i n a s i m i l a r manner w h i l e t h e remaining t e s t rods were h e l d i n p l a c e by metal connectors sr'ipping a â&#x201A;Źitt i n g prewelded t o t h e end of t h e t e s t rod.
The end f i t t i n g s were A n i c k e l
t u b i n g 1/2-in.-o.d.
x approx 3 i n . long and s e a l w e l d e d t o prevent t h e escape
o f process gases.
Fi.gclre $2 shows a cut-away view o f t h e Mark I1 VPP f l u o r i n a -
t o r i l l u s t r a t i n g t h e placement o f c o r r o s i o n specimens and. a t y p i c a l . t e s t specimen prepared f o r i n s e r t i o n .
A t o t a l of
31 t e s t specimens w a s exposed t o the f l u o r i n a t i o n environ-
I n each t e s t grouping a t l e a s t one 1, n i c k e l specimen w a s included as a
ments. con-Lrol.
Figure
53 shows a t o p vie-w of t h e f l u o r i n a t o r s i n d i c a t i - n g t h e placement
of t h e specimens i n terms of p o l a r geometry, t h e t e s t i n g o r d e r and i d e n t i f i c a t i o n number, arid c o r r o s i o n specimen numbers.
The c o r r o s i o n specimen nmctber i.dentifl.es
parti-cwlar f l u o r i n a t o r runs when specimens were i n p l a c e and a l s o i n d i c a t e s t h e t o t a l number o f speci-mens t e s t e d srimultaneously.
f l u o r i n a t i o n r u n s M - 2 1 through
L - l through L-4,
and L-5 through L-9.
for each run group.
t h e s e scouting i-uns.
C.
M-48, C-9
The major t e s t groupings were
through C-15, E-3 through
Figure
$4 d e t a i l s
E-6,
t h e process c y c l l n g
Tables I and V I summarize t h e o t h e r process d e t a i l s during
Reactions t o Environments A f t e r exposwe, the t e s t speci.mens were removed from t h e f l u o r i n a t i o n
v e s s e l s and subjec-Led t o dimensional a n a l y s e s and metallographic st11d.y. Figures
55
and
56
summarize -t;he maximum c o r r o s i v e l o s s e s found i n each major
exposure r e g i o n as determined by micrometer rxeasurements and o p t i c a l microscopy. Figure
55 d e t a i l s -the l o s s
data as a p l o t of m i l s per month, based on individ,
ual m o l t e n - s a l t r e s i d e n c e times, while Fig. 56 shows t h e l o s s d a t a in terms of
-
1111--
U N C L A S S I FlED O R N L-LR-DWG 49167
SPECIMENS WELDED DIRECTLY TO TOP FLANGE
/
/
TUBE PRE-WELDED TO SPECIMEN 'TO FIT TliREADEB FITTING
Fig. 5?. View of Mask I1 WP Fluorinator Vessel Showing Metbods of Corrosion Rod Placement.
-
115
-
Ut4CLASSIFIFD O R N L - L R - D W G 49168
SCH EDIJL E -.
.... Older o f Test ond Identification
No.
1 2 3 4 5 6 7 8
9
IO
11
12 13 14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31
Corrosion
.
Materiol
“L”
M21-Md8:1 M21-M48:2 M21448:3 M21-M48:4 C9-CI5:I c9-c15:2 c9-c15:3 c9.c15:4 E3.E6: I E3-E6:2 E3-E63 E3-E6:4 E3-E6:5 E3-E6:6 E3-E47 E6 LI-L41 Ll-L4:2 LI-L4:3 Ll-L4:4 LI-L4:5 L3.L4 LI-L4:6 L5~L9:I L5-L9:2 L5-L9:3 LS-L9:4 L5-L9:5 1_5-L9:6 L5-L9:7 L5-L9:8
‘Example: M21-48refers to runs when \ p e c i m e n wos e x p r e d ; is, fow rpecirne,>s rested siinultoneously during the “M” runs.
.
__
N~,.
nickel rod
“L” nickel
rod
‘ I nickel ” rod
“L” nickel rod INOR-2 rod “L” nickel rod ”L” nickel rod
H ~ t c l l o y“B” rod Inco-41 weld w i r e liiconel tube
M o d rod
RONi-IOCa rod ” L ” nickel rod
90Ni-ICCo rod
OFHC Cu rod Platinum
INOR-8 rod Au-plated “L” NI rod Inco-61 w e l d w i r e Inco-700 rod
Cobonic
Inco-61 weld w i r e “ L ” nickel rod “D” nickel sheet INOR-8 rod “L” nickel rod
Wvrpolloy rod
tiostelloy “ X ” p,pc
Hostelloy “W” sheet N i m o n i c “80” pipe
Hymu “80” rod
(:1)
refers t o lucnl g w u p number, h a t
Ffg. 53. Top V i e w oi’ WP Fluorinators Showing Placement Test Specimens, T e s t i n g Order, and Specimen Number.
or
Corrosion
11.6-
k
0 ct-1
P 6
E
...
- 1-17 -
il
I/
118
-
- llg
-
m i l s p e r hour, based on o p e r a t i o n a l f l u o r i n e sparge t i m e .
In b o t h f i g u r e s
d o t t e d and c r o s s hatched bars r e p r e s e n t bulk metal losses and. v i s i b l e i n t e r -
g r a n u l a r a t t a c k , respectivel.y, while s o l i d b a r s i - n d i c a t e a t o t a l loss of t h e specimen occurred a t t h e p o i n t i n d i c a t e d .
S e v e r a l specimens r e g i s t e r e d lower rates of maximum c o r r o s i v e a t t a c k
t h a n t h e L n i c k e l c o n t r o l rods.
INOR-8, alloys,
H a s t e l l o y W,
These specimens included. Xymu 80, INOR-2,
H a s t e l l o y X, Waspalloy, and t h e
I n particular,
mir
80 was
90
wt
$ Ni-10
wt
$ Co
s u p e r i o r to a l l t e s t specimens i n all runs,
although the specimen r e g i s t e r e d a m a x i m u m bulk loss r a t e of 11 mi.ls/mon-!Ai,
based on m o l t e n - s a l t r e s i d e n c e time, a t t h e v a p o r - s a l t i n t e r f a c e .
> 105 mils/month based specimen, one INCO-61weld
of c o r r o s i o n specimens, i.ndicat-i.ng c o r r o s i o n rates o f on m o l t e n - s a l t t i m e , was found f o r one L nickel-
Total. loss
w i r e specimen, and f o r t h e Has-telloy B, Nimonic 80, Inconel, Monel, copper, and
platinum specimens.
S e l e c t e d pliotomacrographs and photomi.crographs of samples from many
of t h e s e c o r r o s i o n specimens are p r e s e n t e d i n Append-ix A.
I n most cases, t h e
a r e a s of maximum a t t a c k are shown.
D, Discussion of R e s u l t s A wide v a r i a t i . o n i n r e s i s t a n c e t o t h e F l u o r i n a t i o n environment w a s found on. c o r r o s i o n specimens used i n t h e c o m p s t i b i l i t y t e s t i n g d e s c r i b e d .
The
v a r i a t i o n s i n c o r r o s i o n noted were a n t i c i p a - t e d because of t h e widely d.ivergent process c o n d i t i o n s .
Because the VPP has e s s e n t i a l l y been o p e r a t e d for r e a s i -
b i l i t y s t u d i e s , demonstration runsg and runs designed t o recover uranium from a v a i l a b l e f l u o r i d e salt mixtures, -the d e t e r m i n a t i o n of optimum p r o c e s s condit i . o n s r a t h e r t h a n t h e g a t h e r i n g of c o r r o s i o n d . a t a has been t h e p r e v a i l i n g
p h i l o sophy
.
I n many groups of r u n s a v i d e v a r i e t y of scouting m a t e r i a l s w a s used which were i n proximity.
This w a s recognized as b e i n g far from ideal f o r
c o r r o s i o n t e s t i n g , b u t l i t t l e choice was a v a i l a b l e under t h e circumstances.
Xowever, Run Group M-21-48 d i d c o n t a i n o n l y Lhe r e f e r e n c e mater?-al, L a i c k e l ,
- 120
-
and t h e r e s u l t s were almost as d i v e r g e n t as t h e d a t a obtai-ned i n r u n groups where as many as seven d i f f e r e n t materials were p r e s e n t i n the same system, The L n i c k e l r e f e r e n c e spectmen's mean r a t e of c o r r o s i v e a t t a c k w a s similar t o t h a t found on t h e walls of t h e correspond.i.ng p i . l o t plan-t; f l u - o r i -
n a t o r s , although l a r g e d e v i a t i o n s from t h e mean e x i s t e d .
While maximum
c o r r o s i v e a t t a c k occurred i n t h e vapor r e g i o n on t h e Mark I f l u o r i n a t o r and
i n t h e s a l t r e g - o n of t h e Mark T I v e s s e l , i n almost all. c a s e s t h e L n i c k e l
specimens showed maximum a t t a c k a t t h e p o i n t or vapor-salt i n t e r f a c e c o n t a c t . A n o t a b l e e x c e p t i o n w a s specimen
M-21&3:4,
t e s t e d i n t h e Mark 1 f l . u o r i n a t o r ,
which exhibi-ted f a i l u r e i n t h e upper vapor region. f7.iiortd-e dlrriilg t h e M-2l-M-Jc8
The a d d i t i o n of chromium
Run Group may have produced t h e vapor r e g i o n
f a i l u r e through mechanisms proposed i n S e c t i o n I. The i n c r e a s e d a t t a c k on t h e L n i c k e l specimens a t the v a p o r - s a l t
i n t e r f a c e p o s s i b l y r e s u l t e d from salt, a g i t a t i . o n a t t h e c e n t e r of the v e s s e l induced by tlie f l . u o r i n e ant3 n i t r o g e n s p a r g i n g through t h e d r a f t tube.
This
a g i t a t i o n could r e s u l t i n i n c r e a s e d e r o s i o n aiid vibrati.on of t h e specimens w i t h resultaril; l o s s of p r o t e c t i v e
filiiis.
1n a d d i t i o n , t h c l o c a t i o n may have
allowed primary c o n t a c t of t h e specimens w i t h t h e f l u o r i n e sparge b e f o r e the
l a t t e r reaciiei? t h e v e s s z l w a l l s .
However, t h e i n c r e a s e d c o r r o s i o n t o be ex-
pee-Led from t h i s e f f e c t was not noted on t h e A nickel. f l u o r i n e i n l e t kubes,
t h e d r a f t tube w a l l s , o r o t h e r f l u o r i n a t o r i n t e r n a l components d i s c u s s e d i n
S e c t i o n IT.
Tests on INCO-61. we1.d wi.re were intended t o provide d a t a on a n i c k e l -
r i c h a l l o y w i t h a d d i t i o n s n o t r e a d i l y a v a i l a b l e i n commercial. a l l o g s .
Besides
ni-ckel, t h i s m a k e r i a l c o n t a i n s s m a l l amounts o f Al, T i , Fe, Mn, S i , and Cu (Table XTIII).
Sj~ncet h i s material w a s used i n f a b r i c a t i n g t h e f l u o r i n a t o r s ,
t h e s e t e s t s provided a n indri.cation o f weld metal. behavior, although t h e weld
m e t a l a f t e r d e p o s i t i o n would have a c a s t stxuclui-e compared t o t h e wrought s t r u c t u r e of t h e weld wire.
