Printed in the United States of America. Available from National Technical Information Service US. Department of Commerce 5285 Port Royal Road, Springfield, Virginia 22161 Price: Printed Copy $5.45; Microfiche $2.25
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the Energy Research and Development P.dniinistration, nor any of their employees, nor any of their contractors. subcontractors, or their employees, wakes any warranty, express or implied, or assurries any legal liability or responsibility for the accuracy, completeness or usefulness of any infomiation, apparatus, product or process disclosed, C)I- represents that i t s use would not infringe privately owned rights.
UC-76
C o n t r a c t No.
OWL-TM-4863 -Molten S a l t R e a c t o r T e c h n o l o g y
W-7405-eng-26
CHEMICAL TECHNOLOGY D I V I S I O N
ENGINEERING DEVELOPMENT S T U D I E S FOR MOLTEN-SALT BREEDER REACTOR PROCESSING NO. 1 9
Compiled by: J. R.
H i g h t o w e r , Jr.
Other Contributors: C. W.
H. L. R. M. J . A. H. C.
Brown, J r . Carter Counce
Klein
Savage
JULY 1975
NOTICE This document contains information of a preliminary nature
and was prepared primarily for internal use a t the Oak Ridge National Laboratory. I t is subject to revision or correction and therefore does not represent a final report.
OAK RIDGE NATIONAL LABORATORY Oak R i d g e ,
T e n n e s s e e 37830
operated by
UNION CARBIDE CORPORATION
for the
ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION
3 445b 0550621, 7
ii
Reports previously i s s u e d i n t h i s series are as follows:
OWL-TM-3053
P e r i o d e n d i n g December 1968
OKNL-TM-3138
P e r i o d e n d i n g J u n e 1969
ORNL- Tlvl-3140
P e r i o d e n d i n g December 1969
ORNL-TM-3137
ORNL-TM-3139
P e r i o d e n d i n g March 1969
P e r i o d e n d i n g September 1969
ORNL-TM- 3141
P e r i o d e n d i n g March 1970
ORNL-TM-3258
P e r i o d e n d i n g September 1990
ORNL-TM-3257
P e r i o d e n d i n g J u n e 1970
ORNL-TM-3259
P e r i o d e n d i n g December 1970
ORNL-TM-- 33 52
ORNL-TM-4 698
P e r i o d e n d i n g March 1971
P e r i o d J a n u a r y through J u n e 1974
iii CON TENTS Page
............................ 1 . INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 2 . DEVELOPMENT OF THE METAL TRANSFER PROCESS . . . . . . . . . . . . 2 . 1 E x a m i n a t i o n of MTE-3 E q u i p m e n t and Materials . . . . . . . . SUMMARIES
3
.
4
.
5
.
6
.
2.2
I n s t a l l a t i o n of Metal Transfer E x p e r i m e n t MTE-3B
2.3
D e s i g n of t h e Metal T r a n s f e r P r o c e s s F a c i l i t y
......
.......
v
1 1 2 6 9
SALT-METAL CONTACTOR DEVELOPMENT: EXPERIMENTS WITH A MECHANICALLY AGITATED. NONDISPERSING CONTACTOR USING WATER AND MERCURY 11
....
...........................
3.1
Theory
3.2
Experimental Apparatus
3.3
R e s u l t s and C o n c l u s i o n s
...................
..................
11 18
18
SALT-METAL CONTACTOR DEVELCPMENT: EXPERIMENTS WITH A MECHANICALLY AGITATED. NONDISPERSING CONTACTOR I N THE SALT-BISMUTH FLOWTHROUGH FACILITY 21
............................
FUEL RECONSTITUTION DEVELOPMENT: ENGINEERING EXPERIMENT
DESIGN OF A FUEL RECONSTITUTION
.....................
REFERENCES
...........................
38
43
V
SUMMARIES DEVELOPMENT O F THE METAL TRANSFER PROCESS W e h a v e c o n t i n u e d f a b r i c a t i o n a n d assembly of the new c a r b o n s t e e l
v e s s e l s f o r metal t r a n s f e r e x p e r i m e n t MTE-3B; d u r i n g t h i s r e p o r t p e r i o d , t h e v e s s e l s were co m p l e t e d a n d i n s t a l l e d i n the metal t r a n s f e r e x p e r i m e n t f a c i l i t y i n Bldg.
3541.
The v e s s e l s p r e v i o u s l y u s e d i n e x p e r i m e n t MTE-3,
a l o n g w i t h t h e s a l t s and b i s m u t h t h e y c o n t a i n e d , were removed and s e n t t o t h e b u r i a l ground â‚Źor d i s p o s a l .
W e are renovating t h e metal t r a n s f e r
hood t o improve operating a c c e s s i b i l i t y and a s s u r e t h a t a l l equipment
i s i n good o p e r a t i n g c o n d i t i o n . E x a m i n at i o n of t h e v e s s e l s a n d a n a l y s e s of t h e s a l t and m e t a l p h a s e s
from t h e p r e v i o u s l y o p e r a t e d e x p e r i m e n t MTE-3 h a v e been c o m p l e t e d . L i m i t e d v i s u a l e x a m i n a t i o n i n d i c a t e d t h a t t h e i n t e r n a l s u r f a c e s exposed t o s a l t s a n d b i s m u t h were i n e x c e l l e n t c o n d i t i o n .
F a i l u r e of t h e
o x i d a t i o n - r e s i s t a n t p r o t e c t i v e c o a t i n g on t h e e x t e r n a l s u r f a c e s a l l o w e d s i g n i f i c a n t o x i d a t i o n o f t h e s e s u r f a c e s a t t h e 6 5 O o C o p e r a t i n g tempera-
t u r e , b u t w a s n o t e x t e n s i v e enough t o a f f e c t t h e vessel i n t e g r i t y .
A
d i f f e r e n t p r o t e c t i v e coating with superior air-oxidation r e s i s t a n c e w a s applied t o t h e MTE-3B v e s s e l s . X-ray
f l u o r e s c e n c e a n a l y s e s of t h e L i - B i p h a s e from t h e r a r e - e a r t h
s t r i p p e r a t t h e LiCl--Li-Bi i r o n an d t h o r i u m .
i n t e r f a c e c o n t a i n e d s i g n i f i c a n t amounts o f
S c a n n i n g e l e c t r o n p h o t o m i c r o g r a p h s of t h i s i n t e r f a c e
a t m a g n i f i c a t i o n o f 2 0 , 1 0 0 , 500, and 2000X w e r e t a k e n .
No identifiable
f i l m o r f o r e i g n m a t e r i a l c a n be s e e n a t t h e i n t e r f a c e .
Review of t h e d e s i g n c r i t e r i a for t h e Metal T r a n s f e r Process F a c i l i t y h a s been i n i t i a t e d .
site).
T h i s f a c i l i t y i s t o be l o c a t e d i n Bldg. 7503 (MSRE
vi
SALT-METAL CONTACTOR DEVELOPMENl' : EXPERIMENYS WITH A MECHANICALLY A G I T A T E D , N O N D I S P E R S I N G CONTACTOR U S I N G WATER AND MERCURY
F i v e r u n s were nlade i n t h e 5- by 7 - i n . - P l e x i y l a s
c o n t a c t o r w i t h phase
volumes, a g i t a t o r s p e e d , and i n i t i a l mercury-phase z i n c c o n c e n t r a t i o n s h e l d c o n s t a n t a t 1 . 8 l i t e r s , 1 5 0 rpm, and 0 . 1
E,
respectively.
The i n i -
E
t i a l aqueous-phase l e a d c o n c e n t r a t i o n w a s v a r i e d from 0 . 0 2 M t o 0 . 1 0 I
t o d e t e r m i n e which p h a s e c o n t a i n s t h e l i m i t i n g r e s i s t a n c e t o mass t r a n s f e r and t h e c o n c e n t r a t i o n o f l e a d i o n s i n t h e aqueous p h a s e a t which t h e coiit r o l o f mass t r a n s f e r changes from one p h a s e t o t h e o t h e r . A model w a s d e v el o p e d f o r t h i s s y s t e m under t h e a s s u m p t i o n t h a t t h e
r e a c t i o n t a k e s place e n t i r e l y a t t h e water-mercury i n s t a n t a n e o u s and i r r e v e r s i b l e .
i n t e r f a c e and i s
I tr w a s found t h a t for t h e c o n d i t i o n s
under which t h e s e and a l l p r e v i o u s r u n s were perEormed, t h e r e s i s t a n c e t o mass t r a n s f e r w a s n o t i n t h e mercury p h a s e as w a s p r e v i o u s l y b e l i e v e d . S ALT-METAL
A 6-in.
CONTACTOR BEVELOPMENT : EXPE RIMEN'I'S W I'm A MECHANICALLY A G I T A T E D , N O N D I S P E R S I N G CONTACTOR IN THE SALT-BISMUTH FLOWTHROUGH F A C I L I T Y
diam low-carbon s t e e l s t i r r e d i n t e r f a c e c o n t a c t o r h a s been
i n s t a l l e d i n t h e Sal t -B i s m u t h Flowthrough Faci.3.j.ty i n Bldg. 3592, which was p r e v i o u s l y u s e d t o s-tudy s a l t - b i s m u t h f l o w i n packed columns.
Six
t r a c e r r u n s have been completed t o d a t e u s i n g 9 7 Z r and 237U tracers.
The
s t i r r e r r a t e w a s v a r i e d from 121 r p m to 205 rpm, R e s u l t s from t h e f i r s t six r u n s i n d i c a t e t h a t t h e s a l t - p h a s e m a s s
t r a n s f e r c o e f f i c i e n t b as e d on 237U c o u n t i n g dat-a i s 37 + 3% of the v a l u e p r e d i c t e d by t h e Lewis c o r r e l a t i o n f o r r u n s 1, 2 , 3 , and 5 , and i s 1 1 6
+ 10% o f t h e L e w i s v a l u e f o r r u n s 4 and 6. The r e l a t i v e l y h i g h v a l u e s for t h e l a t t e r two r c n s are p r o b a b l y due t o d i s p e r s a l . of s a l t i n t o t h e
bis muth.
Experiments w i t h water-mercury and water-methylene bromide
s ys tems s u p p o r t t h i s b e l i e f . 97Zr
The inass t r a n s f e r c o e f f i c i e n t s b a s e d on
c o u n t i n g d a t a a r e f e l t t o be l e s s r e l i a b l e t h a n t h o s e based on
237u
becaus e of t h e i n a b i l i t y t o c o r r e c t f u r s e l f a b s o r p t i o n of t h e 7 4 3 . 3 7 keV $ - i n t h e s o l i d bismuth samples.
vii FUEL RECONSTITUTION DEVELOPMENT: DESIGN O F A FUEL RECONSTITUTION ENGINEERING EXPERIMENT
We are beginning engineering studies of fuel reconstitution.
ment is described for carrying out the reaction o f gaseous UF
6
Equip-
with UF4
dissolved in molten salt and the subsequent reduction with hydrogen of the resultant UF
T h e experiment w i l l be a flowthrough operation, and 5' the main vessels will consist o f a 36-liter feed tank, a UF6 absorption
vessel, a hydrogen reduction column, and a receiver vessel.
1.
INTRODUCTION
A molten-salt breeder reactor
(MSBK) w i l l be f u e l e d w i t h a m o l t e n
f l u o r i d e m i x t u r e t h a t w i l l c i r c u l a t e t h r o u g h t h e b l a n k e t a n d core r e g i o n s of t h e r s a c t o r an d t h r o u g h the p r i m a r y h e a t e x c h a n g e r s .
W e are d e v e l o p i n g
p r o c e s s i n g methods f o r u s e i n a c l o s e - c o u p l e d f a c i l i t y f o r removing f i s s i o n p r o d u c t s , c o r r o s i o n p r o d u c t s , a n d f i s s i l e materials from t h e molten f l u o r i d e mixture. S e v e r a l o p e r a t i o n s a s s o c i a t e d w i t h MSBR p r o c e s s i n g a r e u n d e r s t u d y . The r e m a i n i n g p a r t s of t h i s r e p o r t d i s c u s s : r e s u l t s o f i n s p e c t i o n o f equipment u s e d i n e x p e r i m e n t MTE-3 f o r d e m o n s t r a t i n g t h e metal t r a n s f e r p r o c e s s €or removal o f r a r e e a r t h s from NSBR f u e l c a r r i e r s a l t ,
s t a t u s o f t h e i n s t a l l a t i o n of e q u i p m e n t f o r metal t r a n s f e r e x p e r i m e n t MTE-3B, r e s u l t s of s t u d i e s w i t h mechanically a g i t a t e d , nondisp e r s i n g c o n t a c t o r s u s i n g water and m e r c u r y , r e s u l t s of s t u d i e s w i t h m e c h a n i c a l l y a g i t a t e d , n o n d i s p e r s i n g c o n t a c t o r s u s i n g m o l t e n s a l t and b i s m u t h , and
a d e s c r i p t i o n of e q u i p m e n t b e i n g f a b r i c a t e d €or a f u e l . r e c o n s t i t u t i o n engineering experiment. T h i s work w a s p e r f o r m e d i n t h e Chemical Technology D i v i s i o n d u r i n g t h e p e r i o d J u n e t h r o u g h September 1 9 7 4 .
2.
DEVELOPMENT OF THE METAL TRANSFER PROCESS H.
C. Savage a n d W.
I,. C a r t e r
W e p l a n t o c o n t i n u e s t u d y i n g t h e steps i n t h e metal t r a n s f e r p r o c e s s f o r removing rare e a r t h s from m o l t e n - s a l t b r e e d e r reactor f u e l s a l t .
In
t h i s p r o c e s s , f u e l s a l t , which i s f r e e o f uranium a n d p r o t a c t i n i u m b u t c o n t a i n s t h e rare e a r t h s , i s c o n t a c t e d w i t h b i s m u t h c o n t a i n i n g r e d u c t a n t
t o e x t r a c t t h e rare e a r t h s i n t o b i s m u t h .
The b i s m u t h p h a s e , which con-
t a i n s t h e r a r e e a r t h s a n d t h o r i u m , is t h e n c o n t a c t e d w i t h l i t h i u m c h l o r i d e Because of f a v o r a b l e d i s t r i b u t i o n c o e f f i c i e n t s , s i g n i f i z a n t f r a c t i o n s of
t h e r a r e e a r t h s t r a n s f e r t o t h e l i t h i u m c h l o r i d e along with a n e g l i g i b l e amount o f t h o ri u m .
'The f i n a l s t e p s of t h e p r o c e s s e x t r a c t t h e r a r e e a r t h s
from t h e l i t h i u m c h l o r i d e by c o n t a c t w i t h bismuth having l i t h i u m concent r a t i o n s of 5 and 50 a t . %. 'The c u r r e n t ex p e ri m e n t s
11ti Ii. ze
mechanically a g i t a t e d contactors a s
an a l t e r n a t i v e t o packed columns â‚Ź o r t h e m e t a l t r a n s f e r p r o c e s s .
' I 2
The
Lewis-type c o n t a c t o r a p p e a r s t o have t h e p o t e n t i a l â‚Źor a c h i e v i n g accept.-a b l e r a r e - e a r t h m a s s t r a n s f e r r a t e s w i t h minimum d i s p e r s a l of t h e s a l t and bismuth p h a s e s . 3'4
T h i s i s an i m p o r t a n t f a c t o r , s i n c e e n t r a i n m e n t
of bismuth i n t o p r o c e s s e d f u e l s a l t t h a t i s r e t u r n e d t o t h e r e a c t o r dann o t be t o l e r a t e d .
