HOME HELP ...... *w
i
I
e
ORNk/TM-7207 Dists Category uc-76
&
w
C o n t r a c t No. W-7405-eng-26
E n g i n e e r i n g Technology Division
CONCEPTUAL DESIGN CHARACTERISTICS OF A DENATURED MOLTEN-SALT REACTOR WITH ONCE-THROUGH FUELING
J. R. Engel H. F. Bauman J. F. Bearing
Date Published:
W. W. G r i m e s H. E. McCoy
W. A. Rhoades
July 1980
NOTICE This document contains information of a preliminary nature. It is subject to revision or correction and therefore docs not represent a final report.
P r e p a r e d by t h e OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37830 o p e r a t e d by UNION CARBIDE CORPORATION f o r the BEPARTNENT OF ENERGY
:.:.
.,:
...
iii
CONTENTS
.......................................................... 1. INTRODUCTION .................................................. 2 . CXNEML DESCRIPTION OF DESR 2.1 Fuel Circuit ............................................. 2.2 Coolant Circuit .......................................... 2 . 3 Balance-of-Plant ......................................... 2 . 4 Fuel Handling and Processing ............................. 3 . REFERENCE-CONCEPT DMSR ........................................ 3.1 Neutronic Properties ..................................... 3.1.1 Neutronics core model ............................. 3.1.2 Core design considerations ........................ 3 . 1 . 3 Neutronics calculation approach ................... 3.1.4 Once-through system Considerations ................ 3.1.5 Static neutronic results .......................... 3,1.6 Burnup r e s u l t s .................................... 3.1.7 Dynamic effects ................................... 3 . 2 Reactor Thermal Hydraulics ............................... 3.3 Fuel Behavior ............................................ 3.3.1 Basic considerations .............................. 3.3.2 Fission-product behavior .......................... 3 . 3 . 3 Fuel maintenance .................................. 3 . 4 Reactor Materials ........................................
ABSTMCT
B 2
5o s e e e .OO..O.eseB..O..OO.eeoeeeoe.oo
P
6 7
7 8
10 10
10 14 14 20
22
29 33 40
46 47
60 70 $1
.................................. ......................................... 3 . 5 Safety Considerations .................................... 3 . 6 Environmental Considerations ............................. 92 Antiproliferation Features ............................... 94 3 . 7 . 1 Potential sources of SSNM ......................... 94 Accessibility of ............................. 95 4 . ALTERNATIVE CONCEPTS ..................................... 4.1 Cycle Choices ....................................... Break-even breeding ............................... $8 4 . 1 . 2 Converter operation with fuel processfng .......... 100 4.1.3 Partial fissi~n-pr~duct~~IIIOVELI ................... 101 3.4,1
Structural a l l o y
3.4.2
Moderator
81 87 98
3.7
3.7.2
SSW
97
DMSR
97
Fuel
4.1.1
4.1.4
4.2
Salt replacement
F U ~ Pcycle performance
.................................. ...................................
104 105
iv Page 109 109 110 110 112 lb4 614 114
116 117 120 121 124
127 127 131 131 135 136 137
139 140 149
P
CONCEPTUAL DESIGN CHARACTERISTICS OF A DENATURED MOLTEN-SALT REACTOR WITH ONCE-THKOUGB FUELING J. 8. Fngel H. F. Rauman J. R e Dearing
W. R. Grimes PI. E. McCoy V. A. Rhoades
ABSTRACT A study was wade to examine the conceptual feasibility of a molten-salt power reactor fueled with denatured 235U and operated with a minimum of chemical processing. Because suck a reactor would n o t have a positive breeding gain, reductions in the fuel conversion ratio were allowed in the design t o achieve other potentially favorable characteristies for the reactor. A conceptual core design was developed in which the power density was low enough to allow a 30-year life expectancy of the moderator graphite with a fluence limit o f 3 x 1026 neutrons/rn* (E > 50 kev). mis reactor could be made critical with about 3450 kg of 20% enriched 2 3 5 U and operated for 30 years with routine additions of denatured 2 3 5 U and no chemical processing for removal of fission products. The lifetime requirement of natural U j O g f o r this once-through fuel cycle would be about 1810 Mg (-2000 short tons) for a 1-GWe plant operated at a 75% capacity factor. If the uranium in the fuel at the end of life were recovered ( 3 1 6 0 kg fissile uranium at -10% enrichment), the U3Og requirement could be further reduced by nearly a factor oâ‚Ź 2. The lifetime net plutonium production f o r this fuel cycle would be only 736 kg for all i s o topes ( 2 3 8 , 239, 2 4 0 , 2 4 1 , and 2 4 2 ) . A review of the chemical considerations associated with the conceptual fuel cycle indicates that no substantial dlfficulties would be expected if the soluble fission products and higher actinides were allowed t o remain in the fuel salt for the life sf the plant. Some salt treatment to counteract oxide eontamination and to maintain t h e oxidation potential of the melt probably would be necessary, but these would require only well-known and demonstrated te~hnobogy. Although substantial technology development would be required, the denatured molten-salt reactor concept apparently could be made commercial in about 30 years; if the costs of intermediate developmental reactors are included, the cost for development is estimated t o be $3750 million (1978 dollars). The resulting system would be approximately economically competitive with current-technology light-water reactor systems.
1e
INTRODUCTION
Molten-salt reactors’ (PISRS) have been under study and development in the United States since about 1947, with most of the work since 1956 directed toward high-performance breeders for power production in the Th-233U fuel cycle.
The most recent development effort in this area was
terminated in September 1976 in response to guidance2 provided by the Energy Research and Development Administration (now Department of Energy) (ERDA/DOE)
in March 1976.
A brief s t u d y of alternative MSRs3 which em-
phasized their antiproliferation attributes was carried o u t in late 1376. This study concluded that MSRs without denatured fuel probably would n o t be sufficiently prs%iferation-resistant f o r unrestricted worldwide deploy-
Subsequently, a more extensive study was undertaken at Oak Ridge
ment.
National Laboratory (ORNL) t o identify and characterize denatured moltensalt r e a c t o r (B8fSR) concepts for p o s s i b l e a p p l i c a t i o n in antiproliferation
situations, This work began as p a r t of t h e effort initiated by ERDA in response to a nuclear policy statement by President Ford on October 28,
1 9 7 6 ; ~it was continued under the Nonproliferation ~lternativesystems ~ssessmentprogram (NASAP) $ 5 which was established in response t o the e
Nuclear Power P o l i c y Statement by President Carter on April 7, 1977,6 and
TIE National ~ n e r g y~lan.’ The DMSR is only one of a large number of reactors and associated
fuel cycles selected f o r study under NASAP.
However, it is also a member
of a smaller subgroup t h a t would operate primarily
cycle.
QII
the ~ h - 2 ”fuel ~
Molten-salt X - ~ ~ C ~ Qin T Sgeneral, , are particularly well suited t o
this fuel c y c l e because the fluid fuel and the associated core design tend
to enhance neutron economy, which is particularly important f o r effective res~urceutilization.
In addition, the ability of the ~ ~ ~ l tf uee nl to re-
~ in tain plutonium (produced from neutron captures in the 2 3 8 denaturant)
a relatively inaccessible form appears to contribute to t h e proliferation
resistance of the system.
The MSR concept also offers the possibility of
system operation within a sealed containment from which
IIQ
fissile mate-
ria% is removed and to which only denatured f u e l o r fertile material is
added during the life of the plant.
This combination of properties sug-
gests the possibility of a fuel. cycle with a %ow overall cost and significant resistance to p r ~ l i f e r a t i ~ n .
3
The primary purpose of this study w a s t o identify and characterize one o r more BXSR concepts with antiproliferation attributes at least equivalent to those of a "conventional" light-water reactor (EWR) operating on a once-through f u e l cycle.
The systens were a l s o required to
show an improvement over the LWR in terms of fissile and fertile resource Considerable effort was devoted t o characterizing features
utilfzation.
of the concept(s) that would be expected to affect the assessment of their basic technological feasibility. costs
These features included the estimated
and time schedule for developing and deploying the reactors and
their anticipated safety and environmental features. Although t h e older MSR studies were directed toward a high-performanse breeder [and a reference molten-salt breeder reactor (MSBR) design8
was developed], the b a s i c concept is adaptable to a broad range of fuel cycles, Aside from the breeder, these f u e l cycles range from a plutonium burner
~ Q 2P 3 3 ~ production,
through a DMSR with break-even breeding ana
complex on-site fission-product processing 9 9 to a denatured system with
a 30-year fuel cycle that is once-through with respect t o fission-product cleanup and fissile-material recycle.
Of these, the Past one currently
appears to offer t h e most advantages for development as a proliferationresistant power
SQUPC~.
Consequently, this report is concentrated on a
conceptual DMSR with a %@year fuel cycle and no special chemical processing for fission-product removal; other alternatives are considered only b r i e f l y -
Section
2
contains a general d e s c r i p t i o n of the
BMSR c o n c e p t , with
emphasis on those features that would be the same for a l l BMSR fuel cycles.
Section 3 presents a more detailed treatment of the reference-
concept DMSR covering the neutronic and thermal-hydraulic characteristics of the reactor core, fuel-salt chemistry, reactor materials, plant safety
considerations, and system-specific environmental considerations.
A gen-
eral treatment of the antipsoliferation attributes of the concept is a l s o included.
The next section (Sect. 4 ) addresses potential alternatives to
the reference concept and their perceived advantages and disadvantages. Section 5 addresses the commercialization considerations for DMSRs, including the perceived status, needs, and potential research, development,
4 and demonstration (RD&D) program; a p o s s i b l e s c h e d u l e
~ Q major P
e~n-
struetion projects; t h e e s t i m a t e d performance of commercial units; and any s p e c i a l licensing consideratbons.
Finally, Sect. 6 p r e s e n t s the gen-
eral cbnclusions of the study, along w i t h suggestions t h a t would a f f e c t any f u r t h e r work on t h i s concept.
G
5 2.
.. .... .
w..w
GENEMI, DESCRIPTION OF DMSR
The p l a n t concept f o r a DMSR is a d i r e c t outgrowth of t h e ORNZ r e f e r e n c e - d e s i g n MSBR, and, t h e r e f o r e , i t c o n t a i n s many favorable feat u r e s of the b r e e d e r d e s i g n .
However, t o comply w i t h t h e a n t f p ~ ~ l i f e ~ a -
t i o n g o d s , i t a l s o c o n t a i n s a number o f d i f f e r e n c e s , p r i n c i p a l l y i n the reactor
CQPQ
d e s i g n and t h e f u e l c y c l e .
F i g u r e 1 i s a s i m p l i f i e d sche-
matic diagram of t h e r e f e r e n c e - d e s i g n MSBR.
A t t h i s l e v e l of d e t a i l ,
t h e r e i s o n l y one d i f f e r e n c e from t h e DMSR concept:
t h e o n - l i n e chemical.
p r o c e s s i n g pliant (shown a t t h e l e f t of t h e c o r e ) would n o t be r e q u i r e d
f o r t h e DMSR.
ORNL-DWG 68-1185EA
PRIMARY SALT PUMP
,- \
r-' NaRF4
I
SECONDARY SALT PUMP
MODERATOR
r CHEMICAL PROCESSING PLANT
FUEL SALT
STEAM GENERATOR
/
c
Fig. 1.
Y
...
.
Single-fluid,
two-region molten s a l t breeder r e a c t o r .
6
2. I
Fuel Circuit
The f u e l c i r c u i t f o r a DNSR would be v e r y similar t o t h a t f o r a n f.1SBR; o n l y t h e c o r e d e s i g n would be changed.
f o r t h i s redesign
The primary requirement
a realaction in the c o r e neutron faux (ana power
density) to
1.
extend t h e life expectancy of t h e g r a p h i t e moderator t o t h e f u l l 30year p l a n t %ifetLaae,
2.
limit n e u t r o n c a p t u r e s i n 2 3 3 ~ awhich, t o enhance p r o ~ ~ f e r a t i oren s i s t a n c e , would be r e t a i n e d i n t h e f u e l s a l t .
me lower power d e n s i t y would a l s o tend t o reduce t h e poisoning e f f e c t s
of s h o r t - l i v e d f i s s i o n p r o d u c t s and t o s i m p l i f y t h e thermal-hydraulic cons t r a i n t s on t h e d e s i g n of t h e moderator elements,
The p r i n c i p a l unfavor-
a b l e e f f e c t s would be t h e i n c r e a s e s i n i n v e n t o r y of t h e f u e l s a l t and fis-
sile fuel.
Reference-design features of t h e DNSR core a r e d e s c r i b e d i n
g r e a t e r detail in a later s e c t i o n . A t design power (h000 MWe),
dug
* temperature
the f u e l salt, which would have a l i q u i -
o f about 5OO"c, would enter t h e core at 5 6 6 " ~and leave
at 704'C t o t r a n s p o r t about 2250 PlWt ( i n f o u r p a r a l l e l loops) t o t h e secondary s a l t ,
The f l o w r a t e of salt i n each ~f the primary l o o p s ( i n c l u d -
ing the bypass f o r xenon s t r i p p i n g )
be a ~ ~ Iu &/s t
(a6,o00 gpm>.
IFfme primary salt would ~ ~ n t a 0.5 i n t o 1% (by volume) helium bubbles t o s e r v e as a s t r i p ing agent f o r xenon and o t h e r v o l a t i l e f i s s i o n p r o d u c t s , H e l i m W Q Ube I ~added t o and removed from bypass flows of -10% o f each
of the primary hoop flowse This g a s s t r i p p i n g would a l s o remove some of the tritium from t h e primary salt,t p a r t l y as ~ H F ;p~owever, nost of the t r i t i u m would d i f f u s e through t h e t u b e w a l l s of the primary heat exchang-
e r s i n t o t h e secondary salt.
Helium reraoved from t h e primary c i r c u i t
would be treated i n a s e r i e s of f i s s i o n - p r o d u c t t r a p p i n g and c l e a n u p s t e p s b e f o r e being r e c y c l e d f o r f u r t h e r gas s t r i p p i n g .
*%he t e m p e r a t u r e cooling
P ~ - o v i s i o n swould a l l s ~be
a t which t h e f i r s t c r y s t a l s appear on e q u i l i b r i u m
0
P~stimatesare that 18 to 19% 0% t h e t o t a l t r i t i w produced w m l ~ lbe removed i n t h i s gas,
3
made in the primary circuit t o remove and return fuel salt without opening ~ ~required t ~ to the primary containment and t o a d d fuel-salt c ~ n s t i t u as
maintain the chemical condition o f the salt,
The secondary, a r coolant-salt, circuits for the DMSR w ~ u l dbe identical to those developed for the reference-design MSBR.
The nominal flow
rate of the secondary salt (a eutectic mixture of NaBF4 and NaF) would be a b o u t 1.26 m 3 / s (20,000 gpm> in each of the four loops, w i t h a temperature
rise from 4 5 4 t o 621째C in t h e primary heat exchangers.
This salt would be
used t o generate supercritical steam at about 540째C and 25 MPa to drive the turbine-generator system. * In addition to its primary functi~nsof isolating the highly radis-
active primary circuit from t h e steam system and serving as an intemediate heat-transfer f l u i d , the socliuw flusroborate s a l t mix-eure t a ~ ~ l d play a major role in limiting the release of tritium from the DNSR s y s tem.
Engineering-scale tests in 2-9-16 (Ref. 1 0 ) demonstrated that this
salt is capable of trapping large quantities of tritium and transforming it to a less mobile, b u t s t i l l volatile, chemical form that transfers to
the cover-gas system rather than diffusing through the steam generators to the water system.
Consequently, the majority of the tritium (-80%)
wsuEd be trapped o r condensed out o f the secondary circuit cover gas, and less t h a n 0.2% of t h e total
2.3
be
releasea.
Balance-of-Plant
The balance-of-plant for a DNSR primarily would be identical to that f o r an MSBR.
Because the same salts and basic parameter values are Pn-
volved, there would be no basis f o r changing the normal auxiliary systems required for m~mnz~l plant operation. i n same o f the safety systems.
Differences, however, c o u l d appear
Because of the l ~ w e rpower density in the
ha he supercritical steam cycle appears to be particularly well suited to this concept because of the relatively h i g h melting temperature (385'6) of the secondary salt and the desire to avoid salt freezing in the steam generators. :.% :& ...... .,. .....
\
ii....
8 DMSR, t h e s h u t d ~ w nresidual-heat-remova1
vere t h a n i n the MSBR.
(RHR) probPem would be Less se-
Consequently, a less e l a b o r a t e RHR system t h a n
would be needed f o r a n MSBR might be a c c e p t a b l e f o r a DMSR.
However, f o r
p u r p o s e s of c h a r a c t e r i z i n g t h e DMSK, t h e assumption w a s that the balanceo f - p l a n t would be t h e same a s t h a t f o r a n EISBW, 2.4
F u e l Randline and P r o c e s s i n g
The performance of an MSBR wouEd be s t r o n g l y dependent
the avail-
a b i l i t y of a n o n - s i t e c o n t i n u o u s chemical-processing f a c i l i t y f o r removal of fission p r o d u c t s and i s o l a t i o n of p r o t a c t i n i u m on r e l a t i v e l y s h o r t t i m e These t r e a t m e n t s would make p o s s i b l e t h e achievement of a posi-
cycles,
t i v e 2 3 3 U b r e e d i n g g a i n i n a system with a low s p e c i f i c f i s s i l e inventory.
Because a DPfSR on a 30-year f u e l c y c l e would n o t r e q u i r e even nomi-
n a l break-even
breeding and because a significantly higher f i s s i l e inven-
t o r y could be t o l e r a t e d , t h e p r o c e s s i n g r e q u i r e m e n t s f o r a DMSR would be much l e s s s t r i n g e n t t h a n f o r an MSBR.
I s o l a t i o n of p r o t a c t i n i u m would be
avoided f o r p r o l i f e r a t i o n r e a s o n s , and chemical p r o c e s s i n g t o remove â‚Źiss i o n p r o d u c t s c o u l d b e avoided w i t h o u t s e v e r e performance p e n a l t i e s . D e s p i t e t h e s e c o n c e s s i o n s , some f i s s i o n - p r o d u c t removal would t a k e g l a c e i n any PISR.
Most of t h e r a r e g a s e s (and some o t h e r v o l a t i l e f i s -
s i o n p r o d u c t s ) would be removed by t h e gas-sparging s y s t e m i n t h e primary circuit.
~n addition, a s u b s t a n t i a l fraction of t h e noble-metal"
fis-
s i o n p r o d u c t s would be e x p e c t e d t o p l a t e o u t on metal s u r f a c e s where t h e y
would n o t a f f e c t t h e n e u t r o n i c performance.
However, t h e r e f e r e n c e - d e s i g n
r e d u c t i v e - e x t r a c t i o n / m e ~ ~ ~ - t process ~ ~ ~ s â‚Ź ~would ~ n o t be involved. Although t h e r e would be no chemical p r o c e s s i n g f o r f i s s i o n - p r o d u c t removaih, t h e DMSR l i k e l y would r e q u i r e a h y d r o f E u o r i n a t i o n system f o r o c c a s i o n a l (presumably b a t c h w i s e ) t r e a t m e n t of t h e s a l t t o r e m ~ v eoxygen contaminatione
Ira addition, because a BMSR would r e q u f r e routine addi-
t i o n s of f i s s i l e f u e l , a s w e l l as a d d i t i o n s of o t h e r materials n e c e s s a r y
t o keep t h e f u e l - s a l t chemical composition in p r o p e r b a l a n c e , a chemical
*N o b i l i t y
i s d e f i n e d h e r e i n r e l a t i o n t o t h e U4+/lJ3+ ( s e e Sect. 3 . 3 . 2 ) .
redox p o t e n t i a l
9
addition
StathQR
would be required.
The %eChnOlogy for b o t h Of these
operations is well established and was extensively demonstrated in the molten-salt reactor experiment (MSWE).
These and other aspects o f the
DMSR fuel chemistry are treated in greater detail in a later s ~ t i o n .
3.
REFERENCE-CONCEPT DMSR
A preliminary conceptual design has been developed for a DMSR oper-
ating on a 30-year f u e l cycle.
The emphases to date have been on the re-
a c t o r core d e s i g n a n d fuel cycle, with less attention to other aspects of
the system.
Although t h f s design establishes t h e b a s i s concept and char-
acterizes its major properties, it is tentative and would be s u b j e c t t o major refimement and revtsion if a substantial d e s i g n effort were under-
taken. 3.1
Neutronic Properties
The basic features of this BMSR concept which distfnguish it from o t h e r MSRs are established primarily by the r e a c t o r care design and its a s s ~ c i a t e dneutronic properties.
'Phe d e s i g n described here represents
the results of a first-round effort to balance some of t h e many variables invo%ved in a r e a c t o r COT@, b u t it is by
3.1.1
PPO
means an o p t h i z e d design.
Weutronics core model
Prom a neutranics point of view, the core is simply designed as f ~ l -
EoWs ( F J g . 2 ) .
1.
The core and r@f%e~tor fill a right circular cylinder that is
18 rn in diameter and 18 m high.
The core, which is a cylinder 8.3 m in
diameter and 8,3 m high and centered inside the larger volume, f s f i l l e d with cylindrical graphite l o g s in a triangular array of 8.254-m Approximately 95X of t h e
C Q F ~( c o r e B )
pitch.
has l o g diameter of 0.254 m, with
the fluid f u e l filling the interstftial volume to praduce a fuel volume
fraction of 9.31%.
An axial c y L i n d r i e a l h o l e of 0,851-m
diam in the een-
ter of each l o g admits another 3 . 6 3 % fuel for a t o t a l of 12.94 voP %.
To
achieve f l a t t e n i ~ gof t h e f a s t flux and thus maximize the lifetime of the
graphite moderator, the remaining 5% of t h e core (core A > , a cylinder 3 m in dfameter and 3 m h f g h , has a l o g diameter of 0.24 m, resultfng in a
total fuel volume fraction of 20.00% i n this zone.
ORML-DWG 80-4263 ETD
RADIAL GAP
CORE
B
MI BPLANE
I
BOTTOM PLENUM
I
BOTTOM REFLECTOR
-1.504
B).Q5=+
4.15
I
Fig. 2. DMSR core model f o r neutronic s t u d i e s Call dimensions in meters). ! I
.. .... .
. \.... .. ,/ .
~
- eylindrfcal
geomgtry
12
2.
The r a d i a l r e f l e c t o r is g r a p h i t e 0.8 m t h i c k and i s a t t a c h e d t o
t h e r e a c t o r v e s s e l at t h e 18-m diam.
T h i s l e a v e s a gap of 0.05 m f i l l e d
with f u e l s a l t surrounding t h e c o r e l a t e r a l l y .
3. The i n l e t and o u t l e t p l e n a cover b o t h t h e c o r e and r a d i a l gap t o t h e i r full d i a m e t e r and a r e each 0.28 m t h i c k .
They c o n s i s t of 50% s t r u c -
t u r a l g r a p h i t e and 50X f u e l .
4. The axial r e f l e c t o r s are each 0.65 m thick and extend to t h e f u l l 1Q-mdiam.
5.
A l l r e f l e c t o r r e g i o n s c o n t a i n a small amount of f u e l salt f o r
c o o l i n g , which i s e s t i m a t e d as 1 v o l
6.
X a t o p e r a t i n g temperature.
A l l s t a t e d dimensions are assumed t o a p p l y a t nominal o p e r a t i n g
conditions.
During system h e a t u p , t h e l e n g t h and d i a m e t e r of t h e c o r e
v e s s e l are assumed t o i n c r e a s e a t t h e r a t e of expansion of Hastelhy-N. The r e f l e c t o r s are assumed t o expand a t t h e expansion rate of g r a p h i t e b u t to remain a t t a c h e d t o t h e v e s s e l .
Because g r a p h i t e expansion i s less
t h a n t h a t of t h e v e s s e l , t h i s w i l l r e s u l t i n admatting a d d i t i o n a l s a l t t o t h e r e f l e c t o r zones.
The c o r e and plenum r e g i o n s are assumed t o expand
r a d i a l l y o n l y a t t h e expansion r a t e of g r a p h i t e , which will e s t a b l i s h t h e t h i c k n e s s s f t h e r a d i a l gap.
The a x i a l c o n f i g u r a t i o n i s a f f e c t e d by t h e
l o g s f l o a t i n g upward i n t h e s a l t and by t h e lower plenum being c o n s t r u c t e d
s o t h a t i t always c o n t a i n s 58% s a l t .
The t h i c k n e s s e s of t h e c o r e and t h e
upper plenum, t h e n , i n c r e a s e a t t h e g r a p h i t e expansion r a t e , b u t t h e lower plenum grows a t such a r a t e as t o span t h e gap between t h e c o r e and t h e bottom r e f l e c t o r . Mechanical p r o p e r t i e s used f o r t h e p r i n c i p a l c o n s t i t u e n t s are sumThe s a l t i s taken to have t h e nominal chemical corn-
marized i n Table 1.
position shown i n Table 2.
The tern " a c t i n i d e s ' o i n t h i s s t u d y r e f e r s to
all elements of atomic numbers > 90 and n o t j u s t t o t r a n s p l u t o n i u m elemerits.
The a c t i n i d e p e r c e n t a g e i s s u b j e c t t o s m a l l v a r i a t i o n s depending
on t h e f u e l cycle and t h e h i s t o r y of t h e f u e l . The i n v e n t o r y of- f u e l s a l t , both i n and o u t of t h e c o r e , i s summar i z e d i n Table 3 .
This i s b e l i e v e d t o be a generous estimate s f t h e re-
q u i r e d inventory f o r a I-GWe system.
The thermal energy y i e l d p e r fission
i s assumed t o be 190 MeV f o r t r a n s l a t i o n of abss%ute f i s s i o n rates t o eff e c t i v e power l e v e l .
13
.
........... ........
Table 1.
Reference properties of f u e l s a l t and moderator f o r a DMSR
$i
Value
Characteristic Graphite moderatsr density, M g l m 3
1.84 3, l o F u e l - s d t d e n s i t y , Mg/m 3 Graphite linear thermal expansion, x 10-6 ~ - 1 4.1 vessel linear thermal expansion, x K-1 17.1 Fuel voPumetrie thermal expansion, x K-’ 208
Table 2.
Nominal chemical composition Of DMsR f u e l salt Molar percentage
Mat er ia 1 k i p
74.0
BeF2
16.5
XFba
9.5
Fission products
ax refers
Table 3.
Trace
t o all actinides,
DMSR fuel-salt inventory
Lo cation
VoPume (m3>
core
59.4
Top and bottom plenums
11.1 10.9 3.0 20.0
Radial gap Re f 1e c tors External loop
104.0
14
The s i z e of t h e c o r e was determined s o as t o a l l o w a g r a p h i t e mode r a t o r l i f e t i m e e q u a l t o the d e s i g n l i f e t i m e of t h e p l a n t .
As compared
with a smaller c o r e , t h i s r e s u l t e d i n lower n e u t r o n l e a k a g e , h i g h e r invent o r y of f i s s i l e material, and lower loss of p r o t a c t i n i u m due t o n e u t r o n capture.
If h i g h e r l e v e l s of g r a p h i t e exposure were i n d i c a t e d by f u t u r e
d a t a o r d e c i s i o n s , a smaller c o r e would probably be chosen.
The c i r c u l a r c y l i n d e r moderator shape resists b i n d i n g e f f e c t s t h a t can occur wfth o t h e r shapes.
The h o l e i n t h e c e n t e r is s i z e d to p r o v i d e
d e s i r a b l e resonance s e l f - s h i e l d i n g without undue thermal flux d e p r e s s i o n .
The l a t t i c e p i t c h i s simply a convenient one from both t h e r m a l and neut r o n i c points of view.
me reduced d i a m e t e r of t h e central section of t h e
logs w a s a d j u s t e d t o g i v e t h e proper d e g r e e of n e u t r o n f l u x f l a t t e n i n g ,
There i s no doubt t h a t f l u x f l a t t e n i n g r e s u l t s i n more core l e a k a g e , s l i g h t l y degraded b r e e d i n g , and more f l u x i n the r e a c t o r v e s s e l a s compared with a n u n f l a t t e n e d c o r e .
The u n f l a t t e n e d c o r e , however, would
have a muck l a r g e r volume and much l a r g e r i n v e n t o r y of fissile material f o r the same maximum n e u t r o n damage flux. The thorium c o n c e n t r a t h n of t h e s a l t h a s been a d j u s t e d t o g i v e near-
optimum long-term c o n v e r s i o n and a l o w requirement f o r makeup f u e l .
approach l e a d s t o a r e l a t i v e l y h i g h i n - p l a n t
have economic d i s a d v a n t a g e s .
'Ibis
f i s s i l e i n v e n t o r y , which may
Thus, o v e r a l l o p t i m i z a t i o n might s u g g e s t
more f a v o r a b l e combinations of i n v e n t o r y and makeup.
The o t h e r actinide
C o n c e n t r a t i o n s a r e d e t e m i n e d by t h e v a r i o u s f u e l i n g p o l i c i e s c o n s i d e r e d and Bay the o p e r a t i n g h i s t o r y of t h e f u e l .
3.1.3
Neutro~iesc a l c u l a t i o n approach
3.1.3.1 The o v e r a l l approach was designed t o c o u p l e numerous computer runs of r e l a t i v e l y s h o r t d u r a t i o n .
The o b j e c t i v e s were good a c c u r a c y 3 rela-
t i v e l y quick computer r e s p o n s e , and t h e a b i l i t y t o r e p e a t and r e v i s e d i f f e r e n t p o r t i o n s of the procedure a s the d e s i g n evolved,
15
Initial scoping studies showed that the self-shielding of thorim and 2 3 8 ~has
a most critical effect on the system neutronic%, while that og
the other uranium nuclides was comparatively less.
Concentrations of
protactinium, neptunium, and plutonium remained small enough t o make selfshielding treatment of those nuclides necessary.
The effest of
P~SQ~BIEC~
overlap between 232Th and 238U was of particular interest and was studied in some depth using the ROLAIDS module of the AMPX code system. I l
'%he
conclusi~nswere that thPs effect c o u l d be ignored safely in the p r e s e n t s t u d y and that treatment of the effect would have been burdensome had it
been required. Statics.
A set sf cross sections for the more signifisant nuclides
(Table 4 ) was prepared based ow the ENDF/B Version 4 set of standard cross sections.12
A t o t a l o f 1 2 2 energy groups was rased, with boundaries as
listed in Table 5.
Downscatter from any group t o any other was allowed,
and upscatter between all groups below 1.86 e V w a s allowed.
The 123-gromp
set was t h e n repr~cessedto enforce strict neutron ~ o n s e r ~ a t i ~ nThis . was
especially important in the case of graphite.
Table 4 . Nuclides in library of 123 energy groups used for DMSR study
Self-shielding of thorium and uranium nuclides was treated using the NITAWL module of t h e AMPX socle system.
was selected in each case.
The Nordheim integral treatment
The geometric parameter applicable t~ the tsi-
cusp f u e l area between the l o g s was determined by a special Monte Carlo computer sode devised by J. R. Knight of ORNL.13
Figure 3 illustrates
XSDREU' 123-gKOug e n e r g y s t r u c t u r e
Table 5.
Boundaries
Group Energy 1 2
3 4 5 6 7 8 9 10 11
12 13 14 15 16
17 18
19 20 21 22 23 24 25 26 27 28 29 30 31 32 34 34 35 36 37
38 39 40 41 42
a
Boundaries Group Energy
Lethargy
1 e 491 8E07 --ae40 1.3499E07 a.30 1.22 14E07 -(le 20 4.IO B.1052E07 E. mQOE07 0.0 9 e 094 8E0 6 0.10 8.1873E06 0.20 7.4082E06 0.30 0.40 6.7032E06 6 065 3E06 0.50 0.60 5.4881E06 0.70 4.9659E06 0.80 4.4933E06 4 e 065 7E06 0.90 1.00 3.6788E.06 1.10 3.3287E06 3-01 1%06 1.20 1.30 2. 7253E06 1.40 2.4660E06 2.2313E06 1-50 2.0190E06 1.60 E e 8268E06 1.70 B o 6530E06 1.80 I .4957E06 1.90 2.00 1.3534E06 2.10 1 2246E06 2.20 1.1080E06 1 e 0026E06 2.30 9 e 0 7 18EO 5 2-40 2.50 8.2085E05 7 e 4274E05 2.60 6.7~06~05 2.70 2.80 6 08 1OEO 5 2.90 5.5024E05 3.00 4.9787E05 4,5049E05 3.10 4.0762E05 3.20 3.6883E05 3.30 3.33 7 3 ~50 3.40 3.50 3.0197E05 2.7324EO5 3.60 2.4724E05 3.70 I
e
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 34 75 76 77 78 79 80 81 82 83
Boundaries Group
2.2371E05 2.0242E05 1 8316E05 1,6573E05 1a 4996E05 1 0 3569E05 1 2277E05 I 1109E05 8.651 7E04 6.7379E04 5.247SE04 4.0868E04 3.1828E04 2 4788E04 1 9305E04 1 5034E04 1 1709E04 9.1188E03 7.1017E03 5.5308E03 4.3074E03 3.4546E03 2 e 6 126E03 2.0347E03 1 5846E03 1.2341E03 9.61 12E02 7.4852~202 5 a 829 5E02 4.5400E02 '3.5357E02 2 a 7 5 34E02 2.1145E02 1 6702E02 1 e 3O0SE02 1 e 01 3OE02 9.8893EOl 6.1442EOL 4.7851EOE 3.7267E01 2.9023E01
Lethargy 3.80 3.90 4.00 4. IO 4.20 4.30 4.40 4.50 4.75 5-00 5.25 5.50 5.75 6.00 6.25
84 85 86 87 88 89 90 91 92 9% 94 95 96 33
6-50
99
6.75 7.00 7.25 7.50 7.75 8.00 8.25 8.50 8.75 9.00 9.25 9.50 9.75 10.00 10.25 10.50 10.75 11.00 11.25 11.50 11.75 12.00 12.25 12.50 12.75
100 101 102 103 104 105 106
98
109 108 109 110 111 112 113 114 115 116 117
118 119
120 121 122 E23 124
Energy
Lethargy
2.2603EO1 1.7603E01 1 371OE01 E .0670E01 8.3153E-01 6 4 76m-0 1 5.0435E-01 3.9279E-01 3.0590E-01 2 e 382 4E-0 1 1a 8 5 54E-0 1 1.7090E-OE I o 5670E-01 I 432OE-Q 1 I. 285OE-01 I. 134OE-01 9,9920E-02 8.8100E-0% 7.6840E-02
13.00 13.25 13.50 13.75 16.30 16.55 16.80 17.50 17.30 17.55 17,80 17.88 17.97 18.06 18.17
4.5520~-02
5.4880E-02 4 e 4 85 0E -02 3 e 6 146E-0 2 2. W40E-O2 2.49303,-02 2.0 7 1OE-0 2 I e 798OE-02 1.5980E-02 1 398OE-02 1 1980E-02 9.9700E-03 8.2300E-03 6,990OE-03 5. W00E-03 4.99OQE-03 3.9800E-03 2.98OOE-03 2.1100E-03 1 - 4900E-03 9.8000E-04 4,7000E-04
18.29
18.42 18.55 18.68 18.84 19.02 19.22 19.44 19.63 19.81 20.00 20. 14 20.25 20.39 20.54 20.73 20.92 21.08 21.24 21-42 21 e 64 21.93 22.28 22.63 23.05 23. 7Bb
a ~ x xc o r r e s p o n d s t o 1 O ~ X . boundary o f g r o u p 123.
I..
.......
u . ; w
BWNL-DWG 804264 ETB I
I
0.45
E 6>
k0.50 B . I S N
8.25
0.80
0.85 0.98 0.95 ROD DIAMETERPITCH RATIO
1.00
Fig. 3. Mean chord l e n g t h of f u e l surrounding t r i a n g u l a r a r r a y s Circles i l l u s t r a t e p r e d i c t i o n s by t h e 4 8 l A r u l e . of moderator rods.
t h e r e s u l t s of t h i s t r e a t m e n t .
'Phe s a l t i n t h e plenum and r a d i a l gap re-
g i o n s w a s r e p r e s e n t e d a s a 0.05-m
p l a n e environment.
The r e s u l t i n g m u l t i g r o u p c r o s s s e c t i o n s were used w i t h t h e XSDRMPM module of AMPX t o accomplish a d i s c r e t e - o r d i n a t e s c e l l c a l c u l a t i o n i n t h e S-4 a p p r o x i m a t i o n and t o accomplish group r e d u c t i o n t o t h r e e e n e r g y g r o u p s , as shorn i n T a b l e 6.
A s e p a r a t e c e l l c a l c u l a t i o n was performed
f o r e a c h of t h e two l o g d i a m e t e r s .
Plenum and gap
C~QSS
s e c t i o n s were
weighted o v e r t h e spectrum of t h e smaller l o g d i a m e t e r because i t l i e s between t h e s t a n d a r d d i a m e t e r and t h e p u r e s a l t r e g i o n i n h a r d n e s s . The basic c o n c e n t r a t i o n s s f t h e n u c l i d e s were based on e s t i m a t e d midlife conditions.
..
.
A d d i t i o n a l cases of s e l f - s h i e l d i n g f o r t h e thorium
.
Energy range
Energy group Re so na nee
14.918 MeV to 52.475 eV 52.475 ev to 2.3824 eV
Thermal
'2.3824 eV to 0.88647 eV
Fast
and uranium nuclides were prepared for use in t h e depletion and reactiv-
ity coefficient studies.
These were weighted over the neutron spectra
calculated in the cell cal.culatPon.
The macrospatial effects were treated using the reduced cross secSeparate a x i a l and r a d i a l flux
tion set with t h e APC EI esmputer
proflies were found with mutually consistent flux and leakage resu1ts. Core heterogeneity was treated by transverse flux weighting of the de-
tailed geometry.
Reaction parameters necessary f o r burnup were deter-
mined from these results, with care taken t o combine all reactions representing a particular nuelear species regardless
cell or the identity of the c e l l involved.
Oâ‚Ź
positions in the
This is consistent with an as-
sumption of rapid fuel circulation and mixing. Burnup.
A simple burnup c o d e , QUAB, was devised to t r e a t the un-
usual requirements of this study.
Special features i n c l u d e the follow-
ing 1.
Sufficient 238U is added at d l times to maintain the denatured condition.
2.
The %ho%-iuwl cQncentrat%Ql3 can be h e l d COnStaRt by automatic addition,
allowed to decline naturally, o r adjusted t o maintain constant total actinide concentration.
3.
Periodic additions of enriched fissile material can be made.
4.
P e s i o d f c withdrawals of f u e l can be made selectivePy by nuclide.
This
fuel can be held until the protactinium decays and then be reinserted selectively by nuclide into the machine.
The first removal is re-
placed with fuel identical to the initial loading.
5.
Enriched material can be added activity margin.
QPI
demand to maintain a specified re-
.
E9
The code calculates nuclide concentrations, total inventories, reactivity, and breeding r a t i o as a function of time. Treating the lengthy transplutonium and fission-product chains i n QUAB w a s not practical; multigroup data were not available far many of
Instead, the BRIGEN code15 w a s used with a library of cross sections" esthe required nuclides and were of dubious reliability for others.
pecially devised for its uses The BRIGEN results were then "patched into" the QUAB calculation directly. The burnup calculation allowed the cross sections of thorium and 2 3 8 ~
to vary continuously during the calculation; this was accomplished by in-
terpolation.
3 . 1 e 3.2
Evaluation
A s desired, the method provided relatively rapid response9 detailed
treatment of resonances, and a mulitigr~upspectrum and cell treatment. A l l details of the denatured fuel cycle were treated.
The expedient of
treating a range of thorium and 2 3 8 ~densities remevest the necessity of imbedding the expensive and tedious resenamce treatment inside t h e Loop f o r varying densities.
Deciding on the applicable range was not difficult
after a few initial tries. A system ~ouplingthe spatial calculation and depletion could be
used.
Kany such systems are available, although all would require exten-
s i v e modification f o r MSR u s e .
What of t h e cell calculation? T a b l e 7
shows the cell factors from our reference case which have been condensed to three energy groups.
This is clearly a heterogeneous core.
Further,
the actinide densities are continually changing, resulting in timedependent cell factors.
Studies beyond these would be required t~ prove
that a coupled system could be worthwhile without directly c o ~ p l e dcell. c a l culation s
.
The requirement to "umix" the revised nuclear densities after hav-
ing them lumped together during a depletion s t e p represents a complication that would thwart most existing codes.
However, this complication
must be coupled with logic to provide interpolation between cross-section sets representing various self-shielding situations. With o r without an
,... :.:..y w,
20
Cell material
Core zone
Energy
Fast Resonance The mal
A A A
Fast Resonance The ma P
R
Inner salt 1.14 0,97
0.94
w
1.2% 0.97
R
0.88
Mod era t o r
Interstitial salt
0.96 1.01 1.03
1.14 0 - 97 0*8%
Q,98 1.00 1.01
0.98 0.93
1.12
~
~~
a.
Average f l u x i n material d i v i d e d by a v e r a g e c e l l flux.
imbedded s e l l c a l c u l a t i o n , a n unusual code system c l e a r l y would be necess a r y to p r o v i d e
f d % y satisfying l e v e l of d e t a i l to t h i s problem,
Ob-
v i o u s l y , a true two-dimensional s p a t i a l t r e a t m e n t of t h e f l a t t e n e d core would be a p p r o p r i a t e , b u t imbedding s u c h a c a l c u l a t i o n i n s i d e a d e p l e t i o n l o o p i s expensive.
3.1.4
3 . 1 4.1
Once-through system c o n s i d e r a t i o n s
Fueling policy
For p u r p o s e s of n u c l e a r c a l c u l a t i o n s , t h e f u e l i n g p o l i c y for t h e once-through BMSR i s a s fohlows.
E.
Thorium i s added t o a n i n i t i a l l o a d i n g of s a l t i n a s p e c i f i e d concentration.
During o p e r a t i o n , t h e c o n c e n t r a t i o n i s allowed t o d e c l i n e
v i a burnup. Near t h e end of p l a n t l i f e , small amounts a r e removed a s requ-ired t o keep t h e t o t a l a c t i n i d e c o n t e n t below t h e s t a r t u p value. 2.
Uranium is added a t t h e maximum a l l o w a b l e enrichment in t h e necessary t o maintain c r i t i c a l i t y .
ZLIIIQU~~
21
3.
A d d i t i o n a l 238Y is added as r e q u i r e d t o m a i n t a i n t h e denaturing inequality
4.
*
Removal of c e r t a i n fission products P s accomplished a c c o r d i n g t o Table 8.
T a b l e 8.
Removal times f o r f i s s i o n p r o d u c t s i n once-through c y c l e s
Fission-product group
Element
Removal time
Noble gases
Kr, X e
50 s
Seminoble and noble metals
Zn, G a , Ge, A s , N b , Mo, Tc, Ru, Rh, P d ,
2.4 h
A g , Cd, I n , Sn, Sb
h
3.1.4.2
Fission-product buildup
A s t u d y of 30-year f i s s i o n - p r o d u c t b u i l d u p was made a s a f ~ r t c t i ~o fn
v a r i o u s c o n t i n u o u s removal r a t e s f o r t h o s e p r o d u c t s n o t l i s t e d i n T a b l e 8. The r e a c t i v i t y e f f e c t may be s a t i s f a c t o r i l y r e p r e s e n t e d by
where p = fission-product
r e a c t i v i t y e f f e c t (%>,
t = t i m e (year),
Y
= yield
(0.93%/year),
X = burnout r a t e (6.8 year)-', R = removal r a t e (year-1
>.
"Other n o n f i s s i l e uranium wuclides f u r t h e r d i l u t e t h e 233U.; d i l u tion to 1 2 % 2 3 % may r e q u i r e additional 23%.
22
The fit t o d a t a r e p r e s e n t i n g f o u r E - ~ K W V ~ tEi m e s from f i v e y e a r s t o i n f i n i t y had a n a b s o l u t e s t a n d a r d d e v i a t i o n of 6.28%, which w a s c o n s i d e r e d S t u d i e s u s i n g t h i s model i n d i c a t e d t h a t removal times of a few
adequate.
years b u t s h o r t e r t h a n i n f i n i t y were not worthwhile, and t h e r e s u l t s of t h i s s e c t i o n assume R = 0.
3-1 e 4.3
T r a n s ~ l u t o n i u me f f e c t s
A d e t a i l e d s t u d y of t r a n s p l u t o n i u m effects9 was made, and t h e con-
c h s i o n was reached t h a t t h e r e s u l t i n g f i s s i l e p r o d u c t i o n only p a r t i a l l y o f f s e t s t h e capture.
The b a l a n c e i s l e s s f a v o r a b l e t h a n i n r e a c t o r s of
h i g h e r power d e n s i t y because of t h e partial ~ ~ e c aofy 2 4 4 ~ 1 to~ 2 4 0 which ~ ~ ~
has c o m p a r a t i v e l y less v a l u e .
me s t u d y showed t h a t e a c h atom of 2 4 0 ~ ~
produced from 2 3 % ~ i s j o i n e d b y 0.11 a d d i t i o n a l atoms from t h e decay of 244~me
FOP
each n e u t r ~ na b s o r p t i o n i n 2 4 2 ~ uc a ~ c u l a t e dw i t h o u t t h e trans-
plutonium e f f e c t , 4.0 a d d i t i o n a l a b s o s p t i o ~ ~and s 3 . 2 additional. f i s s i o n neutrons u l t i m a t e l y r e s u l t . Although t h e a c t u a l t i m e e f f e c t s a r e c o m p l i c a t e d , the net e f f e c t w a s a p p r o x i m a t e l y r e p r e s e n t e d a s a n a d d i t i o n a l f i c t i t i o u s ~ u c l i d e ,which w a s produced by c a p t u r e i n 2‘’~u and had t h e a b s o r p t i o n cross s e c t i o n o f 2 4 2 ~ u and no progeny.
This would be s l i g h t l y c o n s e r v a t i v e a t e q u i l i b r i u m and
probably a t e a r l i e r times a l s o .
3. E. 5
S t a t i c n e u t r o n i c results
T a b l e 9 i n d i c a t e s t h e i n v e n t o r y of a c t i n i d e s a t t h e b e g i n n i n g , mid-
d l e , and end of t h e 30-year o p e r a t i n g p e r i o d , assuming a 752 c a p a c i t y factor.
