ORNL-TM-4804

Page 1

.I

.

0R NL -TM-4 804

HOME HELP

A Method for Calculating the Steady-State Distribution of Tritium in a Molten-Salt Breeder Reactor Plant R. B. Briggs C. W. Nestor


National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road, Springfield, Virginia 22161 Price: Printed Copy $5.45; Microfiche $2.25

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, m k e s any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.


0 RNL- TM-4 804 UC-76 -Molten Salt Reactor Technology

Contract No. W-7405-eng-26

Reactor Division

A METHOD FOR CALCULATING THE STEADY-STATE DISTRIBUTION O F TRITIUM IN A MOLTEN-SALT BREEDER REACTOR PLANT R. B. Briggs Central Management Office C. W. Nestor Computer Sciences Division

This report

APRIL 1975

was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37830

U.S.

operated by UNION CARBIDE CORPORATION for the ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION



iii

CONTENTS

............................. I. I n t r o d u c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . I1. D e r i v a t i o n of Equations and Computational Procedures . . . . I11. S o l u t i o n of Equations . . . . . . . . . . . . . . . . . . . I V . Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . V . Computer Program. I n p u t I n s t r u c t i o n s and Sample Problem . . . Appendix - Program L i s t i n g . . . . . . . . . . . . . . . . . . . . Abstract

1 2

9 23

35 49

65



V

LIST OF FIGURES

. 1. Fig. 2.

............. Sketch of F(CK) vs CK . . . . . . . . . . . . . . . . . . . vs CK . . . . . . . . . . . . . . . . . . . F i g . 3 . Sketch of G(C K F i g . 4 . Sample Problem I n p u t . . . . . . . . . . . . . . . . . . . Fig

Molten-Salt Breeder Reactor System

)

Fig Fig Fig Fig Fig

Fig Fig Fig Fig

.

. 5A . . 5B. . 5 C. . 5 D. . 5E. . . . 5G. . 5H . . 51.

27 28 52

. . . . . . . 53 . . . . . . . . . . . . 55 ...................... “CHANGE” ............ . . . . . . . . . . .i n. . . . . . . . . . . . . . 58 Iterative New .. .............. ........... ...................

L i s t of Parameter Values Used i n C a l c u l a t i o n Output from I t e r a t i v e C a l c u l a t i o n s Output Summary

Output Produced by

56

Output from

57

Command

L i s t of Parameter Values Used “CHANGE”Command 5F

3

Calculation After

C a l c u l a t i o n s With

Parameters

60

Output Summary (New Parameters)

61

Response t o Unrecognized Command Card

62

Normal Ending Message

63



1

A METHOD FOR CALCULATING THE STEADY-STATE DISTRIBUTION OF TRITIUM I N A MOLTEN-SALT BREEDER REACTOR PLANT

R. B. Briggs and C. W. N e s t o r , Jr.

ABSTRACT

T r i t i u m i s produced i n molten s a l t r e a c t o r s p r i m a r i l y by f i s s i o n i n g of uranium and a b s o r p t i o n of n e u t r o n s by t h e c o n s t i t u e n t s of t h e f u e l

carrier s a l t .

A t t h e o p e r a t i n g temperature of a l a r g e power r e a c t o r ,

t r i t i u m i s expected t o d i f f u s e from t h e primary system through p i p e and

vessel w a l l s t o t h e surroundings and through h e a t exchanger t u b e s i n t o t h e secondary system which c o n t a i n s a c o o l a n t s a l t .

Some t r i t i u m w i l l

p a s s from t h e secondary system i n t o t h e steam power system.

This r e p o r t

d e s c r i b e s a method f o r c a l c u l a t i n g t h e s t e a d y s t a t e d i s t r i b u t i o n of t r i t i u m i n a molten s a l t r e a c t o r p l a n t and a computer program f o r making the calculations.

The method t a k e s i n t o account t h e e f f e c t s of v a r i o u s

p r o c e s s e s f o r removing t r i t i u m , t h e a d d i t i o n of hydrogen o r hydrogenous compounds to t h e p r i m a r y and s e c o n d a r y systems, and t h e c h e m i s t r y of

uranium i n t h e f u e l s a l t .

Sample c a l c u l a t i o n s i n d i c a t e t h a t 30 p e r c e n t

o r more of t h e tritium might r e a c h t h e steam system i n a l a r g e power r e a c t o r u n l e s s s p e c i a l measures are t a k e n t o c o n f i n e t h e t r i t i u m .


2 I.

--

INTRODUCTION

Conceptual d e s i g n s of Molten S a l t Breeder Reactor (MSBR) power p l a n t s u s u a l l y can be r e p r e s e n t e d by t h e diagram shown i n F i g . 1.

The

f i s s i o n i n g of uranium i n t h e f u e l s a l t h e a t s t h e s a l t as i t i s pumped through t h e r e a c t o r vessel i n t h e primary system.

The h e a t i s t r a n s -

f e r r e d t o a c o o l a n t s a l t t h a t c i r c u l a t e s i n t h e secondary system and, thence, t o water, producing steam t o d r i v e a t u r b i n e - g e n e r a t o r

i n the

steam s y s t e m . F i s s i o n p r o d u c t s and o t h e r r a d i o a c t i v e materials are produced i n l a r g e amounts i n t h e f u e l s a l t .

Much smaller amounts are produced i n

t h e c o o l a n t s a l t by t h e f l u x of delayed n e u t r o n s i n t h e primary h e a t exchangers.

The r a d i o a c t i v i t y i s normally confined by t h e ' w a l l s of

t h e p i p i n g and v e s s e l s .

However, t r i t i u m i s produced i n t h e s a l t s ,

p a r t l y as a f i s s i o n p r o d u c t , b u t mostly by a b s o r p t i o n of n e u t r o n s by lithium i n the f u e l s a l t .

A t t h e h i g h t e m p e r a t u r e of a n MSBR, t r i t i u m

d i f f u s e s through metals and might escape t o t h e e n v i r o n s i n amounts t h a t would be cause f o r concern. The purpose of t h i s r e p o r t i s t o d e s c r i b e a method f o r c a l c u l a t i n g t h e d i s t r i b u t i o n of t r i t i u m i n and i t s e s c a p e from a n MSBR p l a n t .

We

assume t h a t t h e t r i t i u m , born as t r i t i u m i o n s , i s p r e s e n t i n t h e f u e l

** *** 1014/MWsec

s a l t p r i m a r i l y as t r i t i u m molecules" and t r i t i u m f l u o r i d e molecules. The i o n s a r e e s t i m a t e d t o be produced a t a r a t e of 2.6 X

*Tritium molecules are i n t e n d e d t o i n c l u d e HT and when hydrogen i s p r e s e n t .

H2

molecules

**Tritium f l u o r i d e molecules are i n t e n d e d t o i n c l u d e t r i t i u m (and hydrogen) i o n s a s s o c i a t e d w i t h f l u o r i d e i o n s i n t h e s a l t .

"""2420

Ci/day i n a 2 2 5 0 MW(t) , 1000 MW(e) p l a n t .


3

ORNL-DWG 6 8 - 4 1 8 5 E B

1 PURGE STREAM FOR REMOVAL OF TRITIUM FROM COOLANT SALT

PURGE STREAM FOR REMOVAL OF TRITIUM FROM FUEL SALT

In

n

PRIMARY SALT PUMP I

NaBQ-NoF COOLANT SALT

u.. U

SECONDARY SALT PUMP

1450 OF

'LiF-BeF2 -Th$- U h FUEL SALT

GENERATOR STEAM

Fig. 1.

Molten S a l t Breeder Reactor System.


4 i n a typical f u e l salt.

The r e l a t i v e c o n c e n t r a t i o n s of t r i t i u m and

t r i t i u m f l u o r i d e i n t h e f u e l s a l t are expected t o be governed by t h e equilibrium relationship f o r the reaction, UF4

w i t h uranium i n t h e s a l t .

+

1/2

T2

f u F 3 iTF

,

The a b s o l u t e c o n c e n t r a t i o n s are governed

by removal p r o c e s s e s . Three t y p e s of p r o c e s s e s are provided f o r removing t r i t i u m from t h e primary system:

permeation through t h e metal of t h e w a l l s of

p i p i n g and vessels, s o r p t i o n on materials i n c o n t a c t w i t h t h e s a l t , and purging.

W e assume t h a t t r i t i u m molecules t h a t r e a c h a metal

s u r f a c e can s o r b on t h e s u r f a c e , d i s s o c i a t e i n t o t r i t i u m atoms and d i f f u s e through t h e metal.

T r i t i u m i n t r i t i u m f l u o r i d e and o t h e r

compounds i s assumed t o b e chemically bound and unable t o p a s s through t h e metal. Experience w i t h t h e Molten S a l t Reactor Experiment i n d i c a t e d t h a t t r i t i u m s o r b s on and i s t i g h t l y bound t o g r a p h i t e .

We p r o v i d e f o r

s o r p t i o n of t r i t i u m and t r i t i u m f l u o r i d e on t h e g r a p h i t e i n t h e r e a c t o r core. P r o v i s i o n i s made f o r p u r g i n g t r i t i u m from t h e primary system by c i r c u l a t i n g a stream of s a l t through an a p p a r a t u s which e x t r a c t s gaseous t r i t i u m and t r i t i u m compounds.

A c o n t a c t o r i n which t r i t i u m and t r i t i u m

f l u o r i d e are t r a n s f e r r e d t o a g a s phase by v i r t u e of t h e i r vapor p r e s s u r e s would be such a n a p p a r a t u s .

Current d e s i g n s f o r MSBR'S

p r o v i d e f o r s p a r g i n g cf t h e f u e l s a l t w i t h helium b u b b l e s i n t h e primary system t o remove k r y p t o n and xenon. f l u o r i d e would be removed a l s o .

T r i t i u m and t r i t i u m

The s p a r g i n g p r o c e s s can be t r e a t e d

as a n e q u i v a l e n t p u r g i n g p r o c e s s i n t h e c a l c u l a t i o n s .


5 T r i t i u m w i l l r e a c h t h e secondary system by d i f f u s i o n from t h e primary system through t h e w a l l s of t h e tubes i n t h e primary h e a t exchangers and by n e u t r o n c a p t u r e i n t h e c o o l a n t s a l t .

W e p r o v i d e f o r removal of

t r i t i u m from t h e secondary system by d i f f u s i o n through t h e m e t a l w a l l s , s o r p t i o n , and purging.

The secondary system would n o t normally c o n t a i n

a s o r b e r o r have an e l a b o r a t e purging system.

Such p r o c e s s e s , i f

i n c o r p o r a t e d i n t o t h e p l a n t , would be designed s p e c i f i c a l l y f o r removing tritium. The c o o l a n t s a l t s do n o t normally c o n t a i n c o n s t i t u e n t s t h a t are r e d u c i b l e by t r i t i u m and, thereby, a b l e t o c o n v e r t t r i t i u m i n t o t r i t i u m f l u o r i d e and make i t u n a v a i l a b l e t o d i f f u s e through t h e metal w a l l s .

We, t h e r e f o r e , have provided f o r a d d i t i o n of hydrogen f l u o r i d e o r o t h e r hydrogenous compounds t o t h e secondary system.

W e assume t h a t t r i t i u m

w i l l exchange w i t h t h e hydrogen i n t h e added compound and t h a t t h e compound w i l l be e x t r a c t e d by t h e s o r p t i o n and/or purge p r o c e s s . The steam system and t h e c e l l s around t h e r e a c t o r primary and secondary systems are considered t o be s i n k s f o r t r i t i u m .

Tritium

r e a c h i n g t h e steam system i s assumed t o exchange w i t h hydrogen i n t h e

w a t e r , and t h d t r e a c h i n g t h e c e l l s i s assumed t o be o x i d i z e d t o w a t e r . The p a r t i a l p r e s s u r e of t r i t i u m i s e f f e c t i v e l y z e r o . I n t h e c a l c u l a t i o n s w e assume t h a t t r i t i u m and hydrogen behave identically.

The e q u a t i o n used f o r c a l c u l a t i n g t h e d i f f u s i o n of

hydrogen through a m e t a l w a l l s t a t e s t h a t t h e rate of t r a n s p o r t p e r u n i t of s u r f a c e area i s p r o p o r t i o n a l t o t h e p r o d u c t of a p e r m e a b i l i t y c o e f f i c i e n t and t h e d i f f e r e n c e between t h e s q u a r e r o o t s of t h e p a r t i a l p r e s s u r e s of hydrogen a t t h e i n n e r and o u t e r s u r f a c e s of t h e m e t a l .


6 1

I n t h i s circumstance, a d d i t i o n of hydrogen can reduce t h e t r a n s p o r t of t r i t i u m through t h e metal.

Suppose, f o r example, t h e p a r t i a l

p r e s s u r e s of t r i t i u m and hydrogen a t t h e o u t e r s u r f a c e of a p i p e are zero and t h e p a r t i a l p r e s s u r e of t r i t i u m a t t h e i n n e r s u r f a c e i s h e l d constant.

I f hydrogen w e r e added t o i n c r e a s e t h e t o t a l hydrogen p a r t i a l

p r e s s u r e a t t h e i n n e r s u r f a c e by a f a c t o r of 100, t h e flow of hydrogen p l u s t r i t i u m through t h e metal w a l l would i n c r e a s e by a f a c t o r of 10. But t h e flow of t r i t i u m would d e c r e a s e by a f a c t o r of 10 because of t h e 100-fold d i l u t i o n of hydrogen.

Because of o t h e r f a c t o r s , t h e e f f e c t of

adding hydrogen may n o t b e s o d r a m a t i c , b u t t h e c a l c u l a t i o n a l method p r o v i d e s f o r a d d i t i o n of hydrogen t o t h e primary and secondary systems and f o r hydrogen t o be p r e s e n t a t a s p e c i f i e d c o n c e n t r a t i o n i n t h e

steam system so t h a t t h e e f f e c t s can b e s t u d i e d .

*

The c a l c u l a t i o n a l model d e s c r i b e s t h e b e h a v i o r of t r i t i u m i n an MSBR p l a n t t o t h e e x t e n t t h a t i t i s known o r h a s been i n f e r r e d a t t h e

present t i m e .

The removal p r o c e s s e s can be i n c l u d e d i n o r e l i m i n a t e d

from t h e c a l c u l a t i o n s by c a r e f u l choice of t h e v a l u e s a s s i g n e d t o coe f f i c i e n t s i n the equations.

The model probably does n o t i n c l u d e a l l

t h e chemical r e a c t i o n s and p h y s i c a l p r o c e s s e s t h a t w i l l u l t i m a t e l y b e

*The c a l c u l a t i o n a l procedure might have been developed t o t r e a t hydrogen and tritium as s e p a r a t e s p e c i e s . S e p a r a t e v a l u e s t h e n could b e a s s i g n e d t o important parameters, such as s o l u b i l i t y and d i f f u s i o n c o e f f i c i e n t s , f o r each s p e c i e s . I n t e r a c t i o n between hydrogen and tritium would b e taken i n t o account by t h e e q u i l i b r i u m r e l a t i o n s h i p 'iT"H2

'T2

p f o r t h e r e a c t i o n H2

= k

+

T,

t' HT

.

However, kp h a s a v a l u e n e a r 4 a t temperatures of i n t e r e s t , which s i g n i f i e s t h a t hydrogen and t r i t i u m i n t e r a c t as though t h e y are t h e same s p e c i e s . A l s o , t h e r e are s u b s t a n t i a l u n c e r t a i n t i e s i n t h e v a l u e s f o r most of t h e parameters. Complicating t h e procedure t o t r e a t hydrogen and t r i t i u m s e p a r a t e l y would n o t , f o r t h e p r e s e n t , improve t h e accuracy of t h e r e s u l t s .


7 shown t o a f f e c t t h e d i s t r i b u t i o n of t r i t i u m i n an MSBR.

IR some

i n s t a n c e s t h e s e e f f e c t s can be i n c l u d e d , when r e c o g n i z e d , simply by a d j u s t i n g t h e c o e f f i c i e n t s i n equations f o r processes p r e s e n t l y included.

Others may r e q u i r e i n c o r p o r a t i o n of a d d i t i o n a l p r o c e s s e s .

Two assumptions i n t h e c a l c u l a t i o n a l procedure should b e recognized f o r t h e i r p o t e n t i a l f o r l e a d i n g t o major d i f f e r e n c e s between t h e calc u l a t e d d i s t r i b u t i o n of t r i t i u m and what would a c t u a l l y occur i n a reactor plant.

T r i t i u m , p r e s e n t i n t h e s a l t as t r i t i u m f l u o r i d e , can

react w i t h metal t o y i e l d t r i t i u m atoms t h a t would d i s s o l v e i n and d i f f u s e through t h e metal.

Neglect of t h i s r e a c t i o n could cause t h e

c a l c u l a t i o n s t o be g r e a t l y i n e r r o r under circumstances where most of t h e t r i t i u m i s p r e s e n t i n t h e s a l t as t r i t i u m f l u o r i d e . Oxide f i l m s (and p o s s i b l y o t h e r s ) t h a t form on metal s u r f a c e s reduce t h e p e r m e a b i l i t y of a m e t a l w a l l t o t h e passage of hydrogen. They may a l s o cause t h e t r a n s p o r t t o v a r y w i t h p r e s s u r e t o a power i n t h e range of 1 / 2 t o 1.

The reduced p e r m e a b i l i t y appears as a

c o e f f i c i e n t i n t h e t r a n s p o r t e q u a t i o n s of t h e model, b u t we make n o p r o v i s i o n f o r changing t h e exponent on t h e p r e s s u r e t e r m s from 1/2.

The c a l c u l a t e d t r a n s p o r t of t r i t i u m through t h e metal w a l l s

and t h e e f f e c t of t h e a d d i t i o n of hydrogen i n reducing t h e t r a n s p o r t would both be g r e a t e r t h a n would a c t u a l l y occur i f t h e a c t u a l t r a n s p o r t were p r o p o r t i o n a l t o t h e p r e s s u r e t o a power i n t h e range 1 / 2 t o 1.

The c a l c u l a t i o n s would n o t u n d e r e s t i m a t e t h e t r a n s p o r t u n l e s s

t h e t o t a l p r e s s u r e of t r i t i u m and hydrogen exceeded t h e r e f e r e n c e p r e s s u r e f o r t h e p e r m e a b i l i t y c o e f f i c i e n t , which i s u s u a l l y 1 a t m .



9 I

11.

DERIVATION OF EQUATIONS AND COMPUTATIONAL PROCEDURES

I n making t h e c a l c u l a t i o n s , w e f i r s t c a l c u l a t e t h e d i s t r i b u t i o n of hydrogen p l u s tritium i n o r d e r t o e s t a b l i s h flows and c o n c e n t r a t i o n s of t h e combined i s o t o p e s throughout t h e p l a n t .

Then w e c a l c u l a t e t h e d i s t r i -

b u t i o n of t r i t i u m throughout t h e p l a n t . For c a l c u l a t i n g t h e d i s t r i b u t i o n , t h e f l u i d s i n t h e primary and secondary systems and t h e v a r i o u s p a r t s of t h e steam system are assumed t o be w e l l mixed and t o c o n t a i n uniform b u l k c o n c e n t r a t i o n s of a l l constituents.

The c a l c u l a t i o n s are f o r s t e a d y - s t a t e c o n d i t i o n s , and

o n l y hydrogen and tritium molecules are assumed t o b e a b l e t o s o r b on t h e m e t a l s u r f a c e s , d i s s o c i a t e , and d i f f u s e through t h e metal w a l l s . The v a r i o u s p a t h s are d e f i n e d and t h e d i s t r i b u t i o n i s c a l c u l a t e d by t h e u s e of t h e f o l l o w i n g set of e q u a t i o n s .