The c o n t a c t o r h a s two a g i t a t o r s - - o n e
and one i n t h e bismuth phase--that: bismuth i n t e r f a c e .
i n t h e s a l t phase
a r e l o c a t e d well away from t h e s a l t -
These a g i t a t o r s a r e o p e r a t e d i n s u c h a manner t h a t t h e
p h a s e s are mixed a s v i g o r o u s l y as p o s s i b l e w i t h o u t d i s p e r s i n g one p h a s e into the other. An e n g i n e e r i n g ex p e ri m e n t (MTE-3)
i n which t h e s a l t flow r a t e w a s
about 1%of t h a t r e q u i r e d f o r p r o c e s s i n g t h e f u e l s a l t from a 1000 MW(e) MSBR was o p e r a t e d d u r i n g 1 9 7 2 t o measure r a r e - e a r t h mass t r a n s f e r r a t e s 5 across the salt-bismuth i n t e r f a c e s . These e x p e r i m e n t s w i l l h e c o n t i n u e d
i n a new e x p e r i m e n t , d e s i g n a t e d M'rE-313,
t h a t w i l l u s e new process v e s s e l s ,
s a l t s , and b i s m u t h . 2.1
Examination of MTE-3 Equipment and M a t e r i a l s
We completed t h e e x am i n a t i o n of t h e v e s s e l s and removal of samples of t h e s a l t and bismuth p h a s e s from v a r i o u s l o c a t i o n s i n t h e c o n t a c t o r and stripper vessels.
The v e s s e l s , a l o n g w i t h t h e s a l t and b i s m u t h c o n t a i n e d
i n them, were removed from t h e hood i n Bldg. 3 5 4 1 and were s e n t t o t h e b u r i a l ground f o r d i s p o s a l . A s previously reported'
samples of t h e Bi-Th, m e t a l interfaces.
Li-Bi,
s i g n i f i c a n t amounts of i r o n were found i n and L i C l p h a s e s t a k e n a t o r n e a r the s a l t -
A d d i t i o n a l samples of t h e Bi-Th,
Li-Bi,
and L i C l w e r e
t a k e n at_ v a r i o u s d i s t a n c e s from t h e i n t e r f a c e s and a n a l y z e d For i r o n content,
Tne samples w e r e o b t a i n e d by d r i l l i n g t h r o u g h t h e t a n k w a l l s w i t h
3
a l -i n . -d i am
h o l e s a w , and were g e n e r a l l y t a k e n from m a t e r i a l a p p r o x i -
m a t e l y 1/2 i n . from t h e i n s i d e - w a l l s u r f a c e .
are shown i n T ab l e 1.
R e s u l t s of i r o n a n a l y s e s
A s seen i n t h i s t a b l e , i r o n c o n c e n t r a t i o n s i n
samples t a k e n some d i s t a n c e ( 2 t o 8 i n . ) from t h e i n t e r f a c e s a r e s i g n i f i I
c a n t l y lower t h a n t h o s e a t o r n e a r t h e i n t e r f a c e . A section of the Li-Bi--LiCl
a c r o s s t h e i n t e r f a c i a l area i n t h e
s t r i p p e r w a s examined by s c a n n i n g e l e c t r o n microscopy.
Scanning e l e c t r o n
phot o m i c ro g rap h s a t m a g n i f i c a t i o n s of 2 0 , 100, 500, and 200OX were t a k e n
of t h i s i n t e r f a c e , and a r e shown i n F i g . 1.
These p h o t o g r a p h s w e r e t a k e n
of t h e ro u g h , u n p o l i s h e d s u r f a c e , and no i d e n t i f i a b l e f i l m o r f o r e i g n
material i s v i s i b l e .
(From a v i s u a l e x a m i n a t i o n o f t h e as-removed s e c t i o n
of t h i s i n t e r f a c e , t h e r e a p p e a r e d t o b e a l a y e r of material
?,
1/32 i n .
t h i c k of a d i f f e r e n t s t r u c t u r e t h a n t h e L i C l phase o r t h e L i - B i p h a s e . )
Analyses by X-ray f l u o r e s c e n c e were made a t f i v e l o c a t i o n s a c r o s s t h i s i n t e r f a c e , which a r e i d e n t i f i e d a s 1, 2 , 3 , 4 , and 5 on t h e 20X photomicrograph of F i g . 1.
R e s u l t s a r e g i v e n below:
I n t h e L i C l some d i s t a n c e from t h e B i - L i C 1 boundary, some t h o ri u m and a s m a l l amount of bismuth and lanthanum w e r e detected.
I n t h e L i C l n e a r t h e B i - L i C 1 boundary, a v e r y s m a l l amount of t h o r i u m , i r o n , and bismuth w a s d e t e c t e d . On t h e B i - L i C 1 b o u n d a r y , t h o r i u m and i r o n , as w e l l as bismuth and c h l o r i n e , were d e t e c t e d .
I n t h e bismuth a r e a n e a r t h e B i - L i C 1 boundary, l a r g e amounts of t h o r i u m , i r o n , and c h l o r i n e , a s well. as t h e b i s m u t h , were d e t e c t e d . I n t h e bismuth area some d i s t a n c e from t h e B i - L i C l boundary, o n l y bismuth w a s d e t e c t e d . The p r e s e n c e of i r o n (or i r o n o x i d e s ) a t o r n e a r t h e i n t e r f a c e i s 3 c o n s i s t e n t w i t h t h e r e l a t i v e d e n s i t i e s o f bismuth ( 9 . 6 y/cm ) and i r o n 3 3 ( 7 . 6 g/cm o r p o s s i b l y i r o n o x i d e s (% 5.5 g/cm ) t h a t would be e x p e c t e d t o p r e c i p i t a t e on c o o l i n g of t h e b i s m u t h p h a s e .
I r o n might be e x p e c t e d
t o c o n c e n t r a t e a t t h e i n t e r f a c e s due t o t h e d e n s i t i e s of t h e i r o n and 3
i r o n o x i d e s (Q 5 t o 5 . 5 g/cm )
,
and t h e s a l t and bismuth p h a s e s (% 3 . 5
4 I r o n c o n t e n t i n samples of metal and s a l t p h a s e s f r o m metal t r a n s f e r e x p e r i m e n t f4TE-3 a t v a r i o u s d i s t a n c e s from t h e metal-salt i n t e r f a c e s
T a b l e 1.
Contactor, L i C l s i d e Bi-Th
% %
%
1/8 i n . f r o m i n t e r f a c e 2 i n . from i n t e r f a c e 4-1/2 i n . from i n t e r f a c e
2500 18 17
Contactor, f l u o r i d e s a l t s i d e Bi-Th
% % %
1100 37 9
1/4 i n . from i n t e r f a c e 2 i n . from i n t e r f a c e 4 i n . from i n t e r f a c e
Str i p z z g .
< 1/8 i n . from i n t e r f a c e
Li-Bi
%
'L
1400 108
2 i n . from i n t e r f a c e 5 i n . from i n t e r f a c e
7
Stripper LiCl
'L % % %
1/2 i n . from i n t e r f a c e 1 i n . from i n t e r f a c e 6-3/4 i n . from i n t e r f a c e 8-3/4 i n . from i n t e r f a c e
650 200
115 35
Contac t o r
_ _ _ 1 -
LiF-BeF2-ThF4 (72-16-12 mole %)
a
320, 88a
1/8 i n . from i n t e r f a c e
Results o f t w o d i f f e r e n t s a m p l e s .
All o t h e r r e s u l t s a r e for one sample.
g/cm3 â&#x201A;Ź o r f l u o r i d e s a l t , 1 . 5 g/cm3 f o r L i C 1 , and
'L
9.6 g/cm3 â&#x201A;Źor b i s -
muth). When s a m p l i n g t h e L i C l i n t h e s t r i p p e r about 1 i n . above t h e L i C 1 - Li-Bi
i n t e r f a c e , a s m a l l amount of b l a c k material was s e e n .
W e w e r e able
t o s e p a r a t e some o f t h i s black m a t e r i a l (5 1 / 2 g ) from t h e s a l t f o r chemical a n a l y s e s . 5 2 . 7 ; Th - 1 8 . 7 ;
The f o l l o w i n g r e s u l t s w e r e r e p o r t e d
C1 - 4 . 1 ; L i - 2 . 8 ;
F
- 2.4;
Fe
-
0.26:
(wt % ) : Be
ai -
- 1 ppm.
5
O R N L D W G . 74-10116
MAG: 5 0 0 X
MAG: 2000X
M A G : 20x
r INTERFACE I
Fig. 1. Scanning electron photomicrographs of the interface between LiCl and Li-Bi in the stripper from experiment MTE-3. Unpolished.
6
These c o n s t i t u e n t s t o t a l 81%, l e a v i n g 1 9 % u n a c c o u n t e d f o r .
No other
e l e m e n t s , e x c e p t p o s s i b l y t h o s e i n t r o d u c e d by oxygen o r water contaminat i o n , are known t o be p r e s e n t i n t h e s y s t e m .
I f i t i s assumed t h a t t h e
r e m a i n d e r i s p r e d o m i n a n t l y oxygen, t h i s would be s u f f i c i e n t t o form o x i d e s and/or h y d r o x i d e s o f a l l of t h e c a t i o n i c s p e c i e s ( b i s m u t h , t h o r i u m , l i t h i u m , an d i r o n ) .
The gram e q u i v a l e n t of t h e s e s p e c i e s i s
Q
0.015,
w h i l e t h e anion-gram e q u i v a l e n t of f l u o r i n e and c h l o r i n e i s o n l y 0.0025. F o r 1 9 w t % oxygen i n t h e m a t e r i a l , t h e oxygen g a s e q u i v a l e n t i s 0.024,
o r 0.011 o f h y d r o x i d e . I t i s n o t now possible t o draw f i r m c o n c l u s i o n s a b o u t t h e r e l a t i o n -
s h i p of o u r c u r r e n t o b s e r v a t i o n s t o t h e low m a s s t r a n s f e r r a t e s s e e n i n e x p e r i m e n t MTE-3.
The t r a n s f e r o f f l u o r i d e s a l t i n t o t h e c h l o r i d e s a l t
j u s t p r i o r t o shutdown, and t h e l e n g t h of t i m e between shutdown and i n s p e c t i o n (from F e b r u a r y 1973 t o F e b r u a r y 1 9 7 4 ) , have c a u s e d much u n c e r t a i n t y i n t h e i n t e r p r e t a t i o n of t h e analyses. A d d i t i o n a l samples o f f l u o r i d e s a l t , LiC1--Bi-Th,
and L i B i from i n t e r -
f a c i a l s u r f a c e s i n t h e c o n t a c t o r and s t r i p p e r have been submitted f o r
x-
r a y d i f f r a c t i o n a n a l y s e s i n a n attempt t o i d e n t i f y compounds which m i g h t (No t h i n g o t h e r t h a n b e r y l l i u m w a s i d e n t i f i e d on o n e sample
be p r e s e n t .
of L i - B i from t h e s t r i p p e r p r e v i o u s l y examined by X-ray d i f f r a c t i o n . ) 2.2
I n s t a l l a t i o n o f Metal T r a n s f e r E x p e r i m e n t MTE-3B
F a b r i c a t i o n and a s s em b l y o f new carbon s t e e l vessels w e r e c o m p l e t e d d u r i n g t h i s report period. (MEW0 N o .
P443-10,
Q
An o x i d a t i o n - r e s i s t a n t protective c o a t i n g
0.015 i n . t h i c k ) w a s a p p l i e d t o t h e o u t s i d e s u r f a c e s
o f t h e c a r b o n s t e e l vessels and i n t e r c o n n e c t i n g l i n e s t o p r e v e n t a i r o x i d a t i o n a t t h e o p e r a t i n g t e m p e r a t u r e of 650OC.
A new pump f o r t r a n s f e r r i n g
f u e l c a r r i e r s a l t between t h e s a l t r e s e r v o i r and contactor w a s f a b r i c a t e d
and i n s t a l l e d .
New molybdenum a g i t a t o r s h a f t s and b l a d e s have a l s o b e e n
o b t a i n e d , a n d t h e a g i t a t o r assemblies were i n s t a l l e d i n t h e c o n t a c t o r a n d
stripper. The vessels an d t h e i r c o n t e n t s ( f u e l c a r r i e r s a l t , l i t h i u m c h l o r i d e , and b i s m u t h ) p r e v i o u s l y u s e d i n e x p e r i m e n t MTE-3 were removed from B l d g .
.
7
The new vessels have
3541 and s e n t t o t h e b u r i a l ground f o r d i s p o s a l .
been i n s t a l l e d , and t h e e x p e r i m e n t a l a r e a i n which t h e m e t a l t r a n s f e r experiment i s l o c a t e d i s being renovated.
T h i s i n c l u d e s r e r o u t i n g some
of t h e s e r v i c e l i n e s t o improve a c c e s s t o s a m p l i n g s t a t i o n s , r e l o c a t i o n of some p r e s s u r e g a g e s , f l o w m e t e r s , and v a l v e s € o r b e t t e r v i s i b i l i t y and a c c e s s , c a l i b r a t i o n and r e p l a c e m e n t (where r e q u i r e d ) of p r e s s u r e g a g e s , f l o w m e t e r s , and s o l e n o i d v a l v e s , and r e c a l i b r a t i o n of t e m p e r a t u r e c o n t r o l l e r s and r e c o r d e r s . We have completed t e s t s on two d i f f e r e n t o x i d a t i o n - r e s i s t a n t p r o t e c t i v e c o a t i n g s u s i n g a d i f f e r e n t method of a p p l i c a t i o n € o r e a c h t y p e of coating.
The c o a t i n g s were a p p l i e d t o t e s t s e c t i o n s made from L o n g i t u d i n a l
h a l f - s e c t i o n s of 6 - i n .
sched 40 mild s t e e l p i p e .
c o a t e d on all exposed s u r f a c e s .
The t e s t s e c t i o n s were
One t e s t p i e c e was c o a t e d w i t h t h e n i c k e l
alumide m a t e r i a l (METCO N o . M405-10 w i r e ) by flame s p r a y i n g w i t h a w i r e gun t o o b t a i n a c o a t i n g t h i c k n e s s of c o a t i n g used on t h e MTE-3 v e s s e l s .
0.010 i n . ,
thereby duplicating the
The s e c o n d t e s t p i e c e w a s c o a t e d w i t h
a n i c k e l chromium alloy c o n t a i n i n g 6% aluminum (METCO N o . P443-10 powder) a p p l i e d w i t h a plasma s p r a y gun t o a t h i c k n e s s of mended by t h e m a n u f a c t u r e r .
Q
0 . 0 1 0 i n . , a s recom-
The two p i e c e s were p l a c e d on f i r e b r i c k s
i n s i d e a f u r n a c e and h e a t e d t o t h e t e s t t e m p e r a t u r e .
During t h e t e s t ,
t h e p i e c e s were t h e r m a l l y c y c l e d s e v e r a l times by a l t e r n a t e l y c o o l i n g t h e furnace t o
%
1 0 0 ° C and r e t u r n i n g i t t o t h e t e s t t e m p e r a t u r e .
The i n i t i a l t e s t t e m p e r a t u r e was 7OOOC.
