.I
.
0R NL -TM-4 804
HOME HELP
A Method for Calculating the Steady-State Distribution of Tritium in a Molten-Salt Breeder Reactor Plant R. B. Briggs C. W. Nestor
National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road, Springfield, Virginia 22161 Price: Printed Copy $5.45; Microfiche $2.25
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, m k e s any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.
0 RNL- TM-4 804 UC-76 -Molten Salt Reactor Technology
Contract No. W-7405-eng-26
Reactor Division
A METHOD FOR CALCULATING THE STEADY-STATE DISTRIBUTION O F TRITIUM IN A MOLTEN-SALT BREEDER REACTOR PLANT R. B. Briggs Central Management Office C. W. Nestor Computer Sciences Division
This report
APRIL 1975
was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.
OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37830
U.S.
operated by UNION CARBIDE CORPORATION for the ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION
iii
CONTENTS
............................. I. I n t r o d u c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . I1. D e r i v a t i o n of Equations and Computational Procedures . . . . I11. S o l u t i o n of Equations . . . . . . . . . . . . . . . . . . . I V . Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . V . Computer Program. I n p u t I n s t r u c t i o n s and Sample Problem . . . Appendix - Program L i s t i n g . . . . . . . . . . . . . . . . . . . . Abstract
1 2
9 23
35 49
65
V
LIST OF FIGURES
. 1. Fig. 2.
............. Sketch of F(CK) vs CK . . . . . . . . . . . . . . . . . . . vs CK . . . . . . . . . . . . . . . . . . . F i g . 3 . Sketch of G(C K F i g . 4 . Sample Problem I n p u t . . . . . . . . . . . . . . . . . . . Fig
Molten-Salt Breeder Reactor System
)
Fig Fig Fig Fig Fig
Fig Fig Fig Fig
.
. 5A . . 5B. . 5 C. . 5 D. . 5E. . . . 5G. . 5H . . 51.
27 28 52
. . . . . . . 53 . . . . . . . . . . . . 55 ...................... “CHANGE” ............ . . . . . . . . . . .i n. . . . . . . . . . . . . . 58 Iterative New .. .............. ........... ...................
L i s t of Parameter Values Used i n C a l c u l a t i o n Output from I t e r a t i v e C a l c u l a t i o n s Output Summary
Output Produced by
56
Output from
57
Command
L i s t of Parameter Values Used “CHANGE”Command 5F
3
Calculation After
C a l c u l a t i o n s With
Parameters
60
Output Summary (New Parameters)
61
Response t o Unrecognized Command Card
62
Normal Ending Message
63
1
A METHOD FOR CALCULATING THE STEADY-STATE DISTRIBUTION OF TRITIUM I N A MOLTEN-SALT BREEDER REACTOR PLANT
R. B. Briggs and C. W. N e s t o r , Jr.
ABSTRACT
T r i t i u m i s produced i n molten s a l t r e a c t o r s p r i m a r i l y by f i s s i o n i n g of uranium and a b s o r p t i o n of n e u t r o n s by t h e c o n s t i t u e n t s of t h e f u e l
carrier s a l t .
A t t h e o p e r a t i n g temperature of a l a r g e power r e a c t o r ,
t r i t i u m i s expected t o d i f f u s e from t h e primary system through p i p e and
vessel w a l l s t o t h e surroundings and through h e a t exchanger t u b e s i n t o t h e secondary system which c o n t a i n s a c o o l a n t s a l t .
Some t r i t i u m w i l l
p a s s from t h e secondary system i n t o t h e steam power system.
This r e p o r t
d e s c r i b e s a method f o r c a l c u l a t i n g t h e s t e a d y s t a t e d i s t r i b u t i o n of t r i t i u m i n a molten s a l t r e a c t o r p l a n t and a computer program f o r making the calculations.
The method t a k e s i n t o account t h e e f f e c t s of v a r i o u s
p r o c e s s e s f o r removing t r i t i u m , t h e a d d i t i o n of hydrogen o r hydrogenous compounds to t h e p r i m a r y and s e c o n d a r y systems, and t h e c h e m i s t r y of
uranium i n t h e f u e l s a l t .
Sample c a l c u l a t i o n s i n d i c a t e t h a t 30 p e r c e n t
o r more of t h e tritium might r e a c h t h e steam system i n a l a r g e power r e a c t o r u n l e s s s p e c i a l measures are t a k e n t o c o n f i n e t h e t r i t i u m .