A.

*

I n t h e primary system:

1.

T r a n s p o r t of hydrogen through t h e s a l t f i l m t o t h e w a l l of t h e p i p i n g i n t h e h o t l e g from t h e r e a c t o r vessel t o t h e h e a t exchanger: QI

hlA1(CF

- CI>

T r a n s p o r t through t h e p i p e w a l l t o t h e s u r r o u n d i n g s where t h e hydrogen p r e s s u r e i s assumed t o be n e g l i g i b l e :

2.

T r a n s p o r t of hydrogen t o and through t h e w a l l s of t h e coldl e g p i p i n g from t h e h e a t exchanger t o t h e r e a c t o r vessel:

*Symbols are d e f i n e d i n S e c t i o n I V , Nomenclature.


10

3.

T r a n s p o r t of hydrogen t o and through t h e w a l l s of t h e r e a c t o r vessel and t h e s h e l l s of t h e h e a t exchangers i n t h e primary system:

4.

T r a n s p o r t o f hydrogen t o and through t h e w a l l s of t h e t u b e s i n t h e primary h e a t exchangers i n t o t h e s e c o n d a r y system:

5.

T r a n s p o r t of hydrogen t o t h e s u r f a c e s of t h e g r a p h i t e i n t h e r e a c t o r vessel o r t o o t h e r s o r b e r :

S o r p t i o n by t h e g r a p h i t e o r o t h e r s o r b e r assuming t h a t t h e s o r b i n g s u r f a c e i s r e p l a c e d c o n t i n u o u s l y and t h a t t h e c o n c e n t r a t i o n of s o r b e d g a s i s p r o p o r t i o n a l t o t h e s q u a r e r o o t of t h e p a r t i a l p r e s s u r e :

6.

Removal of hydrogen by purge:


11

7.

T r a n s p o r t of hydrogen f l u o r i d e t o and removal by s o r b e r :

8.

Removal of hydrogen f l u o r i d e by purge:

Because t h e molecular s p e c i e s involved may c o n t a i n d i f f e r e n t numbers of hydrogen atoms, a l l t h e c a l c u l a t i o n s are done i n terms of atoms of hydrogen.

T h i s does n o t mean t h a t t h e hydrogen n e c e s s a r i l y d i f f u s e s as

s i n g l e atoms, b u t o n l y t h a t a t r a n s p o r t u n i t i s one hydrogen atom and t h e parameters are expressed i n terms of s i n g l e hydrogen atoms. Q v a l u e of 1 then r e p r e s e n t s t h e t r a n s p o r t of one-half

A

molecule of H2,

one molecule of HF, o r one-fourth molecule of a compound l i k e CH4, a l l per unit time.

Likewise, a C v a l u e of 1 r e p r e s e n t s a c o n c e n t r a t i o n of one-

half molecule of H2, one molecule of HF, or one-fourth molecule of C H 4 , a l l p e r u n i t volume. If t h e rates of i n f l o w of t r i t i u m and hydrogen atoms (R, and R2, r e s p e c t i v e l y ) t o t h e primary system a r e g i v e n , a material b a l a n c e over t h e primary system g i v e s

RL

+

8 R2

=

C Qi i=l

I n o u r c a l c u l a t i o n s , a l l flow rates i n t h e sum on t h e right-hand of Eq. 9 are p o s i t i v e o r z e r o except f o r

Q4,

side

t h e t r a n s p o r t through t h e


12

Q4 can b e p o s i t i v e ,

h e a t exchanger t u b e s t o t h e secondary system.

n e g a t i v e o r z e r o , depending on t h e c o n d i t i o n s i n t h e v a r i o u s systems. Hydrogen i s p r e s e n t i n and i s removed from t h e primary system as hydrogen f l u o r i d e , b u t w e p r o v i d e no i n p u t of HF. UF4

+ :Hz

Z

UF3

I t i s produced by t h e r e a c t i o n

+ HF

2

which h a s a n e q u i l i b r i u m q u o t i e n t

or

Corrosion and o t h e r chemical c o n s i d e r a t i o n s make i t d e s i r a b l e t o m a i n t a i n t h e r a t i o X(UF,)/X(UF,)

Z

1 / U a t a constant value,* so t h e concentration

of HF i n t h e b u l k of t h e s a l t can b e r e l a t e d t o t h e hydrogen c o n c e n t r a t i o n

1

'FF W e replace C

MU = - (ksCF)T

k7

FF by t h e e q u i v a l e n t f u n c t i o n of CF i n Eqs. 7a and 8 t o o b t a i n

e x p r e s s i o n s f o r Q, and Qe i n t e r m s of C

B.

.

F'

Secondary System:

1.

Hot-leg p i p i n g : Qio

= hioAio(CC

-k d h

- CIO) 1

(kioClo)T

.

t i 0

*This might r e q u i r e t h a t hydrogen b e added t o t h e primary systems as

a m i x t u r e of hydrogen and hydrogen f l u o r i d e .


13

3.

T r a n s p o r t through t h e primary h e a t exchanger t u b e s i n t o t h e primary system: 412 =

4.

hizA4 (Cc

-

C12)

T r a n s p o r t through t h e steam g e n e r a t o r t u b e s i n t o t h e

steam system: 413 =

5.

c13)

.

414 =

h14A14 ( c c

-

c14)

(154

Transport through t h e r e h e a t e r t u b e s i n t o t h e steam system: Q15 =

7.

-

T r a n s p o r t through t h e s u p e r h e a t e r t u b e s i n t o t h e steam system:

6.

hl3A13 ( c c

h15A15 (cc

-

ClS)

Removal by s o r b e r as hydrogen:

(164


14 8.

Removal by purge as hydrogen:

417 9.

= F3E3CC

e

Removal by s o r b e r as HF:

S i n c e w e assume t h a t t h e hydrogen f l u o r i d e does n o t release hydrogen t o d i f f u s e through t h e metal w a l l s , and t h a t t h e r e are no chemical react i o n s i n t h e secondary system t h a t make t h e c o n c e n t r a t i o n s of hydrogen and hydrogen f l u o r i d e i n t e r d e p e n d e n t , w e w r i t e s e p a r a t e material b a l a n c e s f o r t h e two s p e c i e s f o r t h e d i s t r i b u t i o n of t o t a l t r i t i u m and hydrogen:

17 R3

+

R4 =

.Z Qi i=10

I n t h e s e e q u a t i o n s all t h e R ' s and a l l t h e Q's have p o s i t i v e o r zero v a l u e s except f o r Q I 2 , Q13,

Q14 and Q 1 5 , which can have n e g a t i v e

values.

C.

Steam g e n e r a t o r system:

1.

T r a n s p o r t through t h e steam g e n e r a t o r t u b e s i n t o t h e secondary sy s t e m :

(22a)

Q z i = h2iA13(CSG - C21)

2.

T r a n s p o r t through s u p e r h e a t e r t u b e s i n t o t h e secondary system: Q22 =

h22A14(Css

-

C22)

(234


15 P

3.

T r a n s p o r t through t h e r e h e a t e r t u b e s i n t o t h e secondary system:

In t h e steam system t h e v a l u e s f o r CSGy Css

and C

SR

w i l l b e given.

The steam flows w i l l b e s o l a r g e t h a t t h e d i f f u s i o n of hydrogen through t h e m e t a l s should n o t have much e f f e c t on t h e c o n c e n t r a t i o n of hydrogen i n t h e steam.

Under t h e s e assumptions, w e do n o t r e q u i r e a material

b a l a n c e over t h e steam system.

I f hydrogen i s added t o t h e f e e d water

as h y d r a z i n e o r i n some o t h e r manner t o g i v e a s p e c i f i e d r a t i o of hydrogen t o H 2 0 , then t h i s r a t i o , coupled w i t h t h e steam t a b l e s , can b e used t o c a l c u l a t e t h e hydrogen c o n c e n t r a t i o n s i n t h e w a t e r and steam i n t h e s t e a m - r a i s i n g equipment.

Without a d d i t i o n of hydrogen t h e

c o n c e n t r a t i o n s are e s t a b l i s h e d by t h e d i s s o c i a t i o n of water.

We now need t o s o l v e t h e above e q u a t i o n s t o o b t a i n v a l u e s f o r a l l t h e flow r a t e s and c o n c e n t r a t i o n s .

We c a r r y t h i s o u t i n t h e f o l l o w i n g

sequence, d i s c u s s e d i n more d e t a i l i n Sec. 111.

1.

C a l c u l a t e CCFy C l e ,

Qle

and

Q19

from e q u a t i o n s 19a, 19b, 20

and 21b. 2.

Assume a v a l u e f o r C

3.

C a l c u l a t e Q 1 0,

C'

Qll, 416,

417

and

c16

from e q u a t i o n s l l a , l l b ,

1 2 a , 12b, 17a, 17b and 18.

4.

Calculate Q 13 ,

414,

415,

Ci3,

Ci4

and C i s from e q u a t i o n s 1 4 a ,

14b, 15a, 15b, 1 6 a , 16b, 22a, 22b, 23a, 23b, 24a and 24b, n o t i n g t h a t t h e steam system a n d t h e secondary system are coupled by t h e r e l a t i o n s h i p s Q l 3 = Q15 = - 4 2 3 -

-Q21,

414 = -422

and


16

5.

Calculate

6.

Calculate C F' relationship

412

from t h e material b a l a n c e , E q . 21a. and

C12

Q 4 = -412

C4

from E q s .

4a, 4b, 13a, 13b, t h e

and t h e v a l u e of

412

These c o n c e n t r a t i o n s should a l l b e p o s i t i v e .

o b t a i n e d i n s t e p 5. I f any one of them

i s n e g a t i v e , s t e p s 3 through 6 must b e r e p e a t e d w i t h a l a r g e r v a l u e of C

C'

7.

When p o s i t i v e v a l u e s have been found f o r C F' C 1 2 and C 4 , c a l c u l a t e Q 1 , 4 2 9 4 3 9 Qs, Q6, 4 7 , Q s , C S , CFF and C 7 *

8.

Calculate R

F

from RF =

8 C Q i i=l

-

(R1 -I- R2)

i s p o s i t i v e , hydrogen must b e added t o t h e primary system F i n o r d e r t o m a i n t a i n a b a l a n c e . This m e a n s t h a t C i s t o o l a r g e , If R

which i n t u r n means t h a t C

C

F i s t o o l a r g e , and s t e p s 3 through 8

must b e r e p e a t e d w i t h a smaller v a l u e of Cc.

is negative, F Cc i s t o o s m a l l and s t e p s 3 through 8 must b e r e p e a t e d w i t h a

l a r g e r v a l u e of C

If R

C'

When t h i s p r o c e s s h a s been r e p e a t e d u n t i l t h e r a t i o

lRl:

R21is

s u f f i c i e n t l y s m a l l , t h e flows and c o n c e n t r a t i o n s o f hydrogen p l u s t r i t i u m and of hydrogen f l u o r i d e p l u s t r i t i u m f l u o r i d e have been e s t a b l i s h e d throughout t h e p l a n t and w e can proceed w i t h t h e c a l c u l a t i o n of t h e tritium distribution.

We i g n o r e t h e d i f f e r e n c e i n t h e p r o p e r t i e s of

t h e two i s o t o p e s and assume t h a t they behave i d e n t i c a l l y .

Thus,

hydrogen and t r i t i u m compounds have t h e s a m e s o l u b i l i t i e s and d i f f u s i v i t i e s , and i f a hydrogenous compound, such as H F , i s added t o a m i x t u r e of hydrogen and t r i t i u m , exchange w i l l o c c u r t o g i v e a r a t i o of t r i t i u m t o hydrogen t h a t i s t h e same i n hydrogen* and t h e added compound.

*HP,

HT and T2.


17 I

W e now proceed w i t h t h e c a l c u l a t i o n of t h e t r i t i u m d i s t r i b u t i o n .

D.

Primary system:

1.

T r a n s p o r t through w a l l s of h o t - l e g p i p i n g : 4 3 1 = -‘FT

Q~

.

cF 2.

T r a n s p o r t through w a l l s of cold-leg p i p i n g : 432 =

3.

C

FT 42

.

(26)

T r a n s p o r t through w a l l of r e a c t o r vessel and s h e l l s of h e a t exchangers i n primary s y s t e m : 433 =

4.

C FT Q3

T r a n s p o r t through w a l l s of primary heat-exchanger t u b e s i n t o t h e secondary system:

Equations 25 through 2 7 are s t r a i g h t f o r w a r d , simply i n d i c a t i n g t h a t t h e amount of t r i t i u m flowing w i t h hydrogen i s p r o p o r t i o n a l t o t h e f r a c t i o n of t h e c o n c e n t r a t i o n t h a t i s t r i t i u m when t h e flow of b o t h i s i n t o a s i n k w i t h a z e r o c o n c e n t r a t i o n of b o t h .

Equation 28a i s s t r a i g h t f o r w a r d ,

i n d i c a t i n g t h a t t h e flow of t r i t i u m from t h e b u l k s a l t t o t h e w a l l i s p r o p o r t i o n a l t o t h e d i f f e r e n c e between t h e c o n c e n t r a t i o n s of t r i t i u m i n t h e b u l k f l u i d and t h e w a l l . additional explanation.

Equation 28b, however, r e q u i r e s some


18 .-

The rate of t r a n s p o r t of hydrogen through a metal w a l l can be expressed as DA Q = - (C; t

-

Ch)

,

where D i s t h e d i f f u s i v i t y of hydrogen atoms i n t h e m e t a l , t h e C ' s are t h e c o n c e n t r a t i o n s of hydrogen atoms d i s s o l v e d i n t h e m e t a l a t t h e i n n e r

(I) and o u t e r ( 0 ) s u r f a c e s , t i s t h e metal t h i c k n e s s and A i s t h e s u r f a c e area.

Assuming no i n t e r a c t i o n of t r i t i u m and hydrogen atoms as they

d i f f u s e through t h e metal, t h e rate of t r a n s p o r t of t r i t i u m i s QT = -DA (C.;lI

The c o n c e n t r a t i o n of hydrogen

+

-

C;cO)

.

t r i t i u m atoms i n t h e m e t a l a t t h e

surface is 1

C'

= S(kC)T

= SP'

,

where S i s a s o l u b i l i t y c o e f f i c i e n t and P i s t h e p a r t i a l p r e s s u r e of hydrogen

+

t r i t i u m and i s e q u a l t o t h e p r o d u c t of Henry's l a w c o e f f i c i e n t

and t h e c o n c e n t r a t i o n of hydrogen

+

tritium i n the salt a t the surface.

Assuming t h a t t h e r a t i o of t r i t i u m t o hydrogen

+

t r i t i u m i n t h e metal

a t t h e s u r f a c e i s t h e same as t h a t i n t h e s a l t a t t h e s u r f a c e , we can

write 'TI - S(k C )=-= I I

s

CI

and a s i m i l a r e x p r e s s i o n f o r t h e o u t e r s u r f a c e .

Q,

=

DSA t

kICTI

1

(kICIF

Then,


19

and by s u b s t i t u t i n g t h e p e r m e a b i l i t y c o e f f i c i e n t , p, f o r t h e p r o d u c t , DS, w e o b t a i n Eq. 28b.

This t r e a t m e n t i s n e c e s s a r y h e r e because

t h e n e t flows of hydrogen and t r i t i u m may b e i n o p p o s i t e d i r e c t i o n s . The e q u a t i o n s p r o v i d e a means f o r t a k i n g i n t o account t h e e f f e c t of t h e

mass a c t i o n l a w s on t h e c o n c e n t r a t i o n s of t r i t i u m i n t h e m e t a l and i t s t r a n s p o r t through t h e m e t a l .

5.

Removal by g r a p h i t e o r o t h e r s o r b e r : ‘FT

Q35 = -

Q5

cF

6.

Removal by purge:

7.

Removal by g r a p h i t e o r o t h e r s o r b e r as t r i t i u m f l u o r i d e : ‘FT

4 3 7 =--

47

cF

8.

Removal by purge as t r i t i u m f l u o r i d e :

The t r i t i u m b a l a n c e o v e r t h e primary system i s : 38

Qi

R1 =

i=31

E.

Secondary s y s t e m :

1. Hot-leg p i p i n g :

(33)


20

2.

Cold-leg p i p i n g : 441

‘CT

(35)

= -411

cC

3.

T r a n s p o r t through primary h e a t exchanger t u b e w a l l s i n t o primary system:

4.

T r a n s p o r t through steam g e n e r a t o r t u b e w a l l s i n t o t h e steam

system: 4 4 3 =

hi3Ai3(CCT - C43)

(374

C a l c u l a t i o n s of t h e t r i t i u m d i s t r i b u t i o n are b a s e d on t h e assumption t h a t t r i t i u m w i l l exchange s o r a p i d l y w i t h t h e hydrogen i n t h e steam t o form t r i t i a t e d water t h a t t h e t r i t i u m c o n c e n t r a t i o n w i l l b e e f f e c t i v e l y zero.

5.

T r a n s p o r t through t h e s u p e r h e a t e r t u b e s i n t o t h e steam system: 444

6.

= hi4Ai4(CCT

-

C44)

T r a n s p o r t through t h e r e h e a t e r t u b e s i n t o t h e steam system:

(38a)


21

7.

Removal by s o r b e r as tritium:

8.

Removal by purge as t r i t i u m :

‘CT

=-

447

417

cC 9.

Removal by s o r b e r as tritium f l u o r i d e :

‘CT

=-

448

QIS

cC 10.

Removal by purge as t r i t i u m f l u o r i d e :

449

‘CT

=-

(43)

Qi9

cC The b a l a n c e over t h e secondary system i s :

R3 =

49 C i=40

Qi

(44)

S i n c e t h e t r i t i u m c o n c e n t r a t i o n i n t h e steam system i s assumed t o b e n e g l i g i b l e , no e q u a t i o n s a r e needed f o r t h e s t e a m system.

To c a l c u l a t e t h e d i s t r i b u t i o n of t r i t i u m , w e s o l v e Eqs. 25-44 i n t h e f o l l o w i n g sequence, d i s c u s s e d i n more d e t a i l i n S e c t i o n 111.

1. Assume a t r i t i u m c o n c e n t r a t i o n , CCT, i n t h e secondary system and c a l c u l a t e

QbO,

Q41,

Q43

through

Q49

from Eqs. 34, 35, 37a,

37b, 38a, 38b, 39a, 39b, 40, 41, 42 and 43.

2.

C a l c u l a t e Q 4 * from t h e material b a l a n c e , Eq. 44.

3.

C a l c u l a t e CFT from Eqs. 28a, 28b, 36a and 36b, t h e r e l a t i o n -

ship

Q34

=

‘442

and t h e v a l u e of

442

from s t e p 2.

of CFT i s n e g a t i v e , i n c r e a s e t h e estimate f o r C s t e p s 1 through 3. proceed t o s t e p 4.

CT

I f the value and r e p e a t

When w e have found a p o s i t i v e C

FT’

we


22

5.

Calculate R

F’

where

i s t h e t e r m t h a t must b e added t o t h e l e f t s i d e of Eq. 33 i n

is positive, tritium F are too must be added t o t h e primary system, so CFT and C CT and C a r e t o o small. Adjust large; i f R i s negative, F ‘FT CT t h e v a l u e of C and r e p e a t s t e p s 1 through 5. When IRF/R1 CT is s u f f i c i e n t l y s m a l l , t h e c a l c u l a t i o n s are finished. o r d e r f o r t h e e q u a t i o n t o balance.