IT"^
INCO-61specimens
showed g e n e r a ~ yana1ogou.s
b u l k metal. 1.0~s behavior when compared to t h e L n i c k e l specitileiis, i n t e r g r a n u l a r a t t a c k was foimd i.n t h e
rmco-61
speciuiens
However, no
-
121
-
The behavior of t h e gold-plated L n i c k e l c o r r o s i o n specimens i n d i c a t e d
t h a t no p r o t e c t i o n was provided by Lhe p l a t i n g .
Comparison wi-Lh L n i c k e l spec-i-
6 i n Fig. 55 shows comparable l o s s e s . On t h e b a s i s of s i n g l e exposures o f the 90% Ni-lO$
men number L-1-L-4:
Co and
80$ Ni-20$
specimens, cobalt; a d d i t i o n s seemed Lo improve t h e r e s i s t a n c e of' commercial
Co
n i c k e l t o t h e f l u o r i n a t i o n environment w i t h t h e one e x c e p t i o n of t h e high vapor-
s a l t i n t e r f a c e a t t a c k found i n t h e 80% Ni-20$ containing
45$ Co, w a s
Co specimen.
The cobanic a l l o y ,
t e s t e d o n l y in t h e f l u o r i n a t i o n vapor phase and showed
g r e a t e r l o s s e s when compared w i t h L n i c k e l .
T h m , f u r t h e r invest.fgation O C
n i c k e l - b a s e a l l o y s w i t h less t h a n 20% Co seems warranted.
Because '&e most
c o r r o s i o n - r e s i s t a n t Ni-Co all.oys a r e experimental, t h e i n v e s t i g a t i o n should
u l t i m a t e l y inc1ud.e t h e d e t e r m i n a t i o n of mechanical and p h y s i c a l p r o p e r t i e s and fabricability
.
Tie n i c k e l - r i c h copper specimen, Monel., provided. poor r e s i s t a n c e t o
t h e f l u o r i n a t i - o n environment d.uri.ng a s i n g l e t e s t run.
The specimen r a i l e d
completely a t t h e v a p o r - s a l t i n t e r f a c e .
'The D n i c k e l , c o n t a i n i n g about 5% Mn, and developed f o r improved r e s i s t a n c e t o s u l f u r a t t a c k i n o x i d i z i n g atmospheres a t e l e v a t e d temperatures, p r e s e n t e d somewhat h i g h e r l o s s r a t e s t h a n t h e L n i c k e l specimen simultaneously exposed,
"tie D n i c k e l specimen p r e s e n t e d a d i f f e r e n t geometry t o t h e corrodents,
s h e e t vs rod, b u t t h a t d i f f e r e n c e i s no-t b e l i e v e d t o have been s i g n i f i c a n t i n prod1icin.g -the higher r a t e s of a t t a c k .
A s expected, t h e Nimonic 80 a l l o y , c o n t a i n i n g 20$ Cn. and approx
2.5% T i , e x h i b i t e d s u b s t a n t i a l l y g r e a t e r b u l k l o s s e s t h a n t h e corresponding L n i c k e l specimen.
ReTerence to ,Table -XVI shows t h a t chromium and.titanium.
can form h i g h l y v o l a t i l e f l u o r i d e s at t h e i r h i g h e r valence s t a t e s .
A hrigh- temperature , o x i d i z a t ion- r e s istaiit, n i c k e l - chromium- i r o n a l l o y ,
Inconel, has been mentioned as b e i n g u s e f i l i n c o n t a c t w i t h f u s e d f l u o r i d e s a l t s . &.ring t h e s i n g l e t e s t iri t h e f l u o r i n a t i o n environment, t h e specimen completely f a i l e d a t -the v a p o r - s a l t i n t e r f a c e , and also e x h i b i t e d a r a t h e r high vapor-phase
attack
-
122
-
The Ni-Co-Cr a l l o y s , Waspalloy and I N C O TOO, d.?ffered s i g n i f i c a n t l y
i n attack.
Sarnp1.e~of INCO TOO were a v a i l a b l e only- for a s a l t - p h a s e t e s t and i n t h i s regl.on had a bulk l o s s rate
(L-l-L-4:4)
>
100 mils/month which
coiisi d e r s b l y exceeded. t h e L n i c k e l specimen exposed simultaneously.
The
Waspalloy speci-men showed a r a t e of a t t a c k s l i g h t l y Less t h a n t h a t of a corresponding T, ni.ckel specimen,
Fur.ther i n v e s t i g a t i o n o f Waspalloy seems war-
rat?l;ed, although ii should be remembered t h a t t h e a U o y ages a t 750째C, a temperature only s l i - g h t l y higher than t h e f l u o r i n a t o r o p e r a t i n g range.
Thus,
temperature excursions, which may be encountered i n extended o p e r a t i o n s , might d r a s t i c a l l y reduce Lhe d u c t i l i t y of t h e material-,
The H J T ~ ~ ~ specimen, -~O Ni-Fe-Mo,
presented. t h e b e s t resis'cance t o
c o r r o s i o n o f a.ny o f t h e speclimens t e s t e d i n c l u d i n g t h e L n i c k e l r e f e r e n c e
material.
This a l l o y i s commercia1.l.y avai.lab1.e and s i x miniature f l u o r i n a t o r s
have been f a b r i c a t e d f o r compa-Libility t e s t i n g w i t h N a F - Z r F
4 and
LiF-NaF-Zi-F,~,~
s a l t mixtures by t h e Volat,i.li.ty S t u d i e s Group of Chemical Development S e c t i o n A. The e s s e n t i a l l y Ni-Mo-Fe alloys, K a s t e l l o y B and W, a g a i n showed t h e
v a r i a n t behavior c h a r a c t e r i s t i - c of t h i s -test s e r i e s .
The Hastelloy-B specimen.
bad extrerneljr poor r e s i s t a n c e arid. Tailed. completely 22 i n . above t h e s t a t i c sal.1;
level.
Since t h e specimen w a s exposed d u r i n g tile Mark I o p e r a t i o n , t h e h i g h
vapor-phase a t t a c k evidenced. a t t h a t time may w e l l have inT1uenced~t h e behavior
of H a s t e l l o y B.
The Hastelloy-W speci.men, i n place during a re1a.tiveLy low
c o r r o s i o n r u n s e r i e s , L-$-L-g,
e x h i b i t e d s l i - g h t l y lower l o s s e s when compared
wi.t'n t h e L n i c k e l c o n t r o l specimen.
This vas becaiAse: of t h e i n t e r g r a n u l a r
a t t a c k excperienced by t h e T, n i c k e l .
One of t h e e a r l y manj.festations o f t h e Ni-Mo alloy s e r i e s developed
a t ORNL f o r fused.-fluoride s a l t use w a s I N O R 2.
The s i n g l e INOR-2 speci-men
t e s t e d had c o r r o s i o n r e s i s t a n c e s u p e r i o r t o e i k h e r of t h e L n i c k e l specimens
exposed c o n c u r r e n t l y .
Lack o f a d d i t i o n a l material has liiiidered f u r t h e r corrosi.on
testj-ng. The Ni-Mo-Cr-Fe
al-loys t e s t e d , INOH 8 and Has.Lrlloy X, had c o r r o s i o n
r e s l s t a n c e compaxhable t o t h a t of t h e L n i c k e l r o d s exposed simultsneo-i1.sI.y.
As
described i n S e c t i o n 111, m i n i a t u r e f l . u o r i n a t o r s were f a b r i c a t e d from INOR 8 a.n.t?. t e s t e d .
These tests d i d no-L i n d i c a t e any s u p e r i o r j - t y over commercial nickel..
-
123
w a s exposed to t h e Mark I1
A s i n g l e copper specimen, L-*L-6:'7, environment.
The speci.men f a i l e d . conpletely i.n t h e middle vapor reg?'.on.
Cu-
p r i c f l u o r i d e was considered most l i k e l y Lo form under the excess f l u o r i n e conditions present during t e s t i n g .
Although C u F 2 h.a:; a meltring p o i n t of
~ p p r o x950째C and should have a f f o r d e d p r o t e e t i o n to the p a r e n t me-tal, copper's l a c k of r e s i s t a n c e t o oxidizing eiiv-ironinents a-t; _Tl.uorilzation temperatures may
exp1ai.n i.ts poor performance The platinrim specimen was completely severed by c o r r o s i v e a t t a c k 1 jl
t h e iupper vapor r e g i o n .
This wire was itrtended t o serve
'out, never c a r r i e d c u r r e n t .
8.8
an elec.t;ro(le probe,
The reason f o r t h e ex-trme yate o f a.ttack: on
platinum s e e m t o be t h e .instabi.li.tyof PtF
G
cotiipse at 280째C (Table XVI).
which has been r e p o r t e d t o de-
Whereas t h e L n i eke1 specj.mens exhibi'wd i.ntergra.iiu1a.r a.t-t;a.ck, v e r y
few i n s t a n c e s of t h i s mode of attack were noted on t h e other specrimens tes-Led.
S e c t i o n s I and TI d e s c r i b e tile rnechanisrii.:; presimably operatj.ng on 1, nickel. E.
Future S-t;uc'l.ies
The corrosion r a t e s for a l l scoutiiit: inateri.al.s tested. t o d a t e appeal-
-to be excessive f o r long- tim? use.
T1ierefore, additional. ~l.uori.na-i;.iunscouti.ng
c o r r o s i o n tests of tbe type descri-bed have been planned.
Pa:rt,.iLcul-arr enph.a.:;:is
ha:; been placed. on b i n a r y nickel-rich alloys c o n t a i n i n g van-i.ou s amounts of
Fe, Co, Mro, Mg, and 141. The l a t t e r two elemen-Ls have n o t been corisiilered i n
previous experiments because o f t h e f a b r i c a t i o n , age hardt?r;iing, o r o t h e r
d i f f i c u l t i e s characterfstic when alloyed i n a p p r e c i a b l e cpsaatities w i t h nickel.
Gnly a few nickel-base commercial al.l.oys c o n t a i n i n g magnesium a-!d. aluminum i n conhination w i t h other i n g r e d t e n t s have been avai.lable and s L r i l L l'ebrer have
been commercial as Ni-Mg o r N i - A 1 b i n a r i e s
Yet, aluiiiinum and rnagmsium a:r*e
known t o f o r m f l u o r i d e s a t t h e i r h i g h e s t valence s'iates, which have highel-
melting p o i n t s t h a n NiF
2' To d a t e , Fe, Co, Mn, Mg, and Al i n t h e q u a n t i t i e s slnom i.n Table XIX
have been added t o i n d u c t i o n melts of n i c k e l and cast; i n t o 1 - i n . rounds.
After
s u i t a b l e homogenization t r e a t m e n t s of t h e cast?ngs, t h e rouiids were cold swaged
- l2k
Table XlX.
-
Proposed Noncommercial Binary A l l o y s f o r Corrosion Tcs1,j ng in the Vo1at.i 1.Lty Process Fluorinatir,n Environment.
A l l o y Group NiFe
95
5
90
10
80 NiCo
95
5
90
10
NiMn
98
NiMg
99.95 93.9 99
2 0.05
0.1 1. .0
99 97
NiAl.
I__._
20
............ ....................
..
1.
3 ~
-
.
-
.-
....l.l____lll--sl
I___
-
1.25 -
rods and h.yd.rogzn annealed.
