HOME HELP
Makes any warranty.& re comptetenesa, or usefulne any
information, apparatu
privately owned rlphts; or Assumea any liabilitiea w
or contractor
of the Commiar
des access to, any information putrua
0 RNL-2548 Chemistry General TID-4500 (15th ed.)
-
j
I
Contract
N0 . W-7405-en g-26
REACTOR CHEMISTRY DIVISION
PHASE DIAGRAMS OF NUCLEAR REACTOR MATERIALS R. E. Thoma, Editor
I
L
DATE ISSUED
h rc
F
I
11
ONALLABORATORY
Oak Ridgo, Tennessee opiroted by UNION CARBIDE CORPORATION for the U. S. ATOMIC ENERGY COMMISSION
!'
i
L
f '
h I !
t
t'
L
c f
c
LL1
CONTENTS INTRODUCTION 1. METAL 1.1. 1.2. 1.3. 1.4. 2.
SYSTEMS The The The The
System System System System
The The The The The
FUSED-SALT
3.1. 3.2. 3.3. 3.4. 3.5. 3.6. 3.7. 3.8. 3.9. 3.10. 3.11. 3.12. 3.13. 3.14. 3.15. 3.16. 3.17. 3.18. 3.19. 3.28. 3:21. ..3;22. 3.23. ’ 3.24. 3.25. i 3.26. 327. 3.28. 3.29. 3.38: 3.31. 3.32. 3.33.
1
..........................................................................................................................
2
Silver-Zirconium Indium-Zirconium Antimony-Zirconium Lead-Zirconium..
.......................................................................................... ........................................................................................ .................................................................................... ..........................................................................................
2 4 6 8
................................................................................................
9
METAL-FUSED-SALT 2.1. 2.2. 2.3. 2.4. 2.5.
3.
..................................................................................................................................
SYSTEMS
Sodium Metal-Sodium Halide Systems .................................................................... Halide Systems ........................................................ Potassium Metal-Potassium Rubidium Metal-Rubidium Halide Systems ............................................................ Cesium Metal-Cesium Halide Systems .................................................................. Alkali Metal-Alkali Metal Fluoride Systems ........................................................ SYSTEMS
................................................................................................................
........................................................................................................ The System LiF-NaF .......................................................................................................... The System LiF-KF ........................................................................................................ The System LiF-RbF The System LiF-CsF ........................................................................................................ ........................................................................................................ The System NaF-KF ...................................................................................................... The System NaF-RbF ........................................... ..- ......................................................... The System KF-RbF ................................................................................................ The System LiF-NaF-KF .............................................................................................. The System LiF-NaF-RbF ................................................................................................ The System LiF-KF-RbF .............................................................................................. The System NaF-KF-RbF a ................................................................................................ The System NaBF,-KBF .................................................................................................... The System NaF-FeF, ...................................................................................................... The System NaF-NiF, ..................................................................................................... The System RbF-CaF, * ............................................................................................ The System LiF-NaF-CaF ........................................................................................ The System NaF-MgF2-CaF, . 3 ............................................................................................. The System NaF-KF-AIF The System-LiF-BeFz ........ .............................................................................................. -.The~System NaF-BeF, .............. . ......... . .......................................................................... The System KF-BeF- 8 . ........ ..‘.............., -: .................................................................................. .. .................................................................................................... The System RbF-Be ..................................................................................................... The System’CsF-BeF* The SyJtem LiF-NaF?BeF, .................. ..~........................................................................ ~~.~.~.~...~.~.~...~...~.............~....................................................... The Syitem’LiF-RbFGBeFm The System .NaF-KF-BeF ,$ - ../ ............................................... ......................................... The System NaF-RbF-Be 2 ............................................ ..+ .......................................... ............... ..n ................................................................................. The Systems NaF-ZnF, .. ...................................................................................................... The System KF-ZnF, ................................ ..i............ ....................................................... .The-System RbF-ZnF, ........................................................................................................ The System LiF-YF, ” .................................................... . ................................................. The System LiF-ZrF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The System NaF-ZrF:
9 10 11 12 13 14 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 32 33 34 36 38 40 42 44 46 47 48 49 50 51 52 54
, ,
The System KF-ZrF ........................................................................................................ The System RbF-ZrF, ...................................................................................................... The System CsF-ZrF ...................................................................................................... The System LiF-NaF-ZrF, ............................................................................................ The System NaF-KF-ZrF .............................................................................................. The System NaF-RbF-ZrF ............................................................................................ The System NaF-CrF2-ZrF, The Section NaF.CrF, ZrF, ................................ The System NaF-CeF,- ZrF .......................................................................................... The System LiF-CeF ...................................................................................................... The System NaF-HfF, ...................................................................................................... The System LiF-ThF ...................................................................................................... The System NaF-Th F4 .................................................................................................... The System KF-ThF, ...................................................................................................... The System RbF-ThF, .................................................................................................... The System BeF,-ThF, .................................................................................................. The System BeF,-UF, .................................................................................................... The System MgF,-ThF, .................................................................................................. The System LiF-BeF,- ThF .......................................................................................... 3.52. The System NaF-ZrF,- Th F, .......................................................................................... 3.53. The System LiF-UF ........................................................................................................ 3.54. The System LiF-UF ........................................................................................................ 3.55. The System NaF -UF, ...................................................................................................... 3.56. The System NaF-UF, ...................................................................................................... 3.57. The System KF-UF, ........................................................................................................ 3.58. The System RbF-UF, ...................................................................................................... 3.59. The System CsF-UF, ...................................................................................................... 3.60. The System ZrF,.UF, ...................................................................................................... 3.61. The System SnF,- U F, ...................................................................................................... 3.62. The System PbF, -UF, ...................................................................................................... 3.63. The System ThF4-UF, ...................................................................................................... 3.64. The System LiF-No F-UF, .............................................................................................. 3.65. The System LiF-KF-UF, ................................................................................................ 3.66. The System LiF-RbF-UF, .............................................................................................. 3.67. The System NaF-KF-UF, ................................................................................................ 3.68. The System NaF-RbF-UF, .............................................................................................. 3.69. The System LiF-BeF,-UF, ............................................................................................ 3.70. The System NaF-BeF,-UF, ............................................................................................ 3.71. The System NaF-PbF,-UF, ............................................................................................ 3.72. The System KF-PbF,-UF, .............................................................................................. 3.73. The System NaF-ZrF,-UF, ............................................................................................ 3.74. The System LiF-ThF,-UF, ............................................................................................ 3.75. The System NaF-ThF,-UF, The Section 2NaF.ThF4-2NaF*UF4 ........................ 3.76. The System LiF-PuF, ...................................................................................................... 3.77. The System LiCI-FeCI .................................................................................................... 3.78. The System KCI-FeCI, .................................................................................................... 3.79. The System NaCl-ZrCI .................................................................................................... 3.80. The System KCI-ZKI, ...................................................................................................... 3.81. The System LiCI-UCI ...................................................................................................... 3.82. The System LiCI-UCI ...................................................................................................... 3.83. The System NaCI-UCI, .................................................................................................... 3.84. The System NaCl-UCI, .................................................................................................... 3.34. 3.35. 3.36. 3.37. 3.38. 3.39. 3.40. 3.41. 3.42. 3.43. 3.44. 3.45. 3.46. 3.47. 3.48. 3.49. 3.50. 3.51.
,
, , ,
.
,
,
, ,
. ,
, , ,
iv
-
56 57 58 60 62
64 66 67 68 70 72 73 74 76 77 78 79 80 82 84 85
86 88 90 91 92 93 94 95 96 98 101 102 103 104 108 110 113 114 116 119 124 125 126
127 128 130 131 132 133 134
u
3.85. 3.86. 3.87. 3.88. 4.
OXIDE 4.1. 4.2. 4.3. 4.4. 4.5. 4.6.
5.
The The The The
KCI-UCI ...................................................................................................... RbCI-UC1 3 .................................................................................................... CsCl+~l, .................................................................................................... K,CrF,-Na,CrF6-Li,CrF 6 ........................................................................
AND HYDROXIDE The The The The The The
AQUEOUS 5.1. 5.2. 5.3. 5.4. 5.5. 5.6. 5.7. 5.8. 5.9. 5.10.
System System System System
System System System System System System SYSTEMS
SYSTEMS
..........................................................................................
139
SiO,-ThO, .................................................................................................... LiOH-NaOH .................................................................................................. LiOH-KOH .................................................................................................... .................................................................................................... NaOH-KOH NaOH-RbOH .................................................................................................. Ba(OH)2-Sr(OH)2 ..........................................................................................
139 140 141 142 143 144
......................................................................................................................
145
The System UO,- P,O,-H,O, 25°C Isotherm ................................................................ The System UO -H,PO,-H20, 25°C Isotherm.. ............................................................ The System U$POd),-Cl,O,-H-0, 25oC Isotherm ...................................................... The System U0,-N~~O-C$‘-H2~,~260C Isotherm ...................................................... 25oC Isotherm.. ................................ Portions of the System ThOz-Na,O-CO,-H20, The System Na,O-CO -H,O, 25% Isotherm ................................................................ Solubility of Uranyl SuI fate in Water ................................................................................ Two-Liquid-Phase Region of UO,SO, in Ordinary and Heavy Water .......................... The System UO,-SO,-H 0 .............................................................................................. Coexistence Curves for 72wo Liquid Phases in the System UO SO -H SO -H 0 .................................................................................................... 5.11. Two-i!.iq:id-Aa& Rigion of the System UO SO -H SO -H 0 ................................ 2 4R*c2h Silutiks in 5.12. Two-Liquid-Phase Coexistence Curves for UO,I the System UO,-SO,-H,O With and Without HNO,. ................................................... 5.13. Solubility of UO, in H,SO,-Hz0 Mixtures .................................................................... 5.14. Effect of Excess H,SO, on the Phase Equilibria in Very Dilute UO,SO, Solutions .” ......................................................................................................... ............................ 5.15. Second-Liquid-Phase Temperatures of UO,SO,-Li,SO, Solutions 5.16. Second-Liquid-Phase Temperatures for UO,SO, Solutions Containing Li,SO, or BeSO ............................................................................................................ Temperatures for BeSO, Solutions Containing UO, ................ 5.17. Second-Liquid-Phase 5.18. The-System NiSOi-UQ.$O,~H,O at 25°C .............. ..t ..................................................... -5.19 . . Phase-Transition Temperatures in Solu!ions Containing CuS04, 4....................~~...............~............................~ ...................................... UCJ,SO,, and H SO. 5.20. The Effect of Cu 5 O4 and tjiS04-on Phase-Transition Temperatures: .. 0.04 m uo S04;~0.01~m H2S04. ........................................................................................ O,-GO--NiO-SOj-D,O at 300°C; 0.06 m SO, .................................... -5.21. -The System b 5.22. S&$iIi~~of Nd,(SO,), iti 0.02 m U02s04 Solution Containing 0.005 m ................................................................................................... L...... -HiSO, (180-300%) .................................................................. -5.23; Sblubility Of Laz(S04)3,in UO,jSv, Sblutions 5.24, .‘SoIubility’of CdSO, in UO,SOa Solutions~ .... .................................................................. ............................... : ..................................... 5.25. Solubility of Cs SO ‘in oO$O Solutions .......... i.. ..................................................... 5.26 i Solubility of-Y &Ol in UO 56. Solutiqns ..................................................................... -5.27. Sofubility of-Ai2S(Jt $ U02&, !jolutiotis ........................................... 5.28. Solubility at 25ooC of B&O, in UO,SO,-H,O Solutions ........................................................ 5.29. Solubility of H,WO, in 0.126 and 1.26 M UO,SO, .................................................................. 5.30. Phase Stability of H,WO, in 1.26 M UO,F,
I
1
w
135 136 137 138
145 146 147 148 150 153 156 158 160
164 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 186
V
Ill
J
5.31. The System UO2 (NO ) -H 2 0............................................................................................ and HF in Stoichiometric Concentrations 5.32. Phase Equilibria of (Aqueous System).............................................................................................................. 5.33. Solubility of Uranium Trioxide in Orthophosphoric Acid Solutions ............................ 5.34. Solubility of Uranium Trioxide in Phosphoric Acid at 25OOC ...................................... 5.35. Solubility of UO, in H,PO, Solution .............................................................................. 5.36. The System U02Cr0,-H20 .............................................................................................. 5.37. Variation of Li2C0, Solubility with U02C0, Concentration at Constant CO Pressure (250%) ...................................................................................................... 5.38. The System Li 0-U0,-C02-H20 at 25OOC and 1500 psi ............................................ 5.39. The System ThfNO,),-H,O .............................................................................................. 5.40. Hydrolytic Stability of Thorium Nitrate-Nitric Acid and Uranyl Nitrate Solutions ._ ........................................................................................................... 5.41. The System Tho2-CrO,-H,O at 25째C ............................................................................ 5.42. Phase Stability of Tho2-H,PO,-H,O Solutions at High Concentrations of Tho...............................................................................................................................
bd,
vi
188 190 19 1 192 193 194 195 196 197 198 199 200
PHASE DIAGRAMS OF NUCLEAR REACTOR MATERIALS INTRODUCTION This compilation presents the phase diagrams for possible materials for nuclear reactors developed a t the Oak Ridge National Laboratory over the period
1950-59.
It represents the
efforts of certain personnel i n what are now the Chemical Technology, Metallurgy, Chemistry, and
ORNL. This document also contains diagrams originated by other installations under contract to ORNL during that interval. In addition, a few diagrams from Reactor Chemistry Divisions of
the unclassified literature have been included when they form part of completed systems sequences.
No general discussion of the principles of heterogeneous phase equilibrium has been included since excellent discussions are available in many well-known publications.
Equilibria
i n several o f the fused-salt systems presented below have been described in some detail in a recent publication by Ricci.'
Nor has any attempt been made to assemble the phase equilibrium
data on reactor materials available from many other sources.
For such information the reader i s
referred to other recently published compilations of phase diagrams2'6 works dealing specifically with nuclear reactor
and to the several new
material^.^'^
While some of the diagrams presented below are the result of fundamental researches, most were obtained i n support of the
ORNL programs i n development of fluid-fueled reactors. Others
have been developed as a consequence of reactor metallurgy,
ORNL interests in reprocessing of nuclear fuels,
production of uranium and thorium from raw materials,
and studies of
mechanisms o f corrosion. Much of the research effort was devoted to searches for systems of direct use as fluid fuels
or blanket materials; unpromising systems were often given only casual attention. The diagrams i n this collection, accordingly, vary widely in the degree of completeness of examination.
A
brief description of the status of the work is presented in each case; in a few cases, where no hed, the available data have been included I
i
U
LI
c
I
U
*H. H. Hausner and S.
B. Roboff, Materials
/or Nuclear Power Reactors, Reinhold Publishing Corp.,
N e w York, 1955.
9B. Kopelman (ad.), Materials /or Nuclear Reactors, McGrow-Hill Book Co., New York, 1959.
I ~
1
1
1. M E T A L SYSTEMS
I
i i
1.1.
The System Silver-Zirconium
I
(4 J. 0. Betterton, Jr., and D. S. Easton, The Silver-Zirconium System," Trans. Met. SOC. AIME 212, 470-75 (1958). A detailed investigation was made of the phase diagram of silver-zirconium, particularly i n
1
the region
,
iI 1
0 to 36 at. % Ag.
phases, Zr,Ag
The system was found to be characterized by two intermediate
and ZrAg, and a eutectoid reaction in which the p-zirconium solid solution de-
composes into a-zirconium and Zr,Ag.
It was found that impurities in the range 0.05% from the
iodide-type zirconium were sufficient to introduce deviations from binary behavior; with partial removal o f these impurities an increase i n the a-phase solid solubility l i m i t from Ag was observed.
1
2
0.1 to 1.1 at. %
UNCLASSIFIED ORNL-LR-DWG 48989
870 860 850
Y
840
Y
800 Q
790
,. .
Q+Y
780
Fig.
1.1~.
O A V TWO PHASE
V
0
-
THREEPHASE FILLED SYMBOLS INDICATE METALLOGRAPHIC SAMPLES WHICH WERE CHEMICALLY ANALYZED FOR SILVER CONTENT-
The System Silwr-Zirconium
in
the Eutectoid Region (0-6
ot. 56 Ag).
iI
h'
I 35
Fig, 1.b. The System Silver-Zirconium in the Region 0-36 at. % Ag.
3
i
1.2. The System Indium-Zirconium J. 0. Betterton, Jr., and W. K. Noyce, "The Equilibrium Diagram of Indium-Zirconium i n the Region
0-26 at. pct In," Trans. Met. SOC. AIME 212, 340-42 (1958).
The zirconium-rich portion of the indium-zirconium phase diagram was determined as a study of the effect of alloying a trivalent B-subgroup element, indium, with zirconium in group
IVA.
The temperature of the allotropic transition was found to rise with indium, terminating i n a
/3(9.3% In)
peritectoid reaction,
+ d22.4%
In) e a ( 1 0 . 1 % In) at 1003OC.
In this respect the
effect of indium i s analogous to that of aluminum in zirconium and titanium alloys.
UNCLASSIRED ORNL-LR-DWG (8987
4300
(200
4fOO
-
4000
V
W LL
3
900
[II
W
a
5
I-
800
700
600
500
0
2
4
8
6
40
f2
INDIUM (at. X) Fig. at. 96 In).
4
1.L. The
System Indium-Zirconium
in
the Peritectoid Region (0-13
14
c B JI
UNCLASSIFIED ORNL-LR-MNG (8983
1400
1300
1200
!400 e,
900
800
7
1
9
Region (0-6 at. %
Sb).
1.4. The System Lead-Zirconium G. D. Kneip, Jr., and J. 0. Betterton, Jr., cited by "Zirconium Equilibrium Diagrams," p and
F.
443-83
in
E. T.
Hayes and
W. L.
(3 Brien,
Tbe Metallurgy of Zirconium, ed. by B. Lustman
Kerze, Jr., McGraw-Hill Book Co., New York,
1955.
UNCLASSIFIED ORNL-LR-DWG 1375
c D P+Y m m
W
Lz
3
Q
900
I
B
[L
W
a
r
W
I-
800
"0
L
- 0
SINGLE PHASE TWO PHASE A THREE PHASE 8
600
0
2
4
6
8
10
'2
LEAD (at. 'lo)
Fig. 1.4. at. 96 Pb).
The System Lead-Zirconium i n the Paritcctoid Region (0-12
B D L
n tl
u 8
!
i
L hi u
u L
-
2. ME TAL F USE D-SAL T SYSTEMS
2.1. The Sodium Metal-Sodium Halide Systems M. A. Bredig and J. E. Sutherland, "High-Temperature Region of the Sodium-Sodium Halide Systems," Chem. A m Prog. Rep. June 20, 19j7, ORNL-2386, Q 119. Subsequent report on these systems to
be published. UNCLASSI FlED ORNL-LR-WG. 21894A
t MOLE FRACTION MX
t MOLE FRACTION MX .9 .8 .7 .6 .5 A .3 .2 .4
'
1200
COOLING'CURVESTHIS WOI
' 0
4 200
x EQUILIBRATION, M'~B,JWJ,W
A EQUILIBRATION, HRB, MB
(100
+IO0 I
\?
1000 "c
4000
TWO LIQUIDS
OC
900
900 I
, .
:L
800
- "
I
-
-
795"
"
SOLID SALT+ LIQUID METAL
70C
800
700 600
60C
ONE LIQUID
Fig. 2.1.
@
ONE LIQUID
T h e Sodium Metal-Sodium Halide Systems.
44400
9 2.2.
k
The Potassium Metal-Potassium Halide Systems
J. W. Johnson and M. A. Bredig, "Miscibility of Metals with Salts in the Molten State. 111. The Potassium-Potassium Halide Systems," J . Phys. Chem 62, 604 (1958).
u
KX-K systems, X = F, CI, Br, and I, at and above 904, 790, 727, and 717OC, that is, as close as +47, +18, -7, and +22q respectively, Complete m i s c i b i l i t y of metal and salt exists i n the
to the melting points of the salts.
The asymmetry of the liquid-liquid coexistence areas,
especially of the fluoride and chloride systems, as indicated by the consolute compositions
(20, 39, 44, and 50 mole % metal, respectively), i s largely explained by the difference in molar
At the monotectic temperature, the solubility of the solid salts i n the liquid metal, as well as of the metal i n the liquid salt phase, is much larger than i n the case of
volumes of salt and metal.
the sodium systems.
UNCLASSIFIED ORNL-LR-DWG. 214
AND SAMPLINC
900
850
I
800 OC
c L
mole % K Fig. 22 The Potassium Metal-Potassium
10
Halide Systems.
4
u
IJ
2.3. The Rubidium Metal-Rubidium Halide Systems M. A. Bredig and J. W. Johnson, “Rubidium-Rubidium Halide Systems,” Cbem. Ann. Prog. Rep. lune 20, 1957, ORNL-2386, p 122; M. A. Bredig, J. E. Sutherland, and A. S. Dworkin, “Molten Salt-Metal Solutions. Phase Equilibria,’’ Cbem. Ann. Prog. Rep. June 20, 1958, ORNL-2584, p 73. Subsequent report on these systems to be published.
UNCLASSIFIED
-
OR NL- LR DWG. 32909A
800 -
‘u
790O
I
I
I
50
75
750
\
706O
700
“C
650
li
600
25
Systems.
2.4.
The Cesium Metal-Cesium Halide Systems
M. A. Bredig, H. R. Bronstein, and W. T. Smith, Jr., "Miscibility of L i q u i d Metals with Salts. II. The Potassium-Potassium Fluoride and Cesium-Cesium Halide Systems," 1. Am. Chem. SOC. 77, 1454 (1955). M i s c i b i l i t y i n a l l proportions of cesium metal with cesium halides a t and above the melting points of the pure salts, and of potassium metal with potassium fluoride 50'above point of the salt, occurs,
the melting
The temperature-concentration range of coexistence of two liquid
phases decreases i n going from sodium to potassium systems and disappears altogether for the cesium systems.
The solubility of the solid halides in the corresponding liquid alkali metals,
a t a given temperature, increases greatly with increase of atomic number of the metal. UNCLASSIFIED ORNL-LR-DWG. 37044
700
650
600
"G 550
500
4500
25
Fig.
12
24.
50 MOLE 2', METAL
T h e Cesium Metal-Cesium
75
Halide Systems.
100
i
k
II I
2.5.
The Alkali Metal-Alkali Metal Fluoride Systems
J. E. Sutherland, and A. S. Dworkin, "Molten Salt-Metal Solutions. Phase Equilibria," Chem Ann. Prog. Rep. June 20, 19S8, ORNL-2584, p 73.
M. A.
Bredig,
UNCLASSIFIED 0RNL- LR - DWG. 31067A
1300
1200
1100
1000
"C 900 Ii
b i
i
3 MOLE % METAL Fig. 2.5.
The Alkali Metal-Alkali Metal Fluoride Systems.
13
3. FUSED-SALT SYSTEMS
3.1. The System LiF-NaF A. G. Bergman and E. P. Dergunov, "Fusion Diagram of LiF-KF-NaF," Compt. tend. acad. sci. U.R.S.S. 31, 753-54 (1941). The system LiF-NaF contains a single eutectic at 60 LiF-40 NaF (mole %), m.p. 652T.
UNCLASSIFIED ORNL-LR-DWG 20457
NoF (mole%)
Fig. 3.1.
14
The System LiF-NaF.
3.2. The System LiF-KF A. G. Bergman and
E. P.
Dergunov, “Fusion
Diagram of LiF-KF-NaF,”
Cornpt. rend. acad.
sci. U.R.S.S. 31, 753-54 (1941).
The system LiF-KF contains a single eutectic
at
50 LiF-50 K F (mole %), m.p. 492%.
s
3.3. The System LiF-RbF
C. J. Barton, T. N. McVay, L. the Oak Ridge National Laboratory,
M. Bratcher,
and W.