After
%
400 h r a t 7 O O O C w i t h
e i g h t t h e r m a l c y c l e s , t h e p i e c e s were examined, weighed, and p h o t o g r a p h e d The M405-10 c o a t i n g w a s c o v e r e d e x t e n s i v e l y w i t h a r u s t - c o l o r e d
(Fig. 2),,
o x i d a t i o n p r o d u c t , b u t t h e r e was no s i g n of s p a l l i n g o f t h e c o a t i n g , whereas t h e p i e c e c o a t e d w i t h P443-10 had a much b e t t e r a p p e a r a n c e w i t h o n l y one edge showing a r u s t c o l o r . t e s t p i e c e was a b o u t 7 . 3 rng/cm2 1 0 . 3 mq/cm
2
.
,
Weight g a i n of t h e P443-10 c o a t e d
w h i l e t h e M405-10 c o a t i n g g a i n e d a b o u t
The t e s t t e m p e r a t u r e was t h e n i n c r e a s e d t o 5 1 S ° C and w a s continued
f o r 520 h r w i t h e i g h t t h e r m a l c y c l e s t o 1 O O O C . examined, weighed, and ph o t o g r a p h e d
(Fig. 2 ) .
The t e s t p i e c e s were a g a i n The M40.5-LO c o a t i n g had
ORNL DWG. 74-10117
Fig. 2. Ph o t o g ra p h s of 6 - i n . s c h e d 40 m i l d s t e e l p i p e w i t h o x i d a t i o n r e s i s t a n t protective coatings: ( a ) a f t e r 400 h r a t 7 O O O C i n a i r , (b) a f t e r 500 a d d i t i o n a l h r a t 8 1 5 째 C i n a i r .
9
d e t e r i o r a t e d t o t h e p o i n t where s p a l l i n g had o c c u r r e d , w h i l e t h e P443-10 c o a t i n g had no s p a l l i n g e x c e p t a l o n g one edge where t h e r e w a s some r u s t T o t a l w e i g h t g a i n of t h e
c o l o r e d o x i d a t i o n p r o d u c t and some s p a l l i n g . M405-10-coated
t e s t p i e c e w a s 69.2 mg/cm2, and 20.5 mg/cm2 f o r t h e
P443-10 t e s t p i e c e . M e t a l l o g r a p h i c e x a m i n a t i o n s w e r e made o f t h e b e s t and w o r s t a p p e a r i n g
areas of t h e two specimens.
I n t h e b e s t appearing areas, both coatings
were a d h e r e n t , b u t a t h i n l a y e r of o x i d e formed a t t h e m e t a l - c o a t i n g i n t e r f a c e of t h e specimen c o a t e d w i t h METCO M405-10; t h i s i n d i c a t e s t h a t oxygen i s d i f f u s i n g t h ro u g h t h e c o a t i n g .
The m e t a l - c o a t i n g i n t e r f a c e of
t h e specimen c o a t e d w i t h METCO P443-10 w a s f r e e o f v i s i b l e o x i d e , i n d i c a t i n g t h a t i t i s a good b a r r i e r t o oxygen d i f f u s i o n .
For t h e w o r s t
areas o f b o t h c o a t i n g s , o x i d e a t t h e m e t a l - c o a t i n g i n t e r f a c e s caused some s p a l l i n g where t h e c o a t i n g may n o t have been t h i c k enough t o p r e v e n t oxygen d i f f u s i o n t h ro u g h t h e c o a t i n g s .
The o x i d e formed u n d e r n e a t h t h e
P443-10 c o a t i n g ( i n a s p a l l e d area o c c u r r i n g o n l y a l o n g one e d g e ) a p p e a r e d
t o b e more d e n s e and p r o t e c t i v e t h a n t h a t formed on t h e M405-10-coated specimen.
T h i s i n d i c a t e s t h a t some o f t h e e l e m e n t s i n t h e P443-10 c o a t i n g
may have d i f f u s e d i n t o t h e b a s e metal and i m p a r t e d a measure of p r o t e c t i o n , even though t h e c o a t i n g had s e p a r a t e d i n t h i s area. T h i s l i m i t e d t e s t c l e a r l y d e m o n s t r a t e d t h e s u p e r i o r i t y of t h e plasma s p r a y P443-10 c o a t i n g o v e r t h e M405-10-wire
gun s p r a y e d material pr e v -
i o u s l y used f o r t h e MTE-3 v e s s e l ; t h e r e f o r e , t h e plasma s p r a y c o a t i n g h a s been a p p l i e d t o t h e e x t e r n a l s u r f a c e s of t h e MTE-3B v e s s e l s t h a t w i l l operate a t elevated temperatures. 2.3
Design of t h e Metal T r a n s f e r P r o c e s s F a c i l i t y
Design o f t h e metal t r a n s f e r p r o c e s s f a c i l i t y (MTPF) i n which t h e f o u r t h metal t r a n s f e r e x p e r i m e n t (MTE-4) w i l l be c a r r i e d o u t w a s underway when t h e MSR program w a s t e r m i n a t e d i n 1973.6
B r i e f l y r e v i e w e d , MTE-4 i s
an e n g i n e e r i n g ex p e ri m e n t t h a t w i l l u s e s a l t f l o w r a t e s t h a t a r e 5 t o 1 0 % o f t h o s e r e q u i r e d f o r p r o c e s s i n g a 1000-MW(e) MSBR.
Conceptual d e s i g n s
o f t h e t h r e e - s t a g e salt-metal c o n t a c t o r , made o f g r a p h i t e , and i t s
10 containment vessel were completed.'
The primary purposes of MTE-4 are :
demonstration of the removal of rare-earth fission products from MSBR fuel carrier salt, and accumulation of these materials in a lithium-bismuth solution in equipment of a significant size, determination of mass transfer coefficients between mechanically agitated salt and bismuth phases, determination of the rate of removal of rare earths from the fluoride salt in multistage equipment, evaluation of potential materials of construction, particularly graphite, testing of mechanical devices, such as pumps and agitators, that will be required in a processing plant, and development of instrumentation for measurement and control of process variables, such as salt-metal interface location, salt flow rate, and salt or bismuth liquid level. We are currently reviewing the design of metal transfer experiment
MTE-4.
A mathematical model of the system has been devised, and a com-
puter program (METTRAN) has been written to simulate transient operation of the experiment.
Computations can be made to determine the concentra-
tion of each nuclide being transferred at each stage and at the feed and
receiving vessels as a function of operating time.
The program allows the
experimenter to make parametric studies for such design features as inter-
facial area, number of stages, flow rates, agitator speed, and inventories
of materials.
METTRAN is being used to analyze the MTE-4 experiment to
ascertain the significance of various design features on metal transfer
rates in order to fix optimal design conditions.
Due to space limitations in Bldg. 4505, we are planning to locate
MTE-4 and several of the engineering experiments on molten-salt processing in the MSRe Building (7503).
General cleanup and checkout of existing
building services (electrical circuits, ventilation, and air-filtration systems) is underway.
A 480-V, 3-phase, 60-Hz, 300-kW diesel generator
set and necessary controls will be installed in the existing generator
11
.
b u i l d i n g a t t h e MSRE s i t e .
This will p r o v i d e emergency power f o r main-
t a i n i n g p o r t i o n s o f e n g i n e e r i n g e x p e r i m e n t s which c o n t a i n s a l t o r b i s m u t h
a t t e m p e r a t u r e s above t h e l i q u i d u s t e m p e r a t u r e s .
A purchase order f o r t h e
g e n e r a t o r s e t h a s been i s s u e d , and t h e s y s t e m d e s i g n h a s been c o m p l e t e d . 3.
SALT-METAL CONTACTOR DEVELOPMENT :
EXPERIftEN'rS
WITH A MECHANICALLY AGITATED, NONDISPERSING CONTACTOR U S I N G WATER AND MERCURY C. H . Brown, Jr.
A c r i t i c a l p a r t of t h e p r o p o s e d MSBR p r o c e s s i n g p l a n t is t h e e x t r a c -
t i o n o f r a r e e a r t h s from t h e f l u o r i d e fuel. c a r r i e r s a l t t o a n i n t e r m e d i a t e bis m u t h stream.
One d e v i c e b e i n g c o n s i d e r e d f o r p e r f o r m i n g t h i s e x t r a c -
t i o n i s a m e c h a n i c a l l y a g i t a t e d , n o n d i s p e r s i n g c o n t a c t o r i n which b i s m u t h and f l u o r i d e s a l t p h a s e s are a g i t a t e d t o e n h a n c e t h e mass t r a n s f e r r a t e o f rare e a r t h s a c r o s s t h e salt-bismuth i n t c r f a c e P r e v i o u s r e p o r t s 2,718 I
ha v e shown t h a t t h e folLowing r e a c t i o n i n t h e w a t e r - m e r c u r y syst.em i s s u i t a b l e f o r s i m u l a t i n g a n d s t u d y i n g m a s s transfer rdtes i n s y s t e m s w i t h high d e n s i t y diâ&#x201A;Źferences:
Pb2*[H201
+
%n[Hgl
+=
Zn
24
[H20]
+ Pb[Hg]
.
A l a r g e amount of d a t a h a v e b e e n r e p o r t e d
'7
f o r t h e water-mercury
system i n
which i t was assumed that; t h e l i m i t i n g r e s i s t a n c e t o mass t r a n s f e r e x i s t e d e n t i r e l y i n t h e mercury p h a s e , as s u g g e s t e d by l i t e r a t u r e c o r r e l a t i o n s . During t h i s r e p o r t p e r i o d , a s e r i e s of e x p e r i m e n t s was p e r f o r m e d i n t h e water-mercury
c o n t a c t o r t o d e t e r m i n e which p h a s e a c t u a l l y c o n t r o l s t h e
r a t e of m a s s t r a n s f e r a n d , also, t h e c o n c e n t r a t i o n of pb2+ a t which t h e control of mass t r a n s f e r c h a n g e s f r o m one p h a s e t o the o t h e r . 3.1
Theory
T h e r e a c t i o n u n d er c o n s i d e r a t i o n , Eq, (11, i s a l i q u i d - p h a s e
r e a c t i o n t h a t o c c u r s e n t i r e l y at t h e mercury-water
ionic
interface; this is
b e c a u s e z i n c m e t a l and lead m e t a l a r e i n s o l u b l e i n w a t e r and t h e r e c a n
12
b e no i o n i c lead o r z i n c i n t h e m e r c u r y .
Since t h i s is a t y p i c a l ionic
r e a c t i o n , i t i s assumed t o be e s s e n t i a l l y i n s t a n t a n e o u s and i r r e v e r s i b l e .
The e q u i l i b r i u m c o n s t a n t f o r t h e r e a c t i o n i s g i v e n by t h e f o l l o w i n g equation:
where K
‘Pb Cpb2+ ‘Zn ‘Zn2+
=
equilibrium constant,
=
c o n c e n t r a t i o n o f P b metal i n m e r c u r y , g - i n o l e / l i t e r ,
=
c o n c e n t r a t i o n o f Pb i o n s i n w a t e r , g - m o l e / l i t e r ,
=
c o n c e n t r a t i o n of Zn m e t a l i n m e r c u r y , g - m o l e / l i t e r
=
c o n c e n t r a t i o n o f zn i o n s i n w a t e r , g - m o l e / l i t e r .
,
The e q u i l i b r i u m c o n s t a n t i s v e r y l a r g e , i m p l y i n g t h a t at: e q u i l i b r i u m t h e i o n i c l e a d an d m e t a l l i c z i n c c a n n o t c o e x i s t a t a p p r e c i a b l e c o n c e n t r a t i o n s
a t the interface.
S i n c e i t i s assumed t o be a n e x t r e m e l y f a s t r e a c t i o n ,
t h e e q u i l i b r i u m r e l a t i o n n e a r t h e i n t e r f a c e must be s a t i s f i e d a t a l l
times For t h e instantaneous i r r e v e r s i b l e r e a c t i o n d i s c u s s e d p r e v i o u s l y , two s i t u a t i o n s c o u l d o c c u r n e a r t-he l i q u i d - l i q u i d
interface
,
d e p e n d i n g on
t h e r e l a t i v e m a g n i t u d es of the i n d i v i d u a l - p h a s e mass t r a n s f e r c o e f f i c i e n t s and t h e b u l k -p h a s e c o n c e n t r a t i o n s o f t h e t r a n s f e r r i n g s p e c i e s i n each phase.
F i g u r e 3 i l l u s t r a t e s t h e s e two c o n d i t i o n s .
I n F i g . 3 ( a ) , t h e l i m i t i n g r e s i s t a n c e t o mass t r a n s f e r i s assumed t o o c c u r i n t h e mercury p h a s e .
I t c a n b,s shown t h a t t h e p r o d u c t o f t h e b u l k
p h a s e c o n c e n t r a t i o n o f r e a c t a n t a n d t h e i n d i v i d u a l - p h a s e mass t r a n s f e r c o e f f i c i e n t i n the p h a s e where t h e l i m i t a t i o n o c c u r s must be l e s s t h a n t h e p r o d u c t of t h e b u l k -p h a s e c o n c e n t r a t i o n o f t h e o t h e r r e a c t a n t and t h e i n d i v i d u a l - p h a s e mass t r a n s f e r c o e f f i c i e n t i n t h e o t h e r p h a s e .
The
c o n c e n t r a t i o n of z i n c i n mercury n e a r t h e i n t e r f a c e d e c r e a s e s from the
13
ORML DWG. 74-10110
I I) )
I
I I
/.
cPb
24"
,B
WATER
INTER FAG1A L FILMS POSTULATED BY LEWIS AND WHIT I
I I
I
I
F i g . 3. I n t e r f a c i a l b e h a v i o r f o r a n i n s t a n t a n e o u s irreversible r e a c t i o n o c c u r r i n g between two l i q u i d phases. (a) Mercury-phase cont r o l l i n g mass t r a n s f e r . (b) Water-phase c o n t r o l l i n g mass t r a n s f e r .
14 b u l k c o n c e n t r a t i o n t o n e a r z e r o a t t h e mercury-water
interface.
The con-
c e n t r a t i o n a t t h e i n t e r f a c e i s v e r y s m a l l because of t h e i n s t a n t a n e o u s A t the inkerface i n i r r e v e r s i b l e reaction t h a t occurs a t t h e interface. 2+ h a s a f i n i t e v a l u e and t h e w a t e r p h a s e , t h e c o n c e n t r a t i o n of Pb
i n c r e a s e s through t h e i n t e r f a c i a l f i l m t o t h e bulk phase value. F i g . 3 ( b ) i l l u s t r a t e s t h e c o n d i t i o n i n which t h e l i m i t i n g r e s i s t a n c e
t o m a s s t r a n s f e r i s assumed t o o c c u r i n t h e water p h a s e .
The e x p l a n a t i o n
of t h e c o n c e n t r a t i o n g r a d i e n t s i n t h e i n t e r f a c i a l f i l m s i s e n t i r e l y analogous t o t h e case e x p l a i n e d a b o v e . t h e mer cury , Zn
2+
The c o n c e n t r a t i o n p r o f i l e s o f l e a d i n
i n t h e w a t e r , and NO
-
3
( t h e a n i o n ) i n t h e water a r e n o t
shown i n F i g . 3 . S e v e r a l c o r r e l a t i o n s have been d e v e l o p e d and p r e s e n t e d i n t h e l i t e r a t u r e f o r p r e d i c t i n g i n d i v i d u a l - p h a s e mass t r a n s f e r c o e f f i c i e n t s i n n o n d i s p e r s i n g stirred i n t e r f a c e c o n t a c t o r s .