.to 1/4-in.-diam
The rods have been c u t t o proper
l e n g t h s , e l i d f i t t i n g s a t t a c h e d by s e a l welding, ad. are p r e s e n - t L y - a w a i t i n g
placement i n a VPP f l u . o r l n a t o r .
In. a d d i t i o n , hi-gh-puri t y va.cuum-iiiclted n i c k . e l has been c)btaFnEtd and
f a b r i c a t e d i.nto .the proper t e s t speci.iiien shape f o r examjining +,he r e s i s t a n c e
of t h a t , ma-terial t o the f l u o r i n a t i o n environment
V.
e
Argonne N a t i o n a l Laboratory F l u o r i n a t i o n Corrosion S t u d i e--s The Chemical Engineering D i v i s i o n of Argosne National Labora-tory has
k[ A p o r t i o n
clone extensive work on nonaqiieous p r o c e s s i n g o f i r r a d i a t e d fuels.
of their e f f o r - t has been on s t u d i e s o f f1uorid.e v o l a t i l i - L y p r o c e s s e s .
A re-
view of one of t h e Argonne N a t i o n a l Laboratory s t u d i e s on materials compat,Ib i l i t y i n u simulated fluorrirmtion environment i s i n c l u d e d here f o r compari.son w i t h ORHL data. A.
T e s t Method
Fliio:r*ination c o r r o s i o n t e s t s were conducted. on cou.pons ot' L nickel., ( r e f h8) D n i c k e l , B a s t e l l o y R, and INOR 1. The coupons were contai-ned i n a
vessel. which had a n i n n e r l i n e r and i n t e r n a l piping f a b r i c a t e d from A nickel. The coupons, each 8 i n . long x 0.5 i n . wide x 0.032 i n . t h i c k , were w i r e d . t o -
gether t o form a simulated d r a f t tube of square cross s e c t i o n . of .the wire was n o t i n d i c a t e d .
The corqiosi-tion
The nomiinal coniposition of t h e f i r s t t h r e e
materials l i . s t e d above has been given i n Table X I X .
Another of i2ie e a r l y ex-
p e r i m e n t a l a l l o y s , INOR 1, s i x d i e d i n the development of INOR 8, had. a r?.orninal composition of
0.01 wt
$ I
c.
78 TJ"L 76
Mi--20 w t
$ Mo-0.5
wt
$ &-0.5
wt
$
Si-0.25
+it $ Fe-
The s i m u l a t e d . d r a f t tube w a s p a r t i a l l y immersed i n a b a t h ot' equi-
molar NaF-ZrF4 so t h a t t h e v a p o r - s a l t i n t e r r a c e w a s approx 3 i n . up Prom the 1-
t ' R . C. Vogel and R. K. Steunenberg, "Fluoride V o l a k i l i t y P r o c e s s e s f o r Low Alloy F i ~ e l s'', Symposi.iim on t h e R,eprocessing of I r r a d i a t e d F u e l s Held a t Brussels, Relgium, May 20-25, 1957, Book 2, S e s s i o n IV, pp.4 9&553, rID-'[5~l~..
48L. Hay-:;,13.
3reyne, and W. S e e f e l d t , "Comparative T e s t s of 1, Nickel, D Nickel, H a s t e l l o y B, arid IMOK 1," Chemical Engineering Uivlisiort Sunimary. ~ p o r t ,~ i i ~ ~ y u, g u s t ,September, 1958, A~~-5924-, pp. Q-52
The b a t h was h e l d a t 600°C while f l u o r i n e o r helium
bottom of Lli? coupons.
w a s iiitroduced c e n t r a l l y beneath t h e melt s u r f a c e s a t r a t e s of approx 0 . 1 standard liters/min.
During i h i s t e s t series, t h e f l u o r i d e s a l t s were kept
molten Tor a t o t a l of 216: hr and f o r 63 hr of t h a t time Pluorine w a s spa-rged The IJ-rocess gases were i n t r o d u c e d on a c y c l i c b a s i s , i . e . ,
i n i o t h e ’oath.
f o r 7 hr/day f l u o r i n e was spargpd while helium w a s sparged Tor the remaining
17
h r of a day.
57 and 58 i l l u s t r a t e t h e c o r r o s i o n l o s s e s obtairipd d u r j n g t h i s t e s t s e r i e s . F i g u r e 57 i s a b a r graph where bulk metal losses as Figures
determined by micrometer measurement an& a d d i t i o n a l l o s s e s as deterrnined by
metallographic examination have been convertpd to m j Is/month o r molten- salt, residence t i n e . sparge t i m e .
Figure
56
i s a similar graph p l o t t e d as mils/’nouj- of f l u o r i n e
Rates have been p l o t t e d i n s t e a d of o r i g i n a l . d a t a f o r comparison
w i t h ORNL d a t a .
B.
Discussion o f R e s u l t s
1 . -
The corrosi~onl o s s e s i n t h i s Argonne National L a b o r a t x r y t e s t s e r i e s
suggest t h a t INOR 1 w a s t h e most r e s i s t a n t t o t h e t e s t environment, while t h e
1, n i c k e l r e f e r e n c e material f a r e d poor1.y.
Tnis i s a t t i - i b u t e d t o the e x t e n s i v e
intergran.ul.ar a t t a c k on the L a t t e r material., p a r t i c u l . a r l y a t t h e v a p o r - s a l t interface. Comparison of t h e Argonrie Nati-onal Laboratory c o r r o s i o n r e s u l t s w i t h t h o s e o b t a i n e d a t ORNL i s d i f f i c u l t because of d i f f e r e n c e s i n t e s t procedures which i n c l u d e f l u o r i n e flow r a t e s , specimen l o c a t i o n and. geometry, and s a l t compositions
However, Argo-me‘ s r e s u l t s on L ni.ckel f i t t h e c o r r o s i o n
l i m i t s determined f o r t h e ORNT, s c o u t i n g c o r r o s i o n r e f e r e n c e specimeiis i n t h e
s a l t and at the s a l t - v a p o r i n - t e r f a c e s .
Vapor-phase specimens are n o t r e a d i l y
comparabI.e, si.nce Argon-ne specimens were o n l y 3 t o
surface
.
4 ill.
above t h e sa1.t
The Argonfie N a t j o n a l Laboratory H a s t e l l o y B and t h e D n i c k e l specimens
g e n e r a l l y had l e s s a t t a c k t h a n s c o u t i n g specimens a t ORNL.
The d.ifferences may
be a t t r i - b u t e d t o more severe opera+,:ing c o n d i t i o n s i n t h e ORNL p i l o t p l a n t fluorinatmr.
Si.nce no I N O R - 1 specimen had been t e s t e d at ORNL, no comparisons
could be derived.
UNCLASSIF iED
QRNL-LR-OWG
49!69
L NICKEL
C bICKEL
!
HASTELLOY 3
i
INOR 1
I
1
1 j
- METAL
LEGEND V-VAPOR I - VAPOR SALT INTERFACE S - SALT LOSS/MICROMETER MEASUREMENT
- !NTERGRAkULAR ATTACK/METALLOGRAPHIC E X A M
- S UBSU R FAC E V 3 I DS / M E YA iL O 5 RAP H IC
E X A hl
MAXIMUM LOSS SHOWN IN EACH PHASE
3
15
26
25
30
65
mils/rno
( B A S E D O N SALT RESIDENCE T I M E )
Pig. 57. Summczry of Corrosion on C0;lporis Exposed t o a F l u x i n a t i o n Environment by %he Argorne ITst%cnsl La3oratory.
70
>--cn J W Y
-.I
2 z
......
-___ .........
-
-
-
-
128
__ ........
z
0 W
0
w J
W
t-
z
E
111
W
LT 3
cn
a
0 Q
LL W
t-
w
5
5 Q
cn
[LE
2
a X W
2 I n
u
Q J
0
0 J U I--
2
W
\
..J
0
Q
t-
K
a
3
..J
a
W
rT ,...
(3
a
cn z a
\
Y 0
E k-
Iy
0
w kw
5
I
(*
..J
l
I cn
001- c> -
a n
l
'ZaQ >>cn
I
> - W .J
U k-I
I
W z z
? 0
0
"!
L
0
0
-
129
-
Close cooperation has been maintained with t h e hrgonne National. Laboratory on t h e s e l e c t i o n and. t e s t i n g of' candi.date m a t e r i a l s of c o n s t r u c t i o n f o r use i n t h e f l u o r i . d e v o l a t i l i t y process.
I n addition t o materials research
as a means of c o n t a i n i n g t h e f l u o r i n a t i o n environment, Aryonne N a t i . o n a l Laboratory has s.uggested three o t h e r approaches.
These have been the use of
(1) cold wall f l u o r i n a t i o n vessel, ( 2 ) a spray tower f l u o r i n a t i o n , and
(3) 1.ower melting s a l t s .
"c9
JFurther work on t h e s e approaches has been covered
i n t h e Argorine N a t i o n a l LaboraLory Chemical Engineering Uivf s i o n Surmiary Reports.
Vi.
Supplementary V o l a t i l i t y P i l o t P l a n t Equipment The o p e r a t i o n of t h e VPP n e c e s s a r i l y i-ncluded the i i s e of a nuljlber of
au-uiliary components such as -traps f o r r a d i o a c t i v e prodiic-Ls, absorbers, valves, f i t k i n g s , f l u o r i n e disposal. systems, and p i p i n g .
E a c h oâ&#x201A;Ź t h e s e are si.ib<ject t o
various corrosj-ve c o n d i t i o n s i n c l u d i n g fl.uorine, uranri.ii.m h e x a f l u o r i d e , fused fluoride salts, e t c .
Thu.s,
successful o p e r a t i o n of' t h e v o l a t i l i - t y process
r e q u i r e s t h a t m a t e r i a l s be s e l e c t e d a p p r o p r i a t e for t h e p a r - t i e u l a r condit-ions
oi' s e m i - c e .
Construction of t h e p r e s e n t system w a s p r e d i c a t e d on tlie knowledge
a v a i l a b l e a t t h e time and as operatirig experience has been gained t h e s e p a r t s
have been examined t o v e r i â&#x201A;Ź y the o r i g i n a l assumptions.
I n most c a s e s the metal
s e l e c t e d appears t o give s a t i s f a c t o r y servi.ce and f a i l u r e a n a l y s e s have sug-
gested a l t e r n a t e metals i n t h e case of t h o s e which proved. unsuitab1.e.
The
d e t a i l s of t h e f i n d i n g s o f t h i s i n v e s t i g a t i o n a r e p r e s e n t e d i n Appendix 3 .
The a u t h o r s wish t o ac!aiowl.edge t h e a s s i s t a n c e gi.ven by t h e Metallography S e c t i o n of t h e Metallurgy Division, by personnel of the Spectrochemical. Group and the S p e c i a l Analyses Laboratory of tlie AnaLy-tical Chemistry Division, and
by t h e Graphic A r t s and Pnotography Departments, A p o r t i o n of t h e c o r r o s i o n e v a l u a t i o n s repori,ed i n t h i . s docunient and t h e accompanying i l l u s - l x a t i o n s a r e t h e work of t h e Corrosion Research DivFsion,
SatteI-le Memor i a1 I n s t iLute, and t be i r cont r i.b-iiti o n de s e r v e s spe c ia1 me ut i o n
here.