R. Grimes,
unpublished work performed at
1951-54.
Preliminary diagram.
c
Invariant Equilibria
Mole % LiF in Liquid
Invariant Temperature
Phase Reaction
Type of Equilibrium
at Invariant Temperature
(Oc)
44
470
Eutectic
L e R b F + LiF-RbF
47
475
Peritact iE
L
General characteristics of the system have been reported by
+ LiF *LiF*RbF
E. P. Dergunov, “Fusion Dia-
grams of the Ternary Systems of the Fluorides of Lithium, Sodium, Potassium, and Rubidium,”
Doklady Akad. Nauk S.S.S.R. 58, 1369-72 (1947).
UNCLASSIFIED ORNL-LR-DWG
900
800
700 c
0 0
W
(L
$
600
E W
a
5I500
400
300 LiF (mole % )
Fig. 3.3. The System LiF-RbF.
16
L E
1614
E L
3.4. The System LiF-CsF C. J. Barton, L. M. Bratcher, T. N. McVoy, and W. R, Grimes, unpublished work performed at the Oak Ridge National Laboratory,
1952-54.
Preliminary diagram.
Invariant Equilibria
Invor iant Mole % C s F in Liquid
Temperoture
55
495 f 5
63
475
Type of Equilibrium
PC,
f5
Phase Reaction at Invariant Tomperature
e
Peritectic
LiF + L
Eutectic
L e L i F * C s F+ CsF
LiF-CsF
UNCLASSIFIED ORNL-LR-DWG 14632
I
900
800
700
7
600
500
-
I
400
80
CsF
90
17
w 3.5. The System NaF-KF A. G. Bergman and E. P. Dergunov, “Fusion Diagram of LiF-KF-NaF,”
Compt. tend. acad.
sci. U.R.S.S. 31, 753-54 (1941).
The system NaF-KF contains
a
single eutectic at 40 NaF-60 K F (mole %), m.p. 71093.
UNCLASSIFED ORNL-LR-DWG 354l
(000
.so0
-
800
L u
m
W
2
700
(L
%!
3
t
600
500
400 L
40
20
40
30
Fig.
3.5.
50 KF(mole%)
60
70
80
.
90
KF
The System NoF-KF.
U
3.6.
The System NaF-RbF
C. J.
Barton,
J. P.
Blakely,
L. M. Bratcher, and W.
at the Oak Ridge National Laboratory, Preliminary diagram. (mole %), m.p.
R. Grimes,
unpublished work performed
1951.
The system NaF-RbF
contains a single eutectic at
27
NaF-73
RbF
675 f 10T.
General characteristics of the system have been reported by
E. P.
Dergunov, “Fusion Dia-
grams of the Ternary Systems of the Fluorides of Lithium, Sodium, Potassium, and Rubidium,”
Doklady Akad. Nauk S.S.S.R. 58, 1369-72 (1947).
4000
UNCLASSIFIED ORNL-LR-DWG 357tI
950
900
V
e 850 k!3
i42
800
750
19
3.7. The System KF-RbF C. J. Barton, J. P. Blakely, L. M. Bratcher, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1951. Preliminary diagram. The system KF-RbF contains a solid solution minimum at 28 KF72 RbF (mole %), m.p. 770 f 1OT.
UlCLASSlFlEO ORNL-LR-OW& 35406
‘Oo0L 900
I) L
TOO W II:
a IW
6oo so0
.--
cL
ann KF
40
20
30
40
50
60
RbF (mole %I
Fig. 3.7.
20
The System KF-RbF.
70
80
90
F
3.8. The System LiF-NaF-KF A. G. Bergman and E. P. Dergunov, “Fusion Diagram of LiF-KF-NaF,”
Compt. rend. acad.
31, 753-54 (1941). The system LiF-NaF-KF contains a $ingle eutectic at 46.5 LiF-11.5 (mole %), m.p. 454%.
S C ~ . U.R.S.S.
NaF-42.0
KF
UNCLASSIFIED ORNL-LR-DWG 1199A
NoF
990
TEMPERATURE IN
OC
COMPOSITION IN mole %
6’
U
Li F 845
21
3.9. The System LiF-NaF-RbF C. J. Barton, L. M. Bratcher, J. P. Blakely, at the Oak Ridge National Laboratory, 1951. Preliminary diagram. NaF-52
and
The system LiF-NaF-RbF
W. R. Grimes, uipublished work performed contains a single eutectic at
42 LiF-6
RbF (mole %), m.p. 430 f 10°C. The composition and temperature of the ternary peri-
tectic point have not yet been determined. General characteristics of the system have been reported by
E. P.
Dergunov, “Fusion Dia-
grams of the Ternary systems of the Fluorides of Lithium, Sodium, Potassium, and Rubidium,”
Doklady Akad. Nauk S.S.S.R. 58, 1369-72 (1947). Dergunov l i s t s the composition and temperature of the ternary eutectic as
46.5 LiF-6.5 NaF-47 RbF (mole %), m.p. 426°C.
UNCLASSIFIED 1200A ORNL-LR-DWG
RbF TEMPERATURE IN O C COMPOSITION IN mole V0
22
:L ! i
4 !
!
3.10.
The System
LiF-KF-RbF
C. J. Barton, J. P. Blakely, L. M. Bratcher, and W. R. Grimes, unpublished work performed
1951. Preliminary diagram. The system LiF-KF-RbF KF-27.5 RbF (mole %), m.p. 440 f 10%.
at the Oak Ridge National Laboratory,
contains a single eutectic at 40
General characteristics of the system have been reported by
E.
LiF-32.5
P. Dergunov, “Fusion Dia-
grams of the Ternary Systems of the Fluorides of Lithium, Sodium, Potassium, and Rubidium,” I I
Doklady Akad. Nauk S.S.S.R. 58, 1369-72 (1947).
RbF 795
UNCLASSIFIED ORNL-LR-DWG 35479
LiF 845
23
3.11. The System NaF-KF-RbF C. J. Barton, L. M. Bratcher, J . P. Blakely, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, Preliminary diagram.
1951.
The system NaF-KF-RbF
contains a single eutectic at
21 NaF-5
KF-74 RbF (mole %), m.p. 621 f 1 K .
RbF
795
T E M P E R A T U R E ("C) COMPOSITION (mole 7'0)
Fig. 3.11.
24
The System NaF-KF-RbF.
UNCLASSIFIED ORNL-LR-DWG 35482
3.12. The System NaBF,-KBF, R. E. Moore, J. G. Surak, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1957. Preliminary diagram.
The system NaBF,-KBF,
12 KBF, (mole %), m.p. 355%.
contains a single eutectic at
88 NaBF,-
The dotted line was obtained from thermal effects representing
incompletely understood sol id-phase transformations of
KBF, and NaBF,.
3.13. The System NaF-FeF,
H. A.
R. E. Thoma,
Friedman,
B. S. Landau, and W. R. Grimes, unpublished work performed
at the Oak Ridge National Laboratory,
1957.
Preliminary diagram.
Invariant Equilibria
e:
.
Invariant
Phase Reaction
Mole % F e F 2 in Liquid
Temperature
30
680
Eutectic
, ! ,
50
783
Congruent melting point
L
63
745
Eutectic
Type of Equilibrium
a t Invariant Temperature
(OC)
e
NaF
-
e
c
+ NaF-FeF2
NaF*FeF2
,!, 2 N a F * F e F 2
+ FeF2
UNCLASSIFIED ORNL-LR-DWG 22345
r!
1 1 i NoF
40
20
c c
I
30
40
50
60
FeF2 (mole %)
Fig. 3.13.
26
T h e System N a F - F e F T
70
80
90
Fe F2
il
U
L u u
3.14. The System Naf-NiF, R. E. Thoma, H. A. Friedman, 8. S. Landau, and W. at the Oak Ridge National Laboratory, 1957.
R. Grimes,
unpublished work performed
1
Preliminary diagram.
Invariant Equilibria Invariant
Mole % NiF2
IJ ti
in Liquid
(W
23
795
50 57
Phase Reaction
Type of Equilibrium
Temperature
at Invariant Temperature
i
Eutectic
L
e
NaF
1045
Congruent melting point
L
e
NaF*NiF2
1040
Eutectic
L
4 N a F * N i F 2 + NiFZ
+ NaF*NiF2
UNCLASSIFIED ORNL-LR-OWG 22344
4300
4 200
1100
c I;
27
3.15. The System R b F X a F ,
C. J. Barton, L. M. Bratcher, R. J. Sheil, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory,
1956.
Preliminary diagram. Invariant Equilibria Invariant
Mole % C o F 2 i n Liquid
Temperature
a t Invariant Temperature
(OC)
eRbF +
Eutectic
L
1110
Congruent melting point
L
1090
Eutectic
L e R b F * C a F 2 + CaF2
9
760
50
57
Fig.
28
Phase Reaction
Type of Equilibrium
315. T h e System RbF-CaFr
RbF*CaF2
RbF*CaF2
3.16. The System LiF-NaF-CaF, C. J. Barton, L. M. Bratcher, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1955-56. Preliminary diagram. The system LiF-NaF-CaF, contains a single eutectic at 53 LiF36 NaF-11 CaF, (mole %), m.p. 616%
bi
UNCLASSIFIED ORNL-LR-DWG 4277BR
I
LiF 845
i,
NoF '990
u 29
3.17. The System NaF-MgF2-CaF, C. J. Barton, L. M. Bratcher, J. P. Blakely, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1955-56. Preliminary diagram. invariant Equilibria Composition of Liquid (mole %)
Temperature (OC)
Type of Equilibrium
a t invariant Temperature
Solids Present
NaF
CaF2
MgF2
65
23
12
745
Eutectic
NaF, NaF*MgF2, and CaF2
35
28
37
905
Eutectic
CaF2, MgF2, and NaF*MgF2
UNCLASSIFIED ORNL-LR-DWG 475751
CaF2 4448
COMPOSITION IN mole % TEMPERATURE IN OC
A
NaF 990
830
NaF.MgF2
990
4030
Fig. 317a. The System NaF-MgF2-CaFr
30
The minimum temperature along the quasi-binary section NaF-MgF,-CaF,
occurs at the
composition 36 NaF-36 MgF,-28 CaF, (mole %), at 910째C. The existence of the compound Nai-MgF, was previously reported by A. G. Bergman and
E. P. Dergunov, Compt. tend. acad. sci. U.R.S.S. 31, 755 (1941). Ternary systems of alkali fluorides with MgF, have been reported by Bergman et al. as follows: the system LiF-NaF-MgF, by A, G. Bergman and E. P. Dergunov, Compt. rend. acad. sci. U.R.S.S. 31, 755 (1941); the system LiF-KF-MgF, by A. G. Bergman and S. P. Parlenko, Compt. tend. acad. sci. U.R.S.S. 31,818-19 (1941); the system NaF-KF-MgF, by A. G. Bergman and E. P. Dergunov, Compt. rend. acad. sci. U.R.S.S. 48, 330 (1945).
NoMgF3
10
20
30
40
50
60
70
80
90 CaF2
CoF2 (mole XI
u
31
3.18.
The System NaF-KF-AIF,
C. J. Barton, L..M. Bratcher, and W. R. Grimes, unpublished work performed a t the Oak Ridge National Laboratory, 1951-52. Preliminary diagram. No study has been made at the Oak Ridge National Laboratory of the phase relationships occurring within the system NaF-KF-AIF,. reported for the AIF, binary systems, NaF-AIF,
Phase diagrams have been
[P. P. Fediotieff and W. P. Iliinsky, Z. nnorg.
Chem. 80, 121 (1913);also N. A. Pushin and A. V. Baskow, ibid. 81, 350 (1913)l ahd KF-AIF,
[P. P. Fediotieff and K. Timofeef, Z. anorg.
u. allgem. Cbern.
206, 265 (1932)l.
UNCLASSIFIED OWG. I7406
SNaF
Fig. 3.18.
32
The System NaF-KF-AI
F,.
3.19.
The System L i F - B e F 2
This phase diagram is a composite from several published sources’-’
and from unpublished
(R. E. Moore, C. J. Barton, R. E. Thoma, and T. N. McVay) and at the Mound Laboratory (J. F. Eichelberger, C. R. Hudgens, L. V. Jones, and T. B. Rhinehammer). Thermal gradient quenching data (ORNL) and differential thermal data derived at the Oak Ridge National Laboratory
analysis data (Mound Laboratory) have served t o corroborate this composite diagram. Invariant Equilibria
% BeF2
Invariant Temperature
i n Liquid
i
IJ li
ec)
Phase Reaction
Type of Equilibrium
at Invariant Temperature
33.5*
454
Per itecti c
L
+ LiF e2LiF*BeF2
52
355
Eutectic
L
2LiF*BeF2 + BeF,
280
Upper temperature of stability for LiFoBeF,
2LiF*BeF2
+ BeF2
LiF*BeF2
*Ref 3. Roy, Roy, and Osborn have reported the presence of the compound L i F * 2 B e F 2 i n the system LiF-BeF,
although neither the Mound Laboratory nor the
ORNL data have indicated the exist-
ence of this compound. ‘D. M. Roy, R. Roy, and E. F. Osborn, J . Am. Ceram SOC. 37, 300 (1954). ,A.
V. Novosclovb, Yu. P. Simanav, and E. 1. Yarembash, J. Phys. Chem (U.S.S.R.) 26, 1244 (1952).
’John L. Speirs, The Binary and Ternary Systems Formed by Calcium Fluoride, Lithium Fluoride, and Beryllium Fluoride: Phase Diagrams and Electrolytic Studies, Ph.D. thesis, University of Michigan, May 29, 1952. UNCLASSIFIED ORNL-IR-DIG 464261
1 I
j
!
I
j i
i
I
I
I i
1 j
i I
Fig, 319. The System LiF-BeFr
33
3.20.
The System NaF-BeF, D. M. Roy, R. Roy, and E. F. Osborn, "Fluoride Model Systems:
BeF, and the Polymorphism of Na,BeF,
and BeF,,"
Ill. The System NaFJ. Am. Ceram. SOC. 36, 185 (1953).
Invariant Equilibria* Invariant
?6 BeF2 in Liquid
Temperature
Phose Reaction
Type of Equilibrium
a t Invariant Temperature
PC,
e NoF + a-2NaF*BeF2
31
570
Eutectic
L
33.3
600
Congruent melting point
L
-
320
Inversion
-
225
Inversion
43
340
Eutectic
L
50
376 & 5
Congruent melting point
L @ P'-NaF*BeF,
55
365
Eutectic
L
u-2NaF*BeF2
+a-2NaF*BeF2 +PNoF*BeF2
eP'-NaF.BeF2
*Roy, Roy, and Osborn did not l i s t invoriant equilibria; those shown ore work and from experiments performed a t the Oak Ridge National Laboratory.
34
estimates
+ BeF,
made from the reportec
iIi
u
E,: BeF2 (mole 'A)
Fig.
3.20. The
System NoF-BeFy
35
3.21. The System KF-BeF2 R. E. Moore, C. J. Barton, L. M. Bratcher, T. N. McVay, G. D. White, R. J. Sheil, W. R. Grimes,
R.
Laboratory,
E. Meadows,
and
L. A. Harris, unpublished work performed at the Oak Ridge National
1955-56.
Preliminary diagram. Invariant Equilibria
Mole % BeF, In Liquid
Invariant Temperature
a t Invariant
(OC)
19
720
Eutectic
L
K F + 3KF-BeF2
25
740
Congruent melting point
L
3KF*BeF2
27
730
Eutectic
L
3KF*BeF2+ a-2KF-BeF2
33.3
787
Congruent
L
a-2KF-BeF2
-
685
Inversion
a-2KF.BeF2
52
390
Peritectic
P-2KF*BeF2+ L
59
330
Eutectic
L
66.7
358
Congruent melting point
L
-
334
Inversion
a-KF*2BeF2 +P-KF.2BeF2
72.5
323
Eutectic
L
This system has been reported by
V. 1. Chernikh, and
E. I .
melting point
$ ,&2KF-BeF2 KF-BeF,
KF*BeF2+P-KF*2BeF2
+
a-KF*2%eF2
P-KF*2BeF2 + BeF2
M. P. Borzenkova, A. V. Novoselova, Yu.
Yarembash, “Thermal and X-Ray Analysis of the KF-BeF,
Zhur. Neorg. Khirn. 1, 2071-82 (1956).
36
Phase Reaction Temperature
Type of Equilibrium
P. Simanov, System,”
u U
UNCLASSIFIED ORNL-LR-DWG 47574R
800
700
e 600 W
5 Ia
K W
a W
500
I-
400
300
200 KF
40
20
30
40
50 8eF2 (mole
Fig. 3.21.
60
70
80
90
BeF,
%I
The System KF-BcFp.
37
!
i i
, I
1
3.22. i
The System RbF-BeF,
R. E. Moore, C. Grimes, and
i
i
R.
J.
Barton,
E. Meadows,
L. M.
Bratcher,
T. N. McVay, G. D. White, R. J. Sheil, W. R.
unpublished work performed at the Oak Ridge National Laboratory,
1955-56. Preliminary diagram.
i
i
Invariant Equilibria
Mole % BeF2 in Liquid
Invariant Temperature
Phose Reaction Temperature
Type of Equilibrium
a t Invariant
(-1
RbF + 3RbF-BeF2
16
675
Eutectic
L
25
725
Congruent melting point
L
27
720
Eutectic
L e 3 R b F * B e F 2 + 2RbF*BeF2
33.3
800
Congruent melting point
L +2RbF*BeF2
50.5
442
Peritectic
L
+ 2RbF*BeF2 +RbF-BeF2
61
383
Eutectic
L
eRbF*BeF2+ RbF*2BeF2
66.7
464
Congruent melting point
L
81
397
Eutectic
L
e3RbF*BeF2
RbF*2BeF2
e
RbF*2BeF2+ BeF2
This system has also been reported by R. G. Grebenshchikov, "Investigation of the Phase Diagram of the RbF-BeF, System and of I t s Relationship t o the BaO-SiO, System," Doklady Akad. Nauk S.S.S.R. 114,316 (1957).
38
c
Fig. X 2 2
The
System
RbF-BcFy
39
3.23. The System CsF-BeF, 0. N. Breusov, A. V. Novoselova, and Yu. P. Simanov, "Thermal and X-Ray Phase Analysis of the System CsF-BeF,
and Its Interrelationships with MeF and BeF, Systems,"
u!I
Doklady
Akad. Nauk S.S.S.R. 118, 935-37 (1958).
Invariant Equilibria Invariant
Phase Reaction Temperature
Mole % BeF2 in Liquid
Temperature
14
598
Eutectic
L
23.5
659
Peritectic
a-2Csf*BeF2 + L ---)r a-3CsF*BeF2
-
617
Inversion
a-3CsF-BeF2
33.3
793
Congruent melting point
L
-
404
Inversion
a-2CsF.BeF2
48
449
Eutectic
L $ a-2CsF*BeF2 + a-CsF*BeF2
50
475
Congruent
360
Inversion
a-CsF-BeF,
140
Inversion
P-CsF*B=F2
58.4
393
Eutectic
L
& a-CsF*BeF2 + P-CsF-2BeF2
66.7
480
Congruent melting paint
L
+a-CsF*2BeF2
-
450
Inversion
a-CsF.2BeF2
77.5
367
Eutectic
L
-
Type of Equilibrium
a t Invariant
(Oc)
melting point
L
e CsF +P-3CsF*BeF2 P-3CsF*BeF2
& a-2CsF*BeF2 p-2CsF.BsF2
a-CsF.BeF2
---\ ,&CsF-BeF2 y-CsF-BeF2
P-CsF*2B;F2
& P-CsF*2BeF2+ BeF2
G
6
40
li
UNCLASSIFIED ORNL-LR-DWG 35484
900
800
700
400
300
200
400 CsF
u
40
20
30
40
50
60
10
80
90
BeFz
BeF2 (mole 70)
Fig.
323. t h e System CsF-BeF,
41
I
3.24.
The System LiF-NaF-BeF,
T. N.
R. E. Moore, C. J. Barton, W. R. Grimes, R. E. Meadows, L. M. Bratcher, G. D. White, McVay, and
L. A. Harris, unpublished work performed at the Oak Ridge National Laboratory,
1951-58. Preliminary diagram. lnvariant EquiIibria* Composition of Liquid (mole %)
Invariant
Temperature
Solids Present Point
Type of Equilibrium
a t Invariant
LiF
NaF
BeF2
!*I
15
58
27
480
Eutectic
NaF, LiF, and 2NaF*BeF2
23
41
36
328
Eutectic
LiF,'2NaF*BeF2, and 2NaF*LiF*2BeF2
20
40
40
355
Congruent melting point
2NoF-LiF*2BeF2
5
53
42
318
Eutectic
NaF.BeF2, 2NaF-BeF2, and 2NaF*LiF*2BeF2
31.5
31
37.5
315
Eutectic
2LiF*BeF2, LiF, and 2NaFoLi F*2BeF2
~
i
*Invariant
equilibria shown in the phase diagram by the intersections of dotted-line boundary curves
hove not been determined with sufficient precision to be listed in the table.
Minimum Temperature on Alkcmade Lines ~
I
,
Composition of Liquid (mole %)
I ~
I
Temperature
Alkemade Line
BeF2
(*I
56
28
485
26
37
37
340
11
44
45
332
Na F*BeF2-2Na F - L iF-2BeF2
16
45
39
343
2NaF*BeF2-2NaF*LiF*2BeF2
30.5
31
38.5
316
2LiF*BeF2-2NaF*LiF*2BeF2
LIF
NaF
16
I
1 I 1
2NaF.BeF2-LiF 2NaF*LiF*2BeF2-Li F
Phase relationships of two of the ternary compounds i n this system have been reported by
W.
John
P'Sil icate
Z. anorg.
Models.
u. allgem. Chem.
V. NaLi(BeF,),
a Model Substance for Monticellite, CaMg(Si0,):"
276, 113-27 (1954);
Compound i n the Ternary System NaF-LiF-BeF,,
Z. anorg. u. allgem. Chem. 277, 274-86 (195411.
''Silicate Models.
VI.
No,Li(BeF,),,
and I t s Relation t o Merwinite;
a New
CO~M~(S~O~)~,''
UNCLASSIFIEO ORNL-LR-OWG 164241
BeF2 542
DOTTED LINES REPRESENT INCOMPLETELY DEFINED PHASE BOUNDARIES AND ALKEMADE LINES
TEMPERATURE ('C) COMPOSITION (mole 70)
f
I;;
u Fig. 3.24.
The System LIF-NaF-BeFr
43
c
3.25. The System LiF-RbF-BeF, T. B. Rhinehammer, D. E. Etter, C. R. Hudgens, N. E. Rogers, and P. A. Tucker, unpublished
s
work performed at the Mound Laboratory. Preliminary diagram.