For t h e mercury-water
system, all.
o f t h e s e c o r r e l a t i o n s p r e d i c t t h a t t h e mercury-phase m a s s t r a n s f e r c o e f f i -
c i e n t would be smaller t h a n t h e w a t e r - p h a s e c o e f f i c i e n t . I n a l l p r e v i o u s work p erfor m e d w i t h t h e mercury-water t h e c o n c e n t r a t i o n s of t h e r e a c t a n t s were e q u a l .
s y s t e m , 2,7,8
T h i s c o n d i t i o n , coupled
w i t h t h e f a c t t h a t t h e mercury-phase mass t r a n s f e r c o e f f i c i e n t was pred i c t e d t o be s i g n i f i c a n t l y smaller t h a n t h e w a t e r - p h a s e c o e f f i c i e n t ?
i n d i c a t e d t h a t t h e l i m i t i n g r e s i s t a n c e t o m a s s t r a n s f e r should occur i n t h e mercury p h a s e . I n order t o t e s t t h e a s s u m p t i o n t h a t mass t r a n s f e r i s c o n t r o l l e d by t h e mercury p h a s e , w e c an w r i t e t h e f o l l o w i n g r e l a t i o n s f o r t r a n s f e r o f t h e r e a c t a n t s from t h e b u l k p h a s e t o t h e i n t e r f a c e where t h e y r e a c t , b a s e d
on t h e two -fi l m r e p r e s e n t a t i o n shown i n F i g . 3 :
where
k
=
i n d i v i d u a l - p h a s e mass t r a n s f e r c o e f f i c i e n t , cm/sec,
15
N
=
r a t e of mass t r a n s f e r t o t h e i n t e r f a c e , g / s e c ,
A
=
i n t e r f a c i a l a r e a , cm
C
=
concentration,
2
,
(B d e n o t e s b u l k - p h a s e 3
i n t e r f a c i a l c o n c e n t r a t i o n ) , g/cm'
,
concentration, i denotes
and
s u b s c r i p t s Hg and 1-1 0 r e f e r t o t h e p h a s e b e i n g c o n s i d e r e d . 2
As stated
above, we assumed t h a t t h e rate a t which r e a c t i o n (1) p r o c e e d s i s cont r o l l e d by t h e r a t e o f t r a n s f e r of z i n c t h r o u g h t h e mercury p h a s e t o t h e The n e c e s s a r y c o n d i t i o n s for t h i s a s s u m p t i o n t o b e v a l i d a r e :
interface.
(1) The e q u i l i b r i u m c o n s t a n t f o r t h e r e a c t i o n must h e l a r g e ( i . e . , t h e r e a c t i o n sholild be i r r e v e r s i b l e ) . (2)
The p r o d u c t of t h e mass t r a n s f e r c o e f f i c i e n t : t i m t ? s t h e b u l k c o n c e n t r a t i o n of r e a c t a n t i n t h e p h a s e where t h e r a t e of mass t r a n s f e r i s l i m i t i n g must be less t h a n t h e product i n t h e other phase.
S i n c e 1 mole o f z i n c i s e q u i v a l e n t t o 1 mole o f Ph
2+
a c c o r d i n g t o Ey. (l),
S u b s t i t u t i n g Eqs. ( 3 ) and ( 4 ) i n t o t h i s e x p r e s s i o n , and Zn * assuming t h a t t h e c o n t r o l l i n g r e s i s t a n c e i s i n t h e mercury p h a s e , t h e
N
Pb
2 + = N
f o l l o w i n g e x p r e s s i o n i s o b t a i n e d for t h e a p p a r e n t mercury-phase mass transfer coefficient:
kH20 (CPb 2+ , B - CPb2+
,1)
where
k
IIg ,A
k
H2째
=
t h e a p p a r e n t i n d i v i d u a l - p h a s e mass t r a n s f e r c o e f f i c i e n t f o r t h e mercury p h a s e , cm/sec,
=
the t r u e individual-phase m a s s t r a n s f e r coeffi-cient f o r the water phase,
I n t h e above e q u a t i o n , t h e a c t u a l . m a s s t r a n s f e r c o e f f i c i e n t d i f f e r s from t h e a p p a r e n t mass t r a n s f e r c o e f f i c i e n t o n l y i f t h e mercury p h a s e d o e s n o t c o n t r o l t h e r a t e of m a s s t r a n s f e r .
The t r a n s i e n t method used t o d e t e r m i n e
t h e m a s s t r a n s f e r c o e f f i c i e n t h a s been d e s c r i b e d p r e v i o u s l y . 8
By a n argument s i m i l a r t o t h a t which l e d t o t h e development o f E q . ( 5 ) , an e q u a t i o n f o r t h e a p p a r e n t aqueous-phase mass t r a n s f e r c o e f f i c i e n t
c a n be w r i t t e n for t h e case where t h e l i m i t i n g r e s i s t a n c e i s i n t h e w a t e r . The c o n c e n t r a t i o n of Pb2+ i n t h e water below which t h e l i m i t i n g res'is-
t a n c e t o mass t r a n s f e r i s i n t h e w a t e r ( a t a f i x e d c o n c e n t r a t i o n of z i n c i n t h e mercu ry ) c a n be d e t e r m i n e d a s f o l l o w s :
I f t h e Pb2+ c o n c e n t r a t i o n
i s s u f f i c i e n t l y h i g h , t h e l i m i t i n g r e s i s t a n c e t o mass t r a n s f e r w i l l be i n t h e mer cury , a n d t h e i n t e r f a c i a l c o n c e n t r a t i o n of Pb
a f i n i t e value.
2+
,
CPb2.tli
w i l l have
i s lowered by a n amount A ( n o t l a r g e enough t o ,B c a u s e t h e l i m i t i n g r e s i s t a n c e t o change p h a s e s ) , E q . ( 5 ) t h e n i n d i c a t e s t h a t CPb2+ e n c e Cpb2+
,i ,B
I f CPb2+
must a l s o d e c r e a s e by t h e same amount A , k e e p i n g t h e d i f f e r -
- Cpb2+,i
constant.
The w a t e r - p h a s e m a s s t r a n s f e r c o e f f i -
c i e n t i s assumed t o remain c o n s t a n t ( a l t h o u g h o f unknown v a l u e ) . CPb2+,B i s re d u ce d s u f f i c i e n t l y , Cpb2+
is f u r t h e r reduced, C
2+
w i l l d r o p t o z e r o ; i f Cpb2+
t i
,B'
,R
w i l l remain z e r o , and t h e l i m i t i n g r e s i s t a n c e
Pb , i w i l l change from t h e mercury p h a s e t o t h e w a t e r p h a s e . of Cpb2+
If
A t high values
t h e a p p a r e n t mercury-phase mass t r a n s f e r c o e f f i c i e n t w i l l
remain c o n s t a n t as CPh2+IB i s lowered t o t h e p o i n t where t h e l i m i t i n g r e s i s t a n c e moves i n t o t h e water p h a s e .
A s Cpb2+
,B
i s f u r t h e r reduced,
2+ . w i l l b e z e r o o x v e r y n e a r z e r o . E q u a t i o n ( 5 ) shows t h a t t h e Pb ,I a p p a r e n t mercury-phase mass t r a n s f e r c o e f f i c i e n t w i l l v a r y d i r e c t l y w i t h
C
Cpb2+,B ( s i n c e C
zn ,B
i s f i x e d , and t h e t r u e w a t e r - p h a s e mass t r a n s f e r
c o e f f i c i e n t i s assumed t o b e c o n s t a n t ) .
T h i s dependence of t h e a p p a r e n t
mercury-phase mass t r a n s f e r c o e f f i c i e n t on t h e c o n c e n t r a t i o n o f Pb t h e water i s shown i n F i g a 4 .
2+
in
The dependence of t h e a n a l o g o u s l y d e f i n e d
a p p a r e n t wa t er-p h a s e mass t r a n s f e r c o e f f i c i e n t i s also shown.
Thus, by
c a l c u l a t i n g t h e a p p a r e n t mercury-phase m a s s t r a n s f e r c o e f f i c i e n t as a f u n c t i o n o f t h e i n i t i a l aqueous-phase
lead concentration €OK a s i n g l e
a g i t a t o r speed, t h e t r a n s i t i o n f r o m mercury-phase
c o n t r o l l i n g t o aqueous-
p h a s e c o n t r o l l i n g s h o u l d be i d e n t i f i a b l e by a l i n e - s l o p e change d e t e r m i n e d by p l o t t i n g t h e a p p a r e n t mercury-phase mass t r a n s f e r c o e f f i c i e n t v s t h e i n i t i a l aqueous-phase
lead concentration.
TRANSFER COEFFICIENT
APPARENT INDIVIDUAL-PHASE MASS
18 3.2
Experimental Apparatus
A series o f mass t r a n s f e r e x p e r i m e n t s was p e r f o r m e d i n a mercury-
w a t e r c o n t a c t o r t o d e t e r m i n e t h e p o i n t a t which c o n t r o l . o f mass t r a n s f e r changes f r o m t h e mercury p h a s e t o t h e aqueous p h a s e .
The e x p e r i m e n t a l
a p p a r a t u s u s ed i n t h i s s t u d y i s shown s c h e m a t i c a l l y i n F i g . 5. ment c o n s i s t s of a 5- by 7-in.
The e y u i p -
Plexiglas vessel, 10 i n . high, containiny
t w o p h a s e s , e a c h of which i s 3 i n . d e e p .
An a g i t a t o r s h a f t t o which two
f o u r - v a n e d , f l a t p a d d l e s a r e a t t a c h e d i s suspended from a v a r i a b l e speed motor .
The p a d d l e s are p o s i t i o n e d a t t h e m i d p o i n t o f e a c h p h a s e .
In
t h i s s t u d y , t h e t w o p h a s e s w e r e 1 . 8 l i t e r s of c l e a n mercury c o n t a i n i n g 0.1
g Zn, and 1 . 8 l i t e r s o f d i s t i l l e d water c o n t a i n i n g from
0.02 t o 0.10
- P b( N03 )2 . M 3.3
R e s u l t s and C o n c l u s i o n s
F i v e e x p e r i m e n t s were r u n t o measure t h e a p p a r e n t mercury-phase mass t r a n s f e r c o e f f i c i e n t as a f u n c t i o n of t h e i n i t i a l aqueous-phase concentration.
The i n i t i a l mercury-phase
constant a t 0.1
E.
lead
z i n c c o n c e n t r a t i o n was h e l d
Ph as e volumes and a g i t a t o r s p e e d w e r e a l s o h e l d
c o n s t a n t a t 1 . 8 l i t e r s an d
%
150 rpm, r e s p e c t i v e l y .
The e x p e r i m e n t a l r e s u l t s a r e p r e s e n t e d g r a p h i c a l l y i n F i g . 6 .
The
a p p a r e n t mercury-phase mass t r a n s f e r c o e f f i c i e n t d e c r e a s e d f o r a l l i n i t i a l l e a d c o n c e n t r a t i o n s less than i n previous experiments.
This i n d i c a t e s
t h a t u n d e r t h e s p e c i f i e d c o n d i t i o n s , t h e l i m i t i n g r e s i s t a n c e t o mass t r a n s f e r i s a p p a r e n t l y n o t i n t h e mercury p h a s e . one p o i n t a t t h e lowest Pb
2+
However, b a s e d on t h e
c o n c e n t r a t i o n , t h e a p p a r e n t aqueous-phase
mass t r a n s f e r c o e f f i c i e n t d o e s n o t seem t o remain a c o n s t a n t as would be p r e d i c t e d by t h e model d e s c r i b e d above.
T h i s p o i n t must be c l a r i f i e d by
additional data. From t h e s e r e s u l t s , t h e f o l l o w i n g c o n c l u s i o n c a n be drawn:
For t h e
c o n d i t i o n s u n d er which t h e s e a n d a l l o t h e r r u n s w e r e p e r f o r m e d , t h e r e s i s t a n c e t o mass t r a n s f e r w a s n o t i n t h e mercury p h a s e a s w a s p r e v i o u s l y believed.
F u r t h e r s t u d i e s a r e needed t o t e s t o t h e r a s s u m p t i o n s employed
i n a n a l y z i n g r e s u l t s from t h e t r a n s i e n t m a s s t r a n s f e r e q u i p m e n t .
19
QRNL DWG. 74-10112
VARIABLE
,--ROTATING
SPEED DRIVE
MorOR
AGITATOR
SHAtFT
A G I TAT0R PADDLES (CENTERED IN EACH PHASE 1
PLEXiGL AS CTOR
Fig. 5 . mercury-water
S c h e m a t i c diagram of t h e Plexiglas c o n t a c t o r u s e d f o r the s y s t em .
20
$E
0RNL DWG. 74-10109 I
I
0
t-
z
-
W 0
I
V - APPARENT
MERCURY PHASE MASS TRANSFER COEFFICIENT' 0- APPARENT AQUEQUSPHASE M A S S TRANS f ER COEFFICIENT
0.010
u
1
0.008
LL
L W
0 0
a: 0.006 W LL U J
z a a
I-
0.004
II)
UJ
a
2 0
w
QI I)
0.002
UJ
Q:
w E
0.o 0.0
0.02
0.04
INITIAL AQUEOUS -PHASE
0.06
Q.Q8
LEAD CONCENTRATION
0.10
(m) moles
F i g . 6. E x p eri m en t a l r e s u l t s showing t h e a p p a r e n t mercury-phase mass t r a n s f e r c o e f f i c i e n t s a s a f u n c t i o n of t h e i n i t i a l a q u e o u s - l e a d c o n c e n t r a t i o n a t c o n s t a n t a g i t a t o r speed.
4.
SALT-METAL CONTACTOR DEVELOPMENT
EXPERIMENTS W I T H
:
A MECHANICALLY A G I T A T E D , NONDISPERSING CONTACTOR I N THE SALT-BISMUTH FLOW’1’HROUGH F A C I L I T Y
J . A.
K l e i n , C . H . Brown, J r . , and J. R. Hightowerr, Jr.
M ec h an i c al l y a g i t a t e d , n o n d i s p e r s i n g c o n t a c t o r s a r e being c o r l s i d e r e d f o r e x t r a c t i n g p r o t a c t i n i u m and t h e r a r e - e a r t h f i s s i o n p r o d u c t s from t h e f u e l c a r r i e r s a l t of a m o l t e n - s a l t b r e e d e r r e a c t o r i n t o m o l t e n bismuth containing dissolved reductant.
Mass t r a n s f e r r a t e s were measured i n a m i l d s t e e l c o n t a c t o r which was f a b r i c a t e d and i n s t a l l e d i n t h e S a l t - B i s m u t h Flowthrough F a c i l i t y .
T h i s e x p e r i m e n t a l s y s t e m a l l o w s ( a ) p e r i o d i c p u r i f i c a t i o n of t h e f e e d s a l t and metal,
(b) removal o f s u r f a c e c o n t a m i n a t i o n from t h e salt-metal i n t e r -
f a c e , and ( c ) v a r y i n g of t h e d i s t r i b u t i o n r a t i o of t h e m a t e r i a l . of i n t e r -
e s t between t h e s a l t and b i s m u t h . The new s t i r r e d i n t e r f a c e c o n t a c t o r makes u s e of t h e e x i s t i n g p i p i n g equipment and i n s t r u m e n t a t i o n i n t h e S a l t - B i s m u t h Flowthrough F a c i l i t y 10-1.4 A t h a t were used f o r s t u d y i n g s a l t - b i s m u t h f l o w i n packed columns. s i m p l i f i e d fl o w diagram o f t h e f a c i l i t y i s shown i n F i g . 7 .