't9
A. Goldman, T r i p Report, ANL, t o W. D. Amly, June 12,
1958.
-
130
-
Thanks are due t o t h e many personnel of t h e Chemical Technology D i v i s i o n working on i h e ORNL F l u o r i d e Vol a t i l i ty Process who a i d e d i n g a t h e r l n g p r o c e s s
daia or Ti? reviewing t h i s r e p o r t .
S p e c i a l t n a n k s a r e due S. H. DeVan, X. E . doffrnaa, and
I).
A. Douglas, Jr.,
for t h e i r const,ructive a p p r a i s a l of p o r t i o n s o f t h i s r e p o r t and t o the
Meiallur~yDivi s i o n Iteports O f f i c e f o r t h e i r p a t i e n t iyping and c a r e f u l p r e p a r a t i o n of t h e material. f o r reproduction. BIBLlOGWHY
G. I. Cathers and R. E . Leuze, "A VolatT-lization Process for Uranium Recovery, ' I P r e p r i n t 2'78, Paper p r e s e n t e d a t Nuclear Engineering and Science Congress, Cleveland, Ohio, Decembei- I.?-l5, 1955; a l s o p r i n t e d i n "Selected Papers, I ' Reactor O p e r a t i o n a l Problems, 2, Pergarnon Press, T,ondon, 195.1.
G. I. Cathers, "Fluoride V o l a t i l i t y P r o c e s s f o r :iigh-"lll-oy Fuels, Symposium on t h e_._ lieprocessing of I r r a d i a t ~ dFuels, Held a i B i u s s e l s , I_^.-_Belgium, TSD-753h, Book 2, pp. 560-5'13, May 20-25, l 9 5 ' j .
I _
G. I. Cat,'ners, M. R . Bennett, and R. I,. J o l l e y , 'Yhe Fused S a l t F l u o r i d e ~9 V5)'o l a t i l i t y Process f o r Recovering Uranium, om~-2661 (Apr i 1,
_ I
'I
Fig. 59A. Cross Section of Interface Region Sample iâ&#x20AC;&#x2122;rom I, Nickel Corrosion Specimen ( R i m s L - F L - 9 : 3 ) . I n t e r i o r circumference of ivliite circle indicates original. size. As-polished. 1OX.
Fig. 60A. Cross Section of S a l t Region Sample from Gold P l a t e d T, Nickel Corrosion Specimen (Runs L-1-L-4: 2). T n t e ~ i o rC J rcimference of : d â&#x20AC;&#x2122; n i t e e I r c l e indicates o r i g i n 8 l size, .b-polished. 15X. Unc Las a i f i e d
Fig. 6053. Portion of Fig. 60A. Typical Surface ana Microstructure. Intergranular attack Etchant : mo3-Hpo4 ,. 200x. a
- 135
-
Fig. ~ I A .Cross Secti.on of I n t e r f a c e Region Sample from IiXCQ-61 Weld Wire Corrosion Specimen (Runs L-?3-L-4). I n t e r i o r circumference of white circle indicates o r i g i n a l size. As-polished. 15X.
~ i g .G ~ B . P o r t i o n 02 Etchant: Concentrated HNQ
Gu. Typical 2OOX. 3'
Surface and Microstructure.
- 136 -
Flg. 62A. Cross Section of Interface Region Sixaple from INOR-2 Corrosion Specirnen ( h i s C - P C - 1 5 : 1). T n t e r i o r circumference OJ? white c i r c l e indicates origf-nal s i z e 85~.
P o r t i o n of Fig. . & ' 6 Chrormium regia. 20OX.
Fig. 623.
Etchant:
Typical. Sul-race and Microst-ructure.
-
1
137 -
Unclassified
W
Fig. 63. Section of Vapor Region Sample from Hastelloy B Corrosion Specimen (Runs C-9-C-15: 4) Showing Typical Surface and Microstructure. Etchant: Chromium regia. 200X.
- 138
-
U'
a
0
.e
Fig. 64. S e c t i o n of Vapor Region Sample from T n c o m l Corrosion Specimen (Runs E - F E - 6 : 2 ) Showing Typical Surface and Microstmcture. Etchan?.: Modified
aqua regia.
200X.
- I39 -
Fig. 65. Section of Vapor Region Sample f r o m M o m 1 Corrosion Specimen (Fkms E-3-4-6: 3) Showing Typical S u r f a c e and Pillcrostructure Etchan-t: HC H 0 :RNO :HCI. 200X. 2 3 2 3 I
-
140 -
Fig. 66. Section of' Vapor Region S q l e from OFHC Copper Corrosion Specimen (Kuns 13-3-13-6: 7) ShowLrag Typical Surface and Microstructure. Etchant: rn40K: %O*. 200x.
-
141 -
67A. Cross Section of Interface Region Sample from 80 Ni-20 Co Specimen (mas E-+E-& 4). Interior circumference of white c i r c l e indleates o r i g t n a l s i z e . Combination of grain s i z e ma etchant presents a relief appearance because of l i g h t . Etchant;: HNO :rgS04. l5X. Pig.
CQPrOSiQIl
3 L .
Pig. 67B. PortZon of' Fig. 6 l A . Etchant: Concentrated fQl0 2OOX. 3"
Typical Surface and Microstructure.
-
142
-
Cross Section from Interface Xegion Samp1.e f r o m 90 Hi-1.0 Co Fig. 68A. Corrosion Specimen ( ~ u n sE-~-E-G;: 6 ) . I n t e r i o r circumference of white c i r c l e i n a i c a k s o r i g i n a l s i z e . E - t c b u t : HNO : H SO
3
2
4’
i ,
Fig. 6 8 ~ . Pol*tion of Fig. 68A. E t c ’ l w t : DFlute EWQ 200X.
3‘
Typical Surface
ana Microstructure.
-
143 -
L
Fig. 69. Longitudinal Cross Section of Vapor Reglon Sample from Plati.num Corroslan Specimen (Run E-6) Showing Typical Surface and Micmstmcture. Cathodic vacuum etch. 2QOX.
.. $'%e.(On.
Cross Szctioii of Interface Eegion Sample Crofii D NickeJ. Coi-rnsion Specimen (%ins L-pL-3: 1). In-Lerior of' white liner; indi.cates o r i g i n a l . si.:ze. As-polished, LOX. .
Fie. (OH. P o r t i o n oP F i g . 70A. ]Stchant: KCN-(NII ) s o POOX.
4223'
Typical Sixinace an? M i c r o s t r u c t u r e .
-
1145 -
F i g . 71.R. Cross Section o f S a l t Region S a q l e Prom INCO-7OO Corrosion Specimen (2luos L-1-1,-4: 11). I n t e r i o r c i r c d e r e n c e of white c <rcle indicater; origin?l. specimen s i z e . As-polishecl. 5X.
Fig. 71B. P o r t i o n of Fig.
Cathodic vac",uum etch.
2OOX.
7M.
Typical Surface and Microstructure.
- 146 -
F i g . '72. Cross Section of Vapor Region Sample f m m Cobnnic Corroslsn Specimen (~unsL-I*-Z-lt: 5). I n t e r t a r circumference of w h i be c i r c l e indicates original size Etchant,: Concentrated HNO 1OOX. I
3'
Fig. 7318. Portion of Fig. 7%. T y p i c a l Mcrostnrcture and Surface Showing 1ntergrmul.ar a t t a c k " Etehant: Chromium regia. 2WX.
- 148 -
F i g - 7)+A. Cross SPction of I n t e r f a c e Regton Sample f r o m Waspalloy Corrosion Specimen (Runs L - F L - 9 : ' ) . Tnterior circLirnfercnce of' w h i t e c i r c l e i nrij c a t z s original si e . As-polished . 5X.
F i g a 74B. P o r t i o n or k ' i g . E t c h a n t : Aqua 1-egia. 2OOX.
('1~.
' i y p ~ c s isumace a n d Microstructure.
- 149 -
Fig. 7>U. P o r t i o n of Fig. ‘(51‘t* Typical. :;urfal-.., Etchant: Chromium r c g i a . 2OOX.
arid Pili c r o s t m c t u r e .
. -..
. . ' *
..
..
.
. .
. I
*.
.
I jpLcal
r,
1 .
<
.,* .
c
'
I-
-
Suri'6i.e and Mirrostruc'cure.
F i g . 77A. Cross S e c t 3 . m of Salt Region Sample from NLmon1.c 80 Corrosion Specfmen (RUES L-FL-y:’-(). I n t e r i o r of white l i n e s indicate:; o r i g i n a l thickness. As-polished, XOX.
*
.. . .._
Fig. 77B. P o r t l o n of Fig;. ‘77P,, E.tchaazt: Aqua r e g i a . 21oOX,
Typical Surface and Mfcrostmcture.
I
$? i
ri
a:
k
0
r?
,
k
u? 0
V
4
-r
Q
APPENDIX U
c
Suppk m e n t a r y Volat i 1.i~ t y P i l o t P l a n t E qu.ipme n-L S e c t i o n s I a n d ii have descri-bed r e a c t i o n s t o t h e p r o c e s s envi.ronment of VPP 1, n i c k e l f l u o r i n a t i o n v e s s e l s
e
Other i.niportant component:; u.sed i n the
f l u o r i n a t i o n c y c l e o f -tile f l u o r l d e v o l a t i l i - t y p r o c e s s have been examined Torr cGrrosi.on r e s i s t a n c e to t h e i r l o c a l environments
.
The components iricl.ide a
CP.P t r a p , a waste-salt l i n e , the a b s o r b e r vessels, v a l v e s and f i t t i - n g s , coin-
p o n e a t s i n t h e f l u o r i n e disrjcjsal sys-km, and s e l e c t e d sectY.on:; from t h e
Figure 79 il.1.iistrates the reI.at,ive p o s i t i o n s of t h e s e
p-ixxess gss l i n e s .
components i.n t h e p i l o t pla-n-'i.
Cormlexible Radioactive Products T r a u To d a t e , two C.W t r a p s have been ul,Tlized i n t h e VPP.
l'he
tl-q
exan1Tned
was t h e second used. and was i n service d u r i n g .the Mark 11 f l u o r i n a t o r ' s l i f e time,
RS
ha:; been d e s c r i b e d p r e v l o u s l j r
f a b r i c a t e d ~from a
5-h.
iii
Secti.on Tm. This vessel was
nched.-kC) Incoriel pipe,
NaF p e l l e t s t o scn.lb the f l u o r i n a t o r e f f l u e n t c
remove Z r F
I!-
and CrF
5
31 i n . long and it c o n t a i n e d
ea:;.
The trap was dksigmeci. t o
and p r o v i d e s a c e r t a h a-inount of Tadi.oac1;ivt> d.econt;am.i-
nation. Ta11l.e XX su~imarizest h e exposure eondi.ti.ons f o r t h e trap. A complete ckscriptrion of t h e performanee o:P the CRP t r a p has been published. 50,51,52
A f t e r t h e Mark 11 f l u o r i n a t o r was taken. off stream, trepanned s e c t i o n s
were i~emovedfrom the CRP t r a p a i d s e n t t o SPII f o r c o r r o s i o n anal.yses.
Figxre
80
il1iistrates t ~ i es e c t i o n s removec~.
bkcrosI2opic examination of t h e samples at 20X revea1.E.d o - u t l t n i n g of t h e
Tncoiiel g'i-alns and an etched surface wi-Lh i n c r e a s e d attack noted a t Section B-T.