Invariant Equilibria and Singular Points Composition of Liquid (mole 95)
Temperature
(Oc)
Type of EquiIibr ium
LiF
RbF
BeF2
40.0
20.0
40.0
485 f 5
Congruent melting point
33.3
33.3
33.3
544 f 5
Incongruent melting point of LiF-RbF*BeF2
33.0
8.0
59.0
295
26.0
12.0
62.0
305-320
12.0
29.0
59.0
334
f5
f5
Solid Phases Present
G E
2LiF*RbF*2BeF2
Eutectic
2 L i F*BeF2, 2Li F-RbF.2Be F2, and Be F2
Peritectic
2L iF*RbF*2BeF2, RbF-2Be F2, and Be F2
Quasi-binary
2LiF*RbF*2BeF2 and RbF*2BeF2
eutectic
34.0
55.0
300 f 5
Eutectic
2LiF.RbF*2BeF2, RbF*BeF2, and RbF*2BeF2
11.5 . 35.5
53.0
335 f 5
Per itectic
2LiF*RbF*2Be F2, LiF*RbF*BeF2, and RbF-BeF
9.0
40.0
51.0
380 f 5
Peritectic
LiF*RbF-BeF2, 2RbF*BeFZ. and RbF*BeF2
50.0
8.0
42.0
426 f 5
Peritectic
LiF, 2LiF.RbF.2BeF2,
41.5
19.5
39.0
473
Quasi-binary
L i F and 2LiF*RbF*2BeF2
11.0
f5
and 2LiF*BeF2
eutectic
35.0
25.5
39.5
470
f5
Per itectic
L iF, 2L iF-RbF.2Be F2, and L iF-RbF-BeF2
23.0
40.0
37.0
530 f 5
Peritectic
LiF, 2RbF*BeF2, and LiF*RbF.BeF2
30.0
35.0
35.0
544 f 5
Maximum on the boundary
L i F and LiF*RbF*BeF2
41.0
39.5
19.5
640 f 5
Quas i-binary eutect ic
L i F and 2RbF*BeF2
43.0
50.0
7.0
527 f 5
Peritectic
LiF, 3RbF*BeF2, and 2RbF*BeF2
43.0
54.0
3.0
470
f5
Per itect i c
LiF, LiF-RbF, and 3RbF*BeF2
43.0
55.0
2.0
462 f 5
Eutect i c
LiF-RbF, RbF, and 3RbF*BeF2
L;
L
u 44
UNCLASSIFIED ORNL-LR-DWG 30413
TEMPERATURE O C COMPOSITION mole %
LiF
u
LiRbF, p E
RbF
Fig. 325. The System LiF-RbF-BeFr
E
45
3.26. The System NaF=KF-BeF,
R. E. Moore, C. J. Barton, L. M. Bratcher, T. N. McVay, and Vi. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1952-55. Prel iminary diagram.
Phase relationships within the system NaF-KF-BeF,
hava not yet
become so well defined at the Oak Ridge National Laboratory that the compositions and temperatures of the invariant points may be listed.
UNCLASSIFIED ORNL-LR-DWG 38414
Be F.
TEMPERATURE I N O C COMPOSITION IN mole 7�
NaF
KF
990
E-710
Fig.
46
3.26.
The System NaF-KF-BeFr
856
I
I! i
Lu
3.27. The System NaF-RbF-BeF2 R. E. Moore, C. J. Barton, L. M.
Bratcher, and W.
at the Oak Ridge National Laboratory,
1954-57.
R.
Grimes, unpublished work performed
Preliminary diagram. Invariant Equilibria and Singular Points Composition of Liquid (mole Sa)
Temperature Type of Equilibrium
ec,
Solids Present at Invariant Temperature
NaF
RbF
BeF2
20.5
68.5
11.0
610
Eutectic
RbF, NaF, and 3RbF*BeF2
50
37.5
12.5
640
Quasi-binary eutectic
3RbF*BeF2 and NaF
46
38
16
635
Eutectic
3RbF*BeF2, 2RbF*6eF2, and NaF
45
37
18
650
Quasi-binary eutectic
2RbF*BeF2 and NaF
37
33
30
570
Peritectic
2RbF*BeF2, NaF, and 2NaF*4RbF*3BeF2
52
15
33
477
Eutectic
2NaF*4RbF*3BeF2, NaF, and 2NoF*BeF2
33
33.7
33.3
580
Peritectic
2RbF-BeF2 and 2NaF-4RbF*3BeF2
51.7
15
33.3
480
Quos I-b inary eutect i c
2Na F 4 RbF*3BeF and 2Na F. BeF
UNCLASSIFIEO ORNL-LR-DWG 22343A2
BE BP CM IM TE TP
BINARY EUTECTIC BINARY PERlTECTlC CONGRUENT MELTING POINT INCONGRUENT MELTING POINT TERNARY EUTECTIC TERNARY PERITECTIC
TEMPERATURES ARE IN OC COMPOSITION IN mole 7 '.
BeF2 CM 543
A
BE
CM 786
CM 992
Fig. 327. The System NaF-RbF-BcF1
47
3.28. The System NaF-ZnF, C. J. Barton, L. M. Bratcher, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1952. Preliminary diagram. lnvar iant Equ iI ibr ia Invariant
Mole % Z n F 2 i n Liquid
Temperature
33
635
50
748 f 10
69
685
Phase Reaction
Type of Equilibrium
at Invariant Temperature
(OC)
e
+ NaF*ZnFp
Eutectic
L
Congruent melting point
L $ NaF-ZnF2
Eutectic
L
NaF
NaF*ZnF2
+ ZnF2
UNCLASStF DWG 14627
I
I
6oF
I
I
I
I
I
I
LN N
r;
5 00
z
Fig.
48
I
3.28,
The System N a F - Z n F y
r ci� L1
3.29.
The System C.
Ridge
J.
Barton,
National
breliminary
KF-ZnF, L.
M. Bratcher,
Laboratory,
and W. R. Grimes,
unpublished
work
performed
at the Oak
1952.
diagram.
Invariant
Equilibria
Invariant Mole
% ZnF2
Temperature
Type
of
Phase
Equilibrium ot
in Liquid
Reaction
Invariant
Temperature
PC)
21
670
Eutectic
L ~KF L + K F*ZnF
30
720
f
10
Peritactic
50
850
f
10
Congruent
80
740
f
5
Eutectic
melting
point
L
+ 2KF.ZnF2 2 e2KF*ZnF2
eKF*ZnF2
L ---\K
F*ZnF2
+ ZnF2
UNCLASSIFIED DWG (46261
I
‘300
KF
I 10
I
I
I
I
I
I
I
I
I
30
40
50
80
70
80
90
I20
Fig. 3.29.
The
System
I
ZtlF5!
KF-ZnF,
49
-_--_.
____
3.30. The System RbF-ZnF,
R.
C. J. Barton, L. M. Bratcher, and W. Ridge National Laboratory,
Grimes, unpublished work performed a t the Oak
1952.
Preliminary diagram.
Invariant Equilibria Invariant
Mole % ZnF2 in
Type of Equilibrium
Temperature
Liquid
at
Phase Reoction Invariant Temperature
21
595
f 10
Eutectic
32
620
f
Peritectic
eRbF + 2RbF*ZnF2 L + RbF*ZnF2 e2RbF*ZnF2
50
730
f 10
Congruent melting point
L
Eutectic
L $RbF*LnF2 + ZnF2
70
10
650
L
RbF-ZnF2
UNCLASSIFIED DWG (5349 R
1
I 900
800
V
W
a
3
5
700
a W
n
5 I-
600
c
LLN
N
N
500
LL
LL
n
n
LL
IY
N
400
RbF
40
20
40
30
50
60
ZnF2 (mole %)
Fig.
50
3.30.
The System RbF-ZnFT
70
80
90
ZnF2
a,
C. F. Weaver, and H. A. Friedman, unpublished work performed at the Oak
Invariant Equilibria
--Type of Equilibrium
Temperature
I,
at
Phase Reaction lnvoriant Temperature
Eutectic
L
e LiF + LiF*YF3
Peritectic
L+YF3eLiF*YF3
UNCLASSIFIEO ORNL-LR-DWG 38116
i400 BREWER. i 8 7 O
0
/
7
(300 RESULTS FROM THERMAL-GRADIENT QUENCHING EXPERIMENTS
(100
4000
LiF
20
30
Fig. 3.31.
40
50
60
YF3 (mole %)
70
80
90
yF3
The System LiF-YFo.
51
3.32. The System LiF-ZrF, R. E. Moore, F. F. Blankenship,
W. R.
H. A.
C. J. Barton, R. E. Thoma, and H. Insley, unpublished 'work performed at the Oak Ridge National Laboratory, 1951-56. Grimes,
Friedman,
Preliminary diagram.
Invariant Equilibria
Mole % ZrF, in Liquid
52
Invariant Temperature
Phase Reaction Temperature
T .. w e of Eauilibrium
at Invariant
(OC)
21
598
Eutectic
L
e L i F + a-3LiF*ZrF4
25
662
Congruent melting point
L
a-3LiF*ZrF4
-
475
Inversion
a.3LiF*ZrF4
---\ P 3 L i F * Z r F 4
470
Decomposition
/Ot3LiF*ZrF4
e L i F + 2LiF-ZrF,
29.5
570
Eutectic
L
a-3LiF*ZrF4 + 2LiF*ZrF4
33.3
596
Congruent melting point
L
2LiF*ZrF4
49
507
Eutectic
L
& 2LiF*ZrF4 + 3LiF*4ZrF4
51.5
520
Peritectic
L
+ ZrF, & 3LiF*4ZrF4
-
466
Decomposition
3LiF*4ZrF4
e 2LiF*ZrF4 + ZrF,
tl cl
UNCLASSIFIED ORNL-LR-DWG
l695t
900
L1
t
w I-
600
500
400
300
LIF
IO
20
30
Fig. 3.32.
40
50 ZrF, (mole%)
60
70
80
90
ZrF,
The System LiF-ZrF,.
53
3.33. The System NaF-ZrF, C. J. Barton, W. R. Grimes, H. Insley, R. E. Moore, and R. E. Thoma, “Phase Equilibria in thesystems NaF-ZrF,,
UF4-ZrF,,
and NaF-ZrF,-UF,,”
J. Phys. Chem. 62,665-76 (1958).
Invariant Equilibria _ _
lnvar iant .
Mole % z1F4 in Liquid
Temperature
Type of Equilibrium at
(“c,
Phase Reaction Invariant Temperature
20
747
Eutectic
L
eNaF + 3NaF-ZrF4
25
850
Congruent melting paint
L
3NaF*ZrF4*
-
523
lnvers ion
a-5NaF-2ZrF4 $ P-5NaF*2ZrF4
30.5
500
Eutectoid
a-5NaF*2ZrF4ss + 3/-2Na F*ZrF,
34
640
Per itectic
L
+ 3NaF.ZrF4(ss, cu. 27.5 Zr F), .& a 3 N a F.2Zr F4
39.5
544
Per itect ic
L
+ a-5NaF*2ZrF4(ss, 30 mole % ZrF4) $ a-2NaF*ZrF4
533
Inversion
a-2NaF*ZrF4 &P-2NaF*ZrF4
505
lnvers ion
P-2NaF*ZrF4
40.5
500
Eutectic
L *Y2NaF-ZrF4
46.2
525
Congruent melting point
L
e 7NaF-6ZrF4
49.5
512
Eutectic
L
e7NaF*6ZrF4 + 3NaF*4z1F4
56.5
537
Peritect i c
L
+ ZrF4
-
+
mole %
Y2NaF*ZrF4
+ 7NaF-6ZrF4ss
e3NaF*4ZrF4
*A determination of the crystal structure of 3NaF*ZrF4 has been reported by Structures of Na3ZrF7 and Na3HfF7,” Acta Cryst. 12, 172 (1959).
54
P-5NaF*2ZrF4
L. A. Harris, “The Crystal
E
UNCLASSIFIED ORNL-LR-OWG-22i05
f000
900
800
-u
0
700
W
E
3
5 i a w
2
600
W
+ 500
400
55
L f"
3.34. The System KF-ZrF, C. J. Barton, H. Insley, R. P.
Metcalf,
R. E. Thoma, and W. R. Grimes, unpublished work
performed at the Oak Ridge National Laboratory,
1951-55.
Gd
c
Prel iminary diagram. Invariant Equilibria
LI
Invariant
Mole % ZrF4 in Liquid
Temperature
Type of Equilibrium at
(OC)
Phase Reaction Invariant Temperature
14
765
Eutectic
L
e K F + 3KF*ZrF4
25
910
Congruent melting point
L
3KF*ZrF4
36
590
Peritectic
3KF*ZrF4 + L
40.5
412
Peritectic
2KF*ZrF4 + L
42
390
Eutectic
L
e 3KF*2ZrF4 + KF*ZrF4
50
475
Congruent melting point
L
e KF.ZrF4
55
440
Eutectic
L
& 2KF*ZrF4 3KF*2ZrF4
KF*ZrF4+ ZrF4
UNCLASSIFIED 48965 ORNL-LR-DWG
I000
900
000
0
0
w 700
a
3 + a
a W a
5I- 600 500
400
300 KF
10
20
30
40
50
60
ZrFg (mole Yo)
Fig. 3.34
56
The System KF-ZrF+
70
00
90
ZrG
a,
C. J. Barton, W. R, Grimes, H. Insley, B. S. Landau, and H. A.
erformed at the Oak Ridge National Laboratory, 1955-56.
Invariant Equilibria
Type of Equilibrium at
897
.
Phose Reaction Invariant Temperuture
Congruent melting point
L
3RbF*ZrF4
Per itectic
L
lnvers ion
u-2RbF*ZrF4
Lowered inversion
F4ss ~-2RbFaZr
+ 3RbF*ZrF4ss $a-2RbF*ZrF4
and decomposition L
P-2RbF*ZIF4
+P-2RbF*ZrF4ss
u-2RbF*ZrF4ss + 5RbF*4ZrF4
390
Eutectic
---\ 5RbF*4ZrF4 L & SRbF*4ZrF4 + P-RbF*ZrF4
L-
423
Congruent melting point
L $&-RbF*ZrF4
391
Inversion
a-RbF*frF4
L-
400
Eutact ic
L
Congruent melting point
L
P-RbF*ZrF4
+a-RbF*ZrF4 + RbF*2ZrF4
t L
57
I
3.36. The System CsF-ZrF, C. J. Barton, L. M. Bratcher, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, Pre Iiminary
1952-53.
d iagram. 1
lnvariant Equilibria
Mole % ZrF4 in Liquid
58
Invariant Temperature
e)
Phase Reaction Temperature
Typc of Equilibrium
at lnvariant
L
CsF + 3CsF*ZrF,
L
3CsF*ZrF4
9
640
Eutectic
25
775
Congruent
35
520
Per itectic
L + 3CsF-ZrF4 f=! 2CsF*ZrF4
40
420
Eutectic
L
50
515
Congruent melting point
L
-
320
h e r s ion
a-Cs F-Zr F,
59
470
Eutectic
L
melting point
& 2CsF-ZrF, + a-CsF*ZrF4 a-CsF-ZrF, p-Cs F-ZrF,
a-CsF*ZrF4 + ZrF,
UNCLASSIFIED ORNL-LR-DWG 18963
Io00
T
900
800
-Y
700
z
W
a + 3 a a W
600
2 500
400
I
30C CsF
10
20
30
40
50
60
70
80
90
ZrF4
ZrF, (mole %)
Fig.
U
L36.
The System CsF-ZrF4.
59
3.37. The System
LiF-NaF-ZrF,
F. F. Blankenship, H. A. Friedman, H. Insley, R. work performed at the Oak Ridge National Laboratory,
E.
Thoma, and
W. R.
Grimes, unpublished
1953-59.
Pre I i m inary diagram.
lnvariant EquiI ibria Composition of Liquid (mole X)
Temperature
ec,
Type of lnvar iant
0 at
Solids Present Invariant Temperature
LiF
NaF
ZrF4
37
52
11
604
Eutectic
NaF, LiF, and 3NaF*ZrF4
55
22
23
590
Eutectic
a9LiF*ZrF4, 3NaF*ZrF4ss, and L i F
32
36
32
450
Peritectic
p-3L iF*ZrFa, 3Na F*ZrF4ss, and 2 L i F*ZrF4
31
35
34
448
Per itectic
3NaF*ZrF4, ~-5NaF-2ZrF4ss, and 2LiF-Zr F4
31
34.5
34.5
445
Per itectic
2Na F-Zr F ,,
26
37
37
425
Eutectic
2NaF*ZrF4, 7NaF*6ZrF4, and 2LiF.ZrF4
29
25.5
45.5
449
Eutectic
7NaF*6ZrF4, 3NaF*4ZrF4ss, and 2LiF*ZrF4
29
24.5
46.5
453
Per itect i c
3NaF*4ZrF4ss, 3LiF*4ZrF4ss, and 2LiF-ZrF4
28
24
48
475
Peritectic
3Na F-4Zr F4ss, 3L iF-4Zr F4ssl and Zr F4
60
a 4 N a F*2ZrF4ss, and 2 L i F-Zr F,
c
UNCLASSIFIED
ORNL-LR- DWG 38445
ZrF, 942
TEMPERATURE IN "C COMPOSITION IN mole %
&800+
-"HHlNDlCATES
SOLID SOLUTION
61
3.38. The System NaF-KF-ZrF, R. E. Thoma, C. J. Barton, H. Oak
performed at the
Insley,
H. A.
Ridge National Laboratory,
Friedman, and
W. R. Grimes, unpublished work
1951-55.
Preliminary diagram. Invariant Equilibria* Composition of Liquid
(mole %I** ZrF4
Invariant Temperature
Type of Equilibrium
Solids Present a t Invariant Point
ec I
NaF
KF
34
58
8
695
Eutectic
NaF, KF, and 3KF*ZrF4
45
38
17
720
Eutectic
NaF, 3KF*ZrF4, and 3NaF*3YF*2ZrF4
61
19
20
710
Eutectic
NaF, 3NaF-ZrF4, and 3NoF-3KF*2ZrF4
52
17
31
Peritectic
48
18
34
Peritectic
33
32
35
Per itectic
3NaF*ZrF4, 3NaF*3KF.2ZrF4, and NaF*KF*ZrF4 3NaF.ZrF4, Na F*KF*ZrF4, and 5NaF*2ZrF4 3NaF*3KF.2ZrF4, 3KF*ZrF4, and NaF*K F-ZrF4
12
51
37
Peritectic
3KF*ZrF4, 2KF-ZrF4, and NaF.KF.ZrF4
40
21
39
Peri t e c t i c
5NaF.ZZrF4, 2NaF*ZrF4, and NaF.KF.ZrF4
39
21
40
Peritectic
2NaF*ZrF4, 7NaF.6ZrF4, and NaF*KF-ZrF4
11
49
40
Peritectic
2KF*ZrF4, 3KF*2ZrF4, and NaF*KF*ZrF4
10
48
42
Eutectic
3KF*2ZrF4, KF*ZrF4, and NaF*KF*ZrF4
15
40
45
Eutectic
KF*ZrF4, NaF*KF.ZrF4, and 2NaF-3KF.5ZrF4
22
33
45
Peritectic
NaF.KF*ZrF4, 7NaF*6ZrF4, and 2Na F.3 KFa5Zr F4
25
25
50
Eutectic
7NaF*6ZrF4, 3NaF*4ZrF4, and 2NaF*3KF.5ZrF4
21
29
51
Eutectic
3NaF*4ZrF4, ZrF4, and 2Na F.3KF-5Zr F4
20
30
50
Congruent melting point
2Na F*3KF 4 Z r F4
385
432
*Three solid phases hove been observed routinely in the composition region 30-50 mole % ZrF4 which have not been identified as t o composition. Whether these exhibit primary phases at the liquidus surface has not yet been determined. **Compositions of invariant points shown by the intersection of dotted boundary curves are approximate.
62
UNCLASSIFIED
ORNL-LR-DWG 35480
ZrG 912
TEMPERATURE IN OC COMPOSITION IN mole%
A. ZNaF.3KF-5ZrG
E. NaF.KF.Zr5 C. 3NOF.3KF.ZZrF,
KF
856
for the temperatures 600, 650, and 7OO0C
itted in order not to obscure the phase
63
3.39. The System NaF-RbF-ZrF, R. E. Thoma, H. Insley, H. A. Friedman, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1951-56. Preliminary diagram. Invariant Equi Iibrio Composition of Liquid
,
bole%)
NaF
RbF
23
Invariant Temperature
Type of Equilibrium
Solids Present a t Invariant Point
ZrF4
eC)
72
5
643
Eutectic
NaF, RbF, and 3RbF*ZrF4
50
27
23
720
Eutect i c
NaF, 3RbF*ZrF4, and 3NaF-ZrF4
37
32
31
605
Eutectic
3NaF*ZrF4, 3RbF*ZrF4, and NaF-RbF*ZrF4
39
26
35
545
Per itect i c
3NaF*ZrF4, 5NaF-2ZrF4, and NaF*RbF*ZrF4
36.3
24.2
39.5
427
Peritectic
5NaF*2ZrF4, PNaF-ZrF,, NaF*RbF*ZrF,
34.5
24
41.5
424
Peritectic
2NaF-ZrF4, NaF-RbF-ZrF,, 3NaF.3RbF.4ZrF4
34
23.5
42.5
422
Peritectic
2NaF*ZrF4, 7NaF*6ZrF4, and 3NaF.3RbF*4ZrF4
33
23.5
43.5
420
Eutectic
7NaF*6ZrF4, 3NaF*3RbF*4ZrF4, and NaF*RbF*2ZrF4
28.5
21.5
50
443
Eutectic
3NaF.4ZrF4, 7NaF.6ZrF4, and NaF*RbF*2ZrF4
28
21.5
50.5
446
Peritectic
3NaF*4ZrF4, ZrF4, and NaF*RbF*2ZrF4
23.5
39.5
37
470
Peritectic
NaF-RbF-ZrF,, 3RbF.ZrF4
21
40
39
438
Peritectic
NaF-RbF-ZrF,, 2RbF.ZrF4, and 3Na F*3RbF*4ZrF4
8
50
42
400
Eutectic
3NaF-3RbF-4ZrF4, 2RbF-ZrF4, and 5RbF*4ZrF4
8.5
47
44.5
395
Eutectic
3NaF*3RbF*4ZrF4, 5RbF*ZrF,, NaF-RbF-2ZrF4
6.2
45.8
48
380
Eutectic
NaF.RbF*2ZrF4, 5RbF*4ZrF4, and RbF*ZrF4
5
42
53
398
Eutectic
NaF-RbF*2ZrF4, RbF*ZrF4, and RbFg2Zr F4
6.5
39
54.5
423
Per itact i c
ZrF4, NaF*RbF*2ZrF4, and RbF*2ZrF4
33.3
33.3
33.3
642
Congruent meltin point
NaF-RbF-ZrF4
25
25
50
462
Congruent melting point
NaF*RbF*2ZrF4
64
and and
2RbF*ZrF4, and
and
Minimum Temperatwes on Alkemade l i n e s
Composition of Liquid (mole %)
Temperature
Alkemade L i n e
Na F
RbF
Zr F4
e,
24.75
24.75
51.5
455
NaF*RbF*2ZrF4-Zr F4
6
44
50
402
NaF*RbF*2ZrF4-RbF*ZrF4
7.5
46.5
46
405
No F*RbF.2Zr F4-5Rb F.4Zr F4
8.5
48.5
43
405
3Na F*RbF*4ZrF4-5RbF*4Zr F4
213
28
44
435
3NaF*RbF*4ZrF4-Na F-RbF*2ZrF4
22
40
38
442
3NaF*3RbF*4ZrF4-2Rb F-Zr F4
29
41.5
49.5
450
No F-RbF-2Zr F4-7Na F-6Zr F,
37
24.5
38.5
610
NaF*RbF*ZrF4-3NaF*ZrF4
47
28
25
732
3NaF*ZrF4-3RbF*ZrF4
36
48
16
777
NaF-3RbF*ZrF4
30
36.7
33.3
598
NaF*RbF*ZrF4-3RbF*ZrF4
‘
UNCLLSSIFIED
ORNL-LR-DWG 1696OA
ZrFq 940
Fig. 3.39. The System NaF-RbF-ZrFC
LW 65
3.40. The System NaF-CrF2-ZrF,: R. E. Thoma, H. A. Friedman,
The Section NaF-CrF,
B. S.
-
ZrF,
Landau, and W. R. Grimes, unpublished work performed
at the Oak Ridge National Laboratory, 1956-57. Preliminary diagram.
No invariant equilibria occur for compositions lying on the section
NaF-CrF,-ZrF,.
UNCLASSIFIED ORNL-LR-DWG (9367R
4000
900
800
c
0 W
a 3 $ 700
E
a
5
I-
600
E 500 NaF*CrF2+ ,9-NoF.CrF2. 2ZrF4
400 NaF-CrF2
$0
20
30
,9-NaF.CrF2.