2 I.
--
INTRODUCTION
Conceptual d e s i g n s of Molten S a l t Breeder Reactor (MSBR) power p l a n t s u s u a l l y can be r e p r e s e n t e d by t h e diagram shown i n F i g . 1.
The
f i s s i o n i n g of uranium i n t h e f u e l s a l t h e a t s t h e s a l t as i t i s pumped through t h e r e a c t o r vessel i n t h e primary system.
The h e a t i s t r a n s -
f e r r e d t o a c o o l a n t s a l t t h a t c i r c u l a t e s i n t h e secondary system and, thence, t o water, producing steam t o d r i v e a t u r b i n e - g e n e r a t o r
i n the
steam s y s t e m . F i s s i o n p r o d u c t s and o t h e r r a d i o a c t i v e materials are produced i n l a r g e amounts i n t h e f u e l s a l t .
Much smaller amounts are produced i n
t h e c o o l a n t s a l t by t h e f l u x of delayed n e u t r o n s i n t h e primary h e a t exchangers.
The r a d i o a c t i v i t y i s normally confined by t h e ' w a l l s of
t h e p i p i n g and v e s s e l s .
However, t r i t i u m i s produced i n t h e s a l t s ,
p a r t l y as a f i s s i o n p r o d u c t , b u t mostly by a b s o r p t i o n of n e u t r o n s by lithium i n the f u e l s a l t .
A t t h e h i g h t e m p e r a t u r e of a n MSBR, t r i t i u m
d i f f u s e s through metals and might escape t o t h e e n v i r o n s i n amounts t h a t would be cause f o r concern. The purpose of t h i s r e p o r t i s t o d e s c r i b e a method f o r c a l c u l a t i n g t h e d i s t r i b u t i o n of t r i t i u m i n and i t s e s c a p e from a n MSBR p l a n t .
We
assume t h a t t h e t r i t i u m , born as t r i t i u m i o n s , i s p r e s e n t i n t h e f u e l
** *** 1014/MWsec
s a l t p r i m a r i l y as t r i t i u m molecules" and t r i t i u m f l u o r i d e molecules. The i o n s a r e e s t i m a t e d t o be produced a t a r a t e of 2.6 X
*Tritium molecules are i n t e n d e d t o i n c l u d e HT and when hydrogen i s p r e s e n t .
H2
molecules
**Tritium f l u o r i d e molecules are i n t e n d e d t o i n c l u d e t r i t i u m (and hydrogen) i o n s a s s o c i a t e d w i t h f l u o r i d e i o n s i n t h e s a l t .
"""2420
Ci/day i n a 2 2 5 0 MW(t) , 1000 MW(e) p l a n t .
3
ORNL-DWG 6 8 - 4 1 8 5 E B
1 PURGE STREAM FOR REMOVAL OF TRITIUM FROM COOLANT SALT
PURGE STREAM FOR REMOVAL OF TRITIUM FROM FUEL SALT
In
n
PRIMARY SALT PUMP I
NaBQ-NoF COOLANT SALT
u.. U
SECONDARY SALT PUMP
1450 OF
'LiF-BeF2 -Th$- U h FUEL SALT
GENERATOR STEAM
Fig. 1.
Molten S a l t Breeder Reactor System.
4 i n a typical f u e l salt.
The r e l a t i v e c o n c e n t r a t i o n s of t r i t i u m and
t r i t i u m f l u o r i d e i n t h e f u e l s a l t are expected t o be governed by t h e equilibrium relationship f o r the reaction, UF4
w i t h uranium i n t h e s a l t .
+
1/2
T2
f u F 3 iTF
,
The a b s o l u t e c o n c e n t r a t i o n s are governed
by removal p r o c e s s e s . Three t y p e s of p r o c e s s e s are provided f o r removing t r i t i u m from t h e primary system:
permeation through t h e metal of t h e w a l l s of
p i p i n g and vessels, s o r p t i o n on materials i n c o n t a c t w i t h t h e s a l t , and purging.
W e assume t h a t t r i t i u m molecules t h a t r e a c h a metal
s u r f a c e can s o r b on t h e s u r f a c e , d i s s o c i a t e i n t o t r i t i u m atoms and d i f f u s e through t h e metal.