>- i)- C.
L. Winitmarsh, Reprocessing of AF3 Riel, Volat?.l.i.t;y Pilot Plant-.-.9 Runs
~ and E-2, i ~~-59-5-1.O~--~iS-1-~59). r-1
3LC.
L. Whitmarsh, Reprocessimg of APE Fuel, V o l a t i l i t--y -- Pilot P l a n t Runs,
E-3 through E-6, CF-59-3-73 CT)
(L4ugust
26, 1959).
'C. 1,. Whitniamh, Uraninm Xeeovery from S0diu.m Zirconium F1uorid.e Sa1.t; Mixtu>?en, V o l a t i l i t y P-il0-t P l m t Rims, L - l through L-9, CF-59-9-2 (Sep.l;ernlJer 30, 1959)
.
r
m a
n W
3
5
a
a
- 156 -
I L
0 0
z
4
0
0
0
E
0 3
M
A
%
f
L n
0 0
z
3
0 0
E
cu
CI
Fc
-3
0 0
E
4-
1.n
% LA
0
cu
-.
R
f
c\J
Fc
- 158
U NCL ASS1 F I E rj ORNL-LR-DWG 494 71
I
t
3 in.
8.5 in.
\
NaF PEl
ET LEVEL
M-T
26 in.
/â&#x20AC;&#x2122;
9-T
Pig. 80.
,
Locati-on of Specimens Trepa-wed from the Iriconel CRP Trap*
- 159
-
Df.rnensiona1 a n a l y s e s were performed on t h e s e c t i o n s as w e l l as a microscopic exarnj.nati.on.
A surnmary of %he c o r r o s i o n l o s s e s found by- RMI perooiinel i s
p r e s e n t e d i n Table =I.
rn~ixiniimt o t a l l o s s e s t o
Included. 7.n t h e t a b l e i s a column converting the
it
mils p e r hour r a t e based or1 fluorine ex_no:~.retime
at, o p e r a t i n g temperature f o r t h e v e s s e l .
A max:i.niim t o t a l corr.oo.i.on attack
rate oi" 0.1-16rnrils/hr occurred i n t h e I-ower s e c t i o n of t h e -trap which sus-
tai.ne d t h e h i ghe r ope r a t i n g temperat ures *
O p t i c a l microscopic examination of s e c t i o n s removed from t h e t r a p
r e v e a l e d i n t e r g r a n u l a r attack on both tiie i n t e r i - o r and e x t e r i o r s u r f a c e s of
tiie v e s s e l i n t h e l o v e r regions, The upper r e g . o n showed i n t e r g r s r i u l a r a t t a c k
A t y p i c a l c r o s s s e c t i o n of -the i n t e r i o r wall of t h e C W trap i s shorn i n Fig. 81. Comparison of t h e c o r r o s i v e a t t a c k on t h e I n c o n e l CRP trap and t h e Inconel o n l y on t h e vessel's i n t e r i o r w a l l .
bench-scale f l u o r i n a t o r described In Section. 1x1 i n d i c a t e d maxi mim r a t e I.osses Tor t h e t r a p t o be approximately twice t h a t f o r t h e bench-sca,le f l u o r i n a t i o n
vessel.
The most similar areas w i t h respect t o operaking envirormlents were
t h e lower vapor r e g i o n o f t h e f l u o r i n a t o r and -the lower r e g i o n of t h e CIW t r a p .
A t those locations,
s i m i l a r temperatures (app-r.ox 500째C) and.process gases
(F2,UF4) were p r e s e n t .
In add.i.ti.oa., however, sod.ium P l i i o r i d.e p e l l e t s were
i n c o n t a c t with t h e w a l l of t h e CRP trap.
The maxiuium bulk me-La1 losses i n
3: I (Trap:Fl.uorinator) while thF: ma.ximini i n t e r i o r i n t e r g r a n u l a r p e n e t r a t i o n ra-tio w a s > 5: 1. '%"iese d i f f e r e n c e s are
t h e two r e g i o n s were i n a r a t i o of
di.f-i^icirlt t o r e c o n c i l e i n view o f t h e 2:l r a t t o f o r f l u o r i n e c o n t a c t -time a t
e l e v a t e d temperatures f o r t h e t w o v e s s e l s .
No a p p r o p r f a t e reason can be advanced t o explain t h e v a r i a t t o n s c i t e d i n c o r r o s i v e behavior for. t h e C W trap and t h e 1nctc:)nel bench-scale flu.orinakor.
Howevex-, t h e r e s u . l t s p r e s e n t a d . d i t 1o n a l e - v i d e n c e t h a t I n c o m l should he used w i t h c a u t i o n as t h e c o n s t r u c t i o n material for eer2;ai.n f l u o r i d e v o l a t i l i t y p r o c e s s components.
Waste- Salt Line %he rFmova1 of waste f l u o r i d e s a l t from t h e VPP f l u o r i n z t i o n v p s s e l s was
acconlpli shed b y pi-essure t r a n s f e r through a Preeze valve anti waste-salt l i n e
T&le =I. Sutrxnary o f Corrosion Losses on Speclrnens TrepnrAed fron t i l e Inconel CTP Trap
Wall
3:i s-Lance Prom
SpeciTop Flange Weld Den Loca-Lion (in. !
,
T-T M-T
Top
Middle Bottom
B-T
3 8.5 26
Thi cline s s
2 ;
Losses" (mils) Maximum Minimurr. 7
-
24
I n t er g - a m l a r Pene r a t i o$0 (ni1s ) Interior Exterior Surf ace Surface
0
-
9
3 11 11
a
Total
MEX i num Corrosion
Losses (nils)
Maxi m ~ m Corrosio;.! RateC
(mils/br)
1c
O.i
3
-
11
46
0.46
None -
-
Based on 12 nicrcmeter neasurements takeE on each specinen arid s u b t r a c t e d Prom nomirial thickrless of 258 mils.
original
bAs determined by o p t i c a l xiicroscopy. c
,
Based on f l u o r i n e exposare time a t o p e r a t i n g temperature.
1
r
cn 0
- 161 -
Fig. 81”. Typical Microstructure of Sample B-T from t h e Interior Wall of t h e Inconel C’RP Trap Showing Intergranular Attack. E-tchant: Hydrochlori.e- ni t r i c acid . lOOX
.
- 162 i n t o a low-carbon steel waste c o n t a i n e r .
-
P r e s s u r e s oC approx 5 p s i & i n t h e
f l u o r i n a t o r were normall? uscd to s t a r t t h e waste-salt flow.
floT.red through ihe u a s t e l i n e bj sip~nonci'fect (See F i g . 79). r e p o r t e d here was used during tlie VPP L r i m s 1 - 4 and f o r t h e end of R i m M-&. The s u b j e c t w a s t e - s a l t l i n e
WRY
3/8-in.
3.
'irhe
s a l t then
The salt l i n e
siiicle transycr a t
sclied-li0 Tnconel p i p .
The l i n ?
ua; h e l d a t temperatures of 550-835"C f o r approx 22*5 h r and exposed t o â&#x201A;ŹlowLni; molteri salts f o r aboui 2 . 5 h r d u r i n 2 irir _rressbr.e t r a n 4 e i - s 52
It w a s
probable t h a t r e s i d u a l sal.1,s remained i n s t a t i c contac i with t h e i n t e r i o r xiall of t h e p i p i n g f o r a l l o p e r a t i o n s . A f t e r Run
M-64, t m p i p i n g
was rrrncjved from t h e p i 1 o t p l a n t ,
i n n i n e p l a c e s and specimens s e n t t o RMP r o r c o r r o s i o n a n a l y s e s . shows
2
sectioned F i g ~ i r c82
s c l i ~ n i s t i cdrawing of t h e w a s t e l i n t . ana t h e l o c a i i o i i of tile specinTens,
Table XXll l i s t s t h e c o r r o s i o n d a t a ~ s i a b l -shed i a t BMi by micrometer mea:x re-
i l e n t s and m e t a l l o ~ r a p ' nci exaurinations.
Maximum wal i t h i c k n e s s l o s s e s of
2 1 mils were found i n s p e c i ~ ~ IX e ~ which i w a s at, tlie e x i t end of t,he w a s t e - s a l t
line.
Metallographic examination o f tlie specimen7s snowed sli [;ht in'iergranular
a t t a c k oi" l / P - . m i l
p e n e t r a t i o n depth had occurred on t h e i n t e r i o r wall of a31
t h e sample; w i t h t h e e x c e p t i o n of specimen 1X.
i n t h e lat,Ler, a 3.5-mil t i l i c k
c o r r o s i o n product l a y e r vas found on the i n t e j - i o r surl"8C.e oP t h c npecirnen. Figure 8 3 shows t h e c o r r o s i o n prooiict l a y e r and t h e subsurl"al.e s t r u c t u r e .
The product layel, w a s spongy i n c h a r a c t e r and s i m i l a r i n appearance t o s u r f a c e l a y e r s found on s c c t i o n s removed from e s r l y t e s t Jnconel fre?/,e valve; which (5C?--l'6--hm o l ? %) a t 650°C. ( r e f 53)
hat3 been i n c o n t e c t w i t h NaF, ZrF]+, W4
Personnel a-i, 3811 suggested i h a t t h e pi-oduct l a y e r might be the r e s u l t o f s e l e c t i v e l e a c h i n g of chrolnium by t h e fuse4 s a l t .
They i n d i c a t e d t h a t til?
appearance was q u i t e s i m i l a r t o l a y p r s Iound on Jnconel i n corttact w t h hydrogen f l u o r i d e and f u s e d fluoride s a l t ? where chromiuni l e a c h i n g had been pl-oven.
Analyses or" t h e metall ' c spongy d e p o s i t found on s e c t i o n s Penloved from Lie i n c o n e l f r e e z e valve rerereficed above indica1,rtl consi de rable l o s s e s or' cnromium
'jL. R. T r o t t e r a n d H. E. Hoffyan, P r o g r e s s Repori on Vol.at,ility P i l o t P l a n t Corrosion .-___~.-.^. I'roblems t o A p r i l ? l J lq>r(, ORiUL-21!95, pp. 14-11, (Sept. 30,
1956).
n
I
UNCLPISSIFIED ORNL- LR- DWG 56057
TO F R E E Z E VALVE FROM FLUORINATOR
2,.51 1 G/
Y
24 in.
"/B -in.
SCHED 40 PIPE
ROTATE 9 0 d e g
SE
I
I
NOTE: D I M E N S I O N S A R E IN INCHES
ROMAN N U M E R A L S INDICATE L O C A T I O N OF SPECIMENS R E M O V E D FOR C O R R O S I O N A N A L Y S E S
W A S T E -SALT CON TA I N E R
Fig. 32. Schematic Waving oI" Inconel Waste S t l i t Line fron WP Fluorinator. Roman numerals indicate location of specinens removed Prom i i n e f o r corrosion analyses.
XXTI. Corrosion Loss Data ror Waste-Salt JLne
'Yah1.e
Material:
Spec i men
scned-40 Inconel pipe
?/%in.
Distance from Top o f I.Ja s Le-Salt Contai n e r (ill.)
Wall
Thic k m s s
~ossesa ( m i Is )
In&rg:ranular
Penctrailon (Interior Surfacc)b (mils)
I
2
TI1
'I'otal CorrosionC (mj7 s)
6
I1
2 2
8 6
IV
1
>
1.
l+
1
4
L
V
7.1 40.5 39.5
VT
VI:I:
VI11
LX
......... .........