If R

I


23

SOLUTION OF EQUATIONS

111.

I n t h e procedure d i s c u s s e d above, w e begin w i t h t h e c a l c u l a t i o n of CCF,

C I S , Q I S and Q19 w i t h Eqs. 19a, 19b and 20, and t h e material b a l a n c e ,

Eq. 21b: QIS

= hisAie(CCF - CIS)

(194

0 and Eq. 20 r e q u i r e s t h a t Q 1 9 > 0, so i f

Eq. 19b r e q u i r e s t h a t Q l e

2

RS = 0, 21b r e q u i r e s t h a t

Q18

=

= 0.

Q19

I f R5 > 0 , w e combine 21b, 20

and 1 9 a t o o b t a i n

or

S u b s t i t u t i n g 19c i n t o 19a, s e t t i n g t h e r e s u l t e q u a l t o 19b and c o l l e c t i n g terms we o b t a i n

a where w e have d e f i n e d

and

- CIS

1

=

sczl

Y

(19d)


24 Squaring b o t h s i d e s of 19d r e s u l t s i n a q u a d r a t i c e q u a t i o n f o r C i s ; s i n c e t h e right-hand

s i d e of 19d i s p o s i t i v e , w e want t h e r o o t of t h i s

q u a d r a t i c which i s less t h a n

c:, -

a.

We have

(2a+B2)C1e

+

a2

= 0

Y

To o b t a i n t h e r o o t l e s s than a, w e want t h e r o o t w i t h t h e n e g a t i v e s i g n .

To a v o i d p o s s i b l e l o s s of s i g n i f i c a n t f i g u r e s , w e n o t e t h a t t h e product of t h e r o o t s i s a2, s o t h a t w e can w r i t e t h e s o l u t i o n i n t h e form

C1e =

) i q *

Then w e have

and

1 i t h some v a l u e f o r C Q16,

Q17

and C16.

C w e proceed t o t h e c a - c u l a t i o n of Q l o ,

E q s . l l a , l l b , 12a and 12b r e a d

910

=

PloAlo t l 0

(kloClo)'

,

Qll,


25

Qll =

PllAll tll

(kllCll)'

.

These e q u a t i o n s (11 and 1 2 ) are i d e n t i c a l i n s t r u c t u r e , as a x E q s . 1, 2, 3 , 5, 7, 1 7 and 19.

For E q s . 11 and 1 2 we d e f i n e

and E q s . 11 and 12 t h e n can b e w r i t t e n i n t h e form of q u a d r a t i c s i n t h e concentration C

i:

c;

- (2C1+Cr)Ci

+ c:

= 0

.

From E q s . l l b and 12b, t h e f l o w rates Q l o and Q l l must b e p o s i t i v e , s o t h a t t h e r o o t d e s i r e d i n each case i s t h e smaller one.

ci =

,...4('.) '

i = 1 0 , 11

W e have

,

and Qi

-- -P i A i t

1

(kiCi)=

,

i = 1 0 , 11

.

i

By p u t t i n g

C l b can b e c a l c u l a t e d i n t h e same f a s h i o n ( E q s . 17a and 17b) and t h e f l o w rates

416 and

Q17

are


26 We c o n t i n u e w i t h s t e p 4 , t h e c a l c u l a t i o n of t h e f l o w r a t e s

414 and Q l s , and t h e corresponding c o n c e n t r a t i o n s c13,

413)

C14 and C 1 5 ,

u s i n g Eqs. 1 4 a , 14b, 1 5 a , 15b, 1 6 a , 16b, 22a, 22b, 23a, 23b, 24a and 24b.

Note t h a t t h e secondary system and t h e steam system are coupled

by t h e e q u a t i o n s

The t h r e e e q u a t i o n s 14, 1 5 and 16 a l l have t h e same s t r u c t u r e and can be w r i t t e n i n t h e form

where K = 1 3 , 14 and 15, C1 = Cc, C z as C

SG '

Css

and C

SR

L = 21, 22 and 23, and we i d e n t i f y

f o r K = 13, 14 and 1 5 , r e s p e c t i v e l y .

W e can

s o l v e Eq. b f o r CL:

Since C

L

must b e non-negative,

t h e r e i s a maximum p e r m i s s i b l e v a l u e

C p ) , which i s t h e v a l u e such t h a t

or

If w e s u b s t i t u t e ( c ) i n t o ( a ) and r e a r r a n g e , w e have


27

o r , more c o n c i s e l y , CK = F(CK)

.

To l o c a t e t h e s o l u t i o n s ( i f any) of t h i s e q u a t i o n , w e need t o

< Cb a x > K

examine t h e behavior of F(C ) f o r 0 < C

K

- K-

.

We f i n d t h a t

and F'(CK) < 0, F ' ( 0 ) =

-

F"(CK) > 0

-a

.

The graph of F(CK) then looks l i k e t h e curve i n Fig. 2.

F i g . 2.

Sketch of F(CK ) vs CK.

F o r t h e r e t o b e a s o l u t i o n between z e r o and C ( m a d K

, we

must have

(max) > F ( C Y ) ) and upon s u b s t i t u t i o n of o u r e x p r e s s i o n (d) i n t o cK F(CK), w e f i n d t h a t t h i s c o n d i t i o n i s s a t i s f i e d .

the function

We w i l l now examine


28

W e note t h a t G(0) = -F(O) < 0

and G'(CK) = 1 - F'(CK) > 0

[since F'(CK) < 01

.

This i n s u r e s t h a t G(C ) h a s one and o n l y one z e r o i n t h e r a n g e K

5

cK

5

(mx).

S i n c e G"(CK) = -F"(CK)

-

G"(CK) < 0 , and t h e graph

of G(C ) l o o k s l i k e t h e curve shown i n Fig. 3. K

Fig. 3.

With a s u i t a b l e C(')

K

s t a r t i n g w i t h C(') K

, to

Sketch of G(CK) vs C K

we can compute G I = G(Ckl)) < 0 ( f o r example,

= 0) and w i t h a s u i t a b l e C('),

K

start).

G2 = G(Ci2)) > 0

An approximation t o t h e s o l u t i o n C ( T ) , i s K

d e r i v e d from t h e i n v e r s e l i n e a r i n t e r p o l a t i o n :

as shown i n F i g . 2.

A b e t t e r approximation can b e d e r i v e d w i t h i n v e r s e

quadratic interpolation:


29

With G"(CK) < 0 as shown and G'(C K ) > 0, G T = G(C:T)) w i l l b e p o s i t i v e and C F ) should be l a r g e r t h a n t h e r o o t . I f C?) i s l a r g e r t h a n CK(TI ,

w e r e p l a c e C;"' polation.

by

Cp),

G 2 by GT, and r e p e a t t h e i n v e r s e l i n e a r i n t e r -

we calculate I f , however, C F ) i s smaller t h a n C(T), K

= G ( C F ) ) ; and i f t h i s v a l u e i s n e g a t i v e , w e r e p l a c e C ( l ) by CK( X I

G

,

K

X

G1 by G x y C i 2 ) by C p ) and G 2 by G T y and repeat t h e i n v e r s e l i n e a r

interpolation.

If G X

i s p o s i t i v e , w e r e p l a c e C(2) by C F ) and G 2 by G K X

and r e p e a t t h e i n v e r s e l i n e a r i n t e r p o l a t i o n .

We t e r m i n a t e t h i s p r o c e s s

when

o r when ?e have done 50 i t e r a t i o n s . DATA s t a t e m e n t i n our program.

i n about f o u r i t e r a t i o n s f o r C

The t o l e r a n c e CTOL i s d e f i n e d -n a

We have found t h a t t h e procedure converges TOL

=

lo-'

and i n about s i x i t e r a t i o n s f o r

cTOL= The r e q u i r e d flow rates

413,

QZl,

Q14,

= h.A.(CC 11

- Ci>

QZ2,

Q15

and

QZ3

c a n now b e

computed from

Qi

Qi+8 - -Qi,

i = 13, 1 4 , 15

.

The flow r a t e of hydrogen and tritium through h e a t exchanger t u b e

w a l l s from t h e secondary t o t h e primary system, Q 1 2 ,

and from Eq. 1 3 a ,

c12

=

c

hlZA4

is


30 If t h e v a l u e f o r C l z i s n e g a t i v e , w e have used too s m a l l a v a l u e f o r Cc,

s o w e double our p r e v i o u s g u e s s and s t a r t over a t s t e p 3.

If the

computed v a l u e i s p o s i t i v e , w e proceed t o c a l c u l a t e (Eq. 13b)

and f i n a l l y ,

I f t h e computed v a l u e f o r CF i s n e g a t i v e , w e need a l a r g e r v a l u e f o r C,,b

s o w e double o u r p r e v i o u s guess and r e t u r n t o s t e p 3.

I f positive,

we proceed t o s t e p 7, t h e computation of t h e remaining flow rates 429

4 3 , 45, 46, 4 7

Q1,

a d QE and t h e c o n c e n t r a t i o n s C 5 , CFF and C 7 .

W e can write Eqs. I, 2 and 3 i n t h e form

Q. = h A L i i

(‘F

-

and w i t h

t h e r e s u l t i n g q u a d r a t i c e q u a t i o n s can be s o l v e d i n t h e same way as t h o s e f o r C l o and C l 1 .

Eqs. 5 can b e manipulated i n t o t h e same form

with

s o t h a t we can c a l c u l a t e C5, and from i t


31 Again, Eqs. 7a and 7b can b e w r i t t e n as a q u a d r a t i c f o r

C7

with

s o t h a t w e can c a l c u l a t e 1

(k7C7lT

4 7 = B2W2A7

and

8 RF = where C

FF

Qi

-

R1

-

R2

i= 1

is CFF = M U $ , C F ) T

1

k7 This i s t h e end of t h e f i r s t p a r t of t h e procedure i f enough.

%

is s m a l l

W e t e s t t h e condition

(where t h e q u a n t i t y TTOL i s d e f i n e d i n a DATA s t a t e m e n t i n o u r program) and i f i t i s s a t i s f i e d , w e proceed t o t h e second p a r t . not, we adjust C

C

i n a v a r i e t y of ways, depending on what i n f o r m a t i o n

we have accumulated s o f a r .

two v a l u e s of C

C

If

W e carry out a preliminary search f o r

which b r a c k e t t h e r o o t , i . e . , one f o r which

n e g a t i v e and t h e o t h e r f o r which

% is

positive.

%

I f t h i s is the

f i r s t i t e r a t i o n o r i f b o t h o u r p r e s e n t and p r e v i o u s v a l u e s of R have t h e same s i g n , w e m u l t i p l y C

C

by a f a c t o r m such t h a t

F

is


32

b u t l i m i t e d t o t h e range .01

5

m

100

When w e have b r a c k e t e d t h e r o o t , w e combine i n v e r s e l i n e a r and i n v e r s e q u a d r a t i c i n t e r p o l a t i o n i n much t h e same way as w e d i d f o r t h e s o l u t i o n of t h e e q u a t i o n s f o r

C13,

C14

and C 1 5 , keeping t h e r o o t

b r a c k e t e d and a t t e m p t i n g t o reduce t h e l e n g t h of t h e i n t e r v a l containing the root.

When t h i s p r o c e s s has converged, w e proceed t o

t h e tritium c a l c u l a t i o n . With a v a l u e f o r C

CT’

t h e c o n c e n t r a t i o n of t r i t i u m i n t h e

secondary s a l t , we compute

Q40

‘CT

=-

Qio

(34)

cC

(35)


33

Qi+30 442 =

= -‘CT

Cc

R3-44 0 - 4 4

Qi

i

9

=

1 6 , 17, 18, 19

1-44 3 - 4 4 4 - 4 4 5 - 4 4

(40-43)

(44)

6 - 4 4 7-44 8 - 4 4 9

and f i n a l l y

If t h i s v a l u e i s n e g a t i v e , we have used t o o small a v a l u e f o r

‘CT;

i n t h e same way as b e f o r e , we double C

a t Eq. 34.

When w e have found a p o s i t i v e

CT

and t r y a g a i n , s t a r t i n g

c42y

Again, i f C34 i s n e g a t i v e , w e need t o double C

w e compute

CT

and t r y a g a i n .

When w e have found a p o s i t i v e C34, w e compute

and c o n t i n u e w i t h t h e doubling scheme u n t i l positive.

C42,

C34 and C

FT

are a l l

W e can now compute t h e flow rates

and

38

s = cQ

i - R i

i=31

Our t e s t i s now on I%/R11,

and w e use t h e same adjustment and

i n t e r p o l a t i o n procedures as f o r C

C’



35 IV.

NOMENCLATURE

Reference Value;k

A

A = s u r f a c e area, c m z

h o t l e g of primary system ( p i p i n g and pumps)

6 X

c o l d l e g of primary system ( p i p i n g )

5

lo5

x lo5

r e a c t o r vessel and h e a t exchanger s h e l l s

3.5

x

6 10

t u b e s of primary h e a t exchanger

4.9

x

7 10

c o r e g r a p h i t e f o r s o r p t i o n of hydrogen

7 5.2 X 1 0

c o r e g r a p h i t e f o r s o r p t i o n of hydrogen fluoride

5.2 X 10

7

hot l e g of secondary system ( p i p i n g , pumps, h a l f of s h e l l s on s t e a m - r a i s i n g equipment)

1.1 x 10’

c o l d l e g of secondary system ( p i p i n g , h a l f of s h e l l s on s t e a m - r a i s i n g equipment)

8.8 X

A4

Name**

7

4.9

x

lo6 10

7

7

t u b e s of steam g e n e r a t o r s

3.1 X 10

t u b e s of s u p e r h e a t e r s

2.7

X 10

t u b e s of r e h e a t e r s

1.8

x lo7

s o r b e r of hydrogen

0

7

--s o r b e r of hydrogen f l u o r i d e

0

*The r e f e r e n c e v a l u e s are based on t h e d e s i g n of a 1000 IWe molten s a l t b r e e d e r r e a c t o r p l a n t d e s c r i b e d i n ORNL-4541. nkAcronym used i n FORTRAN computer program; i f no e n t r y a p p e a r s , t h e parameter i s n o t used i n t h e program.


36

Reference Value

B

= sorption factor, atoms/cm2atm

B1 B2 B3

B4

c

=

+ tritium on

core graphite

hydrogen

=

hydrogen fluoride on core graphite

=

hydrogen system

=

+

B

2

=

3

x

1o2I

3

x

1o2I

1

x

l0l8

1

x

tritium on ssrber in secondary

hydrogen fluoride on sorber in secondary system

Name

concentration, atoms/cm3 cF

=

hydrogen

+

CF

tritium in bulk of primary salt

+ tritium as hydrogen fluoride in bulk of primary salt

CFF

=

tritium in bulk of primary salt

CFT

=

hydrogen

CFF = hydrogen

CFT

Cc

CCF = hydrogen

+ +

cc

tritium in bulk of secondary salt

tritium as hydrogen fluoride in bulk of secondary salt

CCF CCT

CCT = tritium in bulk of secondary salt CSG = hydrogen in bulk of water in steam generator (672'K) Css

=

=

C2

C3

=

9

lolo

x

CSG

css

hydrogen in bulk of steam in reheater (755째K)

CSR

C1

hydrogen in bulk of steam in superheater (783 O K )

2 X

hydrogen + tritium in salt at surface of hot leg of primary system

=

hydrogen + tritium in salt at surface of cold leg of primary system

=

hydrogen + tritium in salt at surface of reactor vessel and heat exchanger shells

1 X 10"

CSR

C


37 Reference Value ‘4

‘5

=

=

hydrogen + tritium in salt at surfaces of heat exchanger tubes in primary system hydrogen + tritium in salt at surfaces of core graphite in primary system

‘6 ‘7

=

hydrogen fluoride in salt at surfaces of core graphite in primary system

‘8 ‘9

‘lo ‘11 ‘12

‘I3

‘I4

‘15 ‘16 ‘17 ‘18

=

hydrogen + tritium in salt at surface of hot leg in secondary system

=

hydrogen + tritium in salt at surface of cold leg in secondary system

=

=

hydrogen + tritium in salt at surfaces of heat exchanger tubes in secondary system hydrogen + tritium in salt at surfaces of steam generator tubes in secondary system

=

hydrogen + tritium in salt at surfaces of superheater tubes in secondary system

=

hydrogen + tritium in salt at surfaces of reheater tubes in secondary system

=

hydrogen + tritium in salt at surfaces of sorber in secondary system

-

--

=

hydrogen fluoride in salt at surfaces of sorber in secondary system

Name


38

Reference Value

Name -

C21 = hydrogen in steam at surfaces of steam generator tubes in steam system C22 = hydrogen in steam at surfaces of superheater tubes in steam system C23 = hydrogen in steam surfaces of reheater tubes in steam system

C34 = tritium in salt at surfaces of heat exchanger tubes in primary system

C42 = tritium in salt at surfaces of heat

exchanger tubes in secondary system C43 = tritium in salt at surfaces of steam generator tubes in secondary system C44 = tritium in salt at surfaces of superheat.er tubes in secondary system C45 = tritium in salt at surfaces of reheater tubes in secondary system

E

=

E

efficiency El

E2

E

E4

=

=

=

=

removal of hydrogen + tritium from purge stream in primary system

5

x

removal of hydrogen fluoride from purge stream in primary system

1.7

removal of hydrogen + tritium from purge stream in secondary system

1.8 X

removal of hydrogen fluoride from purge stream in secondary system

1.8

10-1

x

x

lo-'


39

Reference Value

F

=

F

flow rate, cm3/sec F1

F2

F3

F4

=

=

purge stream for removal of hydrogen tritium from primary system

+

purge stream for removal of hydrogen tritium from secondary system

=

purge stream for removal of hydrogen fluoride from secondary system

5

3 . 6 X 10

purge stream for removal of hydrogen fluoride from primary system

=

x

3.6

+

lo5

5 5.0 X 10 5 5.0 X 10

H

h = mass transfer coefficient, cm/sec hl h2 h3

h4 h5

h6 h7

=

=

=

hydrogen through primary salt to surfaces of hot leg in primary system

1.6 X

hydrogen through primary salt to surfaces of cold leg in primary system

6.0

x

hydrogen through primary salt to surfaces of reactor vessel and heat exchanger shells in primary system

9.0

x

1.9

x

3.0

x

= hydrogen through primary salt to surfaces

of heat exchanger tubes in primary system =

hydrogen t h r o u g h primary s a l t t o s u r f a c e s

of core graphite in primary system

--

--

=

hydrogen fluoride through primary salt to surfaces of core graphite in primary system

h8

--

--

hg

-

--

Name

h,, = hydrogen through secondary salt to surfaces I U of hot leg in secondary system

--3.0

x

----7.4

x

IO-~


40 Reference Value hll

= hydrogen through secondary s a l t t o s u r f a c e s

3.4

x

of t u b e s i n h e a t exchangers i n secondary system

9.7

x

hydrogen through secondary s a l t t o s u r f a c e s of t u b e s of steam g e n e r a t o r s i n secondary system

4.3

x

4.7

x

of c o l d l e g i n secondary system

h12

hI3

h14

h15

= hydrogen through secondary s a l t t o s u r f a c e s

=

= hydrogen through secondary s a l t t o s u r f a c e s

of t u b e s i n s u p e r h e a t e r s i n secondary system = hydrogen through secondary s a l t t o s u r f a c e s

of t u b e s i n r e h e a t e r s i n secondary system = hydrogen through secondary

h16 hl7

h18

k

lo-’