The f a c i l i t y
c o n t a i n s f i v e v e s s e l s , t h e a s s o c i a t e d p i p i n g , and t h e c o n t a c t o r a s s e m b l y . The v e s s e l s are a s a l t - f e e d t a n k , a s a l t - c o l l e c t i o n t a n k , a b i s m u t h - f e e d t a n k , a b i s m u t h - c o l l e c t i o n t a n k , and a t r e a t m e n t v e s s e l ( T 5 ) f o r s p a r g i n g b o t h s a l t and m e t a l w i t h m i x t u r e s of HF and
13
2’
To c o n s e r v e s p a c e , f e e d
and c o l l e c t i o n t a n k s f o r b o t h s a l t and m e t a l are c o n c e n t r i c . c o l l e c t i o n t a n k s and p i p i n g are made o f low c a r b o n s t e e l .
Feed and
The t r e a t m e n t
v e s s e l i s made of s t a i n l e s s s t e e l w i t h a g r a p h i t e l i n e r . A diagram o f t h e c o n t a c t o r i s shown i n F i g .
o f a 6-in.-diam
cal. b a f f l e s .
8.
The c o n t a c t o r i s made
low-carbon s t e e l vessel c o n t a i n i n g f o u r 1-in.-wide
The a g i t a t o r c o n s i s t s of two 2-7/8-in.-diam
f o u r 3/4-in.-wide
n o n ca n t e d b l a d e s .
A 3/4-in.-diam
verti-
s t i r r e r s with
o v e r f l o w a t the
i n t e r f a c e a l l o w s t h e removal of i n t e r f a c i a l f i l m s w i t h t h e s a l t and m e t a l e f f l u e n t streams.
S a l t and bismuth a r e f e d i n t h e c o n t a c % s r below t h e
s u r f a c e o f t h e r e s p e c t i v e p h a s e , and b o t h p h a s e s w e r e e q u i l i b r a t e d p r i o r t o an e x p e r i m e n t .
The s y s t e m w a s o p e r a t e d i n e s s e n t i a l l y t h e same manner
ORNL DWG 74-694R1
n
CONTACTOR
METAL FEED AND COLLECTION TANK
SALT FEED AND COLLECTION TANK
SALT AND METAL TREATMENT VESSEL
F i g . 7. Flow d i a g r a m of t h e S a l t - B i s m u t h F l o w t h r o u g h F a c i l i t y w i t h t h e mechanically agitated c o n t a c t o r i n s t a l l e d .
23
Q R N L DWG 7 4 - 1 0 0 7 3
A-Bismuth inlet B-Salt inlet C-Four I-in. b a f f l e s D-2-7/8-in. x 3/4-in. blades E-Gas- salt interface F- Bismuth-salt interfoce G - Interface removal H-Salt effluent I- Bisrnut h effluent Fig. 8. Diagram of the mechanically agitated, nondispersing contactor installed in the Salt-Bismuth FlowtArough Facility.
24
as w a s employed w i t h t h e packed column. 10-14
After t r a n s f e r of t h e s a l t
a n d metal p h a s e s t o t h e feed t a n k s , 9 7 Z r and 237U t r a c e r s were added t o With t h i s t e c h n i q u e , t h e r a t e s a t which z i r c o n i u m and uranium
the salt.
t r a c e r s t r a n s f e r from t h e s a l t t o t h e b i s m u t h c o u l d be measured i n a s y s t e m t h a t was o t h e r w i s e a t chemical. e q u i l i b r i u m . The e x p e r i m e n t a l l y d e t e r m i n e d d a t a f r o m t h e s y s t e m a r e s u f f i c i e n t
t o a l l o w t h r e e i n d e p e n d e n t e x p r e s s i o n s f o r t h e o v e r a l l mass t r a n s f e r c o e f f i c i e n t t o b e d e r i v e d â&#x201A;Ź o r t h e c o n t a c t o r i n t h e S a l t - B i s m u t h Flowt h r o u g h F a c i l i t y from s t e a d y - s t a t e material b a l a n c e r e l a t i o n s h i p s .
7
These e x p r e s s i o n s f o r t h e o v e r a l l m a s s t r a n s f e r c o e f f i c i e n t are g i v e n below i n terms o f t h e measured q u a n t i t i e s C1 r C s r Cmr F i r F 2 r Dr and A:
F 1(1
-
5) C
c
where F1
=
3 f l o w r a t e o f salt, c m / s e c ,
F
=
f l o w r a t e o f m e t a l , c m /sec,
=
tracer c o n c e n t r a t i o n i n s a l t inflow, units/cm
2
C1
3
3
,
25
3
,
cS
=
tracer concentration in salt outflowl units/cm
cm
=
tracer concentration in metal outflow, unit:;/cm 3 ,
A
=
interfacial area, cmL , and
D
=
distribution coefficient
=
ratio of concentraction in metal.
phase to concentration in salt phase at; equilibrium, 3 mo les/cm moles/cm3 The subscripts 1, 2, and 3 on K
S
indicate the equation used to evaluate
the overall mass transfer coefficient, K
S
.
The overall mass transfer
coefficient is related to the mass transfer coefficients in the individual
phases through the following relation: l/Ks
I/kS + l/Dkm,
=
where K
S
ks
=
overall mass transfer coefficient based on salt-phase concentrations, cm/sec,
=
km =
individual mass transfer coefficient in salt phase, cm/sec,
and
individual mass transfer coefficient phase in metal, cm/sec.
Within experimental error, the distribution coefficient, D, can be set as desired.
In order to minimize effects of uncertainties i n the
value of D on the calculated value of the overall mass transfer coefficient, it is desirable to make D Eairly large. F o r the values of concentrations and flow rates used in these experiments, the terms containing D in E q s .
( 6 ) - ( 8 )are less than 5% of the values o f the other
terms for values o f D greater than 20, and can be disregarded with l i t t l e error.
Assuming that the terms containing D can be omitted,
Eqs. (6)-(8) reduce to
26
Ks
2
-
F
2 -
, and
A
uncertainties in the distribution coefficient do not affect the accuracy of the overall mass transfer coefficient. However, as shown by Eq. (91,
when D
i s
very large, the overall mass transfer coefficient is essentially
the individual salt-phase coefficient, since resistance to mass transfer in the metal phase is negligible in comparison. Six runs have been completed to date. 7
Four runs (TSMC-1 through -4)
have been discussed previously, and two runs (TSMC-5 and -6) were completed during this report period.
We have recalculated results for a l l
runs and will discuss them together in this report.
All runs were performed using the same procedure. While the fluoride
salt and bismuth are in contact in T5 (the treatment vessel), sufficient
beryllium is added to the salt electrolytically to produce the desired
distribution coefficient, D. Since it is impossible to completely exclude oxidants, addition of beryllium must be carried out periodically in order
to maintain a relatively high distribution coefficient. Periodic transfer of
salt and bismuth throughout the system are also performed to keep the
system in equilibrium.
Prior to a run, the salt and bismuth phases are separated by pressur-
izing the salt-bismuth purification vessel and transferring salt arid
27
bism u t h t o t h e i r r e s p e c t i v e feed t a n k s .
97
Approximately 7 m C i of 9 7 Z r -
Nb
0 are allowed t o d i s s o l v e i n t h e s a l t phase 3 8 about 2 h r p r i o r t o an experiment.
and 50 t o 100 m C i o f 237U
S a l t a n d b i s m u t h strems a r e p a s s e d t h r o u g h t h e c o n t a c t o r v e s s e l a t t h e d e s i r e d f l o w r a t e s by c o n t r o l l e d p r e s s u r i z a t i o n o f t h e s a l t and b i s The c o n t a c t o r i s m a i n t a i n e d a t a p p r o x i m a t e l y 59O OC f o r
muth f e e d t a n k s . a l l runs.
Both p h a s e s e x i t t h r o u g h a common o v e r f l o w l i n e , separate,
and r e t u r n t o t h e s a l t and b i s m u t h c a t c h v e s s e l s .
P e r i o d i c s a m p l i n g of
b o t h e x i t streams i s ac c o m p l i s h e d by means o f f l o w i n g - s t r e a m samplers i n s t a l l e d i n t h e e x i t l i n e s from t h e c o n t a c t o r . Sample a n a l y s i s w a s a c c o m p l i s h e d by f i r s t c o u n t i n g t h e sample cap-
s u l e s â&#x201A;Źor t h e a c t i v i t y of 97Nb
237u
( 2 0 7 . 9 5 k e v 6-1 and the a c t i v i t y of 97Zr-
(743.37 keV and 658.18 keV R - ,
respectively) a f t e r secular equilib-
rium w a s r e a c h e d between 9 7 Z r a n d i t s d a u g h t e r 97Nb.
The m a t e r i a l i n 237u wa s t h e sample c a p s u l e s w a s t h e n d i s s o l v e d , a n d t h e a c t i v i t y o f
cou n t e d a g a i n a f t e r t h e 9 7 Z r - 9 7 N b
a c t i v i t y had d e c a y e d t o a v e r y P o w
l e v e l ; t h i s w a s done t o c o r r e c t f o r s e l f - a b s o r p t i o n
i n t h e s o l i d samples.
Mass t r a n s f e r r a t e s were t h e n c a l c u l a t e d from t:he r a t i o s of t r a c e r conc e n t r a t i o n s as d i s c u s s e d p r e v i o u s l y .
The c o u n t i n g d a t a o b t a i n e d d u r i n g r u n s TSMC-2 t h r o u g h -6 a r e shown i n T a b l e s 2-6.
C o u n t i n g d a t a a r e g i v e n â&#x201A;Ź o r 237U
(207.45 keV f3-)
and
972 r (743.37 keV 6-1 i n t h e s o l i d s a l t and b i s m u t h s a m p l e s , and f o r a f t e r t h e samples were d i s s o l v e d .
237u
A l l t h e r e s u l t s are given i n t e r m s of
c o u n t s per gram of p h a s e . R e s u l t s o f measurements o f o v e r a l l mass t r a n s f e r c o e f f i c i e n t s a r e shown i n Table 7 .
T h re e d i f f e r e n t e q u a t i o n s f o r c a l c u l a t i . n y m a s s t r a n s -
f e r c o e f f i c i e n t s were used. f o r c a l c u l a t i n g t h e r e s u l t s f o r any one r u n , and t h e r e s u l t s a r e p r e s e n t e d a s a n a v e r a g e o f t h r e e c a l c u l . a t e d v a l u e s with t h e standard deviation.
V a l u e s are g i v e n b o t h f o r r e s u l t s b a s e d
on t h e u ra n i u m c o u n t i n g d a t a and f o r r e s u l t s based on t h e z i r c o n i u m c o u n t i n g data.
Table 2 .
~~~
C o u n t i n g d a t a o b t a i n e d from r u n TSYC-2
~
Solid analysis for 2 3 7 ~ (counts/ g)
Sample code"
Solution analysis for 2 3 7 ~ (counts / g)
Solid analysis for 9 7 ~ r (counts/g)
Sample codea
Solid analysis f o r 237u (counts/g)
Solution analysis for 2 3 7 ~ (counts/g)
Solid analysis for 9 7 ~ r ( c o u n t s/ g )
Samples t a k e n p r i o r t o r u n
< 3.3 3.2 -< 2 . 2
88-B-5 93-B-1 94-B-1
x 102 x 102 x 102
- 2.8 < 1.9 < 2.3 -
103 103 x lo3
< 6.37 x l o 1 < 1 . 0 3 x lo2 < 6 . 6 x lo1
86-S-5 874-5 89-s-3 90-S-3
< 8.5 < 6.8 < 2.9 < 5.6
x lo3 x lo3 103 104
<
4.5
< 7.7 -< 3.9 < 6.6 -
x 102
x 102 x 102 x lo2
Samples t a k e n p r i o r t o r u n , b u t a f t e r a d d i t i o n of tracers 91-S-3 92-S-3 Samples t a k e n d u r i n g r u n 9 3- B-FS 91-B-FS 95-B-FS 96-B-FS 97-B-FS 98-B-FS 99-B-FS
107-B-1 108-B-1 109-B-2 110- 8-2 115-13-5 116-B-5
1.80 1.46 1.91 2.24 2.15 1.86 x 3.21 x
104
5.05 4.iE 1.48 1.96 2.76 5.15
io3 lo3
x X
104
io4 io4 104
10'
io4
IO4
x 104
x
x
io4 io4
2.80 x 10'
2.01 1.69 2.00
104 104
3.87 3.91 5 . 0 1 x 10'
1.94 x 1.97 2.74
lo4 io4 io4
3.49 3.29
4.28
1.08 1.04 3.29 3.76 5.52 6.34
104
io4 io4 io4 io4
io4
x io4 x IO' x 10' x lU4
io4
2.10
io4
104
100-S-FS 101-S-FS 102-S-FS 103-S-FS 104-S-FS 105-S-FS 106-S-FS
Samples t a k e n a f t e r r u n 4.40 103 4.05 x 10'
1.61 1.83
104
io4
2 . 4 0 x 10'
2.54
io4
111-S-3 112-S-3 113-5-4 114-S-4 117-S-5 118-5-5
3.01 105 1.96 x I O 5 2.32 io5 2.41 105 2.44 x I O 5
--
2.65 x 2.74 x
2.91
lo5 lo5 105
5.00 x io5 5 . 1 4 s IO5
2.41 2.55 1.53 9.59
105 105 105
io4
aEach sample is d e s i g n a t e d by a c o d e c o r r e s p o n d i n g t o A-B-C, where A = sample number; B = inaterial i n sample C = sample o r i g i n ; 1 = "1; 2 = T2; 3 = T 3 ; 4 = T 4 ; 5 = T5; FS = f l o w i n g stream sample.
,
1.94 1.93 1.29 1.36 6.63 7.95
105
105 105
105
io4 io4
(B = b i s m u t h , S = s a l t ) ; and
29
T a b l e 3. ___- -
Sample codea
Solid analysis f o r 237u (counts/g)
141-B-5 142-B-5 1 47- 8- 5 148-B- 5
.<. 1 . 1 3 -< 1 . 6 4 (6.26 -< 1.00
x 10' x lo2 x lo1 x 102
C o u n t i n g d a t a o b t a i n e d f r o m r u n TSMC-3
Solution a n a l y s i s f o r 237u (counts/ g)
< 5.1 < 5.5 < 3.4
Sample codea
Samples t a k e n p r i o r t o r u n
-< 4 . 0
103
io3 io3 103
143-S-5 144-5-5 145-5-3 146-5-3
Solid a n a l y s i s for 2 3 7 ~ (counts / g)
< 3.3 < 3.2
103
io3 io3 io4
< 3.4
< 3.2
S o l u t i o n analysis for 2 3 7 ~ (counts/g)
-< 5.3
104
< 7.6 < 7.6 < 5.6
104
io4 io4
Samples t a k e n p r i o r t o r u n b u t a f t e r z d d i t i o n of tr-aLeL 149-S-3 150-S-3
io4
151-B-FS 152-B-FS 1 5 3- 8- FS 154-B-FS 155-B-FS 156-8-FS 157-8-FS
4.52 4.14 4.12 4.51 6.32 3.88 4.00
165-B-1 166-B-1 1 69- B-2 170-B-2 173-B-5 174-B-5
4 . 3 8 x lo2 6 . 5 3 x 10' 3.19 io4 io4 2.86 5.47 io4 5.24 io4
io4
io4 io4
io5 io4 io4
6.13 6.33
Samples t a k e n d u r i n g r u n 1.13 1.29 1.33 1.44 1.26 1.44 1.49
105
105 105 105
io5 io5 io5
158-S-FS 159-S-FS 160-S-FS 161-S-FS 162-S-FS 163-S-FS 164-S-FS
Samples t a k e n a f t e r run 4.8 103 4.7 io3 1 . 6 1 x lo5 9.56 io4 1.43 io5 1.44 io5
167-S-3 1 68- S- 3 1 7 1- S - 4 172-5-1, 175-S-5 176-5-5
3.48
--
2.96
3.08 x
3.02 3.19
--
105 105
9.37 9.29
io5
4.89
105
4.36 4.56 3.99 4.43
lo5 105
io5
105
--
1.19
2.64 x 10' 2.70 105 < 6.4 x l o 3 < 6.4 x l o 3
4.71 4.12 5 1.4 < 1.4
105 105 105
io5 _L
6 . 6 8 x lo5
--
105
--
105
105
io5 io5
105
io5
aEach s a m p l e is d e s i g n a t e d by a cqdde c o r r e s p o n d i n g t o A-B-C, w h e r e A = s a m p l e number; B = m a t e r i a l in sample (B = b i s m u t h , S = s a l t ) ; and C = s a m p l e o r i g i n ; 1 T 1 ; 2 = T2; 3 = T3; 4 = T4; 5 = T 5 ; FS = f l o w i n g stream s a m p l e .