3 3
6
a
......... ..................
1
21
0 .. ..............
5
1
I
0 .......-..-___........-.
21 -I
BE sed on metallographic meas1-1rcmel i t s at i (3. s u b t r a c t 2 d f'rorn nominal original. wa1.L thickness of 91 mils. b No intergran1;Aar a t t a c k vas observed on the o u t e r surrace of the pipe. C
Total. cori=osior, cqua1.s the assumed. o i - i ~ g i n a l-tlii.ckness of 91 m i l s minus
t h e measiired sound ineta.1. remaining.
-
165
-
Uncla s s j.fie d BMI C623
Fig. 83. Microstructure of Sample IK from the Interior Wall of Inconel Waste S u i t Showing Corrosion Product Layer.
solution
â&#x201A;ŹTom t h e a l l o y . 55 The moisture
Absorber Gas-Di.stribi;.t-i.on Ring Fai hre. ....._ lll__l^-
~
The Incoiiel g a s - d i s - t r ~ b u t i o n
r i n g i.n ille 13 r s t ah:;orber i'ai 1 . ~ ~d1u r i n g VTP operai;ions.
The faili;.re was
discovereci a f t e r Run W-32 but i s b e l i e v e d t o have occurred d u r i n g Run
M-47.
A schemai;i.c vi.ew of t k absorber- and t h e gas-d-i c t r i b u t i o n r i n g I s sh.owi in F j g . 64. As showil O i l t h e photographs, F i g . 85-a ami. -b, approx 3 i n . 3 oi' I n c o n e l wzs mel-Led i n R K z r e a roughly 180 dei; lrom t h e junc~Lionoâ&#x201A;Ź -ilie (lis-
t r i . b u t i o n ring and t h e i n l e t p i p e -
T-:ie melted. area w a s about
t h e d i s h 5 b u t i o n r i n g w a s ncar1.y severed by thi.s actTon.
The fused s a l t v i s i b l e fn F i g .
65-b around
5 in.
l o n g and
t h e metal nodules whi.ch were
formed as a result oP m e l t i n g was found by aiial.yscs t o c o n t a i n
4 w t $ Cr
as
CrF,, 10 wt $ N i as NiF2, aiid 3 ~d$ U as UFIL. Process chemicals normal.1.y 3
55F. F. Blankenship, ~ The-Effect o s.-i o n OC Nickel - - - of - S t r o n g O x i d ~..a. ..n..t son C o r r_.__. A l l o y s by -. F1uoY.i r k Melts, C F C O 3 ~ ~ 30, r c ~ 1 . 9 6 0 ) . ..... I-
_ I
- l
"R.
Fluoride P. Mi-lford, ____I_^__.__. E n g i n e e r i n. g Uesi.gn .......... Fea1;ui-es of...._ t..h ._e O R J K -_ r--. P i l o t P l a n t , CF'--5j-JL-l8, pp. F J G .
...._ Vol.ai;ili_ty
~
I _ g
1
THERMOWELLS -.
UNCLASS lFlED ORNL-LR-DWG 49172
/GAS
EXIT
/,GAS INLET
c
DISTRIBUTION R
FAILED REGION IN DISTRIBUTION RING--
T
F i g . 84. Schemat-ic View of WP Inconel Absorber and Gas-Distribution Ring Illustrating Area o r Failure.
- 168 Unc].as 8 if?.e d
Y-2323k
I
, :1
\
Unclassified
Y-23295
F i g . 85. Photographs of F a i l e d Region from the Inconel Gas-DLstxibution R i n g o f Absorber, (a) Top V i e w (b) Hottom V i e w , Showing Molten and Recast Nodules and Adhering S a l t .
p r e s e n t i n this a r e a of t h e absorber were NaF p e l l e t s , F ant1 UF 2 6' Table XXIIL shows the pri.oi- h i s t o y y of the r i n g up to t h e - t i m e of f a i l i n e . Three unusual
p l a n t o p e r a t i n g procedures werz a p a r t of t1ij.s prior h i s t o r y :
"7
(1) substitii-
t i o i i or hyd-rogen f l u o r i d e f o r l o w teniperature f l u o r i n e conditioning, ( 2 ) allowing
fluorine t o e n t e r t h e absorber a t approx 600°C m t h e r than 375°C as speciYieci. i n the standard operati-ng procedures
(the h i g h e r temperature was used t o
iniiiiuiize hy-drogen f l u o r i d e €rom the KaF and t o reduce t h e sodium f l u o s i l i c a t e coritent of t h e NaF), ( 3 ) use of an a c c e l e r a t e d coolirig r a t e a f t e r desorptiion. Orily ( 2 ) is felt t o be p e r t i n e n t toward. ca1xsin.g t h e f a i l u r e d e s c r i b e d .
Metallographic exanination and. cherni-csl analysis of the samples c u t f r o m
t h e f a i l e d pipe, revealed only tha-L the Inconel w a s norrflal i n chemistry and.
microstructure.
The microstructure w a s equivalent t o a s - r e
molten and r e c a s t nodules exhibi.Led a typical cast s t r u c t u r e .
ived stock.
The
The Iriconel g a s - d i s t r i b u ~ ; i o nring appears t o have i a i l e d as t h e r e s u l t
o r i g n i - t i o n with f l u o r i n e .
Igni.tion i s b e l i e v e d to have been Lnri.tiated by an
unlinown f o r e i g n substance, such as di.rt o r grease, introduced while t h e absorber
was open.
The :r"aili.ire porints up the n e c e s s i t y f o r extreme c l e a n l i n e s s when
hand.1.f ng f l u o r i n e .
Inspecti-onof Absorbers
e
Following fl.!iorj.rial;ion Iiun
1,-9, the absorbers
.
were visumlly i n s p e c t e d and t h i c k n e s s measurements t s k e n w i tii a"Vidigage ''
The ultrasonric device was operated by members of the Nondestructive Testing Group of t h e Metalliirgy Division.
R e s u l t s of those examinations are c i t e d i n
Figs. 136 and 8'7. %'ne maximu.m det(i?ctible l o s s e s found iwere Rpprox 30 mj.ls i.n t h e upper r e g i o n s of t h e vessel, a r a t e of approx i-'luori.ne r e s ? dence tiaici..
0.06
mils/lrr., based upon
Based on -Lhese r e s u l t s , it i s believed t h a t t h e v e s s e l s c a n continue t o
be used I n pi.lot plant o p e r a t i o n .
"F. I.J. Miles and W. 1-1. C a r l - , Engineerin:: Evaluation of V o l a t i l i t y P i l o t P l a n t Equipnlent, CF-60-7-55 (September 30, 1560) pp. 95-96.
P
- 1.70 -
Table XXTLi.
1.
Fxposii re Hi:>torj f o r Absorber C o n t b i n i n g Failed I n c o n e l Gas - Dist r i b u t i o n Ri.ng f roni Fyb c o rber FV- 120
Twelve ( 1 2 ) a ~ ~ o r p t i o n - d e s o r - , t i o nruns u s i n g NaF which t y p i c a l l y iric luded:
a.
Absorption a t
UF6 + 3 N a F
6 k 1 5 0 " c ; 2 hr F2 at, 15 staridard lit,ers/min > UF6- 3 N a F
-
at 20 s t a n d a r d l i t e r s / m i n ror 1 . 5 h r
b.
kLrge-zparge w i i h N
c.
J k s o r p t i o n ai, l O O - l + 2 5 " C ;
2
F2 ai UF62.
3.
12-14 hr
- 18
3 NaF
I+
standard liters/min
> UF6 NaF Vessel w a s remove0 f r o i ~ is e r v i c e and l e f i exposed w h i l e t h e remaind-er of t h e sysiem was ua1,er washea, a r i e d , and t r e a t e d w i t h Fp. V e s s e l w a s theri p l a c e d hack i n s e r v i c e . One (1) s p e c i a l run whose purpose w a s p r e p a r a t , i o n of Map from N ~ K F , .
a.
Purge-sparge with It
at 2
-3
s t a n d a r d l i i e r s l m i n Tor 12 hr
-
2 k l P 5 " C i n 7 hr a t 125째C for 5 h r
b.
Preparation of N a F under N NaHF2 + A
NaF
<-
I -
I
a t 3 s t a n d a r d l i t e r s / m i n by
2'1 I F
125-600째C i n a t 600째C f o r
c.
at
x-
- 15
C o n d i t i o n j n g of a b s o r b e r at
9 hr
4 hr
X
635째C w i t h F2
standard liters/min ror 0.5 h r
Fail-ure i s t h o u g h t t o have o c c u r r e d ai, this t i m e .
~~
.
.
FV-120 FlRST ABSORBER Materiol:
UNCLASSIFIED
O R N L - L R - D W G 49j73 GAS mil. E T
- ) in. Inconel, rolled p l a t e - in. Inconel, flat p l a t e
Shells Bottom
GAS EXIT
TiiEHMOWEI i.s
Service Conditions: "-5000 hr -400 hr -310 k g <0.1 in. H,O
NaF contoct
UF,
contact
Pressure Absorption
Wall temperature F, contact
-
5
psig
-
45-150°C 100 hr 100,000 std. liters
-i
Desorption
100-425OC occasional excursion to 6C.O"C F, contact -400 hr ".170,000 std.
Wall temperature
NaF P E L L E T BED LEVEL----
FRONT VIDIGAGE READINGS TAKEN ALONG THIS LINE
liters
Visual Inspection
Dl STRl BUTICIN RINr .- .........
interior
2 -
Covered with an adherent yellow-brown deposit except for the surfaces within 3 in. o f the botfom. No defects visible. No coating or defects visible. A l l bead3 v i s i b l e appeored to be i n good condition.
She1 I Bottom Welds Erterioi
Shell -- Covered w i t h a thin black adherent film, presumably oxide. Dottorn - Covered with a thin block adherent film, presumably oxide. Welds - A l l bends nppeated to be i n good condition. Yidiyoge Inspectian:
-
Distance'
.......
2
L o c u t i o n Remarks
Neck
5
Reducer
She1I She1 I Shell Shsl I Shell She1 I Shell She1I She1I
8
10 12 15
2o
23 25 28
in front
and
Wall Thickness i n Inches
...
I_--.....
Girth-! Weld
(Nondestructive Test Section o p e r o b r s expressed "no confidence" back readings due to hie w a l l deposit onrl operotional difficulties.)
Front
Series
0.226 0.222 0.236 0.223 0.230 0,235 0.240 0.238 0.241 0.242 0.244
Rack
Series'
0.235 0.220 0.224 NA NA NA NA 0.235 0.238 0.240 0.234
....
Bottom
.....................
Sries3
_-___ O. 370 0.374 0.370
.......................
1. In inches, dram bottom of flanae. 2. These readings token 180" from front series. 3. Random readings, +0.002 in. NA: Not Available
Fig. Ab sorbe i-
.
86. R e s u l t s
o€' V i b u e l and Vidigaije I n s p e c t i o n on
VPP F i r s t
-
172
-
FV-121 SECOND ABS3RBEW Material:
GAS INLET
\ in. Inconel, r o l l e d p l a t e
Shells -
-
Bottom
UNCLASSIFIED O R N L - L R - D W G 49174
I-HERMOWkLt-S
GAS EXIT
i n . Inconel, f l a t p l a t e
-r
Service Conditions:
-3000 hr -2.50 hr -200 k g <0.1 in. H,O
N a F contact UF, contact Pressure
L
NoF P E L L E T
I t
- 5 psig
Absorption
Wall temperature
F,
contact
65-15O"C - 4 0 hr -36.000 std.