8.0 X 10-1

---

- -= hydrogen f l u o r i d e through secondary s a l t

t o s u r f a c e s of s o r b e r i n secondary system

-

--

=

hydrogen through water t o s u r f a c e s of t u b e s of steam g e n e r a t o r s i n steam system

=

hydrogen through steam t o s u r f a c e s of t u b e s of r e h e a t e r s i n steam system

= Henry’s l a w c o e f f i c i e n t ,

8.0 X 10-1

---

h22 = hydrogen through steam t o s u r f a c e s of t u b e s of steam g e n e r a t o r s i n steam system h23

4.0 X

salt t o surfaces

of s o r b e r i n secondary system

h20 hZ1

Name

(cm3me1t) (atm.) atom H

5.8 12

30 K


41 Reference Value =

,

1.7 I!

kl k2 k3

k4 k5 k6 k7

=

=

=

=

=

moles HF (cm' melt) (atm.)

hydrogen in primary salt in hot leg in primary system (973°K)

1.2

x

10-l~

hydrogen in primary salt in cold leg in primary system (838°K)

2.0

x

10-l~

hydrogen in primary salt in reactor vessel and heat exchanger shells in primary system (908'K)

1.5

x

10-l~

hydrogen in primary salt in heat exchangers in primary system (908°K)

1.5

x

10-l~

hydrogen in primary salt in reactor core in primary system (923°K)

1.4

x

--

--

=

hydrogen fluoride in primary salt in reactor core in primary system (923°K)

---

k8 -

x 10-l~ ---

kg

---

--- --

=

k10 kll k12

k13

=

=

=

=

k14 =

k15

1.5

hydrogen in secondary salt in hot leg in secondary system (894°K)

3.4

hydrogen in secondary salt in cold leg in secondary systern (723O K )

5.0 X

hydrogen in secondary salt in heat exchangers in secondary system (809 OK)

4.0 X

hydrogen in secondary salt in steam generators in secondary system (783°K)

4.5

x

10-l8

hydrogen in secondary salt in superheaters in secondary system (866°K)

3.5

x

10-l8

hydrogen in secondary salt in reheaters in secondary system (810°K)

4.0 X

x

10-l8

Name


42

Reference Value k16 = hydrogen in secondary salt in contact with sorber in secondary system (773°K)

4.4

x

hydrogen fluoride in secondary salt in contact with sorber in secondary system ( 7 73 OK)

1.1

x

hydrogen in steam in steam generators in steam system (660°K)

4.5

x

hydrogen in steam in superheaters in the steam system (755°K)

5.1 X

hydrogen in steam in reheaters in steam system (714%)

-20 4.8 X 10

k18

=

=

k21 =

k22 =

k23

M

=

equilibrium quotient for reduction of UF by 4 hydrogen, atmr/’, (923’K)

1.12 X

M

P

p = permeability coefficient for hydrogen in metal (atoms H) (mm) = 1.5 (sec) (cm’) (atm) 112 p1

p2 p3

p4

=

=

=

=

x

Name

16 (cm” H, STP)(mm) 10 p’ (hr) (em’) (atm) ”’

at average temperature of metal in hot leg in primary system (973’K)

2.1

at average temperature of metal in cold leg in primary system (838°K)

6.7 X 10

at average temperature of metal in reactor vessel and heat exchanger shells in primary system (873’K)

9.0

x

10

at average temperature of metal in tubes in heat exchangers in primary system (873 O K )

9.0

x

14 10

x

15 10

14

14


43

Reference Value

*lo

=

=

at average temperature of metal in hot leg in secondary system (893°K)

1.1

at average temperature of metal in cold leg in secondary system (723°K)

14 1.8 X 10

-

9.0

p12 - p4

p13 = at average temperature of tubes in steam generators in secondary system (723°K)

'14

=

=

P

=

x

Name -

15

10

x 14

1.8 X 10

at average temperature of tubes in superheaters in secondary system (838°K)

6.7 X 1 0

at average temperature of tubes in reheaters in secondary system (773°K)

3.5

14

x

14

10

pressure, atm. or other appropriate units

Q = rate of transport, atoms of hydrogen and/or tritium per second Q,

Q2

=

hydrogen + tritium through walls of hot leg in primary system

=

hydrogen + tritium through walls of cold leg in primary system

+ tritium through wall of reactor vessel and shells of heat exchangers in primary system

Q3 = hydrogen

Q,

Q, Q6

=

=

hydrogen + tritium through walls of tubes in heat exchangers from primary system to secondary system hydrogen + tritium to core graphite in primary system

= hydrogen

system

+

tritium to purge in primary

Q


44 Reference Value = hydrogen f l u o r i d e t o c o r e g r a p h i t e i n

Q,

primary system = hydrogen f l u o r i d e t o purge i n primary

Q,

system

+ t r i t i u m through w a l l s of h o t l e g i n secondary system

= hydrogen

‘lo

+ t r i t i u m through w a l l s of c o l d l e g i n secondary system

= hydrogen

+ t r i t i u m through w a l l s of t u b e s i n h e a t exchangers from secondary system t o primary system =

Q,,

Q13

Q14

Q,,

= hydrogen

= hydrogen

steam g e n e r a t o r t u b e s from t h e secondary system i n t o t h e s t e a m system =

hydrogen + t r i t i u m through w a l l s of t h e s u p e r h e a t e r t u b e s from t h e secondary system i n t o t h e steam system

+ t r i t i u m through w a l l s of t h e r e h e a t e r t u b e s from t h e secondary system i n t o t h e steam system

= hydrogen

= hydrogen

Q16 Q,,

+

-Q4 t r i t i u m through walls of t h e

+

t r i t i u m t o s o r b e r i n secondary

+

t r i t i u m t o purge i n secondary

system = hydrogen

system = hydrogen f l u o r i d e t o s o r b e r i n secondary

Q18

system = hydrogen f l u o r i d e t o purge i n secondary

‘19

system

‘”

= hydrogen through w a l l s of steam g e n e r a t o r

t u b e s from steam system i n t o secondary system = -Q13

Name


45

Reference Value Q,,

=

hydrogen through walls of superheater tubes from steam system into secondary system =

-Q14

Q23

=

hydrogen through walls of reheater tubes from steam system into secondary system = -Q15

-

--

Q,,

=

tritium through walls of hot leg in primary system

Q,,

=

tritium through walls of cold leg in primary system

Q,,

= tritium through wall of reactor vessel

Q24-Q30

and shells of heat exchangers in primary system =

tritium through walls of heat exchanger tubes from primary system into secondary system

Q35

=

tritium to core graphite in primary system

Q,,

=

tritium to purge in primary system

Q,,

=

tritium fluoride to core graphite in primary system

,Q

=

tritium fluoride to purge in primary system

Q34

‘40

Q41

= tritium through walls of hot leg in

secondary system =

tritium through walls of cold leg in secondary system

Q42 = tritium through walls of heat exchanger tubes from secondary system into primary system = -Q34

Name


46 Reference Value Q,,

=

tritium through walls of steam generator tubes from secondary system into steam system

Q,,

=

tritium through walls of superheater tubes from secondary system into steam system

Q45

=

tritium through walls of reheater tubes from secondary system into steam system

Q,

=

tritium to sorber in secondary system

Name

Q47 = tritium to purge in secondary system

R

=

Q,,

=

tritium fluoride to sorber in secondary system

Q,,

=

tritium fluoride to purge in secondary system R

rate of production or addition, atoms/sec

- tritium in primary system R1 - hydrogen to primary system R2 R

3

R4 R5

17 5.8 X 10

= tritium in secondary system

- hydrogen to secondary system - hydrogen fluoride to secondary system

-

or tritium to primary system % = hydrogen in order to obtain overall material balance

T

=

temperature,

O K

t = wall thickness, mm t t

1 2

T

=

hot leg in primary system

13

=

cold leg in primary system

13


47 Reference Value t3 t

t

t t t t

reactor vessel and heat exchanger shells in primary system

50

tubes in heat exchangers in primary system

1

=

hot leg in secondary system

13

=

cold leg in secondary system

13

=

=

10 11 12

13

14

t

15

= t

4

=

tubes in steam generators

=

tubes in superheaters

=

tubes in reheaters

U

=

ratio X UF4'XUF 3

w

=

replacement rate, fractiodsec W1

W2 W3 W4

X

=

=

Name

core graphite or other sorber of hydrogen in primary system

100

W 1

= core graphite or other sorber of hydrogen

fluoride in primary system

1

=

sorber of hydrogen in secondary system

1

=

sorber of hydrogen fluoride in secondary system

1

mole fraction

U



49

V.

COMPUTER PROGRAM, INPUT INSTRUCTIONS AND SAMPLE PROBLEM

The FORTRAN-IV program listed in the Appendix was written to provide a flexible and easily used tool for parameter studies.

Many of the

system parameters listed in Sec. IV have standard or reference values, and we have written the program to allow the user to specify a new value for any parameter, to use the reference value, or to reset a parameter to its reference value.

Instructions to the program are in the form of

simple commands, followed by numerical values as required. Output from the program consists of the summary of concentrations, flow rates and fractions shown in Fig. 2, any input commands, and various messages from the program to display the progress of the iterative parts of the calculation. The three options currently available to the user are (a)

OUTPUT

(b)

OUTPUT--ALL- CRBE*

(c)

OUTPUT--ALL-PRINTER

all commands begin in column 1; (the underline indicates a blank space)

With choice (a), the summary output is sent to logical unit 20 and all other output is sent to logical unit 6 (the line printer); with choice

(b), all output is sent to logical unit 20; and with choice (c), all output is sent to logical unit 6 .

For choices (a) and ( b ) , appropriate

data definition (DD) statements for unit 20 must appear in the user's job control language. *The program was designed to be used from a remote terminal with the Conversational Remote Batch Entry system; hence the use of "CRBE" as a keyword. However, the program in no way depends upon the availability of the CRBE system.


50

To change v a r i o u s system parameters, t h e command i s CHANGE--XXX

where XXX i s r e p l a c e d by t h e a p p r o p r i a t e v a r i a b l e name as l i s t e d i n Sec. I V .

CFF,

(CF,

I f t h e v a r i a b l e name r e f e r s t o one of t h e named c o n c e n t r a t i o n s

..., CSR>,t h e n e x t l i n e of

parameter v a l u e i n c o l s . 1-10.

i n p u t must c o n t a i n t h e new

I f t h e v a r i a b l e name r e f e r s t o any of

t h e s u b s c r i p t e d v a r i a b l e s i n Sec. I V , t h e n e x t l i n e must c o n t a i n a s t a r t i n g i n d e x , nl,

a s t o p p i n g index n

and t h e new v a l u e s f o r t h e

2

v a r i a b l e s s p e c i f i e d by t h e s u b s c r i p t s n

1

through n

2'

A maximum of

seven c o n s e c u t i v e v a l u e s i s allowed; i f t h e r e are more t h a n seven, p u t t h e subsequent v a l u e s on subsequent l i n e s .

s t a r t i n g index of zero.

1 3 0

I

The f o l l o w i n g example i l l u s t r a t e s t h e format.

6 2 *

+

T h i s w i l l i n s e r t new v a l u e s f o r A

1.0 X

lo6,

End w i t h a l i n e w i t h a

6 7.0 X 10 and 62 X

lo6,

and A13

A2, A

1'

of 1 . 2 X 1 06 ,

3

respectively.

I f o n l y one v a l u e i s

t o be changed, t h e second s u b s c r i p t need n o t a p p e a r . t h e concenThe u s e r can supply s t a r t i n g estimates f o r C C and C CT ' t r a t i o n s of hydrogen p l u s t r i t i u m and t r i t i u m i n t h e b u l k of t h e secondary s a l t , w i t h t h e "CHANGE" t h e program w i l l u s e 1 X 10"

command.

for Cc and 1 X

I f no v a l u e s are s u p p l i e d

lo1'

for C

CT


T o perform a c a l c u l a t i o n when a l l t h e n e c e s s a r y changes have been

made, t h e command i s RUN A c a l c u l a t i o n w i l l then be done w i t h t h e parameters s p e c i f i e d .

For subsequent c a s e s , a l l parameters w i l l have t h e v a l u e s p r e s e n t a t t h e end of t h e p r e c e d i n g c a l c u l a t i o n ; t o change t h e p a r a m e t e r s , t h e u s e r can supply a d d i t i o n a l "CHANGE"

commands.

T o reset p a r a m e t e r s t o

t h e i r r e f e r e n c e v a l u e s , t h e command i s RESET

---XXX i s l e f t b l a n k , a l l p a r a m e t e r s w i l l b e r e s e t ; i f "XXX"

I f "XXX"

is the

name of a s u b s c r i p t e d v a r i a b l e , a l l e n t r i e s w i t h t h e given name w i l l b e reset; and i f r l ~ X X ' 'i s t h e name of one of t h e named c o n c e n t r a t i o n s (CF,

CFF,

..., CSR )

then j u s t t h a t c o n c e n t r a t i o n w i l l b e reset.

f o r example, a f t e r running t h e c a s e s p e c i f i e d by t h e "CHANGE"

If,

command

i n t h e example, a u s e r p u t RESET ---A

t h e n a l l t h e A ' s would b e reset t o t h e i r r e f e r e n c e v a l u e s . The program w i l l s t o p when an e n d - o f - f i l e on t h e s t a n d a r d i n p u t u n i t , i . e . ,

condition is detected

when i t r u n s o u t of d a t a .

The i n p u t and o u t p u t f o r a sample problem are shown i n F i g s . 4 and 5. tion.

Reference v a l u e s from S e c t i o n I V w e r e used i n t h e sample c a l c u l a The r e s u l t s i n d i c a t e t h a t 30 p e r c e n t o r more of t h e t r i t i u m might

r e a c h t h e steam system i n a l a r g e power r e a c t o r u n l e s s s p e c i a l measures

are t a k e n t o c o n f i n e t h e t r i t i u m ,


52

1

1

1 2 ' 3 1 4 ' 5 16 7 18 9 10 11/12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

/ /

E X E C

F @ R T H L G Y G O S I Z E = 6 2 K

/ / L K E D . S Y S I N H E X

*

D D

D E C K

/ * / / G @ . F T 0 5 F 0 0 1 @ U T P U T

A L L

D D

*

P R I N T E R

R U N C H A N G E 1 1 3

3

A 1 . 2

+ 6

6 . 2

+ 7

1 . 0

+ 6

0

R U N Z I L C H

/ * / / Fig. 4 .

Sample Problem Input

7 . 0

+ 6


53

V A L U E S I N ARRAY V

18 S T A R T S A T

1

3 5 ~ 0 0 0 0 0 005 5o200000 07 ---8,80090D_Db 4.*9OQ04D 07. 0.0 - 1 ~ O O O O O D 00 6.000000 -1-000000

HAME B

05

00

5 USEC

0IMEkSIO)r

1

~

I

2

~

~

50 USED

1

Q.O 0.0

_.

10 U S E D

2

~LiQOO_O_O130 0 10000000 10

NAWE E

-1.COOOOQ 00 2 ~ 0 0 0 0 0 0 10 5 usEn

CIMENSION

1

2

- 5 ~ O Q Q O Q O ~ O 1 1.700000-02

.__

hAPE

F

-1oooocco

3o100090 0 7

2-700CCC

5 USE0

DIWEkSIGh

1

2

3.600000

05

4 STARTS A T 3

45 S T A R T S A T

5.2CCOOD 0 7 lo100000 0 7

1-80000D 0 7

21

5

4

1.ooocco

18

26 5

4

0.0

0.0

0.0

0.0 0 .o 0 00 0.0 0.0 0 -0 0 00 0 00

0.0

0.0

0.0 0.0 0.0 0.0 0.0 0- 0 0.0

0.0 COG 0. c

9 STARTS A I 3

-lo000000 00 9-000000 A1

4 STIRTS 3

AT

1.8COOOO-01 4 STbRTS A T 3

05

5oOGOOOO 0 5

25 USEC

23 S I A R T S A T

3.600000

07 00 07

0 00

3

0 00 -0 00 0.0 0.0 0.0 0.0 0 00

OIMENSIOh:

4.900COO

00

2

hAPE CN 1

06

.3eGWOOD l l 2 1 _ 1*000000 1 8

DIYEhSION

hAME C

3.500000

-1.ocoooo

5

4

c. c 0.0 0.0

c.

0

16

4 1.OOOCCO 11 1 e O O O G C O 11

5 -1-COOOOD

00

n6 4

5

Ao8OOCCC-03

91

4

5

5 o O O C C C C 05

..

OIPFhSIOh

NAWF H

1 lo600000-02 - 1 o C O O O O O 00 - - -.3340GOOC-0.2 R,OOQ000-01 5 o 8 0 0 0 0 0 00

Fig. 5A.

2 6.000000-03 3.000000-03 90 700000-02 -1.000000 00 l o 2 0 0 0 0 0 01

3 9-OCOOOO-05 ~ 1 ~ 0 0 0 0 000 0 4m3COOoD-02 8.000000-01 3 ~ 0 0 0 0 0 001

96 4

1. 9 O O C C C - 0 2 -1. COOCCO 00 4- 7 O O C C C - 0 2 -1.OOOCCO 00

5

3-000000.03 7.400000-02 4~COOOOD-02 -1.COOOOO OC

List of Parameter Values Used in Calculation.


54

VALUES I N A R R I Y V -__-___ NAPE K OIHENSION

1 l o 200000-1

4,400000-18 4rSOOOOD-20 NACIE

P

000-1 7 1-500000-19

7

-1oOOOOOC 00 S,PQQQQ&18

2.000

4maOQOQO-l& -1 oOoO000 0 0

-

5~100000-20

_______

.

NAME II

9,000000

5,600000

17

2-

1oSOOOOO-17

A- 5 O O C C D - 1 7

. l o O C O O O D 00 4 500000-1 8

-1,OQOCCC 00 3-500C CO- 18 -1, C O O C C O 00

1.1OOOOD-20 4 oR00000-20

1 -

1,300000

01 00 01

4-

14

-1oOOOOOD 00 Lm8COOOD A4

9,ooocco 14 -P,OOOCCO 00 60700CCO 14

5 S T A R T S A T 156 0.0

LO

USED

-1,COOOOD

00 1,lOOOOD 15 3,500000 14

e

5 co0

0.0

15 S T P R T S A T 176 4

5

1 - O O O C C O CC -1,oooccc 00 00 2mGOOCCO 00

-1,c00600 1,300000

3

-.

-1,000000 1,300000 hAWF h

QAIOOOOD

5

4

3

2

1o4COOOO-17 3,4C0000-18 4 0000 OD- 1 8 ~ 1 ~ C O O O O0D0

A5 S T A R T S AT A46

.

0-0

OIMENSIOL

LAWF T

lo300000 01 -1,000000 1,000000

00 00

OIWENSIOh 5 USEO 2

1000Q000 0 0

1,000000

00

1 USED

CIMCNSIOA

1 .

10 U S E O

CIWENSION

A -

14

5

4

3

15 6-700000 14 00 -10000000 0 0

lo800000 14

AAMF ?4

3

_ .

.

7,100000

_-____

23 S T A R T S AT A21

2

-1+oooooo

.

2 0 USED

DIPElrSIOh 1

___.

2 5 USED 2

2

5aOOOOOO 0 1 00

-1,000000 2.000000

4 S T A R T S A T 196 3

1,000000

A,OOOCCO

00

1 S T b R T S A T 201 3

1,cooooo oc 5

4 00

4

5

4

5

.

1o120000-06

NAME U

1 USED

OIMENSlflh

1

2

1 S T A R T S A T 202

3

a

F i g . 5A. (Continued)

.