T r i t i u m i n t r i t i u m f l u o r i d e and o t h e r
compounds i s assumed t o b e chemically bound and unable t o p a s s through t h e metal. Experience w i t h t h e Molten S a l t Reactor Experiment i n d i c a t e d t h a t t r i t i u m s o r b s on and i s t i g h t l y bound t o g r a p h i t e .
We p r o v i d e f o r
s o r p t i o n of t r i t i u m and t r i t i u m f l u o r i d e on t h e g r a p h i t e i n t h e r e a c t o r core. P r o v i s i o n i s made f o r p u r g i n g t r i t i u m from t h e primary system by c i r c u l a t i n g a stream of s a l t through an a p p a r a t u s which e x t r a c t s gaseous t r i t i u m and t r i t i u m compounds.
A c o n t a c t o r i n which t r i t i u m and t r i t i u m
f l u o r i d e are t r a n s f e r r e d t o a g a s phase by v i r t u e of t h e i r vapor p r e s s u r e s would be such a n a p p a r a t u s .
Current d e s i g n s f o r MSBR'S
p r o v i d e f o r s p a r g i n g cf t h e f u e l s a l t w i t h helium b u b b l e s i n t h e primary system t o remove k r y p t o n and xenon. f l u o r i d e would be removed a l s o .
T r i t i u m and t r i t i u m
The s p a r g i n g p r o c e s s can be t r e a t e d
as a n e q u i v a l e n t p u r g i n g p r o c e s s i n t h e c a l c u l a t i o n s .
5 T r i t i u m w i l l r e a c h t h e secondary system by d i f f u s i o n from t h e primary system through t h e w a l l s of t h e tubes i n t h e primary h e a t exchangers and by n e u t r o n c a p t u r e i n t h e c o o l a n t s a l t .
W e p r o v i d e f o r removal of
t r i t i u m from t h e secondary system by d i f f u s i o n through t h e m e t a l w a l l s , s o r p t i o n , and purging.
The secondary system would n o t normally c o n t a i n
a s o r b e r o r have an e l a b o r a t e purging system.
Such p r o c e s s e s , i f
i n c o r p o r a t e d i n t o t h e p l a n t , would be designed s p e c i f i c a l l y f o r removing tritium. The c o o l a n t s a l t s do n o t normally c o n t a i n c o n s t i t u e n t s t h a t are r e d u c i b l e by t r i t i u m and, thereby, a b l e t o c o n v e r t t r i t i u m i n t o t r i t i u m f l u o r i d e and make i t u n a v a i l a b l e t o d i f f u s e through t h e metal w a l l s .
We, t h e r e f o r e , have provided f o r a d d i t i o n of hydrogen f l u o r i d e o r o t h e r hydrogenous compounds t o t h e secondary system.
W e assume t h a t t r i t i u m
w i l l exchange w i t h t h e hydrogen i n t h e added compound and t h a t t h e compound w i l l be e x t r a c t e d by t h e s o r p t i o n and/or purge p r o c e s s . The steam system and t h e c e l l s around t h e r e a c t o r primary and secondary systems are considered t o be s i n k s f o r t r i t i u m .
Tritium
r e a c h i n g t h e steam system i s assumed t o exchange w i t h hydrogen i n t h e
w a t e r , and t h d t r e a c h i n g t h e c e l l s i s assumed t o be o x i d i z e d t o w a t e r . The p a r t i a l p r e s s u r e of t r i t i u m i s e f f e c t i v e l y z e r o . I n t h e c a l c u l a t i o n s w e assume t h a t t r i t i u m and hydrogen behave identically.
The e q u a t i o n used f o r c a l c u l a t i n g t h e d i f f u s i o n of
hydrogen through a m e t a l w a l l s t a t e s t h a t t h e rate of t r a n s p o r t p e r u n i t of s u r f a c e area i s p r o p o r t i o n a l t o t h e p r o d u c t of a p e r m e a b i l i t y c o e f f i c i e n t and t h e d i f f e r e n c e between t h e s q u a r e r o o t s of t h e p a r t i a l p r e s s u r e s of hydrogen a t t h e i n n e r and o u t e r s u r f a c e s of t h e m e t a l .
6 1
I n t h i s circumstance, a d d i t i o n of hydrogen can reduce t h e t r a n s p o r t of t r i t i u m through t h e metal.
Suppose, f o r example, t h e p a r t i a l
p r e s s u r e s of t r i t i u m and hydrogen a t t h e o u t e r s u r f a c e of a p i p e are zero and t h e p a r t i a l p r e s s u r e of t r i t i u m a t t h e i n n e r s u r f a c e i s h e l d constant.