40
50
60
ZrF4 (mole %)
Fig. 3.40.
66
The Section NaF*CrF2-ZrF+
70
2ZrF4 +ZrF4
80
90
ZrF4
3.41. The System NaF-CeF,-ZrF,
W. T. Ward, R. A. Strehlow, W. R. Grimes, and G. M. Watson, “Solubility Relationships of Rare Earth Fluorides and Yttrium Fluoride in Various Molten NaF-ZrF,
and NaF-ZrF4-UF,
Solvents,” J . Chem. Eng. Data (in press). UNCLASSIFIED ORNL-LR-DWG 29164R
\
NoF (99OOC)
‘600°C
50 70
Fig. 3.41~. The S y s t e m NaF-CeF3-ZrFC UNCLASSIFIED ORNL-LR-DWG 2 9 4 6 5 R
PROBABLE NoF- ZrFq PRIMARY P H A S E FIELDS
2NaF. ZrFq
A
B 3NaF.4ZrF4 C 7NaF.6ZrFq
E
SNaF.2ZrFq F 3NaF+ZrF4
20 I\
Fig. 341b. The System NaF-CeFj-ZrF4 0-20 Mole 96 CeF3, 30-70 Mole X ZrFC
in the Region 30-70 Mole X NaF,
67
3.42. The System LiF-CeF,
C. J. Barton, L. M. Bratcher, R. J. Sheil, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1956-57. Preliminary diagram. The system LiF-CeF, contains a single eutectic at 81 LiF-19 CeF, (mole %), m.p. 755 *5OC.
68
L
Fig. 3.42
The
System LiF-GFT
69
3.43. The System NaF-HfF, R. E. Thoma, C.
F. Weaver, T. N.
McVay,
H. A.
Friedman, and W.
R. Grimes, unpublished
work performed at the Oak Ridge National Laboratory, 1956-58. Preliminary diagram.
Invariant Equilibria
'
Invariant
Phase Reaction Invariant Temperature
MoleHfF4 in Liquid
Temperatwe
18.5
695
Eutectic
L
e NaF + 3NaF*HfF4
25
863
Congruent melting point
L
3NaF*HfF4*
34
606
Per itect i c
L
-
535
Inver s ion
U J N ~ F - P H ~ F ~ ,8-5NaF.2HfF4
35
586
Peritectic
L
Be low 350
lnvers ion
P-2NaF*HfF4
eY-2NaF*HfF4
Below 350
Inversion
')'-2NaF*HfF4
4 8-2NaF*HfF4
43
510
Eutectic
L
4 ,8-2NaF*HfF4 + 7NaF*6HfF4
45
53 1
Per itect ic
L
+ NaF-HfF,
50
557
Congruent melting point
L
$NaF-HfF,
53
535
Eutect ic
L
.$
-
Type of Equilibrium at
(-1
+ 3NaF*HfF4 +U - S N ~ F - P H ~ F ~ + aJNaF*2HfFq__I P-2NaF-HfF4
B
+7NaF*6HfF4
NaF-HfF,
+ HfF4 .
* A determination of the crystal structure of 3NaF*HfF4 has been reported by L. A. Harris, "The Crystal Structures of Na3ZrF7 and Na3HfF7," Acta Cryst. 12, 172 (1959).
U
70
UNCLASSIFIED ORNL-LR-DWG 35488
71
3.44. The System LiF-ThF,
R. E. Thoma, H. Insley, B. S. Landau, H. A. Friedman, and W. R. Grimes, "Phase Equilibria in
the Fused Salt Systems LiF-ThF,
and NaF-ThF,,"
J . Phys. Chem. 63, 1266-74 (1959).
Invariant Equilibria Invariant
Mole % ThF,
Temperature
Phase Reaction
Type of Equilibrium
at Invariant Temperatue
in Liquid -~
-
23
568
Eutectic
L
+ L i F + 3LiF*ThF4
25
573
Congruent melting point
L
e 3LiF*ThF4
29
565
Eutectic
L
+ 3LiF*ThF4+ 7LiF*6ThF4
30.5
597
Per itectic
LiF*2ThF4 + L
7LiF*6ThF4
42
762
Peritectic
LiF*4ThF4 + L
LiF-2ThF4
62
897
Per itectic
ThF4 + L
LiF*4ThF4
UNCLASSIFIED ORNL-LR-DWG 2 6 5 3 5 A
4450 1050
9 -
950
W
[ZI
2
850
W
a 750 2 W
I-
650
550 450 LiF
40
20
30
40
50
60
ThG (mole X ) Fig. 34d. The System LiF-ThF+
72
70
80
90 ThG
3.45. The System MaF-ThF,
R. E. Thoma, H. Insley, B. S. Landau, H. A. Friedman, and W. R. Grimes, "Phase Equilibria in the Fused Salt Systems LiF-ThF, and NaF-ThF,," J . Phys. Chem. 63, 1266-74 (1959). Invariant
Equilibria
Invariant
"le
% ThF4 in Liquid
Temperature
Phase Reaction Temperature
Type of Equilibrium
at Invariant
(-1
ea-4NaF*ThF4
21.5
645
Per i t e c t i c
NaF + L
22.5
618
Eutectic
L
604
Inversion
a-4Na F*ThF,
&Na
558
Decomposition
@-4NaF*ThF4
NaF + 2NaF*ThF4
33.3
705
Congruent melting point
L -L2NaF*ThF4
37
690
Eutectic
L
40
712
Congruent melfing point
L
e 3NaF-2ThF4
41
705
Eutectic
L
e 3NaF-2ThF4 + a-NaF*ThF4
-
683
Decomposition
3NaF*2ThF4
45.5
730
Peritectic
NaF*2ThF4 + L&
58
83 1
Per itect ic
ThF,
-
eaJNaF*ThF,
+ 2NaF*ThF4 F*ThF,
e2NaF*ThF4 + 3NaF*2ThF4
e 2NaF*ThF4 + U-NaF-ThF, U-NaF-ThF,
+ L $NaF*2ThF4 UNCLASSIFIED ORNL-LR-DWG 2 8 5 2 8 A R
li
u I
20
30
Y
1
60
70
80
90
Thb
ThG (mole 70) Fig. 3.45.
iI
40
The System NaF-ThF,.
73
The System KF-ThF, W. J. Asker, E. R. Segnit, and A. W. Wylie, "The Potassium Thorium Fluorides," J . Chem.
3.46.
SOC. 1952,4470-79.
This system has
also
been reported by A. G. Bergman and E. P. Dergunov, Doklady Akad.
Nauk S.S.S.R. 53, 753 (1941) and by V. S. Emelyanov and A. J. Evstyukhin, "An Investigation
Fused-Salt Systems Based on Thorium Fluoride ThF,," J . Nuclear Energy 5, 108-14 (1957). of
- II.
NaF-KF-ThF,,
NaF-ThFi, and KF-
Invariant Equilibria Invariant
Temperatue
14
694
Eutectic
L
635
Inversion
U-5KF*ThF4
712
Peritectic
L
+ JKF-ThF,
25
865
Congruent melting point
L
e3KF-ThF4
-
570
Decomposit ion
3KF*ThF4 & ,&5KF*ThF4 +P-2KF*ThF4
31
691
Eutectic
L *3KF*ThF4
-
747
Peritectic
-
645
Inversion
+ KF*ThF4 eu-2KF*ThF4 u - ~ K F - T ~ F& , P-2KF*ThF4
50*
905
Congruent melting point
L
56
875
Eutectic
e KF-ThF, L e KF-ThF, + KF-PThF,
66
930
Per itect ic
L
+ KF.3ThF4
75
990
Congruent melting point
L
& KF-3ThF4
78
980
Eutectic
L
-
e,
Type of Equilibrium
Phase Reaction Invariant Temperatue
% ThF4 in Liquid
at
KF
+ P-5KF*ThF4 P-5KF*ThF4 a-5KF*ThF4
+ U-2KF*ThF4
L
eKF*2ThF4
KF*3ThF4 + ThF4ss
*It has been shown that the compound labeled by Asker e t al. has the actual formula 7KF*6ThF4; cf. R. E. Thoma, Crystal Stnutwes of Some Compounds of UF4 and ThF4 with Alkali Fluorides, ORNL CF-58-1240 (December 11, 1958).
74
UNCLASSIFIED ORNL-LR-DWG (8966
1200
1100
/ i
7\ -
IO00
9 -
/
\'
900
7 \
3 K
t 6 a
p 800 700
600
500 KF
10
20
30
40
50
60
70
80
90
ThF4
ThF, (mole % )
75
E 3.47. The System RbF-ThF,
E. P.
A. G. Bergman, “Complex Formation Between Alkali Metal Fluorides and Fluorides of Metals of the Fourth Group,” Doklady Akad. Nauk S.S.S.R. 60, 391-94 (1948). Dergunov and
Invariant Equilibria Invariant
Mole % ThF, in Liquid
Temperature
Type of Equilibrium at
(OC)
Phase Reaction Invariant Temperature
_ _ _ _ _ ~ -~
+ 3RbF*ThF4
15
664
Eutectic
L
25
974
Congruent melting point
L *3RbF*ThF4
37
76 2
Eutectic
L
---\
50
852
Congruent melting point
L
e RbF-ThF,
54
848
Eutectic
L
75
1004
Congruent melting point
L
e RbF*3ThF4
80
1000
Eutectic
L
e RbF*5ThF4 + ThF,
RbF
3RbF*ThF4
RbF*ThF4
+ RbF-ThF,
+ RbF*3ThF4
UNCLASSIFIED ORNL-LR-DWG 20464
ThF4 (mole
Fig. 3.47.
76
yo)
The System RbF-ThF4.
3.48. The System BeF,-ThF, R. E. Thoma, H. Insley, H. A. Friedman, and C. F. Weaver, "Phase Equilibria in the Systems of
BeF,-ThF,
and LiF-BeF2-ThF,,"
paper to be presented at the 136th National Meeting
the American Chemical Society, Atlantic City, N. J., Sept. 13-18, 1959. The system BeF,-ThF,
contains a single eutectic at
98.5 BeF2-l.5 ThF, (mole %), m.p.
526 k3'C. UNCLASSIFIED
ORNL-LR-DWG 24554
I1
I200 t too
W
700
600 500 BeF2
40
20
30
40
50
60
70
80
90
ThG
ThF, (mole Yo)
Fig. 3.48,
The System BcFZ-ThF4.
77
I
3.49. The System BeF,-UF,
T. B. Rhinehammer, P. A. Tucker, and E. F. Joy, Phase Equilibria in the System BeF2-UF4,
MLM-1082 (to be published). Preliminary diagram.
contains a single eutectic at 99.5 BeF,-0.5
The system BeF2-UF,
UF, (mole %), m.p. 535 f2T.
I
I
I
I
I
I
I
I
LIQUID
UF4 +LIOUID
QHIGHBeF2 +UF4
I
I
I
I
I
I
Fig. 3.49.
I
I
I
I
I
I
The System BeF2-UFC
I
I
I
I
I
I
IO -4
3.50. The System MgF,=ThF, J. 0. Blomeke, An Investigation of the TbF4-Fused Salt Solutions for Homogeneous Reactors, ORNL-1030 (June 19, 1951) ( d e c l a s s i f i e d with deletions). Invariant Equilibria Invariant
Mole % ThF4 in Liquid
Temperature
ec)
Phase Reaction
Type of Equilibrium
at Invariant Temperature
25
915
Eutectic
L
e ThF4 + MgF2*2ThF4
33.3
937
Congruent melting point
L
e MgF2*2ThF4
40
925
E ute cti c
L
MgF2*2ThF4
+ MgF2
UNCLASSIFIED ORNL-LR- DWG 204 6 5
79
3.51. The System LiF-BeF,-ThF,
R. E. Thoma, H. Insley, H. A. Friedman, and C. F. Weaver, "Phase Equilibria in the Sys-
136th National Meeting of the American Chemical Society, Atlantic City, N. J., Sept. 13-18, 1959. tems BeF,-ThF,
and LiF-BeF,-ThF,,"
paper to be presented at the
lnvariant Equil ibria Composition of Liquid (mole %)
Invariant
Te mperat we
Type of Invariant
a t Invariant
Solids Present Point
LiF
BeF,
ThF4
15
83
2
497 f 4
Peritectic
ThF4, LiF*4ThF4, and BeF,
33.5
64
2.5
455 f 4
Peritectic
LiF*4ThF4, LiF*2ThF4, and BeF,
47
51.5
1.5
356 f 6
Eutectic
2LiF*8eF2, LiF*2ThF4, and BeF,
60.5
36.5
3
433 f 5
Peritectic
LiF*2ThF4, 3LiF-ThF4ss, and 2 L i F*BeF,
65.5
30*5
4
444 k 4
Peritectic
LiF, 2LiF*BeFz, and 3L iF*ThF4ss
63
30.5
6.5
448 f 5
Peritectic
3LiF*ThF4ss, 7LiF*6ThF4, and L iF-2ThF4
~~
~~
UNCLASSIFIED ORNL-LR-DWG 37420P.
ThF, 4 4 4 4
TEMPERATURE IN 'C COMPOSITION IN mole 70
4
LiF,4ThF,
P 465
E 370
Fig, 3.51~. The System LiF-BeF,-ThF+
80
L
Limits of Single-Phase 3 L I F * t h F 4 Solid Solution Composition (mole %)
LiF
BeF2
ThF,
75
0
25
58
16
26
59
20
21
A three-dimensional model of the system LiF-BeF2-ThF,
Fig. 3.51b.
i s shown in Fig.
3.51b.
Model of the System LiF-BeF2-ThFt
81
3.52.
The System NaF-ZrF,-ThF,
R. E. Thoma, H. Insley, B. S. Landau, H. A. Friedman, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1956-57. Preliminary diagram. Invariant Equilibria
Composition of Liquid (mole X)
lnvar iant Temperatwe
Solids Present Point
Type of Equilibrium
at Invariant
ZrF,
ThF,
ec,
77
3
20
645
Per itect i c
NaF, a-4NaF*ThF4, and 3NaF*ZrF4
75.5
2.5
22
618
Eutectic’
U-4Na F*ThF ,, 2Na F-ThF ,, 3Na F*ZrF4
63
6
31*
683
Decompos it ion point of 3NaF*2ThF4 in ternary system
3NaF*2ThF4, 2NaF*ThF4, and Na F-Th F,
65.5
21.5
13
622
Per itect ic
2NaF*ThF4, 3NaF*ZrF4, and NaF-ThF,
65.5
24.5
10
615
Per itect i c
3NaF*ZrF4, NaF*ThF4, and U-5Na F*2ZrF4
64.5
25.5
10
593
Peritectic
u-SNaF*2ZrF4, NaF-ThF,, NaF-2ThF4
58
38
4
538
Per itect ic
U-5Na F*2ZrF ,, Na F-2ThF,
58
40
2
495
Eutact i c
,f%2NaF-ZrF4, NaF*2ThF4, and 7NaF*6ZrF4-3NaF*2ZrF4ss
53
42
4
510
Per itect i c
NaF*2ThF4, Th(Zr)F4ss I and 7Na F*6Zr F4-3NaF*2ThF4ss
49.5
48
2.5
505
E utect i c
7NaF.6ZrF4, 3NaF*4ZrF4, and Zr (Th) F, ss
NaF
and
and
a-2NaF-Zr F ,,
and
*Approximate compos it ion.
Note:
The boundary curve maximum on the Alkemade line 7NaF.6ZrF,-ThF4
fall’exactly on this line, because pure solid solutions with both ZrF,
ThF, does not occur along this line. Since ThF, forms
and NaF.2ThF4, i t i s not readily determined on which side of
the Alkemade line this maximum occurs.
1
82
i s unlikely to
UNCLASSIFIED ORNL-LR- DWG 20466A
83
3.53. The System LiF-UF,
C. J. Barton, V. S. Coleman, L. M. Bratcher, and W. R. Grimes, unpublished work performed
1953-54. Preliminary diagram. The system LiF-UF, contains a single eutectic at 73 LiF-27 UF,
at the Oak Ridge National Laboratory,
(mole %), m.p.
770째C. UNCLASSIFIED
ORNL-IR-DWG
4000
950
900
850 c
%
800
W
a:
B 0
3
750
b
W
a I w I-
700
650
600
550 0
500 UF, (mole %)
Fig. 3.53. The System LIF-UF3.
84
2923
. A. Friedman, W. R. Grimes, H. Insley, R. E. Moore, and R. E. Thoma,“Phase lkali Fluoride-Uranium aF-UF,,”
1. Am.
Tetrafluoride Fused Salt Systems:
1.
The Systems
Ceram. SOC. 41, 63-69 (1958). Invariant Equilibria
Invariant Tcmpcrat we
e,
Type of Equilibrium at
Phase Reaction invariant Temperatwe
e LiF + 7LiF*6UF4
470
Decompor it ion
4LiF*UF4
500
Per itcctic
LiF + L $ 4LiF.UF4
490
Eutectic
L
610
Per itectic
L + LiF*4UF4
e 7LiF*6UF4
775
Pcritcctic
L + UF4+
LiF*4UF4
e4LiF*UF, + 7LiF*6UF4
UNCLASSIFIED ORNL-LR-DWG
60
Fig. 3.54
70
80
I7457
90
The System LIF-UF,.
85
3.55. The System NaF-UF, C. J. Barton, V. S. Coleman, T. N. McVay, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1953-54. Preliminary diagram. Invariant Equ.ilibria
Mole % UF3
in Liquid
Invariant To mperat we
e,
Type of Equilibrium at
Phase Reaction Invariant Temperatwe
~~
86
27
715
Eutectic
L
35
775
Per itectic
L
-
595
inversion
a-NaF*UF3
NaF + a - N a F * U F 3
+ UF3+
a-NaF.UF3 P-NaF-UF3
;u
UNCLASSIFIED
NaF
UF3 (mole % )
Fig. 855.
The System NaF-UF3.
U
87
E J 3.56.
The System NaF-UF,
H. A. Friedman, W. R. Grimes, H. Insley, R. E. Moore, and R. E. Thoma, "Phase Equilibria i n the Alkali Fluoride-Uranium Tetrafluoride Fused Salt Systems: 1. The Systems
C. J.
LiF-UF,
Barton,
and NaF-UF,,"
J. Am. Ceram.
SOC. 41, 63-69 (1958).
Invariant Equilibria
% uF4
in Liquid
e,
Phase Reaction
Type of Equilibrium
at Invariant Temperatwe
21.5
618
Eutectic
25
629
Congruent melting point
+a-3NaF*UF4 + NaF L e a-3NaF-UF4
528
Inversion
a-3NaF*UF4
P-3NaF*UF4
497
Decomposition
P-3NaF*UF4
NaF
28
623
Eutectic
L @ a9NaF*UF4 + 2NaF*UF4
32.5
648
Per itect ic
L + 5NaF.3UF4
37
673
Peritectic
L
-
630
Decomposition
5NaF*3UF4
46.2
718
Congruent melting point
L
7NaF-6UF4
56
680
Eutectic
L
e 7NaF*6UF4 + UF,
660
Upper stability l i m i t of NaF*2UF4
7NaF*6UF4
-
-
88
Invariant Temperature
L
+ 2NaF*UF4
& 2NaF-UF4
+ 7NaF*6UF4 e5NaF*3UF4 2NaF*UF4
+ UF,
+ 7NaF-6UF4
e NaF.2UF4
*
UNCLASSIFIED (9364
ORNL-LR-DWG
4100
to00
900
i
600
500
400
NaF
10
20
30
Fig. 3.56.
40
50 UF4 (mole %)
60
70
80
90
"F4
The System NaF-UF,.
89
3.57. The System KF-UF, R. E. Thoma, H. Insley, B. S. Landau, H. A. Friedman, and W. R. Grimes, "Phase Equilibria in the Alkali Fluoride-Uranium Tetrafluoride Fused Salt Systems: II. The Systems KF-UF, and RbF-UF,,"
J . Am. Ceram. SOC. 41, 538-44 (1958). Invariant Equilibria
Invariant
"le
% uF4
in Liquid
Temperature
Phase Reaction
Type of Equilibrium
at invariant Temperatue
ec,
15
735
Eutectic
L
KF + 3KF*UF4
25
957
Congruent melting point
L
3KF.UF4
608
Decompos it ion
2KF.UF4
35
755
Paritectic
3KF*UF4 + L
38.5
740
Eutectic
L
46.2
789
Congruent melting point
L
54.5
735
Eutectic
L
65
765
Paritect ic
UF,
-
3KF*UF4
+ 7KF*6UF4
2KF*UF4
2KF*UF4
+ 7KF*6UF4
e7KF*6UF4 7KF*6UF4 + KF-ZUF,
+L
KF*2UF4
I100 1000
o 900 Y
W
5 800 !z
[r:
5;:
5!-
700
600 '
500 400
30
Fig. 3.57.
90
40 50 60 UG (mole XI The
System
KF-UFc
70
80
90
UF4
3.58. The System RbF-UF, R. E. Thoma, H. Insley, B. S. Landau, H. A. Friedman, and W. R. Grimes, “Phase Equilibria in the Alkali Fluoride-Uranium Tetrafluoride Fused Salt Systems: It. The Systems KFUF, and RbF-UF,,” J . Am. Ceram. SOC. 41, 538-44 (1958). Invariant Equilibrla
Mole % UF, in Liquid
Invariant Temperature
Type of Equilibrium
Phase Reaction at Invariant Temperature
ec,
10
710
Eutectic
L e R b F + 3RbF*UF4
25
995
Congruent melting point
Le3RbF*UF4
38
818
Peritectic
L + 3RbF*UF4
43 5
675
Eutectic
L e 2 R b F * U F 4 + 7RbF*6UF4
44
693
Peritectic
RbF*UF4
50
735
Congruent melting point
L +RbF*UF,
55
714
Eutectic
L +RbF=UF,
56.5
722
Peritectic
RbF*3UF4
+L
57
730
Peritectic
RbF*6UF4
+ L & RbF-3UF4
70.5
832
Peritectic
UF,
e 2RbF*UF4
+ L 4 7RbF*6UF4 + 2RbF*3UF4 2RbF*3UF4
+ L eRbF*6UF4
UNCLASSIFIED ORNL-LR-DWG 28525
!
Fig. 3.58 The System RbF-UFt
91
E! 3.59. The System CsF-UF, C. J. Barton, L. M. Bratcher,
J. P.
Blakely, G.
J.
c
Nessle, and W. R. Grimes, unpublished
work performed at the Oak Ridge National Laboratory, 1951-53. Preliminary diagram. Invariant Equilibria Invariant
Mole % UF,
Phase Reaction
Type of Equilibrium
Ternperatwe
in Liquid
ec)
7.5
650
Eutect ic
L
CsF
25
970
Congruent malting point
L
e3CsF*UF4
34
800
Per itect ic
L
+ 3CsF*UF4
41
695
Eutectic
L
2CsF*UF4
50
735
Congruent melting point
L
eu-CSF-UF,
550
lnver s ion
u-CsF*UF,
725
Eutectic
L ~ u - C S F - U F UF, ~
53
a t Invariant Temperature
+ 3CsF*UF4 2CsF*UF4
+ U-CsF*UF,
P-CSF-UF,
.u
+
UNCLASSIFIED ORNL-LR-DWG. 18915
IIO0
I
I
I
I
I
I
I
I
I
I
I
I
I
1 L
1000
900
c
."
8oa
a
: 3
w
n
5 70C t 6 OC
a ?
5 O(
8
n 4 O(
A
5F
IO
20
U F ~(mole
O/o)
Fig, S.59. The System CsF-UF,.