The h i g h i n i t i a l l o a d i n g of 235U i s l a r g e l y replaced by 2 3 3 U b r e d by
t h e system i n t h e f i r s t h a l f of t h e l i f e t i m e .
Toward t h e end of lifetime,
e n r i c h e d uranium a d d i t i o n s r e q u i r e d t o o v e r r i d e f i s s i o n - p r o d u c t b u i l d u p c a u s e a final i n c r e a s e i n b o t h the 23% and 238U c o n t e n t .
The plutonium
i n v e n t o r y i s n e v e r Barge because of i t s h i g h c r o s s s e c t i o n i n t h i s spec-
trum. T a b l e 10 shows t h e m i d l i f e n e u t r o n u t i l i z a t i o n i n f o m a t i o n .
low c a p t u r e r a t e i n nonfuel s a l t c o n s t i t u @ n t s (O.Ol53)
Y s t e the
and t h e f i s s i o n -
Table 9.
A c t i n i d e i n v e n t o r i e s i n DMSR f u e l s a l t
Inventory ( k g )
110,800 0 0 8
3,450 0 0 %4,000 0 0 0
Total actinides F i s s i l e uranium Total f i s s i l e
103,000 45 1,970 372 1,020 661 75
92 * 900 38 1,910
19,608
28 9 608 23 1
0 0
179 IO2 76 99 36
127 9 000 3,450 3 9 450
127 000 2 990 3 440
596 1 9
250 978
136
B 33 100 179 93
127 9 000 3,160 3 ,490
A t o t a l of 22.2% of t h e f i s s i o n t a k e
product c a p t u r e r a t e (0.0563).
p l a c e i n 2 3 8 ~and i t s progeny, even though they comprise o n l y 9.8% sf t h e fissile
~ I I V ~ I I ~ QI n~ ~s p . ite
of t h e h i g h v a l u e of v f o r these n u c l i d e s ,
t h e y would n o t be a s u f f i c i e n t f u e l without the thorium c h a i n .
The s l i g h t
c o n t r i b u t i o n of t h e t r a n s p l u t o n i u m n u c l i d e s to t o t a l mass h a s been i g n o r e d , and t h e a b s o r p t i o n v a l u e shown f o r t h i s n u s l i d e group i s a n e t of absorp-
tions less fissions. 2 4 1 ~ m ,a poor fuel.
A ~ O U4% ~
of the 2 b l ~ uis lost through decay to
me c a p t u r e i n 2 3 4 ~ a i s p a r t i c u l a r l y expensive be-
c a u s e e a c h such atom o t h e r w i s e would r e s u l t i n a h i g h l y p r o f i t a b l e 2 3 3 U
fission.
...z,y .. . c .A,
24 T a b l e 10.
Nuclide concentrations and n e u t r o n u t i l i z a t i o n after 1 5 years s f DNSR operation Concentration
Nus 1i d e
( x 1024)
a
Neutron absorption'
Fission fraction
vcrf/aa
~
Transplutoniram 8Pu
e
2 56% 1.13 49.0 9.21 25-1 16.2 1.83 474 4.34 2.46 1.84 2.38 0.882
Total actinfdes Fluorine Lithium Beryl Piurn
48,000 24,500
0,0017 0*0000 0.5480 0 e 0002
~~
0,2561 0.0018 0 s 2483 8.0120 0,1161 0.0075 0.0047 0.0901 0.0896 0.0324 0.0293 0.0039 0.0014 0.0024
0,0001
0.0090 0.0033 2.2427 0,0143 l e 9894 0.0168 0.0182 0.0194 7905 0.0032 2. â‚Ź 7 5 4 0.0136
0.9803
0. E245
0.8956
a
0.2292
0.0001 0 s 0000 0.0017 0.31578 0.0001 0.0628
e
310
0000
0,0079 0 0062 0.0012 0
5 440
0.9109 Graphi t e Fission p r o d u c t s
92 9 270
0.0172 0 e 0563
0.9844
Total
Nuclei per c u b i c meter of s a l t o r moderator. h AbsorptTon per neutron horn; leakage is 0.0156.
3.1.5.2
Flux and power distributions and graphite lifetime
e he relative fast flux (E g i v e n i n Table 11.
>
52.4 k e ~ )and power-peaking factors are
These factors include t h e effects of flattening.
For
comparison, the o v e r a l l fast f l u x peaking in an unflattened core would be
-2.3;
the neutron leakage, however, wsbald be only 0.8% vs 1.56% for t h i s
core
c
25 ';x.w' ....
R e l a t i v e power d i s t r i b u t i o n s ( F i g . 4 ) show no s e r f o u s problems. peak o c c u r s i n t h e well-cooled
A power peak p e r u n i t
i n n e r zone.
Oâ‚Ź
The core
volume o c c u r s i n t h e gap between t h e c o r e and t h e r e f l e c t o r , b u t t h e power p e r unit volume of s a l t i s a c t u a l l y r e l a t i v e l y low i n that r e g i o n .
Table E l . Neutron flux and power-peaking f a c t o r s
Fast flux
Radial Axial Overall
Power
1.32 1.15
1.36 1.15 1.56
1.52
OHNL UWG80 4265 F T 3
AXIAL
RACIAL-
(50% SALT)
CORE B (12 9% SALT)
CORE A (20% SALT)
05
1
15
2
45
3
35
4
DISTANCE F R O M CENTER OF CORE (mi
Fig. 4 . DMSR r e l a t i v e power-density d i s t r i b u t i o n . p r o f i l e s a t e s e p a r a t e l y and a r b i t r a r i l y norwa%ized.
... .......... w:w
Axial and r a d i a l
45
26 The a b s o l u t e maximum f a s t f l u x i s of s p e c i a l i n t e r e s t because of its
effect in Limiting t h e g r a p h i t e l i f e t i m e and, t h u s , i n d e f i n i n g t h e c o r e The maximum danage f l u x c a l c u l a t e d i n t h i s s t u d y o c c u r s n e a r t h e
size.
edge of t h e i n n e r core and Fs, a t full powerrr
In 3 0 y e a r s a t 75% c a p a c i t y f a c t o r , t h i s l e a d s t o a f l u e n c e of 2.7 m-’
(2.7
x
loz2 ~ m - ~ )which , i s well below t h e nominal g r a p h i t e
damage limit of 3 x lo2‘ m-2 ( 3 x 10”
3.1.5.3
x
cm-21,
S p e c t r a l and cross-section e f f e c t s
A summary of r e l a t i v e a b s o r p t i o n s , f i s s i o n n e u t r o n p r o d u c t i o n s , and
n e u t r o n f l u x by energy group i s shown i n T a b l e 1 2 . are i n t h e resonance range, l a r g e l y i n thorium and
l a r g e r absorption f r a c t i o n i n t h a t group.
Many of the captures
’”u,
which l e a d s t o a
I n c o n t r a s t , most ~f t h e f i s -
s i o n s are caused by t h e r m a l ~ e u t r ~ n s .
N ~ U ~ ~ Q I IR e l a t i v e energy neut koa flux group
F r a c t i o n of neutron absorptions
F r a c t i o n of f i s s i o n neutrons produced
27
a A B B
Inner &Iter Inner Outer
2.44 2.51 2.42 3,14 2. I 4
2.548 2.032 2.540 1.022 5.8
7.86 7.96 7.96 18.6 6.6
3*22 3.17 3.29 3.38 3.08
B
of zone A , a s judged by t h e two zones with 1 = 25.4 m e To estimate the
e f f e c t on n e u t r o n y i e l d , t h e 2 3 2 ~ hc h a i n laas a n u l t i m a t e y m a i n a par-
ticular situation of 1.06 neutrons p e r capture in 2 3 2 ~ h ,while the yield of 23%
f s only 0.84
With -40% of t h e f e r t i l e c a p t u r e i n 2%!,
(Ref. 9).
as it is for the present system, a 10% increase tn the 238-to-232
ratis would reduce n e u t r o n yield by -8.5%. Table 12 is not a l a r g e e f f e c t . cross sections significantly
capture
Accordingly, t h e v a r i a t i o n i n
Even though cell geometry changes t h e
the 2 3 2 ~ hana
2 3 8 ~ changes approximately
cancel each o t h e r . h o t h e r v a r i a b l e of i n t e r e s t i s t h e d e n s i % y of the fuel-salt heavy nucIides.
Table 3 shows that 238U d e n s i t y apprsx%mately doubles d u r i n g
t h e l i f e of t h e system, and t h i s i s n o t accompanied by a corresponding change in 2 3 2 . ~ h . varying
Q V ~ Pa
range of r e a s o n a b l e i n t e r e s t , resonance
d a t a vs d e n s i t y a r e shown i n Table 14 f o r t h e case of c o r e zone A w i t h 25.4 mw.
=
While the 232Th d e n s i t y i n c r e a s e s by 51%, t h e product of den-
s i t y and cross section i n c r e a s e s by only 28%.
F o r 238U, the d e n s i t y in-
creases by 129%, and the product increases by only 57%, t h u s i l l u s t r a t i n g t h a t n u c l i d e d e n s i t y and i t s e f f e c t on resonance c r o s s s e c t i o n are both l a r g e , but p a r t i a l l y c a n e e l l i n g , e f f e c t s .
A similar t a b l e % ~ or t h e r nu-
c l i d e s f o r which resonances w e r e c a l c u l a t e d shows r e l a t i v e l y less influe n c e of n u c l i d e d e n s i t y on c r o s s s e c t i o n (Table 1 5 ) .
. .:. ..i ........
28
Table 14. E f f e c t of n u c l i d e density on key resonance cross s e c t i o n s
232Th
2288 2408 2582 2 800 3318
2.6% 2.52 2.44 2.37 2.21
0.5742 0.6048 0.6300 0.6636 8.7332
350
9.03 7.86
8.31160 0.3781 0.4452 0.4563 0.4976
238U
48% 658 722 800
47.2
6.85 6.32 6.22
33.3 32. a
19
17
15.8
39.9 45.6
83
64
25.9 40.8
27. 5 27.3
58
56
16.4 26*3
22.9 21.6
68
48
56,O 8.62
Spectral. e f f e c t s a r e a l s o i m p o r t a n t , because a more thermal spectrum improves the n e u t r o n y i e l d of b o t h 2 3 3 U and 2 3 5 U b u t a l s o results i n more p a r a s i t i c capture i n these f i s s i l e nuclides.
To i l l u s t r a t e t h P s , Table 16
shows the e f f e c t i v e n e u t ~ y~i ei l~d f o r t h e hard spectrum of core A vs the
s o f t spectrum of core B.
while u a f / o a within each ner~trsn group shows
r e l a t i v e l y l i t t l e change, t h e o v e r a l l r a t i o shows a 3% i n c r e a s e in y i e l d because of t h e s o f t e r spectrum.
29
Table 16. E f f e c t of n e u t r o n spectrum OR n e u t r o n y i e l d f o r homogenized c e l l material
A A
Resonance The rma 1
6.338
w
Overall Re s m a n c e
1.050 8.330 1e 432
B B B
Thermal Overall
1* 442
1e 880
a See F i g . 2 f o r i d e n t i f i c a t i o n of c o r e zones.
3.1.6
3.1.6-1
Burnup r e s u l t s
Reactor f u e l c y c l e
The t i m e h i s t o r y of t h e f u e l cycle i n t h e DMSR provides some i n s i g h t i n t o t h e uranium r e s o u r c e u t i l i z a t i o n i n t h i s concept.
The a v a i l a b l e re-
a c t i v i t y i n t h e c o r e (Fig. 5) shows an i n c r e a s e d u r i n g t h e f i r s t year as
the i n v e n t o r y Of
233u,
mQ%e e f f i c i e n t f u e l than
235u,b u i l d s .
'PkiS
r i s e would have to be controlled so that f u e l consumption was ~ i n h i ~ e d ,
Thus, a temporary removal of some denatured f u e l o r a d d i t i o n s of f e r t i l e
material might be more e f f e c t i v e than i n s e r t i o n of simple n e u t r o n p~lsons. After t h e f i r s t y e a r , t h e r e a c t i v i t y b e g i n s t o d e c l i n e as f i s s i o n - p r o d u c t
poisoning i n c r e a s e s ana overcomes t h e 2 3 4 ~e f f e c t .
R e a c t i v i t y i s subse-
q u e n t l y k e p t above 1.0 by p e r i o d i c a d d i t i o n s of makeup f u e l , c o n t a i n i n g 20% e n r i c h e d 2 3 5 ~ .
The n e t conversion r a t i o of the system ( f i s s i l e p r o d u c t i o n d i v i d e d by f i s s i l e consumption), which i s shown i n Fig. 6 , undergoes a much more p e r s i s t e n t rise t h a t l a s t s about f i v e y e a r s b e f o r e a g r a d u a l d e c l i n e sets i n t h a t Basts u n t i l t h e end of t h e %@=-yearcycle.
Much of t h i s decline
i s a t t r i b u t a b l e to n e u t r o n p ~ i s o n i n gby 2 3 8 U 9 which i s added w i t h t h e
30 ORNL-DWG 804266
ETD
56
t
!=
FIRST FUEL
1
+
o= $5 c
< 2.5
w-
1-
m"
4 4 5
0.0 0
1
2
3
4
5
OPERATING TIME (yri
Fig. 5. T i m e v a r i a t i o n of core r e a c t i v i t y i n a once-through BMSR operating at 75% c a p a c i t y factor.
OHNL - D V G 80-4267
no
I
10
FVD
I
I
20
30
OPERATING TIME ( v r )
Fig. 4 .
makeup f u e l .
Conversion r a t i o vs t i m e ,
The l i f e s t m e average c o n v e r s i o n r a t i o f o r t h e 30-year f u e l
cycle is ekose to 0.8. The s c h e d u l e of f u e l a d d i t i o n s , i n c l u d i n g t h e i n i t i a l c r i t i c a l load-
ing f o r a 1-GWe p l a n t o p e r a t i n g a t a 75% c a p a c i t y f a c t o r i s shown i n Table 17.
This t a b l e also i n c l u d e s the quantities of the U308 and separative
work r e q u i r e d to s u p p l y the f i s s i l e materialie ~ h u s ,the l i f e t i m e
re-
quirement would be about 2688 t o n s of U308 i f m c r e d i t were allowed f o r
t h e end-of-life
fissile i n ~ e n t o r y . However, uranium is r e a d i l y r&coV~B"-
able from t h i s f u e l i n a p u r e and r e u s a b l e f o m as LEge The recovered uranium would have t o be reenriched, e i t h e r by i s o t o p i c separation or by
a d d i t i o n of high-enrichment f u e l , before i t could be r e u s e d i n a n o t h e r
DMSR, b u t reuse i n some manner might be p r e f e r a b l e t o discarding t h e
31
Table 17.
ob E
Fuel addition schedule for once-thrsugh BMSR
14,800 0 174
2
a
105 890
4 5 6 7 8 9 10 11
3,450 0 0 0 203 0 203 0 203 263 0 2 03 203 2 03 203 2 03 0
0 822 6 82 2 822 6 822 82 2 822 82 2 822 0 822 822 822 82 2 82 2 822 822 822 822 822 822 82 2 822
12
13 14 15 16 17 1% 19 20 21 22 2% 24 25 26 29
28 29 Total
32,400
283 203 203 203 283 203
283 2 03 203 203 203
203 2 03
7 920 -~
~~~~
a 6 Eag
= 1.182
short tons.
bInitial l o a d i n g .
788 0 0 0
46.4 0 46*4 0 46.4 46.4 6 46.4 46.4 46.4 46.4 46.4 0 46.4 46.4 46.4 46.4 46.4 46.4 46.4 46. 4 46.4 46.4 46.4 46.4 46.4 1,810.6
789 0 0 0
46.4 0 46.4 0 46.4 46.4 0 46.4 46.4 46.4 46.4 46.4 0
46.4 46.4 46.4 46.4 46.4 46.4 46.4 46.4 46.4 46.4 46.4 46. Pa 46.4 1,810.0
32
"spent" f u e l .
If c r e d i t were allowed f o r t h e r e s i d u a l f i s s i l e uranium
i n t h e s a l t (plutonium presumably would n o t be r e c o v e r e d ) , t h e n e t U308 requirement would be reduced by almost one-half,
The temporal d i s t r i b u t i o n of f u e l r e q u i r e m e n t s i n a DMSR i s a l s o significant.
The d a t a i n Table 1 7 show t h a t o n l y about 36% of t h e makeup
f u e l i s r e q u i r e d d u r i n g t h e f i r s t 1 5 y e a r s of t h e c y c l e ; t h e major demand o c c u r s toward t h e end-of-life.
Thus, i f t h e r e a c t o r were o p e r a t e d a t a
lower c a p a c i t v f a c t o r i n l a t e r y e a r s ,
*
t h e U308 requirement could be re-
duced f u r t h e r o r t h e p l a n t c a l e n d a r l i f e t i m e could be extended.
The ad-
v a n t a g e a s s o c i a t e d w i t h t h e time d i s t r i b u t i o n of t h e makeup f u e l r e q u i r e ment i s p a r t l y o f f s e t by the l a r g e i n i t i a l f u e l l o a d i n g and t h e h i g h i n plant f i s s i l e inventory.
T h e r e f o r e , a n optimum f u e l c y c l e might coneeiv-
a b l y b a l a n c e a Power i n i t i a l l o a d i n g (and i n v e n t o r y ) having a lower n e t c o n v e r s i o n r a t i o a g a i n s t a h i g h e r requirement f o r makeup f u e l .
There ap-
p e a r s t o be some l a t i t u d e f o r o p t i m i z a t i o n o f t h e f u e l c y c l e i n t h i s area.
3.1.6.2
P o t e n t i a l f o r imDrsvement
mile
t h e f u e l u t i l i z a t i o n of t h i s c o n c e p t u a l system compares f a v o r -
a b l y with t h a t of o t h e r r e a c t o r systems, some f u r t h e r improvements may be possible.
Only a l i m i t e d range of f u e l volume f r a c t i o n s and c o r e zone
s i z e s h a s been c o n s i d e ~ e d lf o r t h i s c o r e , and o t h e r v a l u e s could l e a d to
higher performance.
However, t h e r e a p p e a r s t o be l i t t l e p o t e n t i a l b e n e f i t
i n u s i n g more t h a n two core zones. The a c t i n i d e c o n t e n t of t h e s a l t i s thought t o be near optimum f o r long-term, high-performance c o n v e r s i o n , b u t , as implied p r e v i o u s l y , ano t h e r c o n c e n t r a t i o n might be b e t t e r f o r t h e 30-year c y c l e .
Certainly,
some improvement i n f u e l u t i l i z a t i o n would come from r e l a x i n g t h e requirement f o r 2 3 8 ~c o n t e n t e i t h e r of t h e system i n o p e r a t i o n o r of t h e makeup material being added.
Table 18 shows t h e approximate e f f e c t of
t h e s e c o n s t r a i n t s on 2 3 5 ~requirements.
Removing t h e requirement t o
f u l l y d e n a t u r e t h e makeup f e e d material h a s o n l y a small e f f e c t on t h e f u e l requirement. dk
S i m i l a r l y , i n c r e a s i n g t h e allowed enrichment of 234U
T h i s i s f r e q u e n t l y done i n e l e c t r i c power stations a s newer and cheaper p l a n t s are b u i l t .
33
Table 18. Effects of denaturing on 30-year cycle performance
0.1 0.2 0.4
0.2
0.142828 0.142828 0.142828
3450 3450 3450
5120 4470 4260
$ma
0.2 0.2
0.2
0.071414 0.142828 0.285656
3450 3450 3450
4470
0.2 0.2
0.2 0.2 8.2
4470 4470
8120a 7920 7920
8.2 0.2 0.2
B
0.2 0.4
0.142828 0.142828 0.142828
3980 3450 3040
4470 4670
7710
0.2
I
1
2800
4040
6860
I
1
I
2800
2800
5600
%enotes
8.
5120
9928
7710
9100a 7920
reference conditions.
in the coke has little effect.
Only complete removal of all enrichment
constraints would achieve an important fuel saving of 29%.
Thus, the re-
quirement for d e n a t u r i ~ g cannot be regarded as an overriding limitation on the potential performance of this f u e l cycle.
3.1.7
Dynamic effects
The dynamics of the DMSR would be dominated by the following factors:
1.
a
2.
a slow, positive moderator-temperature coefficient ~f reactivity;
3.
a negative fuel-salt density coefficient of reactivity;
4.
an interaction between fuel-salt flow rate and the neutronic response
prompt, negative fuel-temperature coefficient of reactivity;
of the core caused by the sweeping of delayed neutron emitters out of the core;
5.
a long f u e l - s a l t residence time in the core (relative to the average
neutron lifetime).
.. .....a .... # '
34 3.1.7.1
Material r e a c t i v i t y w s r t h s
The r e a c t i v i t y worths sf t h e major f u e l c o ~ s t i t u e n t sare shown in Table 19.
The t o t a l worth is n e g a t i v e because t h e e f f e c t s of f e r t i l e
thorium and 2 3 8 ~overcone t h e p o s i t i v e e f f e c t s sf t h e f i s s i l e materials. T h i s means t h a t t h e r e a c t i v i t y c o u l d be made s i g n i f i c a n t l y h i g h e r by removing f u e l s a l t , a l t h o u g h t h e b r e e d i n g performance would be reduced.
Table 19.
Material concentration coeffielent of reactivity
0.00026 -0*08691
-0.14 0.15 0. 010
-9- 00011 -0.0023
4.29 -0.0626
0.0048
0.20
-0.8015 0.0025 -0 e 00050 -0.00019
4.014 4-063 4.0079 4.092
Removing lX of t h e uranium would have a r e a c t i v i t y e f f e c t of -0.0015
~ k / k ,and r e i n s e r t i n g i t would have a comparable p o s i t i v e e f f e c t . p a r a b l e r e s u l t f o r plutonium would be o n l y 8.0001 Akbk.
A com-
If 1%of t h e
f u e l s a l t could be r e p l a c e d s u d d e n l y by bubbles, t h e e f f e c t would be an i n c r e a s e of 0.00114 i n r e a c t i v i t y , which i s s u f f i c i e n t t o induce a signific a n t system transient.
I n p r a c t i c e , no l i k e l y mechanism e x i s t s t h a t could
b r i n g about such a n e f f e c t suddenly. ~ ~ a s pee c i f i c c o e f f i c i e n t s S ~ Q Wt h a t , atom f o r atom, 2 3 3 ~i s a much
more r e a c t i v e f u e l t h a n 2 3 5 ~o r plutonium i n t h e r e f e r e n c e i s o t o p i c mix
and t h a t 2 3 % i s a g r e a t e r d e p r e s s a n t t h a n thorium.
3.1.7.2
Temperature effects on r e a c t i v i t y
Temperature a f f e c t s t h e r e a c t i v i t y of t h e core by (1) broadening narrow ~ r o s ~ - s e ~ t iroe sno n a n c e s , t h u s i n c r e a s i n g t h e i r c a p t u r e rate
35 (Doppler e f f e c t ) , (2) changing t h e energy d i s t r i b u t i o n of the thermal n e u t r o n spectrum, and ( 3 ) causing expansion of t h e c o n s t i t u e n t materials.
The expansfon changes b o t h t h e s i z e and density of t h e c o r e , as discussed
earlier.
Table 28 shows t h e v a r i o u s c m p o n e n t s of t h e t o t a l temperature
coefficient.
The f u e l c o e f f i c i e n t i s dominated by both a l a r g e , n e g a t i v e
Doppler component and a similar s p e c t r a l component. p l e , t h a t an i n c r e a s e of " I s C
This means, f o r exam-
i n f u e l temperature would reduce r e a c t i v -
ity by 6.009 e s s e n t i a l l y i n s t a n t a n e o u s l y .
Table 20.
Temperature c o e f f i c i e n t s of r e a c t i v i t y f o r DMSR
F u e l - s a l t Doppler Fuel-salt d e n s i t y F u e l - s a l t thermal spectrum Total f u e l salt
Moderator d e n s i t y Moderator expansion Moderator thermal spectrum Total moderator T o t a l core Reflector density R e f l e c t o r thermal spectrum R e f l e c t o r and v e s s e l expansion Total r e f l e c t o r Total reactor
57 30 4 0
4 7 -2.2 7.2 14
19
4 8 0.1 1.2 -4.9 -%. 8
-7 2
"he moderator e f f e c t i s dominated by p o s i t i v e s p e c t r a l and expansion
effects.
T h i s e f f e c t i s r e l a t i v e l y slow t o appearo however, because t h e
t i m e c o n s t a n t f o r conduction h e a t i n g of t h e g r a p h i t e f s on t h e o r d e r of 146 s.
If t h e temperature change were caused by a r a p i d power i n c r e a s e ,
a small p o r t i o n (-5%) of t h e excess power would appear i n the m ~ d e ~ a t o r
36 immediately because of d e p o s i t i o n of energy by fast n e u t r o n s and prompt
gammas,
Because the h e a t c a p a c i t y of t h e moderator i n a zone i s always
a t l e a s t five times that of the f u e l , t h e e f f e c t of d i r e c t t r a n s i e n t mad-
erator heating would be n e g l i g i b l e . The r e f l e c t o r and vessel c o e f f i c i e n t s would probably b e v e r y slow i n t a k i n g effect because of l a r g e h e a t c a p a c i t i e s and Pow fuel flow rates. T h e i r t o t a l i s dominated by a n e g a t i v e expansion tern.
3 1e 7 3 0
B
Belayed-neutron effects
T a b l e 21.
Contributor
Delayed-neutron fraction, 6
Fissiom fraction
2 q J 2 3 5 ~
0,55
B 1u e. oniurn
0.22
0.23
Total B
Contribution t o B 0.0014 Q.OOP5 0 * 00046 0.0034
An unusual aspect of MSRs 1 s t h a t the fuel c i r c u l a t e s f a s t enough t o remove s i g n i f i c a n t numbers of delayed-neutron p r e c u r s o r s from t h e core be-
f o r e t h e neutrons are e m i t t e d .
The Lmped-parmeter kinetics equations
a r e taken a s
and
,...".IW ........ ..,
37
where
Ci
= relative
delayed-neutron precursor concentration,
t = time, B = reactor power,
B
=
delayed-neutron fraction,
k
=
muPtipLieation factor,
h = prompt-neutron generation time,
xi
=
ai
=
aeiayea-neutPon p r e c ~ r s o rdecay constant, delayed-neutron fractional yield,
R = coolant flow constant, T =
mean salt transit time in external loop.
These equations then show that, where dollars of reactivity are defined as $i= ( k
of
$e
- l)/kB, t h e steady balance c o n d i t i o n requires a nonzero value
Thus,
where E5 is equal to 1 - e
'Ai'
.
Defining a new effective reactivity as
we can write the inhour equation relating asymptotic inverse period w t o A , the amount of reactivity in excess of that required t o maintain steady
state under the given flow rate.
where Fi is equal t o 1 - e~p[--CAi 9
U)T].
The prompt-neutron generation
t i m e was calculated by the boron-poison method to be 362 ps.
For now,
we w i l l ignore t h e difference between B and Beff, which i s expected t o be small fn Bow-leakage systems.
Table 22 was compiled u s i n g standard
38
Table 22.
FIQW constant,
w
Kinetic response of BMSR
Flow reactivity %oss, $ - A
reactivity, A
IieactQr period, I / @
( d o l l a r s1
%SI
Net
(dollbar S)
(8-9
0 0 0 6 0 0 6 0 0.0515 0.0515 0.0515 6.8515 0.051 5 0.0515 0.851 5 0,0515
0
6 8.11 0.26 6.45 8*69 Q. 92 1.28 2,04
0 0
0 0 0 0
delayed-neutron data.
’’
0 0.23 0.23 0. 23 0.23 0.23
0 0.87 0.16 0.29 0*40
8*23 0.23 0.23
0.78 1.05 1.82
re flow
BD
100
30 110
a
1
8.3 0.
P
OD
31 80 20 10 3 1 0.3 0.6
c ~ ~ l s t a n t 0.0515
s-l corresponds t o
residence time ~f 19.4 s in t h e full-power ope ratio^ with a r r ~ e afuel ~ CQ%@
e
‘ ~ h e s edata sthow that less excess ~ e a ~ t i v i tis y r e q u i r e d ~ O Pa g i v e n
small power response when the s a l t is flowing.
becomes constant at higher reactivftfes.
T h i s reactivity difference
Because of the v e r y PSI^ genera-
t i o n time, t h e response to net reactivity changes of more than l dollar
would be much smaller than that of many reactor types, which is characteristic of over-moderated graphite assemblies.
The overall result would be
a system with a power l e v e l that fluctuates more than u s u a l because of in-
herent operating noise b u t that would be relatively easy to shut down by CoIltPOl rad aC%iOn
iR
an Unplanlled
eVeIlt.
Power f%uCtUatiQRs Would ’be ex-
pected t o have l i t t l e effect on the e x t e r ~ a lsystem because of t h e large heat Capacity
Of
the Cor@ atad t h e low flow %pate.
39 .... ...., , c.y..p
3.1.7.4
Control requirements f o r normal operation
Assuming a core preheated to 775 K
*
and near critical, a reactivity
increase of 0.07% must be supplfed by t h e contrp~lsystem
as
fuel flow
through the core is started t o compensate f o r the l o s s sf delayed neu-
trons.
An increase of about 1.1% must be supplied to bring t h e fuel9
IIIOderatQr, and Vessel t o t h e average OpePatiIlg tempE?ratU%e
925 R e
Xenon concentration is kept to a negligible level by the salt cleanup
system and, therefore, has little effect on the control requirements. A Illore sE?rfoUS %eqUiPement is the lOIlgE?le-telXl pOS%tiV@ reactivity peaking
caused by e a r l y production of 233U; this 1 s approximately a 3% effect.
'En addition, some shutdown margin (perhaps. 2 % ) would be required for sELfe%y, T h i s Would be SuffiefeIlt to
OVE?PCQITIe i 3
12% cha.l%gei n salt dell-
sityr for example, o r a comparable l o s s in actinide content of the salt. The t o t a l reactivity control §pan r e q u i r e d W i t h respect t o a 7 7 5 R , T - I O - ~ ~ Q W , just-critical
core thus would be from +%,2% t o -5.O%,
Of this,
only about -2% must be rapid in nature, inserted by an a c t i v e contr~l device.
The remainder csu%d be partially supplied by adjusting t h e com-
position of t h e fuel s a l t .
3.1.7.5
Stability and transient safety
The
i s stable to a l l frequen€!ieS Of Q§cilbatiOIl because t h e
negative prompt
of the temperature coefficient of reactivity
CQITI~QH~~I-I~
dominates the positive delayed component.
A t frequencies below that as-
sociated with the graphite thermal conduction process, the delayed component could subtract from the prompt component, but the effective coef-
ficient wsuld be no less negative than the t o t a l core coefficient.
These
frequencies would be on the order of inverse minutes and should pose no problem f o r c o n t r o l . The response to sudden changes in the fuel-salt inlet temperature is relatively
S ~ O Wdue
t o a s a l t residence time of almost 20 s .
For example,
the reactivity response t o an abrupt change in inlet fuel-salt temperature
~
c
...
"<....srJ
"This would be an absolute minimum temperature because the salt ~ begin l t od freeze at lower temperatures.
40 of-50"C
would be +0,004 ( a b o u t 1 . 9 d ~ l l a r s )i f t h e e n t i r e core c o u l d be
filled.
Wowever, t h e e x t e r n a l l o o p s contain enough s a l t t o fill o n l y
about o n e - t h i r d of t h e c o r e ; t h u s , t h e actual r e a c t i v i t y e f f e c t would be
much smaller, and i t would be i n s e r t e d o v e r a p e r i o d of s e v e r a l seconds. The control system could r e a d i l y compensate f o r such a activity.
S ~ S Wchange
i n re-
With no c o n t r o l r e s p o n s e , a new power l e v e l would be g r a d u a l l y
approached to c o u n t e r a c t t h e cooling e f f e c t of t h e i n l e t c o n d i t i o n , and t h e n t h e c o n t i n u e d h e a t i n g e f f e c t of t h e h i g h e r power level would c a u s e a r e d u c t t o n i n r e a c t i v i t y and a r e t u r n t o a s t a b l e condition.
3.2
R e a c t o r Thermal H y d r a u l i c s
The purpose of t h e t h e r m a l - h y d r a u l i c a n a l y s i s o f t h e DMSR i s t o demo n s t r a t e t h a t t h e concept i s v i a b l e and n o t t o p r o v i d e a d e t a i l e d d e s i g n . N e i t h e r t h e funding n5r t h e n e c e s s a r y t h e r m a l - h y d r a u l i c p r o p e r t i e s o f m o l t e n s a l t f l o w i n a g r a p h i t e c o r e a r e p r e s e n t l y a v a i l a b l e t o perform t h e latter.
C o n s e r v a t i v e estimates of i m p o r t a n t p a r a m e t e r s are t a k e n wherever
p o s s i b l e ; even i f some of t h e s e should be n o n c o n s e r v a t i v e , simple modifications Qâ&#x201A;Ź the core design apparently could lead t o acceptable r e s u l t s . Thermal-hydraulic
b e h a v i o r d o e s n o t a p p e a r t o be a l i m i t i n g d e s i g n con-
s t r a i n t on t h e DMSR r e f e r e n c e c o r e . Because of t h e r e l a t i v e l y low power d e n s i t y of t h i s concepts s i m p l e
c o r e c o n f i g u r a t i o n s t h a t were n o t p o s s i b l e i n t h e MSWR r e f e r e n c e d e s i g n 8 may b e ~ ~ n s i d e r e d ,Three s i m p l e d e s i g n s were c o n s i d e r e d : 1.
a c o r e made up of s p a c e d g r a p h i t e s l a b s ,
2.
a c o r e made up of s t a c k e d hexagonal g r a p h i t e b l o c k s w i t h c i r c u l a r
coolant channels,
3.
a c o r e c o n s i s t i n g of a t r i a n g u l a r a r r a y of g r a p h i t e c y l i n d e r s w i t h c e n t r a l coolant channels. C o n s t r a i n t s t h a t must be c o n s i d e r e d i n s e l e c t i n g a c o r e d e s i g n i n -
e l u d e maximum g r a p h i t e element t e m p e r a t u r e , l o c a l s a l t volume f r a c t i o n , and t h e d e s i r e d 2 3 8 ~s e l f - s h i e l d i n g e f f e c t , which imposes a m i n i m u m
l i m i t a t i o n on the c o o l a n t c h a n n e l dimensions.
The t e m p e r a t u r e rise be-
tween t h e coolant ~ f n a n n e land t h e h o t s p o t i n t h e g r a p h i t e ~ ~ ~ ~ d e releator
m e m t i s e s p e c i a l l y important because of t h e s t r o n g dependence of g r a p h i t e
i
J
44
dimensional change on temperature.
he salt volume fraction ana the
self-shielding effect strongly couple the thermal-hydraulic and the
2 3 8 ~
R~U-
These combined constraints appear to rule o u t the
tronic core designs.
possibility oâ&#x201A;Ź a graphite slab core configuration. Nechanical problems, especially the loss of coolant channel geometry caused by shifting of stacked hexagonal blocks (thus creating stagnant or low flow zones), rude o u t the second o p t i o n .
In addition, that o p t i o n w o d d leave an un-
desirably large fraction of the fuel salt hexagonal elements.
irt
narrow passages between the
The third design seems to f i l l all the requirements
and is a l s o very appealing because of its structural simplicity, which i s important in a core expected to last the life of the plant. The outer diameter of the cylindrical graphite elements i~ the reference BMSR is 254 mm (40 i n . ) , which is machined down to 244 m ( 9 - 1 6 i n e ) in the central region (core zone A , P i g . 2 ) .
ner coolant channels i s c o n s t a n t at 51 mm (2 i n . ) .
The diameter s f t h e in-
This design provides
a salt fraction sf 20.0% in the central region and 12.9% in the remainder of the core. a
The motivation behind this two-region design is t o provide
â&#x201A;Źirst estimate of a flux-flattened core.
Flux flattening is crucial t o
the d e s i g n objective of reactor-lifetime graphite because both the. waximum graphfte damage and the maximum graphite temperature are reduced. Figure 7 shows the arrangement of the graphite moderator elements in the outer region, zone B, which occupies most of the core volume, the 51-m-dim
(2-in.)
Note
interior salt channels and the e x t e r i o r salt chan-
nels formed between the moderator elements, In zone B , the exterior chann e l s have a uniform cross section along their entire length, except for p o s s i b l e orificing provisions at the ends.
The arrangement i s the same
in the interior s f the core (zone A ) , but the outer diameter of the moderator elements in the interior is reduced.
This provides the higher salt
fraction and allows the exterior channels to interconnect in that region. Figure 7 also shows t h e l o e a t i o n of a 30' segment of a graphite element used in the analysis.
The film heat-transfer coefficient at the
graphite-salt interface is not well known, primarily because a helium f i l m may exist on the graphite surface, This film would increase the thermal resistance b u t also would g i v e a no-drag wall boundary condition to the salt velocity profile.
....:...w ..., ..,: %.
%at
addition, near the moderator element contact
42
WJDEL SECTION FOR T! i E R M A L_ AN A L.Y SIS
Fig. 7.
Arrangement of moderator elements in c o r e B,
p o i n t s (which o n l y e x i s t in t h e o u t e r c o r e r e g i o n ) , h e a t transfer would be g r e a t l y diminished.
The foPPowfng s i m p l i f y i n g assumption w a s macle
(probably c o n s e r v a t i v e ) concerning t h e s a l t - f i l m h e a t - t r a n s f e r c o e f f i cient:
within
of a c o n t a c t p o i n t , t h e h e a t - t r a n s f e r c o e f f i c i e n t i s
z e r o ; elsewhere, i t i s e q u a l t o 80% of t h e v a l u e o b t a i n e d by use. of the
~ i t t u s - ~ s e ~ t ceorr r e l a t i o n . 18
TMS assurnption i n c r e a s e d the c a l c u l a t e d
t o t a l temperature r i s e i n t h e moderator element by -50% over t h a t obt a i n e d by u s i n g 8OX of t h e D i t t u s - B ~ e l t e r v a l u e f o r t h e e n t i r e s u r f a c e , With t h e s e boundary c o n d i t i o n s , the h e a t c o n d l ~ e t i ~enq u a t f o n i n cyl i n d r i c a l finite d i f f e r e n c e f o m was solved i n t h e 30" s e c t i o n a t each a x i a l node ( 4 0 nodes t o t a l ) using t h e method of s u c c e s s i v e ~ v e ~ ~ e % a ~ a t i o n .
Starting a t t h e core i n l e t , t h e temperatures of an i n t e r i o r and an e x t e r i o r s a l t channel are advanced i n an axial marching-type
s o l u t i o n through t h e
coreo M ~ P and r a a i a i k0mogeneoras power p r o f i l e s gsee Fig. 4 )
used,
along w i t h t h e following assumptions, t o g i v e s a l t - c h a n n e l axial l i n e a r power p r o f i l e s (Fig. 8) and
IbOcal
UIode~atOH VOlUElet9Pic power.
A t a given
l o c a t i o n , t h e vsPumetrie powers i n an interior and an e x t e r i o r channel
were assumed t o be t h e same, and t h e volumetric power w i t h i n t h e g r a p h i t e
was assumed t o be 1% of t h a t in the s a l t and c o n s t a n t over t h e 30" section,
~ e u t r o n i canalyses of t h e previous MSBR design8 provided the basis
c
43
40
0
2
1
Fig. 8.
3
4 5 A X I A L POSITION (mi
6
7
8
Core hot-channel linear power profiles.
for the latter a ~ s u ~ ~ p t i othe n ; present analysis is n o t detailed enough t o yield a better estimate. A s n ~ t g dpreviously, t h e hot-ckannd axial linear power profiles of
an interior and exterior channel are shown in Fig. 8.
The h o t channel oc-
curs (radially) at t h e boundary between zones A and B.
The central loca-
t i o n of zone A (2.65 t~ 5.65 an) can be seen by the discontinuities in the
linear power curves.
The
curves reflect b o t h heat generated within the
salt and heat transferred from t h e graphite to the salt. Figure 9
S ~ Q W Scalculated
temperatures in the interior and exterior
channels and the maximum temperature in t h e moderator as functions of axial position for the core hot channel.
The highest moderator temperature
occurs at a position 3.0 rn above the core midplane.
Isotherms in the 30"
moderator segment at this l ~ c a t i ~are n shown in Pig. 10.
The assumption
of RQ heat transfer within 15" ~f the contact point causes substantial
distortion of the isotherms near the o u t e r surface.
The calculated maxi-
mum graphite temperature is 741째C ( 1 3 6 6 " F ) , which i s close t o the maximum
allowable temperature (-720째C.) total fluence of 3
.... ,.::.y ..,, ~.
x 1026 m-2-
for zero positive irradiation growth at a
44
3. EXTERIOR SALT CHANNEL TEMPERATURE
a
Fig. 9.
2
1
3
8
4 5 AXIAL POSITION (rn)
Axial temperature p r o f i l e s :
graphite and f u e l salt for core
h o t channel.
Table 23 g i v e s f l o w areas, salt velocities, Reynolds numbers, and heat-transfer c~efficientsf o r t h e interior and exterior channels ( i n b o t h core zones A and R ) for two cases:
core average channel.
equal 139'C
The salt velocities are those necessary f o r an
(25Q째F) temperature r i s e
exterior channels.
t h e core h o t channel and the
~ C P Q S S the
core in the interior and
The hydraulic diameters are not e q u a l ; t h u s , orificing
of the interior channels would be necessary.
This could be accomplished
easily by reducing the diameter of the interior channel by -50% f o r a short interval near core inlet a n d / o r outlet, Overall core orificing would a l s o be neeessary t o equalize core exit temperatures.
tional p r e s s u r e drop across the core
[-a
The fric-
kPa (1 p s i ) ] is insignificant
when compared with the pressure d r o p across the primary heat exchanger
45 O R k L -DWG 80-4270
ETD
EXTE R IO w
CHANNEL TSALT =
m8
Fig. 10. Isotherms in graphite at location of maximum temperature Film heat-transfer coefficient h equals 0 where shown and equals ("C). 80% of Dittus-BoePter correlation value elsewhere.
Table 23.
Thermal-hydraulic d a t a f o r DMSR c o r e Channel Hot
FLOW
area,
~~
a
~
Average
m2
I n t e r i o r channel E x t e r f o r core A Exterior core R
2.025 4.580 2.601
x x
10-3 10-3 10-3
2.025 4.580 2.601
x
10-3
x x
10-3 10-3
S a l t v e l o c i t y , m/s I n t e r i o r channel Exterior core A Exterior core B
0.601 0.418 0.735
0.441 0.307 0.540
1.034 x i o 5 6.959 x l o 4 6.490 x l o 4
7.592 4.962 4.765
173 I30 232
7% 59 145
Reynolds number I n t e r i o r channel Exterior core A Exterior core R Heat-transfer c o e f f i c i e n t , W rnW2 K-l I n t e r i o r channel Exterior core A Exterior core R
x 104 x
io4
x
lo4
b
~~~
a
Maximmdaverage power i s 1 . 3 6 2 over c u r e s A a n d B.
'Obtained value.
,.. .%.....+.P...
..,.,...,.
by using 8 0 2 of Dittus-Boelter c o r r e l a t i o n
46
[-SO0
kPa (130 p s i ) ] .
Graphite and f u e l - s a l t p r o p e r t i e s used i n t h e
a n a l y s i s were o b t a i n e d from Ref. 8. The r e f e r e n c e DMSR
d e s i g n s a t i s f i e s t h e two most i m p o r t a n t
thermal-hydraulic c o n s i d e r a t i o n s :
(a>
t h e maximum g r a p h i t e t e m p e r a t u r e
i s ISW enough t o a l l o w i t t o last t h e l i f e of t h e p l a n t (24-full power y e a r s ) and ( 2 ) r e g i o n s sf s t a g n a n t o r l a m i n a r flow are avoided.
Variations
OR
t h i s design
W i l l
be possible i n a c h i e v i n g
but t h e second c o n s i d e r a t i o n must a l w a y s be noted.
iipl
Halay
Optimum c o r e ,
Because of the EQW
thermal c o n d u c t i v i t y of t h e f u e l s a l t , e x c e s s i v e t e m p e r a t u r e s can o c c u r i n very small s t a g n a n t o r l a m i n a r flow r e g i o n s .
The g r a p h i t e elements
must r e t a i n t h e i r g e o m e t r i c i n t e g r i t y and must n o t c r e a t e f l o w blockages. E x t e n s i v e in-pile t e s t i n g would be n e c e s s a r y t o e n s u r e t h a t b o t h of t h e s e cOnsideratiOnS Were met b e f o r e Const?XC%iQnSf
%!
dâ&#x201A;ŹSXlonStratiOn p l a n t could
be undertaken.
3.3
F u e l Behavior
E x c e l l e n t n e u t r o n economy i s a n a b s o l u t e requirement f o r a thermal b r e e d e r ( s u c h as a n MSBR), and fuel c o ~ l p o n e n t sw i t h a c c e p t a b l y l o w n e u t r o n CFQSS
sections a r e few.
We recognized v e r y e a r l y i n t h e MSBR development
e f f o r t t h a t ( 1 ) only f l u o r i d e s need t o be c o n s i d e r e d , ( 2 ) o n l y L i F and BeP2 would prove a c c e p t a b l e a s f u e l s o l v e n t s ( d i l u e n t s ) f o r t h e f i s s i l e
and f e r t i l e f l u o r i d e s , and ( 3 ) t h e L i F must be h i g h l y e n r i c h e d in 7Li, For a break-even r e a c t o r o r f o r one t h a t , though i t r e t a i n s most of t h e
fission p r ~ d u c t sw i t h i n t h e f u e l , i s t o be a n e f f e c t i v e c o n v e r t e r , some s a c r i f i c e i n meutron economy may be p e r m i s s i b l e .
However, no l i k e l i h o o d
f o r s u c c e s s seems p o s s i b l e w i t h d i l u e n t s o t h e r than BeF2 and L i F h i g h l y
e n r i c h e d ( p r o b a b l y t o 99.99%) i n 'Li, A c c o r d i ~ g l y , t h e f u e l system f o r a DMSR n e c e s s a r i l y w i l l be v e r y
s i m i l a r t o t h e system t h a t r e c e i v e d i n t e n s i v e s t u d y f o r many y e a r s i n
MSBR development.