I f hydrogen w e r e added t o i n c r e a s e t h e t o t a l hydrogen p a r t i a l
p r e s s u r e a t t h e i n n e r s u r f a c e by a f a c t o r of 100, t h e flow of hydrogen p l u s t r i t i u m through t h e metal w a l l would i n c r e a s e by a f a c t o r of 10. But t h e flow of t r i t i u m would d e c r e a s e by a f a c t o r of 10 because of t h e 100-fold d i l u t i o n of hydrogen.
Because of o t h e r f a c t o r s , t h e e f f e c t of
adding hydrogen may n o t b e s o d r a m a t i c , b u t t h e c a l c u l a t i o n a l method p r o v i d e s f o r a d d i t i o n of hydrogen t o t h e primary and secondary systems and f o r hydrogen t o be p r e s e n t a t a s p e c i f i e d c o n c e n t r a t i o n i n t h e
steam system so t h a t t h e e f f e c t s can b e s t u d i e d .
*
The c a l c u l a t i o n a l model d e s c r i b e s t h e b e h a v i o r of t r i t i u m i n an MSBR p l a n t t o t h e e x t e n t t h a t i t i s known o r h a s been i n f e r r e d a t t h e
present t i m e .
The removal p r o c e s s e s can be i n c l u d e d i n o r e l i m i n a t e d
from t h e c a l c u l a t i o n s by c a r e f u l choice of t h e v a l u e s a s s i g n e d t o coe f f i c i e n t s i n the equations.
The model probably does n o t i n c l u d e a l l
t h e chemical r e a c t i o n s and p h y s i c a l p r o c e s s e s t h a t w i l l u l t i m a t e l y b e
*The c a l c u l a t i o n a l procedure might have been developed t o t r e a t hydrogen and tritium as s e p a r a t e s p e c i e s . S e p a r a t e v a l u e s t h e n could b e a s s i g n e d t o important parameters, such as s o l u b i l i t y and d i f f u s i o n c o e f f i c i e n t s , f o r each s p e c i e s . I n t e r a c t i o n between hydrogen and tritium would b e taken i n t o account by t h e e q u i l i b r i u m r e l a t i o n s h i p 'iT"H2
'T2
p f o r t h e r e a c t i o n H2
= k
+
T,
t' HT
.
However, kp h a s a v a l u e n e a r 4 a t temperatures of i n t e r e s t , which s i g n i f i e s t h a t hydrogen and t r i t i u m i n t e r a c t as though t h e y are t h e same s p e c i e s . A l s o , t h e r e are s u b s t a n t i a l u n c e r t a i n t i e s i n t h e v a l u e s f o r most of t h e parameters. Complicating t h e procedure t o t r e a t hydrogen and t r i t i u m s e p a r a t e l y would n o t , f o r t h e p r e s e n t , improve t h e accuracy of t h e r e s u l t s .
7 shown t o a f f e c t t h e d i s t r i b u t i o n of t r i t i u m i n an MSBR.
IR some
i n s t a n c e s t h e s e e f f e c t s can be i n c l u d e d , when r e c o g n i z e d , simply by a d j u s t i n g t h e c o e f f i c i e n t s i n equations f o r processes p r e s e n t l y included.
Others may r e q u i r e i n c o r p o r a t i o n of a d d i t i o n a l p r o c e s s e s .
Two assumptions i n t h e c a l c u l a t i o n a l procedure should b e recognized f o r t h e i r p o t e n t i a l f o r l e a d i n g t o major d i f f e r e n c e s between t h e calc u l a t e d d i s t r i b u t i o n of t r i t i u m and what would a c t u a l l y occur i n a reactor plant.
T r i t i u m , p r e s e n t i n t h e s a l t as t r i t i u m f l u o r i d e , can
react w i t h metal t o y i e l d t r i t i u m atoms t h a t would d i s s o l v e i n and d i f f u s e through t h e metal.
Neglect of t h i s r e a c t i o n could cause t h e
c a l c u l a t i o n s t o be g r e a t l y i n e r r o r under circumstances where most of t h e t r i t i u m i s p r e s e n t i n t h e s a l t as t r i t i u m f l u o r i d e . Oxide f i l m s (and p o s s i b l y o t h e r s ) t h a t form on metal s u r f a c e s reduce t h e p e r m e a b i l i t y of a m e t a l w a l l t o t h e passage of hydrogen. They may a l s o cause t h e t r a n s p o r t t o v a r y w i t h p r e s s u r e t o a power i n t h e range of 1 / 2 t o 1.