92
I
3.60. The System ZrF,-UF,
C. J. Barton, W. R. Grimes, H. Insley, R. E. Moore, and R. E. Thoma, "Phase Equilibria J . Phys. Chem. 62,665-76 (1958). in the Systems NaF-ZrF,, UF,-ZrF,, and NaF-ZrF,-UF,,"
The system ZrF,-UF, forms a continuous series of solid solutions having a minimum melting temperature of 765OC at 77 ZrF,-23 UF, (mole %). UNCLASSIFIED 49887
ORNL-LR-DWG
I050
4000
950
u
900
W
lr 3 Ia a
w
a 850
5I-
800
750
700 20
30
40
50
60
70
80
90
ZrF4
93
3.61. The System SnF2-UF4
B. J. Thamer and G. E. Meadows,
LA-2286
The Systems UF4-SnF2 and PuF3-SnF2,
(July 1959). lnvar iant Equi Iibria Invariant
Phase Reaction
Mole % UF4 in Liquid
Temperature
Type of Equilibrium
0.5
212
Eutectic
L
4.5
340
Peritectic
L
7.8
371
Peritectic
e)
at Invariant Temperature
e SnF2 + 2SnF2*UF4
+ SnF2.UF4 e 2SnF2*UF4 L + UF4 e SnF2*UF4 UNCLDSSIFIED ORNL-LR-DWG 36864
4400
4000
900
800
700
.o l W Y 3
600 W
a
J I500
400
300
200
400 SnF2
40
20
30
40
50
60
UG (mole%)
Fig. 3.61.
94
The System SnF2-UF+
70
80
90
uF4
3.62. The System PbF,-UF,
L. M.
J. P. Blakely, G. J. Nessle, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1950-51. C. J. Barton,
hatcher,
Preliminary diagram. invariant Equilibria
Mole % UF4 in Liquid
Invariant Temperature
Phase Reaction
Type of Equilibrium
a t Invariant Temperature
ec,
-~
~
L
L
14.3
92 0
Congruent melting point
L & 6PbF2*UF4
35
835
Eutectic
L
40
840
Congruent melting point
L
3PbF2*2UF4
62
762 f 10
Eutectic
L
e 3PbF2*2UF4
The eutectic at quite high
.
e6PbF2*UF4 + 3PbF2*2UF4 .I-
UF4
PbF, concentrations is not shown on this diagram. The authors
examined thermal data but found no evidence of a eutectic thermal effect.
UNCLASSIFIED DWG14633R
I; L,
Y I
U F ~(mole%)
Fig. 3.62.
The System PbF2-UFC
95
1
3.63. The System ThF4-UF, C. F. Weaver, R. E. Thoma, H. A. Friedman, and H. Insley, "Phase Equilibria in the Systems UF,-ThF,
and LiF-ThF,-UF,,"
Ceramic Society, Chicago, The system ThF,-UF, I
I I
i
96
paper presented at the 61st National Meeting of the American
Ill., May 17-21, 1959. forms a continuous series of solid solutions without a minimum.
UNCLASSIFIED ORNL-LR-DWG 279!3
f 200 c
V W
1100
u:
3
5 too0 a: W
a
5
900
t-
800 ThG
i0
20
30
40
50
60
70
80
90
UG
UF, (mole %I Fig. 3 6 3 The System ThF4-UFC
Iy !
97
3.64.
The System LiF-NaF-UF,
R. E. Thoma, H. Insley, B. S.
Landau,
H. A.
Friedman, and
W. R.
in the Alkali Fluoride-Uranium Tetrafluoride Fused Salt Systems:
UF,,"
Grimes, "Phase Equilibria
111. The System NaF-LiF-
J . Am. Ceram. SOC. 42, 21-26 (1959).
lnvariant Equil ibr ia Composition of Liquid '(mole %) Temperature PC)
Solid Phases Present a t Invariant Point
Type of Equilibrium
NaF
LiF
UF4
60
21
19
480
Eutect i c
2NaF*UF4, NaF, and L i F
65
13
22
497
Per itectic
P-3NaF-UF4, 2NaF*UF4, and NaF
7
65.5
27.5
470
Peritectic
7LiF4UF4ss,* 4LiF*UF4, and L i F
35
37
28
480
Eutectic
2NaF*UF4, 7NaF*6UF4ss, and L i F
57
13
30
630
Per itect ic
2NaF*UF4, 5NaF*3UF4, and 7NaF4UF4ss
24.3
43.5
32.2
445
Eutectic
7NaF*6UF4ss, LiF, and 7LiF-6UF4ss
24.5
29
46.5
602
Eutectic
NaF*2UF4, 7LiF*6UF4ss, and 7NaF*6UF4ss
24.3
28.7
47
605
Per i t e c t i c
NaF-2UF4, LiF*4UF4, and 7LiF.6UF4ss
23.5
28
48.5
640
Peritectic
UF,
37.5
10.5
52
660
Peritectic
UF4, NaF*2UF4, and 7NaF-6UF4ss
NaF.2UF4, and LiF*4UF4
*The compounds 7LiF.6UF4 and 7NaF4UF4 as they occur in the ternary system are members of the solid solution 7LiF.6UF4-7NaF.6UF4.
98
E
i
UNCLASSIFIED ORNL-LR-DWG 282l4R
"F4
1035
COMPOSITION IN mole % TEMPERATURE IN OC
99
UNCLASSIFIED ORNLDWG _ _ _LR - -..-
297s __
700
675
tl
600
575
550 7NaF.6UF4
0 10
20
30 LiF
Fig, 3.646.
100
(mole
40
50
7LiF*6UFq
‘?&I
The Join 7NaF*6UF4-7LiF*6UF4.
7 Iii
3.65. The System LiF-KF-UF, C. J. Barton, J. P. Blakely, L. M. Bratcher, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1950-51. Preliminary diagram. The system LiF-KF-UF, has not yet been defined at the Oak Ridge National Laboratory with sufficient precision to permit the temperatures and compositions of the invariant equilibria to be listed.
UNCLASSIFIED ORNL-LR-OW0 2 8 6 3 3 1
UF4 1035
TEMPERATURE ("C) COMPOSITION (mole %I
KF 856
u
845 E-49
Fig. 365. The Systes LiF-KF-UF,.
101
3.66.
The System LiF-RbF-UF,
C. J. Barton, J. P. Blakely, L. M. Bratcher, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1950-51. have not yet Preliminary diagram. Phase relationships within the system LiF-RbF-UF, become so well defined at the Oak Ridge National Laboratory that the compositions and temperatures of the-invariant points may be listed.
UNCLASSIF!EO ORNL-LR-DWG 286341
UF4 1035
TEMPERATURE IN OC COMPOSITION IN mole%
LiF
845
790
Fig. 3.64
The System LiF-RbF-UF,.
3.67. The System NaF-KF-UF, R. E. Thoma, C. J. Barton, J. P. Blakely, R. E. Moore, G. J. Nessle,
H. Insley,
Friedman, unpublished work performed at the Oak Ridge National Laboratory,
1950-58.
Preliminary diagram.
Phase relationships within the system NaF-KF-UF4
and
H. A.
have not yet
become so w e l l defined at the Oak Ridge National Laboratory that the compositions and temperatures of the invariant points may be listed.
UNCLASSIFIED ORNL-LR-DWG 38412
U61035 THIS DIAGRAM HAS BEEN DERIVED ENTIRELY FROM TA DATA.
:b.
COMPOSITION IN mole % TEMPERATURE IN "C
I!
NoF
990
E 740
Fig. 867.
856
The System NaF-KF-UFC
103
3
3.68. The System Naf-RbF-UF,
R. E. Thoma, H. Insley, H. A. Friedman, and W. R. Grimes, unpublished work performed at
6
the Oak Ridge National Laboratory, 1955-56. Preliminary diagram. Invariant Equilibria Composition of Liquid (mole %)
Invariant.
Temperature UF4
e,
Type of
Equilibrium
Solid Phases Present at Invariant Point
NaF
RbF
18
73
9
670
Eutectic
RbF, NaF, and 3RbF*UF4
46
33
21
470
Eutectic
NaF, NaF*RbF*UF4, and 3RbF-UF4
44
33
23
500
Per itect i c
NaF*RbF*UF4, 2RbF*UF4, and 3RbFeUF4
45
30
25
4 85
Per itect i c
NaF, 2NaF*UF4, and NaF*RbF*UF4
52
23
25
500
Decomposition
3NaF*UF4, NaF, and 2NaF*UF4
41
26
33
555
Per itect ic
2RbF*UF4, 2NaF.UF4, and NaF*RbF*UF4
57
8
35
630
Decomposition
2NaF*UF4, SNaF*3UF4, and 7NaF=6UF4
33
30
37
535
Eutectic
2RbF*UF4, 2NaF*UF4, and 7RbF*6UF4
32
29
39
540
Per itect i c
7RbF*6UF4, 2NaF*UF4, and 7NaF*6UF4
26
27
47
620
Eutectic
7RbF*6UF4, 7NaF.6UF4, and RbF*UF4
25
25
50
630
Eutectic
7NaF*6UF4, RbF*UF4, and 2RbF-3UF4
27
22
51
633
Per itectic
7NaF*6UF4, 2RbF*3UF4, and RbF*3UF4
33
14
53
655
Per itect ic
7NaF*6UF4, RbF.3UF4, and RbF*6UF4
42
3
55
678
Per itect ic
7NaF*6UF4, RbF*6UF4, and UF4
c c
m
TEMPERATURES ME EOREES C E N T I O R ~ E
COMFUSITKMD
IN MOLE PERCENT
Fig. 3.68~. The System NaF-RbF-UF4.
0
(0
20
30
40
50
60
66.7
RbF (mole %)
Fig. 3686. The Section 2NaF*UF4-2RbF*UF,.
105
UNUbSSIFIEC
ORNL-LR-DWG 17' 650
600
ZRbF.UF,
ZNaF. UFq
+ PRbF. UF4 + LIQUID
+ LlOUlD
500
I NaF
50
+ NaF .RbF .UFq
45
40 NaF (male X )
Fig.
106
3.68~. The
Section
NoF-NoF*RbF*UF+
35
30
UNCLASSIFIED
1000
-
900
-
ORNL-LR-
3RbF.UF4
800
+ LIQUID
I
I
-
DWG 47667R
I.
I
0
0, W P I-13
a
4 700 5c
0 2RbF. UG
600
I
,2RbF.UF4
+ LIQUID
I
+ 2NoF. UF4 + LIQUID
7
L
500
2RbF-UF4
.? . LL
4: LL 0
400 5 33.3 35
i
+ 3RbF. UF4 + LIQUID
NaF.RbF.UF,
t 3RbF-UF4
I 40
45
LIQUID
NaF. RbF. UF4
P 3 IL
0"
I
50 55 RbF (mole% 1
*)
60
65
70
75
h: ci L;
I
P L
i
i;" 107
3.69.
L. V. P. A.
LiF-BeF,-UF, D. E. Etter, C. R.
3
The System Jones,
Tucker, and
L. J.
Hudgens,
A. A.
Huffman,
T. B.
Rhinehammer,
Wittenberg, Phase Equilibria in the LiF-BeFZ-UFq
N. E.
Rogers,
0
System, MLM-1080(Aug. 24, 1959).
UNCLASSIFIED MOUND LAB. NO. 56-44-29 (REV)
4035 UFA
ALL TEMPERATURES ARE IN C '
E = EUTECTIC
€I
Ternary F u s e d S a l t
A
/
c 6;:
\
LiF 845
ci Fig. 3.69~. The System LIF-BeF2-UF4.
cp'
U
108
c
Preliminary diagrap.
li
u
Invariant Equilibria Compos ition of Liquid LiF 72
u li bl.
Temperature
(mole %)
BeF2 6
UF4 22
e, 480
Type of Equilibrium
Peritectic (decomposition of 4LiF-UF4 in the
Solid Phases Present Temperature
a t Invariant
4LiF-UF4, LiF, and 7LiF*6UF4
terhary system)
69
23
8
426
Eutectic
LiF, 2LiF.BeF2, and 7LiF.6UF4
48
51.5
0.5
350
Eutectic
7LiF*6UF4, 2LiF*BeF2, and BeF,
45.5
54
0.5
381
Per itectic
LiF-4UF4, 7LiF.6UF4, and BeF2
29.5
70
0.5
483
Peritectic
UF4, I-iF-4UF4, and BeFZ
The minimum temperature in the quasi-binary system 2LiF-BeF2-7Li F.6UF4 occurs at 65 LiF-29 BeF,-6
UF, (mole %) at 438%.
A three-dimensional model of the system LiF-BeF,-UF,
i s shown in Fig. 3.696.
!
Fig. 3.693.
Model of the System LiF-BeF2-UF4.
109
3.70. The System NaF-BeF,-UF, J. F. Eichelberger, C. R. Hudgens, L, V. Jones, G. Pish, 7. B. Rhinehammer, P. A. Tucker,
and L. J. Wittenberg, unpublished work performed at the Mound Laboratory, 1956-57. Preliminary diagram. Invariant Equl Ilbrla Composition of Liquid (mole X) NaF
Temperature
@3
Solid Phases Present at Invariant Temperature
Type of Equilibrium
BeF2
UF,
74
12
14
500
Peritectic (decomporltlon of 3NaF*UF4 In ternary system)
3NaF*UF4, NaF, and 2NaF*UF4
72.5
17
19.5
486
Eutectic
NaF, 2NaF.UF4, and 2NaF-BeF2
64.5
9
26.5
630
Peritectic (decomposition of 5NaF-3UF4 i n the ternary
5NaF*3UF4, 2NaF*UF4, and 7NaF*6UF4
system)
I
57
42
1
378
Per itectic
2NaF*BeF2, 2NaF*UF4, and 7NaF-6UF4
56
43.5
0.5
339
Eutectic
2NaF*BeFp, NaF*BeF2, and 7NaF*6UF4
43.5
55.5
1
357
Eutectic
7NaF*6UF4, BeF2, and NaF*BeF2
41
58
1
375
Peritectic
7NaF*6UF4, NaF*ZUF4, and BeF2
26
63
1
409
Peritectic
NaF*2UF4, NaF*4UF4, and B t F 2
44
18
38
665
Per itectic
7NaF*6UF4, UF,
40
47
13
548
Peritectic
UF4, NaF*2UF4, and NaF*4UF4
27
72
1
498
Peritectic
UF,
and NaF*2UF4
BeF2, and NaF*4UF4
The minimum temperature in the quasi-binary system 2NaF.BeF2-2NaF*UF, occurs at 66.7 LiF-25 BeF,-8.3 UF4 (mble %) at 528OC. The minimum temperature in the quasi-binary system NaF-BeF2-7NaF-6UF, occurs at 50.5 NaF-48.5 BeF2-1.0 UF, (mole %) at 367째C. A three-dimensional model of the system NaF-BeF,-UF, has been constructed by the authors and i s shown in Fig. 3.706.
110
UNCLASSIFIED MOUND LAB. NO. 56-41-30
ALL TEMPERATURES ARE
E UF4
(REV)
IN OC
= EUTECTIC
I
PERITECTIC
- PRIMARY PHASE FIELD
E F2
I1
i
Y
111
c
c
Fig. 370b. Model of the System NaF-BeF2-UFC
112
b'
0
3.71. The System NaF-PbF,-UF, C. J. Barton, J. P. Blakeil
*
J.
Nessle, L.
M* Bratchert
and
w.
R. Grimes, unpublished
work performed at the Oak Ridg Preliminary diagram. No study has been made at the
Ridge
Laboratory
Of
the
phase relationships within the system NaF-PbFp-UF,.
"
UNCLASSIFIED 20455R
ORNL-LR-OWG
F4
4035
TEMPERATURE IN OC COMPOSITION IN mole
I
1
n
?e
PbF2 815
113
3 3.72.
The system
KF-PbF,-UF,
C. J. Barton, J. P. Blakely, G. J. Nessle, L. M. Bratcher, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory,
li
1950-51.
Preliminary diagram. No study has been made at the Oak Ridge National Laboratory of the phase relationships within the system
KF-PbF2-UF,.
0
.i E n U
W 114
U iJ
”
UNCLASSIFIED DWG 41514A F4
4035
115
c
3.73. The System NaF-ZrF4-UF4 C. J. Barton, W.
R. Grimes, H. Insley, R. E. Moore, and R. E. Thoma, "Phase Equilibria
in the Systems NaF-ZrF,,
UF,-ZrF,,
and NaF-ZrF,-UF,,"
J . Phys. Chem. 62,665-76 (1958).
UNCLASSIFIED ORNL-LR-DWG 19886R
"F4
1035
Fig.
116
373a. The System NaF-ZrF4-UFC
Invariant
Campos ition of Liquid
Ternper at we
(mole %)
NaF
h i;
Equilibria and Singular Points
(W
Type of Equilibrium
Solids Present Invariant Point
at
ZrF,
UF4
69.5
4.0
26.5
646
Maximum temperature of boundary curve
3NaF*(U,Zr)F4 and 2NaF-UF4
68.5
5.5
26.0
640
Peritectic
3NaF*(U, Zr)F4, 2NaF*UF4, and 5NaF*3UF4ss
65.5
12.0
22.5
613
Peritectic or decompos ition
,, 5Na F-3UF4ss, 3Na F-(U, Zr) F and 7NaF*6(U,Zr)F4
64.0
27.0
9.0
592
Per itact ic
3NaF.(U,Zr)F4, 5NaFa2Zr F4ss, and 7NaF*6(U,Zr)F4
61.5
34.5
4.0
540
Peritectic
5NaF92Zr F4ss, 2NaF-Zr F ,, and 7NaF*6(U,Zr)F4
50.5
47
2.5
513
Per itect ic
7NaF*6(U, Zr)F4, (U,ZI)F4, and 3NaF*4ZrF4
lL i
e
i
UNCLASSIFIED ORNL-LR-DWG I9888
850
800
750
!
-
0
e
700
W
rT
2a a
I
Ii
4 W
650
IW
600
LIQUIDUS POINTS SOLIDUS POINTS LlQUlOUS POINTS
L; 0
I L
i;"
550
500 3NoF.UG
0
QUENCHING EXPER QUENCHING EXPERI
FILTRATION RESIDUE CO FILTRATE COMPOSITIONS
4
45
40
20
3 NaF-ZrF4
ZrF4 (mole 70)
Fig. 873b.
The Subsystem 3NaF*UF4-3NaF*ZrFc
117
Fig. 3.73~. The Subsystem 7NoF*6ZrF4-7NaF*15UFC
118
i
P 3.74. The System LiF-ThF,-UF,
C. F. Weaver, R. E. Thoma,
H. Insley, and H. A. Friedman, "Phase Equilibria in the Systems
UF,-ThF, and LiF-ThF,-UF,," paper presented a t the 61st National Meeting of the American Ceramic Society, Chicago, Ill., May 17-21, 1959. lnvariont
Compos it ion of Liquid (mole %)
lnvar iant
Temperature
(0~)
Solids Present at Invariant Point
Of
LiF
ThF,
72.5
7.0
20.5
500
Peritectic
LiF, 3LiF*(Th,U)F4, and 7LiF*6(U,Th)F4
72.0
1.5
26.5
488
Eutectic
LiF, 4LiF*UF4, and 7LiF*6(U,Th)F4
19
609
Per itectic
7L iF*6(U,Th)F4, L iF*2(Th,U)F4, and L iF*4(U,Th)F4
53
18
UF4
Equilibria
Equilibrium
A three-dimensional model of the system LiF-ThF,-UF,
is
shown in Fig. 3.74e. UNCLASSIFIED ORNL- LR- DWG 2824JAR2
PRIMARY-PHASE AREAS TEMPERAWRE IN OC COMPOSITION IN mole 7'0
I
i i
Li LiF
"F4
4035
845
Fig. 3.74~. The System LiF-ThF4-UF4.
119
UNCLASS IFlED ORNL-LR-DWG 35503R
((I)
LIQUID+ 3LiF-ThF4 ss
(6) L i F f LIQUID ( c ) LiF+ 3LiF*ThF4 ss +LIQUID
( d ) L i F + 7 L i F - G T h $ -7LiF.GUG ss ( e ) 4LiF*UF4+ LIQUID
( f ) 4LiF.UG ( g ) 4LiF.UG
+ LIQUID + 7LiF-6Thb -7LiF-GUh
( h ) 3LiF*ThF4 ss
(i
+ LiF
+ LIQUID
3 L i F * ThF4 ss
+ 7 L i F - 6ThF4 - 7 L i F
(i) LiF + 7 L i F * 6ThF4-
ss
*
B
+ LIQUID
6 UF4 ss
0
+ LiF
-
7 L i F 6 UF4 ss
575Pi
( k ) L i F + 4LiF.UF4+ 7LiF.6ThF,-7LiF.6UF4ss ( 1 ) 4LiF.UF4+ 7LiF.6ThF4-7LiF.6UF4ss
A
THERMAL DATA
550
-525F I
Y
W
a 53
I-
a of
W
n
E w 500
I-
450 475
I ,
0
5
c3 IO UF4 (mole
Fig. 3.74b.
120
The System LiF-ThF4-UF4:
15
20
O/O)
The Section at 75 Mole % LiF.
25
c
UNCLASSIFIED
050
800
750
-w 0
700
(L
3
G
(L
W
a
5
t-
650
600
550
500 0
5
IO
(5
20
25
35
30
40
45
UF4 (mole%)
Fig. 3.74~. The System LiF-ThF4-UF4:
The Section
at
53.8 Mole % LiF.
121
UNCLASSIFIED ORNL- LR DWG 35506 R
-
( a ) UF4-ThF4 ss
+ LIQUID
( b ) L i F - 4 U F 4 - LIF. 4ThF4+LlQUlD (C)
UG-ThF, ss + L I Q U ~ D + L ~ F - ~ U F ~ - L ss IF-~T~~
+ LIQUID + LIF- 4UF4- LIF 4ThF4 ss 4UF4 - L i F - 4ThF4 ss +LIQUID + 7 L i F - 6 U F 4 - 7 L i F * 6 T h F 4 s s
( d ) LIF. 2ThF4 ss (e) LiF.
*
( f ) LiF. 2ThF4 ss ( 9 ) LiF. 4UF4-LiF. 4ThF4 S S + ~ L ~ F - ~ U F ~ - ~ L ~ F . ~ T ~ F ~ S S
( h ) LiF-4UF4-LiF-4ThF4 ss
+ 7LiF-6UF4-7LiF*6ThF4 ss+LiF-2ThF4
ss
A THERMAL BREAKS 0 QUENCH RESULTS 0 TIE LINE INTERSECTION
900
p E
W
U
3
800 [z
W
a
2 W I-
700
6oo
5 00
L
0
10
20
30 40 UF4 (mole %)
Fig. 3.74d. The System LiF-ThF,-UF,:
122
50
The Section at 3 8 3 Mole % LIF.
60
6S2/,
Li
Fig. 3.74e.
Model of the System LiF-ThF4-UFC
123
3.75. The System NaF-=ThF,-UF,: The Section 2NaF-ThF4-2NaF-UF4 R. E. Thoma, H. Insley, H. A. Friedman, and C. F. Weaver, unpublished work performed at the Oak Ridge National Laboratory, 1958-59. Preliminary diagram.
UNCLASSIFIED ORNL-LR-DWG 34986
725
700
675
650
0 W
625
u
3
5
600 I-
575
550
B
525
500 2N0F.ThF4
5
i0
45 20 UF4 (mole %I
25
Fig. t75. The Section 2NaF*ThF4-2NaF*UF,.
1.24
30 2NoF.UF4
3.76. The System LiF-PuF, C. J. Barton and R. A. Strehlow, “Phase Relationships in the System Lithium FluoridePlutonium Fluoride,” paper presented at the 135th National Meeting of the American Chemical
5-10, 1959.
Society, Boston, Mass., Apr. The system LiF-PuF,
contains a single eutectic at 80.5 LiF-19.5 PuF, (mole %), m.p.
743°C.
I
i
u
UNCLASSIFIED ORNL-LR- DWG 348i7
4500 4400
i ~
-
4 300
0
e4200 W i
E
3
Ga
1100
W
a
5
1000
I-
900
800 700 LiF
40
20
Fig.