A c o n s i d e r a b l e fund of i n f o r m a t i o n e x i s t s about ckem-
i c a l p r o p e r t i e s , p h y s i c a l p r o p e r t i e s , and expected i n - r e a c t o r b e h a v i o r of suck materials.
47 ........ ....... . .%..W
3.3-1 3.3.1.1
Basic considerations
Composition of DMSR fuel
Choice of initial composition.
A DMSR will derive some of i t s fis-
sion energy from plutonium isotopes, but
2 3 3 ~and '3%
will be the p r i m a r y
f i s s i l e isotopes, while '32~h, with important assistance from 2 4 8 ~ , is the
fertile material
a
Clearly ( s e e previous neutronics discussion) the 2 3 2 ~ h
concentration will need t o be markedly higher t h a n the total concentration of uranium isotopes.
The only stable fluoride of thorium is ThF4; thus, it must be used i n such fuels.
Puke UF3 is appreciably disproportionated at high tempera-
tures by the reaction
Generally in molten fluoride s~lutions,this reaction proceeds appreciably at lower temperatures. A small amount of UF3 will be formed within the f u e l by reaction (reduction) of UP4 with species within the container
metal and,
as
explained below, a small quantity of UF3 deliberately main-
tained in the fuel serves as a very useful reduction-oxidation (redox) buffer in the fuel.
a large excess of UP,,
Such UF3 is sufficiently stable in the presence s f but UF4 must be the major uranium species in the
fuel. 19320
~onversely,P U F ~is reduced by the metallic container (and
a l s o by LE,),
and PuF3 is the stable fluoride of this element in DMSR
fuels. Phase equilibria among the pertinent fluorides have been defined in detail and are well documented.
19-21
Because the concentration of ThF4
is much higher than that of UF4, the phase behavior of the fuel is dic-
tated by that of the LiP-BeF2-ThF4
system shown in Pig. 11.
The compound
3LIP*ThF4 can incorporate Be2* ions i n both interstitial and substitutional sites t o form solid solutions whose compositional extremes a r e represented by the shaded triangular region near that compound.
The maximum
ThF4 concentration available with the l i q u i d u s temperature below 500째C is
just above 14 mole %.Replacement of a moderate amount of ThP4 by UF4
scarcely changes the phase behavior.
48 QRML-LR-BWG
37420AR9
ThG 4 1 7 4
TEMPERQTIIRE IN OC COMPOSITION IN mole To
526 IF Bei=<'500/450
P 458
Fig. 11.
400
'
400 450
500
BeF, 5 55
E 360
System EiF-BeP2-ThF4.
The MSBR p r o p ~ ~ et od use a n initial f u e l mixture c o n t a i n i n g 71.7
mole % E f F , 16 mole X BeP2, 12 mole 2 ThF4, and 8 . 3 mole % ( h i g h l y en-
riched) UFq.
The o p t i m a l initial concentration of fuel f o r a DMSR is not
yet p r e c i s e l y defined.
The f n i t i a l f u e l l i k e l y will need t o c ~ r t % a i ben
tween 9 . 5 and 12.5 nobe % of heavy metal (uranium plus thori~m), w i t h
uraIliW~I (enriched to 20% a3581> CQrreSpOnding to about 12% O f the t o t a l . The composition range of interest to BEufSRs, therefore, is likely to be bounded by ( a l l c o ~ ~ ~ ~ t ~ ~i nt mole i o nXI: s ThF4; 1.15
78.8 LFF; 19.7 BeF2; 8.35
UF4 and 71.5 L i F ; 16 BeF2; 11 ThF4; and 1.5 UF4.
For such
~ o m p ~ s i t i o n s the , l i q u i d u s would range from about 480 t o 5 0 0 ~~ o~ s ~t shernical and physical properties of the chosen composition can be i n f e r r e d r e a s o n a b l y well from existing data f o r the MSBR reference composition.
49
Variation of fuel composition with time.
Fission s f 235U in the
operating reactor will result in a decrease of that isotope and an ingrowth of fission products and in the generation of ( 1 ) 234U from 232Th, ( 2 ) 2 3 9 ~ ufrom 2 3 8 ~ ,and ( 3 ) numerous transuranium isotopes.
~ u r t h e r ,a
once-through DMSR will require additions of uranium at intervals during its lifetime.
F o r example, a DMSR with a fuel containing 9.5 mole X heavy
metal ~ ~ u contain l d about 110,000 kg of 232Thf 3,456 leg of 2 3 5 U 9 and 1 4 , 0 0 0 kg of 2 3 8 ~at startup.
~uring30 years of operation at 75% plant
factor, it would require the addition of 4 , 4 7 0 leg of 235Y and bEi9400 kg Of
238u
I f Such a r e a c t o r r e c e i v e d only additions
Of
UF4 and UF3 and i f
no f u e l were removed,* t h e final quantities and concentrations of heavy
metals in the f u e l would be those indicated in T a b l e 24.
The end-of-
life f u e l would a l s o contain about 1.4 mole % of soluble fission-product
species and would have a t o t a l of nearly 2.4 mole Z of uranium isotopes, about 6.053 mole % of plutonium isotopes (about 32% of which is 2 3 9 P u ) 9 and less ThFk than the original fuel.
Thus, the concentration of heavy
metal in the f u e l changes very little although the species do change; total heavy metals in the end-of-life f u e l equal about 9.3 mole X compared with an initial 9 - 5 mole X.
Therefore, the physical properties of the
f u e l would not be likely to change appreciably during reactor life a l -
though a gradual change in some chemical properties would be expected. Additions of uranium can be made conveniently a s a liquid EiF-UFb mixture19 (liquidus 4 9 0 " ~ )while the reactor is operating, as was done many times during operation o f the MSRE.22 To keep a proper concentration of UF3 in the fuel and possibly to remove tramp oxide-ion contamination from the fuel, some fuel maintenance operations will be necessary.
The
combination of these relatively simple operations likely will result in sufficient addition of LiF and BeF2 to require on-site removal and stsrage of a s m a l l fraction of the fuel before reactor end-of-life.
These
operations and the resulting fuel management options are described in a later section after the chemical basis f o r them has been presented.
*T h i s
type of speration may be p ~ s s i b l ealthough subsequent discussion will show other more likely modes of operation.
50 .
Table 24.
Approximate heavy meta.. i?IV@ntOPy Of end-of-life fuel in hypothetical DMsg with no f u e l removal Inventory
Specie kf2 92 9 000
38
Mole % 6,84 2.8
x 10-3
1,910
0.140
59s
0.043
250
0.091
97 8
0.671
1 9
28 600 93
2.05 6.7
x 10-3
23 1
6.0165
133
9.5 x 10-3
100
7.1
179
0.0126
136
9.8
x
x
10-3
10-3
a Operated at 1 GWe f o r 30 years at 75% plant f a c t o r .
3.3,1.2
Physical properties of DMSR fuels
Table 25 shows key physical properties of the compositions identified previously to represent the likely limits for DMSR use. d e t a i l elsewhere,1 9 9 2 0 9 '39
'4
A s described in
several of these properties - particularly
those of the s a l t with 9.5 mole % heavy metal- are interpolated from measurements on similar salt mixtures, Prom careful consideration of v e r y similar mixtures f o r use in the MSBR, the properties clearly are adequate f o r the proposed service.
However, because estimates rather than measured
values are presented in several cases, an experimental program would be
,..'w.'..
T a b l e 25.
Physical properties for probable range of DMSR f u e l compositions Heavy metal content
Properties composition, mole
x
L i P 71.5 BeFa 16 m 12.5
"c
Liquidus,
508
Properties at 600째C Density, Mg/& Heat capacity, kJ/kg*K
3.10 1.46
3.35 1.36
vi scssity Paes
Centipoise Thermal csnductfvity, W/K% Vapor pressure
ea
0.012
1,2
1.2
<10
<o.
Torr ~~
0.012 12
~~
=
12
<10 1
<o.
I
~~
heavy metal fluorides.
r e q u i r e d to firm up the physical properties of the cOITIpQSitiQn(%)
f o r service.
chosen
Careful reevaluation of the properties would not be likely
t o disqualify these compositions from DMSR use.
3.3.1.3
Chenieal properties of BMSR fuels
A msltem-salt reactor such as a DMSR makes a n m b e r of stringent
demands on its circulating fuel.
Some of these demands have been im-
plicit in the foregoing discussion of f u e l behavior; examples include the obvious need to accommodate moderate concentrations of UF,+ and large ~ ~ n ~ e n t r a t i oof n sThF, in relatively low-melting mixtures of materials with s m a l l cross sections for parasitic neutron capture and the need for adequate heat-transfer capability.
. .*,p.
........
The fuel must be capable of convenient
52
preparation in a pure homogeneous form for introduction i n t o the reactor. In addition, t h e fuel must (1) be compatible with t h e structural and the moderator materials during normal operation, ( 2 ) be stable to i n t e n s e
radiation fields, and ( 3 ) tolerate â&#x201A;Źissfon of uranium and plutonium and the development of significant concentrations of fission products and p%tttomium and other actinides.
Also, without dangerous consequences, it
must be able to withstand a variety of off-design situations such as heat-exchanger leaks o r possible ingress of air.
Finally, although n o t
presently necessary, it is desirable that at end-of-life the f u e l be amenable t o recovery o f fissile, fertile, and other valuable materials.
The
ability of the f u e l t o meet o r n o t to meet these diverse and conflicting demands l a r g e l y depends on the chemical properties sf the f u e l .
~ o s tof
the details of fission-prsduet behavior are deferred to a subsequent section, but much of the basis f o r expected fuel performance is presented in t h e foBkowing discussion.
Thermodynamics of molten fluoride solutions.
The thermodynamic
properties of many pertinent species in molten LIF-BeF2 solutions and a smaller number in LiF-BeF2-ThFq solutions have been studied in a long-
continued experimental program. employed.
A variety o f experimental techniques w a s
Much of the d a t a was obtained by direct measurement of equilib-
rium concentrations and partial pressures for reactions such as
and
(where g , c , I, and d represent and solute respectively) us%ng dium.
Maray studies of solubility behavior of sparingly s ~ l ~ b lf leu o r i d e
species have a l s o been made,
13aes25926 has reviewed a l l these studies
amd has tabulated themodynamic data f o r many species i n molten Li2BeFq. Table 26 shows values for standard free energy of fomstfsm of major
constituents and s ~ m epossible c o r r o s i o n products.
has a l s o
.
,.x ..; ... .;* ... &
53 Table 26, Standard free e n e r g i e s of f o r m a t i o n f o r compounds dfsssPved i n m o l t e n Ei2WeP4a
-141.79
16.58
-243.86
30.01
-338.04
40.26
180.4
-445.92
57.85
98,5
491.19
62.50
108.8
-452.96
65.05
98.6
-146.87
36.27
57.1
-154.69
21.78
67.5
-171.82
21.41
76.3
e v a l u a t e d t h e e f f e c t of s o l v e n t composition i n t h e EiF-BeF2
system ow
a c t i v i t y c o e f f i c i e n t s of a v a r i e t y of s o l u t e s . Using a s o p h i s t i c a t e d s p e c t r o p h o t o m e t r i c a n a l y s i s f o r UF,
and U F 3 $
more r e c e n t s t u d y by G i l p a t r i c k and Tsth t o e v a l u a t e t h e e q u i l i b r i u m 1
T
+
UF,(d)
W(d) +
i n s e v e r a l LiF-BeF2 and LIF-BeF2-ThF4
;:c.... x..w ..i
cd s o l v e n t s e s s e n t i a l l y confirmed t h e
54 U F ~v a l u e of T a b l e 26 ( i f the UF+ value is a c c e p t e d ) and sl-aowed t h a t t h e
difference between UF3 and UP, (72-16-12
X > i s virtually
mole
s t a n d a r d free e n e r g i e s i n LiF-BeF2-ThFG identical t o t h a t of T a b l e 26,
Balnberger e t a1.27 have shown t h a t
i s -1358 t 10.9 kJ/moPe (-325.4 (--324,6
2 2.6
2
~3f o r
*
pup3 in moltera E ~ ~ B ~ F Q
2 . 6 kcal/rnole) and -1357
k ~ d / r a s l e )at 888 and 988 K, r e s p e c t i v e l y .
P 10.9 kJ/mole From t h e s e d a t a
a d from t h e s o l ~ k i l i t yof P u F 3 , they have estimated f o r pure c r y s t a l l i n e PuF3 t h e following v a l u e s :
-
AGf
=
-1392
t 10.9 kJ/mole (-333.l
2 2.6
kcal/rnole) a t 988 K
combining t h e s e v a l u e s w i t h t h o s e of Dawaon e t a1.28
f o r the r e a c t i o n
y i e l d s t h e expression
f o r c r y s t a l l i n e BuPk NO
d e f i n i t i v e s t u d y sf
been made.
A G ~f o r
P U F ~i n molten f ~ u o r i d es o l u t i o n has
I t s s o l u b i l i t y (by analogy w i t h t h o s e of ZrF4,, UFh, and ThP4)
i s r e l a t i v e l y high.
A l s o , u s i n g t h e h y p o t h e t i c a l s t a n d a r d s t a t e of u n i t
mole f r a c t i o n , i t i s more s t a b l e [ p e r h a p s by 6 3 kJ/moIe (15 kcal/aaole)] i n solution t h a n a s t h e c r y s t a l l i n e s o l i d .
*
If
80,
the r e a c t i o n
The s t a n d a r d s t a t e of PUP i s t h e hypothetical u n i t mole fraction 3(d) used f o r s o l u t e s i n T a b l e 26,
55 would be expected t o have a n e q u i l i b r i u m q u o t i e n t (0) of
where the brackets i n d i c a t e mole fractions of the aissoivea s p e c i e s ,
H
o n l y 2% of t h e uranium W e r e prese1I8: as UF39 t h e Patio of PuF3bPuP4 Would be n e a r 2 - 5
X
IO4, and, t o s u s t a i n a PuF3/PuFk r a t i o of 1, o n l y about b
p a r t TJF2 p e r million p a r t s UF4 c o u l d be t o l e r a t e d .
Clearly, unless very
oxidizing c o n d i t i o n s are maintained i n t h e melt, t h e plutonium i s essent i a l l y a l l PU3+. (92-16-12
The s o l u b i l i t y of PuF3 i n LiP-BeFz-ThFq measured i n two l a b o r a t o r i e s .
29330
mole
x>
has been
Bamberges e t a 1 2 9 show t h e s o l u b i l i t y
o f Pup3 in m ~ l eX ( % p u F 3 ) t o be g i v e n by
l o g SpuQ = (3.01
0.06) - ( 2 . 4 1 -%- 0.05)
w i t h a h e a t of s o l ~ t i ~(AH,) n
mole).
of 46.8
f
1,O
x
(IOOO/T)
*
kJ/mole (k1.008
I f s o , t h e solubility of PuF3 a t 565"C,
0.237 k e d /
t h e l i k e l y minimum t e m -
p e r a t u r e w i t h i n t h e BMSW c i r c u i t , s h o u l d b e n e a r 1.36 mole %.T h i s v a l u e
i s n e a r l y i d e n t i c a l ( a s i s t h e heat of s o l u t i o n ) t o t h a t o b t a i n e d by Barton e t
for ~
e i~n t3h e same
solvent.
ow ever,
the I n d i a n study30
gave s i g n i f i c a n t l y lower v a l u e s ; f o r example, at: 565째C t h a t s t u d y would suggest t h a t S p U ~ 3should be n e a r 1.1 ~ l ~ 2.l e The s o l u b i l i t y of PuF3 d o n e is undoubtedly much h i g h e r than is r e q u i r e d for i t s rase in a DMSW,
However, as d e s c r i b e d i n a l a t e r s e c t i o n , d i f f i c u l t i e s p o s s i b l y c o u l d u l t i m a t e l y r e s u l t from t h e combined solubflities of a number of t r i f l u o r i d e s that f ~ m s o l i d solutions.
Given r e a s o n a b l e W , / ~ P , r a t i o s , americium, curium, e a l i f o m f m , and probably neptunium also e x i s t as trifluorides in t h e w e l t .
No d e f i n i t i v e
s t u d i e s of t h e i r s o l u b i l i t i e s i n EiF-BeF2-ThF4 melts have been made.
Such
s t u d i e s are needed, b u t t h e i r i n d i v i d u a l s o l u b i l i t i e s c e r t a i n l y will p r ~ v e
t o be far h i g h e r t h a n t h e i r c o n c e n t r a t i o n s i n DMSB f u e l . Our knowledge of t h e thermodynamics of molten LiF-BeF2-ThF4
soiu-
t i o n s appears a d e q u a t e to g u i d e the n e c e s s a r y development s t u d i e s , b u t
c o n s i d e r a b l e research ana development (as w e l l 8s d a t a analysis) renain
56 t o b r i n g t h a t u n d e r s t a n d i n g t o the l e v e l that exists f o r LiP-BeF2
solu-
tions. O x i d e - f l u o r i d e behavior.
The b e h a v i o r of molten f l u ~ r i d i esystems
such a s t h e DMSB f u e l m i x t u r e c a n be a f f e c t e d markedly by a d d i t i o n of s i g n i f i c a n t concentrations s f oxide
ispa,
For example, we know t h a t c r y s -
t a l s of UO2 p r e c i p i t a t e when w e l t s of EiF2-UF4
a r e t r e a t e d w i t h a reac-
t f v e o x i d e s u c h as water v a ~ o r ~ ~ 9 ~ ~ ~ 9 3 3
The s o l u b i l i t i e s of t h e a c t i n i d e d i o x i d e s i n L ~ F - B ~ F ~ - T ~ F ~ - . U mixFL+ t u r e s a r e low, and they d e c r e a s e i n t h e o r d e r Tho2, Pa02, U0z9 and
oreo over^ t h e s e d i o x i d e s all psssess t h e same ( f l u o r i t e )
~ ~ 0 2 . 216-24 9
c r y s t a l s t r u c t u r e and can a l l form s o l i d s o l u t i o n s w i t h one a n o t h e r . Sokmbility p r o d u c t s and their t e m p e r a t u r e dependence have been meas u r e d ; 34-43
t h e i r behavior i s g e n e r a l l y we11 understood.
T r i v a l e n t plutonium shows l i t t l e or no tendency t o p r e c i p i t a t e as o x i d e from LiF-BeF2-ThPq-UFq
mixtures
27
Because r e l a t i v e l y l a r g e so%u-
b i l i t y seems t o be g e n e r a l f o r t r i v a l e n t o x i d e s , i t is h i g h l y l f k e k y
t h a t p r e c i p i t a t i o n of h 2 0 3 and o t h e r t r i v a l e n t a c t i n i d e s would b e d i f f i c u l t t o achieve.
If Pa4+ i s oxfdized to Pa5+ (which can b e d o ~ er e a d i l y i n LiF-BeF2ThF4-UF4 (QP
by t r e a t m e n t w i t h anhydrous and hydrogen-free
KF g a s ) , t h e n Pa205
an a d d i t i o n compound of i t > can be p r e c i p i t a t e d s e l e c t i v e l y . 4 l 3 4 4
such o x i d a t i o n t o pas* can be avoided by m a i n t a i n i n g a small f r a c t i o n of t h e uranium as UF3 i n t h e f u e l mixture. he relaiively ~ s oxide w t o l e r a n c e of DMSR f u e l will r e q u i r e reason-
a b l e care t o a v o i d i n a d v e r t e n t precipitation of a c t i n i d e o x i d e s w i t h i n t h e r e a c t o r system.
However, t r e a t m e n t o f melts w i t h anhydrous I-iF ( e v e n when
s u b s t a n t i a l l y d i l u t e d w i t h ii2> s e r v e s t o Lower t h e o x i d e c o n c e n t r a t i o n t o t o l e r a b l e l e v e l s . 18,45
C o m p a t i b i l i t y of f u e l w i t h r e a c t o r materials, e x c e l l e n t f l u x e s f o r many materials.
Molten f l u o r i d e s a r e
Though some oxides are r e l a t i v e l y
i n s o k u b l e , most are readily d i s s o l v e d , and d l are r a p i d l y recrystall i z e d ; c o n s e q u e n t l y , p r o t e c t i v e c o a t i n g s a r e n ~ uts e f u l , and t h e bare
c l e a n metal must w i t h s t a n d
loy-N,
described
Prt
C Q P ~ Q S ~ aVt t~a c k .
The r e a c t o r metal (Hastel-
d e t a i l i n S e c t , 3 . 4 ) was chosen and t a i l o r e d t o be
t h e g m ~ d p ~ i ~ i e a sl tl ayb l e t o t h e f u e l components, a s much as p o s s i b l e ,
._. . ...... ,.. w
57
Corrosion of Hastelloy-N by MSRE and MSBR flue1 mixtures without irradiation and without the consequences of fission has been studied in sophisticated equipment for many years.
It has been thoroughly de-
Table 26 clearly indicates that chromium is the most easily o x i d i z e d of the major Hastelloy-N components.
*
C ~ r r o s i o nof the alloy, therefure,
is essentially by selective leaching of chromium from the a l l o y .
A rapid
initial attack can result from reactions such as
and
if the fuel s a l t is impure o r if the metal system is p o o r l y cleaned. These reactions proceed t o completion at all temperatures within the reactor circuit and do not afford a basis f o r continued attack. The most oxidizing of the major constituents sf t h e fuel is UF4, and the reaction
has an equilibrium constant with a small temperature dependence. When the salt i s forced to circulate very rapidly through a large ( 1 4 0 째 C ) temperature gradient,
as i s
the case within the reactor circuit, a mechanism
exists for mass transfer u f chromium and f o r continued attack.
The re-
sult is that chromium is selectively removed from t h e alloy in higktemperature regions and deposited on the alloy in low-temperature regions
*Molybdenum
f l u o r i d e s are somewhat less s t a b l e t h a n NdF2. M [ S P S ( ~ ) at 906 K has a standard free energy of formatfon25 of about 21% kJ (-51.4 kcal) per gram-atom of F--
.... *.& , s....
: i
58 The r a t e of t r a n s f e r of chromium i s l i m i t e d by t h e r a t e
of t h e r e a c t o r .
a t which t h e t r a n s f e r r e d
~ ~ ~ Q I I I ~ LaK InI
temperature r e g i ~ n "~9 . 2 0 $ 56
d i f f u s e i n t o t h e a l l o y i n t h e low-
The r e s u l t s of two decades of s o p h i s t i c a t e d
c o r r o s i o n t e s t i n g have dem~nstratedt h e v a l i d i t y of t h i s mechanism and
have shsm t h a t s u c h f o r MSBW.
w i l l p r ~ t~o ebe o n l y a t r i f l i n g problem
C O ~ ~ O S ~ O - ~ "
Appreciable chromlium d e p l e t i o n W Q U $be ~ expected t o a d e p t h of
less than 0.13 mm/year (0.5
m i l / y e a r ) i n metal a t TO~~C.''~~'
The i n i t i a l a t t a c k , which i s n o t s e r i s u s i f p r o p e r p u r i f i c a t i o n of t h e s a l t and c l e a n i n g of t h e system have o c c u r r e d , c a n be m i t i g a t e d by
t h e presence of a s m a l l q u a n t i t y of UFq a l o n g w i t h UF4 i n t h e s a l t .
Csn-
t r o l of t h e o x i d a t i o n s t a t e s of plutonium and p r o t a c t i n i u m and of c e r t a i n f i s s i o n p r o d u c t s , a l o n g w i t h c o n t r o l o f t h e o x i d a t i v e e f f e c t s of t h e f i s s i o n process, f u r n i s h more cogent r e a s o n s f o r m a i n t a i n i n g %iF3 i n t h e f u e l mixture.
S l i g h t c o n t i n u i n g c o r r o s i o n i s a f f e c t e d very l i t t l e ( i f a t a l l )
by t h e p r e s e n c e of s m a l l q u a n t i t i e s of UF3.
The unclad moderator g r a p h i t e i s not wetted by o r c h e m i c a l l y r e a c t i v e t o t h e Standard MSRE Q F HSBR f u e l COmpQSit%QnS,and t h e s e facts a p p e a r Un9 %203 57,58 changed by i n t e n s e i r r a d i a t i o n and t h e e o ~ s e ~ u e n c eofs f i s s i ~1~ ~.
Estimates22 a r e that t h e MSRE g r a p h i t e moderator s t a c k (3700 kg) a c q u i r e d
less t h a n 2 g of uranium d u r i n g ~ p e r a t i of ~ ~ tlh e r e a c t o r .
ObviousPy, no
a p p r e c i a b l e i n t e r a c t i o n of g r a p h i t e w i t h the f u e l (whose UF3/&YFb, ratio w a s
never above 0.02) o c c u r r e d i n t h a t r e a c t o r .
Mowever, g i ~ ae s~u f f i c i e n t l y
h i g h UF3/UP4 r a t i o , formation of uranium c a r b i d e s must be e x p e c t e d , and t h i s should be avoided,
TQth a d G i l p a t r f c k , W h o used SpectHOphQtOmetrg
i n a g r a p h i t e c e l l w i t h diamond windows t o a s s a y e q u i l i b r i u m UF3 and UF4
c o n c e n t r a t i o n s , have c a r e f u l l y s t u d i e d u r a n i m c a r b i d e f o m a t i ~ nu s i n g Li2BeF4 ( R e f s .
59 and 60), o t h e r LiF-BeF2 mixtures,6Q ,61 and LiF-BeP2-TkP4
(72-16-12
X ) (Ref. 4 1 ) as solvents.
mole
A s u r p r i s i n g f i n d i n g of t h e s e
s t u d i e s i s t h a t , c o n t r a r y t o g e n e r a l l y a c c e p t e d themodynamic d a t a , "
U C ~
i s t h e s t a b l e c a r b i d e phase over t h e t e m p e r a t u r e i n t e r v a l 550 to 700째C. t h e r e s u l t s 6 ' of equilibration experiments i n MSBR f u e l
F i g u r e I12
S~QWS
solvent.
A p p a r e n t l y , a t t h e l o ~ e s t e m p e r a t u r e (565째C) w i t h i n a BNSR,
"~srrosion i n the p r e s e n c e of f i s s i o n and f i s s i o n p r o d u c t s i s more See Sects, 3 . 3 . 2 and 3.4 f o r a d d i t i o n a l d e t a i l s .
complex.
59
TEMPERATURE
500
550
600
cue,
OWNL-DWG 72-42324
656
766
-4
-2
-3
-4
0
9
m 0 -
-5
-6
-7
-8 1.38
.;;..,..I ."LW .....
f.25
2.28
f.f5
1.40
1.85
1.OQ
60 3.3.1.4
Operational c~nstraintsand uncertainties
Most of the fuel behavior described or implied above may be consid-
ered well authenticated, Several constraints and at least minor uncertainties are obvious. 1.
F u e l for a DMSR must be prepared from LiF containing a very high
2.
The fuel mixture must be managed and maintained so that an appre-
ciable fraction of the uranium is present as UP3. 3.
Additional experiments are necessary t o establish exactly what
fraction of the uranium may b e present as UFcj without deleterious chemical reactions of the UP3 with graphite or possibly with other materials within the primary reactor system.
4.
Direct measurement of the physical and heat-transfer properties
of the BMSR fuel mixture must be made.
5.
Further study of the fundamental thermodynamic properties of so-
lutes in the LiF-BeF2-ThF4-UF4
mixture are needed t o ensure that basic
understanding of the chemical behavior is accurate. 3.3.2
Fission-product behavior
Fragments produced on fission of a heavy atom originate in energy and with i ~ l s i z a t i ~levels n far from those normally considered in chemical reactions. When the fission occurs in a well-mixed mo%ten-salt states
*
liquid medium, these fragments must come t o a steady state as comonHy encountered chemical entities because they quicldy l o s e energy through eolLisions with t h e medium.
The valence states that these chemical spe-
cies assume are presumably defined by the requirements that (1) cationanion equivalence b e maintained in the molten-salt medium and ( 2 ) redox e~uilibriabe established between the melt and the surface layers of the he fission-product cations must satisfy the container metals1 9 9 6 3 9 6 4 fission-product anions plus the fluoride i o n s released by disappearance
*The
rapid radioactive decay of many species further complicates an already complex situation.
ea of the f i s s i o n e d atom.
~ a r l yassessment"
i n d i c a t e d t h a t the c a t i o n s
would prove adequate o n l y if some o f them assumed oxidation s t a t e s corr o s i v e t o H%%telPQy-N. A
FBIOPB
%â&#x201A;Ź!Cent eXEU'ilin21tion25 strongly SUppOrted
t h i s view; t h e s e studies i n d i c a t e d t h a t t h e summation of t h e p r o d u c t s of f i s s i o n y i e l d and stable v a l e n c e f o r each s p e c i e s wight be as l o w a s t h r e e p e r f i s s i o n event.
( ~ r -+
1-1
Accordingly, fission of UP4 [ r e l e a s i n g 4 I?-+
0.815
p e r f i s s i o n ] would^ be i n t r i n s i c a ~ ~oxidizing y t o ~ a s t e l l o y - ~*.
Maintenance of a small f r a c t i o n of t h e uranium in the f u e l as UF3 w a s s u c c e s s f u l l y adopted t o p r e c l u d e c o r r o s i o n from f i s s i o n of 2 3 5 ~ ~i n4 t h e
MSWE.~A ~ p r o p e r l y maintained redox p o t e n t i a l i n t h e f u e l s a l t a p p a r e n t l y w i l l p r e v e n t any untoward immediate c o ~ s e q ~ e n c es sf t h e f i s s i o n e v e n t and
will p e r n i t grow-in of t h e f i s s i o n p r o d u c t s in v a l e n c e s t a t e s d e f i n e d by t h e redox p o t e n t i a l .
3.3.2.2
E f f e c t s of r a d i a t i o n
When f i s s i o n o c c u r s i n a molten f l u o r i d e solution, b o t h eleetromagnetic r a d f a t i o ~and ~ p a r t i c l e s o f v e r y h i g h energy arnd i n t e n s i t y originate within the fluid.
Local o v e r h e a t i n g i s almost c e r t a i n l y n o t
important i n a DMSR where t u r b u l e n t f l o w causes r a p i d i n t i m a t e mixing. Moreover, t h e bonding i n molten f l u o r i d e s i s completely i o n i c .
Such a
m i x t u r e , w i t h n e i t h e r covabernt bonds t o r u p t u r e n o r a l a t t i c e t o disruptp should be q u i t e r e s f s t a n t to r a d i a t i o n .
N e v e r t h e l e s s , because t h e r e pbau-
s i b l y e x i s t s a r a d i a t i o n l e v e l s u f f i c i e n t l y h i g h t o d i s s o c i a t e a molten f l u o r i d e i n t o metal and f l u o r i n e , + a number of tests of t h e p o s s i b i l i t y
were wade. 19,2 0 9 6 3 9 65 Nany i r r a d i a t i o n t e s t s were conducted p r i o r t o 1959 w i t h NaF-ZrP4-UP4 m i x t u r e s i n I n e o n e l a t t e m p e r a t u r e s a t o r above 8 1 5 O C (Refs. 2 4 and 2 5 )
and a t q u i t e high fission power d e n s i t i e s from 80 t o 1080 ~ ~ / of m 3f u e l . No i n s t a b i l i t y o f t h e f u e l system was a p p a r e n t , and t h e c o r r o s i o n d i d n o t
exceed t h e c o n s i d e r a b l e anmount expected from l a b o r a t o r y - s c a l e
tests.
" F i s s i o n sf PuF3 probably would be n e a r l y n e u t r a l i n t h i s regardp and fission of a m i x t u r e of UF, and P u F 3 $ a s in t h e DMSR, would be i n t e r m e d i a t e between t h e s e extremes.
?This would occur even though the r a t e of recombination o f LiO and Fo should be extremely r a p i d .
62 These e a r l y t e s t s seemed t o show t h a t r a d i a t i o n posed no t h r e a t even
a t v e r y h i g h power l e v e l s , b u t f u r t h e r studies66-69 were conducted primarily t o t e s t t h e w e t t i n g of g r a p h i t e by LiF-BeP2-ZrFq-ThF4-UPq under i r r a d i a t i o n .
mixtures
Examination of t h e s e c a p s u l e s a f t e r storage a t m b i -
ent t e m p e r a t u r e s f o r many weeks r e v e a l e d a p p r e c i a b l e q u a n t i t i e s of CF4 and, i n most cases, c o n s i d e r a b l e q u a n t i t i e s of f l u o r i n e i n the c o v e r gas. C a r e f u l e ~ m i n a t i o n 2 0 ~ 7 0 ~strongly 71 s u g g e s t e d t h a t the p2 g e n e r a t i o n had n o t occurred a t t h e h i g h t e m p e r a t u r e b u t had occurred by r a d i o l y s i s of t h e mixture i n the s o l i d state.
This s u g g e s t i o n was confirmed by i r r a d i a t i o n of two a r r a y s sf
Nastelloy-M c a p s u l e s , a l l c o n t a i n i n g graphite and LiF-BeF2-ZrF4-UF4 tures.
mix-
Two of t h e c a p s u l e s i n e a c h a r r a y had gas i n l e t and e x i t l i n e s t o
p e r m i t sampling of t h e cover g a s as d e s i r e d .
Gas samples d r a m from t h e
t e s t c a p s u l e s a t o p e r a t i n g t e m p e r a t u r e s and a t v a r i o u s power l e v e l s up t o 80 m / m 3 showed
H ~ QF~
( t h o u g h an occasional sample from the f i r s t array
showed d e t e c t a b l e traces o f CF,).
However, d u r i n g reactor shutdowns w i t h
t h e c a p s u l e s a t about 3 % " 6 , p r e s s u r e rises were observed ( u s u a l l y a f t e r a n i n d u c t i o n p e r i o d of a few Bmours), and F2 w a s evolved.
In t h e second
array, t h e c a p s u l e s were k e p t h o t d u r i n g r e a c t o r shutdown as w e l l as Buri ~ l go p e r a t i o n ;
BO
evidence of F~ o r CF, w a s observed.
such
-17~
generation
at ambient t e m p e r a t u r e s was s u b s e q u e n t l y followed f o r s e v e r a l months i n OREaE h o t c e l l s .
The g e n e r a t i o n diminished with time in a manner c o r r e s -
ponding c l o s e l y w i t h decay of f i s s i o n - p r o d u e t a c t i v i t y ; F 2 e v o l u t i o n a t 35째C corresponded t~ about 0,02 molecule p e r 188 e V a b s o r b e d , e o d d be Completely stopped by h e a t i n g t o I.OO"C o r above, and c o u l d be r e s f u ~ e d
markedly by c h i l i l i n g to -7O"C.
The F2 e ~ s l u t i o nresumed, u s u a l I ~a f t e r
a few hours, when t e m p e r a t u r e was r e t u r n e d to 35 t o 5 0 " C e These and subsequent e x p e r i e n c e s , i n c l u d i n g o p e r a t i o n of t h e MSRE, s t r o n g l y i n d i c a t e t h a t r a d f o l y s f s of the molten f u e l a t r e a s o n a b l e power d e n s i t i e s i s n o t a problem.
It seems u n l i k e l y , though it i s p o s s i b l e ,
t h a t DMSR f u e l s will e v o l v e F2 on c o o l i t ~ g , If t h e y d o , arrangements must be made for t h e i r s t o r a g e a t e l e v a t e d temperature until a f ~ a ~ t i osf n the decay energy i s d i s s i p a t e d .
63
n e results of a program of s o l u t i o n themodynamics,25926 a ~ o n g - t e m
program of i n - p i l e i r r a d i a t i o n s , 5 ’
atad a number of s p e c i a l experiments
g e m m e d g e n e l ~ a i i yaccurate p r e a i e t i o n s , 63-65 b u t much of our d e t a i l e d -
and s t i l l incomplete
- understanding
from o p e r a t i o n of t h e ~
~
1
~
~
of f i s s i o n - p r o d u c t
behavior comes
m ~ e ~ability 9 2 of2 t h~e f~i s s2f s n produets
to form s t a b l e compounds and t o d i s s o l v e i n t h e molten f u e l serves t o d i v i d e them i n t o t h e t h r e e distinct groups d e s c r i b e d i n the f o l l o w i n g
dissussisn. e
.
Krypton and xenon (which
i s an important n e u t r o n absorber) f o m no eorrapounds under c o n d i t i o n s exi s t i n g i n a DMSR o r o t h e r molten-salt reactor.19,73
Noreover, t h e s e
g a s e s are only v e r y s p a r i n g l y s o l u b l e i n molten f l u o r i d e mixtures. 74-76 A s w i t h a l l n o b l e gases ( s e e Fig.
l a ) , 76 t h e i r s o l u b i l i t y i n c r e a s e s w i t h
t e m p e r a t u r e and w i t h diminishfng size of t h e gaseous atom, while t h e h e a t
of s o l u t i o n i n c r e a s e s w i t h i n c r e a s i n g atomic s i z e .
T h i s low s o l u b i l i t y
i s a d i s t i n c t advantage because i t e n a b l e s the r e a d y removal sf krypton
and xenon from t h e r e a c t o r by sparging w i t h helium.
The r e l a t i v e l y sim-
p l e s p a r g i n g system of the MSRE served t o remove more than 80% of t h e 13%e, and f a r more efficient spargbng w a s proposed f o r the MSBR.”
S t r i p p i n g of t h e n o b l e g a s e s from t h e r e a c t o r a f t e r a s h o r t r e s i d e n c e
time a v o i d s t h e p r e s e n c e of t h e i r r a d i o a c t f v e d a u g h t e r s i n t h e f u e l . Tritium qualifies as a f i s s i o n product because mall quantities of i t are produced i n t e r n a r y f i s s i o n s .
However, e s s e n t i a l l y all of t h e
tritium a n t i c i p a t e d i n M S B R ’ Q , ~r~e s u l t s from other s o u r c e s , a s shown i n Table 27. A DMSW a t similar power l e v e l and w i t h a g e n e r a l l y similar f u e l must be expected t o g e n e r a t e tritium a t approximately t h i s same rate.
tritium w i l l o r i g i n a t e i n p r i n c i p l e a s 3 e s n e e n t r a t i o n s of ~3 A
This
~ however, ~ ; with appreciable
p r e s e n t , this ’HF w i l l be reduced l a r g e l y t o %2.
However, note t h a t t h e p o r e s i n t h e moderator g r a p h i t e can o f f e r a haven far &heSE? gases.
64 QRNL-68-BWG 44908
TE M PE RATU R E ( O 6 1
800
500
700 650 680
t
&
_-
-+--
+
Fig. 13, S ~ P u b i l i t k sof f o u r noble gases as function of temperature in LiF-BeFz ( 6 4 - 3 6 mole
65 Table 27. Sources and r a t e s p r o d u c t i o n of tritium i n a 1000-m~e M S B P
Sf
Production rate
Soharce MBq/s
ci/a
13
31
6 L i ( * , a ) 3H
518
1210
%i(n 9 na>3H
501
1170
4
9
1036
2420
Ternary f i s s i o n
1 9 ~ ~ ~ , 1 7 ~ ) 3 ~
Total “From ~ e f .7 7 .
through h o t metals w i l l p e r m i t a Parge f r a c t i o n of the ’82 t o p e n e t r a t e t h e primary h e a t exchanger t o e n t e r t h e secondary c o o l a n t .
T h i s phenome-
non and i t s consequences are d e s c r i b e d b r i e f l y i n S e c t . 3 . 3 . 3 . 2 , F i s s i o n p r o d u c t s w i t h s o l u b l e s t a b l e compounds.
Rubidium, cesium,
s t r o n t i u m , barium, yttrium, the l a n t h a n i d e s , and zirconium a l l form q u i r e s t a b l e f l u o r i d e s t h a t are r e l a t i v e l y s o l u b l e i n molten f l u o r i d e m i x t u r e s such as MSBR and DMSR f u e l s .
I s o t o p e s of t h e s e e l e m e n t s t h a t have no
noble-gas p r e c u r s o r s , as e x p e c t e d , appeared almost e n t i r e l y i n t h e c i r c u lating f u e l s € the MSRE.19,2Q,22*72
Very s m a l l q u a n t i t i e s appeared a t ~r
n e a r the s u r f a c e o f exposed g r a p h i t e spec5mens; most of t h i s d e p o s i t i o n e v i d e n t l y r e s u l t e d from f i s s i o n r e c o i l .
I s o t o p e s such as 89Sr and 14’Ba,
whose v o l a t i l e p r e c u r s o r s have a p p r e c i a b l e h a l f - l i v e s and which were part i a l l y s t r i p p e d from t h e r e a c t o r , w e r e found i n samples o f t h e c o v e r g a s and w i t h i n specimens o f moderator g r a p h i t e as w e l l a s i n the f u e l of t h e MSRE.
Along w i t h b e h a v i o r of o t h e r i s o t o p e s , Fig. 14 shows t h e p r o f i l e s
observed for 1 3 . p ~and ~ 1 4 o ~ ai n g r a p h i t e specimens through d i f f u s i o n of t h e i r r e s p e c t i v e (137xe, 3 . 9 min; 140xe, 16 s > p r e c u r s o r s . Bromine and i o d i n e would be expected t o a p p e a r i n t h e f u e l a s s o l u b l e B r - and I-, p a r t i c u l a r l y i n t h e ease where the f u e l contains a n apgre-
ciable c o n c e n t r a t i o n of UP^.
NQ
a n a l y s e s f o r ~ r were performed d u r i n g
OWL-DWG 68-10155R
4 Q‘7
40” 0
40
28
30
40
50
60
70
EO
90 100 440 420 130 DEPTH IN FQAPHITE (mils)
140
(50
460
470
480
490 200
216
Fig. 14. Fission product distribution in CGB ($55) graphite specimen 3sed i n MSWE core d u r i n g 32,000 sf power o p e r a t i o n . 79
67 o p e r a t i o n of t h e PISRE.
a n a l y s e s f o r 1311 showed t h a t a l a r g e f r a c t i o n of
the i o d i n e w a s p r e s e n t i n t h e f u e 1 2 0 ~ 7 2and t h a t 1 3 1 1 d e p o s i t e d on metal o r g r a p h i t e s u r f a c e s i n t h e c o r e region.
were g e n e r a l l y low.
However, material b a l a n c e s f o r
~t i s p o s s i b l e t h a t some of t h e p r e c u r s o r , 1 3 1 ~ e
(25 m i n ) , w a s v o l a t i l i z e d and sparged w i t h t h e krypton and
X~H~QR.
Fur-
t h e r , 1 3 1 ~produced by decay of E ~ I Ti n~ complex m e t a l l i c d e p o s i t s (as in t h e h e a t exchanger) may n o t have been a b l e t o r e t u r n t o t h e s a l t . Noble and seminoble f i s s i o n products. ( ~ e AS, ,
Nb,
m,
RU,
Some f i s s i o n - p r o d u c t metals
~ h P, a , Ag, cd, SW, and s b ) have f l u o r i d e s t h a t itre
u n s t a b l e toward r e d u e t i o n by fuel m i x t u r e s w i t h a p p r e c i a b l e eoncentra-
tions of UPQ; t h u s , t h e y must b e expected t o e x i s t e n t i r e l y %n t h e elemental s t a t e in the r e a c t o r .
Selenium and t e l l u r i u m were a l s o expected
t o be p r e s e n t as elements w i t h i n t h e r e a c t o r c i r c u i t , and t h i s behavior
w a s g e n e r a l l y c s n f i r n e d during o p e r a t i o n of t h e MSRE. 19920 $ 7 2
he MSRE
f u e l samples u s u a l l y c o n t a i n e d far less t h a n the g e n e r a t e d q u a n t i t i e s of t h e s e elements.
P o r t i o n s of the MSRE samples were found ( p r o b a b l y as
metalPic p a r t i c u l a t e s ) i n t h e helium s p a r g e gas,* d e p o s i t e d on metal surf a c e s , and (a r e a s o n a b l y small f r a c t i o n ) d e p o s i t e d on g r a p h i t e specimens. However, the d i s t r i b u t i o n and e s p e c i a l l y t h e i n v e n t o r y i n t h e f u e l a t t h e sampling p o i n t i n t h e pump bowl showed major v a r i a t i o n s .
Further study
w i l l be n e c e s s a r y b e f o r e d e t a i l s of t h e i r behavior can be p r e d i c t e d w i t h c o n f i d e n c e f o r a DMSR. ~n g e n e r a l , t h e r e s u l t s from MSRE o p e r a t i o n s suggest t h e following,20
I.
The bulk o f the n o b l e metals remain a c c e s s i b l e i n t h e c i r c u l a t i n g l o o p
but w i t h w i d e l y v a r y i n g amounts i n c i r c u l a t i o n a t any p a r t i c u l a r t i m e .
2.
I n s p i t e of t h i s wide v a r i a t i o n i n t h e t o t a l amount found i n a part i c u l a r sample, t h e p r o p o r t i o n a l composition i s r e l a t i v e l y c o n s t a n t , i n d i c a t i n g that t h e e n t i r e i n v e n t o r y i s i n s u b s t a n t i a l e q u i l i b r i u m w i t h t h e new material being produced.
2k
Much-improved gas-sampling t e c h n i q u e s used i n l a t e r s t a g e s of MSRE o p e r a t i o n showed t h e f r a c t i o n c a r r i e d i n t h e g a s t o b e less t h a n 2% o f t h e q u a n t i t y producedâ&#x20AC;? ( w i t h t h e p o s s i b l e e x c e p t t o n of i l i: 3% of k o 3 ~ u ) .
68
3,
The m o b i l i t y of t h e p o d of noble-metal material s u g g e s t s t h a t dep o s i t s occur as an a c c m u l a t f s n of f i n e l y d i v i d e d well-mixed material r a t h e r than as a Suck p r e c i p i t a t i o n w i t h i n t h e r e a c t o r , though e x p e c t e d , i s a dis-
adVantag@. P r e c f p f t a t a o n
OIE
t h e metal surface (most Sf Which iS in t h e
heat exchanger) w i l l be q u i t e i n s u f f i c i e n t t o impede f u e l f l o w , b u t r a d i o a c t i v e decay SS t h e d e p o s i t e d material contributes t o h e a t generation BuriRg
?X?actor SfiutdoWII.
Precipitation
OFI
the mOdePatOlP g r a p h i t e , Which ap-
peared t o be c o n s i d e r a b l y smaller than on t h e metal, would maximize t h e i r opportunities t o absorb valuable neutrons. Operation Of t h e MSaE d i d prOdUCe One products,
2%
WktOWZ3sd
e f f e c t Sf f i s s i o n
Metal s u r f a c e s exposed t o t h e f u e l in the MSRE showed g r a i n
boundaries that were e m b r i t t l e d to d e p t h s of 0 - 1 t o O.?