The reduced p e r m e a b i l i t y appears as a
c o e f f i c i e n t i n t h e t r a n s p o r t e q u a t i o n s of t h e model, b u t we make n o p r o v i s i o n f o r changing t h e exponent on t h e p r e s s u r e t e r m s from 1/2.
The c a l c u l a t e d t r a n s p o r t of t r i t i u m through t h e metal w a l l s
and t h e e f f e c t of t h e a d d i t i o n of hydrogen i n reducing t h e t r a n s p o r t would both be g r e a t e r t h a n would a c t u a l l y occur i f t h e a c t u a l t r a n s p o r t were p r o p o r t i o n a l t o t h e p r e s s u r e t o a power i n t h e range 1 / 2 t o 1.
The c a l c u l a t i o n s would n o t u n d e r e s t i m a t e t h e t r a n s p o r t u n l e s s
t h e t o t a l p r e s s u r e of t r i t i u m and hydrogen exceeded t h e r e f e r e n c e p r e s s u r e f o r t h e p e r m e a b i l i t y c o e f f i c i e n t , which i s u s u a l l y 1 a t m .
9 I
11.
DERIVATION OF EQUATIONS AND COMPUTATIONAL PROCEDURES
I n making t h e c a l c u l a t i o n s , w e f i r s t c a l c u l a t e t h e d i s t r i b u t i o n of hydrogen p l u s tritium i n o r d e r t o e s t a b l i s h flows and c o n c e n t r a t i o n s of t h e combined i s o t o p e s throughout t h e p l a n t .
Then w e c a l c u l a t e t h e d i s t r i -
b u t i o n of t r i t i u m throughout t h e p l a n t . For c a l c u l a t i n g t h e d i s t r i b u t i o n , t h e f l u i d s i n t h e primary and secondary systems and t h e v a r i o u s p a r t s of t h e steam system are assumed t o be w e l l mixed and t o c o n t a i n uniform b u l k c o n c e n t r a t i o n s of a l l constituents.
The c a l c u l a t i o n s are f o r s t e a d y - s t a t e c o n d i t i o n s , and
o n l y hydrogen and tritium molecules are assumed t o b e a b l e t o s o r b on t h e m e t a l s u r f a c e s , d i s s o c i a t e , and d i f f u s e through t h e metal w a l l s . The v a r i o u s p a t h s are d e f i n e d and t h e d i s t r i b u t i o n i s c a l c u l a t e d by t h e u s e of t h e f o l l o w i n g set of e q u a t i o n s .
A.
*
I n t h e primary system:
1.
T r a n s p o r t of hydrogen through t h e s a l t f i l m t o t h e w a l l of t h e p i p i n g i n t h e h o t l e g from t h e r e a c t o r vessel t o t h e h e a t exchanger: QI
hlA1(CF
- CI>
T r a n s p o r t through t h e p i p e w a l l t o t h e s u r r o u n d i n g s where t h e hydrogen p r e s s u r e i s assumed t o be n e g l i g i b l e :
2.
T r a n s p o r t of hydrogen t o and through t h e w a l l s of t h e coldl e g p i p i n g from t h e h e a t exchanger t o t h e r e a c t o r vessel:
*Symbols are d e f i n e d i n S e c t i o n I V , Nomenclature.
10
3.
T r a n s p o r t of hydrogen t o and through t h e w a l l s of t h e r e a c t o r vessel and t h e s h e l l s of t h e h e a t exchangers i n t h e primary system:
4.
T r a n s p o r t o f hydrogen t o and through t h e w a l l s of t h e t u b e s i n t h e primary h e a t exchangers i n t o t h e s e c o n d a r y system:
5.
T r a n s p o r t of hydrogen t o t h e s u r f a c e s of t h e g r a p h i t e i n t h e r e a c t o r vessel o r t o o t h e r s o r b e r :
S o r p t i o n by t h e g r a p h i t e o r o t h e r s o r b e r assuming t h a t t h e s o r b i n g s u r f a c e i s r e p l a c e d c o n t i n u o u s l y and t h a t t h e c o n c e n t r a t i o n of s o r b e d g a s i s p r o p o r t i o n a l t o t h e s q u a r e r o o t of t h e p a r t i a l p r e s s u r e :
6.