T a b l e 4.
C o u n t i n g d a t a o b t a i n e d from r u n TSMC-4
~~
Sample codea
Solid analysis for 2 3 7 ~ (counts/g )
Solution analysis for 2 3 7 ~ (coun t s / g )
< 5.1 c 6.7 < 4.9 c 4.7
191-B-5 192-B-5 195-B-1 196- B- 1
io3 io3 io3 io3
Solid analysis for 9 7 ~ r (coun t s / g )
Sample code"
Samples t a k e n p r i o r t o r u n x 102 189-S-5 < 3 . 3 x 102 190-S-5 < 3.3 x 102 193-S-3 < 5.7 x 1 0 2 194-S-3
-< 4 . 4
Solid analysis f o r 237.0 (counts/g)
< 5.9 (4.0 2 4.7 2 4.3
x 103 x
x
x
lo3 lo3 lo3
Samples t a k e n p r i o r t o r u n b u t a f t e r a d d i t i o n o f t r a c e r s 197-S-3 1.22 x 106 198-S-3 1 . 2 1 x 106 199-E-FS 200-B-FS 2 01-B- FS 202-B-FS 203-B-FS 204-B-FS 205-B-FS
9.67 1.45 1.70 1.85
213-B-1 214-B-1 215-B-2 216-B-2 221-B-5 222-B-5
2.06 1.73 1.06 1.07 7.86 8.28
2.19
1.83 1.57
Solution analysis f o r 2 3 7ii (count s / g )
< 3.6 < 3.8 < 3.6
< 1.0
x lo4 x 1oq 104
104
x 105
2.97 105 3 . 2 3 x 105 2.88 105 5.01 x 1 0 5 3.34 105 3.10 105 3.14 105
103 103 105 105 104
8.7 x l o 3 7.7 103 2.84 io5 3.17 105 2.23 105 2.38 x l o 5
Samples t a k e n a f t e r r u n 217-5-3 1 . 9 x 10' 1.1 103 218-S-3 3.69 io4 219-S-4 3.68 io4 2 2 0-S -4 223-S-5 2.53 io4 2.62 io4 224-S-5
1 . 3 1 x lo6 1.25 x 106 2.29 105 2.38 105 8 . 3 x io4 8.0 io4
1.48 x 106 1 . 5 4 x lo6 2.61 105 2.71 105 c 4.7 104 < 4.9 104
io4
aEach sample is d e s i g n a t e d by a code c o r r e s p o n d i n g t o .4-B-C, where A = s a m p l e number; B = m a t e r i a l i n sample C = sample o r i g i n ; i = T I ; 2 = T2; 3 = T3; 4 = T4; 5 = T5; FS = f l o w i n g stream sample.
io5 io5
2.39 x l o 5 2.36 io5 4.88 io4 4.67 io4 < 2.2 103 < 3.9 103
i.46 2.64 2.98 2.97 2.76 2.63 2.52
lo5
103
x 102
4.58 io4 6 . 3 3 x 10' 4.61 x l o 4 6.07 io4 6.96 io4 8.48 io4 6.84 io4
Samples t a k e n d u r i n g r u n 3.63 104 206-S-FS 4.50 io4 207-S-FS 5 . 6 6 x lo4 208-S-FS 6.34 x 10' 209-S-FS 6.36 x loq 210-S-FS 6.43 io4 211-S-FS 212-S-FS 7.12 104
x 105 105 x IO5
< 1.4 < 9.5 -
x 103 x 10'
1.92 1.99
2.91 io5 3.57 io5 4.82 105 4.72 x 10' 5.01 ios 5.36 105 5.32 105
x
< 1.5 < 6.4 -
1 . 4 4 x 106 1 . 4 9 x 106
104 105 105 105 105 105 105
x lo5 x 105
Solid analysis for 9 7 ~ r ( c o u n ts / g )
(B
=
b i s m u t h , S = s a l t ) ; and
W
0
Table 5.
C o u n t i n g d a t a o b t a i n e d from run TSMC-5
~~
Sample codea
Solid analysis for 2 3 ’ ~ (counts/ g)
S o l u t i o n analysis for 23713 (counts/g)
Solid analysis for 9 7 ~ r ( c o u n t s / g)
Sample codea
Samples t a k e n p r i o r to run
227-B-5 2 2 8- 3-5 2 3 1-B- i 232-B-1
-< 5.64 x 102 8.49 x 102 c 4.83 x 102 < 5.91 x 1 0 2
-
x lo2 x 102 x 102 x 102
-< 1 . 4 < 2.2 < 1.1 < 1.0
--
--
---
225-S-5 226-S-5 229-5-3 230-S-3
Solid analysis
for 2 3 7 ~ (counts/g)
-< 7.4 5
6.9 (4.9 ( 6.0
103 x lo3 x lo3 x lo3
Samples t a k e n p r i o r t o run b u t after a d d i t i o n o f t r a c e r s 233-S-3 234-S-3
235-B-FS 236-B-FS 2 37-B-FS 238-8-P’S 2 3 9-8- FS 240-B-FS 2 41- B- FS
241)-B-1 250-B-1 25 1-B- 2 25 2- 3- 2 25 7-B-5 258- B-5
1.04 105 1.30 x 10’ 1.53 105 1.35 io5 1.35 .io5 1.67 io5 1.41 105
< 1.38
-< 1 . 0 5
io3
103 7.70 x lo4 1.00 io5 1.71 105 1.34 105
2.87 io5 4.13 x IO5 4 . 6 0 x 105 4 . 6 1 x lo5 4.83 io5 4.6; 105
5.31
105
---
---
---
S a m p l e s t a k e n d u r i n g run
1.85 io4 2.62 x l o 4 2-96 104 2.89 io4 2-78 104 3.04 104 2.92 x lo4
-< 4.0 < 3.5
1.95
1.80 2.47 2.00
242-S-FS 243-S-FS 244-S-FS 245-S-FS 246-5-FS 247-S-FS 245-S-FS
x lo2
io4 104
104 104
253-S-3 254-S-3 255-5-4 256-5-4 259-S-5 260-S-5
----
3.44 x 106 3.48 x 1 0 6
1.83 x lo6 1.64 x lo6 1.82 x lob
2.13 2.00 2.00 2.10 2.01 2.08
1.75 x lo6 1 . 9 6 x lo6 1.79 x lo6 5.40 x lo6 3.11 3.28 1.52 1.10 5 9.2
21.1 -
x
lo6
x lob x lob x 106 x 103 x IO‘
aEach sample is d e s i g a a t e d by a code c o r r e s p o n d i n g t o A-B-C, where A = sample number; 5 = material i n sample C = sample o r i g i n ; 1 = TI; 2 = T 2 ; 3 = T3; 4 = T 4 ; 5 = T5; FS = f l o w i n g stream sample.
Solid analysis for 9 7 ~ r ( c o u n t s J g)
--
2 . 5 4 x 106 2.57 x lo6
Samples t a k e n a f t e r r u n x 102
Solution analysis f o r 2 3 7~ ( c o u n t s / g)
2.10 105 2.20 x 105
lo6 x 106 x 106 x 106 x 106 x lo6
2.47 1.79 2.64 2.43 2.25 1.92 5.36
x
--
-----
---
x IO5
x IO5
105
x
x
105
lo5 IO4
105 105 1.19 105 1.37 105 < 2.6 x 103 < 3 . 5 x IO3 -
(5 = b i s m u t h , S = sal:);
2.96 3.19
io5
and
r W
C o u n t i n g d a t a u b t a i n e d from r u n TSMC-6
Table 6 .
Sample codea
261-B-5 262-B-5 265-B-1 266-B-1
Solid analysis for 2 3 7 ~ (counts/g)
1.75 2.37
1.95 1.99
104 104 104 104
Solution analysis for 2 3 7 ~ (countslg)
5.32
io4
5.55 io4 5 . 7 8 x 10’ 5.47 io4
Solid analysis f o r 9721(counts/g)
Sample codea
Solid analysis for 2 3 7 ~ (counts/g)
Solution analysis f o r 2371.1 (counts/g)
Samples t a k e n p r i o r t o r u n
--
2.51 103 8.96 10’ 9 . 4 8 x 10’
2 59-S- 5 260-S-5 263-S-3 264-S-3
< 6.2 < 6.1 < 1.3 < 5.6
103 103 x 10’ x lo3
< 1.3
104 104
< 1.3
104 104
< 1.4 < 1.4 -
Samples t a k e n p r i o r t o r u n b u t a f t e r a d d i t i o n of t r a c e r s 267-S-3 268-S-3
269-B-FS 2 7 0-B-FS 2 7 1-B-FS 2 72-B-FS 273-B-FS 274-E-FS 275-B-FS 2 a 3 - ~ -1 2 84-B-1 285-52 2 8 6 - ~ -2 291-B-5 292-B-5
7.69
1.13
104 105
1.25 io5 1 . 4 3 x io5
1.55 1.54
1.53
io5 io5 io5
2.28 x io4 2.51 104 1.07 105 1.13 io5 1.05 io5 1.33 105
2.39 io5 3.63 io5 4.16 xl105 4.17 x I O 5 4.36 x l o 5 4.27 io5 4.53 io5 6.79 io4 6.59 x I O 4 3.34 io5 3.11 io5 3.41 lo5 3.31 105
Solid analysis for 9’~r (counts/g)
< 2.2
< 1.3
< 1.6 < 2.1
103
x 103 x lo3 103
1 . 1 2 x 106 1.07 x l o 6
1 . 2 9 x 106 1.34 x l o 6
3.29 x 1 0 5 3 . 1 6 x 105
4.11 105 4.63 io5 4.59 105 4.03 x 105 5.00 105 4.83 s l o 5 4.63 x lo5
3.53 105 105 4.55 3.83 105 4 . 3 8 x 105 105 4.26 4.66 x l o 5 3.40 105
1.75 105 2.30 io5 2 . 1 1 x 105 2.16 105 1.85 io5 2.03 io5 2.07 x IO5
x 106
3.47 105 3 . 5 7 x 105 8.40 104 8.89 10‘ < 5.7 lo3
Samples t a k e n d u r i n g r u n
6.78 io4 6.70 x l o 4 7.54 104 8 . 0 1 x lo4 7.79 io4 9.01 io4 8.85 io4
276-S-FS 277-S-FS 278-s-n 279-S-FS 280-S-FS 281-S-FS 282-S-FS
Samples t a k e n a f t e r r u n 3.73 3.44 5.33 5.59 4.36 4.45
aEach sample i s d e s i g n a t e d by a c o d e c o r r e s p o n d i n g t o A-B-C, C = sample o r i g i n 1 = ‘71 2 = T2 3 = T 3 4 = T4 5 = T5
x 103 x 10’ x 104
io4 io4
x 10’)
287-s-3 288-5-3 289-s-4 290-5-4 293-S-5 294-5-5
1.32 x lo5 1 . 2 0 x 106 4.04 105 3.90 105 < 9.2 103 -
< 8.1
103
where A = s a m p l e number; B = material i n s a m p l e FS = f l o w i n g stream s a m p l e .
1.60 1.34 4.15 3.80 -< 1.8 < 1.7
(B
=
x 10: x lo3 x lo5 105 105
-< 5.0
b i s m u t h , S = s a l t ) ; and
io3
W N
io
k
N
d 0
2
:
3
c
0
x VI
a m
*r
N
n
I
In 0 0
ln 0
+
33
a
r-!
In
N 0 0
m
4- I
0
+I r-i
\o
I I I
m
In 0
0
0
0
1’1
0
a, 0
m N
0
cn
In
-t I
0
0
0
0 0
0
r-1
0
+I 0 0
0
+I -3 0
m
0
I cn 0
0
0
0 0
I n
N 4 0
r. 0
r-
In 0
co m m
0
I I
Kr
u
I
m
N
d
cn
4
P
In
-3 N 4
W
A
N
XP N A
cv
XP A
-3
rl
rf
In 0
A
A
N
m
N \o 4
Kr Kr rl
m
P
l--
0 In
0
4
0
v m
0
rl N P-4
a
i--
d
0 P d
\D u)
r-l
a, N
c\I
I
V
?.I
u
m I
u
P.1
5E-1 P5 B3 5E+
34
A p r e l i m i n a r y r u n , TSMC-1,
dure.
w a s p r i m a r i l y designed t o t e s t t h e proce-
S a l t and b i s m u t h f l o w s w e r e a p p r o x i m a t e l y 200 cc/min,
stirrer r a t e w a s 123 r p m .
and t h e
Unfortunately, t h e d i s t r i b u t i o n c o e f f i c i e n t
w a s t o o l o w t o e f f e c t any s i g n i f i c a n t mass t r a n s f e r ; t h u s , m a s s t r a n s f e r r a t e s c o u l d n o t be a c c u r a t e l y d e t e r m i n e d , and no r e s u l t s are shown â&#x201A;Źor t h i s run. O p e r a t i o n o f t h e equipment d u r i n g r u n TSMC-2 w a s v e r y smooth.
s a l t and b i s m u t h f l o w r a t e s w e r e 228 and 197 cc/min,
The
respectively.
The
d i s t r i b u t i o n c o e f f i c i e n t s were h i g h e r t h a n f o r t h e p r e v i o u s r u n but were
L o w e r t h a n d e s i r e d , and w i t h a c o n c o m i t a n t l a r g e d e g r e e o f u n c e r t a i n t y . S e v e r a l d e t e r m i n a t i o n s of D
w e r e made w i t h a r a n g e o f 0.94 t o 34; c o n s e U y u e n t l y , o n l y a r a n g e of p o s s i b l e v a l u e s f o r t h e o v e r a l l m a s s t r a n s f e r c o e f f i c i e n t c o u l d b e s t a t e d f o r t h e r e s u l t s b a s e d on uranium. mination of D
Zr
w a s made, i n d i c a t i n g t h a t D
Zr
was 0.96.