00 01


55

I T E R A T I V E S O L U T I O N FOR CC NCC

cc 1

0

1 2

2.521160 2.52116D

10 10

5.931311)

LO 5.742381) 10

4

2.521161)

10

5.740250

LO 5.740120

CC2

RFX

CGX

CCL

10

3.474620 -2.912240 1,623790 1.927410 1.13535D 1.027470

17 17 16 14 13 08

1.00000D

11

1.OOOOOD

11

5.742380

10

I T E R A T I V E S O L U T I O N FOR C C T NCC

0

cc L

cc 1 1-000000 10

1

Fig. 5B.

cc x

cc2

RFX

-4.714000 4.337840

17 16

Output from Iterative Calculations.

5.740120

10


56

O U T P U T SUMMARY STEAM SYSTEM FLOW OF H + T I N T O STEAM S Y S T E M F L O W OF T I N T O S T E A M SYSTEM FLOW O F H I N T O S T E A M S Y S T E M F R A C T I O N O F T I N T D STEAM S Y S T E M SECONDARY S Y S T E M FLOWS H + T I N T O SECONDARY FROM P R I M A R Y T I N T O SECONDARY F R O M P R I M A R Y H + T THRU P I P E W A L L S I N T O C E L L S T THRU P I P E WALLS I N T O C E L L S S O R P T I O N @Y S I N K H + T T HF TF R E M O V l V B Y PURGE H + T T HF TF FRACTION OF 1 P A S S I N G THRU P I P E M A L L S SORBED B Y S I N K A S T SORBED BY S I N K A S T F REMOVED B Y P U R G E A S T REMOVED B Y PURGF A S TF C O N C E N T R A T I O N S I N SECONDARY S A L T H + 1 (CC) T (CCT)

HF

(CCF)

1 . 7 1 0 7 2 0 17 1.76310D 17 -5.238000 15 30 03983D-01

2.385010 2.390470

17 17 6,226260 16 5.79300D 16

0.0 0.0

0.0 0.0 5.16611D 4.806620 0.0 0.0

15 15

9.98793 0-02 0.0 0.0 8 2 872 70-03 0.0

.

5.74012D 5.340690 0.0

10 10

P R I MAR Y S Y S T E M FLOWS

+ T THRU WALLS I N T O CELL T THRU WALLS I N T O C E L L SORPTION ey SINK H + T H

T HF TF R E M O V A L B Y PURGE H + T T HF TF F R A C T I O N Of T P A S S I N G THRU WALLS I N T O C E L L SORBED BY S I N K AS T S O R B t C BY S I N K AS TF REMOVED B Y PURGE A S 1 R E M C V E D B Y PURGC A S TF C O N C E N T R A T I O N S IN P R I M A R Y S A L T ti + T ( C F ) T ( CFT HF ( C f F )

F i g . 5C.

O u t p u t Summary.

3 . 6 8 4 3 6 0 15 3067847D 15 4.451300 4.44419D 2.328010 2.324350

16 16 17 17

5.136120 5.127910 9.13321D 9. 1 1 8 6 1 0

16 16

15 15

6-342190-03 7.662390-01 4. 007500-01 8 - 84122 D-02 1.57217D-02

2 o 8 5 3 4 D D 11 2 . 8 4 8 6 4 0 11 1 . 4 9 2 3 5 0 12


57

Fig. 5D.

Output Produced by "CHANGE" Command.


58

IN

VALUES

AAAIY V - -.

___- -_

hAMf A

OIWENSIOh

1 1.200000

06

-1.COOOOO

00

20 USED 2

1.000000 06 5 ~ 2 0 0 0 0 007

18 STdRTS A T 3 7.000000

06

-1.000000

00

4c9000Q@4 7

.

0.0 AACF B

OIWENSION 1

5 USEC

4 STARTS AT

3*aOQo.QD 21-

c

OIMENSIClh 1

50 USED 2

7-944140 07 -_(LO---.

2.996290

09

2.873iao

4.041490 3,038670 0 *# 0 -0

02

0.0 9.001530

10

11

nao

1.055700

10 U S E C

OIWENSION

5,435520

10

-

1 m O O O C C C 18 26 5

4

011

1.3795EC 0.0

10

1-413130 OS 0.0

11

0-0

c. c

2.867830 00 0

08

10

407459IC 08

0. 0

0.0 1.165100 5

4

4 STARTS A T

08

76

3

5.2a42co

i.aooccc

io 11

0.0

86

3

2

0.0

0. 0

9 STbRTS A T

5 USEC

5

6 944380- 0'3 6,136180 00

ld6002R-_12 2.90143~ AA 2m000000 10 9.oaoow 11

DIWENSIOk

1

21

10

2

-AUQ3D_U_-

oa

7.732730 0.0

3.167720

11

07 07

OS

1.000640

0.0

1

L ~ Q O C C D 07

5.200000 1.100000 1.800000

1.620350

0.0 11

00

0no 6.774C80 0 00 0 00 0a0

QLa__ _ _ _ _ _ _ _ _

NAUE E

45 S T L R T S A T 3

0.0

000 k b P & CN

4-YOOCCD 07 -1oOOOCCO

4

l a O C O Q Q i 2 18

6.585480 07 - - lcB2245D-PS

5

4

3

2

-21_-

kAWF

51201)000 97 0 00

-1~000000 00

1

5

4

5 3-600000 0 5

3.600000

05

--__ - - - __-AdWE H 1

OIWENSIOh. 25 U 5 E D 2

1.600000-02 - 1 ~ 0 0 0 Q 0 000

1

9

05

-1,COOOOO 1.200000

CO

01

S.OOOCO0

05

.

23 S T L R T S A i 3

6 ~ 0 0 0 0 0 0 ~ 0 3 9.000000-05 -1-OCOOOD 00 3.000000-03

3.40COOa-82- 9 ~ 7 O o O ~ Q D - 0 2 8m000000-01 5.800000 0 0

5.000000

- ._

96 4

1-9OOCCD-02 - 1 - O O O C O C 00 4 ~ 3 0 0 0 0 0 ~ 0 2 4m1OOCCC-92 8.00QOOO-01 -1.COCCCD 00 3.OQOOOD 0 1

5 3.000000-03

7.400000-02 4.00000D-92 -1.cooooo 00

Fig. 5E. List of Parameter Values Used in Calculation After ~ ~ Command. ~ ~ 9 1


59

I N ARRAY V

VALUES ---

__

_-- .

-

hAWF K

CIMENSIQE

1

25 USED 2

1-200001)-17 -lo000000 00

23 S T A R T S A T 121 3

2-000000-17 1-500000-19

1-500000-17 -1.000000

--_._I*QOQQQD-lB.. 4.000000-18

4.500OOD-i8 1.100000-20

4,4000oc-18 - 1 -oooooo 0 0 4-500000-?0 5~100000-20

hAWF

F

DIWFhSIflN 1

.-__

. -

. _

.

2*100000 15 -LOOC)OOO 00 1-800000 14

&AWE T -

-1- ooocco 0 0

1-400000-17 3-400000-18 4. COOOOD-18

-1,coooao oc

15 S T A R T S AT 146 3

5

4

__

6o700000 14

-i,oooooo 9-000000

00

9.000000

-i.oooooo 1.800000

14

14 00

14

20 USE0

00

6-700CCO 14

3

-1.COOOOO

OC

~ i o o o o ois

3.500000

14

5

4

0.0

OIMENSIOk

9-000000 14

-1-aoccco

5 S T A R T S A T 166

USFC

0.0

0- 0

COG

15 S T b R T S A T 176

7

1 - ---

1- 5OOCCD-17 OC 3- 5 O O G C C - 1 8

-1oCOOCCD

4.800000-20

20 USED 2

NAPF A OIHEhrSICjN 10 ~- l-. _ _ . . 2 S ~ ~ O O Q O 1O7

00

5

4

3

5

4

-- -

1-300000 01 -1-COO0OD

00

1-300000 01

1.300000 01 -1-000000 00 1-OOOOCO O C

5.00C000

01 00 2 ~ 0 0 0 0 0 000

-1.000000

1 - O O O C C O 00 -1-COOOOO 00 1.300000 01 -1-OOOCCC 00 2oOOOCCC 00 l~C0000000 5

1-cooooo

hAWE l~

1

00

1-aooooo

00

1 USED

OIWENSION

i.oo0000

00

4

F i g . 5E.

00

1 S T A R T S A T 202 P

2

i.oootcc

(Continued).

4

5


60

I T E R A T I V E S O L U T I O N FOR CC NCC

0 1 2

cc 1

ccx

CCL

1,440890

3.241680 3.241680

10

40445220 LO

4 3.241680 10 4.419000 I T E R A T I V E S O L U T I O N FOR C C T

0 1

cc 1

cc L

2.672770

F i g . 5F.

10

17 17 20914080 15 6,331820 12 1 * 4 1 9 0 9 0 11

5.740120 1 0

-1.339230

10 4.419060

N CC

cc2

RF X

10

ccx

10

4 * 4 1 9 0 6 0 10 CCZ

RFX

1.74565D -2.023750

50740120 10

17 17

50340690 L O

Output from Iterative Calculations With New Parameters.


61

OUTPUT SUMMARY

STEAM SYSTEM FLOW OF H T INTO S T E A M S Y S T E M FLOW OF T INTO S T E A M SYSTEM FLOW O f H INTO STEAM SYSTEM FRACTION OF T INTO STEAM S Y S T E M SECONDARY S Y S T E M FLOWS H + T INTO SECONDARY FROP PRIMARY T INTO SECONDARY F R O M PRIMARY H + T THRU PIPE WALLS INTO CELLS T THRU PIPE WALLS INTO CELLS SORPT ION B Y SINK H + T T Hf TF REMOVAL B Y PURGE H * T T HF TF FRACTION O F T PASSING THRU P I P E WALLS S O R B t D BY SINK A S T SORBED BY SINK A S TF REMOVED BY PURGF A S T REMOVED BY PURGE A S T f CONCENTRATIONS I N SECONDARY SALT H T (CC) T (CCT) HF (CCF)

PRIMARY SYSTFM FLOWS H + T THRU WALLS INTO CELL T THRU WALLS INTO CELL SORPTION B Y S I N K H + T T HF TF REMOVAL BY PURGE

H + T T HF TF FRACTION OF T PASSING THRU WALLS INTO CELL SORBED BY SINK A S T SORBED B Y SINK A S T F REMOVED BY PURGF A S T REMWED BY PURGE A S TF CONCENTRATIONS I N PRlMARY SALT H + T (CF) T(CFT) HF (CFF)

Fig. 5G.

1.858510 1 7 1.899890 1 7 -4.138110 15 3.275680-01

2,380321) 2.384640 4.820350 4.417990

11 17 16 16

0.0 0.0

0.0 0.0 3.977100 3.694630 0.0

15 15

0.0 70 720670-02 0.0 0.0 6 37006 0-03 0.0

.

4.419000 4.105150 0.0

10 10

7.263280 7.254100

15 15

4.387590 4,382050 2.311350 2.308430

16 16 17 17

50062610 5,056210 9.067610 9.056160

16 16 15 15

1.25071 C-02 7,555260-02 3.980060-01 8.717600-02 1,561410-02 2,812560 11 2. 8 0 9 0 1 0 11 1.481640 1 2

Output Summary (New Parameters).


._

ERROR UhRECflGNlZEC CARD .IHAGE IS...

INPLT 1

2 4 3 5 6 17345678901234S~~7~S012345678901234567~SC1234567890123456789012345678901234567890 z ILCH

Fig.

5H.

Response

to Unrecognized

Command Card.

7

a


63

hCRCAL STOP

-

bL1 CbTA PRCCESSED -..

IHC002I STOP

F i g . 51.

--

--

0

Normal Ending Message.



65

APPENDIX PROGRAM L I S T I N G


6G

LFVFl

?1.6

IOFC

771

UC/?tO

CllCPIiFR CPTlnhC

hA.CF= M b I N . U P l = U L , L l h E C N l - ~ 5 ~ S l Z E = 0 0 U O I . Cl1LRCF.EULOIC.NUL ICl.hCCECK~LCbC~NOHAP.hOEOlT~hOlC~NOXRFF I C P L l C I T H E b l * d (A-H. 0-Ll R F A I * R K.C REAl*4 h b l L . ~ C U l , n L R ~ ~ H P R l ~ ~ C ~ b ~ C R E S ~ ~ R U N ~ H R L I ~ C ~ ~ ~ ~ C A Q O D I M f k C l C h b1201. 8151. C I 5 O l . C N I I O I . E l 5 1 . F I S I , H l Z S l r I K l 7 5 I . F1201. Y l 1 0 1 . T1201, h l 5 1 . C b F C I 2 0 ) . V b L U l 7 l OirEh\irh c i s 0 1 FEU I Y A l E h C E 1 1 1 11 . V I I I 1. I R I 11. k12 1 I I v I C I I I V I 2 6 I I v I I C h l I I . V I 7 6 I 1. I E l L I . V l d b ) 1. I F ( I ) . V l q l I I . ( H I 11. V I 5 6 1 1. 2 I K l l I ~ ~ l l 2I . l I ( P I 1I.VI 1261 I . IQI 1 1 . V I 1661 I . I T I I l , V l 17611. 3 lYIII.\l156ll. lM.VlLOI11. IL.VIZC2ll I C N I41 .CC 1. F OU l V b l FhCE I C N I I I . C t l . I CN I 2 I . CFF 1. I C N I 3 1 . C F l l . I C N I P I .C S i 1 ILN lo I . CLT 1 . I Ch I 1 I , C S G I . I C N 181. C S S l 1 I C h IS I . C C F l . C f l M H O N / P l K ? / I h ~ I W I . I P R . KCLT. K P Q Ci'MVCN / P L L I / VILZOI CTMHCN/PLK3/ I U l H l 2 O l . I U S E l iClv hM12C). I B E G l 2 C I . N M C h l IC) * 1 hVbQ.hfh UATL I-.bll/4HbLL I . n U U l / 4 ~ U U T P / . ~ C R ~ / ~ ~ C R R F / ~ H P R l / 4 H P R l h / ~ I H C C b / 4 H C H A W . n H t S I 4 H P F s E / . ~ R U h / ~ ~ R ~ /N. H B L K / 4 H I n b i A X C L ~ C / Z . ~ L O I . H ~ ~ ~ / I~ H ~ O b l b CTCL/I.C-7/. TTUL/I.C-7/

ICN nnnz I C N 0003 I F N on04 I C N nons ICN ISN

fllRlRbN H

-

nnnh nnni

.

c c

r

C l l i l b N C T T 6 L AUF I H E CONbFRCENCE I C L E R b N C E S FOR CSCLVE AhC I C QECFtLllVELV.

C C

H b l h P R C G R b M FUN C A L L U L 4 T I C h OF H S P R T R I T I U M F L O h

c

c c

S E I L P QFFEHENLt

VALUES

I h h C R K I h G bRRbV

V

C

CALI

SEIREFICPLKI

r C C

e F L C b CbFC W U C H t L L

l e 0 RFbCllh.I.EhC-YYIl

FOR

lhSlRLCllONS

CbHU

1 FCRCbll20b41 IFlCbYO1lI.hF.nUUTl

LU 10 120

r

t c ICN ISN ICN ICN :CN ICN ISN ISN 1st. ICN ICN ICN ICN ICN ICN ICN ICN ICN

( F 1 C U T F U l U h l T NUYUERS IFlC3lOi3I.NF.hALLl LO TO I15 IFICARU141.NE.nCI(Il L.0 TO 1 0 5 IC4 KllUI=ICLI KPR=lCUT G o IC l o o I t 5 IFlCbYflI4l.FC.liPYll L.0 10 L I C Y R l I F 1 U I I I .7 1 7 FnbrbTl;-rLiFbI NUT S P t C l t l E C C T Q Q E C I L Y ' I Y R I I F 1 R C l i T . 2 0 1 I I . l = l . 81. CbRC 70 F r R P A T l ' C L R C l M 4 G t IS'.IX. 819x1 l l / L 5 X . e l l O H l 2 3 4 5 b l 8 9 0 l / 1 5 X ~ Z O A 4 / I 1x1 YRI TFiLfUl.21 I ? I F l l R H b T l * ALL C U I P U I T U S U M M A R V Lhll'l G C T C lC4 110 K r U I - I F C 114 K P R = l P Q GO I C 100 115 KfUI=:CLl

1-10717 0077

onz-

cn75 0026 0077 0079 0030

no31 no37

no11 0034 0035 17036

0037 O03R

now

G O I C I14

9040

c C

CHFCW FCR CnANbFC

I N wURKIhG VblUES

c ICN ICN I FN ICN

0041 0043

on44 0046

I F N no47 I F N 0049 ISN a 0 5 0 ICN n o 5 1 TCN ICN IZN ICN ICN

0057 0053 0054 0055 on56

IZN 0057 ICN 0 0 5 8

GI1 T O 135 C b L 1 C b I C H I C L Q U I 51. IN*. NV AR. NU I IFIhl.hE.OI GC TL) 1 1 5 CbLI CblCHlCPRUlJl.NYCN~NCN~ hC I IFlhC.hF.01 6 C TO 121 U R I IE i n r l i i . 4 1 F l l R C b T l ' F P R C Q IN C H b N L t S P E C I F I C b l l C h S ' l Y R I lFIKCUT.201 II.I-1.8l.CbRC cn T O i o n RFACllh.11 VbLUlIl FCRCIllCIfl.Ol J=I PEG1 4 l t h C - 1 VIJI-VPLUI II U Q I TE I KCUT - 1 2 I CIMIJI 3 1 9 V A L U I 1 I F CR Hb I I I X I b 4 . 1 P E l 4 . 5 1

l7fl IFICbQDlll.hf.nCHAI

C

IC6 121 7

I7

I ~ Nn o 5 9 I C N 00hn I C N OOhl I S N 0367 ICN 0064

ICN 0065 I F N COh7 1 C N 006R I C N OOhP I C N on70 I C N 0071 I ~ Nno77 ICN no73 ICN 0074 ICN 0075

J-lRFG1hKl-l+hl :FlhZ.FC.OI h2=N1 LF1 on 130 h i h 1 . h ~ VI J I-VALUILI I .L+L

.I=Jtl 130 C f l N l l h L F NV=hZ-hItI WR I TE I K C L T I 3 I L A R O I 3 I N I N 2 e I V b L U I L I t L = I .N V I I3 + C R C b T I I X . b 4 ( ' e 12. ' . I , 12. I ' / I I X 1 P S F l 4 - 5 1 I

.'

.'