Removal of hydrogen by purge:
11
7.
T r a n s p o r t of hydrogen f l u o r i d e t o and removal by s o r b e r :
8.
Removal of hydrogen f l u o r i d e by purge:
Because t h e molecular s p e c i e s involved may c o n t a i n d i f f e r e n t numbers of hydrogen atoms, a l l t h e c a l c u l a t i o n s are done i n terms of atoms of hydrogen.
T h i s does n o t mean t h a t t h e hydrogen n e c e s s a r i l y d i f f u s e s as
s i n g l e atoms, b u t o n l y t h a t a t r a n s p o r t u n i t i s one hydrogen atom and t h e parameters are expressed i n terms of s i n g l e hydrogen atoms. Q v a l u e of 1 then r e p r e s e n t s t h e t r a n s p o r t of one-half
A
molecule of H2,
one molecule of HF, o r one-fourth molecule of a compound l i k e CH4, a l l per unit time.
Likewise, a C v a l u e of 1 r e p r e s e n t s a c o n c e n t r a t i o n of one-
half molecule of H2, one molecule of HF, or one-fourth molecule of C H 4 , a l l p e r u n i t volume. If t h e rates of i n f l o w of t r i t i u m and hydrogen atoms (R, and R2, r e s p e c t i v e l y ) t o t h e primary system a r e g i v e n , a material b a l a n c e over t h e primary system g i v e s
RL
+
8 R2
=
C Qi i=l
I n o u r c a l c u l a t i o n s , a l l flow rates i n t h e sum on t h e right-hand of Eq. 9 are p o s i t i v e o r z e r o except f o r
Q4,
side
t h e t r a n s p o r t through t h e
12
Q4 can b e p o s i t i v e ,
h e a t exchanger t u b e s t o t h e secondary system.
n e g a t i v e o r z e r o , depending on t h e c o n d i t i o n s i n t h e v a r i o u s systems. Hydrogen i s p r e s e n t i n and i s removed from t h e primary system as hydrogen f l u o r i d e , b u t w e p r o v i d e no i n p u t of HF. UF4
+ :Hz
Z
UF3
I t i s produced by t h e r e a c t i o n
+ HF
2
which h a s a n e q u i l i b r i u m q u o t i e n t
or
Corrosion and o t h e r chemical c o n s i d e r a t i o n s make i t d e s i r a b l e t o m a i n t a i n t h e r a t i o X(UF,)/X(UF,)
Z
1 / U a t a constant value,* so t h e concentration
of HF i n t h e b u l k of t h e s a l t can b e r e l a t e d t o t h e hydrogen c o n c e n t r a t i o n
1
'FF W e replace C
MU = - (ksCF)T
k7
FF by t h e e q u i v a l e n t f u n c t i o n of CF i n Eqs. 7a and 8 t o o b t a i n
e x p r e s s i o n s f o r Q, and Qe i n t e r m s of C
B.
.
F'
Secondary System:
1.
Hot-leg p i p i n g : Qio
= hioAio(CC
-k d h
- CIO) 1
(kioClo)T
.
t i 0
*This might r e q u i r e t h a t hydrogen b e added t o t h e primary systems as
a m i x t u r e of hydrogen and hydrogen f l u o r i d e .
13
3.
T r a n s p o r t through t h e primary h e a t exchanger t u b e s i n t o t h e primary system: 412 =
4.
hizA4 (Cc
-
C12)
T r a n s p o r t through t h e steam g e n e r a t o r t u b e s i n t o t h e
steam system: 413 =
5.
c13)
.
414 =
h14A14 ( c c
-
c14)
(154
Transport through t h e r e h e a t e r t u b e s i n t o t h e steam system: Q15 =
7.
-
T r a n s p o r t through t h e s u p e r h e a t e r t u b e s i n t o t h e steam system:
6.
hl3A13 ( c c
h15A15 (cc
-
ClS)
Removal by s o r b e r as hydrogen:
(164
14 8.
Removal by purge as hydrogen:
417 9.