One d c t e r -
A value f o r
o v e r a l l mass t r a n s f e r c o e f f i c i e n t b a s e d on z i r c o n i u m i s g i v e n b a s e d on the value of t h i s d i s t r i b u t i o n coefficient, but since the value f o r D
zr
must be c o n s i d e r e d u n c e r t a i n , t h e r e i s a l a r g e r e r r o r i n t h e m a s s t r a n s f e r c o e f f i c i e n t t h a n i s i n d i c a t e d by t h e r e p o r t e d s t a n d a r d d e v i a t i o n g i v e n i n Table 7. I f i t i s assumed t h a t t h e r a t i o of s a l t - s i d e m a s s t r a n s f e r c o e f f i -
c i e n t t o b i s m u t h - s i d e m a s s t r a n s f e r c o e f f i c i e n t c a n be d e t e r m i n e d from t h e L e w i s c o r r e l a t i o n , t h e n t h e s a l t - s i d e mass t r a n s f e r c o e f f i c i e n t s f o r r u n TSMC-2 a r e h i g h e r t h a n t h e o v e r a l l mass t r a n s f e r c o e f f i c i e n t by a f a c t o r o f 1 . 5 5 f o r t h e r e s u l t s b a s e d on z i r c o n i u m . A bis m u t h l i n e l e a k o c c u r r e d i m m e d i a t e l y p r e c e d i n g r u n TSMC-3.
During t h e r e s u l t i n g d e l a y â&#x201A;Ź o r r e p a i r s , t h e 9 7 Z r d e c a y e d a n d o n l y t h e 237U
t r a c e r c o u l d be u s e d .
The r e m a i n d e r of t h e r u n went smoothly.
Salt
and bis m u t h f l o w r a t e s were 1 6 6 and 1 7 3 c c / m i n , a n d t h e s t i r r e r r a t e w a s 1 6 2 rpm.
run.
A high v a l u e for D
U
( g r e a t e r t h a n 34) w a s maintained f o r t h i s
I n r u n TSMC-4, f l o w r a t e s o f 1 7 0 and 144 cc/min were s e t f o r t h e s a l t and bis mu t h f l o w s , and a s t i r r e r r a t e of 205 r p m w a s m a i n t a i n e d .
The
d i s t r i b u t i o n c o e f f i c i e n t d e t e r m i n e d from s a m p l e s t a k e n b e f o r e , a f t e r , and
35 d u r i n g t h e r u n , were g r e a t e r t h a n 1 7 2 f o r D
W
a n d g r e a t e r t h a n 24 f o r D
T h i s v a l u e i s s u f f i c i e n t l y l a r g e so t h a t E q s .
( l 0 ) - ( 1 2 ) are v a l i d ,
zr .
Large
d i s t r i b u t i o n c o e f f i c i e n t s cannot b e determined p r e c i s e l y due t o t h e i n a b i l i t y to d e t e r m i n e v e r y small amounts o f uranium i n t h e s a l t p h a s e .
No
pr o b l em s arose d u r i n g t h i s r u n . Runs TSMC-5 and -6 w e r e p e r f o r m e d w i t h o u t i n c i d e n t .
The d i s t r i b u t i o n
c o e f f i c i e n t s were m a i n t a i n e d a t h i g h l e v e l s f o r b o t h r u n s .
TSMC-5 had a
s t i r r e r r a t e of 1 2 4 r p m l and s a l t and b i s m u t h flows o f 2 1 9 a n d 1 7 5 c c / m i n . TSMC-6 s a l t and b i s m u t h f l o w s were 206 and 185 cc/min,
respectively, with
a s t i r r e r r a t e o f 180 r p m . A s m en t i o n e d p r e v i o u s l y , when t h e d i s t r i b u t i o n c o e f f i c i e n t i s l a r g e ,
t h e overall m a s s transfer coefficient is essentially the individual saltphase m a s s t r a n s f e r c o e f f i c i e n t .
T h u s , r e s u l t s f o r r u n s TSMC-3 t h r o u g h
-6 c a n be compared d i r e c t l y t o t h e L e w i s c o r r e l a t i o n .
The L e w i s c o r r e l a -
t i o n 3 I 4 â&#x201A;Ź o r mass t r a n s f e r i n t h e n o n d i s p e r s i n y c o n t a c t o r i s
where
k
=
i n d i v i d u a l mass t r a n s f e r c o e f f i c i e n t , cm/sec,
v
=
k i n e m a t i c v i s c o s i t y (rl/p)
rl
=
viscosity, P,
p
=
d e n s i t y , g/cm
Re
=
nd /v,
d
=
a g i t a t o r d i a m e t e r , cm, and
n
=
a g i t a t o r speed, r p s .
2
3
I
2
c m /sec,
,
dimensionless,
The s u b s c r i p t s 1 and 2 r e f e r t o s a l t and b i s m u t h , r e s p e c t i v e l y .
Figure
9 shows a c o m p ari s o n o f t h e measured v a l u e s o f mass t r a n s f e r c o e f f i c i e n t
with t h e Lewis correlation.
The e f f e c t s of m a s s t r a n s f e r resistance i n
36
ORNL DWG 14-633iR3
10000
1000
-I
qr (D
100
EXPERIMENTAL VALUES FROM ORGANIC -WATER
e
A
1.0 IO
Fig.
3.
[
B A S E D ON U BASED ON Z r
100 1000 6 . 7 6 x IOm6] [ R e i + Re2 772 71
-1
1.65
10000
E x p e ri m e n t al r e s u l t s from t h e s a l t - b i s m u t h c o n t a c t o r .
37
t h e b i s m u t h p h a s e c a n n o t be a c c u r a t e l y a c c o u n t e d f o r i n t h e results of r u n TSMC-2;
h e n c e , t h e s e r e s u l t s a r e n o t i n c l u d e d in F i g . 9 .
F i g u r e 9 shows t h a t two r u n s produced v a l u e s of mass t r a n s f e r c o e f f i c i e n t t h a t were 30 t o 40% of t h e v a l u e s p r e d i c t e d by t h e Lewis c o r r e l a t i o n , w h i l e t h e r e were two r u n s t h a t produced v a l u e s which were s l i g h t l y g r e a t e r t h a n t h o s e p r e d i c t e d by t h e Lewis c o r r e l a t i o n . c o e f f i c i e n t s based on z i r c o n i u m a r e c o n s i s t e n t l y lower t h e v a l u e s b as e d on uranium.
The m a s s t r a n s f e r
( s l i g h t l y ) than
I t i s f e l t t h a t the mass t r a n s f e r c o e f f i -
c i e n t s b as e d on zirconiuin a r e l e s s r e l i a b l e t h a n t h o s e b a s e d on uranium; i n a l l r u n s , o n l y a b o u t 60% o f t h e z i r c o n i u m t r a c e r c o u l d be a c c o u n t e d
f o r , whereas more t h an 80% of t h e uranium c o u l d be a c c o u n t e d f o r .
This
d i s c r e p a n c y i s p r o b a b l y r e l a t e d t o s e l f a b s o r p t i o n of t h e 7 4 3 . 3 7 keV from 9 7 Z r i n t h e b i s m u t h s a m p l e s .
6-
We b e l i e v e t h a t t h e i n i t i a t i o n of s a l t e n t r a i n m e n t i n t o - t h e b is m u t h
b e g i n s t o o c c u r a t a s t i r r e r speed between 160 and 180 rpm.
The a p p a r e n t
i n c r e a s e i n mass t r a n s f e r c o e f f i c i e n t i s a m a n i f e s t a t i o n of an i n c r e a s e i n t h e s u r f a c e a r e a f o r mass t r a n s f e r c a u s e d by s u r f a c e motion.
Experi-
ments w i t h wa t er-m e rc u ry and w a t e r - m e t h y l e n e bromide s y s t e m s s u p p o r t thFs belief. I f , a s Fig.
9 seems t o i n d i c a t e , t h e mass t r a n s f e r e o e f f i - c i e n t s i n
the s a l t - b i s m u t h s y s t e m a r e lower by a f a c t o r o f a b o u t 0.35 t h a n p r e d i c t e d by t h e Lewis c o r r e l a t i o n , t h i s c o r r e c t e d c o r x - e l a t i o n c o u l d be used
t o e s t i m a t e t h e a r e a and bismuth f l o w r a t e r e q u i r e d i n t h e r a r e - e a r t h removal c o n t a c t o r i n t h e p r e s e n t f l o w s h e e t .
The L e w i s c o r r e l a t i o n p r e -
d i c t s t h a t mass t r a n s f e r c o e f f i c i e n t : ; a r e a p p r o x i m a t e l y p r o p o r t i o n a l t o 15 t h e a g i t a t o r d i a m e t e r , d, t o t h e 3.30 power. S i n c e it h a s been shown
t h a t t h e a l l o w a b l e a g i t a t o r s p e e d below which t h e r e i s no phase d i s p e r s a l
i s i n v e r s e l y p r o p o r t i o n a l t o t h e 1..43 power of t h e a g i t a t o r d i a m e t e r , a t s p e e d s slightly below t h e l i m i t i n g a g i t a t o r s p e e d t h e mass t r a n s f e r c o e f f i c i e n t w i l l a p p a r e n t l y be p r o p o r t i o n a l t o t h e a g i t a t o r diameter t o t h e 0.94 power.
These r e s u l t s were u s e d t o estimate the area required f o r
a s i n g l e - s t a g e c o n t a c t o r and the b i s m u t h f l o w r a t e t o remove c e r i u m , which
has t h e s h o r t e s t removal t i m e (16.6 d a y s ) o f the r a r e e a r t h s i n t h e
35
reference flowsheet.
Fo r a s a l t f l o w r a t e o f 0.88 gpm ( c o r r e s p o n d i n g
t o t h e 10-day c y c l e t i m e used i n t h e r e f e r e n c e process f l o w s h e e t ) and a d i s t r i b u t i o n c o e f f i c i e n t o f 0.062
( t h e d i s t r i b u t i o n c o e f f i c i e n t t h a t was
u s e d i n t h e r e f e r e n c e p r o c e s s i n g f l o w s h e e t ) , a n area f o r mass t r a n s f e r of 10 f t
2
w i l l a l l o w removal o f c e r i u m on a 16.6-day c y c l e i f t h e b i s m u t h
f low r a t e t h r o u g h t h e c o n t a c t o r i s 30 gpm and a 3 - f t - d i m used.
T h i s b i s m u t h f l o w r a t e i s o n l y a b o u t 2-1/2
agitator is
t i m e s t h e f l o w rate
s p e c i f i e d i n t h e p r o c e s s i n g p l a n t f l o w s h e e t on t h e b a s i s o f e q u i l i b r i u m calculations.
The u s e of a h i g h e r d i s t r i b u t i o n c o e f f i c i e n t , m u l t i p l e
s t a g e s , e t c . , c a n r e s u l t i n a r e d u c t i o n of e i t h e r t h e b i s m u t h f l o w r a t e or t h e mass t r a n s f e r area.
These c h a n g e s , however, w i l l r e s u l t i n
c h a n g e s i n o t h e r s e c t i o n s of t h e f l o w s h e e t , a n d more e x t e n s i v e c a l c u l a t i o n s are r e q u i r e d t o e v a l u a t e t h e s e e f f e c t s .
5.
FUEL RECONSTITUTION DEVELOPMENT: D E S I G N O F A FUEL RECONSTITUTION ENGTNEERXNG EXPERIMENT R. M.
Counce
The r e f e r e n c e f l o w s h e e t f o r p r o c e s s i n g t h e f u e l s a l t from a m o l t e n s a l t b r e e d e r reactor (MSBR) i s b a s e d upon removal of uranium by f l u o r i n a -
t i o n t o UF
as t h e f i r s t p r o c e s s i n g step. The uranium removed i n t h i s 6 s t e p must s u b s e q u e n t l y be r e t u r n e d t o t h e f u e l s a l t stream b e f o r e i t r e t u r n s t o the reactor.
The method f o r r e c o m b i n i n g t h e uranium w i t h t h e
f u e l c a r r i e r s a l t ( r e c o n s t i t u t i n g t h e f u e l s a l t ) i s t o absorb g a s e o u s UF
6
i n t o a r e c y c l e d f u e l s a l t stream c o n t a i n i n g d i s s o l v e d UF
t h e reaction:
The r e s u l t a n t U F
5
would be re d u c e d t o UF
vessel according t o t h e reaction:
4
4
by u t i l i z i n g
w i t h hydrogen i n a s e p a r a t e
39
We a r e b e g i n n i n g e n g i n e e r i n g s t u d i e s of t h e fuel r e c o n s t i t u t i o n s t e p
in order t o p r o v i d e t h e t e c h n o l o g y n e c e s s a r y f o r t h e d e s i g n o f l a r g e r equipment f o r wecombining [JF
6
generated i n f l u o r i n a t o r s i n t h e processing
p l a n t w i t h t h e p r o c e s s e d fuel- s a l t r e t u r n i n g t o t h e r e a c t o r .
Equi.pmt?nt
f o r s t u d y i n g t h e f u e l r e c o n s t i t u t i o n process has been d e s i g n e d d u r i n g t h i s r e p o r t p e r i o d , and i s d e s c r i b e d i n t h i s r e p o r t . A f l o w d i a g ra m of t h e Pquipment
t o IF
u s e d f o r the Fuel r e c o n s t i t u -
t i o n engineering e x p e r i m e n t (FREE) i s shown i n F i g . 10,
The equipmetit
for t h i s e x p eri m en t c o n s i s t s of a 3 6 - l i t e r feed t a n k , a UF
vessel, a H
2
6
absorption
r e d u c t i o n column, a n e f f l u e n t stream s a m p l e r , a 3 6 - l i t e r
r e c e i v e r , MaF t r a p s f o r c o l l e c t i n g excess U F s u p p l i e s â&#x201A;Ź o r a r g o n , h y d r o g e n , and U F
streams from t h e r e a c t i o n v e s s e l s .
6'
6
and d i s p o s i n g of H F , yrls
and rncdns f o r a n a l y z i n g t h e gas
T h e e x p e r i m e n t i s operated by p r e s s u r i z i n g t h e f e e d t a n k w i t h a r g o n
i.n o r d e r to d i s p l a c e s a l t from t h e f e e d tamk t o t h e UF a t rates from 5 0 t o 300 cc/min.
i s s i p h o n ed i n t o the W
2
From t h e UF
6
absorption tank 6 ahsorp-tion t a n k , the s a l t
r e d u c t i o n column, a n d t h e salt t h e n f l o w s by
g r a v i t y t h r o u g h t h e e f f l u e n t stream sampler t o t h e r e c e i v e r . sa1.t will be LiF-BeF -ThF
4 taininc3 up t o 0.3-mole % UT 2
(72-16-12
The f e e d
mole 0 ) MSBR f u e l c a r r i e r s a l t con-
A b s o r p t i o n of [JF by r e a c t i o n with d i s 6 s o l v e d U F w i l l o c c u r i n t h e U F a b s o r p t i o n v e s s e l , and t h e r e s u l t a n t 4 6 IIF w i l l be re d u ce d w i t h hydrogen i n t h e I1 r e d u c t i o n c o l u m n . Uraniiim 5 2 h e x a f l i i o r i d e flow r a t e s from 60 t o 360 s c c / m i n , * and, H f l o w r a t e s from 4'
60 t o 7 2 0 scc/min w i l l b e u s e d .
2
The e f f l u e n t s a l t w i l l b e c o l l e c t e d i n
t h e r e c e i v e r f o r r e t u r n t o t h e f e e d t a n k a t t h e end of t h e r u n .
The o f f -
g a s from t h e a b s o r p t i o n v e s s e l and t h a r e d u c t i o n c o l u m n w i l l b e anal.yzed for UF
6
and HF, r e s p e c t i v e l y .
The s a l t i n t h e f e e d t a n k and s a l t samples
from t h e column e f f l u e n t s a l t w i l l be a n a l y z e d f o r uranium.
The p e r f o r -
mance o f t h e column w i l l b e d e t e r m i n e d from t h e s e a n a l y s e s .