IILH~
( 5 t o 10 mils).
I n t h e h e a t exchanger, the e m b r i t t l e d boundaries opened t o form metallsg r a p h i c a l l y v i s i $ % @c r a c k s ; i n o t h e r r e g f s n s such cracks formed
t h e specimens were d e l i b e r a t e l y s t r a i n e d .
QES%~ when
E a r l y studies*0 i m p l i c a t e d
f i s s i o n - p r o d u c t t e l l u r i m a s r e s p o n s i b l e f o r t h i s e m b r i t t l e m e n t , and subSeqUE?Ist WQPk
has CQnfi9fmed thiS."6a4*
However,
mOPe
Irecent S%Udfes46,81982
strongly s u g g e s t that (1) i f t h e molten fuel i s made t o c o n t a i n as much
a s 5% of the u r a n i m 8s U
F t~h e ~t e ~ ~ u r iwould m be p r e s e n t as
( 2 ) in t h a t f o m , tellurium is much less a g g r e s s i v e .
~ e 2 - and
Much f u r t h e r s t u d y
w i l l be n e c e s s a r y , b u t use s f t h i s h i g h e r but s t i l l moderate UF,/IJP,
ratlo
a p p a r e n t l y will. markedly a l l e v i a t e , and probably c o n t r o l , the t e l l u r i m embrittlemerat problem.
3.302.4
Operational ConSthaintS
Avoiding the d e t r i m e n t a l e f f e c t s s f f i s s i o n - p r o d u e t t e l l u r i u m (des c r i b e d immediately preceding) may wake n e c e s s a r y t h e o p e r a t i o n of t h e DMSR w i t h as mush as 5% of t h e uranium f l u o r i d e present as UF3"
C~nsfd-
e r a t i o n of p o s s i b l e r e a c t i ~ n sof ~ T F t o~ produce uranium c a r b i d e s (des c r i b e d preaiousPy) s u g g e s t s t h a t o p e r a t i o n w i t h a c o n s i d e r a b l y h i g h e r A
T h i s subject i s addressed further in Sect, 3 . 4 ,
& .& !-.,.
69
UP3/UF4 r a t i o would be p o s s i b l e .
knm.rer, a more s u b t l e c o n s t r a i n t on
DMSR o p e r a t i o n p o s s i b l y may r e s u l t . The l a n t h a n i d e t r i f l u o r i d e s are o n l y moderately s o l u b l e i n w ~ l t e n LiF-BeP2-ThP4-UF4
m i x t u r e s ; i f more than one such t r i f l u o r i d e i s p r e s e n t ,
t h e y c r y s t a l l i z e as a s o l i d s o l u t i o n of all t h e t r i f l u o r i d e s on c o o l i n g
of a s a t u r a t e d m e l t .
Though n o t d e f i n i t i v e , t h e r e is evidence t h a t t h e
a c t i n i d e t r i f l u s r i d e s ( i n c l u d i n g W 3 > might a l s o j o i n in such s o l i d solutions.
I f s o , the t o t a l ( l a n t h a n i d e p l u s a c t i n i d e ) t r i f l u o r i d e s i n t h e
end-of-life
r e a c t o r might p o s s i b l y exceed t h e i r combined s o l u b i l i t y .
The solubilities of PuFq ( R e f .
29) and CeF3 ( R e f .
f u l l y determined i m % ~ F - B ~ F ~ - (72-16-12 T ~ F ~
3 1 ) have been cape-
mole % > and e m be e o ~ ~ i h f e r e d
t o be moderately w e l l known i n DMSR f u e l .
According t o Baes e t al 9 2 9
t h e s o l u b i l i t y of PuF3 i n t h e LiF-BeF2-ThFq
melt at 565째C ( t h e minimum
temperature a n t i c i p a t e d within the BMSR f u e l c i r c u i t ) i s 1.35 mole %.The s o l u b i l i t y of CeP3 umder t h e same c o n d i t i o n s appears t o be v e r y s l i g h t l y
smaller ( 1.3 m o l e % ) .29 a r e n o t w e l l known.
9 3
1
S o l u b i l i t i e s of the o t h e r p e r t i n e n t f l u o r i d e s
I n L12BeF4, t h e s o l u b i l i t i e s of s e v e r a l l a n t h a n i d e
t r i f l u o r i d e s ( i n c l u d i n g CeF3 ) have been shown83 t o be c o n s i d e r a b l y smaller and t o v a r y w i t h some more and some l e s s s o l u b l e t h a n CeF3.
As a reason-
a b l e approximation (~bviously,many a d d i t i o n a l d a t a are needed), t h e s o l u b i l i t y of t h e l a n t h a n i d e - a c t i n i d e t r i f l u o r i d e s o l i d s o l u t i ~ nmay b e
assumed t o be n e a r 1 . 3 mole 2.
From T a b l e 9 , t h e BMSR f u e l a t e n d - o f - l i f e
will c o n t a i n some 11.404
x
185 moles of uranium i s o t o p e s and 3 . 6 4 x PO3 moles of transuranium i s o topes.
The end-of-life
b e n e a r 4.7
x 104
moles.
i n v e n t o r y of l a n t h a n i d e p l u s y t t r i u m i s o t o p e s w i l l I f 5X of t h e uranium i s p r e s e n t a s U F and ~ if
a l l t r a n s u r a n i c and l a n t h a n i d e s p e c i e s are assumed t o be t r i v a l e n t , the end-of-life rides.
r e a c t o r f u e l w i l l c o n t a i n about 5.77
x 104
moles of t r i f l u o -
'Fke DMSR system ( w i t h about 5.3 x IO6 moles of f l u o r i d e s ) , t h e r e -
f o r e , would c o n t a i n about 1.1 mole % of t r i f l u o r i d e s .
The s o l u b i l i t y o f
the combined t r i f l u o r i d e s l i k e l y would not b e exceeded w i t h i n t h e r e a c t o r c i r c u i t , b u t a d d i t i o n a l s o l u b i l i t y data are needed t o make t h i s p o i n t
certain.
3,3,2.5
U n c e r t a i n features
Prom t h e f o r e g o i n g d i s c u s s i o n , s e v e r a l u n c e r t a i n t i e s are a p p a r e n t .
Details of b e h a v i o r of t h e n o b l e and seminoble f i s s i o n p r o d u c t s are s t i l l p o o r l y known.
The f r a c t i o n s o f each i s o t o p e t h a t w i l l appear in t h e o f f -
g a s , d e p o s i t on t h e m o d e r a t s t g r a p h i t e , and d e p o s i t
metal u% t h e I>r/nยงR c a n o n l y be c r u d e l y e s t i m a t e d .
OR
t h e heat-exchanger
That f r a c t i o n which a p -
p e a r s i n t h e r e a c t o r o f f - g a s would seem t o cause no insurmountable prsb-
l e m s though t h a t s y s t e m - a t our p r e s e n t s t a t e of knowledge - w o u l d
t o be overdesigned s u b s t a n t i a l l y .
need
T h e i r d e p o s i t i o n i n t h e h e a t exchanger
is a recognized d i s a d v a n t a g e and w i l l be quite i n s u f f i c i e n t to impede f u e l flow, b u t r a d i o a c t i v e decay of t h e d e p o s i t e d material c o n t r i b u t e s h e a t that must be removed d u r i n g r e a c t o r shutdown.
Precipztation on the
g r a p h i t e , which a p p e a r s t o be smaller t h a n on heat-exchanger metal, maxi-
mizes t h e i r o p p o r t u n i t i e s t o a b s o r b neutrons.
C l e a r l y , a b e t t e r knowl-
edge of t h i s s i t u a t i o n i s weeded,
While t h e r e s u l t s o b t a i n e d i n t h e r e c e n t p a s t are highly encouraging, additional d a t a - e s p e c i a l l y on a l a r g e r scale - are needed t o e s t a b l i s h the redox p o t e n t i a l ( U F ~ / U Pr~a t i o ) required t o keep t h e tebburium cracki n g problem t o t o l e r a b l e l e v e l s . s u b s t a n t i a l l y above 0.85,
Should t h e r e q u i r e d UF3/UF4 r a t i o rise
t h e p r o b a b i l i t y of p r e c i p i t a t i o n of t r i f l u s r i d e
solid s o l u t i o n s would be i n c r e a s e d . F i n a l l y , a d d i t i o n a l i n f o m a t i o n abseat t h e c o l l e c t i v e s o l u b i l i t y beh a v i o r of t h e l a n t h a n i d e - a c t i n i d e t r f f l u o r i d e s i s r e q u i r e d .
Should t h e y
prove a p p r e c i a b l y less s o l u b l e than wow b e l i e v e d l i k e l y , some replacement
of f u e l might b e r e q u i r e d l a t e i n t h e l i f e of t h e e s s e n t i a l l y unprocessed DMSR e
3.3.3
Fuel. maintenance
To a c h i e v e f u e l maintenance, ( 1 ) t h e f u e l must be d e l i v e r e d t o and
i n t o t h e r e a c t o r i n a proper s t a t e of p u r i t y and homogeneity, ( 2 ) the f u e l must be s u f f i c i e n t l y p r o t e c t e d from e x t r a n e o u s i m p u r i t i e s , and ( 3 ) sound p r o c e d u r e s must e x i s t f o r a d d i t i o n of t h e r e q u i r e d uranium and p r o v i s i o n
of the required BTF3/UF,
ratio,
$ . . . . . . p 9
3.3.3.1
Preparation of initial fuel
Initial purification procedures for the DNSR present no f o r m i d a b l e problems.
Nuclear poisoms (e.g.,
boron, cadmium, or lanthanides) are not
common contaminants of the constituent r a w materials.
All the pertinent
cmpsunds contain at least small amounts of water, and all are r e a d i l y hyarsliyzea to oxides ana oxyfluorides at elevated temperatures.
he C O W -
pounds LiF and BeF2 generally contain a small quantity of sulfur as SUI-
fate ion.
Uranium tetrafluoride commonly contains small amonts of U 0 z p
UFg, and U82F2.
purification prseeaures63 ,*4 %85 uses to prepare materials f o r the
aircraft reactor experiment (ARE), the MSRE, and many laboratory and engineering experiments have treated the mixed materials at. high temperat u r e (usually at 600°C) with gaseous H ~ - H P mixtures and then with pure H 2
in equipment of nickel or copper. duce t h e 6T5*
and U6+ to
u4+,
me HF-HZ
treatment serves to (1) re-
( 2 ) reduce SU%fat@ ts sulfide and BIâ&#x201A;Ź3SlOVe it
HCP, and ( 4 ) ~ s n v e r tt h e oxides and oxyfluorides Final treatment with H2 serves to reduce PeF3 and FeF2 to
as H ~ S , ( 3 ) remove CP- as
to fluorides.
insoluble iron and to remove NiF2 that may have been produced during hydrofluorination, To date, all preparations have been performed in batch equipment but eontiwuous equipment has been partially developed. 86 8 87 F o r a DMSR, a s for the MSRE,*% purificatfsn of the bulk of t h e f u e l
would presumably b e conducted on L ~ F - B ~ F ~ - T ~ F L + mixtures -UP~ containing perhaps 85 to 90% sf the required WL, and on molten Li3UF7 to provide the additional uranium necessary to bring the fuel to the critical and opera t i n g Concentration.
Such a purification procedure can provide a sufficiently pure and eompletely homogeneous fuel material f o r initial operation of the reactor. 3.3.3.2
Contamination possibilities
Though the fuel material can be supplied and introduced into the reactor in sufficiently pure fom, contamination of the fuel is possible ESOre
SeQePal
SOUlllC@S e
Other reactor materials.
a%e
moderator graphite can contain a large
quantity of 602, C6, and H28 by virtue of its porosity and internal
72
surface.
Outgassing sf the moderator by pumping a t reduces p r e s s u r e and
e l e v a t e d t e m p e r a t u r e i s n e c e s s a r y and s u f f i c i e n t to p r e v e n t c o n t a m i n a t i o n
of t h e f u e l by oxide i o n from r e a c t i v e g a s e s from t h i s source. Oxide f i l m s on t h e s t r u c t u r a l metal can a l s o contaminate t h e f u e l by
o x i d e i o n , and, as d e s c r i b e d p r e v i o u s l y , t h e d i s s o l v e d ~ e 3 + $~ e 2 + $and N i 2 + can be r e s p o n s i b l e f o r subsequent metal c o r r ~ s i o n . I n o p e r a t i o n s f
the MSRE, the s y s t e m w a s flushed with an LiF-BeF2 m i x t u r e f o r c l e a n i n g a t
s t a r t - u p and a f t e r each shutdown b e f o r e i n t r o d u c t i o n of t h e f u e l mixture. This p r e c a u t i o n might be unnecessa%y, b u t i t d i d s u f f i c e t o keep oxide
contamination caused by s u r f a c e o x i d a t i o n of t h e metal to a m i n i m u m . A s m a l l (-1OO-ppm)
Of r e a c t i o n
Of
c o n c e n t r a t i o n of ~ r 2 +i n the f u e l as a consequence
t h e metal w i t h t h e f u e l Cartnot b e aVOid@di. However, in the
absence of e x t r a n e o u s o x i d a n t s , t h e r e a c t i ~ ni s v e r y s l i g h t , and t h e presence
Cr2'
Of
is CQIIIpbet@%y illlX3CuOuS.
Grow-in of the fission p r o d u c t s i s a l s o unavoidable, a s i s t h e pres-
ence of a r e l a t i v e l y small s t e a d y - s t a t e c o n c e n t r a t i o n of 3
Atmsspherfc contamination. oxygen is r e l a t i v e l y
* slow,
~
~
.
Reaction of t h e DMSK f u e l m i x t u r e w i t h
b u t r e a c t i o n with water vapor i s more r a p i d ,
F u r t h e r , contaminati~nof t h e f u e l with 40 t o 50 ppm ( b y w e i g h t ) sf oxide
i o n could r e s u l t i n p r e c i p i t a t i o n of a uranium-rich (UTB%)02 s o l i d
SO~U-
tion,
A l a r g e i n g r e s s of contaminant a i r would be r e ~ t a i r e dt o produce
40 ppm
Of 02-
i n the fuel, and the DMSR would be designed amd o p e r a t e d
as t o minimize t h e chances sf such contamination. d u r i n g much
Of
SO
O p e r a t i o n of PISRE
a fQuK'-yeaaP p e r i o d With Illany ShUtdOWTls and several
lrnimpor
r e p a i r o p e r a % i o n s s h o ~ e dno evidence sf a n i n c r e a s e i n oxide contamina-
t i o n level.22
~reatment
the i n i t i a l f u e l charge w i t h anhydrous H F - B ~
m i x t u r e d u r i n g its p r e p r a t t o n reataces the 02- c o n c e n t r a t i o n t o innocuous
Peve%s, and s i m i l a r treatment of contaminated f u e l would s e r v e t o r e ~ ~ v e the
o%-.
such t r e a t m e n t might never be r e q u i r e d , but i n the DMSR, s i m p l e
equipment should b e i n c l u d e d t h a t i s c a p a b l e of t r e a t m e n t t o ~ e m o v eo x i d e fOn should BnadVePtent
C o R t P A R i n a t i O n BCCUre
dr
K Q W ~ V ~ P t, h e r e a c t o r metal a t h i g h t e m p e r a t u r e can r e a d i l y react w i t h oxygenB and t h e f u e l can react with the o x i d e s formed in this mannero
.... ...:.. wx
73
The o n l y secondary cool-
Contamination of f u e l by secondary c o o l a n t . a n t t h a t has been demonstrated i n a m o l t e n - s a l t
r e a c t o r i s L i 2 B e F 4 , which
i s prepared from 7%iF and p u r i f i e d through procedures d e s c r i b e d p r e v i o u s l y ~ Q I -t h e
fuel
i n the M S R E . ~ ~mis material i s n o t considered s u i t a b l e
f o r an MSBR o r a DMSR because i t i s expensive and its l i q u i d u s i s t o o high.
Many s u b s t i t u t e s have been considered, bur none have p r o p e r t i e s
t h a t a r e all n e a r the ideal.
a m i x t u r e of 8 mole
Bat b a l a n c e , t h e b e s t choice a p p e a r s t o be
X NaF and 92 mole 2
%9aBF4 (Refs. 19, 20, and 88).
These compounds are r e a d i l y a v a i l a b l e a t Isw c o s t .
The l i q ~ i d u s( s~e e~
F%g. 151% s t a b i l i t y toward gamma r a d i a t i o n i n the primary h e a t exchanger,9Q heat-transfer
p r o p e r t i e s $23$ 2 4 3 9 1 and compatibility47 948 w i t h modified
HasteEBoy-W a l l a p p e a r adequate. I n t e r m i x i n g of the f u e l and t h e secondary c o o I a n t s a l t s , a s caused
by leaks i n the p r i m a r y heat exchanger, would be an important c o n s i d e r a tion.
~ f a eMSBR design8 and p r e s u w a ~ ythe DMSR d e s i g n assured a s l i g h t l y
h i g h e r p r e s s u r e on the c o o l a n t s i d e so t h a t most l e a k s would be of cool-
ant into fuel.
Such a Leak, however small, should be recognized at. once
Fig, 15.
System NaF-NaBF4.
74
because of t h e marked r e a c t i v i t y l o s s caused by admission of boron i n t o the fuel, A small q u a n t i t y of NaF-NaBF4
added t o t h e DMSR f u e l would a l l o w
d i s s o c i a t i o n of t h e NaBF4 i n t o NaF and BP3.
The NaF would d i s s o l v e i n
t h e fuel and remain as a minor p a r a s i t i c neutron a b s o r b e r .
The BF3 i s
r e l a t i v e l y i n s s l i u b ~ ei n t h e f u e l 9 2 9 9 3 and w o p a ~ c be ~ r e a d i l y spargec~w i t h
the krypton and xenon i n t o t h e off-gas system,
A s u f f i c i e n t l y small con-
t i n u i n g leak could p o s s i b l y b e tolerated w i t h some impairment i n system performance.
*
Given t h a t t h e l e a k i n g t u b e could be plugged, i n f r e q u e n t
s m a l l leaks almost c e r t a i n l y ~ u l ndo t pose s a f e t y problems.
A d d i t i o n of
a s u f f i c i e n t l y l a r g e q u a n t i t y of WaF-MaBF4 c o u l d lead t o f o r m a t i o n of two immiscible l i q u i d phases.93
Such a l e a k (one c a p a b l e of adding a few t e n s
of p e r c e n t s o f c o o l a n t t o f u e l ) seems i n c r e d i b l e ; the p r e s e n c e of the large q u a n t i t y of boron should c e r t a i n l y p r e c l u d e r e a c t i v i t y a c c i d e n t s , b u t the f u e l would be r u i n e d .
~ e t u r n i n gt h e fuel m i x t u r e t o some secure
s i t e f o r r e c o v e r y would be n e c e s s a r y , and a most d i f f i c u l t c l e a n u p and r e p a i r of t h e r e a c t o r would be n e c e s s a r y , I f p o s s i b l e .
Small leaks of c o o l a n t i n t o the f u e l system p r o b a b l y pose no s a f e t y problems.
However, a d d i t i o n a l s t u d y of t h e mixing of t h e s e f l u i d s i n
r e a l i s t i c g e o m e t r i e s and i n flowing systems i s needed b e f o r e we c a n be c e r t a i n t h a t no p o t e n t i a l l y damaging s i t u a t i o n eouEd a r i s e as a consequence of a sudden major f a i l u r e of t h e h e a t exchanger. 20 The f l u o r o b o r a t e secondary c o o l a n t a p p a r e n t l y w i l l c o n t a i n m a l l
q u a n t i t i e s of oxygenated species and some species c o n t a i n i n g hydroxyl
ions.2o
These would be c a p a b l e of p r e c i p i t a t i n g oxides from the f u e l if
t h e c o o l a n t were m i x e d w i t h f u e l i n l a r g e amounts, b u t t h e e f f e c t s would be t r i v i a l Compared With o t h e r e f f e c t s noted p r e v i o u s l y .
These SUbStanceS
i n t h e secondary c o o l a n t , however, appear t o have a n o n t r i v i a l and benef i c i a l e f f e c t on DMSR p e r f o m a n c e . 2
This b e n e f i c i a l e f f e c t i s t h e appar-
e n t a b i l i t y of t h e secondary c o o l a n t t o scavenge tritium and c o n v e r t i t
t o a recoverable water-soluble f o m . As noted e a r l i e r , a DMSR must be expected t o g e n e r a t e about I G B q / s (2500 C i / d ) ~6 t r i t i m , and most of t h i s must be expected t o d i f f u s e
*However,
t h e o f f - g a s system would have t o be d e s i g n e d t o accomo-
d a t e t h e c ~ n s e q u e n c e sof BF3 admission.
... ... .. *.%
*w-
through t h e walls of t h e primary h e a t exchamger i n t o t h e coolant.
estimates9'+suggested that
Early
unless o t h e r mechanisms f o r tritium r e t e n t i o n
were p r s v f d e d , a s muck as 60% of t h e tritium generated would be lost through the coolant p i p i n g to t h e s t e m system, from which i t would be presumed t o e s c a p e t o t h e environment.
Such a l o s s r a t e t o t h e environ-
ment would be i n t o l e r a b l y high.
small-scale s t u d i e s ' s $ 9 6 suggested that oxide-bearing and p r o t o n a t e d
( e S g e pBF30H-I s p e c i e s were p r e s e n t i n t h e molten NaF-NaBP4 mixture proposed as t h e secondary c o o l a n t ; the h y p o t h e s i s was t h a t exchange r e a c t i o n s might o f f e r a mechanism f o r holdup of tritium i n t h i s
scale eXpePhents9B
9'
mixture.^^
Smab%-
seemed t o show t h a t df2ueeriUltl diffused through
iB
thin metal tube i n t o such m i x t u r e s was r e t a i n e d by t h e m e l t b u t that exchange w i t h OH- w a s n o t t h e r e s p o n s i b ~ emechanism. ~ h o ~ gthe h t r a p p i n g mechanism remains obscure, more r e c e n t t e s t s 1 0 have confirmed t h e a b i l i t y of WaF-NaBFb m i x t u r e s t o hold up the t r i t i m .
h e n g i n e e r f n g - s c a l e Poop, through which the salt c o u l d be pumped at 8.85 m 3 / s (850 gp), was used.
~zmisl o o p w a s arranged so t h a t tritium c o u l d
be i n t r o d u c e d by d i f f u s i o n through thin-wa%led t u b e s w i t h i n t h e s a l t ;
a l s o , t h e q u a n t i t i e s of tritium w i t h i n t h e salt, t h e q u a n t i t i e s removed i n t h e g a s f l o w above the f r e e s a l t s u r f a c e w i t h i n t h e pump bowl, and t h e q u a n t i t y d i f f u s i n g through t h e loop w a l l s i n t o t h e cooling a i r c o u l d be determined.
During s t e a d y - s t a t e o p e r a t i o n of t h i s d e v i c e i n two tests,
e a c h P a s t i n g about 68 d a y s , m a t e r i a l balance accounted f o r about 99% of t h e added tritium."
About 98% of t h e added tritium appeared i n t h e ef-
f l u e n t gas system of the pump, w i t h more t h a n 90% of t h i s i n a c h e m i c a l l y cmbfned ( w a t e r - s o l u b l e )
form.
The tritium w i t h i n the s a l t w a s essen-
t i a l l y aP% c h e m i c a l l y combined; the ratio of f r e e tritium to combined
tritium was less t h a n 1:4000.
E x t r a p o l a t i o n of t h e s e d a t a t o t h e MSBR
coolant system s u g g e s t s t h a t tritium Posses t o the MSBR steam g e n e r a t o r could be k e p t t o less t h a n -4 ~ ~ q (10 / s
c i / $ ) . 118
F u r t h e r s t u d i e s are c l e a r l y n e c e s s a r y ; once t h e mechanism i s establ i s h e d , t h e performance of t h e system might b e improved.
Means f o r re-
plenishment of the a c t i v e a g e n t must be established, and improved means
f o r r e c o v e r y and u l t i m a t e d i s p o s a l sf the tritium must be developed.
3-3.3.3
F u e l maintenance ol3tions and methods
The i n i t i a l f u e l c h a r g e for a INSR c a n be prepared i n a high s t a t e of p u r i t y and i n t r o d u c e d i n t o t h e r e a c t o r by minor variamts of t h e
methods* used f o r t h e MSRE4 and proposed f o r the MSBR.8
F o r a once-
through BMSR t h a t proposes no chemical repr~cessing t o remove f i s s i o n p r o d u c t s , t h e r e q u i r e d f u e l maintenance o l p e r a t i ~ n sare r e l a t i v e l y fewe They i n c l u d e (1) c o n t i n u ~ t ~removal s ( b y t h e s p a r g i n g and s t r i p p i n g sect i o n of t h e r e a c t o r ) o f f i s s i o n - p r o d u c t krypton and xenon, (2) a d d i t i o n
of 2 3 5 ~and '3%
to r e p l a c e that lost by burnup and t o keep t h e f u e l suf-
f i c i e n t l y d e n a t u r e d , and ( 3 ) i n s i t u p r ~ d u ~ t i oofn UF3 t o keep t h e redox p o t e n t i a l of t h e f u e l a t t h e d e s i r e d l e v e l ; t h e y probably a l s o i n c l u d e
( 4 ) removal o f i n a d v e r t e n t oxide contaminants from t h e f u e l ; i n a d d i t i o n , t h e y may i n c l u d e ( 5 ) a d d i t i o n of "4
t o r e p l a c e t h a t l o s t by t r a n m u t a -
tion o r stored with f u e l removed from t h e o p e r a t i n g c i r c u i t and ( 6 ) removal 05 a p o r t i o n of t h e i n s o l ~ b k en o b l e and seminoble f i s s i o n products. Each of t h e s e i s d i s c u s s e d b r i e f l y i n t h e f o l l o w i n g s e c t i o n s .
Continuous removal of f i s s i o n - p r o d u c t krypton and
XC~OEB.
Stripping
of k r y p t o n and xenon makes p o s s i b l e t h e i r c o n t i n u o u s removal from t h e rea c t o r c i r c u i t by t h e p u r e l y p h y s i c a l means of stripping w i t h helium.
For
the reference-design MSBR,* h e l i m flowing a t 0.005 m 3 / s (10 c f m ) w a s to b e i n j e c t e d c o n t i n u o u s l y i n t o and w i t h d r a m from f u e l - s a l t
c a r r y i n g a total of 0.35 m'/s
s i d e streams
o r about 10%of the t o t a l f u e l flow r a t e ,
g e n e r a l l y similar o p e r a t i o n should prove o p t i m a l f o r t h e DMSR.
Such
a s t r i p p i n g c i r c u i t would remove an a p p r e c i a b l e ( b u t not a m a j o r ) f r a c t i o n of t h e tritium and a small ( p e r h a p s v e r y small) f r a c t i o n of t h e n o b l e and seminoble fissiom p r o d u c t s as gas-bor~ne p a r t i c u l a t e s . s t r i p p e r would remove BF3 i f l e a k s s f s e c o d a r y c o o l a n t were t o occur.
In addition, t h e iRtO
the f u e l
None of these removals ( e x c e p t p o s s i b l y t h e l a s t ) appre-
c i a b l y a f f e c t the chemical behavior of t h e f u e l system. A d d i t i o n sf fissionable and f e r t i l e uranium.
u'"
and -18,400
*FWI
kg of 23%
Adding -4,470
kg of
d u r i n g t h e l i f e t i m e of t h e once-through DNSR
for the MSRE was prepared i n r e l a t i v e l y s m a l l ~atches.22s85 If DKSRs were t o b e of commercia% consequence, c o n t i n u o u s p u r i f i c a t i o n systems would c e r t a i n l y be d e v i s e d f o r i n i t i a l f u e l p r e p a r a t i o n .
77 4
w i l l a p p a r e n t l y b e n e c e s s a r y (see Table .l7Is assuming the f u e l volume CfpaRgeS from these a d d i t i o n s any f u e l t o s t o r a g e ,
O t h e r Causes do
T3Ot
require
3?@lTkOVa% Sf
Such additions, which are made over- t h e 30-year
l i f e t i m e , would comprise some 38,190 kg (96,332 moles) o f UP4 added at a n a v e r a g e o f 1,840 kg (3,320 rneles)/year.
~ u r i n go p e r a t i o n , 22 many on-stream a d d i t i o n s a s molten ~
L
S%
fissionable natertal
~ were ~ u made P ~t o the MSRE, and t h i s method of a d d i t i o n can
o b v i o u s l y b e used as a c l e a n , c o n v e n i e n t way to add t h e uranium t o a DMSW, Using t h i s method of a d d i t i o n would require use of 2.89
kg) of ? L i F c o n t a i n i n g 2013 kg o f 7 L i .
x
IO5 moles (7.514
This r e p r e s e n t s about 6.8% of t h e
ki i n t h e o r i g i n a l f u e l i n v e n t o r y and would r e s u l t i n a p p r e c i a b l e vo~upne i n c r e a s e ( e s p e c i a l l y i f BeF2 were added p r o p o r t i o n a l l y ) i n the f u e l . t During t h e c o u r s e of r e a c t o r ope ratio^, removing some f u e l t u s t o r a g e w i t h i n t h e r e a c t o r complex would probably b e n e c e s s a r y i f t h i s a d d i t i o n procedure were used. Developing and d e m o n s t r a t i n g methods of a d d i t i o n o f s o l i d W 4 ( o r p r o p e r m i x t u r e s of UF4 plus UF3) s h o u l d be p o s s i b l e .
These w i l l b e in-
h e r e n t l y more complex (and r a d i o a c t i v e l y dirty), and s t a t i n g which s f t h e o p t i o n s would be p r e f e r r e d is n o t p r e s e n t l y p o s s i b l e . Mafntafnfng t h e d e s i r e d UF3/UF4 r a t i o . demonstrated t h a t i n s i t u p r o d u c t i o n of
Operation of t h e PlSREl
m 3 could
9s22
be accomplished r e a d i l y
and c o n v e n i e n t l y by p e r m i t t i n g t h e c i r c u l a t i n g f u e l to react in t h e pump bowl w i t h a rod of m e t a l l i c b e r y l P i m suspended i n a cage of Rastelloy-Ne
This t e c h n i q u e c o u l d be adapted f o r use i n a DMSR; b e r y % l i m r e d u c t i o n would b e d e s i r a b l e i f t h e f i s s i o n a b l e and f e r t i l e uranium a d d i t i o n s are t o be made as 7 ~ 1 ~ ~ 1 7 ~ ~
+
as. A d d i t i o n s would be made as d e p l e t e d m a t e r i a l o r a s material c o n t a i n i n g not more than 28% of 235U i n 23*U; t h e materials would be added as mixed f l u o r i d e s o r p o s s i b l y as W 4 p l u s LF3.
evelo loping and demonstrating a method of a d d i t i o n of a high-uraniumc o n t e n t l i q u i d w i t h c o n s i d e r a b l y less LiF than L I ~ U Fare ~ almost c e r t d d y goss Bbl e e
that event, adding BeF2 will be necessary t o preserve the L f F / BeFz r a t i o i n t h e f u e l a t approximately i t s initial value.
'In
78
Tt?e original charge of f u e l contains some 9 - 3 5 x IO4 moles of ura-
nium.
If all this were supplied as W 4 , about 1840 moles ( 1 6 , 5 4 kg) of
B e o would be required to reduce 5 % of it to ?IF3.”
While the fnitial
preparation procedure could be modified so t h a t some of the bTF3 would be present as the fuel was delivered, in s i t u production likely wouEd be
more convenient, The delivered f u e l c o u l d be made slightly deficient in BeF2 t o accommodate that generated by
m 3 production.
As indicated previously, the f i s s i s n process occurring with Wb, is During the 30-year reactor lifetime (22.5 f u l l -
s8gnificantl.y oxidizing. years asskuned)
pow€!%
topeso nearly 6.12
W i t h
x 104
70% of the
fiSSiQfnS
occukring in uranim i s o -
moles o f uranium w i l l have been fissioned.
the fissioning uranium fs 95% U F ~ ,as much as 5.8
x 104
I C ~
moles of U F ~might
be oxidized [at a generally u n i f o m rate of 7 moles ( - 2 - 1 kg) per fullpower day] during the reactor lifetime. 2.9
x
Its reduction would require some
I O b moles (261 kg) of metallic b e r y l P i m .
The B e F 2 produced in that
manner represents about 3.0% of t h a t p r e s e n t in the original f u e l charge. Some additional reduction of UF4 t o W 3 will be required if t h e fuel must b e treated to remove oxide ion. Accomplishing the reduction of UF4 to uF3 in situ w0ul.B certainly seem feasible By using metallic uranium in place of beryllium.
Should
the decision be made to add the fissionable and fertile uranium as UFks reduction performance by use of uranium would have the advantage o f not appreciably diluting the fuel. Removal of inadvertent oxide contamination, Treatment of complex molten f l u o r i d e s w i t h anhydrous HF-Ifz mixtures has been used
COIIUSIQE~~Y to
reduce the oxide concentration t o completely innocuous l e v e l s . 8 4 %85
NO
real doubt exists that such treatment could be used if required for purification of DMSR f u e l mixtures.
However, there is little basis t o assess
the necessity of such purification.
Operation of the MSRE during a four-
year period with many shutdowns and several minor repair operations showed
no evidence of oxide contamination.
In early versions, equipment should
be included in which HF-PI2 mixtures and then H2 could be used to remove “ ~ nadditional 9 . 6 3 x 104 moles of uranium tetraflusride %sillbe added d u r i n g the reactor lifetime. Reduction of 5% of this will require 81%additional 2.41 x IO3 moles (21.7 kg) of beryllium.
y,...:.L
such contamination.
F o r a demonstration r e a c t o r , t h i s r e l a t i v e l y s i n p l e
equipment probably s h o u l d be sized to p e r n i t t r e a t m e n t of the f u e l on a
300-d c y c l e ; i f i t were pessimistically assmed t h a t 3 . 3 d would b e required t o
~ P Q C ~a ~b aSt c h ,
t h e equipment should be s i z e d t o a s s o m o d a t e
1%of t h e f u e l c h a r g e (-1 m3)0 Some f i s s i o n p r o d u c t s would be a f f e c t e d by t h i s t r e a t m e n t ; i o d i n e , i n p a r t i c u l a r , would be evolved and would have t o b e managed i n the o f f gas.
~ e l e n i mand t e l l u r i u m (if t h e y a r e s o l u b l e a s ~ e 2 - and ~
e i ~n the -
k i d a t i o n of pa49 t o pas+ could be
molten f u e l ) might a l s o evolve.
avoided by i n e l u s i o n of a few p e r c e n t of H2 w i t h t h e HF. However, o x i d a t i o n of a l a r g e fraction of t h e UF3 t o UF4 would res u l t unless t h e IIF-H2 m i x t u r e c o n t a i n e d so l a r g e a f r a c t i o n of M2 t h a t i t
would be r e l a t i v e l y i n e f f i c i e n t a t o x i d e removal.
Accordingly9 t o a l l o w
f o r a d d i t i o n a l ( b e r y l l i u m o r uranium) r e d u c t i o n of t h i s UF4 would be nece s s a r y t o m a i n t a i n the d e s i r e d ~ J F ~ / U rP a~t i o .
For example, i n t h e u n l i k e l y e v e n t t h a t the f u e l must be t r e a t e d f o r o x i d e removal each 1000 full-power clays, t h e i n v e n t o r y would r e q u i r e t r e a t m e n t 8.2 t i m e s d u r i n g t h e r e a c t o r l i f e t i m e .
The i n v e n t o r y of ura-
nium i s o t o p e s (see Table 9 ) increases r e g u % a r l y d u r i n g t h e reactor l i f e t i m e and may a v e r a g e 1.07
x 105
moles during the 3 0 y e a r s .
~f ( a s i s
n o t t r u e ) a l l t h e U F ~were o x i d i z e d each t i m e and i f 5% of t h e uranium i n v e n t o r y were to be reduced, some 2.2 x IO4 moles of B e Q would be required during the r e a c t o r l i f e t i m e .
nis, when added t o t h e 2 . 9 x 104
moles of b e r y l l i u m e s t i m a t e d p r e v i o u l s y t o be r e q u i r e d t o overcome t h e o x i d a t i v e e f f e c t of uranium f i s s i o n , would t o t a l some 5.1
BeF2 g e n e r a t e d o r n e a r 5.4%
x 104 moles of
of t h e BeF2 3n t h e o r i g i n a l feed.
This added
BeF2, though added a t a slowly i n c r e a s i n g rate d u r i n g r e a c t o r l i f e , is a good match f o r the 6 . 8 % of 7
~ needed i ~ to add the uranium as ~ i 3 ~ ~A 7 .
p e r f e c t match of LiF and BeFz a d d i t i o n s i s c e r t a i n l y n o t requ-ired; t h e maintenance processes b r i e f l y i n d i c a t e d above might p r o v i d e a s u f f i c i e n t l y good a d d i t i o n r a t e f o r L i F and BeF2. P o s s i b l e a d d i t i o n of thorium.
I f making a few a d d i t i o n s of t h o r i m
t o t h e r e a c t o r f u e l d u r i n g i t s l i f e t i m e i s n e c e s s a r y , t h e n adding i t as
a l i q u i d c o n t a i n i n g %iF
and TRF4 s h o u l d be p o s s i b l e .
b e a m e l t c o n t a i n i n g about 70 nole % L i F and 30 mole
A p o s s i b i l i t y would
X ThF4 m e l t i n g wear
600째C (see Fig.
11).
A l t e r n a t i v e l y , a procedure presumably c o u l d be de-
veloped f o r a d d i t i o n of s o l i d ThFbe P a r t i a l removal of n o b l e and seminoble metals.
The behavior of these
i n s o l u b l e f i s s i o n - p r o d u c t s p e c i e s , as i n d i c a t e d previously, is n o t underI f t h e y p r e c i p i t a t e a s a d h e r e n t deposits on t h e DMSR
stood i n d e t a i l .
h e a t exchanger, t h e y would c a u s e no p a r t i c u l a r l y d i f f i c u l t problems.
ever, should t h e y
f ~ l ^ t ao n l y
How-
l o o s e l y a d h e r e n t d e p o s i t s t h a t b r e a k away and
c i r c u l a t e w i t h the f u e l , t h e y would be r e s p o n s i b l e f o r a p p r e c i a b l e paras i t i c n e u t r o n captures.
If t h e s e s p e c i e s were t o d e p o s i t on t h e moderator
g r a p h i t e , t h e y would c o n s t i t u t e a n even worse n e u t r o ~ ~ is ci t u a t i o n . To the e x t e n t t h a t they c i r c u l a t e as p a r t i c u l a t e material i n t h e
fuel, i n s o i u b l e f i s s i o n - p r o d u c t species c o u l d probably be u s e f u ~ i yremoved by a small bypass f l o w through a r e l a t i v e l y s l m p l e H a s t e l l ~ y - ~ o o l f i l t e r system.
Presumably, s u c h a system would need t o have a r e a s o n a b l y
I s w p r e s s u r e d r o p and probably would need t o c o n s i s t of s e c t i o n s i n p a r a l -
le1
88
t h a t u n i t s whose c a p a c i t y was exhausted could be r e a s o n a b l y re-
placed o
3.3.3.4
Summaryp,c o n s t r a i n t s , and u n c e r t a i n t i e s
Very Ifke%y, a number of optkn-is f o r f u e l maintenance are a v a f l a b l e . Some of t h e s e have been demonstrated and o t h e r s couEd be made a v a i l a b l e if
there were good reasons why t h e y were needed. Several uncertainties also exist.
P r e s e n t % y , w e d o n o t h i o w whether
( 1 ) treatment t o remove i n a d v e r t e n t ~ o n t ~ ~ ~ n i nby a t oxide i ~ n w i l l be necess a r y $ ( 2 ) a d d i t i o n of uranium t o the DMSR f u e l will b e done by use of ' L ~ ~ U( 3F) ~the ~ o~x i d a t i v e e f f e c t of fission i s n e a r 1 oxidative equival e n t p e r mole of uranium f i s s i o n e d , o r ( 4 ) the removal of n o b l e and s e m f n o b l e metals from t h e DNSR f u e l i s n e c e s s a r y o r d e s i r a b l e . ShQu%d 'they prove d e s i r a b l e , a r e l a t i v e l y l a r g e number of: QptiOHlS
could b e made a v a i l a b l e .
A g r e a t amount of f u r t h e r o p t i m i z a t i o n of the
f u e l c y c l e f o r DNSR w i l l be r e q u i r e d b e f o r e we know which, if a n y , of t h e s e o p t i o n s are n e c e s s a r y
0%
desirable.
8%
3.4
R e a c t o r Materials
Although s p e c i a l , h i g h - q u a l i t y materials probably would Re used throughout i n t h e c o n s t r u c t i o n of a BMSR, most of them Could be o b t a i n e d
from cowmerical s o u r c e s t h a t r o u t i n e l y s u p p l y s u c h materials u s i n g curr e n t l y a v a i l a b l e technology.
Two notable e x c e p t i o n s t o t h i s g e n e r a l i z a -
t i o n are t h e S t r u c t u r a l a l l o y t h a t would have t o be used f o r components normally exposed t o molten s a l t and t h e g r a p h i t e f o r t h e reactor c o r e moderator and r e f l e c t o r .
Both of t h e s e materials would r e q u i r e s p e c i f i -
c a t i o n s p e c u l i a r t o t h e MSW system.
3.4.1
3.4.1.1
Structural allov
Requirements
The metallic s t r u c t u r a l m a t e r i a l used i n c o n s t r u c t i n g t h e primary c i r c u i t of a m o l t e n - s a l t 700째C.
r e a c t o r w i l l s p e r a t e a t t e m p e r a t u r e s up t o about
The i n s i d e of t h e c i r c u i t w i l l be exposed t o s a l t t h a t c o n t a i n s
fission p r o d u c t s and w i l l r e c e i v e a m a x i m u m thermal f l u e n c e of about 6
neutrons/m2 over t h e o p e r a t i n g ldfetime of about 30 y e a r s .
X
This
f l u e n c e w i l l cause some e m b r i t t l e m e n t because of helium formed by t r a n s m u t a t i o n b u t w i l l n o t cause s w e l l i n g such a s i s noted a t h i g h e r f a s t f l u -
ences.
The o u t s i d e of t h e primary c i r c u i t w i l l be exposed t o n i t r o g e n
t h a t c o n t a i n s s u f f i c i e n t ajir from i n l e a k a g e t o make i t o x i d i z i n g t o t h e metal.
Thus, the m e t a l must (1) have moderate o x i d a t i o n r e s i s t a n c e , ( 2 )
resist c o r r o s i o n by t h e s a l t , and ( 3 ) resist s e v e r e e m b r i t t l e m e n t by thermal n e u t r o n s . I n t h e secondary c i r c u i t , t h e metal w i l l be exposed t o t h e c o o l a n t
s a l t under much t h e same c o n d i t i o n s d e s c r i b e d for t h e primary c i r c u i t .
The main d i f f e r e n c e s w i l l be t h e l a c k of f i s s i o n p r o d u c t s and uranium i n t h e c o o l a n t s a l t and much lower n e u t r o n f l u e n c e s .
T h i s material must have
moderate o x i d a t i o n r e s i s t a n c e and m u s t resist c o r r o s i o n by a s a l t n o t eont a i n i n g f i s s i o n p r o d u c t s o r uranium. The primary and secondary c i r c u i t s i n v o l v e numerous s t r u c t u r a l shapes ranging from s e v e r a l c e n t i m e t e r s t h i c k t o t u b i n g having w a l l t h i c k n e s s e s
of o n l y a millimeter o r so.
These shapes must be f a b r i c a t e d and j o i n e d
82
( p r i m a r i l y by welding) i n t o an i n t e g r a l e n g i n e e r i n g s t r u c t u r e .
The s t r u c -
t u r e must b e designed and b u i l t by t e c h n i q u e s approved by t h e American S o c i e t y ~f Mechanical Engineers (ASME) Boiler and P r e s s u r e Vessel Code.
3.4.1.2 E a r l y materials s t u d i e s l e d t o t h e development of a nickel-base
Poy, HastePloy-N,
~ Q use P
w i t h f l u o r i d e salts.
%E-
A s shown i n Table 28, t h e
alloy contained 16% molybdenum f o r strengthening and ehromium s u f f i c i e n t t o impart moderate o x i d a t i o n r e s i s t a n c e i n a i r b u t n o t enough t o Bead t o h i g h c o r r o s i o n r a t e s in salt.
This alloy w a s the s o l e s t r u c t u r a l material
Table 28. Chemical csmpositfon of MastelBoy-N Content oâ&#x201A;Ź a l l o y
(wt X f
Element
Standard
Nickel Molybdenm Chr om 1m Iron Manganese Silicon Phosphorus Sulfur Boron Titanium Niobium
Modified
Base 1Ej-18 6-8
Base 1 1-1 3
5 1 1
0. I b 0.16-4.25 0.1 0.01 0.01 0.801
O.OB% 0. Q20 0.01.
-b
1-2
"single values a r e maximum amounts allowed. The a c t u a l conc e n t r a t i o n s of these elements i n an a l l o y c a n be much lower, bThese elements art? n o t f e l t t o b e v e r y important. Alloys are now being purchased w i t h t h e small c o n c e n t r a t i o n s speeified, b u t t h e s p e c i f i c a t i o n may b e changed i n t h e f u t u r e t o allow a higher concentration.
....., ..’ -. ..WY
:
used i n t h e MSRE amd c o n t r i b u t e d s i g n i f i c a n t l y t o the s u c c e s s sf the ex-
two problems were noted w i t h Hastelloy-N which needed
HQW~WX,
periment.
f u r t h e r a t t e n t i o n before more advanced r e a c t o r s could be builto
First,
Haste1loy-N w a s found t o be embrittled by helium produced d i r e c t l y from
traces of ’QB and i n d i r e c t l y from nickel by a two-step reactiom.
nis
t y p e of r a d i a t i o n embrittlement i s common t o most iron- and nickel-base The second problem a r o s e from the f i s s i o n - p r o d u c t
alloys.
tellurium d i f -
f u s i n g a short d i s t a n c e i n t o t h e metal along t h e grain Bs~undariesand em-
brittling t h e boundaries. Considerable s u c c e s s w a s encountered i n modifying t h e composition of
Bastelloy-N ts s b t a f n better r e s i s t a n c e t o embrittlement by i r r a d i a t i o n . The key f a c t o r was to modify the c a r b i d e p r e c i p i t a t e from t h e c o a r s e type found
itl
Standard Bastelloy-N t o a Very fine type.