= F3E3CC
e
Removal by s o r b e r as HF:
S i n c e w e assume t h a t t h e hydrogen f l u o r i d e does n o t release hydrogen t o d i f f u s e through t h e metal w a l l s , and t h a t t h e r e are no chemical react i o n s i n t h e secondary system t h a t make t h e c o n c e n t r a t i o n s of hydrogen and hydrogen f l u o r i d e i n t e r d e p e n d e n t , w e w r i t e s e p a r a t e material b a l a n c e s f o r t h e two s p e c i e s f o r t h e d i s t r i b u t i o n of t o t a l t r i t i u m and hydrogen:
17 R3
+
R4 =
.Z Qi i=10
I n t h e s e e q u a t i o n s all t h e R ' s and a l l t h e Q's have p o s i t i v e o r zero v a l u e s except f o r Q I 2 , Q13,
Q14 and Q 1 5 , which can have n e g a t i v e
values.
C.
Steam g e n e r a t o r system:
1.
T r a n s p o r t through t h e steam g e n e r a t o r t u b e s i n t o t h e secondary sy s t e m :
(22a)
Q z i = h2iA13(CSG - C21)
2.
T r a n s p o r t through s u p e r h e a t e r t u b e s i n t o t h e secondary system: Q22 =
h22A14(Css
-
C22)
(234
15 P
3.
T r a n s p o r t through t h e r e h e a t e r t u b e s i n t o t h e secondary system:
In t h e steam system t h e v a l u e s f o r CSGy Css
and C
SR
w i l l b e given.
The steam flows w i l l b e s o l a r g e t h a t t h e d i f f u s i o n of hydrogen through t h e m e t a l s should n o t have much e f f e c t on t h e c o n c e n t r a t i o n of hydrogen i n t h e steam.
Under t h e s e assumptions, w e do n o t r e q u i r e a material
b a l a n c e over t h e steam system.
I f hydrogen i s added t o t h e f e e d water
as h y d r a z i n e o r i n some o t h e r manner t o g i v e a s p e c i f i e d r a t i o of hydrogen t o H 2 0 , then t h i s r a t i o , coupled w i t h t h e steam t a b l e s , can b e used t o c a l c u l a t e t h e hydrogen c o n c e n t r a t i o n s i n t h e w a t e r and steam i n t h e s t e a m - r a i s i n g equipment.
Without a d d i t i o n of hydrogen t h e
c o n c e n t r a t i o n s are e s t a b l i s h e d by t h e d i s s o c i a t i o n of water.
We now need t o s o l v e t h e above e q u a t i o n s t o o b t a i n v a l u e s f o r a l l t h e flow r a t e s and c o n c e n t r a t i o n s .
We c a r r y t h i s o u t i n t h e f o l l o w i n g
sequence, d i s c u s s e d i n more d e t a i l i n Sec. 111.
1.
C a l c u l a t e CCFy C l e ,
Qle
and
Q19
from e q u a t i o n s 19a, 19b, 20
and 21b. 2.
Assume a v a l u e f o r C
3.
C a l c u l a t e Q 1 0,
C'
Qll, 416,
417
and
c16
from e q u a t i o n s l l a , l l b ,
1 2 a , 12b, 17a, 17b and 18.
4.
Calculate Q 13 ,
414,
415,
Ci3,
Ci4
and C i s from e q u a t i o n s 1 4 a ,
14b, 15a, 15b, 1 6 a , 16b, 22a, 22b, 23a, 23b, 24a and 24b, n o t i n g t h a t t h e steam system a n d t h e secondary system are coupled by t h e r e l a t i o n s h i p s Q l 3 = Q15 = - 4 2 3 -
-Q21,
414 = -422
and
16
5.
Calculate
6.
Calculate C F' relationship
412
from t h e material b a l a n c e , E q . 21a. and
C12
Q 4 = -412
C4
from E q s .
4a, 4b, 13a, 13b, t h e
and t h e v a l u e of
412
These c o n c e n t r a t i o n s should a l l b e p o s i t i v e .
o b t a i n e d i n s t e p 5. I f any one of them
i s n e g a t i v e , s t e p s 3 through 6 must b e r e p e a t e d w i t h a l a r g e r v a l u e of C
C'
7.
When p o s i t i v e v a l u e s have been found f o r C F' C 1 2 and C 4 , c a l c u l a t e Q 1 , 4 2 9 4 3 9 Qs, Q6, 4 7 , Q s , C S , CFF and C 7 *
8.