F R O N T VlDlGAGE R t A O I N G S TAKEN ALONG THIS LINE
liters
Desorption Wall temperature
100--425"C 600째C
occosionol excursion to
F,
-250 hr -90,000
contact
std. l i t e r s
DISTRIBUTION RING
V i s u a l Inspectian Interior Shell
- Covered
with
ail
adherent yellow-browit
deposit
except for the vessel neck and surfaces w i t h i n that noted for
Bottom Welds
6
in.
T h e deposit appeared thinner than
o f t h e battoin.
FV-120.
No defects visible.
- No coating or defects v i s i b l e . - A l l beads v i s i b l e appeared t o
be i n good condition.
Exterior
Shell
-- Covered w i t h a t h i n black adherent film, presu,ilably oxide. Bottom - Covered w i t h a thin black adherent film, presumably oxide.
Welds
-
All
beads appeared t o be i n good condition.
Vidigage Inspection:
-Distance'
2 5
a
10 12 15 Girth 2' Weld
2o
23 25 28
(Nondestructive Test Section operators expressed "no confidence" back readings due to wall deposit and operational d i f f i c u l t i e s . )
....................
Wall Thickness i n Inches
L-ocution Neck Reduc:e; Shell She1 I She1I Shell Shell
Shell She1I Shell Shell
1. 2. 3.
i n front and
....,.
~
~
-
....... ......... ..... ~
Front Series
Back Series?
Bo ttoiii Sari es
0.228 0.222 0.220 0.222 NA NA NA NA 0.228 0.232 0.238
0.232 0.230 0.230 0.230 0.228 0.223 0.226 0.230 0.237 0.240 0.238
0.370 0.374 0.372
In inches, from bottom o f flange. These readings token 180Ofrorn fiont series Random readings,
NA: Not
i0.002.
Available
F ~ E 07. . Results of V i s m l and Vidigage Inspection on VPP Sccond Absorber.
Valves and. F i t-_-tings
_II___.___)
Aside -from sporad.ic leakage a:nd.
S I ) p ~lugL ~mg
of valves c a r r y i n g UFG, valves sncl Y.i. t;i;ings
j.;o
by unideiz-i;.i.fied depooi Z;s
t h e WP performerl s a t i s f a c -
-torri.l,y.57 Mariy screwed f i t - k - i n g s c a r r y i n g n i t r o g e n were back-welded a f t e r
various ammints of p l a n t o p e r a l i o n a l tri.me t o el.i.mi.nate such l e a k a g e , Pl.imri.ne carq-i..ng valves of.'various body iiiateritzls,
IIicoi-.el, s-t:tel, types
316 and 347
i .e
~
, Monel,
ntckel,
s t s i n l e s s steel, b r a s s 7 and copper, were
G-ra7,ed. i n t o the a s s o c i a t e d piping.
At ternperaturea greater t h a n
welded.
01-
I,50째C,
0nl.y n i c k e l and Inconel valves were i n contact With Yl.uOr?.ile under
riijrm.al operatirig condjitionr..
0:m ra:;.l.ure, ol*igi;inal.ly tho11glit to be in a
valve 'out later discovered
to be 1n t h e adjacent, f i . t t i n g s , has been sel-ected for treat;nient here beca.use of tlie mn-Lerials involved and t h e i r reaction -to ser.'ifice c o n d i t i o n s .
.Ti"oI.Lowi.ngRun L-J.I. In tile VPP, leaded, yellow 'orass valve fittings of tile
coiiiposi t,i.on 60-63$ CL~-2
5-3.7$
o t ' h e ~ ? ~ aZn , l . (vendor ' s
Max Fc+O.5$
Pb--O.3$
nxislysis) were rmoved Prow a ni trrogen piirge l.i.ne, p E - 3 1 ~because ~ o f defective
Valve opera-tioil" The i.:nJ..et
side of the valve, a pnckless di.qhragm-sea1 valve with am
Inconel diaphragm, J h r a r i i c k e l skem p o i n t , a a d . Mon?3. body miJ. tr:im,
T,T~:;
placed
i n conjunction with -the Nay absorber outlet p i p i n g which c a r r i e d F, and. I F
Unde-r
gases,
6.
2
1:to:rinal
operat 7.ng conditions, t?-eval.ve wa:; not in contac-t wi-t'ri p r o c e s s
b u t there was cori.iiiiuous xi trogeri coi7tact.
Weti nl.tj-ogen pressixe
T
~
"he valve was sb.u.i only
low S am% there w a s the p o s s I . b i l i t y of process gases
diLCPusing p a s t the valve t o the i.nstnunentatinn iiaits
~
1hri.ng the e a r l y L-iluiis, p e r s i s t e n t sysi;en: pl.iigs and low pressure i n Lhe
n-itrogen l i i i c pmbably peri1ij:Lted
F,
,..
md W
f?i t t i i i g s :i?o:t* an unkno-wii p e r i o d o f t i m e
v z l v e anz. i t s fi-1;1; i rigs i m s appmx
I
6 weeks
6 io
c o n t a c t the valve and its
The operaking se:r-vicc: time on t,be ~
Visual examination o f -LA? valve d i s c l a s e d n o obvi.ous d e f e c t s .
i t :fa::;siili),jected t o severml tifries cperating pressure
(15 pslg)
ne1 and fouiid tc:) f i m e t i o n s:2:;7'.~-1"ai",'~,cwi-tha-1.1 )~ri..~y1; k a k a g e .
T'nerefore,
by VPP per~on-
Tile v a l v e m,s
scbseyu.errthy placed i n s tack. t o be u s e d e s an entlzrgency yeplacement
Vrsual- o b s e r v a t i o n of t h e Ti-i-Lings r e v e a l e d t h a t several- components ha? r u p t u r e s F i n n i n g i h e cofflpkte l e n g t h of the wal I s .
The fiss:clres were normal.
t o s t r e s s e s induced d u r i n g iiis’ial.l.ati_cin. FTgi-i=e 88 and Tab1.e XXLV show and d e s c r i b e t h e d e f e c t s noted.
Metal1.ograplii.c examination oi’ -the fi~tA,inp;s r e -
v e a l e d t h e cracks ’io be i n t e r g r a n u l a r i n n a t u r e .
Dezinc iiicati’.on apparent1y
occurrea a l o n g t h e i n s i d e edges oi” t h e f i s s u r e s , as evi deiiced by copper-ric’n deposits which l.i.ned t h e € i s s u r e s . (See Fig,
89.) Copper deposits were slso
e v i d e n t i.n s e v e r a l g r a i n b o u n d a r i e s rad.i.atin,g outward froa i:ie
Y’l-aw.
c o r r o s i v e a t - h c k w a s n o t e d on t h e o u t s i d e of t h e i n i . e t imton, Fig. A i t h o i i g h all. evidence i n d i c a t e s ’chat f a i l u r e was by selectiv:,
General
00. i li<A?j3--
g r a n u l a r d e z i n c i f i c a i t o n , t h e s t r e s s e s indLced d u r i n s i..nsi;al..l.ation were believed
to have provided. a s t r o n g d i r e c t i o n a l d r i v i n g force.
‘illie use o f stock Mone1
f i - t t i n g s , because of i t s iiicreased c o r r o s i o n r e s i s t a n c e , was recommended for
use i n the enviromient d e s c r i b e 6 .
The a s s o c i a t e d Monel v a l v e was found t o be i_n good o p e r z t i n g contii-tion,
appeared s a t i s f a c t , o r y , an.d can c o i ~ t i n i i et o be used f o r the merit i.oried s e r v i c e conditions.
‘This fail.ii.re s e r v e s t o yoini; o u t the n e c e s s i - t y f o r consta.o.t v i g i l a n c e i n s e l e c t i n g m a t e r i d s and components f o r a h i g h l y c o r r o s i v e p r o c e s s scheme. T h i s i n c l u d e s t h e s e l e c t i o n of p i p i n g a n d . j o i n i n g cou.pl.es which should, i f at
a l l p o s s i b l e , match t h e cotniponeilts i n c o r ~ - o s i o n - r e s i s t a n tp r o p e r t i e s . F l u o r i n e D i s p o s a l System
Excess f l u o r i n e an& ni-trogen from t h e VPP have been d i s p o s e d of by co-
c u r r e n t c o n t a c - i w i t h a n aqueous KOH solu-tioii
F i g s , 79 and 91.)
iil
a gas-disposal u n i t .
The KOH s o l i l t i o n w a s p r e p a r e d i n a c a u s - t i c surge tank,
shown i n F i g s . ‘79 and 92, t o a c o n c e n t r a t i o n of 2--lO$
disposal. unit.
(see
KOH and pumped t o
the
The c a u s t i c s o l u t i o n w a s t h e n sprayed i n t o t h e d i s p o s a l u n i t
as t h e e x c e s s process g a s e s e n t e r e d t h e vessel.
F l u o r i n e i n t h e waste g a s e s
fomied potassium f l u o r i d e i n water solution accord.i~ngt o
c
-.
rn
a h
p1
B
0 rl
rl
e,
rack not shown i n photo)
Outlet Nut
Outlet Front Ferrule
Ferrule
Outlet Back
Ferrule
Nut
I n l e t Front Fersule
â&#x20AC;&#x2122;
a
d
!I
rn
(d
k
6
rl
* Inlet
cl .d
d
5I I n l e t Union
1.75
m
-
1
- 176 Table XXIV.
-
Defects Found i n Leaded Yellow Brass F i t t i n g s Subjected t o F and u!?6
2
P a r t Name
Location
Defect
*
Union
I n l e t s i d e of valve
W a l l f r a c t u r e through threaded end covered by hex nut. Fracture extended through hex body and p a r t of opposite threaded end.
Hex Nut
I n l e t s i d e of valve
W a l l fracture ferrule.
Front F e r r u l e
I n l e t s i d e of valve
W a l l fracture ferrule.
Back F e r r u l e
I n l e t s i d e of valve
Crack
Union
*All
Fig. 88).
* *
running e n t i r e l e n g t h of running e n t i r e l e n g t h of
* partially
through w a l l .
W a l l f r a c t u r e p a r t i a l l y through threaded end covered by hex nut. (Not shown i n Fig. 88 because o f photo o r i e n t a t i o n . )
f r a c t u r e s and cracks were e s s e n t i a l l y i n l i n e with one another (see
- l.77 -
c
Fig, 90. VPP Leaded, Y e l l o w Brass T n l e t Uiiion Showing Ceneral Corrosive E t c h a n t : NH40H-H 0 -R, 0. 1OOX. 2 2 2
Attack.