‘Ehe p%eSeKXe Of 16%
wolybdemaurn and 0.5% s i l i c o n l e d t o t h e formation of a c o a r s e c a r b i d e t h a t Reduction s f t h e m~lybdenumc o n c e n t r a t i o n t o 12X and
had l i t t l e b e n e f i t . the
SiliCSrt
c o n t e n t t o 0.1% and a d d i t i o n of
8
r e a c t i v e c a r b i d e former such
a s t i t a n i u m o r niobium l e d to t h e formation of a f i n e c a r b i d e p r e c i p i t a t e and an a l l o y with good r e s i s t a n c e t o e m b r i t t l e m e n t by helium.
Consider-
a b l e progress was macle in t h e scale-up of an a l l o y c o n t a i n i n g 2% t i t a n i u m , b u t t h i s alloy does n o t have s u f f i c i e n t r e s i s t a n c e t o intergranular crack-
ing by t e l l u r i u m .
An a l l o y c o n t a i n i n g B t o 2% niobium was fasted t o b e
v e r y r e s i s t a n t t o c r a c k i n g by t e l l u r i u m and was produced i n small commer-
c i a %IIleltS.
Table 28.
The cOmpoSit%Qn O f the niobfWll-modif$ed
a l l o y iS
ShQwsl
in
This alloy m a j n t a i n s good d u c t i l i t y up t o t h e 46-ppm max3mm
helium c o n t e n t a n t i c i p a t e d i n t h e w a l l of a m o l t e n - s a l t
reactor vessel.
I n s t u d y i n g t h e t e l l u r i u m e m b r i t t l e m e n t problem, c o n s i d e r a b l e e f f o r t
w a s s p e n t i n s e e k i n g b e t t e r methods of exposing t e s t specimens t o t e l l u rium. about
1x1 t h e MSRE, t h e f l u x of t h e t e l l u r i u m atoms r e a c h i n g t h e metal was
atoms m”2
s-’,
high-performance b r e e d e r .
and t h i s v a l u e would be 10n4 atoms m-2
s-l f o r a
Even t h e v a l u e f o r a high-performance b r e e d e r
i s v e r y mall from t h e e x p e r i m e n t a l s t a n d p o i n t . would r e q u i r e t h a t a t o t a l of 7.6
x 10-6
For example, t h i s f l u x
g of t e l l u r i u m be t r a n s f e r r e d t o
a sample having a s u r f a c e area of IO cm2 i n 1000 h.
Electrochemical
probes were immersed d i r e c t l y i n salt melts k n ~ ~t m o contain t e l l u r i u m ,
84 and t h e r e w a s never any evidence sf a soEuble t e l l u r i d e s p e c i e s ,
However,
c o n s i d e r a b l e evidence e x i s t e d t h a t t e l l u r i u m "moved" through s a l t from one p o i n t to a n o t h e r i n a salt system.
The hypothesis w a s t h a t t h e t e l l u r i u m
actually moved as a low-pressure p u r e metall vapor and n o t as a r e a c t e d species.
'Ehe most r e p r e s e n t a t i v e experimental system dle~el~iped f o r ex-
posing metal specimens eo t e l % u r i m i n v o % ~ e d suspendling the s p e ~ i m e nin ~ a skirred
vessel of salt: w i t h granu%@S
0%
Cr3Te4 and CPgT@6 l y i n g at t h e
A v e r y low p a r t i a l p r e s s u r e of t e P E u r i m w a s in equi-
bottom of the s a l t .
l i b r i m with the Ck3T@4 and C ~ g T e 6which ~ resulted in BaStePEOy-M speci-
mens w i t h crack s e v e r i t i e s s i m i l a r t o t h o s e noted i n samples from t h e MSRE,
NUEIBRH.LS
s a m p l e s were exposed t o s a l t that c o n t a i n e d t e l l u r i u m , and
t h e most important f i n d i n g w a s that modified Hastelloy-N c ~ n t a i ~ ~ i1nt go 2% niobiW had good reSistaXlC@ t o eTRb8-i&e%ementby h e Sekfe.5
Qf experiments
Was
tt?llUgf-UlR
(Fig. 16).
Tun t o inVeStfgatf2 t h e effects
oxidation state of tellurium-containing
the
Of
salt on t h e temdency f o r c r a c k s
t o be f o ~ ~ ~me d ,s u p p o s i t i o n being examined was that the s a l t might be made reducing enough to t i e up t h e t e l l u r i u m i n some f n n o c u o ~metal ~ complex.
The s a l t was made more o x i d i z i n g by a d d i n g WiF2 and more reducing
by adding e l e m e n t a l b e r y b l i m .
The experiment had e l e c t r o c h e m i c a l probes
f o r determining t h e r a t i o of urarnim in t h e +4 s t a t e ( U P q ) t o that im t h e 4-3 s t a t e (UF3) a s a n i n d i c a t o r of t h e sxfdation s t a t e of t h e salt,
Ten-
s i l e s p e ~ i m e n sof s t a n d a r d ~ a s t e i l o y -were ~ suspended in the s a l t f o r
about 260 k at 700째C.
The o x i d a t i o n s t a t e of the salt w a s s t a b i l i z e d , and
t h e specimens were i n s e r t e d so t h a t each s e t of specimens w a s exposed t o
one c o n d i t i o n .
A f t e r exposurep t h e specimens were s t r a i n e d t o f a i l u r e and
were examined m e t a l l o g r a p h i c a l l y t o determine t h e extent of c r a c k i n g e
'%he
results of measurements a t s e v e r a l o x i d a t i o n s t a t e s are shown i n Fig. 17. ~t ~ 4 + / ~ 3 ratios + sf
QO o r less, very l i t t l e c r a c k i n g o c c u r r e d , and a t
r a t i o s above 80, t h e c r a c k i n g was e x t e n s i v e . encouragement. that
8
These o b s e r v a t i o n s o f f e r
r e a c t o r could be o p e r a t e d i n a chemical regime where
the tellurium would n o t be embrittling even t o s t a n d a r d Hastelloy-N.
At
least l e 6 % of t h e uranium would need t o be i n t h e +3 oxidation s t a t e (UF3js amd t h i s e o n d i t i ~ nseems q u i t e r e a s o n a b l e from chemical and practical c o n s i d e r a t i o n s .
85
€9
1
2
QRPIL-DWG
77-922 D
4
5
3
Nb CONTENT ( o / o )
Fig. 16. V a r i a t i o n s of s e v e r i t y of c r a c k i n g w i t h Nb c o n t e n t . Samples were exposed f o r i n d i c a t e d times to s a l t c o n t a i n i n g C r 3 T e 4 and C r g T e g a t 900°C.
..... i... ....., ... Y d
86 ORNL-DWG 77-4680A
CRACKING 600 PARA MET E W [FREQUENCY ~cm-') x AVG. DEPTH Eptml]
ma
0 (8 26 46 7 0 '168 200 400 SA LT 0X ID AT i0 N POTE N T IA k [U (IPB I/' U ( I I 1
Cracking behavior s f H a s t e E 1 ~ g r - N exposed 260 h a t 900째C P i g , 17, t o MSBR f u e l s a l t c o n t a i n i n g Cr3Te4 and Cr5Teg.
Presently, t h e modified a l l o y composition shorn in Table 28 is favored.
Considerable progress had been made i n e s t a b l i s h i n g t e s t methods
f o r e v a l u a t i n g a rnaterialPs r e s i s t a n c e t o m b r i t t l m e n t by teEPurfum.
Modified Hastelloy-N c o n t a i n i n g from 1 t o 2% r t i g l b i ~ iwas ~ found t o o f f e r improved r e s i s t a n c e t o e m b r i t t l m e n t by t e l l u r i u m , beat t h e t e s t condi-
t i o n s were not s u f f i c i e n t l y long o r d i v e r s i f i e d to show that t h e a l l o y t o t a l l y r e s i s t e d mbrittLment,
h e irradiation experiment showed t h a t
t h e niobium-modified alloy o f f e r e d adequate r e s i s t a n c e t o i r r a d i a t i o n e m b r i t t l a e n t , b u t more d e t a i l e d tests are needed.
Several m a l l m e l t s
c o n t a i n i n g up t o 4 . 4 % niobium were found t o fabricate and weld w e l l , so p r o d u c t s containllng 1 t o 2% niobium likely can be produced w i t h a m i n i m u m
of scale-up d i f f i c u l t i e s .
3.4.1.3
Uncertainties
Although no basic scale-up grobl@as are a n t i c i p a t e d w i t h t h e niobiummodified alloy, s e v e r a l l a r g e h e a t s must be melted and processed into s t r u c t u r a l shapes t o show t h a t t h e a l l ~ ycan be p r o d ~ e e de o m e r ~ i a l l y ~
A f u r t h e r need exists for longer exposure of tkfs a l l o y t o i r r a d i a t i o n
and t o s a l t c o n t a i n i n g t e l l u r i u m t o show t h a t i t w i l l resist e m b r i t t l e ment by t h e s e two processes aver long p e r i o d s of t i m e .
i c a l property t e s t s must be r u n
Numerous mechan-
t h e new alloy to d e v e l o p the d a t a
needed f o r ASME B o i l e r and P r e s s u r e Vessel Code a p p r ~ v a lof t h e a l l o y and t o e s t a b l i s h adequate d e s i g n methods.
3.4.2 3.4.2.1
Moderator
hquiKementS
The graphite i n a s i n g l e - f l u i d molten-salt
reactor serves no s t r u c -
tural purpose o t h e r t h a n t o d e f i n e t h e flow p a t t e r n s of t h e s a l t and, sf c o u r s e , t o s u p p o r t i t s o m weight.
The requirements ~n the material are
d i c t a t e d n o s t s t r o n g l y by n u c l e a r c o n s i d e r a t i o n s , t h a t i s , s t a b i l i t y of t h e material a g a i n s t radiation-induced
d i s t ~ r t i o nand n o n p e n e t r a b i l i t y by
P r a c t i c a l limitationas of meeting these re-
t h e f u e l - b e a r i n g molten salt.
quirements impose c o n d i t i o n s on t h e c o r e d e s i g n -
specifically t h e neces-
s i t y to l i m i t t h e c r o s s - s e c t i o n a l area of t h e g r a p h i t e prisns.
The re-
quirements of p u r i t y and impermeability ts salt are e a s i l y m e t by several h f g h - q u a l i t y f i n e - g r a i n e d graphites, and t h e main problems a r i s e from the requirement of s t a b i l i t y a g a i n s t radiation-induced
3.4.2.2.
distortion.
S t a t u s sf development
The dimensional changes ~f graphite d u r i n g i r r a d i a t i o n have been
s t u d i e d f o r a number of years.
The dimensional changes largely depend
on t h e d e g r e e of c r y s t a l l i n e i s o t r o p y , b u t t h e volume changes f a l l i n t o
a rathear c o n s i s t e n t p a t t e r n . tion
QCCUPS
A s shorn i n Fig. 18, a p e r i o d of densffica-
f i r s t d u r i n g which t h e vslurae d e c r e a s e s , and a p e r i o d of s w e l l -
ing t h e n o c c u r s i n which t h e vo%me i n c r e a s e s .
The first p e r i o d i s of
concern only because of t h e dimensional changes t h a t t a k e p l a c e , and t h e second period i s sf concern because of t h e dimensional change and t h e
formation of c r a c k s .
The f o r m a t i o n of c r a c k s would e v e n t u a l l y a l l o w s a l t
t o penetrate the graphite.
Data shown i n Fig. 18 are f o r 7%5"C, and t h e
damage rate increases with increasing temperature.
Thus, the g r a p h i t e
section s i z e should be k e p t s m a l l enough t o prevent temperatures i n the g r a p h i t e f r m g r e a t l y exceeding t h o s e i n t h e s a l t . ... ... w ...y
-----? -IIA SM-I AT-d-! A
25 I
With the d i f f e r e n t ~ B j e c t i v e sof n s n p r o l i f e r a t i n g MSRs, the require-
ments for the g r a p h i t e have diminished from those of t h e high-performance
First, t h e peak neutron f lux in the c o r e can b e reduced t o
breeder.
Bevels such t h a t the g r a p h i t e w i l l last f o r t h e l i f e t i m e of t h e r e a c t o r ~ e e o n d ,b o t h t h e low power d e n s i t y ana the pow r a t e of xenon mass
plant,
t r a n s f e r to t h e g r a p h i t e tend t o l i m i t t h e xenon p o i ~ o n i n ge f f e c t i n tkPs reactor
SO
t h a t sealing t h e graphite may n o t b e necessary.
me lessened
gas p e r m e a b i l i t y r e q u i r e m e n t s also mean that t h e g r a p h i t e can be i r r a d i a t e d t o h i g h e r fluences ( F i g s . 18 and 1 9 ) .
me
l i f e t i m e c r i t e r i o n adopted
f o r t h e b r e e d e r was a damage fluenee of about 3 x 1026 neutrons/&.
0
Fig. 19,
nits
to
20 30 FLUENCE [neutrons/crn* ( E > 5 0keVB]
'Volume changes f o r m o n o l i t h i c graphites i r r a d i a t e d a t 7 1 5 " 6 ,
w a s e s t i m a t e d to be t h e fluence a t which t h e g r a p h i t e s t r u c t u r e would cont a i n s u f f i c i e n t c r a c k s to be permeable t o xenone
Experience h a s shown
t h a t , even a t v o l m e changes of about lox, t h e g r a p h i t e i s n o t cracked brat i s u n i f s m l y dilated.
For nonproliferating d e v i c e s , xenon perme-
a b i l i t y will n o t be of as much eoncern, and t h e limit probably w i l l be e s t a b l i s h e d by the
trusion.
me
~ O I - ~ T E ~ ~ ~of Q I Kc r a c k s
s u f f i c i e n t l y l a r g e f o r s a l t in-
GLCC" K-364 g r a p h i t e l i k e l y c o u l d be used t o 3 x 1 0 ' ~
n e u t r o ~ s / m 2 , and improved graphites w i t h a l i m i t of 4 x 10'6
neutrons/m2
c o u l d be developed. The s p e e i f i c performance requirements f o r g r a p h i t e s u i t a b l e f o r the r e a c t o r d e s i g n p r e s e n t e d i n t h i s r e p o r t a r e a lifetime fluence c a p a b i l i t y of 2 . 7 x BOz6 neutrons/rn2 (E
>
50 keV) a t a peak t e m p e r a t u r e of ?'50Q@,
Most probably, e x i s t i n g cmmereial g r a p h i t e s will s a t i s f y t h % s meed. 3.4,2.3
Uncertainties
Although existing commercial graphites l i k e l y w i l l meet t h e needs of the presemt d e s i g n , g r a p h i t e samples having t h e same cross s e c t i o n as t h e r e f e r e n e e - d e s i g n moderator elements need t o be i r r a d i a t e d .
These
t e s t s need t o be kt%n t o t h e dâ&#x201A;Ź?stPUction O f t h e graphite t o detePnaiRe the
p o i n t a t which t h e g r a p h i t e a c t u a l l y heals. t h e p r e s e n t concept.
This w i l l d e f i n e f a i l u r e i n
P h y s i c a l p r o p e r t i e s , p a r t i c u l a r l y thermal esndue-
t i v i t y , need t o be measured as a f u n c t i o n of fluenee. A %onger-range e f f o r t t o develop improved g r a p h i t e f o r f u t u r e re-
a c t o r s Should be i'ilitiatecf.
E a r l y e f f o r t s Show prOlEise t h a t graphitf2.s
w i t h improved dimensional s t a b i l i t y can be developed,
3.5
Safety Considerations
The main f e a t u r e of t h e DMSR which sets i t a p a r t from s o l i d - f u e l re-
a c t o r t y p e s i s that t h e nuclear f u e l i s i n f l u i d form ( m o l t e n f l u o r i d e
salt) and i s c i r c u l a t e d throughout the primary c o o l a n t system, becoming c r i t i c a l only i n t h e graphite-moderated core.
P o s s i b l e problems and en-
g i n e e r e d s a f e t y features a s s o c i a t e d w i t h t h i s t y p e of r e a c t o r w i l l be
*Great
Lakes Carbon Company.
91 t ... .;$-
q u i t e d i f f e r e n t from those of t h e p r e s e n t EWR and liquid-metal
fast
A d e t a i l e d s a f e t y a n a l y s i s of the DMSK
b r e e d e r r e a c t o r QLMFBR) d e s i g n s .
must await t h e r e s u l t s of a r e s e a r c h and development C U D , > program; howe v e r , i d e n t i f y i n g p o s s i b l e g e n e r i c problem areas and some of t h e advant a g e s and d i s a d v a n t a g e s of t h i s concept i s a l r e a d y p o s s i b l e .
In t h e DMSW, the primary system f l u i d serves t h e d u a l r o l e of bein t h e m e d i m i n which h e a t i s g e n e r a t e d w i t h i n the r e a c t o r c o r e and t h e medium t h a t t r a n s f e r s h e a t from t h e core t o t h e primary h e a t exchangers. Thus, t h e e n t i r e primary system w i l l be s u b j e c t t o b o t h high t e m p e r a t u r e s (900째C a t t h e core e x i t ) and h i g h l e v e l s of r a d i a t i o n by a f l u i d c o n t a i n -
ing most of t h e daughter p r o d u c t s of the f i s s i o n process.
Because of t h e
low f u e l - s a l t vapor p r e s s u r e s however, t h e primary system d e s i g n p r e s s u r e W i l l
b@ IOW, -3s i n an LMPBRe
%XI
t@KUIS O f
level
Of
ConfinelTlent, t h e e n t i r e
r e a c t o r primary s y s t e n i s analogous t o t h e f u e l c l a d d i reactor.
i n a s~%id-fuel
Although much l a r g e r , i t w i l l n o t b e s u b j e c t t o the r a p i d t h e r -
mal t r a n s i e n t s ( w i t h m e l t i n g ) a s s o c i a t e d w i t h LWR and LMFBR a c c i d e n t seenarios.
Two a d d i t i o n a l l e v e l s of confinement w i l l be provided in t h e
BMSW, i n accord w i t h present p ~ a e t i c e , Note t h a t t h e once-through DMSR
concept has safety advantages
Q V ~ Pt h e
break-even DMSR because a l a r g e
and complex p a r t of t h e primary containment
plant
-
- the
chemical r e p r o c e s s i n g
i s s u b s t a n t i a l l y reduced and because less r a d i o a c t i v e material i s
r o u t i n e l y removed from containment.
The problem of developing a r e a c t o r
primary system t h a t w i l l be r e l i a b l e , m a i n t a i n a b l e ( u n d e r remote condit i o n s ) , i n s p e c t a b l e , and s t r u c t u r a l l y sound over t h e p l a n t ' s SO-year l i f e -
t i m e w i l l probably be t h e key f a c t o r i n demonstrating u l t i m a t e s a f e t y and I i c e n s a b i lf t y
.
The breach of t h e r e a c t o r primary system b ~ ~ d a r y vr e, s u l t i n g i n a s p i l l of h i g h l y r a d i o a c t i v e s a l t i n t o t h e primary containment, w i l l proba b l y provide t h e design-basis accident,
The analogous event i n a s o l i d -
fuel r e a c t o r would be major c l a d d i n g f a i l u r e .
P o s s i b l e i n i t i a t o r s o% t h i s
accidemt i n c l u d e p i p e f a i l u r e , missiles, and p r e s s u r e o r temperature t r a n -
sients i n t h e primary s a l t system.
F a i l u r e of the boundary between t h e
p r h a r y and secondary s a l t i n t h e primary h e a t exchangers could be espec i a l l y damaging.
In t h e e v e n t of salt s p i l l , a p o s s i b l y redundant
sys-
t e m of d r a i n s would be a c t i v a t e d t o channel t h e salt t o t h e c o n t i n u o u s l y
92 cooled d r a i n tank.
The system primary containment, which i s d e f i n e d as
t h e s e t s f h e r m e t i c a l l y s e a l e d c o n c r e t e - s h i e l d e d equipment c e l l s , would probably n o t be t h r e a t e n e d by such a s p i l l , b u t c l e a n u p o p e r a t i o n s would be d 5 f f i c u l t e A unique s a f e t y feature of t h e DMSR i s that, under a c c i d e n t shutdown
c o n d i t i o n s , t h e f u e l material would be l e d t o t h e emergency core c o o l i n g system gECCS> ( r e p r e s e n t e d by d r a i n t a n k c o o l i n g ) r a t h e r than v i c e v e r s a . The r e a c t o r and containment must be designed
SO
t h a t the decay-heated f u e l
s a l t r e a c h e s t h e d r a i n tamk under any c r e d i b l e a c c i d e n t c o n d i t i o n s .
In
any case, t h e decay h e a t i s a s s o c i a t e d w i t h a v e r y l a r g e mass of f u e l s a l t
so t h a t melt-through ( o r â&#x20AC;&#x153;China Syndromeâ&#x20AC;?) i s a p p a r e n t l y n o t a problem.
The s a f e t y philosophy f o r a c c i d e n t s i n v o l v i n g t h e r e a c t o r c o r e i s very d i f f e r e n t f o r f l u i d - f u e l e d t h a n f o r s o l i d - f u e l e d r e a c t ~ r sbecause t h e h e a t s o u r c e i s mainly i n t h e l i q u i d - f u e l
s a l t and n o t i n a s o l i d ,
which r e q u i r e s c s n t i n u o u s c o o l i n g t o avoid m e l t i n g .
An LMFBR, f o r exam-
p l e , has a l a r g e amount of s t o r e d energy (which must be removed under any a c c i d e n t c o n d i t i o n s ) i n t h e f u e l p i n s .
D P y ~ u t ,which means immediate
meltdown i n an LMFBR, would n o t be nearly a s s e v e r e i n t h e DMSR because t h e h e a t s o u r c e i s removed along d t h t h e c o o l i n g c a p a b i l i t y .
First-order
a n a l y s i s has shsm t h a t a flow blockage of a c e n t r a l c o o l a n t channel of t h e r e f e r e n c e DKSR which r e d u c e s t h e flow t o less t h a n -20% of nominal w i l l p r o b a b l y r e s u l t i n l o c a l v o i d i n g of t h a t channel.
This w a s n o t t r u e
o f t h e o l d MSBR design8 because t h e c h a n n e l s were more s t r o n g l y t h e m a l l y coupled.
Whether the s a f e t y i m p l i c a t i o n s of t h i s w i l l l e a d t o modifica-
t i o n s of t h e DMSR r e f e r e n c e d e s i g n must be shorn by f u t u r e s a f e t y analysis studies.
Under any o f f - n s m a l
c o n d i t i o n s , t h e f u e l s a l t will be chan-
n e l e d t o t h e d r a i n t a n k , which m u s t have r e l i a b l e s y s t e m s f o r decay h e a t removal.
No c r e d i b l e means e x i s t s f o r a c h i e v i n g r e c r f t i c a l i t y once t h e
fuel s a l t has l e f t t h e graphite-moaeratea c o r e s
There are no s i g n i f i c a n t d i f f e r e n c e s in t h e e n v i r o m e n t a l e f f e c t s of
r o u t i n e o p e r a t i o n s between an MSl? and r e a c t o r s p r e s e n t l y i n commercial operation.
No gaseous o r l i q u i d r a d i o a c t i v e e f f l u e n t d i s c h a r g e o c c u r s
93
during noma1 operation.
Minor amounts of such e f f l u e n t s way r e s u l t from
maintenance o p e r a t i o n s i n v o l v i n g opening t h e primary system. The MSR ( a l o n g w i t h t h e HTGR and t h e LMFBR) i s i n t h e c l a s s of rea c t o r s which o p e r a t e s a t h i g h t e m p e r a t u r e s and h i g h thermal e f f i c i e n c i e s about 4QX compared w i t h about 32% f o r LWRs.
For t h e same e l e c t r i c a l ea-
p a c i t y , t h e s e more e f f i c i e n t r e a c t o r s r e j e c t about 40% less b e a t t o t h e environment.
'%%lis can reduce i m p a c t s such a s consumptive use of water re-
Sources, atmospheric e f f e c t s , and e f f e c t s on a q u a t i c l i f e .
In t h e r e f e r e n c e DMSR c o n c e p t , n e i t h e r t h e n u c l e a r f u e l nor t h e f i s s i o n p r o d u c t s ( e x c e p t f o r t h e v s l a t i l e s , i n c l u d i n g xenon) are removed from t h e primary system d u r i n g t h e r e a c t o r l i f e t i m e . environmental problem of p r e s e n t day LWWs:
This e l i m i n a t e s a major
f r e q u e n t t r a n s p o r t a t i o n of
h i g h l y r a d i o a c t i v e s p e n t f u e l from t h e r e a c t o r s i t e t o t h e reprocessing! storage f a c i l i t y .
Most r a d i o a c t i v e m a t e r i a l remains w i t h i n t h e BMSW p r i -
mary containment f o r t h e 30-year r e a c t o r l i f e t i m e but must be d e a l t w i t h
a t end-of-life.
Uranium, E i t h i m , and p o s s i b l y o t h e r v a l u a b l e elements
w i l l probably b e recovered for r e u s e , b u t t h e remainder, which c o n t a i n s
t h e a c t i n i d e s americium and curium ( n o t found i n s i g n i f i c a n t amounts i n s p e n t EWW f u e l ) , w i l l have t o be d i s p o s e d o f .
Decommissioning t h e p l a n t
way b e more d i f f i c u l t t h a n f o r a n EWR because t h e entire primary c i r c u i t w i l l be i n t e n s e l y r a d i o a c t i v e . A l a r g e amount of t r i t i u m is g e n e r a t e d i n MSRs as a r e s u l t of n e u t r o n
r e a c t i o n s w i t h the l i t h i u m i n t h e f u e l s a l t .
Tritium is
to diffuse
through metal walls such as heat-exchanger t u b e s , t h u s p r o v i d i n g a potent i a l r o u t e f o r t r a n s p o r t of gaseous trittum through t h e secondary c o o l a n t
l o o p t o t h e steam g e n e r a t o r s .
Recent experiments have shown t h a t tritium
i s o x i d i z e d i n t h e secondary c o o l a n t (sodium f l u o r o b o r a t e ) , which b l o c k s f u r t h e r t r a n s p o r t of tritium.
The release of t r i t i u m from MSRs t o the en-
vironment i s e s t i m a t e d t o be no g r e a t e r t h a n from LWRs and i s w e l l w i t h i n
NRC g u i d e l i n e s . A power economy i n which t h e MSR p l a y s an important r o l e would re-
q u i r e l a r g e q u a n t i t i e s of l i t h i u m , BeryPlium, f l u o r i n e ( f o r t h e f u e l - s a l t m i x t u r e ) , n i c k e l (which comprises 78% of t h e Hastelloy-N), ( n a o d e ~ ~ telements). o~
and g r a p h i t e
The environmental. e f f e c t s of o b t a i n i n g , using,, and
d i s p o s i n g of t h e s e materials would c e r t a i n l y have t o be e v a l u a t e d .
94
A major f e a t u r e of t h e DMSR i s t h e r e l a t i v e unavailabil2ty of special n u c l e a r material ( S M ) t h a t might be d i v e r t e d and converted into s t r a t e g i c s p e c i a l n u c l e a r material (S%NM) f o r use i n t h e p r o d u c t i o n of nuclear explosive devices.
Because a l l t h e fuel would be in a bonogeneous fluid,
there would never be any s u b u n i t s ( e 8 g o s f u e l elements) t h a t would be part i c u l a r l y e n r i c h e d i n a g i v e n " d e s i r a b l e " material o r d e p l e t e d w i t h respect t o s p e c i f i c contaminants.
IR a d d i t i o n , because t h e i n i t i a l f u e l
c h a r g e as w e l l a s a l l makeup f u e l would be denatured 235U and because "spentr8f u e l would n o t be
XXTIIO'T~~
.from the primary c o ~ ~ t a i m e n except t dur-
i n g decommissioning a t the end of r e a c t o r l i f e , t h e a c c e s s i b i l i t y sf even
the mixed fueh would be s e v e r e l y r e s t r i c t e d .
P o s t u l a t i n g ways of o b t a i n -
i n g S S M from any m i x t u r e c o n t a i n i n g fissile n u c l i d e s i s always p o s s i b l e ,
b u t , i n t h e case of t h e DMSR, t h e s e appear t o involve s p e c i a l d i f f i c u l t i e s
as w e l l
l o w prsauctivity,
3.7.1
P o t e n t i a l s o u r c e s of SSMM
M t e r t h e f i r s t f e w y e a r s of power o p e r a t i o n , " t h e p r i n c i p a l f i s s i l e n u c l i d e i n a DMSR would be 233U with
substantial amount of 235U.
HOW-
ever, b o t h n u c l i d e s would remain f u l l y d e n a t u r e d d u r i n g t h e e n t i r e operation.
Thus s af ter d i v e r s i o n alad Separation from o t h e r
CkaelD?Cd.
speC%@s
(many of which would be h i g h l y r a d i o a c t i v e ) , the f i s s i l e uranium would
s t i l l have t o be s u b j e c t e d t o an i s o t o p e enrichment p r o c e s s t o produce
SSNM.
o t h e r i s o t o p i c contaminants i n the uranium, notably 2 3 2 ~ swould
tend t o make tklis a d i f f i c u l t approach.
Tne n e x t m ~ s tabundant f i s s i l e material i n DMSR f u e l s a l t would be p l u t o n i m , w$th a m a x i m u m t ~ t a l - p l a n t fnventory ( a t end of p l a n t l i f e ) of
334 kg of 239Pu -k 241Pu.
However, this material would also c o n t a i n 182 kg
of 242h and 1.39 kg of 2 4 0 ~ u , which w u i d tend to detract from its value
*I n i t i a l l y ,
t h e dominant f i s s i l e nuclei would be 23'~ d e n a t u r e d with 2 3 8 ~ ,b u t because this mixture presumably would be a n item of i n t e r n a t i o n a l comerce, the DMSR would not r e p r e s e n t a p a r t i c u l a r l y a t t r a c t i v e s o u r c e of supply.
95 ... .. ............. = .w .
a s SSm,
A m o r e a t t r a c t i v e i s o t o p i c m i x t u r e would e x i s t e a r l y in t h e
p l a n t l i f e t i m e (e.g., tory
be nueh smaller
WQUM
24(4Pu
+
a f t e r one year of o p e r a t i o n ) , b u t t h e t o t a l inven-
- only
86 kg o i 23%u
=+
24bpu w i t h 13 kg of
2%u,
h o t h e r p o t e n t i a l source of SSNM i n a DMSR would be 2 3 3 ~ a . T ~ F Snuc l i d e would have its m a x i m u m i n v e n t o r y of -63 kg e a r l y i n t h e r e a c t o r l i f e and slowly decllbne to about 41 kg at the end of l i f e ,
In principle,
this n u c l i d e , if it c o u l d be c l e a g a ~ yand r a p i d l y s e p a r a t e d from t h e res%: of t h e f u e l salt, c o u l d p r o v i d e an e q u i v a l e n t amount of h i g h - p u r i t y 23% through s i m p l e r a d i o a c t i v e decay.
3.%,2
A c c e s s i b i l i t y sf SSMM
A major c o n s i d e r a t i o n r e g a r d i n g the a c c e s s i b i l i t y o f v a r i o u s foms of p o t e n t i a l SSm i n a DMSR i s t h a t a l l t h e materials a r e i n t i m a t e l y mixed w i t h -350 Mg of h i g h l y radioactive f u e l s a l t w i t h no known method for
simple p h y s i c a l s e p a r a t i o n .
n u s , d i v e r s i o n of only a modest amount ( a
f e w kilograms of SSNM without plans f o r i s o t o p i c e n r i e b e n t would r e q u i r e
the removal of a number of tons of f u e l salt from t h e reactor system. need f o r such l a r g e (and o t h e r w i s e u n j u s t i f i a b l e ) s a l t removals,
Jk
The
which
w i t h o u t rep~lacenentwould s h u t d ~ m the r e a c t o r , couple$ w i t h t h e need for
an e l a b o r a t e chemical t r e a t m e n t f a c i l i t y t o i s o l a t e the produet
appears
to make t h i s approach r e l a t i v e l y i m p r a c t i c a l . In p r i n c f p a l , pure 233U could be diverted v i a the 233Pa route by
modifying t h e i n - p l a n t h y d r o f l u o r i n a t o r t o permit i t a use as a f l u o r i -
This would requlre two f l u o r i n a t i o n s of e a c h batch of salt, with
nator.
one o c c u r r i n g immediately after removal of t h e s a l t from t h e reactor t o s t r i p o u t the denatured uranium and a second about two months l a t e r t o r e c o v e r t h e 233U produced by 233Pa decay.
However, i f the system were
o r i g i n a l l y d e s i g n e d t o handle batches si s a l t no larger t h a n -1 m3, t h e
~
~
*Presumably, ~
_
~
_
_
t h i s approach would be rased o n l y t o d i v e r t plutonium because uranium d i v e r s i o n w o u ~ dr e q u i r e i s o t o p i c e n r i c b e n t and 23 +a d i v e r s i o n would e n c o u n t e r s e r i o u s timing problems, as well a s r e q u i r i n g t h e h a n d l i n g of more salt.
96
233U p r o d u c t i o n c a p a b i l i t y would be l e s s t h a n 3 k g f y e a r , which seems i m p r a c t i c a l l y low. AI%hough t h e removal of f i s s i l e material from a DMSR may b e awkward,
i f i t could be ascomplfshed w i t h o u t removing l a r g e q u a n t i t i e s of s a l t , t h e n t h e removal could be e a s i l y ~ ~ n c e s l eby d a d d i t i o n s of d e n a t u r e d 235U to t h e f u e l s a l t .
The change i n t o t a l uranium c o n c e n t r a t i o n would not
become s i g n i f i c a n t u n t i l a f t e r t h e exchange of a few t e n s of kilograms of fissile fuel Although a much more d e t a i l e d , q u a n t i t a t i v e a n a l y s i s t h a t c o n s i d e r e d t h e r e l a t i v e v a l u e s of v a r i o u s f o m s of SSMM would be r e q u i r e d t o p e r m i t
a comprehensive
~ S S ~ S S T I E of R~
t h e p r o l i f e r a t i o n s e n s i t i v i t y of t h e once-
through DNSR, t h i s g e n e r a l t r e a t m e n t s u g g e s t s t h a t t h i s c o n c e p t may cornp a r e f a v o r a b l y w i t h o t h e r a l t e r n a t i v e s i n terns of r e s i s t a n c e t o prolife r a t i o n of n u c l e a r e x p l o s i v e s .
.
...
.... .3 .... v
4.
ALTERNATIVE DMSR CONCEPTS
Of t h e s e v e r a l MSR c o n c e p t s t h a t have been c o n s i d e r e d , t h e DMSR des c r i b e d i n t h e preceding s e e t i o n w a s judged t o be t h e one most f i r m l y based on c u r r e n t l y a v a i l a b l e technology.
However, i t i s n o t t h e o n l y
p r o l i f e r a t i o n - r e s i s t a n t MSR concept t h a t could be c o n s i d e r e d .
However,
because a h i g h l e v e l of p r o l i f e r a t i o n r e s i s t a n c e i n a n MSR a p p a r e n t l y req u i r e s d e n a t u r e d f u e l , which imposes some d e s i g n r e s t r i c t i o n s , t h e major d i f f e r e n c e s among t h e a l t e r n a t e c o n c e p t s i n v o l v e t h e f u e l c y c l e .
4.1
F u e l Cycle Choices
P o s s i b l y t h e most f a v o r a b l e f u e l c y c l e f o r any DMSR, a t l e a s t from t h e p o i n t of r e s o u r c e u t i l i z a t i o n , would be one w i t h break-even b r e e d i n g performance.
C a l s u l a t i o n s f o r a DMSR c o r e without n e u t r o n â&#x201A;Źlux f l a t t e n -
i n g t o extend t h e life expectancy of t h e g r a p h i t e moderator showed9 t h a t break-even breeding w a s m a r g i n a l l y p o s s i b l e w i t h f u l l - s c a l e f i s s i o n p r o d u c t t r e a t m e n t of t h e f u e l u s i n g a redustive-extraction/mgtaB-tPansfer process'"
s i m i l a r t o t h a t proposed f o r t h e MSBR.
Even i f break-even
performance were n o t a t t a i n e d , t h e i n i t i a l f u e l change could be "used" f o r s e v e r a l r e a c t o r p l a n t l i f e t i m e s by f e e d i n g moderate amounts of f i s -
sile f u e l . Tne n e x t s t e p downward i n performance might be a concept i n v o l v i n g t r e a t m e n t of t h e f u e l f o r p a r t i a l f i s s i o n - p r o d u c t removal by chemical o p e r a t i o n s s i g n i f i c a n t l y d i f f e r e n t from t h e r e f e r e n c e process.
This ap-
proach probably would l e a d t o s t i l l lower c o n v e r s i o n r a t i o s , b u t i t might permit i n t e r n a l r e c y c l e of t h e f u e l through a few g e n e r a t i o n s of r e a c t o r s and, t h e r e f o r e , o f f e r b e t t e r r e s o u r c e u t i l i z a t i o n t h a n t h e once-through f u e l cycle. Some improvement i n f u e l u t i l i z a t i o n over c u r r e n t - t e c h n o l o g y LWRs could be achieved even w i t h o u t o n - s i t e chemical t r e a t m e n t f o r f i s s i o n product removal.
P e r i o d i c replacement of t h e f u e l c a r r i e r s a l t ( a f t e r re-
covery and r e t u r n of only t h e uranium) w i t h material t h a t i s f r e e of %is-
sion products and higher actinides WQUMimprove t h e utilization of fiss i l e f u e l , though i t would i n c r e a s e t h e consumption of o t h e r f u e l - s a l t constituents e ..... ..:.w ....,
98
A l l t h e MSR o p t i o n s from t h e b r e e d e r through t h e s i m p l e s t c ~ r t v e r t e f
WQUMt a k e advantage of t h e f a c t t h a t t h e noble-gas
f i s s i o n products
Q i n c l u d i n g t h e v e r y i m p o r t a n t w u c ~ e a rpoison b 4%e) are v e r y s p a r i n g l y s o l u b l e i n t h e molten f l u o r i d e f u e l .
I ~ ? ~ P I St, h e y would all use simple
s t r i p p i n g with gaseous helium t o remove krypton and xenon from the p r i I n a d d i t i o n , t h e y would a l l t a k e advantage of the f a c t t h a t
mary system.
t h e noble-metal
and seminoble-metal f i s s i o n p r o d u c t s do not f o m s t a b l e
f l u o r i d e s i n t h e f u e l and would p r e c i p i t a t e as e l e m e n t a l species, p r i -
m a r i l y on metal s u r f a c e s o u t s i d e t h e r e a c t o r c o r e .
4 , E. 1 Breakeven b r e e d i n g The presence of 2 3 8 U i n a DMSR, combined w i t h t h e e f f e c t s of f l u x
f l a t t e n f n g , s u f f i c i e n t l y reduces t h e n u c l e a r p e ~ f o ~ ~ ~s on tch ae t a net b r e e d f n g r a t i o s u b s t a n t i a l l y greater t h a n 1.0 p r o b a b l y c o u l d not b e
achieved
even w i t h f u l l - s c a l e
fission-product
breeding g a i n p r e s ~ m a i b l ywould be u n d e s i r a b l e
processing ita a
(A positive
pPoliferation-resfstant
system because P t would r e q u i r e t h e p e r i o d i c 'qexport.n'of excess f i s s i l e
rnaterfal_.)
However, t h e s t u d i e s t h a t have been c a r r i e d o u t i n d i c a t e t h a t
bseak-even b r e e d i n g i s w i t h i n the u n c e r t a i n t y l i m i t s o f t h e n e u t r o n i c caP-
cralations f o r a f l u x - f l a t t e n e d DMSR core w i t h a 30-year moderator l i f e expectancy. tinized
Extended o p e r a t i o n a t break-even would r e q u i t e a c a r e f u l l y op-
COPE?
d e s i g n as well a s c o n t i n u o u s f u e l - s a l t processing on a rela-
t i v e l y s h o r t t i m e c y c l e (-20
d ) t o remove f i s s i o n p r o d u c t s and r e t a i n ( ~ r
r e t u r d a l l f i s s f l e anel h i g h e r - a c t i n i d e n ~ c l i d e s . The r e f e r e n c e f u e l p r o c e s s i n g concept proposed f o r t h e MSBR c o u l d not b e d i r e c t l y a p p l i e d t o a DMSR f o r s e v e r a l reasonse
I.
I s o l a t i o n of 23%
would lead to 2,
8
W Q ~ I .n ~ot
be acceptable i n a DMSR because i t s decay
s u p p l y o f diversiom-sensitive, h i g h - p u r i t y
233ue
I s o l a t i o n of p r o t a c t i n i u m would be accompanied b y removal and loss of p l u t o n i m f ~ o mthe a p e r a t i n g s y s t e m .
This would not o n l y d e g r a d e sys-
tern performance brit a l s o provide a source of p l u t o n i u m t h a t would have t o be safeguarded a n d / o r d i s p o s e d o f .
99 ... ..."W ..........
3.
The r e f e r e n c e system w i t h o u t p r o t a c t i n i u m i s o l a t i o n would have no means f o r removing f i s s i o n - p r o d u c t
zirconium, which would then reach
u n d e s i r a b l y high chemical c o n c e n t r a t i o n s . However, t h e r e f e r e n c e p r o c e s s could b e modified t o meet t h e requirements
A modified p r o c e s s ( d e s c r i b e d i n Ref. 9 1 , i n addi-
of t h e BMSR concept.
t i o n t o p r o v i d i n g the r e q u i r e d f i s s i o n - p r o d u c t removal, t ~ o u l do f f e r other advantages
1.
The t o t a l pButoniew i n v e n t o r y would b e limited because t h e plutonium
would eventually b e c o n s u e d at its p r o d u c t i o n r a t e in t h e reactor.
2.
The r e a c t o r would s e r v e as its o m " i n c i n e r a t o r " f o r t r a n s p l u t o n 8 m a c t i n i d e s , which would be c o ~ ~ t i n u o u ~ recycled ly i n the fuel.
3.
N e i t h e r t h e p r o t a c t i n i u m nor t h e plutonium would e v e r be i s o l a t e d f r m
a l l o t h e r hfghly r a d i o a c t i v e species. T h i s modified p r o c e s s i n g concept would use all t h e b a s i c u n i t o p e r a t i o n s proposed f o r the MSBR system lira e s s e n t i a l l y t h e same sequence.
However,
a d d 8 t i o n a l , though s i m i l a r , p r o c e s s s t e p s would be r e q u i r e d t o remove zirconium on a r e a s o n a b l e t i m e s c a l e , and t h e s e are included i n t h e conc e p t u a l flow s h e e t .
Some removal sf neptunium a l s o might be d e s i r a b l e t o
avoid t h e long-term poisoning e f f e c t s of a37Np and 238Pu; t h i s probably could be included without adding s i g n i f i c a n t l y t o t h e complexity of the processing f a c i l i t y . With f u l l - s c a l e f i s s i o n - p r o d u c t
removal and break-even b r e e d i n g
f u e l in a DMSR c o u l d be used i n d e f i n i t e l y .
the
That i s , at t h e e n d - s f - l i f e
of
one r e a c t o r p l a n t , t h e fuel s a l t could be t r a n s f e r r e d t o a new p l a n t and used without any s i g n i f i c a n t i n t e r m e d i a t e t r e a t m e n t .
During t h e l i f e of any g i v e n p l a n t , adding thorium as t h e p r i n c i p a l f e r t i l e material and 2 H U
t o m a i n t a i n compliance w i t h d e n a t u r i n g requirements would be n e c e s s a r y , b u t no f i s s i l e a d d i t i o n s would be r e q u i r e d . fuel-carrier salt (Lip
+ BeF2
Other r o u t i n e removals s f
4- ThFb) and a d d i t i o n s o f ReFz and ThFt+"
would be r e q u i r e d t o maintain t h e d e s i r e d chemical composition o f the The removed c a r r i e r s a l t c o u l d be disposed of ( a f t e r c o n v e r s i o n
salt.
t o a s u i t a b l e form) o r c h e m i c a l l y processed f o r r e c y c l e i n t o o t h e r
ji
MSRs.
Lithium f l u o r i d e would be formed c o n t i n u o u s l y in t h e s a l t from t h e lithium used i n t h e redustivg-extPaction/meta%-tpansfep s t e p s .
100
Converter o p e r a t i o n w i t h f u e l p r o c e s s i n g
4,1.2
Because t h e r e s u l t s of t h e c u r r e n t l y completed n e u t r o n i c calcuba-
t i o n s will n o t s u p p o r t any f i n a l c o n c l u s i o n s about the b r e e d i n g p o t e n t i a l of f u l l y optimized DNSR c o r e s , c o n s i d e r a t i o n must be g i v e n to the consequences o f c o ~ ~ e r s i or an t i o s lower t h a n 1,OO. formed f o r t h e two-zone
The e v a l u a t i o n s were pes-
f l u x - f l a t t e n e d c o r e d e s c r i b e d f o r the 30-year f u e l
c y c l e w i t h t h e f u e l p r o c e s s i n g concept f o r t h e break-even b r e e d e r added. I f t h i s system were o p e r a t e d w i t h no c o n s t r a i n t on t h e enrichment sf t h e
uranium i n t h e r e a c t o r and no 2 3 8 ~addition, i t would g r a d u a l l y d e v e l o p
into a n MSBR as t h e 23*U was consmed.
The system would t h e n be f u l l y
s e l f - s u s t a i n i n g on thorium w i t h a b r e e d i n g r a t i o of about 1.03 b u t w i t h a v e r y h i g h enrichment of fissile uranium.
Breeding r a t f o s as h i g h as 1.11
could be a t t a i n e d by changing t h e thorium c o n c e n t r a t i o n a n d / o r t h e size of t h e i n n e r core zone.
w i t h t h e a d d i t i o n of enough 2 " ~ t o keep the in-
p l a n t uranium d e n a t u r e d a t a l l times, t h i s p a r t i c u l a r r e a c t o r system would u l t i m a t e l y r e q u i r e am a d d i t i o n a l 2 % i n n u c l e a r r e a c t i v i t y to be i n d e f i n i t e l y operable.