67

PAGE 002 1SN 0 0 7 6

C C C ISN ISN ISN 16N

0077 0079

GC 1C 125

OORl 0087 C

r

L I P € hOT C L A M

t ISN oon3 ISN 0084

0006

0087 00R9 0090 0091

r C C

ISN ISN ISN lSN

PUT YEFCPENCF V A L U E S B b C K I N T O V

-

1 E S T A G b l h S T kP ARRAV

1 3 7 C A L L L I l C H I C b P O l 3 ~.NM.NWAR.NLI lFlhl.hE.01 GC TO 136

C C C ISN ISN ISN ISN ISN

-

CHFCN FCR RESET

135 IFICbRCIIl.NE.HRE~l GU 10 15C IFICAR0131.NF.HMKI Go TU 1 3 1 13b C A L L S E I P E F l C b R U l 3 I I GC TC 100

0097 0094 0096

hO M I T C C FOUND I N NM

C

C

TRV hMCN

ChECC FCR P R l N l

GU TO 1 5 5 GU TO 1 5 2

150 IFICARDIII-NE-HPRTI IFICIRCl3l.NE.H8LKl 151 CbLL LCCKlCAP013Il GO T O 100

0097

-

C A L L M b T C H l C b R U l 3 1 .NMLN.NCN. hC 1 IFlhC.hE.01 GC TO 136 YRITFILCUT.~I 5 F O R C b T l ' EPRCR IW R E S E l S P E C I F I C b l l O N S ' l GC TC IC6

LAVE NGT e L b N K

-

1EST A G b l h S T hW b R R b Y

C

ISN 009n ISN 0099

157 CALI ~ I ~ C H l C b R O l ~ l ~ N M ~ N W A * . k l ) IFIhK.hE-OI GC 10 151 C C

r ICN ICN 1SN ISN ICN ISN ISN ISN I t N ICN ICN ICN ICN

ntni

hC CbTCH FCUNU I N NM

-

T R V hPCN

C A L L P 1 T C H l C b R O l 3 l .NMCN.NLN.hC 1 lFlhC.hE.01 GC T O I51 Ye1 IEIKCUT.01 8 F f l R C A l l * EPRCR I N P Y I N l S P E C I F I C A T I O N S ' I

0107 0104

0105

G O TC I C 6

0106 0107

1 5 5 IFlCbRClIl.EC.HRUNl Y R I TE I K C U T - 6 1 6 F f l R C A l I ' EPRCR Gfl TC l o b 160 U T 9 1 = 1

oinq

-

0110 0111

nil7 0113 0114 0115

GO IO 160 UNRtCOGNIZEC I N P L T ' I

ISY-1 NCC-0

CCZ=O.cO C C

CHFCN FCR F I I L U R E TU S E T C C bNC C C I

t I F 1 CC .L F.O.00 1FICCT.LE.O.COI

ICN 0116 ISN n i i n C C

ISN 1SN ISN ISN 1SN

0170 0171 0177 0l?l

I CC- A. 01 I CCl=l.OIU

F R l h T h C R K I N G AYYAY V Uh L l h E P R I N l E R

UCAV=KCLl

UOUI*IPR CALL hFbPG CbLL LTCKICBLKI C A L L NFbPC. L O U 1 - K S 1V G C IC 2 0 0

0174

ISN 0 1 7 5 1SN 0176

t C C C

ISN ISN ISN ISN ISN ISN ICN ISN ISN ISN ISN ISN ISN ISN ISN ISN ISN

G E T CII~I. CCF. FCC. 1qb.e. 2 0 .

o i i a i ANO

CIIPI

zin

7C0 C l l P 1 - 0 . 0 0

0177 O17R

CCFr0.00

o~lnl=o.co

0129

nim

o1191=o.cn C A L L hEbPG I F l R I 5 ~ . E C ~ O ~ D O(iU l TU 205 Ff=Fl4l*El41 Hb-hllRl*AIIRl FEPB-HbrFE

0131 0137 Ill34 0135 0136

0131

BY*Ql4l*hl41

01 38 0139 0140 0141 0147 0143 0144

RFSC-lRh*FEPH/lFE*Hl1811)..2.1(lel ALFb-Rl5lfFE ClI0~=~LFb**Z/lIYFbt.5M)rgESt.(1.DCIOSC~ll~CCtOSCPTl~~DOt4.OO*ALFb/~ESOll~ 01 IRl*l'b*I I41 *OSORT I C l 1 U I * K l I0 b 1

CCF=lRl5ltCA*ClAdll/fEPH 01 1 S l - C C F I F E 7C5 CONTINLE C C C C C

R E G l h C A L C U L A T I O N OF O U A h l I T I C S CEPENCENT ON CC G E T C I I C I . C I I I I . 01101. C l I 1 l FOS- 1Lb.R. 1Lb.8

3CO NCC-NCCtl IF(LCC.LF.SOI YRIlElNCUT.351

GO Tn 301 HRLK


68 F

P A G E 003 I C N 0149 I S N 0150 ICN 0lยงl I S N 0157 I T N 0153 ISN n i 5 4 I S N 0155

011

l=PIIl*Al II*OSORTlKlll*ClIIlITlIl

3C5 C O N T l h L E

r ISN ISN ISN ISN

0156 0157 015R

0159

I S N 0161 I S N 0162 ICN ICN ICN 1SN ICN ISN ISN 1SN

.CTCL.

0163 11-13

0165 0166

K2=21

cz=ccC. Itl,&Z 315 MRIIFiKCUT.30l 3 0 FCRCAII' F t I L U Y E I N S U L U T I C L FCR C 1 ' . 1 2 . ' 1

ill67 0168 0169 0170

PNO C l ' s 1 2

'1'1

IGflCF--l

C TO1

0111

I S N 0172 ICN

0179

1CN C114 ICN

K1=14 K2-22 ct t

C176

ICN C l 7 7 ICN 0 1 1 8 I S N 0179 19N 0180

r.2-

G f l lfl 3 1 5

1 S N OlRl 1SN 0183 ISN 01R4

K1-15 KP-23 Cl-CSH Gfl Tfl 3 1 5 1:

cI

C

c I ~ N0 1 8 7 ISN O l R R ISN CLRY I C N 0190

011 l = H l I l * b l Il*ICC-ClI)l O I f l + l I = - C l II

e. GET C l l i l .

r.

0194 GI96

1c=12 YRllElKCLr.801

0197

c

RO F O R P A l l 1 X . 1 3 . '

C

I F CIIZI

e.

c

-

COS.

Zlb.

336

tdCC.HUCK,CC. IC.C(IC1 CL'rAI.' ='e LFE14-5.'

IS NELATIVt.

138.R

CI'.I2.'1

='.E14.51

POJLST CC L N C TRV ACIAlh

r.c-cc*cr

r

S F E I F bN UPPEK L l H l l

C

IF ST.

c

Cr

ha1 F X C E t O

ICC21 k 6 S F C L h C IT.

IFiCC2.FC.C.COl GO TO 300 IFI~C.LI.CCZI G O T U JOU cc=c.5cC*lCC2~~.5oO*ccl G C IC 300

ISN 0200 ISN 0707 I S N 0204 I Z N oi05

C

r

GET

t i 4 1 4ND C k

C

-

FUS-

136.8.

44.8

340 ~ 1 4 1 = 1 C S C C 1 1 K 1 1 ? I * C 1 1 2 ~ l - U 1 ~ 2 l * T 1 4 l / 1 P 1 4 1 * 8 1 4 1 1 ~ * * 2 / K 1 4 ~ C F-C 1 4 I - C I 12 I / I H I 4 l * P l 4 I I 1FICF.Gl.O.CCI GO lfl 5 0 0

1 S N 0206 ICN 0201 1SN 0208

AMI C i 1 2 l

014 1--c 1121 CI I ~I=~~-cIIZI/~~I~I*P(C) IF1~ll7l.Ci.il.0O1 60 I U 340

0193

I Z N 0199

Ci+I

PI 1 2 I =Q I 3 1 11 I4 1-01 I U 1-01 1 1 I - L I 1 3 1-C I I4 1-0 I 1 5 1-0 I I 6 1-0 I I 7 I

1SN 0191 I C N 0197

0198

1. 0 122 1 * 0 i 1 5 1.0 i2' I

335 C P N l l h L F

C

ISN ItN 1SN ICN ISH

I 3 I. 0 12 I I. V I I 4

330 nfl 9 3 5 1-13.15

c I F CF I s NEbPTlVE.

C

AuJuST

CC 6kC T R Y AGAIN

c ISN

0710

I S N 0711 I C N 0712 I C N 0213 ICN 0715 I C N 0216

hQ1 l F l K C L T , 8 1 I NCC.HHLK.CC.*eLK.CF 81 F C R P A l l l X I 1 3 . * LC*.PI.' ='. 1FE14.5.' GC

ic

336

5 C C IFIKTQV.hE.II RFL *0 . C 0 RF2 = O .fC

G(i T O 5 0 1

CF'sAl.'

='.E14.51


69

PAGE 004 ICN ICN ICN ~ C

0717 0718 0719 Nnzzo

c r.

eECIlh C L L C U L b T l U N UF O U A N l I l I f S CEPENCENT ON C F GET C I I I . C I Z I . C l 3 1 . 9111. '2121. C l 3 1 FQS. 1 L . 8 . 1A.8. 31.8

c. c ISN ICN ICN ISN ICN

5 C 1 O C 5 0 5 1.1.3

0771 0777 0223 0774 0775

bLFL=KlIIblPll~/lllll*~lll~l**2

r.

CAL 1 C C U L C I C F .ALFb.Cl Ill 0 I 1 I- P I I l b b l I l*OSORTl K l l 1 b C I II I / l I I I 5C5 C O N l I h L E

c

CET E l 5 1 .

-

ClZ1

c ISN ICN ICN ISN

0776 0771 0 7 1 ~ 0779

c

r. c I S N 0730

GFT C 1 6 1

c

CET

c

6

-

CFF

10

EC-

CFF -MtL*OCCRT I N 1 5 1 b C F 1 f 6 1 7 1

c

f F T CI71.

C

c

ISN ISN ICN 1SN

- EO.

01 6 1-F I 1 1.f I I l b C F

C I C N 0731

5L.e

€OS.

Rh*PIll*hl11 A l C L = & ISl*l8U/HI5J Jr.2 CbLL CCLAOICF.ALtA~C1511 0151=~h*Al51*0SCLTlK15~*Cl511

n*=

0237 0733

-

C171

7b.e

EOC-

P 1 2 1 *Ill i I

AlF ~=Kl7lblBC/Hl7i1b~2 C I L L CCLAD I C F F . b L C b . C l 7 I 1 017 l = ~ h * ~ l 7 l * O S C Y T l K l 7 l b C l17 ~

n134 0235 C C

CFT C I B I

-

8

t(l.

01 8 l = F 1 2 1. E I ? l * C F F

1 S N 0736

c C A I C L L A T E R f FOR EU.

C

9

c RSUC-ll 1 I I tal2 I RF- C I I 1 t C I 2 1 *C I31 +u I C I N lE=BF/PSLP

I S N 0737 I S N 0738 I S N 0239

I 51 t C I 6 1+017 1 4 0 1 @ I-R SUM

C

r.

1EST CC LV ERGENCt

c

I F l O A E S l l E l ~ L l ~ l T U LLOl T O 7 C C

1SN 0740

c hCT CChVElGFO

C C ISN

0747

c

c c.

ICN ICN ISN ISN ICN ISN 1SN ICN ICN ISN ISN

-

-

CHECK K l P I 10

GU 10

IFlKlFl.hF.21

S€E

hbAT N E X l

540

N l P V r Z P E b h S P W E L l M l N A Y l S f P P C b FCP C C 1 bND CC2 C H l C C B P A C K € l THE b N C Y t R

0246

I F IPF.Cl.O.CO1 C C I =CC

n241

P F I IPF

0244

GU I U 510

_ .

URITEIKCUTISSI WC.CCl.RF 1 55 F C R Y 1 7 l 1 X ~ 1 3 . 1 P ~ 1 4 ~ 5 ~ ~ U ~ . t 1 4 . ' 1 c,r i o 5 1 s

074P

0749 0750

crz=cc

0751

510

0757 0253

RF2-RF U R 1 1 E l K C L T . 5 6 1 hCC.MFL.CCZ 56 F f l R C A l I l X . 1 3 . 4 2 X . I P Z E l 4 ~ 5 1 515 I F I B F L * P F 2 1 530.52Ll.516

0254

0755 C C

P F I I P F Z P C S l l l Y E SHUULO N f V E R

CbFCEN

c 516 U R I l E I L C L l . 5 1 1 H B L K 51 F C R Y A T I ' P F I * P F Z P O S l l l Y E GO T C IC0

I C N 0756 ISN 0 7 5 7 1CN 0 7 5 8

C C C

-

S M I E T W l h G YRCNG

S C C f T H l h G FCULED UP I N CC'.A11

C l l l l L C C K I M f U Y ONE L l M l l K E E P bOJUClMCNT

-

-

CC AND 1 R V A G A I N IC0 LNO G R E A l E R 1CLh . D l

PCJUST

FACTOR L E S S I C A N

C ICN ISN ICN ICN 1SN

5 ? c lFXCLG=lE*XCLCL I F 1 CAESllEXCLGI.Cl.C.6DOl ADJ-0LCGICCI-lEXCLL CC=CEXPILCJI GO TO 300

0759 0760 0262 0763 076%

c C C

RFI*nFZ

530 ~

I C N 0265

~

~

1

hrFGAllVE

1

-

TEXCLC-OSIGNl4.6DO~TEICLGl

ANSbER E P P C K E l E C

3

C

c

I L V F P S E LlhEbW I N l E k P D L A l l C h

C I C N 0266

535 C C L - I PF 1 W C Z - . R F Z b C C l l / l

RFI-IF21


70

PAGE 0 0 5 ISN ICN 1Ch ICN ICN ICN

0767

whn 0770

0771 0777 0?73 ICN 0774 I C N C? l h

c

r,c I C 7 c 5 5 4 0 IFILIRI.EC.~I 1FlKTRY.hE-41

c

t u 535 LC TU 5 5 5

GU

K f P V = 4 k E b h S I N V E Y 5 t L l N F b P I h I E R P C L A I l O N H A 5 BEEN CCCFLEIEO bNU H e I C C L I CALCLLbTEC

C

r

Y R I IF I L C LT - 5 2 I NCC. LCI. CC. RF, C C i 5? F f l R C b l l 1 X e 13 e 1P L t 1 4 . Z. 1 W . 2 E 1 4 . 5 I 542 RFT-RF

I S N 11778 I C N 17179 ISN n280 C

t ICN ICN ICN ISN I ~ ICN ICN ICN ICN ICN ICN ICN

wni

IhVFFSF CbLUYAlIC

r

INIEYPCLbTICN

01-PFI-PFI

.

.

..

07R7 02n3

n>=LF?-RFT

0784

CtX=CCLIRFI*FF2/ IDArOLl-CCIWRf 1FICCX.LT.CCIl L U T U 545 IFlCCX.Cl.CC2) 6 0 T O 545 KIRY-5 I F 1 1Sh.EC.i) GO 10 5 4 s Ct-CCX G C I C 3co

03-cz-01

N0 7 8 5

07R7 0789

0790

0792 0293 0794 n795 ICN 0 7 9 6 I C N 079R I C N c795 I S N 0300 I C N 0301 ICN 0 3 0 2 I C N 0303

544

l * R F i / l G I * 0 3 1 tCCZ*RFI*UFI/(DZ*D3l

cc i = c c x

GO I C 7 c 5 545 I F 1 QFT.1l.C. c c 2 =cc L RFZrRFT G n IO 5 3 0 550 CCl.CC1 RFl-QFT G C T C 530

CCI GO TU 5 5 0

C C C C 1 S N 0304 ICN n f n h I S N 0307 ICN n1on

c

K l R Y = 5 CEAhS l N V t H S E O U b C R b T l C I N T E Q P O L A I I O N HAS BEEN CCCPLETED bNI) H F I C C X I LbCCLLbTEC

555 I F I N T R I . ~ F . S I GO i n 5115 556 R F X = R F WRI TEIKCUl.53l CCa.YFa 5 1 F C R r b l l 3 2 X . I F2E14.5 I

C

I F S T R F T b h O P F X 10 S E t Y I P 1 N E C L I M I T S ARF

c 1SN ICN ICN I ~ ICN ICN

IFIRFX.CT.C.CO1 G O 10 5 7 0 IFILFT.GT.O.CO1 GU T O 5b5 IFlOABSllFXI.GT.OABSO~ t C TC 5 1 0 5 6 0 CCI=CCX R F I =RFX G O TO 530 565 c c z = C c L RF7rRFT GC i c 560 5 7c IFI Q F T . L T . O . ~ ~ ~ cn T U 5 u u IFIRFX.CT.PFTl GO T i l 565 5 75 c c 7 = c c x KF2=RFX c.r IC 5 3 0 580 C C 1 = C C 1 RFI=RFT GO ir 575 5Q5 YRlTElKCUT.541 KTRV 54 F l l R C A T I ' K T R Y - * . I C / ' FRUUR'I G r IC 100

0309 0311 0311 N0 3 1 5 0310 0317

ICN n31n I C N 0319 0370 0371

ICN ICN I ~ 1SN ISN ISN ICN

N0 3 7 3 0375 0370 0377

own

I C N 0379 1CN 0 3 3 0 I C N 0331 I C N 0337

I C N 0333 C C C

C A L C L L A I f C N OF T R I T I U M 0 1 S T Q I 8 U l I C h CHbLGE I k S T Y U C T l U N

-

CCT S E T B Y

C 7co K I R Y = I

I S N 0334 n335 I F N 0336

I sw=2

ICN

NCC T*0

t C C

ICN ICN ICN ICN ISN ISN ISN ITN

7c5

0337

0338 0340 13341 n347 n343 0344 0345

G C T C 100 7 Cb R A I IC=CC T l CC Cl4Cl = P t l l c * c I I O I

c r.

OI41)*PbTIC*CIII) OSUC'rC I 4 1 I +c I401

-

G E T C I ~ ~ ~ . C I C ~ I . C I ~ ~ ~ . ~ I ~ E~O SI. . 316.~. C I ~ ~ 3 8~ 6 ..0 .C I3 9~ ~ ~. 8~

C I S N nv.6 I C N 0347 I C N C34R 1SN C349

O C 710 1 1 4 3 . 4 5 J-1-30 I t - 11 J I * C S C R T I L I d I I K l J I 1

HIC C P = T C*H I J I I P IJ 1


71

P b G E 006

c < I I-cc i*+icrP/ii.0utnzLoPi

ICN ni50

01 I l - F I J l * b l J l * L l

I T N n351 l 5 N 0352 I S N 035’4

IIITC

oPU*=CIIl+cSuP 110 C O N 1 I h b E

t

r.

L E 1 (1461 1 H k U 0 1 4 9 1

t

-

€05.

50 I U R U 4 3

no

IS* r 3 5 4 I C N 0355

7 1 5 1=46.w 0 1 1 1 - O l 1-3CI*QbI10 OCUC-CIIl+cSU*

I C N 0156 I S N 0351

715 C C N l I L L F C

r.

-

6 E l C I k 2 1 I N U Ul341

t I S N 035R I C N 0359

EC.

44

-

M b l t R I b L BAL A hCE

0 1 4 7 1-F 1 3 1 - C C U M OI341=-~142l

t CFT C I S 2 1 - E O .

C

r.

36A

- CUECK

FCR P O S I l I V E

c 147I-rc

1-c142l/IHl ILIbAlC I I IF~C~4i’lrGl.C.DI)l GO TU 725 i.. r - 4 7. hLCl.HItt.CCl.IC.Cl 721 Y R I IElMCUT.80) 720 c r T = c r i t c c i G C I C 705

I S N 0360 ICN 0361

I Z N 0363 I C N fl364 I S N 0365 I S N 0166

r. c

C147l FCSlllUE

t

-

GET C l 3 4 )

IC1

-

EO.

2ee

- CHECK

FCR P O ! I l I V F

~ ~ l ~ ~ l 125 ~ l 3 4 1 ~ l C l 4 2 l / C S O Y T l C ll2ll-Tl~l*C142l/1P14).bl4l $/K1411 IFlCl341.Gl.fl.CflI

I I*OSORTlClII

60 TU 130

ir=34

G O 10 1 2 1

t

r.