The e f f l . u e n t
HF and any UF
p a s s i n g t h r o u g h t h e column w i l l be collected on t i l e NaF 6 trap's b e f o r e t h e gas i.s e x h a u s t e d t o t h e o f f - g a s s y s t e m ,
*
S t a n d a r d cubi-c c e n t i m e t e r s per m i n u t e .
40
1
ORNL DWG 74-11666
7
TRAP
ANALYSIS
Ar
-[
-
BUILD!NG OFF-GAS SYSTEM
EFFLUENT STREAM SAMPLER
uF6 ABSORPTION VESSEL
RECEIVER
FEED TANK
H2 REDUCTION COLUMN
Fig. 10. Flow diagram for equipment u s e d in fuel reconstitution engineering experiment.
41
The f u e l r e c o n s t i t u t i o n e n g i n e e r i n g e x p e r i m e n t w i l l b e i - n s t a l l e d i n t h e h i g h bay a r e a , Bldg. 7503 (MSRE: s i t e ) .
Scaffolding erected for a
previ-ous e x p e r i m e n t w i l l s e r v e t h e FREE equipment a d e q u a t d y
.
The s y s t e m ,
e x c e p t f o r t h e u p p er s e c t i o n of t h e column, wi1.1 b e e n c l o s e d hy a s p l a s h shield
e
The U F
a b s o r p t i o n v e s s e l w i l l have a n i n s i d e d i a m e t e r of 4 i n . and 6 a n i n s i d e h e i g h t of 11 i n . The v e s s e l w i l l be c o n s t r u c t e d from 4 - i n . s c h e d 4 0 n i c k e l p i p e mounted v e r t i c a l l y w i t h a 1 5 0 - l b s t a n d a r d Monel f l a n g e a t t h e t o p and a 0 . 2 5 - i n .
n i c k e l p l a t e bottom.
n o z z l e s p r o v i d e € o r s a l t f l o w i n and o u t of t h e v e s s e l . n o z z l e s p r o v i d e f o r UF,(g) 0
Two 1 / 2 - i n . Two .3/8-in.
f l o w i n a n d off-gas f l o w o u t of t h e t a n k .
r e d u c t i o n column w i l l h a v e a n o v e r a l l h e i g h t o f 1 1 5 i n . I t 2 i s c o n s t r u c t e d of l-1/2-in. s c h e d 4 0 n i c k e l p i p e mounted v e r t i c a l l y w i t h The I3
a 150-lb Monel f l a n g e on t h e u p p e r e n d , and a s c h e d 40 n i c k e l welded c a p a t t h e l o wer en d .
G a s e n t e r s through a 3/8-in.
a t t h e bottom, w h i l e 1/2-in.
and 3/8-in.
sched 40 n i c k e l s i d e a r m
n o z z l e s p r o v i d e for s a l t e n t r a n c e
and a n o f € - g a s e x i t . B ec au s e of t h e h i g h l y c o r r o s i v e n a t u r e of d i s s o l v e d UF m e r i t ex p o s e d t o s i g n i f i c a n t q u a n t i t i e s of UF
5'
a l l equip-
w i l l be g o l d or g o l d p l a t e d 5 a f t e r a s t a r t u p and d e m o n s t r a t i o n p e r i o d u s i n g t h e equipment. d e s c r i b e d
i n t h i s report. The 3 6 - l i t e r f e e d t a n k w i l l h a v e a n i n s i d e d i a m e t e r of 1 0 i n . and a n i n s i d e h e i g h t o f 33 i n .
I t will he a n i c k e l v e s s e l w i t h 0 . 2 5 - i n . - t h i c k
w a l l s , eq u i p p e d w i t h t w o l j 2 - i n .
two 3/8-in.
n o z z l e s €or s a l t e x i t and e n t r a n c e l i n e s ,
n o z z l e s f o r a r g o n s p a r g i n g a n d off-gas e x i t , and a 3/4-in.
samplitig p o r t .
T h e r e c e i v e r v e s s e l w i l l b e e s s e n t i a l l y i d e n t i c a l t o t:he
feed tank. A l l p i p i n g exposed t o t h e l i q u i d p h a s e
(MSBR c a r r i e r s a l t ) o r tempera-
t u r e i n e x c e s s of l00OC w i l l be n i c k e l pipe or t u b i n g . c a r r y i n g UF
6
or H F w i l l be n i c k e l t u b i n g .
copper tubing. tubing
(I
Off-gas l i n e s
A l l o t h e r g a s l i n e s w i l l bc
Off-gas l i n e s and l i q u i d p h a s e p i p i n g wi.l.1 be 1 / 2 - i n .
42
S t a n d a r d b r a s s v a l v e s ca n b e used t h r o u g h o u t t h e g a s s y s t e m , e x c e p t
or HF where n i c k e l b e l l o w s - s e a l v a l v e s a r e 6 S t a i n l e s s s t e e l , f u l l - b o r e b a l l v a l v e s w i l l b e used t o i n t r o -
on g a s l i n e s c a r r y i n g U F required.
d u c e t h e sample l a d l e s i n t o t h e f l o w i n g stream s a l t s a m p l e r . a b s o r p t i o n and f o r H F 6 These traps a r e i d e n t i c a l e x c e p t f o r t h e i . r l e n g t h s . The
Two sodium f l u o r i d e t r a p s a r e r e q u i r e d f o r U F absorption.
removal t r a p h a s a l e n g t h of 55-5/8 i n . , w h i l e t h e H F t r a p h a s a 6 l e n g t h o f 31-5/8 i n . The t r a p s a r e c o n s t r u c t e d o f 4 - i n . s c h e d 49 Monel
UF
p i p e mounted v e r t i c a l l y w i t h 1 5 0 - l b s t a n d a r d f l a n g e s a t b o t h e n d s for c h a r i n g a n d removing NaF p e l l e t s .
The g a s e n t e r s from l / 2 - i n .
nickel
t u b i n g t h r o u g h t h e f l a n g e d end and e x i t s t h r o u g h t h e lower f l a n g e d end. A 6-in.
s e c t i o n i n t h e lower end o f t h e t r a p c o n t a i n s 4-in.-diam
Monel
York mesh t o k ee p p e l l e t s from p l u g g i n g t h e e x i t . The e x p e r i m e n t w i l l be m o n i t o r e d by a n a l y z i n g t h e o f f - g a s from e a c h l e g of t h e column. for this.
GOW-MAC g a s d e n s i t y detectors are b e i n g c o n s i d e r e d
The d e t e c t o r e l e m e n t s of t h i s a n a l y s i s s y s t e m a r e n o t exposed
t o t h e measured g a s stream, which i n t h i s case i s c o r r o s i v e . The l i q u i d p h a s e w i l l be sampled p e r i o d i c a l l y by w i t h d r a w i n g e f f l u e n t -
stream s a l t s am p l e s from t h e hydrogen r e d u c t i o n column. v e r t i c a l l y mounted 3/4-in.
s c h e d 40 p i p e , 20-3/4
s t a i n l e s s s t e e l f u l l - b o r e v a l v e located 12-1/4
allow a c c e s s t o t h e f l o w i n g s a l t stream.
e n d , a g a i n u s i n g 1/2-in.
tubing.
s a l t f o r i n s e r t i o n of a s am p l e r .
i n . diam by 1 - i n . - l o n g low er end.
i n . i n length; it has a
i n . from t h e l o w e r end t o
The s a m p l e r i s v e n t e d t o t h e
o f f - g a s s y s t e m above and below t h e b a l l v a l v e .
lower end of t h e sampler from 1 / 2 - i n .
The s a m p l e r i s a
The s a l t f l o w s into the
t u b i n g and e x i t s 1-1/4
i n . from t h e
T h i s a s s u r e s a minimum of l / 4 i n . of The sampler i s a s t a i n l e s s s t e e l 0.250-
tube w i t h a 0.050-in.
I t i s connected t o a 1/16-in.
f r i t t e d metal f i l t e r on t h e
s t a i n l e s s s t e e l t u b e which i n
t u r n i s a t t a c h e d t o a vacuum pump. E n g i n e e r i n g s k e t c h e s â&#x201A;Źor a l l o f t h e equipment e x c e p t t h e U F have been completed.
supply 6 The s c a f f o l d i n g i n Bldg. 7503 i s b e i n g c l e a r e d t o
make room for t h i s e x p e r i m e n t .
43
6.
FSFERENCES
1.
H. C. Sa v ag e , E n g i n e e r i n g Development S t u d i e s f o r M o l t e n - S a l t B r e e d e r
2.
J . A. K l e i n e t al., MSR Program Semiannu. P r o g r . R e p t . Aug. 31, 1 9 7 2 , ORNL-4832, p . 1 7 1 .
3.
J. B . L e w i s , Chem. Eng. Sci. 3 , 2 4 8 - 5 9
4.
J . B.
5.
13. 0. Weeren e t al., E n g i n e e r i n g Development S t u d i e s f o r M o l t e n - S a l t B r e e d e r Reactor P r o c e s s i n g N o . 9 , ORNL-TM-3259 (December 1 9 7 2 ) r pp.
Reactor P r o c e s s i n g N o .
18, OWL-TM-4698
I
Lewis, Chem. Eng. S e i .
3,
260-78
(March 1 9 7 5 ) , p p . 2 3 - 3 6 .
(1954). (1954).
205-15.
L. C a r t e r e t a l . , MSR Proqram Semiannu. P r o g r . R e p t . Feb. 2 9 , 1972, OKNL-4782, pp 2 2 4 - 2 5
6.
W.
7.
J . A.
8.
J , A.
9.
0 . L e v e n s p i e l , Chemical R e a c t i o n Engineer-, 1962.
-
K l e i n , E n g i n e e r i n g Development S t u d i e s â&#x201A;Źor M o l t e n - S a l t B r e e d e r R e a c t o r P r o c e s s i n g No. 18, ORNL-TM-4698 (March 1 9 7 5 ) , pp. 1-22. K l e i n , i n E n g i n e e r i n g Development S t u d i e s f o r M o l t e n - S a l t Breed= R e a c t o r P r o c e s s i n g N o . 1 5 , ORNL-TM-4019 ( i n p r e p a r a t i o n )
.
p. 3 8 7 , Wiley, N e w Y O r k r
10. B . A. Ii an n a fo rd , C . W. K e e , and L. E. McNeese, MSR Program Semiannu. P r o g r . R e p t . Feb. 2 8 , 1 9 7 1 , O R N L - 4 6 7 6 , p. 2 5 6 . 11.
B. A. Hannaford e t a l . , MSR Proqram Semiannu. P r o g r . R e p t . Aug. 1 9 7 1 , OWL-4728, p , 2 1 2 .
31,
I _
12.
B . A . Ha n n afo rd , C.
W. K e e , and L . E . McNeese, E n g i n e e r i n g Development S t u d i e s f o r M o l t e n - S a l t B r e e d e r R e a c t o r P r o c e s s i n g N o . 8 , ORNL-TM3 2 5 9 (May 1 9 7 2 ) p , 6 4 .
13.
13. A. Han n a fo rd , C. W . K e e , and L. E. McNeese, Engineer-i.ng DevelopIr!& -S t u d i e s f o r M o l t e n - S a l t B r e e d e r Reactor P r o c e s s i n q N o . 9, ORNL-TM3 2 5 9 (December 1 9 7 2 1 , p . 158.
14.
E . A.
15.
W. 0. Weeren and L. E . McNeese, E n g i n e e r i n g Development S t u d i e s f o r M o l t e n - S a l t B r e e d e r R e a c t o r P r o c e s s i n g N o . 1 0 , ORNL-TM-3352 (December 1 9 7 2 ) , p. 53.
16.
D.
Ha n n afo rd , E ri qi n e e r i n y Development S t u d i e s f o r M o l t;en-Salt Breeder R e a c t o r P r o c e s s i n g N o . 1 0 , ORNL-TM-3352 (December 1 9 7 2 ) , p . 1 2 .
E . F e r g u s o n , Chem. Technol. Div. Annu. P r o g r , Kept:,.March ORNL-4794, p . 1.
31, 1 9 7 2 ,
45
OKNL-TM-4863 UC-76 - Molten S a l t Reactor Technology INTERNAL DISTRIBUTION
1-2. 3. 4. 5. 6. 7. 8.
9. 10. 11. 12. 13.
14. 15. 16. 17. 18. 19. 20. 21.
22" 23. 24 25. 26. 27. 28.
29. 30.
31. 32. 33. 34.
35. 36. 37. 38 39. 40. 41-66, 67. e
MSW Director ' s O f f i c e C. F. B a e s , Jr. C. E . Bamberyer J . Beams M . Bender pa. R. B e n n e t t E. S. B e t t i s R. E. B l an c 0 J . 0. Blomeke E . G . Bohlmann
S
. Brauns t e i n
Bredig Briggs Bronstein Brooksbank Brown, ,Jr. Brown Brynestad C an t o r W Cardwell L. Carter H . Cook M . Counce L . Crow]-ey L. C u l l e r
M. A. R. B . H . R. R. E . C. H. K . B.
J.
S. D W. W. I
H.
3. F.
.
J. M.
Dale
F. L. Daley J . H . DeVan J. R. D i S t e f a n o W. P . Eatherly K . L . Eyli, ERDA-OSR J . R. Engel G . G. Fe e D. E . Fergiison I,. M. F e r r i s L. 0. G i l p a t r i c k J. C. Griess W. R. G r i m e s R. H . Guymon J . R. Hi g h t o we r, Jr. R . F. Hitch
68. 69.
70. 71. 72.
73. 74. 75. 76. 77. 73 79. 80. 81. s
82. 83 * 84. 85. 86 87.
R. W. C. A. J. W.
R. R.
W. H. A. C. A. R.
J.
K.
-
R. B. M. A.
88.
13.
90. 9 1* 92. 93
f
94. 95. 96. 97. 98. 99. 100. 101. 102. 103-105. 106 107-116 I
I
117.
c.
W. R. W.
Norton Huntley
Kee
D. K e l m e r s
Klein Laing Lindauer MacPhcrson C. McClain E. McCoy P . Malinauskas 1,. Matthews I EKDA-OSR S . Meyer T,. Moore P. Nichols J . Notz 0 . Payne Postma W. Rosenthal D . Ryon C . Savage D. S c o t t J . Skinner J . Smith P . Smith Spiewak G. S t e w a r t K . 'l'allcnt
A. R. B. E.
M. F. G. I. M. 0. L. M. D. B. W. E , J . R. M. K . R. G.
Toth
Trauger Unger Weir Wilkinson
Wymer
C e n t r a l Research L i b r a r y Document R e f e r e n c e S e c t i o n L a b o r a t o r y Records L s l m r a t o r y Records (OPJL-RC)
46
CONSULTANTS AND SUBCONTRACTORS 118. 119. 120. 121. 122.
J. C. J. W. R.
C. H.
Frye
Ice
J. K a t z
K. Davis B. R i c h a r d s
EXTERNAL DISTRIBUTION
123. 124. 125-126. 127-230.
R e s e a r c h and T e c h n i c a l S u p p o r t D i v i s i o n , ERDA, Oak Ridge Operat i o n s O f f i c e , P. 0. Box E , Oak Ridge, Tenn. 37830 Director, Reactor D i v i s i o n , ERDA, Oak Ridge O p e r a t i o n s O f f i c e , P . 0. Box E , O a k R i d g e , Tenn. 37830 Director, ERDA D i v i s i o n o f Reactor R e s e a r c h and Development, Washington, D. C. 20545 F o r d i s t r i b u t i o n as shown i n TID-4500 u n d e r IJC-76, Molten Salt R e a c t o r Technology