*
This r e a c t i v i t y d e f i c i t , i f r e a l , c o u l d be s u p p l i e d i n
a number of ways. A m o d e r a t e f e e d of 2 3 % a t 20% enrichment would extend t h e f u e l s y c ~ e
t o about 308 y e a r s .
A t t h a t t i m e , t h e 238U l o a d i n g would become exces-
s i v e , and the r e a c t o r could no l o n g e r be wade c r i t i c a l .
While even 300
y e a r s may b e much l o n g e r t h a n any r e a s o n a b l e planning h o r i z o n , t h i s res u l t i n d i c a t e s t h a t a f u l l y d e n a t u r e d MSR could have a very long, i f n o t unlimited, f u e l lifetime.
Iâ&#x201A;Ź t h e enrichment of t h e f e e d material were
allowed t o r i s e t o 33% 2 3 5 U 9 r e a c t o r o p e r a t i o n could be s u s t a i n e d i n d e f i n i t e l y WfthOblt fuel d i s c a r d . Because t h e b u i l d u p of 2 3 % i s t h e l i m i t i n g phenomenon i n t h e f u e l c y c l e of any nonbreeding DMSW, any p r o c e s s t h a t would have t h e e f f e c t of removing 2 3 8 1 ~would improve t h e c h a r a c t e r i s t i c s sf t h e cycle. fate% feed
*
lt
With t h e
enrichment s e t a t 20% 2 3 5 U 9 t h e b u f l d u p of 238U could be l i m i t e d
I n d e f i n i t e l y o p e r a b l e " i s a r b i t r a r i l y d e f i n e d h e r e as m a i n t a i n i n g kefg 1. 1.0 f o r 600 y e a r s o r bong el^. I n a l l extended f u e l c y c l e s , t h e f u e l i s presumed t o be t r a n s f e r r e d w i t h o u t l o s s f r m one r e a c t o r p l a n t t o a n o t h e r as r e q u i r e d by hardware l i f e t i m e c o n s i d e r a t i o n s ,
.,.. w .."
by removing some uranium from t h e f u e l s a l t and r e p l a c i n g i t wieh f r e s h I f onlgr 1% of t h e uranium i n v e n t o r y were removed each year and con-
feed.
s i g n e d t o waste o r t o o f f - s i t e r e c o v e r y , t h e i n - p l a n t i s o t o p i c composition would r e a c h e q u i l i b r i u m w i t h i n 300 y e a r s s and t h e f u e l c y c l e c o u l d b e continued indefinitely.
faTa even more a t t r a c t i v e c h o i c e would be t o remove
some of t h e uranium, s t r i p o u t p a r t of t h e 238U, and r e t u r n t h e remainder t o the reactor plantr
To examine t h i s case, w e assumed t h a t 2% of t h e re-
a c t o r i n v e n t o r y would be t r e a t e d each year and t h a t the r e t u r n i n g uranium would c o n t a i n one-half e v e r was g r e a t e r . tion.)
t h e o r i g i n a l 23*U o r enough f o r d e n a t u r i n g
which-
(Only 238U was e x t r a c t e d i n t h i s p r e l i m i n a r y c a l c u l a -
The c a l c u l a t i o n showed t h a t t h i s approach a l s o would a l l o w i n d e f i -
n i t e o p e r a t i o n and would r e q u i r e l e s s f e e d material ( s e e t h e following d i s c u s s i o n ) than t h e o t h e r o p t i o n s . 4.1.3
P a r t i a l f i s s i o n - p r o d u c t removal
Although t h e r e f e r e n c e f i s s i o n - p r o d u c t
could p r ~ c e s s f ~concept g
s t r o n g l y a f f e c t t h e v e r y long-term v i a b i l i t y of DMSRs, t h e f i s s i o n - p r o d u c t p r o c e s s would r e q u i r e s u b s t a n t i a l t i m e and e f f o r t f o r commercial development, and, even t h e n , i t might n o t be a market s u c c e s s .
Consequently,
c o n s i d e r i n g a l t e r n a t i v e p r o c e s s e s might b e u s e f u l A v a r i e t y o f a l t e r n a t i v e s e p a r a t i o n s procedures have been examined
o v e r t h e y e a r s i n t h e ORNL MSR program f o r p o s s i b l e a p p l i c a t i o n i n f u e l reprocessing operations.
P o s s i b l e r e c o v e r y of p r o t a e t i n t m , uranium, and
o t h e r a c t i n i d e s by s e l e c t i v e p r e c i p i t a t i o n of o x i d e s has been examined, though most methods have p r e f e r r e d removal of uranium i s o t o p e s by f l u o r i n a t i o n t o v o l a t i l e UF6.
Attempts t o remove t h e l a n t h a n i d e s ( t h e most
important p a r a s i t i c a b s o r b e r s of n e u t r o n s ) have included p r o c e s s e s based o n i o n exchange, p r e c i p i t a t i o n of i n t e r m e t a l l i s compounds, and even v o l a t i l i z a t i o n a t low p r e s s u r e of t h e o t h e r melt c o n s t i t u e n t s " t o l e a v e tihe v e r y n o n v o l a t i l e l a n t h a n i d e t r i f l u o r i d e s behind.
A l l such p r o c e s s e s re-
q u i r e s o l i d s h a n d l i n g , and many a l s o have o t h e r d i s a d v a n t a g e s .
*Such
None w a s
a s e p a r a t i o n w i g h t be f e a s i b l e , a f t e r f l u o r i n a t i o n of t h e uranium, f o r a. f u e l c o n s i s t i n g o n l y of LiF, BeF2, and W 4 , b u t i n c l u s i o n o f c o n s i d e r a b l e TkF4 Cas i n a DMSR f u e l ) d e f e a t s s u c h a p r o c e s s .
102 developed f a r enough t o l e a d t o a n i n t e g r a t e d process.
Further, a f t e r
process, Which, dPSCQVery O f t h e s@ductiVe-eXtractisn/metal-~ra~S~er
though cmplbex, involved h a n d l i n g o n l y l i q u i d s and gases, s t u d i e s of a l l o t h e r s e p a r a t i o n s were l a r g e l y abandoned.
An ion-exchange process â&#x201A;Ź o r s e l e c t i v e removal of l a n t h a n i d e ions f r ~ m the molten f u e l has long seemed a t t r a c t i v e in principle,B9 b u t no attrac-
tive i o n exchanger â&#x201A;Ź o r t h e s e materials h a s been demonstrated.
An obvious
d f f f i ~ u l t yi s posed by t h e a g g r e s s i v e tendency of t h e molten LiF-BeF2ThF4-WF4 system t o react w d t h most materials t h a t a r e l i k e l y t o b e u s e f u l ,
C e r t a i n r e f r a c t o r y l a n t h a n i d e compounds ( s u c h a s c a r b i d e s , n i t r i d e s , or s u l f i d e s ) could c o n c e i v a b l y b e u s e f u l and s u f f i c i e n t l y s t a b l e .
The o n l y
c a n d i d a t e materials t o d a t e have been materials such a s CeF3 and LaF3.
By v i r t u e of t h e f o m a t i ~ s f~ n~e a r l y i d e a l s o l i d soluti~nsamong t h e rare e a r t h t r i f E u o r i d e s , these compounds are c a p a b l e of removing o t h e r ( h i g h e r cross-section)
l a n t h a n i d e s from t h e m o l t e n f l u o r i d e s .
The ~ l e u t r ocross ~~
sections of cerium and Pantharem are n o t n e g l i g i b l e ; because such an exchange p r o c e s s s a t u r a t e s t h e t r e a t e d f u e l with CeF3 o r LaF3, t h e r e s u l t i n g f u e l s o l u t i o n still has s u b s t a n t i a l p a r a s i t i c n e u t r o n a b s o r b e r s .19
me
CeF3 ( o r LaF3) exchanger a l s o would presumably remove trivalent a c t f n i d e s ( i n c l u d i n g plutonium) from t h e molten f u e l , fQP
ThPs would be u n a c c e p t a b l e
EbMSR.
No o v e r a l l chemical p r o c e s s based on such s e p a ~ ~ t f has o ~ sbeen de-
scribed e
Obviously, much development would be n e c e s s a r y b e f o r e such a
p r o c e s s could b e demonstrated,
hkaso, s e v e r a l s o l i d s - h a n d l i n g o p e r a t i o n s
a p p a r e n t l y would be r e q u i r e d and no p r o c e s s based
QII
these operations
could b e c a p a b l e of p r o c e s s i n g a DMSR on a s h o r t t i m e cycle.
However,
g i v e n the p r e s e n t s t a t e of knowledge, t h e f o l l o w i n g p r o c e s s can b e visua l i z e d t o o p e r a t e m r e l a t i v e l y l a r g e (1- t o 2-hn3) b a t c h e s of DMSR f u e l , possibly a f t e r c o d i n g f o r 5 o r 6 d e
The f o l l o w i n g s t e p s would be neces-
sary *
.w .... .9 ...
probably s t i l l be m o s t l y t r i â&#x201A;Ź % u ~ r i d e ~This , o x i d i z e d system w i l l b e corrosive, b u t i t should b e manageable i n equipment of n i c k e l
o r nickel-elad Hastelloy. S t e p 2.
P r e c i p i t a t e t h e i n s o l u b l e o x i d e s u s h g water vapor d i l u t e d i n helium.
'RE o x i d e s UO2% Pa205, Pu02, Ce02, probably Np02, and
p o s s i b l y Am02 and @m02 should be obtairped,
With the e x c e p t i o n
of %r02and Pa205, t h e s e w i l l be l a r g e l y i n s o l i d S U P U ~ F Q ~ The .
oxide s o l i d s o l u t i o n i s l i k e l y t o c o n t a i n 15 t o 20% of Tho2; this
W Q U P ~correspond t o a few (less t h a n 5 ) p e r c e n t of t h e T%F4 p r e s ent i n the fluoride.
Recover t h e o x i d e s by d e c a n t a t i o n and f i l -
tration. S t e p 3.
H y d r o f l u o r i n a t e t h e o x i d e s from s t e p 2 i n t o t h e p u r i f i e d LIPBeP2-ThF4 m e l t from s t e p 7 and reduce t h e m e l t w i t h H2 and t h e n
with l i t h i u m , t h o r i m , o r beryllium t o r e c o n s t i t u t e f u e l with t h e d e s i r e d U F ~ / U Fr a~t i o . Step 4.
H y d r ~ f l u o ~ i n a tteh e l i q u i d from s t e p 2 t o remove e x c e s s o x i d e ion.
k i d i z e t o g e t samarium and ( i f p o s s i b l e ) europium t o SmF3
and EuF3. S t e p 5.
Treat t h e m e l t from s t e p 4 w i t h a n excess of CeF3.
This might
be done i n a column o r i n a two- o r three-batch c o u n t e r c u r r e n t
operation.
This
T ~ ~ Q V a ~major S
f r a c t i o n of t h e rare e a r t h s b u t
does e s s e n t i a l l y nothing f o r cesium, rubidium, s t r o n t i u m , and barium.
( I f neptunium, americium, and curium a r e a p p r e c i a b l y
h a r d e r t o o x i d i z e than plutonium, t h e y s h o u l d remain i n t h e s a l t i n s t e p 2 and should be removed on t h e CeF3 i n s t e p 5.) Step 6,
The LfF-BeF2-ThF4 m e l t from s t e p 5 c o n t a i n s s d y a f r a c t i o n of
t h e r a r e e a r t h p o i s o n s b u t , of c o u r s e , i s s a t u r a t e d w i t h CeF3. oxidize the Step 7.
ee*
to ~ e 4 + .
~ r e c i p i t a t et h e ce4+ a s
c ~ o ~ some .
Ce02, b u t t h e q u a n t i t y should be s m a l l .
by d e c a n t a t i o n and f i l t r a t i o n .
w i l l accompany t h e Separate the p r e c i p i t a t e
Feed t h e molten LiP-BeP2-ThF4
to
the f i s s i l e material r e c o v e r y o p e r a t i o n in s t e p 3. S t e p 8.
D i s s o l v e t h e s o l i d &F3
(contaminated w i t h rare e a r t h s ) from s t e p
5 in some s u i t a b l e s a l t ( p r e f e r a b l y n o t SLiF-BeP2) and o x i d i z e t h e Ce3+ t o @e4'@
.
, ....., -c%w
104
Step 9.
P r e c i p i t a t e t h e cerium a s Ce02 and recover t h e p r e c i p i t a t e by d e c a n t a t i o n and f i l t r a t i o n .
Discard a p o r t i o n of t h e molten
s a l t , which c o n t a i n s rare e a r t h f i s s i o n p r o d u c t s , t o waste s t o r age. Return t h e remainder with t h e n e c e s s a r y makeup t o s t e p 8. S t e p 10.
Combine t h e Ce82 from s t e p 9 w i t h t h a t from s t e p 7 and treat t h e s e sollids w i t h %%F and H 2 t o o b t a i n CeF3 ( p l u s some ThF4). U s e t h i s as t h e major p a r t of t h e r e a g e n t f o r s t e p 5.
This process would have a number of d i s a d v a n t a g e s when compared w i t h t h e reductive-extraction/metal-transfer
process.
Zirconium, cesium, ru-
bidium, s t r o n t i u m , and barium would not be removed, though none of t h e s e
i s a major problem.
Neptunium p r o b a b l y would n o t be removed, though am-
e r i c i u m and curium may be.
Iodine
W Q U ~be~
QXidatiOn Or SUbSe3qUent hydrOflUOrfnaeiQnS.
removed e i t h e r during. t h e f u e l SeleIliWll and
s w i n g t h a t they a r r i v e a t t h e p r o c e s s i n g p l a n t -rnsnight
tellUriUIT3
- a%-
be v o l a t i l i z e d as
elements o r as f l u o r i d e s d u r i n g t h e f u e l o x i d a t i o n s t e p (and t h e y might cause a
C O ~ ~ O Sproblem ~ Q ~
f o r t h e process).
Heat g e n e r a t i o n by t h e f u e l ,
even a f t e r a few d a y s c o o l i n g t i m e , would p r e s e n t problems, and t h e conp l e x process would be d i f f i c u l t ( p o s s i b l y i m p o s s i b l e ) t o e n g i n e e r .
At
b e s t , s e v e r a l days would be r e q u i r e d t o g e t a b a t c h of DMSR f u e l s o l v e n t
through t h e p r o c e s s , though t h e f i s s i l e materials might be r e t u r n e d t o t h e r e a c t o r w i t h a 2-el holdup.
An a p p r e c i a b l e i n v e n t o r y of fuel material ( b u t
perhaps not more t h a n 5% of r e a c t o r i n v e n t o r y ) would be c o o l i n g and i n t h e p r o c e s s i n g area.
4 * I e 4 S a l t replacement Even w i t h no chemical removal of f i s s i o n p r o d u c t s , t h e n e u t r o n poisoning e f f e c t Fn a BMSR does n o t begin t o approach s a t u r a t i o n u n t i l a f t e r
about 1 5 y e a r s of power o p e r a t i o n a t a 75% c a p a c i t y f a c t o r . fission-product
Thus, i f t h e
i n v e n t o r y could be h e l d a t o r below that corresponding t o
a 15-year l e v e l , a s i g n i f i c a n t r e d u c t i o n i n f u e l i n g requirements could be realized.
The simplest way ts l i m i t the f i s s i o n - p r o d u c t c o n c e n t r a t i o n i n
t h e s a l t i s t~ d i s c a r d a p o r t i o n of t h e s a l t on a r o u t i n e s c h e d u l e and r e p l a c e i t wfth c l e a n s a l t .
with no r e f i n e m e n t , s a l t d i s c a r d would re-
q u i r e replacewent sf t h e f i s s i l e material as well a s t h e fertile cowponerat
and the ~ d v e n t( o r c a r r i e r ) s a l t and, t h e r e f o ~ e ,would a c t u a l l y r e q u i r e
a l a r g e r uranium s u p p l y t h a n t h e 30-year once-through f u e l cycle proposed f o r t h e r e f e r e n c e IBmR concept.
However, uranium i s e a s i l y and e f f e c t i v e l y
s e p a r a t e d f r s m t h e rest o f t h e f u e l m i x t u r e , so t h e d e n a t u r e d uranium c o u l d b e removed and r e c y c l e d
%e: t h e r e a c t o r site w i t h a minimum of ef-
Depending on t h e rate 06 s a l t replacement, t h i s approach would
fort.
s i g n i f i c a n t l y reduce t h e requirement f o r f i s s i l e uranium below t h a t fsr t h e simple once-through c y c l e 4.2
F u e l C y d e Performance
O f t h e a l t e r n a t e f u e l cycles c o n s i d e r e d i n t h i s s e c t i ~ n ,t h e break-
even b r e e d e r , if i t were s u c c e s s f d , would p r o v i d e f o r t h e b e s t utilizat i o n of f i s s i l e f u e l resources ~ ~ 3 % ) . ~f t h a t system were s t a r t e d up
o n 20% e ~ r i ~ 2h 3e %~ ~~ i~ t would probably r e q u i r e 700 to 1000 ~g of natu-
ral U308 t o p r o v i d e t h e i n i t i a l f u e l l o a d i n g f o r each 1 CX of e l e c t r i c generating capability.
[The s e p a r a t i v e work t o e n r i c h t h i s f u e l t o 20%
235U would be less t h a n 1 m i l l i o n s e p a r a t i v e work u n i t s (SWU),]
However,
once p r o v i d e d , t h i s f u e l would c o n t i n u e t o p ~ ~ d l u ceel e c t r i c i t y i n an a r b i t r a r i l y long s u c c e s s i o n of power stations ( o r as long a s f e r t i l e material
was a v a i l a b l e ) .
Thus, t h e e f f e c t i v e resource requirement could be made
a r b i t r a r i l y small by averaging I t Over
iB
large number
Of
plants.
Even i f
t h e i n i t i a l f u e l charge were used in o n l y one pliant, t h e r e s o u r c e requirement would be o n l y 110 t o 20% of t h a t f o r an LWR w i t h similar e l e c t r i c gen-
erating c a p a b i l i t y . The c o n v e r t e r o p t i o n s w i t h f u e l processing p r o v i d e o t h e r estimates of t h e potential performance of DMSRs with f i s s i ~ n - p r o d u c t c l e a n u p (Table 2 9 ) . The o p t i o n s , which w e r e d e s c r i b e d e a r l i e r , m y b e s u m a r i z e d as f~klows: Option
Fuel cycle
A
I n i t i a l l o a d i s 20% 235U; makeup f u e l i s 20% 2 3 5 U
B
I n i t i a l load i s 20% 2 3 5 U ;
makeup f u e l i s 33% 7 3 5 U
c
I n i t i a l l o a d i s 20% 2 3 s U ; makeup f u e l i s 20% 2 3 5 U
annual d i s c a r d o f 1%of uranium i n v e n t o r y ;
D
I n i t i a l l o a d i s 20% 2 3 5 U ; a n n u a l r e e n r i c h m e n t of 2% of uranium i n v e n t o r y t o d e n a t u r i n l i m i t o r t o one-lialf o f p r i o r 7 3 8 ~c o n t e n t ; makeup f u e l i s 20% 2 5 5 C
106 Table 29, Performance d a t a f o r long-term f u e l c y c l e options f o r DMSRS" with f u l l - s c a l e f i s s i o n - p r o d u c t removal Optionb
A
B
c
D
0.90 0.74
0.94
0.94 0.93
0.94 0.89 0.89
Conversion ratio a f t e r
20 y e a r s 300 years 608 y e a r s
6
0.92 0.92
860 860
860 890
860
1000
428 460
5 80
500
c
600
600
1000 e
440 478
580 60 0
50 8 60 0
Uranium reenrichment, m / y e a r
0
0
0
0.60
Uranium d i s c a r a , ~ g i y e a r
0
0
0.24
0
2.9 3.1
2.7 3.0
2e8
0*93
Requirement f o r i n i t i a l core asaaing U398S
rn
S e p a r a t i v e work, Mg SWU
860
988 980
Average requirement %or f u e l makeup p e r 30-year c y c l e
k$$,@3
During y e a r s 0--300 During y e a r s 301-600 S e p a r a t i v e work, Mg SW During years 0-380 During years 301-600
Fissile i ~ ~ e n t o ar yt equiPlbrium, Ng
ur a R ium A l l fissile nuclides
1.2 3.2
d
a
3.1
% o r 1 G W ~a t 75% c a p a c i t y f a c t o r .
b ~ e et e x t f o r c h a r a c t e r i z a t i o n of o p t i o n s . Mot o p e r a b l e beyond 300 y e a r s . d A t 300 y e a r s .
The t a b u l a t e d r e s u l t s show that a l l f o u r of t h e s e o p t i o n s would m a i n t a i n r e l a t i v e l y h i g h c o n v e r s i o n r a t i o s f o r v e r y long times.
The U308 r e s o u r c e
r e q u i r e m e n t s f o r t h e i n i t i a l c o r e l o a d i n g s a r e a l l s i m i l a r , and all a r e s l i g h t l y higher than t h a t f o r the once-through f u e l cycle (because sf t h e
volume of f u e l i n t h e p r o c e s s i n g system).
BO 7 TPle f u e l makeup r e q u i r e m e n t s a r e expressed i n m e t r i c t o n s of UaOg
for 30 y e a r s of o p e r a t i o n i n a 1-GWe p l a n t a t 75% c a p a c i t y f a c t o r and are a v e r a g e s f o r t e n 30-year c y c l e s .
The e f f e c t of t h i s a v e r a g h g i s most
pronounced f o r o p t i o n A; t h e f u e l makeup requirement i s o n l y a f r a c t i o n
of t h e a v e r a g e f o r t h e f i r s t one o r two r e a c t o r l i f e t i m e s and i s somewhat
g r e a t e r than t h e a v e r a g e f o r t h e l a s t c y c l e s .
Thus, while t h i s o p t i o n
would r e q u i r e more u r a m i m t h a n t h e o t h e r s i n t h e v e r y long tern, i t s per-
f o m a n c e f o r t h e f i r s t few r e a c t o r l i f e t i m e s would be q u i t e a t t r a c t i v e . Even f o r t h e long-term,
this r e s o u r c e requirement would be w e l l below
t h a t of c u r r e n t - g e n e r a t i o n LWRs.
Option B i l l u s t r a t e s t h e long-term sav-
ing i n uranium r e s o u r c e s t h a t could be achieved i f h i g h e r enrichments could be t o l e r a t e d f o r t h e r e l a t i v e l y s m a l l amsunts of makeup f u e l ,
Be-
cause the r e s o u r c e s a v i n g s are p r i n c i p a l l y long tlem and t h e r e q u i r e d uranium enrichment exceeds c u r r e n t l y p e r c e i v e d d e n a t u r i n g l i m i t s a p p e a r s t o be
OR^
of t h e less g r o m h s i ~ ~ogp t i o n s ,
this
The two remaining 0p-
t i o n s , C and D, b o t h show f a v o r a b l e r e s o u r c e u t i l i z a t i o n p r o p e r t i e s f o r long t i m e s with o n l y minor penalties f o r d i s c a r d e d uranium ( o p t i o n C > o r uranium s u b j e c t e d t o reenrichment ( o p t i s m B ) ,
O f t h e s e , o p t i o n P) c l e a r l y
would be p r e f e r a b l e if r e e n r i c h e n t were an a c c e p t a b l e procedure
Tke preceding f o u r c o n v e r t e r o p t i o n s a n d / o r t h e break-even breeder would r e q u i r e the a v a i l a b i l i t y of a cornpPex and expensive f u e l c l e a n u p f a c i l i t y w i t h h the primary containment of each r e a c t o r i n s t a l l a t i o n .
Jk
The technology f o r an i n t e g r a t e d proeessfng f a c i l i t y has n o t been f u l l y developed, and p a s t work c l e a r l y i n d i c a t e s t h a t a s u b s t a n t i a l development e f f o r t would be r e q u i r e d t o produce a commercially f u n c t i o n a l system. Even t h e n , t h e c a p i t a l , o p e r a t i n g , and maintenance c o s t s of such a system p o s s i b l y would have a s i g n i f f c a n t a d v e r s e impact on t h e overall economic
p e r f o r n a m e of the a s s o c i a t e d DMSR.
Other f a c t o r s t o be c o n s i d e r e d f o r
t h e s e o p t i o n s i n c l u d e d t h e w i l l i n g n e s s of t h e r e a c t o r o p e r a t o r t o assme
*Conceivably,
a s i n g l e cleanup f a c i l i t y could serve several r e a c t o r s a t a cornon s i t e , but such an arrangement would c o m p l i e a t e t h e 0 p e r a t i Q n and would add p r o b l e m ~of i n v e n t o r y a c c o u n t a b i l i t y among t h e v a r i o u s units.
r e s p o n s i b i l i t y f o r a chemical p r o c e s s i n g f a c i l i t y , t h e s o c i o p o l i t i c a l acc e p t a b i l i t y of c o l o c a t i n g such a f a c i l i t y w i t h e a c h DMSR, and t h e Picensi n g q u e s t i o n s t h a t way arise from s u c h an arrangement.
The ~ t h e rend of t h e rartge of p o s s i b l e f u e l cycle performances f o r DMSRs i s r e p r e s e n t e d by t h e 38-year cycle d e s c r f b e d e a r l i e r i n t h i s r e p o r t Although t h i s system, w i t h a l i f e t i m e r e q u i r e -
a s t h e r e f e r e n c e concept.
ment of 1860 Mg (2000 s h o r t t o n s ) of U308, would be t h e l a r g e s t consumer of natural
U K ~ R ~ U I Tand I
s e p a r a t i v e work among t h e DMSR o p t i ~ n sc o n s i d e r e d ,
i t s t i l l wuuld r e q u i r e s u b s t a n t i a l l y less of t h e s e commodities than t h e
once-through f u e l c y c l e i n l i g h t - w a t e r reactors.
In t h e a b s e n c e of fa-
c i l i t i e s f o r r e c y c l i n g t h e won-SIW constituents of t h e f u e l s a l t , t h i s approach would u s e less of s u c h materials t h a n any of t h e o t h e r a l t e r n a -
tives.
However, d e s p i t e t h e 38-year f u e l c y c l e , t h i s concept would n o t
e l i m i n a t e all o n - s i t e chemical t r e a t m e n t u f t h e f u e l s a l t .
t o maintain the desired
u3+/u4+
Tlne a c t i v i t i e s
r a t i s i n t h e f u e l ana t h e t r e a t m e n t s t o
l i m i t t h e l e v e l of oxide c o n t a m i n a t i o n i n t h e s a l t would s t i l l be needed. Thus, even t h e "sFmpPest" DMSW would r e q u i r e
SQIW
equipment f o r and some
t e c h n i c a l competence i n chemical p r o c e s s i n g , even though n e i t h e r would directly
iRVQlVe
the
sm
ill
t h e system.
The i n t e r m e d i a t e concepts t h a t make u s e of a s h o r t e r s a l t d i s c a r d
c y c l e merely s u b s t i t u t e consumption of o t h e r f l u o r i d e salts f o r p a s t o f t h e f i s s i l e uranium consumption i n t h e r e f e r e n c e 30-year
cycle,
Because
t h e s e o t h e r f l u o r i d e s ( e s p e c i a l b y 'Lip> may a l s o be r e l a t i v e l y e x p e n s i v e t h i s s u b s t i t u t i o n might not always b e c o s t e f f e c t i v e .
I n a d d i t i o n , any
system t h a t used s a l t d i s c a r d would have t o r e c o v e r uranium from t h e " w a ~ t e ' s~a l t t o p r e v e n t e x c e s s i v e uranium consumption.
This would add
y e t a n o t h e r chemical p r o c e s s i n g o p e r a t i o n t o t h e r e a c t o r p l a n t .
The a l t e r n a t i v e s t h a t r e l y on s p e c i a l t r e a t m e n t schemes to remove
flssion p r o d u c t s from t h e f u e l salt may have a t t r a c t i v e fuel. u t i l i z a t i o n c h a r a c t e r i s t i c s , b u t t h e y have n o t been analyzed i n s u f f i c i e n t d e t a i l eo
p e r n i t an accurate c h a r a c t e r i z a t i o n .
I n addition, c o n s i d e r a b l e r e s e a r c h
and development would be r e q u i r e d b e f o r e such p r o c e s s e s cou$d be shown t o be t e c h n i c a l l y f e a s i b l e .
Consequently, l i t t l e i n c e n t i v e is a p p a r e n t a t
t h i s t i m e t o propose new and d i f f e r e n t chemical p ~ ~ e s s cio n~c e~p g ts BMSRs
0
â&#x201A;Ź 0 ~
5.
CQPIPIERCIWLPZATION CONSIDERATIONS
While t h e t e c h n o l o g i c a l f e a s i b i l i t y , t h e o v e r a l l t e c h n i c a l perfomance, and t h e p r o l i f e r a t i o n r e s i s t a n c e of t h e DMSR are important charac-
t e r i s t i c s t o be c o n s i d e r e d i n a s s e s s i n g I t s v a l u e as an a%ternat%ve nuc l e a r c o n c e p t , a n o v e r r i d i n g c o n ~ i d e ~ a t i oins l i k e l y t o be t h e c o m e r c i a l t z a t i o n p o t e n t i a l of t h e system.
This g e n e r a l a t t r i b u t e i n c l u d e s a
number of c o n s i d e r a t i o n s , such a s :
1.
t h e probable total. c o s t of developing a commercia1Py r e a d y system;
2.
t h e t i m e r e q u i r e d f o r such development, which s t r o n g l y a f f e c t s t h e impact a system can have on power weeds;
3.
t h e probable n e t economic performance of commercial u n i t s , which det e r m i n e s the a t t r a c t i v e n e s s of t h e concept t o i t s p o t e n t i a l u s e r s , t h a t i s , t h e e l e c t r i c power u t i l i t i e s ;
4.
t h e ease of licensability of t h e commercial p l a n t s , which i s a ref l e c t i o n of t h e ~ o n c e p t ~sso c i o p o l i t i c a l a t t r a c t i v e n e s s , a s well as i t s t e c h n i c a l performance.
Some r e l e v e n t i n f o r m a t i o n about t h e DMSR with r e s p e c t t o each of t h e s e p o i n t s is p r e s e n t e d i n t h e following d i s c u s s i o n .
5.1
Research and Development
S i n c e MSR r e s e a r c h and development has been under way f o r some 30
years, t h e b a s i c technology i s w e l l understood.
However, much of i t has
n o t been developed t o t h e s t a g e and scale t h a t would be r e q u i r e d f o r t h e c o n s t r u c t i o n of l a r g e r e a c t o r systems,
Thus, B s i g n i f i c a n t R&D e f f o r t
would be an important p a r t of any program t o commercialize MSRs,
I n ad-
d i t i o n , u n t f l r e c e n t l y , development w a s c o n c e n t r a t e d on r e a c t o r concepts w i t h a good breeding g a i n and a low f i s s i l e i n v e n t o r y
SO
that the result-
i n g thermal b r e e d e r r e a c t o r system would have a r e a s o n a b l y s h o r t d ~ k ~ b l i ~ l g
t i m e and could be considered a v i a b l e a l t e r n a t i v e ( o r complement) t o f a s t b r e e d e r systems.
The technology needs of t h e modified r e a c t o r concept
t h a t h a s been developed i n response t o t h e r e c e n t emphasis on p r o l i f e r a -
t i o n r e s i s t a n c e d i f f e r from t h o s e of t h e nominal b r e e d e r concept.
110
5.1.1
current status
MSW development h a s been c a r r i e d through t h e d e s i g n and o p e r a t i o n t e s t r e a c t o r , t h e MSRE, which w a s an 8-Wt reac-
of a proof-of-principle
t o r that o p e r a t e d a t ORNL from 1965 t o 1969. t h e b a s i c r e l i a b i l i t y of a molten-salt
T h i s r e a c t o r demonstrated
system, s t a b i l i t y of t h e f u e l
salt, c o m p a t i b i l i t y s f f l u o r i d e s a l t s w i t h U s t e l l o y - N and graphite, rel i a b i l i t y of m o l t e n - s a l t pumps and h e a t exchangers, and maintenance of a r a d l o a c t i v e flufd-fueled
system by remote methods.
The reactor w a s c r i t -
ical over 17,000 h , c i r c u l a t e d f u e l s a l t f o r n e a r l y 22,000 h , and genera t e d over 100,000 plwh of thermal e n e ~ g y . The MSRE had achieved a l l t h e
objectives of t h e r e a c t o r t e s t program when i t w a s r e t i r e d i n 1969. After t h e s u c c e s s f u l o p e r a t f o n of t h e MSRE, t h e r e a c t o r concept appeared r e a d y f o r commercial development,
In p r e p a r a t i o n f o r f u r t h e r de-
ve%opment, t h r e e major reports w e r e prepared:
of an MSBR i n 1971 (Ref.
1972 (Ref.
loa),
$I9
a c o n c e p t u a l design study
a review of the s t a t u s o f development i n
and a program p l a n f o r development i n 1974 ( R e f .
21).
For r e a s o n s o t h e r t h a n t e c h n o l o g i c a l , t h e government d e c i d e d not t o fund f u r t h e r development of MSRs.
T%e program was c a n c e l l e d i n 1 9 7 3 , r e s t a r t e d
i n 1974, and finally terminated i n $976,
The development of a p r o l i % e r a t f s n - r e s i s t a n t DKSR would r e q u i r e basic a l l y t h e same t e c h n o l o g i c a l development program as was proposed f o r t h e
MSBR, b u t t h e emphasis would be on r e l i a b i l i t y , ease of c ~ m ~ ~ e ~ ~ i a l i ~ a t i ~ n , P i c e n s i n g , and p r o l i f e r a t h n r e s i s t a n c e r a t h e r t h a n on high breeding performance.
K i t h t h e s e o b j e c t i v e s in mind, t h e 1972 status-of-devebopment
r e p o r t h a s been updated, and t h e program p l a n for development h a s been
m o c ~ i l ~ i efco~r t h e DMSR."~
( m i l e t h e main o u t l i n e of BMSR development
requirements will be p r e s e n t e d i~ t h i s report, t h e reader I s r e f e r r e d t o
Ref.
102 f o r g r e a t e r d e t a i l . ) 5.1.2
Technology base f o r r e f e r e n c e DMSR
The base technology f o r MSWs i s w e l l e s t a b l i s h e d and h a s been l a r g e l y "'proven i n princâ&#x201A;Źp%e" by t h e o p e r a t i o n of t h e 24SWE.
While no major un-
~ e s o l v e dt e c h n i c a l i s s u e s e x i s t a t t h e p r e s e n t t i m e , a large R&B e f f o r t would be r e q u i r e d t o b r i n g nnol.ten-salt
technology t o commercialization.
11%
At t h e c l o s e of MSRE o p e r a t i o n , two major t e c h n i c a l issues appeared
unresolved.
The first was t h e c o n t r o l of tritium, which i s produced in
f a i r l y l a r g e q u a n t i t i e s i n a molten-salt f u s e through metal w a l l s .
system and which i s known t o d i f -
Subsequent e n g i n e e r i n g - s c a l e t e s t s have demon-
s t r a t e d t h a t tritiUll is o x i d i z e d in
S O d ~ W i lf l U O r o b O P a t e ,
t h e pPQpos@d S e C -
ondary s a l t f o r t h e DMSR, and a p p e a r s t o be handled r e a d i l y .
However, this
p r o c e s s i s n o t y e t w e l l understood, and t h e e f f e c t s of m a i n t a i n i n g an adeq u a t e c ~ n c e n t r a t i ~ofn t h e o x i d a n t on t h e long-term c o m p a t i b i l i t y of t h e
s a l t w i t h t h e s t r u c t u r a l a l l o y are unknown.
The second i s s u e involved t h e
c o m p a t i b i l i t y of Hastelloy-N w i t h f u e l s a l t .
Operation of t h e MSRE showed
t h a t t h e g e n e r a l c o r r o s i o n of Hastelloy-M and g r a p h i t e i n an o p e r a t i n g MSR
was n e a r z e r o , a s expected.
However, metal s u r f a c e s t h a t had been exposed
t o f u e l salt c o n t a i n i n g f i s s i o n products were unexpectedly found t o e x h i b i t grain-boundary
a t t a c k , which was s u b s e q u e n t l y shown t o be caused by reac-
t i o n w i t h t h e f i s s i o n product, t e l l u r i m .
F u r t h e r work has shorn t h a t t e l -
lurium a t t a c k c a n be c o n t r o l l e d by e i t h e r a m o d i f i c a t i o n s f t h e Hastelloy-N
a l l o y o r by e o ~ l t r o Pof t h e o x i d a t i o n p o t e n t i a l of t h e f u e l s a l t . The major areas of r e s e a r c h r e q u i r e d f o r c o m e r c i a b i z a t i o n of MSWs
would i n v o l v e improvement of t h e materials sf c o n s t r u c t i o n (Hastelloy-PS and g r a p h i t e ) , the d e s i g n of i n - l i n e i n s t r u m e n t a t i o n f o r high-temperature u s e , and t h e development of f u e l p r o c e s s i n g ( a t least f o r t h e end of reac-
t o r l i f e and p o s s i b l y a l s o f o r u s e on-line).
The major areas of develop-
ment i n v o l v e t h e scale-up of reactor components ( e o g c 9pumps) and the de-
sign and development of components t h a t were not p r e s e n t i n t h e MSW (e.g.,
steam g e n e r a t o r s and mechanical v a l v e s ) .
I n a d d i t i o n , we a ~ t k i -
p a t e t h a t t h e d e s i g n of some components such as t h e f u e l d r a i n system and t h e r e a e t o r c e l l w i t h i t s i n s u l a t i o n , h e a t i n g , and c o o l i n g requirements would be e x t e n s i v e l y modifed t o m e e t c u r r e n t l y u n s p e c i f i e d l i c e n s i n g requirements.
Another l a r g e area of development would be t h e c o n t r o l sf
t h e t e m p e r a t u r e s and flows i n t h e primary and secondary s a l t systems and i n t h e steam system t o avoid s a l t f r e e z i n g and e x c e s s i v e thermal stress. A l t e r n a t i v e l y , some c o ~ ~ ~ p o n e might nts be designed t o accommodate such freezing.
S t i l l a n o t h e r area of development would be advanced remote
maintenance t e c h n i q u e s , i n c l u d i n g t h e replacement o f components u s i n g remote p i p e c u t t i n g and welding.
112 The concept of t h e DMSR has emphas-ized p r o l i f e r a t i o n r e s i s t a n c e , and f u r t h e r d e s i g n e f f o r t s would be expected t o a d h e r e t o p r o l i f e r a t i o n resistance criteria.
However, no major areas have been i d e n t i f i e d i n
which t h e R&D requirements f o r a DNSR would be s u b s t a n t i a l l y d i f f e r e n t
from t h o s e f o r o t h e r v e r s i o n s of t h e MSR concept.
E s s e n t i a l l y t h e same
R&D program would be pursued as w a s planned f o r t h e MSBR.
of a low-power-density
The se1eetFon
c o r e f o r t h e DMSR h a s r e l i e v e d t h e r e q u i r e m e n t s f u r
c o r e g r a p h i t e ( e s p e c t a l l y f o r gas p e r m e a b i l i t y ) and has s i m p l i f i e d v e s s e l
The s e l e c t i o n of
d e s i g n (because g r a p h f t e replacement i s n o t r e q u i r e d ) .
a r e f e r e n c e DMSR w i t h o u t on-line f u e l p r o c e s s i n g h a s removed t h e develop-
ment of o n - l i n e p r o c e s s i n g from the expected c r i t i c a l p a t h f o r r e a c t o r development.
P r o c e s s i n g development should proceed, however, t o meet two
clQsely related objectives:
(I) development of on-line r e p r o c e s s i n g t o
o b t a i n the improved f u e l u t i l i z a t i o n of t h e break-even b r e e d e r DMSR opt i o n a s soon a s p o s s i b l e and ( 2 ) development ~f a process ( p r o b a b l y using
t h e same b a s i c technology) f o r e v e n t u a l c e n t r a l p r o c e s s i n g of f u e l from once-through DMSRs, p o s s f b l y i n s e c u r e f u e l s e r v i c e c e n t e r s .
5.1.3
Base program s c h e d u l e and c o s t s
h R&D b a s e program has been p r e s e n t e d i n some d e t a i l in t h e program plan.â&#x20AC;?â&#x20AC;&#x2DC;
me p r o j e c t e d c o s t s c h e d u l e ( i n 1 9 7 8 d o l l a r s ) f o r each major
development a c t i v i t y a n n u a l l y from 1980 t o 1994 and a s a t o t a l f o r 1995 through 2011 is g i v e n i n Table 30.
The complete b a s e program is pro-
j e c t e d t o c o s t about $700 m i l l i o n o v e r about 30 y e a r s . Some of t h e c o s t s are t a r g e t e d f o r elether t h e Molten-Salt t o r (MSTR) o r t h e d e m o n s t r a t i o n DXSR ( a s d i s c u s s e d
ita
T e s t Reac-
t h e f o l l o w i n g sec-
t i o n ) , w h i l e o t h e r c o s t s a p p l y g e n e r a l l y t~ t h e MSR develupment program. However, t h e s e c o s t s d o n o t i n c l u d e d e s i g n and c o n s t r u c t i o n c o s t s f o r t h e reactor plants The s c h e d u l e of f u e l p r o c e s s i n g technology development w a s set up f o r t h e c o n c u r r e n t development of on-line p r o c e s s i n g .
This s c h e d u l e c o u l d be
s t r e t c h e d i f t h e once-through c y c l e were chosen f o r the f i r s t DMSRs.
How-
e v e r , t h e development of p r o c e s s i n g technology i s an important g o a l of t h e program i n any e v e n t .
e
Table
30.
Projected
research
and
develnpnent
(Thousands
of
costs
for
1918 dollars)
12YS
61” 1,175 2,170
RZ” 2,070 2,;s”
95” :,xlo 2,455
93” 7”” 2, SF””
765 4”” 1,“““(1
6”” 35” 3,230
4”” 25” 3,670
75 22””
1,060 i,Y””
12,750 b 3,c25
0 3,590
51” 1,755
0 :,h12
xl” 1,560
ion i,i3*
955 30”
1,170 30”
1,502
507 6””
:69 5””
15” 6”Q
lib 65”
137
45”
75
1°C
15”
:co
13”
1””
1””
13,968
2R,ZWb
1”” 7462
l4,Rl”
95,s:ot
L7,29hh
18,8?6
5%
?C,ZSI
XSR base
development
program
114
5.2
Reactor B u i l d Schedule
5.2.1
Reactor sequence
I n a d d i t i o n t o t h e program of base techn~loggr~ u t k i n e dp r e v i o u s b y ,
a series of t h r e e developmental r e a c t o r s c u b m i n a t i ~ gw i t h a s t a n d a r d i z e d cmmercial p l a n t a r e proposed f o r c o n s t r u c t i o n . p l a n is g i v e n in c o n s i d e r a b l e d e t a i l in R e f .
The proposed development
102.
The development sequence would s t a r t with a p r e l i m i n a r y c o n c e p t u a l
d e s i g n for a k800-MWe DMSR (which would a c t u a l l y be t h e second r*eactor
i n t h e s e r i e s ) t o f u r t h e r d e f i n e t h e d e v e l o p m e ~ tproblems.
This would
be followed by c o n s i d e r a b l e c o m p ~ n e n tdevelopment ( i n t h e base technoPogy
program), a f t e r which the MSTR would be designed.
The MSTR i s proposed
eo be i n t h e 108- to 250-MWe s i z e r a n g e , which would employ components i n the one-fifth t~ full-scale range (based on the EO0Q-MMe conceptual
design).
Most of the MSTR eomponents would be tested i n an MSTR non-
r a d i o a c t i v e mockup b e f o r e the MSTR w a s a c t u a l l y assembled. During c o n s t r u c t i o n of t h e MSTR, component d e v e l o p m e ~ tand d e s i g n
of t h e p r o t o t y p e DMSR would proceed, w i t h d e t a i l e d d e s i g n and c o n s t r u c t i o n c o i n c i d e n t w i t h o p e r a t i o n of t h e MSTW.
This would a l l o w c l o s e feed-
back from WSTR e x p e r i e n c e i n t o t h e d e s i g n and c o n s t r u c t i o n o f the prototype.
F i n a l l y , d e t a i l e d d e s i g n of t h e f i r s t standard DMSR would proceed
d u r i n g cons$rUctiOll of t h e p r o t o t y p e
SO
cOIlstrUCtion Of t h a t s"eaCtop Could
begin s h o r t l y a f t e r t h e p r o t o t y p e s t a r t e d o p e r a t i o n .
5.2.2
Schedule and c o s t s
A p o t e n t i a l r e a c t o r b u i l d s c h e d u l e i s g i v e n i n Fig. 28.
This i s t h e
same development s c h e d u l e as w a s proposed f o r t h e break-even b r e e d e r DMSR option.9
~n t h e l a t t e r case, t h e assumption was t h a t development of t h e
o n - l i n e r e p r o c e s s i n g system proceeded i n p a r a l l e l w i t h development of t h e reactors.
T h e r e f o r e , no c r e d i t can be taken f o r o m i t t i n g p r o c e s s d e s i g ~
i n t h e s c h e d u l e f o r t h e once-through DMSR,
However, removal of t h e pro-
cess development f r m the expected c r i t i c a l p a t h f o r r e a c t o r development removes a major s o u r c e of u n c e r t a i n t y and p o t e n t i a l d e l a y from t h e development schedule,
115
116
The c o n s t r u c t i o n cost of t h e MSTR way be e s t i m a t e d by u p d a t i n g t h e c o s t estimate f o r t h e MSTR p r e p a r e d i n 1 3 9 5 f o r t h e MSBR program.
Using
a c o n s t r u c t i o n materials and l a b o r i n c r e a s e of P2%/year g i v e s a m u l t i p l i e r of 1.4
and a c o s t f o r t h e MSTR i n 1978 of about $680 m i l l i o n .
A d e t a i l e d estimate of the c o s t of a l0QO-MWe DMSR based on a mature
technology is given i n
it
fol%owing s e e t i o n ,
From t h i s , we have e s t i m a t e d
t h e c o s t of a f i r s t s t a n d a r d i z e d DMSR by a p p l y i n g a f a c t o r of 1.5 t o a l low f o r i n c r e a s e d f i r s t - o f - a - k i n d
c o s t s and t h e c o s t of a l e a d
CQIIIIIW~C~~
p r o t o t y p e by a p p l y i n g a n o t h e r f a c t o r o f 1.5 t o a l l o w f o r i n c r e a s e d prototype costs,
Using t h i s p r o c e d u r e e t h e c o s t o f a POOO-Mk p r o t o t y p e DMSR
i s e s t i m a t e d to be $1470 miPliom and t h e f i r s t s t a n d a r d i z e d DMSR $980 million The p r o t o t y p e DMSR need n o t be as l a r g e a s 1800 MWe; t h e c o s t could be reduced some, f o r example, by b u i l d i n g a 5OO-We p r o t o t y p e w i t h two steam-generator Poops rather t h a n f o u r .