C1341 PCS111Vt

-

b t T CFT

-

EC.

i8b

C 0377 I C N 0313 I S N 0375 I S N 0376

-

CHECK F C R P i l S l l l b E

73c C F l = C l 3 4 l - C 1 4 2 1 / 1 H l ~ l * b l 4 l l IFlCF1.Gl.O.I CC 1 0 132

TSN

UQllElITUl.8ll GC i c T Z C

NLLT.HTtE.CCl.~TEE.CFT

C

t

CFT. C I X I ANI) FO@ h L X T S T € P

c

L 1 4 2 l ALL

FCSITIbE

-

CbECK K l R V

t W l n 150 735 I F l C l R V . L E . I l KTUI=2 PFl=O.GC RFZ=O.CC kCC 1 = 0 U Q I I t lICL1.501 HTEF 150 Q 4 T I F * C F l / C F 01SP=0.C0

I C N 0371 I S N fl379 I C N n3nc ISN 0 3 ~ 1

I S N 03137 ICN 0 3 ~ 3 I C N nin4 I C N C3R5 I C L o3nh I C N 0387 ICN f l i R 9

ICN ISN ISN 15N ISN

nn

755 1-31.38

I F I I . F C . 3 4 1 CC TU 7 5 5 011 I=RbllF*OI1-30l

755 OlSe-C1S*tlll I RF-CTCP-RI I1

0390

nsi

TF=GF/QIII I F l ~ A R ~ l T E I . l T i ~ T U L IGU I l l 9CC IFIXTQV.LF.21 G O 10 190 IFIPF.CI.O.001 6U 10 IC0 CCl-CCl uFl=RF U G l TE I L C L T ,551 NCCT . C C I . R F I G C l C 7C5 760 CC?*CCT

0392

0393 0395 I C N 0397 IC& 0399 I C N 0400 I C N 0401 ICN

0407 I S N 0401 ISN 0404

PF71P .... ..F

U R I TElICbT.56l NCCT.RF2.CC.2 765 I F l R F I * R F 2 ) 530.770.766 766 Y R l r E l r c U l . 5 1 1 HTFE

I C N 0405 I 5 N 0406 I C N 0407 I S N 0408

GO I C 1 0 0

C

t t

r. ICN 1CN ICN ISN ICN

04n9

-

S T 1 1 1 L C C I I L ( . FUN O N t L I M I T A C J L I l CCT A N 0 TRY 4 G b l N K E E F b O J U S T M t N T FACTUR L E S S 1 H A h IC0 bNO CREbTER TCAN - 0 1

770 T F X C l G = l F * I C l C G I F 1 O P E S lTEXCLGl.l.l.4.600l T E X C L F - C S I C N l 4.600. ADJ=CICClCCl I-1EXCLG CCl-CEXFILCJI G r T O 7c5 750 I F l I l Q V . € C . 3 1 G U T U 235 IFIFTRV.hE.41 GO I n 195 YQI 1FIllCUl.571 NCCT.CLI.CCI.PF.CC? 6 r i c 542 195 I F I C l O t . h F . 5 l GO 7 0 5615 GO 1C 556

0410 0412 0413 0414 I C N 0415 I C N 0417

I S N 0419 I C N 0470 I S N 0421 I S N n473

t

t C

r. I ~ N0 4 2 4 1 S N 0475 I C N 0426

r L i p L T SECTION CUCPbRV O L i l P U l l f l U N I T

KOUl

900 C b L l L F b P G URIlEIKCUT.92b

$2 F C R P b T l ‘ O L l P U l S U * H A M V ’ / I X I

TE LCLG 1


72

PAGE 001

I CN C47 1 I C N 042R I ~ N0479 I C N 0430

O H l 5 C = C l I 3 l r C l l 4 l + U ( 151 ul~S-Cl431t0l44ltu~~5l OHS'-c~15S-OTSC RSUL=l.OO/lRlLI+L(31 I FRlcS=P>LL*ClSC Y R I I E IKCUT.931 OHlSS.~TSS.CH'S.FRlSS 53 F O R L b T I * STELM S I S l k M ' / Z A . ' F L C h CF H + 7 I N T O S l E A M C V S l E M ' . 1 IPE16.5/5X.'FLOY Uf T I N T O 5 T E b M SVSTEM'.F20.5/5X.'FLCh CF H 7 ' I N 1 0 5 l E b P 5 V S 7 E M * , t Z U . 5 / 5 X ~ ' F P b C l l O N OF T I N l C STEAM SVSTEM'. 3 FLt.5/1Xl OhlFh=CllOlrC~lll OlPb-C14OltC~411 FRlPh=CTPC*RSUC F T C ( K = C I46 18QtuM F U T SF =C I48 1 8 R SUM FUR FT=C I 4 7 l * P 5 U M FRRPF=C(49l*PSUM Y R l TFlKCLT.941 OI4l.Ol34I ~ O C l F h ~ C l P h ~ C ~ l t l ~ O I 4L 6B Il. C~I U4 8l1 . L 01 I 7 1 . C 1 4 1 1 . C l L91.Ul~Yl. FRlPh.FlSSK,FRTSF.FRRPT.FRRPF U P I l E l L C U l . 9 5 1 CC.CCT.CLF 94 F O R L A T I ' SFCCh1)ARV S V C T E M ' / ' FLOhS'/SX,'H + T l h l C SECOhDARV ' * L 'FR C C P P I L bRV I e 1 P t 1 4 . 5 / 5 X e 1 I h 10 SECCNC LRV FROM PR I M A R V ' .E I 8 . 5 / 7 5X.'H + 1 THRU P l P t h A l L S l h T C CFLLS'.E15.5/5X*'T THRL P I P E 3 ' Y A L L S lhTC CkLLS'.ElY.5/' S C R P l l O N PV S I N K ' I S X . ' H + T'.28X. 4 F L4.5/5X.'T'.~A.tl4.5/5X.'CF',31X~E14.5/5X~'TF'.31X.E14-5/ 5' R F L C V P L PV P U H b t ' l 5 X e . H l'.ZPX1E14.5/5X.'l'.32X.E14.5/5X. 6°F '.31x.E14.5/5x.~lF'.31x.E14.5/' FRACTlGN r F 1'/5X.'PASSING'. BY S I N K AS 1 ' , 1 4 X . E I 4 . 5 / 7 ' TCRli FTPE h b L L ~ ' . I O A . t I 4 . 5 / 5 X . ' S C R P E D 8 5X.*SCFREC PV \ I N K A S I F ' . 1 3 X . P L 4 . 5 / 5 X . ' R E M O V E C BV PURGF A S 1'. 9 17X.F14.5/5X.'ktMUVtU H I PUQCP A S lF'.LlX.F14.51 95 F O R P A T I ' C C h C k N T Y A T I O h S I N SECCNCARV SALT'/SX.'H + 1 ICCl'.23X. 1 1PF14.5/5X1'T ICLTJg.ZbX.EL4.515X.'~F lCCFl'.25X.E14.5/lX/IX) 01.1 h=C II ) + ( I 2 Ir(lI31

ICN 0431 I C N 0432 I ~ N0 4 3 3

1" ICN

'.

0434 0435

I s h 0436 15N I ~ I ~ ISN I ~

0437 N0430 N0439

0440 N0441

I S N 0442 C IN 0443

ISN

0444

1SN IqN 1SN 15h ISN ISN

0445

ISN

ISN

'

'.

OlU*C1311rc1321+~1331

0446

F R 1hC = C T h * P C b P F I S c T * C 1 3 5 I*QSLJM FTCSTF=Cl31l*RSUM FlRPT-C136l*QSUM FTR F l F = C 1 3 e l * Y S U U Y R I TE l K C b l . 9 6 ) WTw. U1r.Ul 5 1 , C I 3 5 1 . C 1 7 1 . 0 1 3 7 1 . 0 1 6 ) . 0 ( 3Cl.Cl8l e I C 1 3 R l ~ F R l h C ~ F T ~ S ~ ~ F T ~ ~ T F ~ F l P F T ~ F T ~ P T F UR I 1F ( K CL 1.9 7 I CF .Cf T Lf F 96 F O R L A T l ' PFIPLRV S V S T t H ' / ' FLCnS4/5X.'H + 1 TWRU h A L L S I N T O I 'CElL*.IPE21.5/~X.*l THKU Y L L L S I N 1 0 CELL'.LLX.EL4.5/' SORPTION Z R V SlNK'/SXe'H t T'.2dX.t14.5/5X.'l'.?2X.E14.5/5X.'~'.31X.E14.5/ 3 5X.'1Fg.31X.€14.5/' KEMOVLL BV P L U G E ' / 5 X * ' H + T'.Z8>.E14.5/5X. 4 ~ T ~ . 3 2 X . E 1 4 . 5 / 2 X , ~ H F ' . 3 L X . E L 4 . 5 / 5 X ~ ' l F ' ~ 3 ~ X ~ E l ~ . 5 / ' F R A C T I O N OF 5 1 ~ / 5 X . ~ F A S S l h GTHKU M A L L S l h T C CELL'.E19.5/5X.'SOIBEU BV S l h K A S h . ~ T ~ , 1 4 X . E 1 4 . 5 / 5 ~ . ~ ~ l l k nPV t U C I h K b S TFo.I3X.E14.5/5X. 'REPIObED 7 * R V FURGk L S 1 ' . 1 L X . t l 4 . 5 / 5 X . ' R E M C V E C BV PURGE A S l F ' ~ I I X ~ k I 4 . 5 I 91 F C R L A l l ' C C h C t N T R A l l L i h S I N FRIMARV S A L T ' / S X . ' r + 1 lCFl'.23X. 1 1PEL4.5/5X.'T(Ltll*.ZlX.k14.5/5X.'~F ICFFl'.75X.F14.5l CALL hFhFG G r i c ICO

0447 044R

0449 0450 0451 0457

'.

I5N 0453 ICN 0454

*.'

ISN 0455 C IN 0456 I ~ N0 4 5 7

c c c ICN ISN ISN ISN 15N

0458 0459

EN0 C f F I L E O E T F C T t U Uh l h F L 1 L h l l S S 7 C A L L CFbFG UR11EIKCLT.99l 99 F O R L A T I ' k C R C b L ) T O P STCF €NO

0460 0461

0467

*nPiinhC

IN

*rlPlICLS

I N FFFFCTI

FFFFCT*

*STAllSllrS+

*5lATl5lICS*

h AL € 1

ALL

C P T b PRCCCSSEC'I

.

PA I h U P T - 0 2 . L I NEC h 1-9 5 . 5 12 E= C C C O K e

STUPCF.EBCClC.

CnURCF 5 T A l E C E h l C Nil

-

=

N I I L I S T . N L O E C K . L C A C . N C M b P . N O E D l l ~ N O I D ~ hCXREF 4.51

.PWGI(LP

SIZE

*

10188

OlAGkOSTlC> GEhERLltU

888888 F N n CF C O M P I L L T I G N 888888

4 5 U BVTES OF CORE NOT USED


73

LFVFL

IDFC 721

71.6

OSI360

FCRTRAN H

-

hAPE= 11AIN~OPI-02.LlhECNT-95~SIZF=OOOOK~ SOURCE . t t l C O I C. IIOLIST.LMOECY.LCAC.NDMAP. hOED I T h C I DsNOXREF .n. i .n. r.i. CITA . .. C C M C O h I E L K 3 I 10111120). I U S E I Z O J . N M 1 2 0 J . I B E G I Z O ) . N H C h ( 1 O I . C L V A R . hCN O A T b I D I l l I2 0 . 5 . 5 0 . 1 U . 5 . 5 . 2 S . 2 5 . 2 C 1 1 C ~ 2 0 ~ 5 . 1 . 1 . 6 . 0 1 O A T L I L S E I 18.+.+5. 9.*.*.23.23.15. 5.15.4.1.1.6*01

CCIMPILFR W T I O h S

- - -

.I C-.U. nnn, ....... S IN no03 ISN no04 S IN noos S IN nom ISN 0007

D A T L I E E G I 1 ~ 2 I ~ Z L . I L ~ B 6 . 9 L . S t . L 2 L1 .~ 6 . L 6 6 ~ 1 7 6 ~ 1 S b . Z 0 1 ~ Z O 2 ~ b * O I DATL h P / 4 U b .+Ha .4HC -4bCN .4bF -4HF .4HH ~ H U .wP .IC" ,4bT .4bY .4nH ,4HU I D A T L L Y L S . NCh I 14. 9 / DAlb NICh I 4 H C F s 4 k C F F . 4 h C F T .4bCC - 4 H C C F .4HCCT - 4 H C S G 6 w c s s .CWSII .+H I

t I S h OOOB S IN no09

.

CflMVCh I E L K Z I IN. LOUl. I P R . KCbT. D A T L I h . [CUT. I P U I S . PO. 6 /

ISN 0010 S IN noli

C C C

IN

C

IPS

ICCT

C

ISN

oniz

--

-

KPR

lhFUT U N I T NO. L U X l L l A R V O U I P U T U N I T NC. L l h E PRINTER U N I T I C .

F ND Cb Ih.OP1-O2.L

*OPTlflhS

I N EFFFCT.

hAME-

*OPTIONS

I N FFFFCT.

SCU~CE~EEC~lC~NOLISl1NOOECU~LCbC~NCMAP~NOEDIl~NOlO~hCXREF

*STATISTICS* *STbTISTlCS*

******

SCURCE S T A T E I E L T S Nn

-

lNtCNT=PS.

I 1 .PROGRbC

S 12E=OOCOK.

SIZE =

8

O l P G N O S l l C S GEhEPblEO

FND CF C O Y P l l A T l O N * e * * * *

LZSK R I T E S OF CORE NOT USED


74

LEVEL

71.6

IOEC 7 2 1

OS136C

CblE

FCRIPbN H

-

LACE= MAIN.OPT-OZ.LILEChT=55.S12EIOOOOK~ SOUPCE.EBCOIC.NOL 1Sl.LCCECK.LCIC.NOMAP. hOEOIT. hOIG.NOXREF SUBPCUIlhE SElREF IhAMEI SETS V A R I A B L E S T O 1 I i E l R REFERENCE VALUES. I F NAME I S BLANK. L L L k I R I A E L E S AS S P E C I F I E C I h Tt-E ARRbY NM WILL @E SET. IF LAM€ IS P W T . A L L V A R I A I L E S I h 1HE ARRAY VREF h l 1 L B E PRINTEO.

COMPILER C P l I O L S

1SN 0007 C C C

t C I S N 0003 1 S N 0004 I S N 0005

1 hVbR.hCLI I S N 0006 1 S N 0007

OIMEhSlCh kPFFiZZ01. V O l l 1 5 5 l . W C 2 0 5 1 E O U I V A L E L C E l V C I l I l ~ V R t F l 9 6 l l l ~V 0 2 ~ l I ~ V R E F l 1 7 6 l l

C

c

W O I b h C VC2 AR& W M M Y A R R b I S USIC I N THE P A R l S O F VREt. THE R t F E R E h C E A R R A Y .

c C S IN noon ISN no09 I S N 0010 I S N 0011

DATA I R L L I I 4 H I . I PRT/4HPRLI/ n A T b VbCO/4HV@EF/. Vm/+HV / CCMCCh/BLK2/1L. L O U T . IPR. K C L l . C G W P C L / R L K L / VI2501

r. C C

IPP

1HF CCWCELT CA&US I N T E Y $ P E R S E O APOhG ThE F O L L O U I N G C C N l l h L L T l O N CA&US CAUSE L C T Q O L E L E U l l H THE ORNL C C M P I L F R i n i s I S CCNTRAKY ro rnk RULE ON PG. 12. GC28-6515-8. 1 R C S Y S l F C 1 3 6 0 ANU S I S I E M I 3 7 0 F C R T R I N I V LANGUAGE.

C C C 1SN COl2

I N l l l b L I Z A l I O h OF

O A T b WPEF

r.

r.

PEFFLENCE V A L U t S FOR A l l 1

t l / . 6 0 6 ~ . 5 0 6 ~ 3 . 5 U o ~ ~ Y + U O . Z Z ~ C 6 ~ - 1 . 0 0 ~ 5 2 ~ 0 6 ~ 2.1I.Cf.8.806. *-1.00 7 49.06.3l.C6.21.U6.1U.U6.

O.CC.-I.OO.O.OG.2*-I.OC

C

r.

P E F F P E N C E VALUE<

c.

c C

mri d d i i

7 i.r71.3.0ii.1.uiu.1.~1~.-1.~~. P E F E F E h C E V P L U 6 5 FOY C I I I

C

3 45*0.0C

.5*-1.00

c

.

REFERELCE V I L U C S k O R C h l

C

IRE b l l l E Q C

II

C .2.CIO.~.Oll.I.Ull.-l.CC~

4 b*-I.CC

c c.

PfFCREhCt

V L L U t F FUR E i I l

c 5 .5U0~.L1700~.IdOO~.UUlbDO.-L.CO~-l.C0~

C

c

Q E F F R F L T E VALUES kUY F I I I

r.

6

3.fOS.?.bC5.5.US.5.U5.-l.D0/

C C

REFEPFhCE V A L U t S FGK H i l l

r.

nPra V C I /

I 5 N 0013

I ~.~O-~~~.C-~.L.O-~.~~YU-~.~.C-~~-I.CCI~.C-~.Z*-~.OC 7 7.40-7.3.40-2.~. 70-2. 4.3~-2.4. 3 Z*-I.CC .5.RoO.ll.u0.30.CO.2*-l.oc

t c

F E F E F E h f F LIpILUE<

IC-2.4.00-2.

.

.aon.-i.oo.

.aoo.

fUK K i l l

c

-

4 1.2C17.2 -0- 17.1.50-1 7. I 5C- 17.1- 40- 11. -1.00.1 5 0 19.2.1-00. 5 3 . 4 c-1 B.5.c18.4. 0- I d e 4.50- I e. 3.50- 18.6 .O-I a. 4.40- I 8. I .OK.

c

x 1.10-2C.2*-l.~u.+.5~-~o.5.lc-2C,4.eC-iC.2*-l.cC~ RFFEPFhCE

C C

WALUtS F O U P I 1 1

6 2 . 1 0 1 5 ~ t . 7 C 1 4 ~ P . 0 0 1 4 ~ ~ ~ U U 1 4 ~ 5 * - 1 ~ C C ~11- ~ 8 011041. 95. 0~0

r.

l 4 ~ 1 ~ 8 0 1 6 ~

76.7C14.3.5C14.5*-1.00.

C

QEFFCFNCF Y b L U t C kUi( R i l l

r.

R 5.E011.4*C.CC

.2*-1.00

/

c

r.

F E F F F E h C I kALUES F U R 1 1 1 1

c I S N 0014

c

L

c

r.

2

4.i.ro

.-I.CC.

IIFFEPFLCE VALUt FOR M

c

31.1 2 0 - c .

c c c

L .oa

P E F E F E N f E VbLUES PO*. Y i I l

r. c

OATb V C ? / 20 13.~0 .50 .OO. i -00.51-

REFERELCE V A L U t FOR U 4 I.C?/

.2* 13.cc

.

i -00.2~ 2 .oc

.I.

cc. 5s- L .oar

74.3G4/09.19.12


75

PAGE 0 0 2

c c

CHECX hbYE

c

I F 1 hAPF.EO.lELhNl IFlhACE.FC.IFPII

60 T O 102 GU T O 1 1 5

C

c.

ICCK

FCF

CP1C.H

I N hM IABLE

C C b L L PblC~lhbCE.WM.NVAL.NK1 IFlhK.hF.01 GT TO IUl

c

c.