30
3.76.
40 50 60 PuF3 (mole %I
70
8G
90
PuF3
The System LIF-PuF3.
125
3.77. The System LiC1-FeCI2 C. Beusman, Activities in the KCI-FeC$
and LiCI-FeC$
Systems, ORNL-2323 (May 15,
1957). The system
LiCI-FeC12
forms a continuous series of solid solutions with a minimum at
60
LiCI-40 FeCI, (mole !%), m.p. 540%.
8500 a
-
-
u
-
-
.u
I
W
8-
400
t
I
I
I
I
I
I
I
I
c
u 3.78. The System KCI-FeCI, C. Beusman, A c t i v i t i e s in the KC1-FeC12 and LiCL-FeCZ, Systems, ORNL-2323 (May 15, 1957). Anearly identical diagram to this one has been reported by H. L. Pinch and J. M. Hirshon, "Thermal Analysis of the Ferrous Chloride-Potassium Chloride System," J . Am. Cbem. SOC.
79, 6149-50 (1957). Invariant Equilibria lnvar iant
?G FeC12
'Ole
Temperature
Phase Reaction
Type of Equilibrium
a t Invariant Temperature
i n Liquid
385
Per itect ic
L + KCI
255
Inversion
a-2KCI*FeC12
39
355
Eutectic
L $a-2KCI*FeC12 + a-KCI-FeCI,
50
400
Congruent melting point
L
-
300
lnvers ion
a-KCbFeCI,
53
390
Eutectic
L $a-KCI-FeCI2
35
& a-2KCI*FeCI2 ,8-2KCI*FeC12
a-KCI.FeC1,
e,&KCI*FeCI, + FeCI2
UNCLASSIFIED
ORNL-LR-DWG. 20940R
8OC
I
I
I
I ,
I
I
I
I
I
70
80
90
772
1
70 0
-
60 0
0
0,
LI C 30 0
c ILC
20 0
0
IO
20
30
40
Fig. Z78.
50 60 MOLE % F&IZ
100
T h e System KCI-FeClr
1
i
Y
127
UNCLASSIFIED
ORNL-LR-DWG
900
800
17671
l l
700
-Y
,--a2Nakl.
ZrCI,+LhUID
I
I
I
60
70
80
- 600 W K
3
c4 W K
a
5 500 I-
400
300 NbCl +/32NaCI:ZrC14
200 NaCl
I
I
IO
20
40
30
50
90
ZrC!,
ZrC!, (mole %)
Fig.
3.79.
The System NaCI-ZrCI,.
E Y
Ij"
Y
129
3.80.
The System KCI=ZrCI,
C. J.
Barton,
R. J. Sheil, and W. R. Grimes, unpublished work performed at the Oak Ridge
1955.
National Laboratory,
Preliminary diagram. Invariant Equilibria Invariant
Mole X ZrCll
Ta mperatu re
Liquid
in
Phase Reaction
Type of Equilibrivm
at
Invariant Temperature
PO
23
600 f 5
Eutectic
L e K C I + 2KCI*ZrCI4
33.3
790 f 5
Congruent melting point
A L -2KCI*ZrCI4
4s
565 f 5
Pe r itec t i c
L
-
222 f 4
lnvers ion
a*7KC b6Zr Cl4
65
225 f 4
Eutectic
L +u-7KC1*6ZrCl4
Some phase work on this system has been reported by
+ 2KCI*ZrC14eU-7KCI*6ZrC14 ,a7 KCb6Zr CI
+ ZrCI4
H. H. Kellogg, L. J. Howell, and R. C. and NaCl-
Physical Chemical Properties of the Systems NaCI-ZrC14, KCL-ZrCL,,
Sommer,
KCI-ZrCZ4, Summary Report, NYO-3108 (April 7, 1955). UNCLASSIFIED ORNL-LR-DWG 46952
600
-
-
1
-
i
,
0 0
w
500
K
3
$
5 4 400
W
I-
300
200
~
4 00
KCI
io
20
Fig. 3.80.
130
The System KCI-ZrCI,.
3.81. The System LiCI-UCI, C. J. Barton, A. B. Wilkerson, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory,
1953.
Preliminary diagram. The system (mole %), m.p.
LiCI-UCI, contains a single eutectic at 75 LiCI-25 UCI,
495 &5oC.
UNCLASSIFIED DWG. 22252
900
ih
800
i
i i
--
700
0
i
W
a 3
1
$
600
a W
5 t-
i
I ~
L:
500
400
300 .~ LiCl
10
20
30
40
50
60
70
80
90
UCI3
UC13 (mole %)
Fig. 3.81.
The S y s t e m LiCI-UCI3
131
3.82. The System LiCl-UCI,
J.
R. J. Sheil, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1953. C.
Barton,
Preliminary diagram. Invariant Equilibria Invariant
Mole % UCI,
Temperature
in tiquid
Phase Reaction at lnvar iont Ta mperature
Type of Equi Iibrium
(OC)
29
415
33.3
430
10
405
48
$~ L ~ C C U C+I , LiCI
Eutectic
L
Congruent melting point
L +~L~CI*UCI,
Eutectic
L
+~ L ~ c I * u+cUCI, I,
Some data on this system were reported by C. A. Kraus in Phase Diagrams of Some Complex
Salts of Uranium with Halides of the Alkali and Alkaline Earth Metals, M-251 (July 1, 1943).
UNCLASSIFIED
LiCl
IO
20
30
50
40 UCi,
60
(mole %)
Fig. 3 8 2 The System LiCI-UCI,.
132
70
00
90
UCl,
3.83. The System NaCI-UCI,
C. A. Kraus, unpublished work. Preliminary diagram constructed with the author’s permission from data reported in Phase
Diagrams of Some Complex Salts of Uranium with Halides of the Alkali and Alkaline Earth Metals, M-251 (July 1, 1943). The system NaCI-UCI,
contains a single eutectic at
67 NaCI-33 UCI,
(mole %), m.p.
525OC.
UNCLASSIFIED
900
0 00
400
300 NaCl
40
20
30
Fig.
40
3.83.
50 UCi3 (mole %)
60
70
00
90
UCI3
The System NaCI-UClr
133
3.84. The System NaCI-UCI, C. J. Barton, R. J. Sheil, A. 8. Wilkerson, and W, R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1953. Preliminary diagram. Invariant Equilibria
Mole % UCI, in Liquid
Invariant Temperature
Phase Reaction a t Invariant Temperature
Type of Equilibrium
E
(OC) ~
!
1 I j
30
430 f 5
Eutectic
L&NaCl+
33.3
440 f 5
Congruent melting point
L&2NaCI*UCI4
47
370 f 5
Eutectic
L+
57
415 f 5
Peritectic
L
2NaCI*UC14
2NaCI*UCI4
+ unidentified compound
+ UCI4 *unidentified
compound
A phase diagram of this system has been reported by C. A. Kraus in Phase Diagrams of Some Complex Salts of Uranium with Halides of the Alkali and Alkaline Earth Metals, M-251 (July 1,
1943).
40
50
uC$ (mole
60 %)
70
80
90
b:
.o
3.85. The System KCI-UCI, C. J. Barton, A. B. Wilkerson, T. N. McVay, R. J. Sheil, and W.
R. Grimes, unpublished work
performed at the Oak Ridge National Laboratory, 1954. Preliminary diagram. Invariant Equilibria
lnvarian t
Mole % UCI,
Te mperatu re
in Liquid
,I]
!
Phase Reaction a t
Type of Equilibrium
Invariant Temperature
(OC)
e KCI + 2KCI*UCI4
25
550
Eutectic
L
33.3
6 30
Congruent melting point
L
44
3 30
Eutectic
L ~ 2 K C I * U C I +4 KCI*UCI,
49
345
Peritectic
L
+ KCI*3UCI4~KCI*UCl4
61
395
Pe r ite ct i c
L
+ UCI4&
2KCI*UCI4
KCI*3UCI4
A phase diagram of this system has been reported by C. A. Kraus in Phase Diagrams of Some Complex Salts of Uranium with Halides of the Alkali and Alkaline Earth Metals, M-251 (July 1, 1943).
UNCLASSIFIED ORNL-LR-DWG 1532R
000
700
--Y
W
w
a
a
500
a W
4
400
I-
300
KCI
IO
20
30
40
50
M)
UCI4 (mole %)
Fig. 185. The System KCI-UCI,.
70
ao
90
uci4
3.86. The System RbCI-UCI, C. J. Barton, R. J. Sheil, A. B. Wilkerson, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1954. Preliminary diagram. Invariant Equilibria Invariant
Mole % UC1,
Temperature
15
610
25
in
Liquid
Phase Reaction a t
Type of Equilibrium
Invariant Temperaiuie
Eutectic
L e R b C l + 3RbCI*UCI3
745 f 10
Congruent melting point
L +3RbCI*UCI3
40
560 f 10
Peritectic
L +3RbCI*UCI3~2RbCI*UCl3
45.5
513 f 5
E u tec ti e
L ~ 2 R b C I * U C I +3 RbCI*UCI3
49
550 f 10
Peritectic
L + UCl3+RbCI*UCl3
RbCl
IO
20
x)
40
50
60
Ucl3 (mole %)
Fig.
136
386. The System RbCI-UCIr
70
80
90
UC13
3.87. The System CsCI-UCI,
J.
C.
Barton, A. B. Wilkerson, and W. R. Grimes, unpublished work performed at the Oak
Ridge National Laboratory,
1953.
Preliminary diagram. Invariant Equilibria
Mole % UCI4 in Liquid
Invariant
Phase Reaction a t Temperature
Type of Equilibrium
Tam perature
Invariant
I OC\
~~
+ 2CrCI*UC14
20
505 f 5
Eutectic
L +CCsCI
33.3
657 f 5
Congruent melting point
L+~CSCI*UCI~
58
370 f 5
Eutectic
L+2CSCI.UC14
63
382 & 5
Peritectic
L
+ CrCI*2UC14
+ uc14+cscI.2uc14
I
UNCLASSIFIED
I
800
700
-e 600 V
LL W
2
2 500 a 5
1
ii
Y
400
300
200 CSCl
(0
20
30
40
50
60
70
80
90
uc'4
UCl, h o l e %)
Fig. 387. The System CrCI-UClc
137
3.88. The System K,CrF6-Na,CrF6-Li,CrF6 B. J. Sturm, L. G. Overholser, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1951-52. Pre I iminary diagram.
UNCLASSIFIED DWG. 17407
o X-RAY PATTERN OBTAINED AT THESE COMPOSITIONS
OLlD SOLUTION
SOLID SOLUTI
k/ K3CrF6
\/
\J
V /
Fig. 3.88.
138
V
KOLkrF6
-
V
v
yv
Li2KCrF6
The System K3CrF6-Nu3CrF6-Li3CrF6.
V Li3CrF6
4. O X I D E A N D H Y D R O X I D E SYSTEMS
4.1. The System Si0,-Tho,
L. A. Harris, "A Preliminary Study Ceram. SOC. 42, 74-77 (1959).
2300
I
I
I
I
I
he Phase Equilibria
of
Diagram of Tho,-SiO,,"
I
UNCLASSIFIED PHOTO 31087 I
1
I
J . Am.
\
\
-
2200
-
\
\
\
Tho2 t LlOUlD 2100-
\
\
e
\
w 2ooo-
-
----- ------
[L
3
l-
1975 2
50"
a
\
I I
g
-
LlOUlD
\
1900-
5
\
Tho2+ Th02-Si02
\
I-
I800
\
\
Tho2. SiO, + LlOUlO
-
-
0 1700
u)
.
-
Tho2 * S i 4
I-
1600 0
I
IO
I
20
I
1
30
Tho2
Fig.
i
40
I
t
-
- - - - -L
- - - - - -I700*1@-
0 " r
SlO, t LlOUlD
\
'A-
N
-
\
Si4
I
50 60 S102 [ WT. O/o)
I
I
I
70
80
90
IM
Sld,
41. t h e System SiOZ-Th02.
li
139
4.2. The System LiOH-NaOH
C. J. Barton, J. P. Blakely, K. A. Allen, W. C. Davis, and B. S. Weaver, unpublished work performed a t the Oak Ridge National Laboratory, 1951. Preliminary diagram. recently by
A phase diagram of the system LiOH-NaOH has been reported more
N. A. Reshetnikov and G. M. Oonzhakov, Zhut. Neotg. Khim 3, 1433 (1958). Invariant Equilibria Phase Reaction at
Mole % LiOH in Liquid
Invariant Temperature
27
219
Eutectic
L
40
250
Peritectic
L + LiOH
-
180
Inversion
a-LiOH*NaOH e & L i O H * N a O H
(OC)
Type of Equilibrium
Invariant Temperature
NaOH +a-NaOH*LiOH a-LiOHONaOH
UNCLASSIFIED ORNL-LR-DWG 20463R
500
450
400
I
0 I
a
350
3
tE W W
300
I-
250
200
450 LiOH (mole %)
Fig. 4 2 The System LiOH-NaOH.
140
4.3.
LiOH-KOH
The System
C. J. Barton, J. P. Blakely,
L. M.
a t the Oak Ridge National Laboratory,
Bratcher, and
W. R. Grimes, unpublished work performed
1951,
Preliminary diagram. Invariant Equilibria
X KOH
Mole
Invariant Temperature
in Liquid
( OC)
40
315
Phase Reaction
Type of Equilibrium
Incongruent melting point of
at
Invariant Temperature
L
+ LiOH +3LiOH*2KOH
3 L iOHoSKOH 245
70
Eutectic
L e 3 L i O H * 2 K O H +P-KOH
UNCLASSIFIED ORNL-LR-DWG 20460R
600
500 f
-
0 W
400
n
3
5n W
a I 300 W I-
200
400
I
LiOH
&3 lo 10
20
30
40
50
60
70
80
90
KOH
KOH (mole %I
Fig. 4.3.
The System LIOH-KOH.
141
4.4. The System NaOH-KOH
G. von Hevesy, "The Binary Systems NaOH-KOH,
KOH-RbOH,
and RbOH-NaOH,"
2.
physik. C h a 73, 667-84 (1910).
UNCLASSIFIED ORNL-LR-DWG 20458
400
350
300
G s w
a
3
5
250
a a w
3 k-
200
T R A N S I T I O N OlAGRAM
I
I
I
70
80
90
4 50
400
KOH
40
20
30
40
50
60
NaOH (mole %)
Fig. 44 The System NaOH-KOH.
142
NoOH
4.5. The System NaOH-RbOH G. von Hevesy, “The Binary Systems NaOH-KOH,
KOH-RbOH,
and RbOH-NaOH,”
Z.
physik. C h e n 73, 667-84 (1910).
UNCLASSIFIED ORNL-LR-DWG 204 59
320
300
280
0
,“ 260 E
2
ta w
a I 240 W
I-
220
200
480
I NaOH (mole %)
Fig. 4 5 .
The
System
NaOH-RbOH.
143
4.6. The System Ba(OH),-Sr(OH), K. A. Allen, W. C. Davis, and 8. S. Weaver, unpublished work performed a t the Oak Ridge National Laboratory, Preliminary Sr(OH),-63
1951.
diagram.
Ba(OH), (mole
The system Ba(OH),-Sr(OH),
contains a single eutectic a t
37
X), m.p. 360OC. UNCLASSIFIED
'
00 B o ( O H ) ~(mole %)
Fig. 46. The System Bo(OH)2-Sr(OH)T
90
Bo(OH),
-u B
U t; [I
144
5. AQUEOUS SYSTEMS
c 1
lid
5.1.
The System U0,-P,O,-H,O,
25OC Isotherm
J. M. Schreyer, "The Solubility of Uranium(1V) Orthophosphates in Phosphoric Acid So-
77, 2972 (1955). point between U(HPO,),dH,O
l u t i o n ~ , ~J '. Am. Chem. SOC.
The
tj
was at
transition
and U(HPO4),~H,PO,*H2O
0.62 f. 0.02 M U (10.3 wt % UO,) and 9.8 & 0.1 M PO, (42.6
1.63 f 0.03 g/ml.
The compound U(HPO,),~H,PO,~H,O
i s incongruently
as
wt %
stable solids
P,O,),
density
soluble in water.
UNCLASSIFIED ORNL-LR-DWG 1915
looh
Fig. 5.1.
The System U02-P205-H20,
2 P C Isotherm.
145
5.2. The System U0,-H,P0,-H20,
25째C Isotherm
J. M. Schreyer and C. F. Baes, Jr./ ."The Solubility of Uraniurn(V1) Orthophosphates in Phosphoric Acid Solution," The normal phosphate
J . Am. Chem. SOC. 76, 3% (1954). (U02),(P0,),dH20 i s stable below 0.025
mole %
H,PO,.
The
stability ranges are as follows: Compound
Toto1 Phocphatq Molarity
<0.014 0.01 4-6.1 >6.1
UNCLASSIFIED DWG 20233
6.0
mole Y
Fig.
146
5.2
The System U03-HQ04-H20,
H,P04
2 P C Irot&erm. 0-60 mole % U03, 0-60 mole % H3POa.
of U(H,P04),(CI04)
Fig.
!L3.
,4H ,O.
Schreinemakerr' Projection
the UO2-Cl20,-H20
of the System UO2-P2O,-CI,O,-H2O
at
25OC. A projection on
face, plotted i n rectangular coordinates.
147
U 5.4. a*
The System U0,-Na,O-C0,-H,O,
26OC Isotherm
C. A. Blake, C. F. Coleman, K. B. Brown, D. G. Hill, R. S. Lowrie, and J. M. Schmitt, Studies in the Carbonate-Uranium System,” J. Am. Chem. SOC. 78, 5978 (1956). UNCLASSIFIED ORNL-LR-DWG 39480
COMPOSITION wt
% ’
1
Fig. 5.h. The System U03-Na20-C02-H20 at 26OC. Gmpositions are plotted i n weight per cent. I, solutions i n equilibrium with sodium uranates; 11, solutions in equilibrium with sodium uranyl hicarbonate; 111, solutions in equilibrium with uranyl carbonate. A, Na2C03; B, Nq2C03*H20; C, Na2CO3*7HS20; D, Na2C03* 10H20; E, Na2C03*NaHC03*2H20 (trona); F, NaHCO,; C, U0,C03; H, Na4U02(C03),. The entire upper face of the triangular prism represents pure water.
148
u
u h’ bl
I]
The stable uranium-carbonate solids found were UO,CO,
The solution
and Na,UO,(CO,),.
composition at the transition point (not determined exactly) was a t least 26 wt % UO,
Na,O,
5.6
wt %
and 7.2 wt % CO, (mole ratio U03:Na20:C02 = 1:1.0:1.8). Further data on this system are available from the American Documentation Institute
(document No. 5079). These include compositions, pH's, and densities a t points in and near the planes Na,O-C0,-H,O,
U0,-Na20-H,O,
H,O,
U0,-NaHC0,-H,O,
U0,-Na,CO,-H,O,
UO,CO,-Na,CO,-H,O, and UO,CO,-Na,O-H,O.
at 50 and 75OC are reported by
Related phase equilibria in the system Na,O-UO,-H,O J. E. Ricci and F. J. Loprest,
1. Am.
Na,U0,(C0,),-NaHC03-
G e m . SOC. 77, 2119 (1955).
UNCLASSIFIED PHOTO 24714
Na, UOz ( CO,
N a z UO, ( CO, ) Na,C03 '10H,O
c.
COMPOSITION w t o/'
Na2C03
A.
8.
3
,
A
Fig. 5.46.
UO2CO3
The Section U02C03-Na2C03-H20 at 26OC.
149
5.5. Portions of the System ~h0,-Na20-CO2-H20,
25OC Isotherm
F. A. Schimmel, unpublished work performed at the Oak Ridge National Laboratory, 1955. The stable thorium-carbonate solids found were ThOC03*8H,0 and Na,Th(C03)5*12H20. Temqry Points
Composition of Solution ( w t Sa) Solid Phases Present Tho, Na6Th(C03)5*12H20, NaHC03, and Na2C03*NaHC03*2H20(trona)
0.62
Na6Th(C03)5*12H20, Na2C03*10H20, and trona
0.48
'
Na20
CO2
12.0
9.96
14.1
10.86
UNCLASSIFIED ORNL-LR-OWG
38043
)
EOUILIBRIUMSOLI0 PHASES a-b z+NaHC03 z NaHC03 +TRONA b-c NaHC03+ TRONA b-d Z+TRONA d z +TRONA +Na2C03.40Hp d-e TRONA+Na2C03.10Hz0
b
+
d-1 Z + No2CO3.4OH2O 9-h ThOCO3,8H20
+
f 1 I
(z= 3Na20 .ThO2.5CO242HP (TRONA= Na2CO3.NaHCO3.2H201
Fig. 5.5~. Perspective Representation of the System Th02-Na20-C02-HZ0
1SO
OS
a
Tetrahedron.
U
The highest thorium solubility found was 3.35 wt % Tho, (3.06 wt % Na20, 3.60 wt % CO,) in equilibrium with solid Na6Th(C0,),*12H20 and ThOC03*8H20. (The terminal points of this binary line were not established.)
The
maximum thorium
solubility in equilibrium with
Na6Th(C03),*12H,0 and Na,C03*10H,0 was 1.25 wt % Tho, (12.5 wt % Na,O, 9.4 wt % c0,); with Na6Th(C0,),~12H,0 and trona, the highest solubility was 0.7 wt % Tho, (12.6 wt % Na,O, 10.4 wt % CO,). (5.0 wt % Na,O,
The highest found with Na,Th(C03),*12H,0 6.0 w t % CO,),
and NaHCO, was 1.2 wt % Tho,
which was the most dilute NaHCO, solution tested.
UNCLASSIFIED ORNL-LR-DWG 38013
Tho, EOUlLlBRlUM SOLID PHASES
i
I
a-b b b-c b-d d d-e d-f g-h
z+NaHC03 NaHCO- +TRONA NaHC03 k N A z+Tf?ONA z TRONA NazC0340Hfl TRONA+ NazC03~iOHz0 z NazC03-iOHp 2 + ThOC03.8H20 2
+
+
+
A
+
+
COMPOSITION wt '7-
( z = No6Th(C03)5.i2HZO) (TRONA = Na,C0,~NoHC0,~2HzO)
I I
-4
151
UNCLASSIFIED ORNL-LR-DW 38041
EOUlLlBRlUM SOLID PHASES
a-b b b-c b-d d +e d-f 9-h
2+NaHC03 2 NaHCOJ +TRONA NaHCq+TRoNA Z+TRONA 2 TRONA Na2C03.!OHfl TRONA +NazC0340Hp 2 +No,C0340H,0 2 ThOC03.BHz0
+
+
+
+
( 2 = 3NazO-Th02%02.!2Hfl)
(TRONA = Na&O3.NaHC0,~2HZO)
0
5
10
Fig. 5 . 5 ~ . The System Th02-Na20-C02-H20
15
25
at 2PC. Proiection to the Th02*C02-3Na20*4C02-H20
internal plane, represented as an equivalent triangle, along radii from the C02 vertex.
100
152
W?
% H20.
'(Th0;CO.I 30
Portion from
70 to
5.6. The System Na,O-C0,-H,O,
F. A.
25OC Isotherm
1955. London 233, 35 (1922)1
Schimmel, unpublished work performed at the Oak Ridge National Laboratory,
Significant changes from the data of Freeth [Phil. Trans. Roy. SOC.
were found throughout the range; there was closer agreement in the bicarbonate range with the data of Hill and Bacon [ J . Am. Chem. SOC. 49, 2487
(1927)I.