E s t i m a t i n g t h e p r o b a b l e c o s t of e x p e r i m e n t a l and p r o t o t y p e r e a c t o r s
fn advance of d e s i g n i s exseedingPy d i f f i c u l t .
The c o s t e s t f m a t e s pre-
s e n t e d were made by a s t a f f t h a t has had e x p e r i e n c e i n t h e d e s i g n and ope r a t i o n of e x p e r i m e n t a l r e a c t o r s , p a r t i c u l a r l y t h e MSRE.
glke
MSRE w a s
c o n s t r u c t e d and o p e r a t e d w i t h i n budget, which is a n i n d i c a t i o n t h a t t h e technology i s r e a s o n a b l y well understood and t h a t c o s t estimates f o r fut u r e r e a c t o r s are probably r e a l i s t i c , i f
R Q ~ absolutely
accurate.
Con-
verselye t h e proposed r e a c t o r s are a l a r g e step up i n s c a l e from t h e MSRE and would be s u b j e c t t o t h e v a g a r i e s of t h e l i c e n s i n g p r o c e s s f o r a new
reactor t y p e ,
These f a c t o r s i n t r o d u c e u n c e r t a i n t i e s i n t o t h e c o s t e s t i -
mates whish are beyond e v a l u a t i o n a t t h e p r e s e n t t i m e .
5.3
Economic Performance of Commercial DMSR
The p r o j e c t e d c o s t of power from a c ~ m ~ r ~DMSR i a l c a n be e s t i m a t e d
o n l y a p p r o x h a t e l y because t h e DMSR i s in t h e c o n c e p t u a l s t a g e and n o t even a d e t a i l e d c o n c e p t u a l d e s f g n has been prepared.
However, by t a k i n g
advantage of the s i m i l a r i t y o f t h e BMSR t o t h e MSBR ( f o r which a d e t a f l e d c o n c e p t u a l d e s i g n and c o s t estimate have been p r e p a r e d ) and by c a r e f u l l y comparing t h e DMSR w i t h EWW and c o a l - f i r e d power p l a n t s (which would have
.
... ........ .. . w.:. ..>
aa 7 some components i n common w i t h o r similar t o t h o s e of a DMSR), a reasona b l e c o s t estimate can be made. A c o s t estimate was prepared f o r t h e MSBR i n 1998 and a p p e a r s i n
Ref. 8.
These c o s t s were t a k e n ( f o r most a c c o u n t s ) a s t h e b a s i s f o r t h e
DMSR estimate using t h e f o l l o w i n g method.
1.
TIE c o s t s were a d j u g t e a t o t a k e i n t o account t h e d i f f e r e n c e s P H ~
s i z e o r o t h e r r e q u i r e m e n t s f o r t h e DMSR.
For example, t h e r e a c t o r ves-
sel c o s t was i n c r e a s e d t o t a k e i n t o account t h e l a r g e r s i z e of t h e BMSR vessel0
2.
The 1978 c o s t s were i n c r e a s e d by a m u l t i p l i e r based on t h e i n -
c r e a s e i n c o n s t r u c t i o n materials and l a b o r c o s t s from 1978 t o 1978. m u l t i p l i e r w a s c a l c u l a t e d t o be i n t h e range 2 . 3 t o 2.5; t i v e , t h e multiplier 2.5 was used.
'Fhe
t o be c ~ n s e % ~ a -
This r e p r e s e n t s a n annual r a t e of in-
c r e a s e of about 12X,
In a d d i t i o n , t h e c o s t s of a pressurized-water r e a c t o r (PWR), a b a i l i n g - w a t e r r e a c t o r (BUR),
and a c o a l - f i r e d
mated usimg t h e CONCEPT V code. "3 accounts were e s t i m a t e d based
CONCEPT e s t i m a t e s .
p l a n t i n 1978 were e s t i -
mere a p p r o p r i a t e , some DMSR c o s t the analogous account i n one of the
For example, t h e t u r b i n e - g e n e r a t o r
c o s t w a s based on
the c o a l - f i r e d p l a n t estimate because t h e same t y p e of s u p e r c r i t i c a l steam t u r b i n e would be used.
En r e p o r t i n g t h e r e s u l t s , the c o s t estimates f o r t h e PWK and ( i n the appendix) t h e c o a l - f i r e d
p l a n t are g i v e n f o r comparison.
(The c o s t s
of the BWR w e r e n o t s u b s t a n t i a l l y d i f f e r e n t from t h e PWR.)
The r e s u l t s of t h e estimates f o r c a p i t a l , monfuel o p e r a t i o n and maintenance, and decommissioning c o s t s are p r e s e n t e d i n t h e n e x t t h r e e sections.
The fuel c y c l e c o s t s were c a l c u l a t e d i n d e p e n d e n t l y and a r e
presented i n a f o u r t h section.
5.5.1
Capital costs
The b a s e s f o r t h e c a p i t a l c o s t estimates a r e g i v e n i n Table 31. Some minor a d j u s t m e n t s i n t h e code of a c c o u n t s used i n t h e 1970 MSBR c o s t
estimate were r e q u i r e d t o c~nfom-mt o t h e p r e s e n t code of accounts.
118 Table 31.
Bases f o r c a p i t a l o r investment c o s t estimates Excluded c o s t s
Bases Plant s i t e , Middletom (New England area)
eode of a c c o u n t s , NUS-531 and NUWG-8241, -0242, -0243 ( d i r e c t and i n d i r e c t a c c o u n t s ) Cost d a t e , 1978.6
Nuclear l i a b i l i t y i n s u r a n c e
Regulation codes a n d s t a n d a r d s , 1976
I n t e r e s t during c o n s t r u c t i o n
Evaporative c001511g
E s c a l a t i o n during c o n s t r u c t i o n
Commercial p l a n t s i z e (optimum), loo0 me
Contingency allowance
Cash flow, 1978 t o eomercial o p e r a t i o n i n 1988
OWtIerSi C Q s t s
C a p i t a l c o s t s i n 1978 d o bl ar s 1kWe
General and a d m i n i s t r a t i v e
%lTcPUdiI'lg expenses f o r t a x e s and p r o p e r t y i n s u r a n c e , spare parts, s t a f f training
site s e l e c t i ~ n ,and o t h e r owner-related expenses
S a l t and f u e l i n v e n t o r y , incIuding chemical p r o c e s s i n g system
me
c a p i t a l c o s t s estimated f o r t h e DHSR and t h e PWR by major ( t w o -
digit) accounts are given i n Table 32.
A f u r t h e r breakdown ( f o r three-
d i g i t a@co%mts), which a i s o i n c l u d e s the estimate f o r the coaa-fired p l a n t , i s g i v e n i n Appendix A (Table A.1).
A cumulative c a s h f l a w sched-
u l e f o r t h e DMSR (adapted t o the CONCEPT V c a s h â&#x201A;ŹHow s c h e d u l e ) i s a l s o g i v e n i n Appendix A (Table ik.2).
The c a p i t a l c o s t s of t h e f u e l t r e a t m e n t
f a c i l i t i e s are n o t i n c l u d e d h e r e b u t a r e taken i n t o account i n the f u e l
cycle c o s t (see Sect. 5 . 3 . 4 ) .
However, space and equipment f o r handling
t h e c o o l a n t s a l t a r e included i n the r e a c t o r p l a n t estimates. The DXSR i s e s t i m a t e d t o c o s t $653 m i l l i o n , o r about .$65O/kWe i n 1978 dollars.
This compares w i t h about $600/kWe f o r a PWR p l a n t and $38O/kWe
f o r a coal p l a n t without flue-gas c l e a n i n g .
Table 3 % .
C a p i t a l c o s t estimate O f commercial 1-GWe DKsa and PWR p l a n t s
(Expressed i n m i l l i o n s of 1998.0 d o l l a r s ) Ae eo un t No *
Item
DKSR
JPWR
Direct C o s t s 20
21 22 23
24 25 26
Land and Land r i g h t s S t r u c t u r e s and Lmpr ovement s Reactor p l a n t equipment Turbine p l a n t equipment E l e c t r i c p l a n t equipment Miscellaneous p l a n t equipment Naira condenser h e a t r e j e c t i o n system
2
1124 180 180 54 317
E4 ~
T o t a l d i r e c t costs
491
2 11%
139 113 44 1% 22
444
Indirect costs 91 92
93
COnstructiQIl S e H V i C e s Home o f f i c e e n g i n e e r i n g and s e r v i c e F i e l d o f f i c e e n g i n e e r i n g and s e r v i c e Total indirect costs
Total p l a n t c a p i t a l c o s t
95 53 34
-
70
53 30
162
153
65%
597
A d i s c u s s i o n OF some sf t h e i m p o r t a n t assmptiofts ana results f o r
t h e major a c c o u n t s f o l l o w s e
Account 21.
S t r u c t u r e s and improvements.
The primary and major
s t r u c t u r e i n t h e DMSR p l a n t i s t h e r e a c t o r containment b u i l d i n g .
While
l a y o u t s of i n t e r n a l areas would d i f f e r , comparable c o s t s w i t h t h e PWR
are expected.
An allowance h a s been e n t e r e d f o r p l a n t l i f e t i m e s t o r a g e
of r a d i o a c t i v e l y contaminated i t e m s i n c l u d i n g p r o v i s i o n s t o f a c i l i t a t e decommissioning o p e r a t i o n s .
The o t h e r s t r u c t u r e s p a r a l l e l t h e PWR s t r u c t u r e s i n c o s t . b i n e rooms are c o n s i d e r e d comparable.
The tur-
A s u p e r c r i t i c a l steam t u r b i n e f o r
t h e DMSR i s c o n s i d e r a b l y smaller than a PWR t u r b i n e , but s p a c e w a s allowed f o r extra p i p i n g and equipment t h a t may be r e q u i r e d t o adapt t h e super-
c r i t i c a l system t o a m o l t e n - s a l t steam g e n e r a t o r .
Space was a l s o allowed
f o r h a n d l i n g and s t o r i n g c o o l a n t s a l t fog. noma1 o p e r a t i o n s and f o r
120 s t o r i n g the blowdown mterialb t h a t would r e s u l t froan a
lnajQK
Steam leak
i n t h e s t e a m generator. Account 2 2 , heat-transfer
R e a c t o r p l a n t equipment,
The r e a c t o r and a s s o c i a t e d
s y s t e m c o s t s have been updated from t h e 1978 estimate u s i n g
a m u l t i p l i e r ~f 2.5.
About 10% of t h i s t o t a l ( a c c o u n t s 2 2 1 and 2 2 2 ) has
been added f o r engineered s a f e t y f e a t u r e s (which were n o t p r e v i o a a s ~ ycons i d e r e d ) and f o r l a r g e r s a l t v o l u n e s ,
%his amount a l s o c o v e r s e x t e r n a l
h e a t d i s s i p a t i o n equipment â&#x201A;Źâ&#x20AC;&#x2DC;or engineered s a f e t y f e a t u r e s .
Radioactive
waste h a n d l f ~ gi n the DMSR was e s t i m a t e d t a c o s t a b o u t t h e same a s radioa c t i v e waste p r o c e s s i n g f o r t h e PWR.
Fuel handling and s t o r a g e and maintenance equipment were updated from t h e MSBR estimate u s i n g t h e 2.5 m u l t i p l i e r .
An allowance was made f o r t h e
c o n t r o l f e a t u r e s n e c e s s a r y f o r making t h e p l a n t o p e r a t e
011
t h e salt-steam
cycle e Account 23.
T u r b i n e p l a n t equipment.
T h i s account p a r a l l e l s t h e
c o a l p l a n t c a s e , whish u s e s s u p e r c r i t i c a l steam-cycle equipment.
The
feed-heating account was i n c r e a s e d 50% t o allow f o r o p e r a t i n g d e s i g n feat u r e s p e s u l t a r to t h e Salt-%QQpa p p l i c a t i 0 R .
Account 2 4 .
E l e c t r i c plant equipment.
Except f o r p r o v i s i o n of about
25 Mwe of e l e c t r i c h e a t i n g a s s o c i a t e d w i t h t h e s a l t l o o p s , t h i s account i s s i m i l a r t o t h e PWR case.
Account 25.
Miscellaneous plant equipment.
The a u x i l i a r y steam sup-
p l y c o s t f o r t h e PWW h a s been i n c r e a s e d t o a d j u s t t h e PWR c o s t t o t h e DMSR basis Account 26.
Main condenser h e a t r e j e c t i o n system.
Design f o r t h e
coal p l a n t i s comparable t o t h e DMSW; t h e r e f o r e , t h e same c o s t s have been assumed e Accounts 91, 9 2 , and $ 3 ,
Indirect costs.
The DMSR c o s t s are based
on PWR c o s t s a d j u s t e d upward f o r t h o s e a c c o u n t s i n which h i g h e r l a b o r requirements are a n t i c i p a t e d .
5,3.2
ESo~fuel oloeration and maintenance c o s t
Estimates of n o n f u e l o p e r a t i o n and maintenance (06M) c o s t s of 2.82 wills/kh% a r e based on t h e s i n g l e - u n i t base-load
plant.
me
procedure
._
121 .. .. .....p..
,.,.,.,.,
i s based on t h e ONCOST code. I O 4
Annual expenses a r e d e r i v e d f o r s t a f f ,
maintenance m a t e r i a l s , s u p p l i e s and expenses, n u c l e a r liability i n s u r ante, G
*
o p e r a t i n g f e e s , and g e n e r a l a d m l n i s t r a t i v e a c t i v i t i e s .
Operation
and maintenance c o s t s a r e p r e s e n t e d f n 1938 d o l l a r s and are d i v i d e d i n t o f i x e d (demand r e l a t e d ) and v a r i a b l e ( e n e r g y - r e l a t e d )
components.
S t a f f r e q u i r e m e n t s a r e g i v e n i n Table 3% f o r a one-unit plant.
An-
n u a l c o s t s have been d e r i v e d from t h e O&M c o s t code w i t h m o d i f i c a t i o n s t o a d j u s t t h e maintenance-labor r a t i o t o 7 0 : 3 0 .
Estimates were t h a t a DKSR
might r e q u i r e major p l a n t work a t ten-year i n t e r v a l s ( o v e r and above PWR r e q u i r e m e n t s ) , f o r which maintenance l a b o r was i n c r e a s e d -50%.
me
summary o f annual 6 & M c o s t s i s g i v e n i n Table 3 4 , 5.3.3
Decommissioning and d i s p o s a l c o s t
Costs f o r decontamination and decommissioning of t h e f a c i l i t i e s would be i n c u r r e d a t t h e end of p l a n t l i f e .
A nuellear waste working g r o u p cow-
p r i s e d of DOE, Nuclear Regulatory Commission (NRC),
and Environmental Pro=-
t e c t i o n Agency (EPA) o f f i c i a l s i s working t o i d e n t i f y l e g i s l a t i v e needs
on h a n d l i n g n u c l e a r wastes,
P r e f e r e n c e i s wow g i v e n f o r dependence on
"engineered and n a t u r a l b a r r i e r s " f o r controP of o n - s i t e material a f t e r decommissioning w i t h f a l l - b a c k dependence on i n s t i t u t i o n a l c o n t r o l s f o r a " f i n i t e time.'o
The g r o u p a l s o o p t s f o r d i s m a n t l i n g a decommissioned
s i t e a f t e r a s h o r t decay p e r i o d , r a t h e r t h a n e i t h e r of two o t h e r s p t i s n s , w h i c h are entombing and mothballing n u c l e a r facilities.
The c o s t of d i s m a n t l i n g a DMSR i s expected t o be g r e a t e r t h a n f o r a n LWR because t h e a c t i v i t y l e v e l of components i n the primary c i r c u i t
i s higher.
A number of estimates of t h e decommissioning c o s t of LWRs
have been p r e p a r e d ; a s a b a s i s f o r our e s t i m a t e s , we have s e l e c t e d a r e p r e s e n t a t i v e r e c e n t (1978) estimate by t h e Tennessee V a l l e y A u t h o r i t y (TVA) f a r t h e i r Yellow Creek p l a n t e a r l y s i t e review.
The e s t i m a t e d de-
commi~sioning c o s t f o r t h i s p l a n t was $78 m i l l i o n f o r a BWR.
I f we as-
sume t h a t t h e c o s t f o r a DMSW would be about 10% g r e a t e r , t h e n t h e e s t i mated decommissioning c o s t f o r a DMSR would be about $86 m i l l i o n .
A
"This i s excluded d u r i n g c o n s t r u c t i o n p e r i o d when no f u e l i s on
site.
122 Table 33.
Staff requirement f o r one 1-GWe DNSR power p l a n t
Employee t y p e
Number
Plant manager's office Manager Assistant Quality assurance Environmental c o n t r ~ l P u b l i c relations Training Safety A d ~ a i n i s t r a t i o nand services Health s e r v i c e s Security
Subt 0 tal
1 i 3 1 1 1 1
13 1 66 89
Operatisms
2 33 Subtotal
35
Maintenance Supervision Crafts Peak maintenance, a n n u a l i z e d Subtotal
8
16 96
120
T e c h n i c a l and e n g i n e e r i n g Reactor Radiochemical I n s t r u m e n t a t i o n and control Technical support s t a f f Subtotal
1 2
2 17
22
-
Total
2 66
Less s e c u r i t y
280
Less s e c u r i t y and peak mintemance
184
L;
.v .....< ..... .. ..." -3
123
Table 3 4 .
Summary of annual nonfuel Q&M c o s t s f o r base-load steam-electric power p l a n t s i n 1978. oa
Plant type
DMSR w i t h e v a p o r a t i v e c o o l i n g towers
Number of u n i t s per s t a t i o n
P
Thermal input: per unit, 'MWt
2270
P l a n t n e t heat r a t e
7755
Plant net efficiency, 2
44 00
Power o u t p u t , net,
0
me
PO00
Annual n e t g e n e r a t i o n , million lewh
6570
Pla n t fac to P
8.75
Annual costs, thousands
0%
dollars
S t a f f , 266 persons a t $23,412
6228
Maintenance material Fixed Variable S u p p l i e s and expenses F i x e d , plant Variable, plant I n s u r a n c e and fees Comercial l i a b i l i t y bnsuranee Government l i a b i l i t y i n s u r a n c e R e t r o s p e c t i v e premium P n s p e ~ t i of e~e~s and expenses A d m i n i s t r a t i v e and g e n e r a l Total f i x e d costs T o t a l v a r i a b l e costs T o t a l annual OdM c o s t s
6555 6555 6
3317 3800
317 488 2 84 18
6 100 2367 18,500
317 18,875
Unit c o s t s , m i l l s / k % ( e ) Fixed u n i t O&M c o s t s V a r i a b l e u n i t O&M c o s t s T o t a l u n i t O&M c o s t s
2*75 0.07 2.82
aExcludes the s a l t i n v e n t o r y l o s s e s ; assumes nuclear i n s u r a n c e a t LWR sates.
124
l a r g e u n c e r t a i n t y i s p r e s e n t i n this estimate, of c o u r s e , because of t h e l i m i t e d e x p e r i e n c e i n decommissioning.
However, t h e c o s t sf decommission-
ing does n o t appear t o b e a l a r g e f r a c t i o n of t h e c o s t of t h e c o n s t r u c -
tion, and t h e p r e s e n t worth of e x p e n d i t u r e s t o be made i n t h e f u t u r e i s small.
'Fhe p r e s e n t worth of t h e estimated c o s t of decommissioning a DMSR
40 y e a r s a f t e r s t a r t - u p , d i s c o u n t e d t o t h e s t a r t - u p d a t e a t a 4.5% d i s count f a c t o r , would be about $15 m i l l i o n .
5.3*4
Fuel cvcle costs
A% t h i s s t a g e of development and o p t i m i z a t i o n of a ~ n ~ e - t h r o u g DMSR, h s e v e r a l assumptions are n e c e s s a r y i f a f u e l c y c l e c o s t i s t o be e s t i m a t e d . One assumption 1s t h a t t h e i n i t i a l f u e l charge w i l l c o n s i s t of 7 4
mole 2 7LiF, 16.5 mole % BeF2, 8.23 mole 2 ThF4, and 1.27 mole X UF, p l u s UP3.
If, as seems r e a s o n a b l e , an afkswanee is made for an additional 2%
o f molten f u e l i n t h e d r a i n t a n k , t h e i n i t i a l fuel s o l v e n t w i l l r e q u i r e
149 m e t r i c t o n s of ThF,, BO2"
E13 m e t r i c t o n s of L i F , and 45.6 metric t o n s of
I n a d d i t i o n , 23.5 metric t o n s of UP, e n r i c h e d t o 20% i n 23% i s re-
q u i r e d ; t h i s i s e q u i v a l e n t t o 804 m e t r i c t o n s of U308 and would r e q u i r e
8.05
x 105
swu f o r
i t s enrichment.
Tke p u r i f i e d f u e l d e l i v e r e d t o t h e re-
a c t o r s t o r a g e t a n k would consist of 33.1 metric t o n s (7.30
x
~ b 05 )
material T o t a l c o s t of the i n i t i a l f u e l i s based on U308 a t $35/lb, s e p a r a t i v e
work a t $SO/SWU, BeF2 a t $ 1 5 / l b , thorium at $15/kb Tho2$ and SLiF a v a i l a b l e a t $ 3 J g of contained
*
ki,
AII additional $ 2 / l b of t e t r a f l u o r i d e h a s
been a l l o t t e d f o r c o n v e r s i o n of Tho2 to n F 4 and f o r CQrWerSiQn of UPg to
UF$.
The fuel, wade by mixing t h e powdered i n g r e d i e n t s , must be p u r i f i e d
in the molten s t a t e b e f o r e use (as d e s c r i b e d in p r e v i o u s s e c t i o n s ) ,
Given
the component f l u o r i d e s a t t h e p r i c e s above, t h e assunaption i s t h a t t h i s p u r i f i c a t i o n can be performed f o r $ $ / l b of f i n i s h e d product. With t h e s e assumptions, t h e t o t a l c o s t of t h e i n i t i a l DMSR f u e l charge i s near $225 m i l l i o n (see Table 35).
* his
If w e assme t h a t the annual
i s t h e o f f i c i a l p r i c e f o r s m a l l q u a n t i t i e s of ~9,99+ a It i s almost c e r t a i n l y t o o h i g h ( p r o b a b l y f i v e - f o l d ) l i t h i u m were a c t u a l l y used i n such q u a n t i t i e s .
use i n PWRS.
~ fio r if
125 ...... ...,* x..:.w
Table 3 5 .
Cost of i n i t i a l f u e l charge f o r once-through DMSR ( 3 3 1 metric t o n s f u e l )
cost
Fuel
(dollars)
Fuel s o l v e n t Mater tals 'LiF (30.46 metric t o n s l i t h i u m a t $3/g) ThP4 ( 1 2 7 . 6 8 metric t o n s Tho2 a t $ â&#x201A;Ź 5 / P b ) BeP2 (45.60 metric t o n s a t $ 1 5 / l b )
Uranium (883.8 metric t o n s U308 a t $ 3 5 / l b ) S e p a r a t i v e work ( 8 . 0 5 x 105
swu
a t $80)
Conversion and p u r i f i c a t i o n msrium (148.96 metric t o n s ThP4 a t $ 2 / l b ) uranium (23.50 metric t o n s U F ~a t $ 2 / % b ) F u e l m i x t u r e (331.2 metric t o n s a t $ 6 / l b ) T o t a l c o s t of i n i t i a l f u e l Annual c h a r g e ( 1 2 % )
u s e c h a r g e is 122, t h i s i n i t i a l f u e l c o n t r i b u t e s $26.9 m f l l i o n / y e a r t o the f u e l cycle cost. A once-through DMSR must add uranium a t more o s l e s s r e g u l a r i n t e r -
v a l s over its o p e r a t i n g l i f e t i m e .
Though o t h e r modes of a d d i t i o n a r e pos-
sible, f o r t h i s assessment w e assumed t h a t t h e uranium a d d i t i o n s will b e
made as a l i q u i d 'LiF-UFk a b o u t 540OC) e
m i x t u r e c o n t a i n i n g 3 0 mole % UF4 ( m e l t i n g a t
Such a d d i t i o n s would a p p r e c i a b l y i n c r e a s e t h e 'LFF
c e n t r a t i o n of t h e f u e l .
con-
Adjustment of t h e UP3/UF4 r a t i o i s assumed t o be
done by i n s i t u r e d u c t i o n of UF4 w i t h m e t a l l i c b e r y l l i u m .
The f u e l stream
i s assumed t o be t r e a t e d (once i n each 1008 full-power d a y s ) w i t h an anhydrous HF-Hz m i x t u r e t o remove i n a d v e r t e n t o x i d e c o n t a m i n a t i o n ; t h e res u l t i n g o x i d a t i o n of UF3 i s managed by a d d i t i o n a l . r e d u c t i o n w i t h b e r y l l i m . With t h i s mode of o p e r a t i o n , BeF2 e q u i v a l e n t ts n e a r l y 6% of t h a t i n t h e 4
o r i g i n a l f u e l c h a r g e would be added over t h e r e a c t o r l i f e t i m e .
Such ad-
d i t i o n s of ?LiF and BeF2 d i l u t e t h e f u e l and a p p r e c i a b l y i n c r e a s e i t s volume s o t h a t a n i n c r e a s i n g ( t h o u g h r e l a t i v e l y s m a l l ) f r a c t i o n of t h e
__.
...... . i..
f u e l would remain in t h e reastor d r a i n tank.
me d i s s o l v e d p a r a s i t i c
neutron a b s o r b e r s , of c ~ u r s e ,would a l s o be d i l u t e d .
A t t h i s s t a g e of
DMSR deVelOpment, no d e t a i l e d Q p t i m i Z a t i O n f Q P such f u e l d i l u t i o n h a s been made.
For t h i s assessment, we assumed t h a t , as a consequence of
t h i s d i l u t i o n e f f e c t by f u e l maintenance, the uranium
addition^ shown in
Table I S p l u s uranium (at. 20% e n ~ i c h w e n t )and thorium e q u i v a l e n t t o 3% of t h e i n i t i a l i n v e n t o r y would be r e q u i r e d over t h e 38-year o p e r a t i n g
life o f t h e r e a c t o r . of 7LiF-ThP4
Thorium i s assumed t o be added as a molten m i x t u r e
contair~ing 28 mole % ThFq ( m e l t i n g p o i n t s f 570째C).
Table 36 shows t h e average annual c o s t of t h e s e a d d i t i o n s and f u e l maintenance.
C o s t s of ThF4, UPh, L i p , and s e p a r a t i v e work a r e t h o s e de-
scribed previously.
Metallic b e r y l l i u m i s assumed t o c o s t $T5/lb.
of preparing t h e 'LiF-ThFb
cost
and 7 L i F - U F ~ m i x t u r e s was assumed t o be $20/lb
( p l u s t h e c o s t of t h e s o l i d raw m a t e r i a l s ) .
T a b l e 36. Average annual c o s t 5f f u e l a d d i t i o n s and maintenance cost
(dollars)
E2 7 There are no d e t a i l e d estimates of t h e c a p i t a l o r o p e r a t i n g c o s t s of t h e equipment f o r W-H2 t r e a t m e n t t o remove (I2-from t h e s m a l l b a t c h e s of
fuel.
For t h i s a s s e s s m e n t , we assumed t h a t t h e c a p i t a l c o s t i s $15 x 106
and t h a t i t s o p e r a t i o n c o s t s $500,00O/year. A s a consequence of t h e assumptions and t h e estimates d e s c r i b e d , t h e c o s t of producing 6.57 x 10â&#x20AC;&#x2122; k m j y e a r ( o p e r a t i o n a t 75% p l a n t f a c t o r ) ap-
p a r e n t l y a v e r a g e s $34,650,000, and t h e r e s u l t i n g f u e l c y c l e c o s t i s about
5.3 mills/krn. Note t h a t , i f t h e p r i c e of 7 L i were lowered by f i v e - f o l d
[ t o SO.4O/g
( $ 2 7 2 / l b ) l , t h e r e s u l t i n g f u e l c y c l e c o s t f o r t h e once-through DMSR would
fall t o s l l i g h t b y below 4 mills/kkJh. 5.3.5
N e t power cost
Because t h e r e t u r n on t h e p l a n t c a p i t a l investment woslPd be a subs t a n t i a l f a c t o r i n t h e n e t c o s t of power from a DMSR and because a number
of terms t h a t would be important i n a commercia% p l a n t were omitted i n dev e l o p i n g t h e capital c o s t estimate, p r o j e c t i n g a p o t e n t i a l n e t c o s t f o r DMSR power i s n o t a p p r o p r i a t e .
S u b s t a n t i a l l y more d e s i g n and development
would be r e q u i r e d t o s u p p o r t a r e a s o n a b l y r e l i a b l e estimate.
However, the
p r e v i o u s d i s c u s s i o n s s u g g e s t t h a t t h e c o s t of power from a BMSR
not
be g r e a t l y d i f f e r e n t t h a n that from o t h e r nuclear systems.
5.4
Licensing
Mthough two e x p e r i m e n t a l MSRs have been b u i l t and o p e r a t e d i n the United S t a t e s under government ownership, none h a s e v e r been s u b j e c t e d t o
formal l i c e n s i n g o r even d e t a i l e d review by t h e NRC.
A s a consequence,
t h e q u e s t i o n of l i e e n s a b i l i t y o f MSRs remains open; t h e NRC h a s not y e t i d e n t i f i e d t h e major l i c e n s i n g i s s u e s and the concept has n o t been eons i d e r e d by v a r i o u s p u b l i c i n t e r e s t o r g a n i z a t i o n s that a r e o f t e n involved i n n u c l e a r p l a n t l i c e n s i n g procedures.
F u r t h e r , t h e l i c e n s i n g experience
of s o l i d - f u e l e d r e a c t o r s can be used as o n l y a g e n e r a l g u i d e because of s i g n i f i c a n t fundamental d i f f e r e n c e s between t h o s e systems and MSB.
Pre-
sumably, MSRs would be r e q u i r e d t o comply w i t h t h e intents, r a t h e r t h a n
128
t h e l e t t e r , of NRC r e q u i r e m e n t s , p a r t i c u l a r l y where methods of compliance
are concept-specific. Any s p e c i a l i s s u e s t h a t might a r i s e from p u b l i c c o n s i d e r a t i o n of an
MSR l i c e n s e probably would be c l o s e l y a s s o c i a t e d w i t h t h o s e f e a t u r e s of
t h e r e a c t o r concept t h a t a f f e c % i t s s a f e t y and environmental a t t r i b u t e s . A number of t h e s e f e a t u r e s and a t t r i b u t e s have been i d e n t i f i e d i n e a r l i e r S ~ C ~ ~ O R SOwe ,
major d i f f e r e n c e between more c o n v e n t i o n a l r e a c t o r s and
MSRs i s i n t h e confinement of r a d i o a c t i v e f u e l and f i s s i o n products.
b a r r i e r s t o fission-product
The
release i n LWRs are ( I ) t h e f u e l element clad-
dingp ( 2 ) t h e r e a c t o r c o o l a n t p r e s s u r e b o u n d a ~ y(RCPB) ( i o e e 9t h e primaryPoop v e s s e l s , components, and p i p i n g ) , and ( 3 ) t h e r e a c t o r c ~ ~ t a i r n e n t , T h i s arrangement r e l i e s h e a v i l y on t h e ECCS t o prevent c l a d d i n g f a i l u r e i n t h e e v e n t of c o o l a n t l o s s by f a i l u r e of t h e RCPB.
*
Iqithsut adequate
E N S performance, a f a i l u r e of t h e WCPR conceivably @ o d d l e a v e t h e f i s s i o n p r o d u e t s w i t h o n l y one l e v e l of confinement i n t a c t .
A d i f f e r e n t s i t u a t i o n would p r e v a i l in an MSR because t h e f i s s i o n -
p ~ ~ d u cconfinement t b a r r i e r s are d i f f e r e n t .
The r e l e v a n t b a r r i e r s i n an
MSR are (1) t h e RCPB, ( 2 ) t h e s e a l e d r e a c t o r c e l l s o r p r i m a r y c s n t a i m e n t ,
and ( 3 ) t h e r e a c t o r containment b u i l d i n g o r secondary containment.
Be-
cause t h e f u e l i s a c i r c u l a t i n g l i q u i d t h a t i s also t h e primary ~ o ~ l a n t , t h e r e i s no t h i n f u e l clad t h a t c o u l d f a i l q u i c k l y on EQSS of c o ~ l f n go r
in a r e a c t o r power/temperature t r a n s i e n t .
~ h r a s , an e n t i r e class of po-
t e n t i a l a c c i d e n t s could be e l i m i n a t e d from t h e l i c e n s i n g c o n s i d e r a t i o n . F a i l u r e of t h e RCPB i n an MSR would cause no s h ~ r t - t e r m t h r e a t t o e i t h e r
of t h e remaining t w o b a r r i e r s t o f i s s i o n - p r o d u c t
release.
'Flze u l t i m a t e
requfrements f o r l o n g e r - t e r n p r o t e c t i o n of t h e f i s s i o n - p r o d u c t b a r r i e r s cannot be d e f i n e d without e x t e n s i v e system d e s i g n and s a f e t y a n a l y s i s , b u t p r e l i m i n a r y c o n s i d e r a t i o n s suggest 'chat t h e requirements may n o t be extensi%re, Although r a d i o a c t i v e materials would have t h r e e l e v e l s of confinement d u r i n g n o r m 1 o p e r a t i o n , a d i f f e r e n t c o n d i t i o n could e x i s t d u r i n g maintenance o p e r a t i o n s t h a t r e q u i r e d opening of t h e primary containment,
*F a i l u r e
of the WCPR is one sf t h e mechanisms f o r initiating a Psssof-coolant a c c i d e n t (LOCA>.
129
p a r t i c u l a r l y i f s u c h a c t i v i t i e s were undertaken a f t e r an RCPB f a i l u r e . However, i n a shutdown s i t u a t i o n , s u b s t a n t i a l confinement can be a c h i e v e d through a c c e s s l i m i t a t i o n and c o n t r o l l e d v e n t i l a t i o n because, a s shown by MSRE e x p e r i e n c e , f i s s i o n p r o d u c t s are n o t r e a d i l y r e l e a s e d and d i s -
persed from s t a g n a n t s a l t .
Thus, whether f i s s i o n - p r o d u c t confinement
would be a n e t favorable o r u n f a v o r a b l e f a c t o r f o r a BMSR i n a l i c e n s i n g proceeding i s n o t c l e a r a t t h i s t i m e . A t t h e end of r e a c t o r l i f e , a DMSR without f u e l p r o c e s s i n g would
c o n t a i n t h e e n t i r e f i s s i o ~ - p r ~ d u ci nt v e n t o r y a s s o c i a t e d w i t h t h e 30-year o p e r a t i n g h i s t o r y of t h e p l a n t .
Some of t h e v o l a t i l e n u c l i d e s , e s p e c i a l l y
8 5 K r and 3H, would have been accumulated i n s t o r a g e c o n t a i n e r s o u t s i d e t h e primary c i r c u i t , and t h e n o b l e metals would have p l a t e d o u t on s u r f a c e s in t h e primary c i r c u i t .
The i n v e n t o r i e s of t h e s e n u c l i d e s , which would n o t
be s t r o n g l y a f f e c t e d by n u c l e a r burnup, would be about t h e same a s t h o s e produced i n a s o l i d - f u e l duty factor.
r e a c t o r wPth the same thermal power l e v e l and
However, because t h e BMSR would g e n e r a t e o n l y about two-
t h i r d s a s much thermal power as a n EWR f o r t h e same e l e c t r i c a l o u t p u t , i t would produce a ~ o ~ ~ e s p o n d i n g smaller ly i n v e n t o r y of fission p r o d u c t s . Most of t h e o t h e r f i s s i o n p r o d u c t s and all the transuranium nucltcles
wou%dl remain w i t h t h e f u e l s a l t i n a DMSR.
The i n v e n t o r i e s of t h e s e mate-
r i a l s would be f u r t h e r reduced by n u c l e a r burnup r e s u l t i n g from exposure of t h e n u c l i d e s t o t h e neutron f l u x i n t h e r e a c t o r core.
would be p a r t i c u l a r l y i m p o r t a n t f o r t h e h i g h - c r o s s - s e c t i o n
a s t h e major plutonium i s o t o p e s .
This e f f e c t
nucPides such
Consequently, t h e n e t p r o d u c t i o n of plu-
tonium would be much smaller f o r a DMSR t h a n f o r a comparable s o l i d - f u e l r e a c t o r , b u t t h e p r o d u c t i o n of h i g h e r a c t i n i d e s would be much g r e a t e r bec a u s e of t h e long e f f e c t i v e f u e l exposure t i m e . Although a DMSW W Q U produce I~ a much smaller t o t a l i n v e n t o r y of some
i m p o r t a n t n u c l i d e s o v e r i t s l i f e t i m e t h a n an LWR, t h e a c t u a l i n - p l a n t
in-
v e n t o r y c o u l d be s u b s t a n t i a l l y h i g h e r f o r t h e DMSR because t h e r e would be
no p e r i o d i c removal d u r i n g r e f u e l i n g o p e r a t i o n s .
(There would a l s o be no
major shipments of h i g h l y r a d i o a c t i v e s p e n t f u e l from t h e p l a n t d u r i n g i t s l i f e t i m e arid no o u t - o f - r e a c t o r
t h e f i n a l shutdown.)
s t o r a g e of suck materials u n t i l a f t e r
Thus, i f a major release of in-p%ant r a d i o n u c l i d e s
could o c c u r , t h e consequence might be more s e r i o u s i n a DMSR than i n an
LWR.
However, c o n s i d e r i n g t h e mechanisms and p r o b a b i l i t f e s f o r release
e v e n t s , along w i t h t h e
C C X I S ~ ~ U ~ Rwould C ~ ~ ,
be n e c e s s a r y in a s s e s s i n g any
e f f e c t on system licensability. Before amy MSW i s l i c e n s e d , we probably w i b k need t o d e f i n e a com-
plete n e w spectrum of p o t e n t i a l t r a n s i e n t s and a c c i d e n t s and t h e i r a p p l i c a b l e L n i t i a t i n g e v e n t s t h a t are t o be t r e a t e d i n s a f e t y a n a l y s i s r e p o r t s . Some of t h e more i m p o r t a n t s a f e t y - s i g n i f i c a n t e v e n t s f o r a n MSR were went i o n e d e a r l i e r , b u t even r o u t i n e o p e r a t i o n a l e v e n t s may have a d i f f e r e n t o r d e r of importance f o r t h i s r e a c t o r concept.
FOP example, moderate re-
a c t o r power d i s t u r b a n c e s would n o t be v e r y important because one o â&#x201A;Ź t h e p r i n c i p a l consequences, f u e l c l a d d i n g f a i l u r e , i s a nonevent i n a n MSR. Conversely, a small l e a k of r e a c t o r c o o l a n t would be an important event because of t h e h i g h Bevel of r a d i o a c t i v i t y i n t h e MSR
C Q Q ~ ~ I K ~ .
The above examples of s i g n i f i c a n t d i f f e r e n c e s between MSRs and o t h e r
l i c e n s e d reactors i l l u s t r a t e why a s u b s t a n t i a l d e s i g n and analysis e f f o r t would be r e q u i r e d
-
f i r s t t o e s t a b l i s h l i c e n s i n g c r i t e r i a f o r MSRs
i n g e n e r a l and a DMSR i n p a r t i c u l a r and second
%S
e v a l u a t e MSR l i c e n e -
a b i l i t y i n r e l a t i o n t o t h a t of o t h e r r e a c t o r t y p e s .
This r e q u i r e m e n t ,
w i t h no a p r i o r i a s s u r a n c e t h a t an MSR could be l i c e n s e d , makes i t un-
l i k e l y t h a t p r i v a t e o r g a n i z a t i o n s i n t h e United S t a t e s would u n d e r t a k e
t h e development and commercfaPSzation of KSRs.
I n s t e a d , i f such develop-
ment were pursued, g o v e ~ m e n tfunding probably would be r e q u i r e d , a t
l e a s t u n t i l t h e l i c e n s i n g issues c o u l d be r e s o l v e d and near-commercial u n i t s could he c o n s t r u c t e d .
.
..
131
~.........* .-,p
... ......*:.
6,
SUMMARY AND CONCLUSIONS
me technology of MSRs w a s under development w i t h
gsverment
U.S.
funding from 1947 t o 1976 w i t h a nominal one-year i n t e r r u p t i o n from 11993 t o 1974.
Although no s i g n i f i c a n t e f f o r t t o commercialize MSRs w a s in-
volved i n t h i s work, a v e r y p r e l i m i n a r y c o n c e p t u a l d e s i g n w a s g e n e r a t e d for
it
10QO-We MSBR, and some a l t e r n a t e f u e l c y c l e s were examined.
The
c u r r e n t s t u d y of denatured PIS& w a s supported by t h e program (NASAP) t o i d e n t i f y , c h a r a c t e r i z e , and assess p s o 8 i g e r a t i o n - r e s i s t a n t
alternatives
t o c u r r e n t l y p r o j e c t e d n u c l e a r power systems.
I n p r i n c i p a l , MSRs could be o p e r a t e d w i t h a number of f u e l cycles r a n g i n g from plutonium-fueled p r o c ~ u c t i o nof d e n a t u r e d 2 "u, breeding with
t o break-even
f u e l , t o high-performance c o n v e r s i o n of r h o r i m t o
2 3 3 ~w i t h d e n a t u r e d 2 3 5 ~makeup f u e l .
me l a s t of these c y c l e s c u r r e n t l y
a p p e a r s t o be t h e most a t t r a c t i v e and i s t h e one chosen f o r c h a r a c t e r i z a t i o n i n t h i s study.
The f u e l c y c l e would i n v o l v e an i n i t i a l l o a d i n g of
denatured 2 3 5 ~ ;o p e r a t i o n f o r ~ C y I e a r s ( a t 75% c a p a c i t y f a c t o r ) w i t h 2 3 5 ~ makeup, mo f u e l d i s c h a r g e , and no chemical t r e a t m e n t f o r f i s s i o n - p r o d u c t removal; and end-of-life
s t o r a g e B d i s p o s a 1 of t h e spent f u e l .
me r e s o u r c e
u t i l i z a t i o n of t h i s c y c l e c o u l d be s i g n i f i c a n t l y enhanced by e n d - o f - l i f e r e c o v e r y of t h e denatured uranium i n t h e f u e l s a l t v i a f l u o r i n a t i o n .
6.1
Reference-Concept DMSR
The d i f f e r e n c e s between a DMSR and t h e c o n c e p t u a l d e s i g n MSBR inv o l v e p r i m a r i l y t h e r e a c t o r c o r e and t h e f u e l cycle. t h e primary c i r c u i t (e.g.,
Thus, t h e r e s t of
pumps and h e a t exchangers) and t h e b a l a n c e
of t h e p l a n t would be v e r y s i m i l a r f o r b o t h c o n c e p t s , and t h e d e s c r i p t i o n s developed f o r t h e MSBR a r e presumed t o be a p p l i c a b l e t o t h e DMSB. Minor v a r i a t i o ~ st h a t wight be a s s o c i a t e d w i t h d e s i g n o p t i m i z a t i o n are n o t considered.
The r e a c t o r v e s s e l f o r t h e DMSR, about 18 m i n d i a m e t e r and 10 m h i g h , would be s u b s t a n t i a l l y l a r g e r t h a n t h a t f o r t h e high-performance breeder.
This would permit the Pow power d e n s i t y r e q u i r e d t o a l l o w a
38-year l i f e expectancy f o r t h e r e a c t o r g r a p h i t e and would a l s o reduce
. .
,* .. ..! . ,A
3-32 neutronic l o s s e s t o 233Pa.
Other e f f e c t s of t h e %ow power d e n s i t y in-
c l u d e reduced poisoning e f f e c t s from in-core
f i s s i o n p r o d u c t s and a n in-
c r e a s e d f i ss il e i n v e n t o r y a The r e a c t o r c o r e would ~ ~ n s i of s t a c e n t r a l r e g i o n c o n t a i n i n g 20
v o l Z f u e l s a l t and a l a r g e r s u r r o u n d i n g zone c o n t a i n i n g 13 v s l % s a l t . Neutron m o d e r a t i o n would be provided by v e r t i c a l c y l i n d r i c a l unclad graphi t e G o l o g s w i t h f u e l s a l t flowing upward thrseaih c e n t r a l p a s s a g e s and 911
between t h e moderator elements.
me c o r e would be'surrounded
f i r s t by
s a l t plenums and @ ~ p a n s i sop~a c e s and t h e n by a g r a p h i t e r e f l e c t o r and
the r e a c t o r v e s s e l . With t h i s c o r e d e s i g n , a 1-GWe p l a n t would r e q u i r e a n i n i t i a l f i s -
s i l e l o a d i n g of 3450 kg 235U a t 28% enrichment ( e x t r a c t a b l e from a b o u t 870 s h o r t t o n s sf U,O,>.
Over 30 y e a r s a t 7 5 % c a p a c i t y f a c t o r , t h e f u e l
makeup r e q u i r e m e n t would be about 4478 kg of 20% e n r i c h e d 235U (from 1125 s h o r t t o n s of ~ ~ 0 ,f o) r a l i f e t i m e U308 demand of 2800 s h o r t tons,
Row-
ever, a t t h e end of plant l i f e , t h e f u e l s a l t would c o n t a i n d e n a t u r e d f i s s i l e uranium (233U and 235U) e q u i v a l e n t t o at l e a s t $00 s h o r t t o n s of
n a t u r a l U308.
If t h i s material c o u l d be r e c o v e r e d ( e o g o pby f l u o r i n a t i o n )
and reenriched, i t would s u b s t a n t i a l l y r e d u c e t h e n e t f u e l r e q u i r e m e n t of
t h e BMSR. P r e l i m i n a r y c a l c u l a t i o n s of t h e k i n e t i c and dyrtamic c h a r a c t e r i s t i c s of the BbfSB system i n d i c a t e t h a t i t would e x h i b i t h i g h l e v e l s of controll a b i l i t y and s a f e t y .