- 179 UNCL.ASSlF8 ED G R h I I ~ - l A - O W G 49175
FV-150 DISPOSAL U N I T
GAS Material:
Shells
-
~ n hlonel, . diad sheet
Heads --
in. Idonel, flanged o i d dished
Serrice Conditions:
Excess F, with N, froln ptocesal~;gpassed w t h 2-10% KOti ~n tower ot 0.5 c f m a concentrotion of 2% KOH, 5-15?, KF.
co-current c o w
I"
toct
Dircl-torged ot
""5000 I,(. -8000 hr
Clrculating Not cii:ulating
35-55'C o c c ~ s ~ o n oc1x c u r s i o n ~to IOO'C 0.1 in. i1,O
Temperature Pressure Virrrol Inspection Interior
F
C o u l d not be inspected at t l i i s time. Exterior
Shell
- Covered w i t h sn adherent green deposit. VI S I bl
K O r i INLET TOTAL
OF
SIX
N07ZLES. 1 5 - 1 n OC
No ,defects
e. Covered w t h on adherent green deposit. fects visible. Welds - A l l oppeored to be i n good condition.
Heed -
..
I '7
No de-
Vidigoge Inspection
...................
Distance'
Stl FL. .L
C!rcumferentiil Series'
~
Series
I
0.119
0.118
N o 1--2
9
0.124 0.126
0.125
0.127
0.118 0.11R
0.125 24
39 54
0.118 0.119
0.125
0.125
0 130 0.129 0.178
0.125
0 125 0.127
0.126
0.130 0.129 0.127
0.126 0.128
0 127
0.130
0.127
67
0.127 0.129 0 I29
a4
0.128 0.129 0.120
0.128 0.128
0.150
0.128
99
I.
Wall Thickness i n Inches' ~.~...~...~ ............................. SHEI. L SHELL HEAD Inter-KOH N o z z l e F, Inlet-Impingement series
0.I29
0.125 0.126 0 127
No. 2 - 3 0.128
0.128 0.126
No.
3-4
0.124
0.128
Ser i e I 3
0.126 0.125 0.127 0.126 0.127 0.127 0.128
0.128
0.123 0.128
0.128 0.129
Dished Top
0.182 0.184
0.184 0.186 0.183 0.182 Flanged Side
0.185 0.184 0.189
0.190 0.189 0.186
No. 4--5 0.129
0.128
No. 5-6
0.124 0.125
0.129
Dirtonce, v e r t i c a l l y down, i n inches storting U I top liead to shell weld - - reference only to shell
c l i c u m f w m t i o l Femes. Peodings taken ot O O a m
-
120", mtoted 20' for each S U C L ~ S S I Ygroup. ~ 3. Readings at 1 in. tntewnlP starting 13 in. below the liead to shell weld 180" from F 2 Inlet. 4. A l l reodings, +0.002 in.
2.
Fig. 91. R e s u l t s of Visual and Vidigage I n s p e c t i o n on VPP Gas Disposal Unit.
UNCLASSIFIED ORNL-LR-3WG 49476
VIDIGAGE R E A D i N G S T A K E h ALONG :HESE IIXES
Materiol:
Shells beodr
-
%,,:n.
J
@,onel, rolled sheei
\
FROkT
in. Monei, ::anged and d:rhed
RACK
Service Conditions: Continually &-b2 full o i 2-10s KOH with present. (One area sublec: to agitation) Circulating Not circulating Temperature Pressure
-5000 -8000
F-
hr hr
25-55OC Atmospheric
Visual Inspection
Interior Could not be inspected
01
t h i s time.
Exterior Shel:
- One end covered
361n
wtth an odllerent green deposit. N o defects noted.
Heads - Both heads covered with an adherent green deparlt. Welds A l l beads appeored to be tn good condition.
-
-
_1
No defects ncted.
24 i n
94 i n
Vidigage Insection
WELDS
P
LLU
Wall Thickness in Inches? ~
DI stance'
Front Serb er
Remarks
0.195 0.196
3.190
3.188
10 14 13 22
0.187
0.187/ 0.190-
26 30 34
Longi tvdi na: w e l d here
ci. I W
Bottom
i.
2.
Remarks
0. I94
3. :a9
TO?
Bock Series
/ weld h e r e
Longi tu61no1
0.196 0.195 0.195 0.194 5.194
Distance, I n inches, circumferentiolly from top of sheii. A l l readings, ?C..002 1 2 .
FV-152
SURGE TANK
Fig. 92. Results o f Vlsual End Viaigage Inspection on V?? Surge Tank.
~
3
- 181 -
1
i : -
I
-%
I I
\
I
-.
i
I
Unclassified Y-32029
, /
*" I
.
\
h,
~ i g .93. cross S e c t i o n s of Gas i)isposal Unit I n l e t Pipe ( 8 ) ~hotomacrograph ShowFng Severe P i t t i n g Attack. 15X. ( b ) P o r t i o n of F i g . 9 3 showtng t y p i c a l surface a t base of p i t . 5OOX, Etchant: Acctie-nitrlc-jriydrs@hlortc acid.
- 183
-
The formation of hydrogen fluoride seems p o s s i b l e
from t h e I-eacLions of
fluorine rnonoxi.de or f l u o r i n e with t h e u v a i l s ? d l e :*rater of solutio?:! p r e s e n t
~
Iiivestigatxors have reported the h y d r o l y s i s r e a c t i o n of F,0
F20
f
H20
>
o2
2
-c 2 m
to be very slow a t o r d i n a r y t e m p c r s t u r e c '0u.t a steam-E',O r e a c t i o n occurs so
- 184
-
hydrogen f l u o r i d e c o r r o s i o n h i g h l y a c c e l e r a t e d by t h e p r e s e n c e or oxygeri. Al.so,
a t p a r t i c u . l a i - c o n c e n t r a t i o n s o f hyarogen f L n o r i d e i n watzr, cl-ose t o
t h e a z e o t r o p i c composition
rates on Monel of
(33
145 m i l s / y r
wi;
$),
one i n v a s t L s a t o r has r e p o r t e d c o - r r o s i o n
a t I.2O"C. 'ref
6 ' )
It niay be tlisi; e i . t h e r or
b o t h oâ&#x201A;Ź t h e s e r e a c t i o n s may be r e s p o n s i b l e f o r t h z 1ocal.i x e d a t t a c k d e s c r i b e d . C o n s l d c r i n g -{;'neeasy replacement of t h e gas-in1.e-i; n o z z l e and the major
c o r r o s i o n problems remai.Iiing t o be s o l v e d i n t h e VPP, no development w c r l i
has been p l a n n e d toward :finding an. impi-oved r n h L e r i a l or const,mcti.on.
Prrocess G a s Lines S e c t i o n s of Monel p i p e a n d copper t u b i n g n e a r t h e
VPP a b s o r b e r s , cherni-
ea1 traps, and c o l d t r a p s were removed from t h e process gas p'iping s y s t e m
M-64 and
a-fteT Run
s e n t t o BMI for c o r r o s i o n anslyses, A schematic drawing
shoT,rLng the l o c a t i o n 01 -these s e c t i o n s i s preserited. i.n F i g .
94, and a &scrip-
'tioil o f t h e p i p i n g and t h e i.naividual. p r o c e s s environments can be found i n Table X X V .
The w a l l t h i c k n e s s e s of t h e s e c t i o n s w-ere measured b y BMI and no i-ndica-
Lion o f s i g n i f i c a t i t riietal l o s s e s were found.
The metallographi-c e x a m i n a t i o n s
conducted on t h e specimens d i s c l o s e d no s e r i o u s c o r r o s i v e a t t a c k .
A l m o s t all
of' t h e speci.mens showed i s o l a t e d p i t t i . n g b u t the pits were less tlmn one g r a i n d.eep.
S l i g h t i r i d i c a t i o n o f s e l e c t i v e a t t a c k a t t h e g r a i n bouridari e s was
o b s e r v e d on specfmens 1-1, 1-2, 1.-3, 2, and 3 which were l o c a t e d close t o the
a b s o r b e r s and t h e f i r s t c o l d t r a p , ,
However, t h e i n t e r g r a r i u l a r a t t a c k was
never' d e e p e r t h a n one g r a i n , and f o r t h e most p a r t , was l k s s t h a n 1 m i l deep.
6%.
Z. F r i e n d , "Nickel-Copper A l l o y s , 'l C o r r o s i o n Handbook ( e d , bj Sons, New York,-i91TE--Ll--
H. If. U h 1 i g ) p . 273, John Wiley and
- 185 -
Y I
f
I ,
//
k W + n
_I
0 0
_1
Qa 0 I
6 3K W I1 0
c
J ._ ,Q .. .._ L
U VI
al
n c
0,
U al Q
E ._ v,
I
I \ -.J
/
c
V 0
c YI
L ._
I*_
0 A-
al
+
5
a
V C 0
V I -
n o
gz
o a > :
>
al
0
al VI
...
- 186 ."
u' u)
,..-
m
:
i
P
0
0
c
VI
L ._ Y
E
2
c
-
6 " Cn""
m +
u'
-
0 ul
<--
0 0
N
i
0
u' v3
0, &
r
al C
0
z
c
al
0 z
al
c
0
z
a, C 0
z
m
c ._
0
Q u
e
a
+U 3
m3m
.-C
0
L
c
3
a
C cn
.._ i) 3
Q W a
m
Q CL
0 J
.c .. ? ',,
+U 3
n.
0
-u c(-
0
c
* :.-
._
V W
2 :
''! ',
t
-
IO'[ -
i
1-,
ORKL-2832 Metals, Ceramics, a n d Mzterials TID-1! 500 (l.6th c d I
614-68. 69.
'-7.0
71. 72.
'73.
:74. 75. 76. 77. '78. 79.
80. 81. 82. 83-85.
86. 8'7. 88. 89. 90.
91--
92.
93. 94. 95. 96. 9'79899.
100. 101.. 1~02 * 103.
55. 56" 5 ' p 59.
.
1.011-
105.
l.06.
60.
1.07. 108.
6?
1.10
61.. 1
63.
109.
.
111.
11.2 . A. H. Sne 11 113. s. 3. Staj-nker 114. J. A. Swarto u i 115. E. H. Ta yl-or 116. A. M. $72i n b e rg 117. M. E . Whatley 1.1.8. c . L. Whi h e r s h 119. C. E . Wj ntcrs
- 1.88 -
120.
E . L. Youngblood
123.
S. 11. Kocn:ig ( c o n s u l t a n t )
1.21. A . A . B u r r ( c o n s u l t a n t ) 122. J. L. Greg2 ( c o n s u l t a n t )
I?)!-. C. S. Smii;Ii ( c o n s u l . t a n t ) 1P5 P:. Srnol.inchowski ( c o n s u l t a n t )
126. E . E . StansIJury ( c o n s u l t e n - i ) 127. 11. A . W i l h e l r ( c o n s u l t a n t )
l?8. D. E. Baker, GE I I a n f o r d 129. 5. E . Bigel-ow, 4EC, OAL) 133-131. D. Cope, AEC, OK0 1.32. 0. E. ~w)-ex-, B r a 1-33 Ersel Eh-ans, GE HanPord 134. F . W. Fhk, R M I +
135. 136. 1.37. 138. 139.
s.
W. J. M. 140. R . l.)+l.
1 42. l.jL3-719.
Lawroski
, AI%C,
P. D. M i l l e r , B r a
S e e f e l d z , AI!L Simmons, AEC, Waslii.ngton J. Steindler, ANL K. S t e u n e n b e r g , ALrL D. K . Sl,eveins, AEC, Wzchington R . C . Vogel, Am Given dlstrri.huti.on as shown in TID-)I500 (16th ed.. ) under Metals, Ceramics, and Mzterials Ca.tegory (75 c o p i e s - 0â&#x20AC;?s)