L C P d l C k FCUNO

c c

C

c ISN IFN C IN ISN C IN ISN ICN IFN

on77 on73

CHFCU h I P E

PYlNl MESSICE

ALAINSI CN I b E L t

r bL L

PATCH 1hIMt.NMLN.NC.N. KCI IFIKC.FC.OI GC i n j o o J=1 B E G I 4 1t L C - I VlJI-VREFlJ~ RFTLPh 3C0 Y R 1 l E l L C L l . 1 1 hAMt 1 F l l R P L l l I X f ' L C MATCH FUN ' s b 4 . ' RFTLRh

nn75 0076 0077 0078

no79 no30

r. c IFN n n 3 i IFN on37 IFN nn33 I S N on34 I S N no35 15N 01136 I C N 0031 I ~ Noo3n I C N 0039 ISN n o w I ~ Nno41 I F N no42 ICN no43

-

c

hbCE

-

I N SEIPEF

- NO

CbANGE

Ih U'I

LCILKI

1c 1 h l - L K N?=LK GL IC 1C3 1c7 Nl-1 NZ= h r bF I C 3 D r i i c L=~I.LZ 1 I = ILSF l h l J=l RFGI h l

no

105 1 - 1 . i ~

VIJI-rPEFIJl

1 C5 J = J t l

1 in C O N l l h L F RFTLRh

r. C

F E I h T L L L R t F t Y E N C E VALUES

c. 115 L I N E S - 5 C Y0R C=YbPC

I S N no44

I C N 0045 C IN no46 I S N no47 C IN

15N C IN I ~ ISN ICN ICN

own 0050

no51 Nno57

0053 no54 0055

LIhE5-C NMlNl.1DlMlhl. I L S E l N l ~ l ~ E G l NI l. ~1-1.51 l LAME '.AI.' OlMEhSICN'.IS.* USEO'.14.' STARTS A1'14/

170 Y R I 1 E l N C U l . 3 1 3 FllRVITIlX/'

I 7X.4111.13Xl~llflXl 1SN ICN I ~ IFN

Jl- IEFGlLI

0056 no57

11=J1 JZ=I1tILSElhl-I

N005n

o r 12s ~=Jl.J2.5 12-PlhOll l + 4 , J Z I

nn59

I C N 0060

YRI 1ElLCLT.41 l V I l t F l I I . I = I I . 4 F1lRCITllX.lP5E14.51

I C N 0061 I C N no67 ICN 0 0 6 3 IXN 0064

121

11-12+1 125 C O N l l h L E L I N F S - L I hF 9 I 1 130 C O N T l h L E RFTLRh FNTFV LCCK YORC=Vb

I 5 N 0065 I C N 0066

I S N 0067 ISN 006n I C N 0069

c C

r

F R I h l S bALUEC I N V S E L C C I E I 0 1 hbME. I S P I A h U . P N I N I ALL.

I F NAME

c

C

c

CHECK hbME IFlhAPE.EC.lE!LhKl

I S N 0070

60 IO 132

r C

LCCK FCI. P l T L H I N T A U L E

C I Z N 0077 1SN 0073

C A L L PATChIhbCt.NM.NVAH.NK1 I F I h X . h E ~ O 1 GC IO L O 1

c C

CHFCU h l f l f A G A I N S T CN I A B L €

C IZN ISN ICN IZN

0075 0076 n070

ISN

nono ooni onai

no19

ICN ISN ISN nnn3 I F N 00R4

CAL L P I T C H IhbCt.NMCN.NCN.

KC)

IFINC.EC.OI Ga IO 301 J-I R E G 14 I tUC- I Y R I l F I X C L T . b I NMCNIKCI. J. V I J I 6 FORCITllXfIX.A4.' =Vt'.13.'l. VALUE = ' i l P E L 4 . 5 1 RFILRL 3Cl b P 1 7 E l L C L T . 5 1 hAME 5 F n R P d l l l X f ~ h t MbTCH t W N D F C P '.AS.* I h LOOK

RElLRh

-

NO P R I L T ' I


76

PAGE 0 0 3 ISN ISN 1CN ICN ISN

OORS

7CI hl=LK N7-CK

nnnP

132 NL-1 N7-hVd)l

no86 CCRl

cn i r 1 3 5

no89

c. C C ISN ICN ISN ICN ICN IFN ICN ICN I<N ICN ICN ICN I<N ITN ICN IFN ICN ICN

cas0

IN V

nc

0091 0097

150 L = ~ I . L Z I 1- I USF I L I / S I 4 I F I I I L F I I I I . ~ E . W IGO i o i k a

onoa caq5

C A L L hFhPC YLI1FIKCLT.ZI LINFS-0 140 M R l I E l I I C U T . 3 l J1=lR€GlLI

on96

on91 C098 0099 OlOC 0101 01n7

rnR0

h M I N l . l O l M l h I ~ I(rSf(N1. I E E G l N l . l I .

l*lv5l

ll=Jl J7- I l t l b C E I N I - 1 145 J=JI.J~.S 12-P I L O I I 1*4. JZI W R I IEILCUl.4l 1Vl11.I-I

nn

0103 0104 0105

1. I Z I

11-12+1

145 CON 1 I NL t

0106 ala7

1INFS-L I h E S t l l 150 CflNIlhUE

nim

I ~ Nm a 9 ITN

F P l L l S E L F C l E U VALUES

1 3 5 LINFS-ISC

RFTbRh E Nn

olio

LAHI-

Cdlh.UPI=~Z.LlNtChT-~5.SlZF=~COOU~

-

STUbCE~ERCCIC~NnLISl.NUCECC~LCAC.NCCAP.NOEOIT.NOIO~hOXREF SrLYCF C l b T E P E h l S

*CTdlICTlCC* *ClAllClICC*

e*****

NO

-

109 . P Y O G O b M

SIZE

3996

C l A G N O C I I C ~C E L E F b l t O

Ehn CF C O M P I L A T I O N * * * * * e

10SK @ l T E S OF C O P F NCT U S E D


77

LFVFl

IZN IZN IZN IZN ICN ICN IZh IZN

71.6

OSI?LC

l 0 F C 7))

FOPlRbN H

0007

on03

nnn4 0005

nom

c s n L 110 c s n L 11s C S O L I22

on07 00Ofl 0009

CSOL I 3 0

C C

C S O L 131

r. I Z N 0010 ICL n n i i

i w on12

IF1CZ.Gl.O.i GO TO (15 A Z S l G h 130 TC K PRIhT 4 4 FCRCITI'lhC SCLUTIUY'I

I Z N no14 I C N 0015 I Z h 0016 I ZN 001 I :CN OOIR I Z N 0019

60 10 9 5

C

k E A C I h G FCP D t t l U G P R l N T n U T

t

c I Z N no21 I Z N no77

1SN 007'4

90 P L l h T 1. C l . C?. PK. TK. hK. kL. UK. XL. E P S 1 F P R C A I I ' I C S O L V E AkCU~EkTS'I1kC.6X.'Cl'.l2X~'C2'~lZX~'P&'~12X~'lK'~CSCL x 12X. I 'HII' 12X. 'HL'+121. KK*. IIX'KL'. 12L'EPS' I I X . l P 9 E l 4 . 5 / ' C 11' r 6 X . CKZ0. ICX. 'TEST* I 1 x 1 2 IC II I 1 . I IX. * C K T 0 . 1 I X . *cx' ,121.9 G C Tc II. I S S . I ~ L I I

c

c

START

IlERArlUNS F U k C K

c

ICN ICN IZN ISN ICN

5 5 CKI=O. cucLo=rri CII=YL~IHLCHI~C~+C~I ~1--lC1+PcTH.o~O*T

no74 0075

0076 0027 007fl

nn 1 1 5 I T = I . ~ O

132 133

CSOL CSOL CIOL CCCL

135 136

csaL

IGrrF-i

t.r i r q o 8 5 I C 1 IGCTF.CF.0I

CSOL CSOL

CSOL CSOL CCOL CSCL CSCL CSCL

137 138 139

110

IS1 142 145

150

155 160

CSoL 1 6 1 C C C L 162 163 165

CSCL CSOL CSOL CSOL CSCL

I10 175 176

CSOL

Leo

ICLll I

C

c

I h W E E S F L l h t A R I N I L R P U L A T I C N ANC C k E C K FOR CCNWELGEhGE

C I S N CC79 I C h 0030

CCCL 1 8 2

C K T = I C II I * G 2-C 12.2 1I / lG2-G I I

120

I F I C ~ R S l C K C L C / C K T - I . U O J . L T ~ € P S ~ GO TO

csoc

183

CSOL CSOL CSOL CCOL C SOL CSCL CSOL

192 193 194

c I F h C T CChVERGEO.

C

TRV

INVEPSE OUbORATlC INTEPPCLATICN

C IZN ISN IZN ISN IZN ICN IZN IZN

CLT=LLOI~LCHLOIC1-CKTl~C2~

C032 0033

FF=ClrPCT~~ICSUUTlCL~i-USURTlKK~CKTll

0014 0035

OGI 4 - G I

G=CIIT-FF Dt.2 =G-C?

0036 C037 0038

OF3=0G2-0G 1 CX--GOG2*CL1/ IFI IGCCF.GE.CI

now

I OGj*U(; l i + G l * G Z O C K l / I C 6 I * C G 2 l + G I * G * C K Z / GU

in

LOU

c

CE8bC FFlhTOUT

C

ISN ISN ISN

PRlhT i ~ I T ~ C L l ~ C K T ~ C X ~ C K 2 ~ T E 2 FCRCAlllXl3.lPSFlC.51 7C0 1 F l C X . L E . C K l l GO IO 102 IF1CX.tE.CKTI GO TO I02 TEST-O~ESlCKCL0ICX-I.Do) I F 1 IEST.ET.EFS1 G O T O 201 CKTiCX Gci TO I20 201 C L X - W l I P K C H L O I C . 1 -CX l + C Z I F X - C l +PCTH* I O S U R r I C I X J - O S O R T l I I K * C X I 1 GX=CX-FX CKCLO-CX IFICX.LT.O.1 GO I 0 101 CKP=CX Gl-GX

0041

0047 no43 0045 0047 0048 no50

I S N 0051 ISN IZN ISN ISN ISN ISN ISN ISN ICN

0057 0053 0054 0055

0056 on58 0059 0060

cn i n

no61 I S N 0067

115

-

-

GI-G CKl=CIIT G r i r 115 62-G CKZ-CLT 115 C O N I l h L F

CSOL 191 C S O L 198

C S C L 201

c s n i 202 CCOL 204 CSUL 203 C S C L 206 CSOL 2 0 7 t. s. n. L. -~~ 208 C C C L 225

CSCL 226 CSOL CSOL CSOL CSOL CSOL

c m CSOL

F P l h T LCN-CONWkRGENLk

221

230 231 232 233

C S O L 235

ICs

C C

196

I~

1 C 1 CKL-CX Gl=CX GO T O 105 1 C7 IF 5 1-0 b C S I C K C L U I C K r I .DO) CKOLO CKT 1FITESl.LE.EPSl GO 10 I20 I F I G .fC. 0 . C O i L.(l TU I20 IFIG.CT.O.I GC i n i o 5

ISN no63 I S N fl064 ISN no65 S IN 0066 I S N 006n I S N 0010 I S N 0012 ISN 0073 I S N 0014 ISN 0015 I S N 0016 1 S N 0017

195

240

245 CSOL 250 CSOL 255

C

ISN ISN ISN ISN

I OG3OOGZI

ALIPC

c

PRlhT 3

3 F C R C A I I ' O C S C L W t UNAIILt I C F l h C R O C I ' I

CSOL CSOL

236

215

zeo

zes

C S O L 290 CSOL 2 9 5


78

PAGE 0 0 2

I C N nono I T N 0081 I t N 0087 ICN

C S C L 300

lGOCF=CIXOIL.IGoOF+l1

nom

l t N no84 I Z N OORS

RFiunn 120 C Y = C K l

CSOL 305 CSOL 310

CL-*KCCL*(~l-CKI+CZ 130 R F T L R L E h0

CSCL 3 2 0 CSOL 3 2 5

~Alh.OPI=OL.LINFChl-~5~SlZE-CCCOK~

8flPllOhC

I N FFFFCT.

LAME.:

*OPTtflNC

I N FFFFCT.

SCURCE. EBCCIC.

SCbIIV.E S l A I E C E N I S =

*STAIISTlCC*

NnLISl. N G D E C ~ . L C A I . N C ~ I P ~ N O E D I T S N O IO. hOXREF 84 . P Y O G R I C

SIZE =

2024

fllAGhCSIlCl GELEPITEO

*STAIlSTlCC*

NO

*****I tho TF

CflHPIIATICN

8-8888

121K e V l E S O F CORE NCT U S E 0


79

L f v m

71.6

tnFc

CS/?60

771

CflMPlLFR CPTlOhS

H

C

r

c r

DOOR 0009

0010 nnii

noiz

IN FFFFCT.

LAPF=

*OPTIONS

I N FFFFCTI

SCUPCE.E0CCIC.NULIST~NtiOECK~LCbC~NCMbP~NOEOIT~NOIO~hOXREF

SCLRCE S I b T E P f h T S =

*STAIISTICt*

Nn

****I* FNfl CF

CGMPllbTION

LFVFI

I1 .PRCGPbM

SIZE

-

******

C

FCRlRbN H

S C L V F S I H F UUAURATIC E b U A T I C h

-

c.

CR**i

C

FCR THF RPflT C K Y l i I C H

r

O * C I + ALFLI*CK

+

Cl**i

-

IFN non, I S N tin04 I S N 3005 C IN on06 S IN on07 ICN nnoR

IPPIlClT Ffbl*E RFAl*R LK l=C I l K K

CCUb 1 2 5 CCUA 1 3 0 CCUA 135

1A-W.LI-LI CCUb I40 CCUb 1 4 5

RFTLRh

CCUA 155 CCUA 160

6 NO

IIJFT. 7 7 )

CSI3LC

FOHTRbN H

-

LICEMAlN~UPT~OZ~LIhEChT=~5~SIZE=OOOOK~ SCbRC€.Ft3LUlC.NUL IST.hCCLCK~LCbC.NOMAP.~CEOlT~hOlC~NOXREF S U R P C b T l h E WbTCH (NAME. N I b E . h h . h M b l l

I S N OOO?

c C

I F b R C k F S T k F ARRAY N l A l U I l k NN I T E C S FOR THE F I R S T CCCLPRFLCF U F N b M t . It N b C E IS hCT FOUND I N NTAB. NCAT IS F F I L F N F C Y l T n THE V A L U f Z E R O .

C

c C

flCC3

no04

om5

no06

nnna

01-09

0010 nnii no12

74.304/09.20.38

C

IS L E S S TCbN C I I K K .

CK=CI~*2/lCll.5rALFA*ll.*uSCFTl4.*~ll&LFbtl.lll

CUCPII F R CPTlOhF

1SN ISN C IN ISN S IN S IN ISN ISN S IN

DblF

105 CCUb 110 CCUA 115

t

7l.h

74.3C4109.20.25

1 3 3 K e V T E S OF CORE h C T USEO

CSl360

C

LFVFI

DblE

260

O l C t N O S l l C S CEhEFblEU

I D F C 771

71.6

74.3Ck/09.20.

#blh.OPT=OL~LINtChT-SS.SIIE.OCOOI.

+nPTinh(

*STbT1STltt+

LO

CITE

hb#E= MAIN.OPT-OZ~LlhECNT=55.S12EIOOOOI. CCLRCE~FBCOIC~NflLIST.~CCECK~LCbC~NOYIP~hOEOlT~hOlC~NQXREF SURPCLTIhE NfhPG NEUP 100 NEUP I05 I F I k E SUbPAYV flUrPUT U N l l I K O U T l IS THE L I N E P R I N T f R I I P R l r N E h P 110 E J F C T TT 1 Ne- PA(.€. I F NCT. P R I N I 5 CLANK L I N E S . h E U P 115 N E k P 120 NELIP I25 N E ~ P1 3 0 NEhP 135 NEUP 140 N E h P 145 RFTLPh NEhP 150 100 U R l l E I L C U T . 2 l N E h P 155 7 FORPATIIHII N E h P I60 RFTLRN NEUP 165 FNO

I S N 0007

ISN 1SN IqN C IN S IH

FCRlPbN

-

IC0

f l l M F h S I C h L T I P 1101 NMAI = 0 D C 100 h-1.Nh I F IICCCPblhbMF. NTABINI. NPAT = h RFTLRh CONlIhLl RFTLilh F hO

4 1 .hE-

C l G O Tn IO0



81 ORNL-TM-4804 UC-76 - Molten-Salt Reactor Technology INTERNAL DISTRIBUTION

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13.

L. L. Anthony R. F. Apple C. F. Baes, Jr. C. E. Bamberger J. M. E. D. J. M. R. C.

H. 14. A. 15. 16. 17. 18-27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39.

C. J

.

S.

J. H. J. W. B. R. E. J. W. J. R. J.

F. 40. J. 41. J.

42. J. 43. W. 44-46. J. 47. G. 48. D. 49. L. 50. R. 51. L. 52. W.

53. R. 54. W. 55. P. 56. R. 57. J. 58. B.

T. Bell Bender S. Bettis N. Braski Braunstein A. Bredig B. Briggs R. Brinkman R. Bronstein A. Brooks H. Brown Brynest ad Cantor A. Carpenter P. Carter A. Carter L. Carter R. Clark E. Clausing L. Compere A. Conlin H. Cook H. Cooper M. Counce S . Crowell L. Culler M. Dale H. DeVan R. DiStefano P. Eatherly R. Engel G. Fee E. Ferguson M. Ferris H. Fowler 0. Gilpatrick R. Grimes H. Guymon 0. H a r m s N. Haubenreich W. Henderson R. Hightower, Jr. F. Hitch

59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70. 71. 72. 73.

74. 75. 76. 77 78. 79. 80. 81-85. 86. 87. 88. 89. 90. 91. 92. 93.

94. 95. 96. 97. 98. 99. 100. 101. 102. 103.

104. 105. 106. 107. 108. 109.

W. R. Huntley C. R. Hyman P. R. Kasten C. W. Kee J. R. Keiser 0. L. Keller A. D. Kelmers H. T. Kerr W. R. Laing R. B. Lindauer R. E. MacPherson G. Mamantov D. L. Manning W. R. Martin L. Maya G . T. Mays H. E. McCoy H. F. McDuffie C. J. McHargue H. A. McLain B. McNabb A. S . Meyer C. W. Nestor, Jr. M. R. Patterson S. K. Penny F. A. Posey H. Postma C. E. Prince B. E. Prince T. K. Roche M. W. Rosenthal H. C. Savage M. R. Sheldon M. J. Skinner A. N. Smith F. J. Smith I. Spiewak R. A. Strehlow D. J. Strickler J. G. Sullivan 0. K. Tallent R. E. Thoma D. B. Trauger T. N. Washburn J. R. Weir G. W. West ley J. C. White


82

110. G. E. Whitesides 111. R. P. Wichner 112. M. K. Wilkinson 113. J. P. Young 114. A . Zucker i15-117.

Central Research Library

118. Document Reference Section

119. K-25 Library 120-122. Laboratory Records 123. Laboratory Records - RC 124-125. MSRF' Director's Office, 4500NM, Rm. 147 126. ORNL Patent Office 127. Y-12 Technical Library

EXTERNAL DISTRIBUTION

128.

Research and Technical Support Division, ERDA, Oak Ridge Operations Office, Post Office Box E, Oak Ridge, Tenn. 37830 129. Director, Reactor Division, ERDA, Oak Ridge Operations Office, Post Office Box E, Oak Ridge, Tenn. 37830 130-131. Director, Division of Reactor Research and Development, ERDA Washington, DC 20545 132-235. For distribution as shown in TID-4500 under UC-76, Molten-Salt Reactor Technology


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.