'Fhe system would a l s o possess i n h e r e n t dynamic sta-
b i l i t y and w o u M r e q u i r e o n l y modest amounts o f r e a c t i v i t y c o n t r o l c a p $ iI i
t ye A f i r s t - r o u n d a n a l y s i s of t h e t h e r m a l - h y d r a u l i c C h a r a c t e r i s t i c s of
t h e DMSR c o r e c o n c e p t u a l d e s i g n i n d i c a t e d t h a t t h e c y l i n d r i c a l moderator elements would be a d e q u a t e l y cooled by t h e flowing f u e l s a l t and t h a t reasonable s a l t t e m p e r a t u r e d i s t r i b u t i o n s c o u l d be achieved w i t h some o r i f i c i n g of t h e f u e l f l o w passages.
While some u n c e r t a i n t i e s a b o u t t h e
d e t a i l e d flow behavior i n t h e salt-graphite
system remain which would
have to be resolved by developmental t e s t i n g , t h e r e s u l t s would n o t be expected t o a f f e c t t h e fundamental f e a s i b i l i t y o f t h e concept.
Tke primary f u e l s a l t would be a molten m i x t u r e of E i F and BeF2 eont a i n i n g ThFb9 d e n a t u r e d UF4, and some PuF3.
L i t h i m highly enriched i n
133
.. .;.:w ........
i s o t o p e 0 9 9 . 9 9 % ) would be r e q u i r e d , and t h e mixture would gradu-
the
a l l y b u i l d up a s i g n i f i c a n t i n v e n t o r y of f f s s i o ~ - p ~ o d uand ~ t higheractinide fluorides. b
This m i x t u r e would have adequate n e u t r o n i c
$
physical $
t h e r m a l - h y d r a u l i c , and chemical c h a r a c t e r i s t i c s t o f u n c t i o n f o r 30 y e a r s a s a f u e l and primary r e a c t o r c o o l a n t .
Routine maintenance of t h e s a l t would be r e q u i r e d t o keep some of t h e uranium i n t h e p a r t l y reduced U 34s t a t e f o r t h e p r e f e r r e d chemical behavior. Although s e v e r e contamination of t h e s a l t w i t h oxide i o n c o u l d l e a d
t o p r e c i p i t a t i o n of plutonium and uranium o x i d e s , t h e s o l u b i l i t y of these o x i d e s i s h i g h enough t h a t a n i n c r e a s e i n oxide i o n c o n c e n t r a t i o n probably could be d e t e c t e d and stopped b e f o r e suck p r e c i p i t a t i o n o c c u r r e d .
In ad-
d i t l i o n , c l e a n u p of t h e s a l t on a r o u t i n e b a s i s t o m a i n t a i n t h e r e q u i r e d
Bow o x i d e c o n c e n t r a t i o n would be r e l a t i v e l y e a s y * '%he f u e l s a l t is a l s o h i g h l y c o m p a t i b l e , b o t h c h e m i c a l l y and p h y s i c a l l y , w i t h the proposed s t r u c t u r a l a l l o y , Hastelloy-N,
and w i t h t h e prsposed unclad g r a p h i t e mod-
eratore The r a d i a t i o n r e s i s t a n c e of t h e f u e l salt i s w e l l e s t a b l i s h e d , and
no r a d i a t i o n decomposition would be expected except a t v e r y low temperat u r e s (below -I0OaC>.
The noble-gas f i s s i o n p r o d u c t s , xenon and k r y p t o n ,
are o n l y s p a r i n g l y s o l u b l e i n f u e l s a l t and would be removed csntinususEy d u r i n g r e a c t o r o p e r a t i o n by a helium s p a r g i n g system.
P o r t i o n s of some
o t h e r v o l a t i l e f i s s i o n p r o d u c t s might a l s o be removed by t h i s system. Another c l a s s of f i s s i o n p r o d u c t s , t h e n o b l e and seminoble metals, would be expected t o exist in t h e m e t a l l i c s t a t e and t o plate o u t m o s t l y on
metal s u r f a c e s i n t h e primary c i r c u i t .
Keeping t e l l u r i u m , which can be
harmful t o Hastelloy-N when d e p o s i t e d on i t s s u r f a c e , i n s o l u t i o n i n t h e
s a l t may be p o s s i b l e by a p p r o p r i a t e c o n t r o l of t h e r e d u c t i o n / o x i d a t i o n p o t e n t i a l of t h e s a l t .
Most of t h e fission p r o d u c t s would remain i n solu-
t i o n i n the fuel salt.
It a p p e a r s ( b u t must be demonstrated) that a f u l l
30-year i n v e n t o r y of t h e s e materials could be t o l e r a t e d w i t h o u t exceeding solubility l i m i t s . Because r o u t i n e a d d i t i o n s of uranium would be r e q u i r e d to m a i n t a i n c r l t i c a l i t y i n t h e r e a c t o r , a d d i t i o n s of l i t h i u m and b e r y l l i u m would a l s o be r e q u i r e d t o m a i n t a i n t h e d e s i r e d chemical composition.
Some of t h e s e
a d d i t i o n s , c o n c e i v a b l y , could be used t o h e l p c o n t r o l t h e o x i d a t i o n s t a t e
of t h e s a l t , which would have t o be a d j u s t e d r ~ u t i ~ l e tl oy compensate f o r
the o x i d i z i n g e f f e c t of t h e f i s s i o n process.
Also, t h e t o t a l salt inven-
t o r y p o s s i b l y would have t o be l i m i t e d through o ~ c a s i o n a lwithdrawals sf
some salt. The DMSR, i n common with o t h e r systems t h a t would rase molten f l u s -
r i d e salts, would r e q u i r e a s p e c i a l primary s t r ~ c t u r a lalloy and, pos-
sib~y,
ana - ~ ' e f i e c t o ~ me . a l l o y that
graphite for the
w a s o r i g i n a l l y d e ~ e l ~ p ef d o r molten-salt
s e r v i c e , Hastelloy-N, was found
t o be e x c e s s i v e l y embrittled by n e u t r o n i r r a d i a t i o n and t o e x p e r i e n c e s h a l l o w i n t e r g r a n u l a r a t t a c k by f i s s i o n - p r o d u c t tellrarim.
Subsequently,
minor composition m o d i f i c a t i o n s were made which a p p e a r t o p r o v i d e adeq u a t e r e s i s t a n c e t o b o t h r a d i a t i o n embrittlemewt and tellurium a t t a c k . While e x t e n s i v e t e s t t n g and development would s t i l l be r e q u i r e d t o f u l l y
q u a l i f y t h e modified Hastelloy-N as a r e a c t o r s t r u c t u r a l material, t h e f u n d a m e n t a l technical issue of a n adequate m a t e r i a l a p p e a r s t o be re-
solved o
The r e q u i r e m e n t s imposed on t h e g r a p h i t e i n a DMSW a r e much less severe t h a n t h o s e t h a t would a p p l y t o a high-performance b r e e d e r r e a c t o r . The low f l u x levels i n t h e core would l e a d t o damage fluences of l e s s t h a n 3
X
lo25 neutrons/m2
iFl
30 y e a r s ,
88
c o u l d l a s t f o r the l i f e of t h e p l a n t .
Some CUPPent tC!ChnO%Ogy glPaphiteS
I n a d d i t i o n , t h e l o w power d e n s i t y
may e l i m i n a t e t h e need t o seal t h e g r a p h i t e s u r f a c e s t o limit
t r u s i o n and poisoning.
X ~ ~ Q % i nI-
This would s u b s t a n t i a l l y r e d u c e the technology
development e f f o r t a % s O e h t @ dWith the tlmaFiufactuPe Of BXSB graphite. The g e n e r i c s a f e t y f e a t u r e s of a DMSR would d i f f e r s i g n i f i c a n t l y
from t h o s e of o t h e r r e a c t o r t y p e s p r i m a r i l y because of t h e f l u i d n a t u r e
of t h e f u e l ana t h e c i r c u l a t i n g inventory of f i s s i o n p r o d u c t s .
kcarase
the f u e l i n a DMSR would be u n c l a d , t h e t h r e e l e v e l s of f i s s i o n - p r o d u c t confinement f o r t h i s system would be t h e RCPB and two s e p a r a t e l e v e l s of containment.
The primary containment would be a s e t of sealed and in-
ertea equipment cells that would be i n a c c e s s i b l e t o p e r s o n n e l a f t e r the o n s e t of p l a n t o p e r a t i o n ,
These cells would provide t h e p r i n c i p a l con-
finement of r a d i o a c t i v i t y i n a c c i d e n t s i n v o l v i n g f a i l u r e of t h e RCPB.
They could a l s o p r o v i d e a u x i l i a r y c o o l i n g of s p i l l e d f u e l s a l t i f t h a t
s a l t f a i l e a t o flow t o t h e cooled d r a i n tank.
TBSS
of cooling a c c i d e n t s
_... ..&/ ;....; .
.. ....
w i t h r e a c t o r scram may b e r e l a t i v e l y mild i n DNSRs because of t h e l a r g e h e a t c a p a c i t y and low vapor p r e s s u r e of t h e f u e l salt which i n h e r e n t l y r e t a i n s most of t h e f i s s i o n - p r o d u c t decay-heat g e n e r a t o r s .
However, l o s s
of c o o l i n g because of blocked c o r e f u e l passages a t f u l l power could Lead t o some l o c a l s a l t b o i l i n g .
A f u l l s a f e t y a n a l y s i s of t h e DMSR has n o t
been p e r f ~ ~ ~because ~ e d i t would r e q u i r e a much more comprehensive d e s i g n than i s c u r r e n t l y a v a i l a b l e . P r e l i m i n a r y c o n s i d e r a t i o n of t h e environmental e f f e c t s of DMSRs sugg e s t s t h a t such e f f e c t s would g e n e r a l l y be m i l d e r t h a n %or c u r r e n t l y opera t i n g n u c l e a r systems.
There would be l i t t l e o r
WQ
r o u t i n e gaseous and
l i q u i d r a d i o a c t i v e e f f l u e n t s , less waste h e a t r e j e c t i o n , no shipment of r a d i o a e t i v e s p e n t f u e l d u r i n g t h e normal p l a n t l i f e , r e l a t i v e l y l i t t l e s o l i d r a d i o a c t i v e waste, and l e s s impact from uranium mining.
t r a s t t o t h e s e more f a v o r a b l e f e a t u r e s , t h e DMSR a t end-of-life
In conwou%d
i n v o l v e a more complex decommissioning program and a l a r g e r s o l i d waste d i s p o s a l task.
I n a d d i t i o n , d u r i n g o p e r a t i o n , t h e r e t e n t i o n of tritium
and the r e l a t i v e l y l a r g e r i n v e n t o r y of r a d i o n u e l i d e s may r e q u i r e e x t r a e f f o r t s t o avoid p o s s i b l y u n f a v o r a b l e e f f e c t s .
In g e n e r a l , t h e a n t i p r o l i f e r a t i o n f e a t u r e s of t h e once-through DMSR appear t o be r e l a t i v e l y f a v o r a b l e .
The e n t i r e f i s s i l e u r a n i m f n v e n t o r y
would be f u l l y d e n a t u r e d , and t h e r e would be no c o n v e n i e n t means of i s o l a t i n g 233Pa f o r decay t o
2 3 3 ~ . me f i s s i l e plutonium inven-
t o r y would be s m a l l , of POOP q u a l i t y , and d i f f i c u l t t o extract from t h e l a r g e mass of h i g h l y r a d i o a c t i v e f u e l s a l t .
I n a d d i t i o n , no shipments
of s p e n t f u e l from t h e p l a n t would occur except a t t h e end-of-life.
6.2
A l t e r n a t e BMSR Concepts
Although a DMSR o p e r a t i n g on a 30-year,
once-through f u e l eycfe ap-
p e a r s t o have a number of a t t r a c t i v e f e a t u r e s , t h e b a s i c concept c o u l d b e adapted t o a number of a l t e r n a t i v e f u e l c y c l e s .
If f u l l - s c a l e ,
on-
l i n e p r o c e s s i n g of t h e f u e l s a l t t o remove f i s s i o n p r o d u c t s were adopted, some l i k e l i h o o d e x i s t s t h a t break-even b r e e d i n g performance c o u l d be achieved.
Mowever, even w l t h o u t break-even breedimg, t h e f u e l c h a r g e
could be r e c y c l e d through s e v e r a l g e n e r a t i o n s sf reactor^ t o g r e a t l y
reduce the a v e r a g e demand f o r mined uranium.
Other performance improve-
ments ( s h o r t of break-even b r e e d i n g ) c o u l d be achieved by combining t h e o n - l i n e f u e l p r o c e s s i n g w i t h p e r i o d i c removal o r reenrichment of p a r t of
I n a l l t h e s e o p t i o n s , t h e n e t consumption
t h e a c t i v e uranium i n v e n t o r y .
of n a t u r a l uranium would become a minor f a c t o r i n t h e a p p l i c a t i o n of BMSHPs.
Would
Some c o n s i d e r a t i o n w a s g i v e n to f u e l p r o c e s s i n g concepts t h a t reBIOVe
Only p a r t of t h e
SOlklbPe
f i s s i o n products.
such prQC@SseS
appear to o f f e r f e w ( i f any) advantages over e i t h e r t h e unprocessed o r t h e fuhky
plrOCeSsed
apprQaCheS,
6,3
Commercialization C o n s i d e r a t i o n s
S i n c e t h e MSW concept w a s under study and deVelQpmWIt f o r n e a r l y a0
y e a r s , most of t h e r e l e v a n t areas of the r e q u i r e d technology have r e c e i v e d a t least some a t t e n t i o n .
After t h e successful o p e r a t i o n of the EISRE, a
Pimjitecf amount of d e s i g n e f f o r t w a s expended on a commercial-size MSBB;
t h a t e f f o r t was d i s c o n t i n u e d i n 1993,
The technology development work
proceeded i n p a r a l l e l w i t h t h e d e s i g n s t u d i e s up t o t h a t t i m e .
A small
development e f f o r t ( w i t h o u t d e s i g n s u p p o r t ) w a s resumed in I 9 7 4 and canc e l l e d a g a i n i n l976,
This
WQI-~,
d e s p i t e i t s l i m i t e d scope, provided a n
e n g i n e e r i n g - s c a l e d e m o n s t r a t i o n of t r i t i u m management i n t h e secondary
s a l t and s i g n i f i c a n t p r o g r e s s toward the d e f i n i t i o n of a n a c c e p t a b l e s t r u c t u r a l a l l o y f o r molten-salt
service.
Work w a s under way toward dem-
o n s t r a t i o n of some of t h e chemical p r o c e s s i n g o p e r a t i o n s when t h e program
w a s ended A s i d e from t h e t e c h n i c a l p r o g r e s s , t h e l a s t development a c t i v i t y produced a comprehensive p l a n
~ S S the
f u r t h e r development of MSRs, which
s e r v e d as t h e b a s i s f o r the proposed DMSR development plan and schedule. T h i s p l a n s u g g e s t s t h a t t h e c o m m e r c i a l i z a t i o n of DMSRs c o u l d proceed v i a three reactor projects:
( a > a moderate-sized (100- t o 2BO-PIWe)
molten-
salt t e s t r e a c t o r t h a t could be a u t h o r f z e d i n 1985 and become o p e r a t i o n a l i n 1995, ( 2 ) an i n t e r m e d i a t e - s i z e d commercial p r o t o t y p e p l a n t a u t h o r i z e d i n 1995 and o p e r a t i n g i n 2005, and ( 3 ) a f i r s t standard-design DMSR to o p e r a t e i n 2011.
A p r e l i m i n a r y estimate for t h e c o s t o f this programrp
Y
137
i n c l u d l n g $900 m i l l i o n f o r t h e c o n c u r r e n t base development work, i s
$3950 m i l l i o n ( i n 1978 d o l l a r s ) . A p r e l i m i n a r y estimate of t h e c o n s t r u c t i o n c o s t f o r a " s t a n d a r d " DMSR
( n e g l e c t i n g c o n t i n g e n c i e s , e s c a l a t f o n , and i n t e r e s t d u r i n g c o n s t r u c t i o n ) y i e l d e d about $650/kWe i n 1998 d o l l a r s .
This compares w i t h about $QOO/kWe
f o r a PWR aRd $38Q/kWe f o r a coal p l a n t ( w i t h o u t f l u e - g a s c l e a n i n g ) e s t i -
mated on t h e same b a s i s .
The BMSR c a p i t a l estimate d i d n o t i n c l u d e t h e
c o s t of o n - s i t e s a l t treatment f a c i l i t i e s o r t h e c o s t s of s a l t and f u e l i n v e n t o r i e s ; t h e s e q u a n t i t i e s a r e all included i n t h e f u e l c y c l e c o s t s . The e s t i m a t e d n o n f u e l B&M c o s t s were 2.82 mills/kWk, and fuel c y d e c o s t s Were
5.3 m i i l s / k m .
m e c o s t of decommissioning a DMSR was
to
be about POX h i g h e r t h a n t h a t f o r a comparably s i z e d LWRe
Tke liee~singof MSRs h a s n o t been s e r i o u s l y a d d r e s s e d because no
p r o p o s a l t o b u i l d a r e a c t o r beyond t h e MSRE w a s e v e r supported and none of t h e c o n c e p t u a l d e s i g n s t u d i e s proceeded t o t h a t l e v e l ,
Wowever, a
number of new l i c e n s i n g i s s u e s c l e a r l y would have t o be addressed.
Be-
c a u s e t h e t h r e e l e v e % s of f i s s i o n - p r o d u c t confinement i n a DYSR would d i f f e r from t h o s e in a s o i i d - f u e i e d
S Y S ~ ~ T ,demonstrating ,
compliance w i t h
t h e r i s k o b j e c t i v e s r a t h e r t h a n s p e c f f i c hardware d e s i g n s i n e s t a b l i s h e d l i c e n s i n g c r i t e r i a presumab%y would b e ~ e c e s s a r y . P r e l i m i n a r y s t u d i e s s u g g e s t t h a t t h e r i s k s a s s o c i a t e d w i t h t h e operatiom of MSRs may b e lower t h a n t h o s e f o r LWRs, w h i l e risks d u r i n g maintenance and i n s p e c t i o n of t h e r e a c t o r system may be h i g h e r .
'Fke p r e l i m i n a r y s t u d i e s of DMSRs d e s c r i b e d p r e v i o u s l y i n d i c a t e t h a t t h e s e r e a c t o r s could have a t t r a c t i v e performance and r e s o u r c e u t i l i z a t i o n f e a t u r e s while p r o v i d i n g s u b s t a n t i a l r e s i s t a n c e t o t h e f u r t h e r p r o l i f e r a -
tion of n u c l e a r e x p l o s i v e s .
I n a d d i t i o n , t h e environmental and s a f e t y
f e a t u r e s of DMSRs g e n e r a l l y a p p e a r t o b e a t l e a s t a s f a v o r a b l e a s t h o s e of o t h e r n u c l e a r power systems
are a t t r a c t i v e .
mile
and t h e system economic c h a r a c t e r i s t i c s
a s u b s t a n t i a l RDbB e f f o r t would be r e q u i r e d to
commercialize DMSRs, t h e r e are no major unresolved i s s u e s i n t h e needed technology.
Thus, a commercial DMSR w i t h o u t o n - l i n e f u e l p r ~ c e s s i ~ g
138 probably could be developed i n about 30 y e a r s ; w i t h a d d i t i o n a l s u p p o r t
%or IID&D, t h e technology f o r on-Bine f u e l p r o c e s s i n g could be developed on about t h e same t i m e schedule. Although t h e DMSR c h a r a c t e r i z a t i o n s p r e s e n t e d i n t h i s r e p o r t a r e approximate, t h e y p r o v i d e as much d e t a i l as i s j u s t i f i e d by t h e v e r y prel i m i n a r y s t a t u s of t h e system c o n c e p t u a l d e s i g n .
-Any e f f o r t t o substan-
t i a l l y improve t h e q u a l i t y and d e t a i l of t h e c h a r a c t e r i z a t i o n s would have to be accompanied by a s i g n i f i c a n t system d e s i g n e f f o r t o r i e n t e d toward
a s p e c i f i c DMSW power p l a n t .
C o s t s and times r e q u i r e d f o r such s t u d i e s
would be s e v e r a l t i m e s a s l a r g e as t h o s e f o r t h e p r e l i m i n a r y work and probably c o u l d be j u s t i f i e d o n l y i f a n a t i o n a l d e c i s i o n were made t o ree s t a b l i s h a f e d e r a l l y funded MSR program.
MSR program of s u b s t a n t i a l size presumably would i n c l u d e a n RD&D
Any
e f f o r t of some s i z e t o s u p p o r t e f f e c t i v e p u r s u i t of program g o a l s .
This
work, i n t u r n , would be complemented by t h e d e s i g n studies which would h e l p t o d e f i n e RD&D t a s k s and f o c u s t h e e n t i r e e f f o r t .
The combination
would a l l o w t h e a t t a i n m e n t of o b j e c t i v e s on t h e s h o r t e s t p r a c t i c a l t i m e schedule
8
From t h e p r e l i m i n a r y s t u d i e s r e p o r t e d , a once-through DMSR without o n - l i n e f u e l p r o c e s s i n g a p p a r e n t l y would be the most r e a s o n a b l e choice f o r development i f an RD6D program were e s t a b l i s h e d ,
Nowever, p a r a l l e l
development of t h e technology f o r ~ o n t i n ~ o uf us e l p r o c e s s i n g would add o n l y m o d e r a t e l y t o t h e t o t a l progrm c o s t and could p r o v i d e t h e o p t i o n of a more r e s o u r c e - e f f i c i e n t
(and p o s s i b l y a c h e a p e r ) f u e l cycle.
c
...-7......:
139
The authors want t o acknowledge t h e extensive and able s u p p o r t of
the Union Carbide C o r p o r a t i o n Computer S c i e n c e s Division, e s p e c i a l l y Greene, 0.
J e
R e
Knight, Ne
B.
R.
B i g g s , and E. M e Petrie.
M e
W e
H ~ P ~ B P P I PW ,e
M e
Westfall,
W e
E.
Ford 111%
The nuclear c a l c u l a t i o n s depended h e a v i l y
on t h e i r a d v i c e and help. The estimate of c a p i t a l , o p e r a t i n g , and d e c o m i s s i a n i n g c o s t s f o r t h e DMSR were prepared and r e p o r t e d by PI. L. Myers.
REFERENCES 1.
Le E. MeNeese and M. W. Bosenthal, "MSBR: A Review of the S t a t u s flews 1 % ( 1 2 ) , 52-58 (September 19741. and F u t ~ r e , 'flucZ, ~
2.
Re W e R o b e r t s , Energy Research and Development A d m i n i s t r a t i o n , l e t ter t o H. P Q S ~ I M , Oak Ridge N a t i o n a l Laboratory, March 1, 1976.
a.
FI. F. Barnan e t ale, Molten-Salt Reactor Conceg-bs h t h Redwed Potential fop? f i o ~ i f e r a t i o nof Special NucZear MateP-.Zals, I n s t i t u t e f o r Energy Analysis, OWAU/IEA(M) 77-13 ( F e b r u a r y 1977).
4.
Gerald R. F o r d , "Statement by the P r e s i d e n t on Nuclear Policy,'" Bff i c e of t h e White House Press S e c r e t a r y , October 28, 1976.
5.
Department of Energy, Nonprolifepat&m AZterrea-biue Systems Assemf i o g r m plan, A s s i s t a n t S e c r e t a r y f o r Energy Technology Nuclear Energy P k ~ g r a ~ O ~ f~f si c, e of Fuel Cycle E v a l u a t i o n ( A p r i l 1978).
6.
Jimmy Carter, "Statement on Nuclear Power F d i c y 9 ' * press release d a t e d A p r i l 7, 1977, B e p t , s t a t e BUZZ. 76, 429-33 (May 2, 1977).
7.
E x e c u t i v e O f f i c e of t h e P r e s i d e n t , ate National. P ~ S P ~ L Plan, J April 29, 1977,
8.
9.
10.
G . T. Mays, A. N e S m i t h , and J. 8. E n g e l , &istribthtis~zand Behavior of T ~ i t i t c r ni n -the Coolant-Salt Technology Facilityy,BRNL/TM-5759
(April 1977). 11.
12.
N.
M.
Greene, Union Carbide C o r p o r a t i o n , p e r s o n a l esmmunicatisn t o
W. A. Woades, Qak Ridge N a t i o n a l L a b o r a t o r y , September 1977. 13.
J. Re M i g h t Union Carbide C o r p o r a t i o n , p e r s ~ n a lc ~ m m u n i ~ a t i ot n o W e A. Rkoades, Oak Ridge N a t i o n a l L a b o r a t o r y , June 1978.
14. E
141 ., .q... ....,.,.,.,.,. i.rc.. ,
16.
J. R. Knight, Union Carbide C o r p o r a t i o n , p e r s o n a l communication t o W. A. Rhoades, Oak Ridge N a t i o n a l Laboratory, June 11978.
$7.
Argonne National L a b o r a t o r y , Reactor Phpics C s m t a n t s , AMJ-580O ( J u l y 1963).
19.
W. R. Grimes, "Molten-Salt Reactor Chemistry," Nuel. A p p l . Tech~101. %,
137 (February 1970).
20.
W. R. G r i m e s e t a l . , "Fuel and Coolant Chemistry," chap. 5 , p. 95 i n ?%e Devetogment S t a t u s of Molten-Salt Breeders, 08K-4812 (August 1972).
22.
P. N. Haubenreich and J. R. Engel, "Experience with t h e Holten-Salt Reactor Experiment," Nucz. A p p l e TechnsZ. 8, 118 (February 1970).
24.
S.
Cantor, Density and Viscosity of Sevarat Molten Fluco~ideM i t e ORNE/TM-4308 (March 1973).
tupeg,
25.
C. F. Baes, Jr., p . 617 i n "Symposium on Reprosessing sf Nuelear Fuels," ed. by P. C h i o t t i , v o l . 15 of fluetea? MetatZurgy, USAECCOW-690801 (1969).
26.
C. F. Baes, Jr., "The Chemistry and Themodynamics of Molten-Salt Reactor F u e l s , " J . .VucZ. Mat. 51, 149 ( 1 9 7 4 ) .
27.
C. E. Bamberger, R. G. ROSS, and C. F. Baes, Jr., "'Phe Oxide Chemist r y of Plutonium i n Molten F l u o r i d e s and the Free Energy of Format i o n of PuF3 and P u P , , " J . Inorg. Nuel. &ern. 33, 776 (11971).
2%.
J. K.
29.
C. E. Bamberger e t a l . , "Absenee of a n E f f e c t of Oxide on t h e Solub i l i t y and t h e Absorption S p e c t r a of PuF3 i n Molten EiF-BeF2-ThP4 and t h e I n s t a b i l i t y o f B ~ U ~ O R ~ U(111) III O x y f l u ~ r i d e s , "J. Inorg. Nucz. Chem. %3, 3591 (1971).
38.
'*Molten Salt Reactor Concept 9 1 1 Quar-terZy Reg~p?-t fop tge~iodEnding J d y 39, 1971 A t o m i c Energy Commission, Bombay, India, NP-119145.
Dawson e t a l . , "The P r e p a r a t i o n and Some P r o p e r t i e s of Plutonium ~ l u o r i d e s , "J. â&#x201A;Ź%em. A ~ o e% . 55% (1954).
142
31 e
32
33
6. J. Barton et al., Solubility 0% Cerium Triflusside in Molten Mfxtures 0% Lithium, Beryllium, and ~%oriurn~ E u o r i d e s , " Inorg. Cic.ern. $ e 309 (1970).
8
0
34
35
a
36 m
C. F. Baes, J r e 9 p. 617 in "'Sywposim on W e p r ~ c e s ~ i n of g Nuelear Fuels," ed. by P. Chiotti, vol. 15 of A%&?tGaP Metaz~urgy,USAEC-CQNF 690801, 617 (%969)e
37.
8.
38
C. E, Bamberger, R. 6. Ross, and C. F. Baes, J k c , M~Ztapz-Satt Rea@t o r P F Q ~ Semiannual P ~ P P Q ~ W S SReport f o r P e ~ i ~Ending d February
0
G. R O S S , C. E. Bamberger, and e. F. Baes, 9%., "The Oxide Cpeemist r y sf Protactinium in ~ o l t e nF l u o r i d e s , " J . h o p + JIucZ. &ern. 35, 433-49 (1973).
29,
39
D
48.
41
42
8
0
43 e
9 9 7 2 , ORWE-4782, p. 72.
.:.. _.iii..... ..
-.=*
45.
A. L. Mathews and 6 . P. Baes, Jr., "Oxide Chemistry and Themsd p a d . c s of Molten EiF-BeP2 SoPution," Insrg. &ern. T 9 373 (1968).
47.
#.
48.
8. E.
51.
W. B. Csttrell e t a l . , Bisassembty and Postoperative E z m i m t i o n of the Aircraf% Reaetor Ezperirnmt, ORNL-1868 ( A p r i l 2 , 1958),
52.
W.
53.
W e D. Manly et a%., "Meta%lurgicah Problems i n Molten F l u o r i d e Systems," in F?agr. Nuel. dEnergy S ~ F IV . !?'eehnol~gy,figineering a d
E. McCoy e t al., "New Developments In Matesiah f o r Molten-Salt Reactors," #Uet. A p p t . ?%dwlot. 8, 156 (February 1970). McCoy, " M a t e r i a l s for Salt-Containing Vessels and P i p i n g 9 " chap. 7, p. 195 in fie Deve~opmePztStatu8 of Molten-Salt Breeders, QRNL-4812 (August 1972).
D. Manly et a l . , Aircraft R m c t o r Experiment -MetalZurgica% Asp e t s , ORNL-2349, pp. 2-24 (December 20, 1957).
s a f e t y 2, 164 (1960). 54.
W. D, Manly e t al., p t u i d h e 1 Reae-tors, pp. 595-604, ed. by James A. Lane, H. G. MaeHkerssn, and Frank Maslan, Addison-Wesley, Readi n g , Pa. (1958).
55.
Molten-Salt Reactor p v l o g m Status Repor.f;, ORNL-CF-58-5-3, pp. 112-13 (May 1, 1958).
56.
J. N. DeVan and R, B. Evans, 111, pp. 557-79 i n Confmence on Co+ rposion of Reactor Ma-ter-Lal.8, June 4-8, 9962, Proceedings, VoZ. I1 I n t e r n a t i o n a l Atomic Energy Agency, Vienna, A u s t r i a , 1962.
57.
F. F. Blanken9kip,MoZten-SaZt Reactor Program Sern&znntcai? P r o p rem Report for Period Ending July 31, 1 9 6 4 , QRn-3708, p. 252.
58.
S. S. Kirslis and P. F. B l a n ~ e n s h i p , M o t t a n - ~ a ZReactor t &.ogrcun Sem-LannuaZ Progress Report. f o r Period katling August 31, 196Bs ORm-4344, p. 115.
144 59.
E. M. Toth arnd %. 0. G f l p a t r i e k , " E q u i l i b r i a of U P ~ R ~ U I Carbides ~I in Ksbten S o l u t i o n s of UF3 and UF4 Comtained i n G r a p h i t e a t 850째K," 6. bizorg. TJtkeZ. &em. 3 5 , 1509 (197%).
60 *
61 e 62 e
63
64
B
W e a. G ~ i m e ~"MaterFaEs , Problems i n Molten-Salt R e a c t o r s , " i n Matee a l s and &eZs f o r High Temperature K7ticlear hhergy Appl.ieatG.ms, ed. by Me' T. Siranad and L. R. Z r a m w l t , The MHT Press, Mass., 1964.
0
65.
W. W. G r i m e s et al., "Chemical Aspects of Molten Fluoride-Salt Rea c t o r F u e l s , " in F l u i d FueE R e a @ t o ~ se, d , by J. A. Lane, H. 6. XacPkerssn, and F, Flmslan, Addison-Wesley, Reading, Pa., 1958.
66. 67.
.VoZten-Salt Reae-top Program Progress Report fop Peptiod f ~ o mMarch I -to August 31, 2961, ORNk-3215, pe 117.
68.
W. R. G r i m e s , Radiation Chemis-tvy of Molten-SaZt Reactor S y s t e m , OWNLITPI-500 (March 31, 1963) e
Reactor Chemistry Division Annmt BP.ogress Report fop P e ~ i a dEnding c7anuary 31, 1962, ORNL-3262, p * 20.
14 5 ...... ...... &;.&
74.
W, R. G r i m e s , N e V. S m i t h , and 6. PI. Watson, " S o l u b i l i t y of Noble Gases in Molten F 1 u ~ r i d e ~I.; In Mixtures of NaF-ZrP4 (53-47 mole X > and N ~ F - z P P ~ - u P (560-46-4 ~ mole Z>," 6. $hysB &em. 62, 862 (1958).
3
75.
M e Blander et al., " S o l u b i l i t y s f Nsble Gases in Molten P I u o r i d e s ; 61. In t h e LIF-NaF-KP E u t e c t i c Mixtures," J e Phys. &em. 6 3 , E164 (19591
77.
0
W. B, Briggs and R. B e Korsmeyer, MoZten-Sali5 Reactor P m g m Semiannual fiogress Report f o r Period â&#x201A;Ź%ding February 28, 2 9 7 0 , CXNL4 5 4 8 , pe 53.
81.
D. L. Manning and G. Mammilntov, Moltm-Salt Raactor f i o g r m Semiaplnuaz Progress R6qmr-b f o r Period m i n g February 29, 1 9 7 6 , ORrn5132, p * 38,
83.
W.
84.
G. J. Nessle and W. R. Grimes, "Production and Handling of Molten ~ l u o r i d e sf o r U s e as R e a c t o r Fuels," fiemieal Engineering Pksgress
R. Grimes e t a l . , "High Temperature Processing of Molten Fluoride Nuclear R e a c t o r Fuels,'* Nttct. &g. Part VII 5 5 , 27 (1959).
Symposiwn Series 56(28) (19601. 85.
86.
J. H. S h a f f e r , Preparation and Hadling of Salt Mixtures f o r the Molten-Salt Reaet& Experiment ORNE-4616 (January 1971 le R.
B. E i n d a u e r , Molten-Salt Reactor P ~ o g r a mSemiannuaZ Report f o r Ending August 31, 1971, ORNL-4728, pa 226.
P%PiOd
87.
W. B. L l n d a u e r , Moltan-Salt Reactor P ~ o g m Semiannuat Repore f o r Period Ending Feb~uary28, 9971 ORNL-4676, p. 269.
146 88.
A. D. Kelmers e t ale, Evaluation of A l t e m t e Secondary (and Te+ t i a r y ) Coolants f o r t h e Motteaz-Salt ~ r e e d e rReactor, O R W m - 5 3 2 5 ( A p r i l 1976 1
89.
C n J. Barton et a l e , Molten-Sal% Reactor &.Og?+%m 3emiannmt gPiog~%Ss Report f o Period ~ ,?%ding ~ ~ b r m 29, r y 196BS QRm-4254, p 0 166.
90.
E. L. Compere, He C. Savage, and J. M. Baker, "High I n t e n s i t y Gama I r r a d i a t i o n of Molten Sodium Flusroborate-sodim Fluoride E u t e c t i c Salt," J . R7ucte Mat. 34, 97 (l9701.
92.
D. M e Richardson and J. E%. S h a f f e r , Mo'&ten-Salt Reactor f i ~ g m Semiannual Progpess Report f o r Period Ending February 28, 2 9 7 0 , ORNL-4548, p . 136.
95.
S. Cantor and Re M. &Jaller, Motten-Salt Reactor B o g m Semknnwt Progress Report f o r Period Ending August 31, 1970, ORNL-4622, p . 79.
$6.
J. B. ~ a t e set ale, Molten-Salt Reaskor fiogram &mianntlal ~ Q Report ~ Q PPeriod fidiazg February 28, 1991 OWML-4676, p. 9 4 .
~ P Q S S
~
98.
J. B. B a t e s , J. P. Young, and e. E, Boyd, Molten-Salt Reactor -0g m m Sem&znnuail. *ogress Report f o r Period &ding ?WwuapSy 29, 2 9 9 2 , ORWL-4782, p . 59.
99.
J. P. Young, J. B. B a t e s , and G. E. Boyd, Molten-Salt Reacbor &og m %miannual Progress Report f o r Period h d i l z g August 31, 1 9 9 2 , ORNL-4832, p . 52.
.. ,........ -.ys
103.
p
6 . R e Hudson 11, CQNCEPT-5 U M P ' s Manud, ORML-5470 (January 1 9 7 9 ) .
.._. ....... .
149 ... .,..Y.&.fl..,..
appendix A
COMPARATIVE REACTOR COST ESTIMATES
... ........ . ...... rrrrr,
Table A . I .
C o s t e s t i m a t e s f o r t h e DSTZR, PIJR, a n d c o a l p l a n t s ( T h o u s a n d s of 1978.0 d o l l a r s )
Account No.
Twodigit
Threedigit
Item
DMSK~
PWRh
~ 0 . 3 1 ~ 9 "
Direct costs
20
Land and l a n d r i g h t s
21 21 1 212 213 215 216 217 218 219
S t r u c t u r e c , and improvements Yard work Tieactor c o n t a i n m e n t b u i l d i n g T u r h i ne b u i l d 1ng Auxiliary building(ยง) Waste p r o c e s s b u i l d i n g Fue 1 s t o r a g e b u i I d i ng Other st rue t uresP Stack (heat rejection)
2 20
R e a c t o r p l a n t equipment N u c l e a r steam s u p p l y s y s t e m
221 22 2 223 224 225 224 227 228
Reactor equipment Plain h e a t - t r a n s f er s y s t e m Safeguards system Radwaste p r o c e s s i n g F u e l h a n d l i n g and s t o r a g e O t h e r r e a c t o r p l a n t equipment R e a c t o r i n s t r u m e n t a t i o n and c o n t r o l R e a c t o r p l a n t m i s c e l l a n e o i l s items
Account 21 s u b t o t a l
22
Account 2 2 s u b t o t a l
23 231 232
233 234 235 236 237
T u r b i n e p l a n t equipment Trir b i n e g e n e r a t o r (Changed t o a c c o u n t 2 6 ) C o n d e n s i n g systems Feed-heating system Other t u r b i n e p l a n t equipment T n s t r u m e n t a t i o n and c o n t r o l T u r b i n e p l a n t m i s c e l l a n e o u s items Account 23 s u b t o t a l
24
241 242 243 244 245 246
Electric p l a n t equipment Switchgear S t a t i o n s e r v i c e equipment. Swi t c h b o a r d s P r o t e c t i v e equipment Electrical s t r u c t u r e and w i r i n g Power a n d c o n t r o l w i r i n g Account 24 s u b t o t a l
.
..... ........... -,/....
2 ,000 10,000 44 000 14,000 24 000 ( i n 215)
NAd 30 000 2 ,000 ~
12 4 ,00 0 ( i n 221 and 2 2 2 ) 4 5 000 63,000 6 000 10,000 10,000 30 000 10,000 6 000 ~
~
2,000
2,000
10, IO3 39,017 12,820 9,297 8,841 4,928 25,952 FA
5,990 hit 10,337 hit Omit hit hit 2 ,203
110,958
Omit
69,111
Omit
3,727 9,873 11,582 10,042 3 ,405 19,822 7 ,779 5,497
Omit Omit hit Omit Chit bit hit Omit
180,000
138,838
43 000
61,943
42,299
12,000 21,000 18,060 2,000 4,000
15,257 15,315 15,496 1,336 3,590
12,022 14,519 14,924 837 3,190
100,000
112,937
87,791
6,000 14,000 1,000 2,000 12,000 19,000
5,749 9,419 70 1 1,770 10,215 15,737
4,081 3,949 72 I 1,879 9,422 10,805
54 000
43,581
30,857
~
Omit
T a b l e A. 1 ( c o n t i n u e d )
Account No. -0-
digit
Item
Threedigit
25 251 252 2 53 254 255
Yiscellaneons p l a n t equipment T r a n s p o r t a t i o n and l i f e e q u i p m e n t A i r , water, and steam s e r v i c e system C omm un i c a t i on e q u i pmmrn t F u r n i s h i n g s arid e q u i p m e n t Vaste water t r e a t m e n t e q u i p m e n t Account 25 s u b t o t a l
26
3 000 10,000
2,617 7 ,664
1,606 6 ,034
2 ,000
1,524 1,041
691 898 1,351
1,000 1,000
NA
17,000
12,846
10,580
14,000
21,968
14,003
491 0 0 0
443,128
Omit
26,000 24 000 25,000
25,801 21,878 22,460
14,348 11,285 13,363
75,000
70,139
38,996
49,008 2 ,333 1,338
14,917
5 3 000
52,679
16,109
3 ,000 22,000 5,000
3,180 19,188 4,683
82 4 8,732 180
4 000
2 ,8 5 3
343
34 ,000
29 ,904
10,079
Total i n d i r e c t costs
162,000
152,722
65,184
T o t a l c a p i t a l c o s t s , d i r e c t and indirect
653,000
595 a 8 5 0
Omit
Main c o n d e n s e r h e a t r e j e c t i o n A c c o u n t s 20-26, costs
total direct Indirect costs
91 911
91 2 913
Cunstruct ion s e r v i c e s Tempo PaKy c o r i s t r u c t i o n f a c i l i t i e s C o n s t r u c t i a n t o o l s and equipment P a y r o l l , i n s u r a n c e , and s o c i a l security taxes
Account 9 1 s u b t o t a l
92
921 92 2 923
Home-of f i c e Home-office Home-office Home-office
engfneering services services q u a l i t y assurance c o n s t r u c t i o n managevent
Account 92 s u b t o t a l
93 93 1 932 93 3 934
F i e l d - o f f i c e e n g i n e e r i n g and services Field-office expenses F i e l d job supervision F i e I d q u a l i t y a s s u r a n c e / q iial i t y control P l a n t s t a r t - u p and t e s t Accounts 9 1 - 9 3
~
~
YA
1,192
~~
"Estimated
by M.
L. Myers.
& E s t i m a t e d from CONCEPT 'Selected
%st
e
v.
accounts.
applicable.
F o r e x a m p l e , c o n t r o l room, a d m i n i s t r a t i o n b u i l d i n g , f i r e t u n n e l s , s e w a g e , h o l d i n g p o n d , d i e s e l - g e n e r a t o r b u i l d i n g , r e c e i v i n g , and g u a r d .
Y
653
,.._ .
.. ... .. i.iiiiii 1
Date 1978,O 1979.0 1980.8 1981.0 E982 0 1983.8 1984.0 1985.0 1986 0 1987.0 1988.0 0
B
Cost t o d a t eh ( m i l l i o n s of d c d l a r s ) 0
5 10 23 55 143
313 458 596
637 653
aUnit 1; l600-bfWe DMSB power p l a n t at Middletom; c o s t basis is year of steam s u p p l y s y s t e m purchase (1978.0); conStlrUCtioIl peXTli% f S 1978.0; commercial o p e r a t i o n i s 1988.8. b T o t a l c o s t incurred t o date excludes i n t e r e s t and escalation c h a r g e s ,
.... ..
OKNL/TPI-%207 D i s t . Category UC-76
Internall D i s t r i b u t i o n 1. 2. 3. 4-8. 9. 10. 11. 1%. 13. 14-18. 19-23. 24. 25 c 26-30. 31. 32. 33 34 * 35 * 36. B
T. D. Anderson Seymour Baron D. E. Wartlne M. F. &urnan &I. we B e r t i n i IE. I. Bowers J, C. Cleveland T. E. Cole S. c a n t o r J. F. Bearing J. R. Engel D. E. Ferguson M. H. Fontana W, R. G r i m e s 8. H. Guymon W. 0. Hams J. F. Harvey He we Hoffman
P. R. Kasten Milton L ~ e n s o ~ n
37. 38-42. 43. 44-4 8 49. 58. 51. 52.
0
W. E. MacPhersom FI. E. McCoy L. E. McNeese w. A, Rhoades J. L. Rich P. S . Rohwer PI. W. Rosenthal
B. T. S a n t o r o k n l a p Scott I. Spiewak 54. 55. EE. E. T r a m m e l l 56. B. B. Trauger 5%. J. Re Weir 58. J. E. Vath 59. R. e. Wper ORNL P a t e n t Office 68. 61-62. Central Research Library 63. Document Reference S e c t i o n Laboratory Records Department 64-65 Laboratory Records (RC> 66
53 e
D
External Distribution
67.
68 *
Director, Nuclear Alternative Systems Assessment Division, Department of Energy, Washington, DC 20545 E. G. Belaney, N u d e a r A l t e r n a t i v e Systems Assessment D i v i s f s n , Id@p%rtmeTlfZOf E R @ r g y , WcPShL?3gt0ns D6 20545
69.
H. Kendrick, Nuellear Alternative Systems Assessment D i v i s i o n , Bepartment of Energy, Washington, BC 20545
78.
Office of A s s i s t a n t Manager f o r Energy Research and Development, Department of Energy, QBO, Oak Ridge, TN 37838 Director, Nuelear Research and Development Division, Department of Energy, ORQ, Qak Ridge, TN 37830 6 . Nugent, Burns and Roe, Inc., 185 Crossways Park D r i v e , Woodbury, NY 11797 R. A. Edelwan, Burns and Roe, Inc., 496 Kfnderkarnack Road, Orad e l l , NJ 07643 FJ. R. Harris, Rand Corporation, I700 Main S t r e e t , Santa Monica, CA 90406 S. Jaye, S . M. ยง t o l l e r COP.^., Suite 865, Colorado B u i l d i n g , Bould e r , CO 80302 W e L i p i n s k i , Arg~gnneNational L a b o r a t o r y , 9700 South Cass h e . , Argonme, I% 60439
71. 72 e 73.
74. 75.
76.
156 77.
He 6 . MacPherson, Institute for Energy Analysis, Oak Ridge Associated Unfversitfes, Oak Ridge, TN 37838
78.
I%. Omberg, Wanford Engineering Development Laboratory, P.0. Box 1970, Richland, WA 99352 E. S t r a k e r , Science Applications, 8400 Westpark Drive, McLean, VA 22601 A. M e Weinberg, Institute for Energy Analysis, Oak Ridge Asssciated Universities, Oak Ridge, TM 37830 For distribution as shorn in DOE/TEC-4500 under category UC-76, Molten-Salt Reactor Technology
79.
80. 81-181.
.
.
.. ..............
~
y.s2