Transition Points Composit ion of Solution Solid Phases Present
(wt
%)
NaOH*H20 and Na2C03
40.5
0.85
Na2C03 and Na2C03*H20
31.4
0.72
Na2C03*H20 and Na2C03*7H20
18.7
6.9
Na2CO3*7H20and Na2C03*10H20
17.85
7.8
Na2C03*10H20 and Na2C03*NaHC03*2H20 (trona)
13.7
10.35
Trona and NaHC03
11.9
9.5
153
The System Na20-C02-H20,
U0C Isotherm
Composition of Saturated Solution Equilibrium Solid Phase
(wt %)
Na20
co2
41.3 40.5 40.45 31.6 31.4 31.1 29.9 26.6 25.2 23.2 23.15 21.15 19.3 18.95 18.57 18.6 18.7 18.5 17.7 18.3 17.85 17.3 16.1 15.6 15.1 13.7 13.28 13.55 14.1 13.7 17.0 16.7 13.8 11.9 11.55 10.5 9.4 8.1 6.4 5.4 3.9
0 0.85 0.8 0.67 0.72 0.78 0.5 0.4 0.55 0.9 1.o 2.3 4.3 6.0 7.5 7.8 6.9 6.75 7.95 7.3 7.8 7.88 7.9 7.92 8.1 8.85 9.4 10.15 11.0 10.35 13.0 12.7 10.35 9.5 9.3 8.8 B.0 7.5 6.5 5.75 5.0 4.95 4.93
3.56 3.47
*The formula of trona is Na2CO3*NaHCO3*m2O.
154
NaOH*H20 Na2C03 Na2C03 Na2C03 Na2C03 and Na2C03*H20 Na2C03*H20 No2C03*H20 Na2C03*H20 Na2C03*H20 No2C03*H20 Na2CO3-H2O Na2C03*H20 Na2C03*H20 Na2C03*H20 Na2C03*H20 (metastable) No2C03*H20(metastable) Na2C03*H20 and Na2C03*7H20 Na2C03*7H20(metastable) Na2C03*7H20 (metastable) Na2C03*7H20 Na2C03*7H20 and Na2C03*10H20 Na2C03*10H20 Na2C03*10H20 Na2C03*10H20 Na2CO3*1OH2O Na2C03*10H20 Na2C03*10H20 Na2C03*10H20 Na2C03*10H20 (metastable) Na2C03*1O H 2 0 and trona* Trona (metastable) Trona (metastable) Trona Trona and NaHC03 NaHC03 NaHC03 NoHC03 NaHC03 NaHC03 NaHC03 NaHC03 NaHC03 NaHC03
UNCLASSIFIED ORNL-LR-DWG 38044
NoQ
J
5
10
15
20
25
30
35
40
45
155 I
i
I I
5.7.
1. C. H. Secoy, J. Am. Chem. SOC. 72, 3343 (1950) (data above 3OOOC). 2. C. H. Secoy, J. Am. Chem. SOC. 70, 3450 (1948) (data up to 300OC).
I
,
Solubility of Uranyl Sulfate in Water
3. L. Helmholtz and G. Friedlander, Physical Properties of Uranyl Sulfate Solutions, MDDC-808 (1943) (room temperature data).
i
4. C. Dittrich, Z . p h y s i k Chem. 29, 449 (1899).
1
5. E.
1 1
a 4
,
V.
Jones and
V.
Jones and W.
W. L. Marshall, HRP Quar. Prog. Rep. March 15, 1952, ORNL-1280,
p 180-83. p
6. E. 210-1 1.
L. Marshall, HRP Quar. Prog. Rep. Jan. 31, 1959, ORNL-2696,
i
The two-liquid-phase region of this system in actuality must be represented by the three 4
I
1
i,
components UO,
SO,
and H,O.
The curve representing the boundary of liquid-liquid immisci-
bility i s correct for stoichiometric solutions. However, the t i e lines within the region of immiscibility do not connect two solutions containing stoichiometric UO,SO,
but rather connect solu-
IJ
UO, and SO, (Fig. 5.10). A t low concentrations and high temperatures, that is, below 0.02 m UO,SO, and above 25OoC, hydrolysis
I
occurs to produce a nonstoichiometric solution phase.
~
i
I
~
!
tions containing varying concentrations and ratios of
concentration and temperature (see Sec 5.13).
1
i
The point of hydrolysis is dependent on
Note:
Revised data (ref
1) showed higher temperatures in this region and a possible likelihood of acid
I
Earlier data (ref
1
impurity in the solutions.
I
I
!
156
5) are used to construct the immiscibility boundary in the figure.
UNSATURATED SOLUTION ( L 2 ) +
r,
t\ -
350
SOLUTIO
TWO- LIQUID PHASES
300
\
- 250 0
0 Y
:200
UN SATURATED S 0LUT ION
3
f00
50 U02S04* 3 H20 + SOLUTION
ICE + U02S04. 3 H 2 0
-50
L
0
I
I
1
2
,
Fig. 5.7.
I
I
I
I
3 4 5 6 m, moles/1000 g H20
I 7
I 0
9
The System U0,S04-H20.
L;
157
5.8.
TwoSLiquidSPhase Region of
UO,SO,
i n Ordinary and Heavy Water
E. V. Jones and W. L. Marshall, HRP Qum. Prog. Rep. March 15,1952, ORNL-1280, p 180-83. The two curves shown are boundary curves for liquid-liquid immiscibility obtained by observing the phase-transitional behavior of known as a function of temperature.
U02S04-H20 (D20) solutions in sealed tubes
For later reference, this procedure i s designated the visual-
synthetic method. As was described in Sec
5.7, the concentrations and compositions of the two
phases within the boundary region at equilibrium cannot be obtained from this figure.
Mixtures
which are solutions at lower temperatures separate into two liquid phases as the temperature i s raised, according to the boundary curves.
â&#x20AC;&#x2DC;158
UNCLASSIFIED ORNL-LR-DWG 29344
340 I
I
I
I
4
I
3 W
I-
280
270 0
1
2
3
4
5
6
m, moles U02S04 / I O 0 0 gm H20, D20 Fig. 5.8.
Two-Liquid-Phase
Region of UO,SO,
in Ordinary and Heavy
Water.
159
The System U0,-SO,-H,O
5.9.
1. A. Colani, Bull. SOC. c h i n France [41 43, 754-62 (1928). 2. J. S. Gill, E. V. Jones, and C. H. Secoy, HRP Quar. Prog. Rep. Oct. 31, 1953, ORNL-1658, p 87. The 25' data on the SO,-rich side are those of Colani. The higher temperature data are those of Gill, Jones, and Secoy, obtained by filtration techniques at temperature. The number 25, 100, and 175OC are somewhat uncertain. Subsequent unpublished work of F. E. Clark and C. H. Secoy has disclosed that the
and identity of the solid phases i n the U0,-rich
K
regions at
solid i s identical (x-ray diffraction) with the mineral uranopilite,
6UO,*SO,*Xfl,O,
that the G
solid i s not identifiable as any known mineral, and that at least one additional unidentified solid phase occurs at
25 and 100'.
The liquidus curves for the
25 and 100' isotherms are
essentially correct as shown except that the transition points (two solid phases) occur at somewhat lower concentrations than those indicated.
UNCLASSlFlED DWG 21934
H2째
.u
K = URANOPILITE 6 U 0 3 - S 0 3 *18 ( ?) H20
G = G BASIC SALT (5U0, 2S0, yH20)?
A= UO,
-u
- 2S03-1.5H20
U
Fig. 5.9~. The System U03-SO3-H20
160
ot 2PC.
6'
t !
161
U UNCLASSIFIED DWG 21936
Fig. 5 . 9 ~ . The System U03-S03-H20
162
at
179C
II
UNCLASSIFIED
163
5.10.
Coexistence Curves for Two Liquid Phases i n the System U02S04-H,S04-H20 H. W. Wright, W. L. Marshall, and C. H. Secoy, HRP Qum. Prog. Rep. Oct. 1, 1952,
ORNL-1424, p 108. A l l curves in this figure must extrapolate to the critical temperature of water (374.2OC) at zero concentration of uranium.
These are boundary curves which were determined by
observing sealed tubes in which immiscibility occurred in U0,-SO,-H,O the temperature.
solutions upon varying
As was explained in Sec 5.7, they do not represent concentrations and compo-
sitions of the two liquid phases within the temperature-concentration region of immiscibility
but are lower solution boundary curves.
164
UN ORNL-
450
425
/
400
z
375
W
a
3
5a
w a
H
W
+ 350
325
S
300
I
275 5
IO
15
20
25
URANIUM (wt %)
Fig 5.10.
Coexistence Curves for Two Liquid Phases in the System
U02S04-H2S04-H20.
165
5.11.
Two-Liquid-Phase Region of the System UO2SO4-H2SO,-H2O
R. E. Leed and C. H. Secoy, Cbem. Quat. Pmg. Rep. Sept. 30, 1950, ORNL-870, p29-30; Secoy, Cbem. Quar. Prog. Rep. Dec. 31, 1949, ORNL-607, p 33-38.
C. H.
In contrast with the immiscibility curves shown in Fig. extrapolate to a critical temperature curve for SO,-H,O
UO, i s dissolved.
Since
SO,
5.10, each of these curves must
in which a small or negligible amount of
dissolved in H,O (neglecting any dissolved UO,)
w i l l elevate the
critical temperature, the curves obtained from solutions containing a constant amount of free for H,O alone.
H2S04 w i l l a l l extrapolate to critical temperatures higher than that (374.2%)
UNCLASSIFIED
DWG. 10085
410
I
/
/I
4001
2901
0
Fig. 5.11.
166
1
I
I
I
\I
\ \ I
I IO
I
20
I I 40 50 WEIGHT PERCENT UO2SO4 I 30
I
60
I
70
Two-Liquid-Phase Region of the System U02S04-H2S04-H20.
0
5.12.
Two-Liquid=Phase Coexistence Curves for U0,-Rich
H,O With and Without
Solutions i n the System U0,-SO,-
HNO,
E. V. Jones and W. L. Marshall, HRP Quar. Prog. Rep. ]uly 1, 1952, ORNL-1318, p 147-48. These curves have been obtained by the visual-synthetic method mentioned i n Sec 5.8. They are therefore boundary curves and do not describe compositions and concentrations within the i
I iqu id-I iqu id immisci bi Iity region.
UNCLASSIFIED DWG. 15625
I
!
i
lic
-w
K
I
I
I
I
1
I
I
270-
3
IU
e w a
E
300-
I-
290 -
280
j !
li
-
0
t r
io
+-
u= 1.20 AND so4
CONTAINING
n
20
30
40
TOTAL URANIUM ( w t X ) Fig. 5.12 Two-Liquid-Phose Coexistence Curves for U03-Rich Solutions in the System U0,-SO,-H,O With and Without HNOp
167
5.13. Solubility of UO, in H,SO,-H,O Mixtures W. L. Marshall, Anal. Chem. 27, 1923 (1955). The data are represented in this manner in order to show the full concentration range on one figure and to best indicate the degree of precision. The solid phase i s a-U0,*H20 below 205OC and &UO,*H,O
above 205OC. These curves represent hydrolysis equilibria.
UNCLASSIFIED ORNL-LR-DWG. i 8 4 0 A R
SOLUBILITY MOLE RATIO UO,/
Fig. 513. Solubility of U03 in H2S0,-H20
H,S04
Mixtures.
0 u U
168
5.14.
Effect of Excess
H,SO,
on the Phase Equilibria in Very Dilute UO,SO,
Solutions
1. W. L. Marshall, Anal. Chem. 27, 1923 (1955). 2. H. W. Wright, W. L. Marshall, and C. H. Secoy, HRP Quat. Prog. Rep. ORNL-1424, p 108. The curves were drawn by C. H. Secoy from data used for Figs. 5.10 and 5.13.
Oct. 1, 1952,
UNCLASSIFIED ORNL-LR-DWG t9400
350 -
- 325
-
W
LT
3
!LTz W
a 5
300
-
275 -
Fig. %14 Effect of Excess H2S04 on the Phase Equilibria in Very Dilute U02S04 Solutions.
169
5.15. Second*Liquid*Phase Temperatures of UO,SO,-Li,SO,
Solutions
R. S. Greeley, S. R. Buxton, and J. C. Griess, "High Temperature Behavior of Aqueous UO,SO,-Li
,SO,
and U02S04-BeS04,"
Meeting, New York City (Oct.
1957).
paper presented at American Nuclear Society 2nd Winter Also
R.
S.
Greeley and
J. C.
Griess, HRP Dynmic So-
lution Corrosion Studies for Quarter Ending July 31, 1956, ORNL CF-56-7-52,p 30-31. These data were obtained by the visual-synthetic method mentioned in Sec
400
-
5.8.
UNCLASSIFIED ORNL-LR-DWG 491Ot 7
380 360 -
u e 340
-
w
-
cc
3
I-
Q
B a
320 -
P.'003 d
280
W
-
CONCENTRATIONS ARE UNCOR FOR LOSS OF WATER TO VAPOR AT ELEVATED TEMPERATURES
260 240
-
0
Fig.
0.02
5. IS
0.05
0.t 0.2 LizSO4 ( m )
Second-Liquid-Phase
0.5
Temperatures of
4.0
2.0
U02S04-Li *SO,
5.0
So-
lutions.
c 170
5.16. Second-Liquid-Phase Temperatures for UO,SO, Solutions Containing Li,SO, or BeSO,
R.
s.
Greeley and J.
C. Gtiess,
HRP Dynamic Solution Corrosion Studies for Quarter Ending
July 31, 1956, ORNL CF-56-7-52, p 30. Liquid-liquid immiscibility occurs a t the boundary curves as the temperature i s raised.
UNCLASSIFIED ORNL-LR-DWG 1580
40
-E
35'
W
a 3 l-
a a
0 2 S 0 4 + 25MOLE % L i 2 S 0 4
w
a z w I-
3O<
2 51
0.5
I.o
1.5 2.0 M O L A L I T Y OF UO,SO,
2.5
Fig. 5116. Second-Liquid-Phose Temperatures for UO,x), Li2S04or BeSOC
3.0
Solutions Con-
toining
Y
I
-
171
5.17. Second*Liquid.Phase Temperatures for BeSO, Solutions Containing UO,
R. S. Greeley and J. C. Griess, HRP Dynamic Solution Corrosion Studies {or Quarter Ending July 31, 1956, ORNL CF-56-7-52, p 31. Liquid-liquid immiscibility occurs at the boundary curves as the temperature i s raised.
UNCLASSIFIED ORNL-LRDWG %E04
4 OC
-
35(
I
0
0
W
a 3
I-
a
a W a
Ec
30(
254 0
C i
4.0 MOLALITY
Fig, 5.17. taining UOg
172
1.5 OF
2 .o
2.5
3.0
Beso4
Second-Liquid-Phase Temperatures fur
BeSO,
Solutions Can-
i
i
u Lj
5.18. The System NiS0,-UO,SO,-H,O
at
25OC
E. V. Jones, J. S. Gill, and C. H. Secoy, HRP Quar. Prog. Rep. Oct. 31, 1954, ORNL-1813, p
16667. Also included in the reference are solubility data for this system at 175 and 25OOC. The
data at high temperature are not in sufficient quantity for a diagram to be presented.
UNCLASSIFIED ORNL-LR-DWG 3713A
j
I= I; Fig. 518.
The System NiSOa-UO2SO4-H20 at 2 9 C .
Compositions are
plotted in weight per cent.
'U i
173
C 5.19. PhaseaTransition Temperatures in Solutions Containing CuSO,, U02S0,, and H2S04
F. E. Clark, J. S. Gill, R. Siusher, and C. H. &coy, 1. Cbem. Eng. Data4, 12 (1959). All data were obtained by the visual-synthetic method mentioned in Sec 5.8 and represent temperatures a t which immiscibility occurred upon raising the temperature.
No deductions can
be made regarding compositions within the two-liquid-phase region.
UNCLASSIFIED ORNL-LR-OWG 244226
IO
5
0
t5
0
29
5
uo2SO4 Iwt 70) 15
-f 3
I5
-r to -
10
0
20
15
-
Q
10 uO2SO4(wt%)
0
to
5
lm2SO4~wt%1
Fig. 519.
0 45
20
0
5
I5
IO
uo,so,
15
20
TEMPERATURE CONTOUR LINES (isotherms) FOR APPEARANCE OF TWO LIQUID PHASES
111111111111
REGION OF RED SOLIDS
20
E
Li
REGION OF BLUE-GREEN CRYSTALLINE SOLIOS
A
REFERENCE COMPOSITION OF 0.1m C u S a 0.t m UOzSO4
+.
REFERENCE COMPOSITION OF HRT FUEL
;5
0
IO U02SO4IWt 70)
--&v \
0 "
5
5
c c
0.005 m CuS04 0.04 m UQSO4 (PLUS co 0 0 2 5 m H2S04)155%)
(wt%)
Phase-Transition Temperatures I n Solutions containing
cum4, U02S0,
and H2SOC
C 174
The Effect of CuSO, and NiSO, on PhaseaTransition Temperatures: 0.04 m UO,SO,; 0.01 m H,SO, C. H. Secoy et al., HRP Quar. Prog. Rep. July 31, 1957, ORNL-2379, p 163. Also additional data: F. Moseley, Core SoIution StabiIity in the Homogeneous Aqueous Reactor; the Effect of Corrosion Product und Copper Concentrations, HARD(C)/P-41 (May 1957).
5.20.
The curves for liquid-liquid immiscibility were drawn from data obtained by the visualsynthetic method mentioned in Sec
5.8.
Saturation temperatures for solid-liquid equilibria were
obtained by measuring solution concentrations as a function of temperature and determining a break in the curve.
The numbers in parentheses are temperatures at which the indicated solid
phase appeared upon raising the temperature.
Solid phases indicated in parentheses were found
in small quantity.
UNCLASSIFIED OR NL- LR- D W G 23 0t 4 A
0.04
u:
264 0.03 (29 :-282 )
-282 (&9)
h
F
v
0" 0.02
!2e
0.04
175
5.21.
The System U0,-CuO-NiO-SO,-D,O
J. S. Gill, R. Slusher, and W. p 205-13.
at
L. Marshall,
300OC; 0.06 m SO,
HRP QUW. Prog. Rep. Jmz 31, 1959, ORNL-2696,
The variation in solution composition i n the presence of one, two, and three solid phases was determined at
3OOOC from 0.04 to 0.2 m SO.,
Solubility relationships a t
0.06 m SO, were ob-
c
tained from these separate solubility curves, and the skeletal volume figure for the five-component system was drawn.
Other skeletal figures can be drawn a t varibus SO,
concentrations.
This investigation i s s t i l l in progress, and the data are subject to revision.
UNCLASSIFIED ORNL- LR-OWG. 3 5 7 f 4 A
/
T Ternary Composition 0.044 m NiO 0.040m CuO 0.025 m uo3
I I I
I
0.07
I
(
I
U03. UOzS04 SOLID
QUESTIONABLE
1.03 , /
/
B
/
0
OD 2
0.04
m Fig. 5.21.
CUO
0.03
-
The System UO3-Cu0-N1O~SO3-D20 ot 3OO0C; 0.06 m SO3.
P 176
ii
5.22. Solubility of Nd,(SO,),
in
0.02 m UO,SO, Solution Containing 0.005 m H,S0,(180-3W째C)
R. E. Leuze et at., HRP Quat. Prog. Rep. April 30, 1954, ORNL-1753, p 176-79. Also included in the reference are preliminary solubility data for rare earth sulfate mixtures as well as Ce,(SO,),
and La,(SO,),
in 0.02 m
UO,SO,, 0.005 m H,SO,.
UNCLASSIFIED
ORNL-LR-DWG 925A
40.0
5.0
TRACER- FILTRATION METHOD
'\.-.
J-
'Q \, .
--- 9,.-
I
I
1 I
P
--a-
0.1
(80
200
220
240
TEMPERATURE Fig. 5.22.
260
280
300
("C)
blubility of Ndz(S04), in 0.02 m U02S04 Solution Containing
0.005 m H ,SO, ( 180-300째C).
177
5.23. Solubility of La,(SO,), in UO,SO, Solutions E. V. Jones, M, H. Lietrke, and W. L. Marshall, J . Am, Chem. SOC. 79, 267 (1957); also The Solubility of Several Metal Sulfates at High Temperatures and Pressures in Water mzd in Aqueous Uranyl Sulfate Solution, ORNL CF-55-7-69 (declassified Aug. 23, 1955).
Experimental data for Figs. 5.23-5.27 were obtained by the visual-synthetic method described in Sec 5.8. The very large effect of UO,SO, must be noted and indicates considerable solvation of other species by aqueous UO,SO,, UNCLASSIFI
DWG. 1464
300
-
I
1
iI -
I
A TWO L I Q U I D PHASES A MUTHMANN AND ROLIQ
I
25C
I
I \
\
\
0
0 Y
W E
IN 4.35 m U02 SO4
2oc r
2,
I-
a a W a H
W I-
15c
IN 0.427 m U02S04
1 oc
-
\
\J
IN H20
t 5(
1.0
I
I
I
2.0
3.0
4.0
L a 2 ( S O 4 I 3 ( w t ‘IO) Fig. 5.23.
178
Solubility of
Lo,(SO$~
in UO,sO,
blutions.
L’
li C
5.24. Solubility
of
CdSO, in UO,SO,
Solutions
E. V. Jones, M. H. Lietzke, and W. L. Marshall, 1. Am. Chem. SOC. 79, 267 (1957); also The Solubility
of
Several Metal Sulfates at High Temperatures and Pressures in Water and in
Aqueous Uranyl SuZfate Solution,
ORNL CF-55-7-69 (declassified Aug. 23, 1955).
See comments in Sec 5.23. UNCLASSlFlED DWG. 14613A
25C
I
I
IN 0.127 m UOS , O,
li
20c
h
0 0 Y
W
150
LT 3
!-
a
LT W
:k
a
I I
I-
i
z W
1oc
@
BENRATH
50
i i
0 I
Fig. 5.24
Solubility of CdSO, in U01S04 Solutions.
179
5.25. Solubility of Cr,SO, in U02S0, Solutions E. V. Jones, M. H. Lietrkc, and W.
L, Marshall, I.
Am. Chem. SOC. 79, 267 (1957); also
The Solubility of Several Metal Sulfates at High Temperatures and Pressures in Water and in Aqueous Uranyl Sulfate Solution, ORNL CF-55-7-69(declassified Aug. 23, 1955). See comments in Sec
5.23.
UNCLASSIFIED DWG. 146!7A
I;
I
Fig.
5.25.
Solubility of
Cs$04 in U0,504 blutionr.
'44 180
5.26. Solubility of Y &SO,),
in UO,SO,
Solutions
E. V. Jones, M. H. Lietzke, and W. The Solubility
of
L.
Marshall,
/. Am. Chem.
SOC.
79, 267 (1957); also
Several Metal Sulfates at High Temperatures and Pressures in Water and in
Aqueous Uranyl Sulfate Solution, ORNL CF-55-7-69 (declassified Aug. 23, 1955). See comments in Sec
5.23. UNCLASSIFIED D W G 14635A
35c
I
I
I
I
I
I
I
I
I
I
I
30C
-
250
V
0
Y
W K
3
tE w a
5I200
tl
L i
irv
IO0
I
I
i .o
I
2.0 Y2
Fig, 5.26.
Solubility of
(SO,),
3.0 ( w t Yo)
Y2(SO4I3 i n UO,SO,
Solutions.
I 4.0
P -!J
5.27. Solubility of Ag,SO,
in UO,SO,
LJ
Solutions
E. V. Jones, M. H. Lietzke, and W. L. Marshall, 1. Am. Chem. SOC. 79, 267 (1957); also The Solubility of Several Metal Sulfates at High Temperatures and Pressures in Water and in Aqueous UrunyZ Sulfate Solution, ORNL CF-55-7-69 (declassified Aug. 23, 1955).
B
See comments in Sec 5.23. UNCLASSlnEO DWG. 14645A
-
Fig. 5.27.
182
Solubility of AB2%,
(WT%) in
U02S04 blutionr.
c
c
- BARRE
Ag,Ss
u
aqueous
U02S0,. UNCLASSIFIED
DWG. 45530A
400
I
i
I
I
I
I
I
I
I
I
I
I
I
1
I
I
:-: 40 -I rn
3 J
0
cn
v)
0 c
x
E
*
Y
0
cn
4.0
B
c I,
0.4
I
I
I
I
I
1
I
MOLALITY
u
I
I
uo,so,
Fig. L28. Solubility at 25OoC of BaSO, in UO2S0,-H20
i
I
Solutions.
183
J 5.29.
0.126 and 1.26 M UO,SO, C. E. Coffey, W. L. Marshall, and G. H. Cartledge, HRP Solubility of H2W04i n
Quar. Prog. Rep. Oct. 31, 1953,
ORNL-1658, p 96-99.
u
The data shown in the figures were obtained by direct sampling of equilibrated solutions, by the filter bomb method, and by the synthetic method described previously in Sec
5.8.
In 0.126 M
H2W04 first shows a positive temperature coefficient of solubility and In 1.26 M U02s04 the temperature then, above 100째C, a negative coefficient of solubility.
UO,SO,
the solubility of
coefficient of solubility is positive up to form
- a characteristic of U02S04-H,O
285q the temperature at which two liquid phases
solutions.
t:
UNGLA SSlFl ED DWG. 247608
300
G 200 v
w
U
3 + a
U
w
Q
H
E 100
0
0
t.0 2.0 SOLUBILITY (MOLARITY OF H,WO,
3.0 x to3)
Fig. 5 . 2 9 ~ Solubility of H2W04 in 0.126 M UOzS04.
u
UNCLASSIFIED
DWG. 21757 B
300 TWO LIQUID PHASES
I
lb
SOLUTION
c
-,o 200
SOLID + SOLUTION
0 10 20 30 SOLUBILITY ( MOLARITY OF H ~ W Ox io3) ~
0
Fig.
129b. Solubility of H,WO,
in
40
1.26 M U0,%,
I
185 i
E 5.30. Phase Stability of H,WO,
in
1.26 M UO,F,
C. E. Coffey, W. L. Marshall, and G. H. Cartledge, HRP Quar. Prog. Rep. Oct. 31, 1953, ORNL-1658, p 96-99. The methods of solubility and stability determination were the same as for analogous studies of
H,WO,
in UO,SO,
(Sec
5.29). The data on the figure as drawn show temperatures a t which
u
hydrolytic precipitation of an unidentified solid phase occurs from solutions stable a t lower temperatures.
P
UNCLASSIFIED DWG.24764 B
300
-
0
200
0
SOLID
w U
? a U
w
ii
!
i!
a I
+
I SOLUTION
A'
T SOLUTION
E too
I
/
h;. 0 0
1.0 2.0 3.0 SOLUBILITY (MOLARITY OF H,WO,
Fig. 5.30.
i!
j
4.0 x
5.0
to3)
Phose Stability of H2W0, in 1.26 M U02Fr
il 11
187
5.31.
The System UO,(NO,),-H,O
1. Reported in full by W. L. Marshall, J. S, Gill, and C. H. Secoy, Chem. Qum. Prog. Rep. Match 31, 1951, ORNL-1053, p 22-25.
2. Reported in part by W. L. Marshall, J. S. Gill, and C. H. Secoy, I. A m Chem. SOC. 73, 1867 (1951). AS i n the case of the system UO,SO,-H20, hydrolysis occurs at high temperatures and low concentrations, resulting in precipitation of UO,*H,O from stoichiometric U02(N0,), solutions. In addition, decompqsition of NOâ&#x20AC;&#x2122;, occurs at elevated temperature to produce an equilibrium vapor phase of nitrogen oxides. temperature up to point
F
Letter A represents a region of complete solution.
Data at low
were obtained by direct analysis of equilibrated solutions, whereas
the high-temperature data were obtained by the visual-synthetic method described in Sec 5.8.
188
400
UNCLASSIFIED DWG. 10868
I
I
I
I
I
I
I
I
1
G n
350
300
I
250
:I L i
o^ 200 Y
A
IO0
0, ::PRECIPITATION LIMITS
= VAPOR PHASE COLORATION
50
0
3
Fig L31. The System U02(N03)2-H20.
5.32. Phase Equilibria of UO, and HF in Stoichiometric Concentrations (Aqueous System) W. L. Marshall,
J. S. Gill,
C. H. Secoy, J . Am. Chem. SOC. 76, 4279 (1954).
and
The two-liquid-phase region and the region of "basic" are in actuality segments of the three-component system phases are nonstoichiometric with regard to UO,F,. system
U0,-H,SO,-H,O
400
U0,-HF-H,O,
in which
he equilibrium
This system is somewhat analogous to the
I
I
I
I
I
I
I SOLID + SUPER CRITICAL FLUID
I
H -A-A-A-A-A--AA-A-&-
I-
+ saturated solution
5.7).
I
I
I
350
(see See
solid solution
I
y UOeF2* 2H20+LIQUID I
300
250
V
0,
200 K UNSATURATED SOLUTION
U
3
i-
a a
f 5I-
150
7'
€34
100
16 .'e
A OUR DATA
00
,fe(D U02F2 - 2H20 + SATURATED $ SOLUTION a
€3 DATA OF DEAN
50
0 DATA OF KUNIN
f
A
0 ICE +SATURATED SOL'N.
- 5_ 0_
Fig.
I
I
0
o-.-.-.a.*.
!O
132 Phase
20
Equilibria of
I
I
0;B
I
30 40 50 60 WEIGHT PERCENT AS U02F2
U 0 3 and HF
I
I 70
80
in Stoichiometric Concentrations (Aqucous System).
90
5.33. Solubility of Uranium Trioxide i n Orthophosphoric Acid Solutions W. L. Marshall, J.S. Gill, and H. W. Wright, HRP Qum. Ptog. Rep. May 15, 1951, ORNL-1057, p 112-15. The data were obtained for the most part by equilibrating solutions of known concentration in sealed tubes for various times at different temperatures.
Phase changes were observed visually.
UNCLASSIFIED DWG. 11232
350
I
I
I
I
I
I
I
----I
/--
'0
CURVE A I MOLAR Ha PO4 CURVE B EMOLAR H3 PO4 CURVE C 3MOLAR H3 PO4 00
I OUR DATA
4 A
KUHN AN0 RYON
0
LOS ALAMOS
191
clj 5.34, Solubility of Uranium Trioxide in Phosphoric Acid at 250OC
J. S. Gill, W. L. Marshal1,and H. W. Wright, HRP Quar. Prog. Rep. Aug. 15, 1951,ORNL-l121, p
LI
119-21. Solution and solid mixtures were equated at 25OOC in sealed glass tubes.
The tubes were
cooled rapidly to room temperature, and the solution and solid phases were analyzed.
The slow
€j
n
reversibility of equilibrium conditions made this procedure possible.
1.6
1.4
1.2
-s^ m 0 3
1.0
Y
0
>-
k 0.8
2
m
' 3
-I
0.6
0.4
0.2
C 0
2
1
3
4
CONCENTRATION OF H,PO,
Fig.
5.34.
5
6
7
8
(Y)
Solubility of Uronium Trioxide in Phosphoric Acid at 250°C.
U
c 192
5.35. Solubility of UO, in H,PO, Solution
B. J. Thamer et al., The Properties of Phosphoric Acid Solutions of Uranium 4s Fuels for Homogeneous Reactors, LA-2043 (March 6 , 1956); W. L. Marshall, J. S. Gill, and H. W. Wright, HRP Quar. Prog. Rep. M a y 15, 1951, ORNL-1057, p 112-15; and J. s. Gill, W. L. Marshall, and H. W. Wright, HRP Quar. Prog. Rep. Aug. 15, 1951, ORNL-1121, p 119-21. This figure represents a compilation from the data of B. J. Thamer et al. of Los Alamos and W. L. Marshall et al. of Oak Ridge National Laboratory.
UNCLASSIFIED ORN L LR DWG 293 46
- -
2
1
> k 4
\
0.5
A 0
I 3
0.2
0.1 1.o
2
5
40
20
PO4 MOLARITY Fig.
5.35.
Solubility of
UO, I? H3P04 slution.
193
U 5.36.
The System U02Cr04-H20 ’ 1. F. J. Loprest, W. L. Marshall, and C. H. Secoy, J . Am. Chem. SOC. 77, 4705 (1955). 2. W. L. Marshall, HRP Qum. Prog. Rep. Mmcb 31, 1953, ORNL-1554, p 105-6. The solid phases are U02Cr045’/2H20 (A) and U 0 2 C r 0 4 d 2 0 ( B ) . Curve rs represents
il
the boundary of a region in which hydrolytic precipitation of a basic uranyl chromate occurs. In the same concentration range the dichromate, U02Cr20,, and apparently dissolves in the supercritical fluid (ref
i s stsble to the critical temperature
2).
E
UNCLASSIFIED
ORNL-LR-DWG 54448
t40
I
I I NON-BINARY (30 -SOLID LIQUID
I
I
n
-
+
-
-
120
-
too-
c
90
B
r
+ LIQUID -
LIQUID
1
80
70 60 50 40 30 A
20
+ LIQUID
to 0
A
80
-10
0
10
20
30
40
50
60
70
Uo2Cro4 (.wt o/~) Fig. %36.
The System U02Cr0,-H20.
90
400
c
U
L
Li k;
5.37.
Variation of Li ,CO, Solubility with UO,CO, Concentration at Constant CO, Pressure (25OOC) 1. F. J. Loprest, W. L. Marshall, and C. H. Secoy, HRP Quar. P t o g . Rep. Iuly 31, 1955, ORNL-1943, p 227-35. 2. W. L. Marshall, F. J. Loprest, and C. H, Secoy, HRP Quat. Prog. Rep. Jan. 31, 1956, ORNL-2057, p 131-32.
L
The solubility relationships in the figure indicate strong complexing of UO,cO, under CO, pressure. The formation of HCO,'
species in solution i s
with Li,CO,
indicated.
UN CLASS ORNL-LR-DW
4 .ooo
0.800
-
0.600
Y
F
rg
0 0
I .-I
Pt
0.400
0.200
L
00
F i g 5.37. I '
a,
* -
.
4
3.37 moles of Li per mole of U (LiZCO3 IS SOLID PHASE) * . .I I . 4.44 motes OT LI per mole OT u AT ISOBARIC INVARIANT 1
1 -
a
I
.
.I.
-I-I
0
2 0.04 0.06 0.08 0.10 0.12
Variation of Li2C03 Solubility with
0.i4
0.t6
0.48
UOZC03 Concentration at
Constant C 0 2 Pressure (25OOC).
195
~
5.38. The System Li20-U03-C0,-H20 a t 2 5 0 O C and 1500 psi 1. F. J. Loprest, W. L. Marshall, and C. H. Secoy, H R P Quar. Prog. R e p . July 31, 1955,
Ll
ORNL-1943, p 227-35.
2. W. L. Marshall, F. J. Loprest, and C. H. Secoy, H R P Quat. Pmg. R e p . J m 31, 1956, ORNL-2057, p 131-32. As CO, pressure i s increased, the area of complete solution (indicated by the shading)
G
increases. As temperature i s increased, the solution area decreases.
UNCLASSIFIED ORNL-LR-DWG 143428
H2째
100
90
10
0
5
10
U03(Wt%) Fig. 5.38.
196
The System Li20-U03-C02-H20
at 25pC and 1500 psi.
u
5.39.
The
System
Th(NO,),=H,O
1. Reported in full by W. L. Marshall, J. S. Gill, and C. H. &coy, HRP Quar. Prog. Rep. NOW 30, 1950, ORNL-925, p 279-90. 2. W. L. Marshall, J. S. Gill, and C. H. Secoy, J. Am. Chem. SOC. 73, 4991 (1951). Hydrolytic precipitation of Tho, and thermal decomposition of NO,- in this system occur in an analogous manner to the reactions occurring in the system UO,(NO,),-H,O (see Sec 5.31).
1
A t higher temperatures the two-component system in actuality must be considered
II; i
three components Tho,,
HNO,,
in terms of
the
and H,O. UNCLASSIFIED DWG. 9967
u
Y
WEIGHT PERCENT Th(N03)4
Fig. 5.39.
The System Th(NO.J4-H2O.
197
5.40.
Hydrolytic Stability of Thorium Nitrate-Nitric Acid and Uranyl Nitrate Solutions
1. W.
L.
Marshall and
C. H. Secoy, HRP Quar. Prog. Rep. Oct. 31, 1953, ORNL-1658,
ORNL-1053, p 22-25. The data used to draw the individual curves were obtained by observations at various temperatures of tubes that contained different solutions of known concentration. was analogous to that used for obtaining data for Fig. tation of UO,(NO,),
5.33.
The procedure
The curve for hydrolytic precipi-
i s taken from ref 2.
UNCLASSIFIED ORNL-LR-DWG. 247598
380 1
I
I
1
340
Y
440
400
4 2 .o 4.0 THORIUM, URANIUM ( M )
Fig. 5.40.
Hydrolytic Stobiliiy of Thorium Nitrate-Nitric
Nitrate Solutions.
198
Acid and Uranyl
5.41. The System ThO,-CrO,-H,O at 25OC 1. H. T. S. Britton, J. Cbsm. SOC. 123, 1429 (1923). 2. W. L. Marshall, F. J. Loprest, and c. H. Secoy, HRP Quar. Prog. Rep. Jan. 31, 19S5,
ORNL-1853, p 205-6. 2 5 O was determined by Britton. Points 1-7 indicate compositions investigated at high temperature by Marshall, Loprest, and Secoy. These solution compositions The phase diagram at
were phase stable up to 16OOC for point
7 and 32OOC for
point
1.
UNCLASSIFIED ORNL-LR-DWG 5020A
Flg. 141.
ystc
,-Cr03-H20
at
29C.
Compositions are in
weight per cent.
I
,
i
liv Ll
199
5.42.
Phase Stability of
Th0,-H3P0,-H,0
W. L. Marshall, experimental data
Tho, in ORNL research notebook 2881, p 35 (May 1953). Solutions at High Concentrations of
Solutions of uppropriate concentrations were prepared and analyzed.
These solutions were
sealed i n glass tubes and shaken at various temperatures for times varying from days.
In this manner the phase stability boundaries with respect to concentration and temper-
ature were established.
At first inspection of the figure it i s surprising that more Tho, can be
dissolved per liter at the lower H,PO,/ThO,
ratio than at the higher ratio.
Actually, there
Tho,
i s a physical volume limitation due to the high fractional volumes occupied by As any solution i s diluted with
at these concentrations.
H,O,
and
H3P0,
hydrolysis of thorium i n solution
occurs. At room temperature, solutions in which the H,PO4/ThO2
1O:l
1 hr to several
ratio is
5 1 are gels, whereas
ratio solutions are s t i l l fluid.
400
350 0
1
UNCLASSIFIED ORNL- LR - DWG,38529
I
I
I
I
I
I
1
\I” 1
300
250
>’’:&
HYDROLYTIC PRECIPITATION> REGION
HYDROLYTIC PREClPlTATION REGION
I-
\I
200
FOR 40:4 MOLE RATIO, %FQ4/Th02
>’
).
k I
I
I
-
y’qi,$zpN FOR 5:t MOLE RATIO, H3P04/Th02
I
I
I
GRAMS Tho2 PER LITER OF SOLUTION (25°C) Fig. 5.42
Phose Stability of Th02-H3P04-H20
Solutions at High Concentrations of T h O r
200 A
ACKNOWLEDGMENT
Acknowledgment i s made to the following for permission to reproduce copyrighted material: American Ceramic Society American Institute of Mining, Metallurgical, and Petroleum Engineers
Analytical Chemistry ]oumal of Chemical and Engineering Data
Ioumal of Physical Chemistry Iournal of the American Chemical Society
U.S. Atomic Energy Commission
201
0RNL-2548
4J
-
Chemistry General TID-4500 (15th ed.)
I
I!
IN TERN AL DI ST RI BU TI0N
1. 2. 3. 4.
R. D. Ackley R. E. Adams
G. M. Adamson L. G. Alexander 5. K. A. Allen 6. C. F. Baes 7-11. C. J. Barton 12. S. E. Beall 13. P. R. Bell 14. J. 0. Betterton 15. A. M. Bilfings 16. D. S. Billington 17. C. A. Blake 18. J. P. Blakely 19. R. E. Blanco 20. F. F. Blankenship 21. M. Blander 22. E. P. Blizard 23. C. M. Blood 24. A. L. Boch 25. E. G. Bohlman 26. S. E. Bolt 27. G. E. Boyd 28. M. A. Bredig 29. J. C. Bresee 30. R. B. Briggs 31. H. R. Bronstein 32. J. R. Brown 33. K. B. Brown 34. W. E. Browning 35. F. R. Bruce 36. W. D. Burch 37. S. R. Buxton 38. S. Cantor
55. J. S. Culver 56. D. R. Cuneo 57. J. E. Cunninaham 58. D. G. Davis 59. R. J. Davis 60. W. C. Davis 61. J. H. DeVan 62. R. R. Dickison 63. L. M. Doney 64. F. A. Doss 65. J. S. Drury 66. A. S. Dworkin 67. L. B. Emlet (K-25) 68. J. L. English 69. J. E. Eorgan 70. R. B. Evans 71. D. E. Ferguson 72. J. L. Fowler 73. A. P. Fraas 74. H. A. Friedman 75. J. H. Frye, Jr. 76. C. H. Gabbard 77. W. R. Gall 78. J. S. Gill 79. J. H. Gillette 80. L. 0. Gilpatrick 81. J. M. Googin (Y-12) 82. R. S. Greeley 93. A. T. Gresky 84. J. C. Griess 85-89. W. R. Grimes 90. E. Guth 91. P. A. Haas 92. P. H. Harley 93.
94. 95. 96. 97. 98. 99.
C. S. HarriII L. A. Harris P. N. Haubenreich G. M. Hebert
H. L. Hemphill J. W. H i l l E. C. Hire 100. E. E. Hoffman
52. J. H. Crawford 53. C. R. Croft 54.
F. L. Culler
103. R. W. Horton 104. A. S. Householder 105. H. lnsley 106. G. H. Jenks 107. D. T. Jones 108. E. V. Jones
203
109. W. H. Jordan 110. P. R. Kasten 111. G. W. Keilholtz 112. C. P. Keim 113. M. T. Kelley 114. M. J. Kelley 115. B. W. Kinyon 116. N. A. Krohn 117. J. A. Lane 118. S. Longer 119. C. G. Lawson 120. J. E. Lee, Jr. 121. R. E. Leed 122. R. E. Leuze 123. W. H. Lewis 124. M. H. Lietzke 125. T. A. Lincoln 126. S. C. Lind 127. R. B. Lindauer 128. R. S. Livingston 129. J. T. Long 130. R. A. Lorenz 131. R. E. Lowrie 132. M. 1. Lundin 133. R. N. Lyon 134. J. P. McBride 135. W. B. McDonald 136. H. F. McDuffie 137. H. A. McLain 138. R. A. McNees 139. H. G. MacPherson 140. T. N. McVay 141. J. R. McWherter 142. W. D. Manly 143-147. W. L. Marshall 148. R. E. Meadows 149. R. P. Metcalf 150. R. P. Milford 151. A. J. Miller 152. J. W. Miller 153. C. S. Morgan 154. K. Z. Morgan 155. R. E. Moore 156. R. L. Moore 157. J. P. Murray (Y-12) 158. M. L. Nelson 159. G. J. Nessle 160. R. F. Newton 161. L. G. Overholser 162. L. F. Parsly, Jr. 163. R. L. Pearson 164. F. N. Peebles
204
165. 166. 167. 168. 169. 170. 171. 172. 173. 174. 175. 176. 177. 178. 179, 180. 181. 182. 183. 184. 185. 186. 187. 188. 189. 190. 191. 192. 193. 194. 195. 196. 197. 198. 199. 200. 201. 202. 203. 204-213. 214. 215. 216. 217. 218. 219. 220. 221. 222. 223. 224. 225.
D. Phillips L. R. Phillips (Y-12) M. L. Picklesimer W. T. Rainey A. D. Redman S. A. Reed P. M. Reyling D. M. Richardson R. C. Robertson A. D. Ryon H. C. Savage H. W. Savage F. A. Schimmel (Y-12) J. M. Schmitt J. M. Schreyer (Y-12) H. E. Seagren C. H. Secoy C. L. Segaser J. H. Shaffer E. M. Shank R. J. Shell R. P. Shields E. D. Shipley M. D. Silverman M. J. Skinner R. Slusher N. V. Smith W. T. Smith, Jr. A. H. Snell B. A. Soldano 1. Spiewak H. H. Stone R. A. Strehlow 8. J. Sturm C. D. Susano J. E. Sutherland J. A. Swartout A. Taboada E. H. Taylor R. E. Thoma D. G. Thomas M. Tobias D. S. Toomb D. B. Trauger J. Truitt W. E. Unger R. Van Winkle F. C. VonderLage W. T. Ward G. M. Watson B. S. Weaver C. F. Weaver I
226. 227. 228. 229. 230. 231. 232. 233. 234. 235. 236. 237.
A. M. Weinberg K. W. West M. E. Whatley G. C. Williams C. E. Winters H. W. Wright J. P. Young F. C. Zapp P. H. Emmett (consultant) H. Eyring (consultant) D. G. Hill (consultant) C. E. Larson (consultant) ,
I:
~
238. 239. 240. 241. 242. 243-244. 245. 246-265. 266. 267. 268.
W. 0. Milligan (consultant)
J. E. Ricci (consultant) G. T. Seaborg (consultant) E. P. Wigner (consultant) Biology Library Central Research Library Health Physics Library Laboratory Records Department Laboratory Records, ORNL R.C. Reactor Experimental Engineering Library ORNL Y-12 Technical Library, Document Reference Section
-
EXTERNAL DISTRIBUTION
269-270. Stanford Research Institute, Menlo Park, Calif. (1 copy ea. to D. Cubicciotti and J. W. Johnson) 271-272. National Lead Co., P. 0. Box 158, Cincinnati 39, Ohio (1 copy ea. to R. E. DeMarco and K. Notz) 273. Geophysical Laboratory, Carnegie Institution of Washington, 2801 Upton St., Washington 8, D.C. (J. W. Grieg) 274. Mound Laboratory, Miamisburg, Ohio (E. F. Eichelberger) 275-276. Minnesota Mining and Manufacturing Co., Central Research Dept., 2301 Hudson Rd., St. Paul 9, Minn. (1 copy ea. to J. R. Johnson and G. D. White) 277. Chemical Separations and Development Branch, Nuclear Technology, Division of Reactor Development, AEC, Washington 25, D.C. (F. Kerze, Jr.) 278. Dept. of Chemistry, Brown University, Providence 12, R.I. (C. A. Kraus) 279. Mallinckrodt Chemical Works, Uranium Division, P.O. Box 472, St. Charles, Mo. (C. W. Kuhlman) 280. Portland Cement Association Fellowship, National Bureau of Standards, Washington 25, D. C. (E. M. Levin) 281-282. National Carbon Research Laboratories, P.O. Box 6116, Cleveland, Ohio (1 copy ea. to G. W. Mellors and S. Senderoff)
283. College of Mineral Industries, Pennsylvania State University, University Park, Pa. 285. 286. 289.
290.
1663, Los Alamos, N. M. (B. J. Thamer) Dept. of Physics, University of Chicago, Chicago, 111. (W. H. Zachariasen) Reaction Motors Division, Thiokol Chemical Corp., Denville, N.J. (F. L. Loprest) ington 25, D. C. (H. F. McMurdie) National Bureau of Standards, 25, D.C. (G. W. Morey) rbide Corporation, Parma, Ohio (F. E. Clark) National Carbon Division of Res pment, AEC, Washington
291. Division of Res 292. Division of Reactor Deve
2
. Given distribution as shown i n TID-4500 (15th ed.) -
under Chemistry-General category
(75 copies OTS)
205