Calculate R
F
from RF =
8 C Q i i=l
-
(R1 -I- R2)
i s p o s i t i v e , hydrogen must b e added t o t h e primary system F i n o r d e r t o m a i n t a i n a b a l a n c e . This m e a n s t h a t C i s t o o l a r g e , If R
which i n t u r n means t h a t C
C
F i s t o o l a r g e , and s t e p s 3 through 8
must b e r e p e a t e d w i t h a smaller v a l u e of Cc.
is negative, F Cc i s t o o s m a l l and s t e p s 3 through 8 must b e r e p e a t e d w i t h a
l a r g e r v a l u e of C
If R
C'
When t h i s p r o c e s s h a s been r e p e a t e d u n t i l t h e r a t i o
lRl:
R21is
s u f f i c i e n t l y s m a l l , t h e flows and c o n c e n t r a t i o n s o f hydrogen p l u s t r i t i u m and of hydrogen f l u o r i d e p l u s t r i t i u m f l u o r i d e have been e s t a b l i s h e d throughout t h e p l a n t and w e can proceed w i t h t h e c a l c u l a t i o n of t h e tritium distribution.
We i g n o r e t h e d i f f e r e n c e i n t h e p r o p e r t i e s of
t h e two i s o t o p e s and assume t h a t they behave i d e n t i c a l l y .
Thus,
hydrogen and t r i t i u m compounds have t h e s a m e s o l u b i l i t i e s and d i f f u s i v i t i e s , and i f a hydrogenous compound, such as H F , i s added t o a m i x t u r e of hydrogen and t r i t i u m , exchange w i l l o c c u r t o g i v e a r a t i o of t r i t i u m t o hydrogen t h a t i s t h e same i n hydrogen* and t h e added compound.
*HP,
HT and T2.
17 I
W e now proceed w i t h t h e c a l c u l a t i o n of t h e t r i t i u m d i s t r i b u t i o n .
D.
Primary system:
1.
T r a n s p o r t through w a l l s of h o t - l e g p i p i n g : 4 3 1 = -‘FT
Q~
.
cF 2.
T r a n s p o r t through w a l l s of cold-leg p i p i n g : 432 =
3.
C
FT 42
.
(26)
T r a n s p o r t through w a l l of r e a c t o r vessel and s h e l l s of h e a t exchangers i n primary s y s t e m : 433 =
4.
C FT Q3
T r a n s p o r t through w a l l s of primary heat-exchanger t u b e s i n t o t h e secondary system:
Equations 25 through 2 7 are s t r a i g h t f o r w a r d , simply i n d i c a t i n g t h a t t h e amount of t r i t i u m flowing w i t h hydrogen i s p r o p o r t i o n a l t o t h e f r a c t i o n of t h e c o n c e n t r a t i o n t h a t i s t r i t i u m when t h e flow of b o t h i s i n t o a s i n k w i t h a z e r o c o n c e n t r a t i o n of b o t h .
Equation 28a i s s t r a i g h t f o r w a r d ,
i n d i c a t i n g t h a t t h e flow of t r i t i u m from t h e b u l k s a l t t o t h e w a l l i s p r o p o r t i o n a l t o t h e d i f f e r e n c e between t h e c o n c e n t r a t i o n s of t r i t i u m i n t h e b u l k f l u i d and t h e w a l l . additional explanation.
Equation 28b, however, r e q u i r e s some
18 .-
The rate of t r a n s p o r t of hydrogen through a metal w a l l can be expressed as DA Q = - (C; t
-
Ch)
,
where D i s t h e d i f f u s i v i t y of hydrogen atoms i n t h e m e t a l , t h e C ' s are t h e c o n c e n t r a t i o n s of hydrogen atoms d i s s o l v e d i n t h e m e t a l a t t h e i n n e r
(I) and o u t e r ( 0 ) s u r f a c e s , t i s t h e metal t h i c k n e s s and A i s t h e s u r f a c e area.
Assuming no i n t e r a c t i o n of t r i t i u m and hydrogen atoms as they
d i f f u s e through t h e metal, t h e rate of t r a n s p o r t of t r i t i u m i s QT = -DA (C.;lI
The c o n c e n t r a t i o n of hydrogen
+
-
C;cO)
.
t r i t i u m atoms i n t h e m e t a l a t t h e
surface is 1
C'
= S(kC)T
= SP'
,
where S i s a s o l u b i l i t y c o e f f i c i e n t and P i s t h e p a r t i a l p r e s s u r e of hydrogen
+
t r i t i u m and i s e q u a l t o t h e p r o d u c t of Henry's l a w c o e f f i c i e n t
and t h e c o n c e n t r a t i o n of hydrogen
+
tritium i n the salt a t the surface.
Assuming t h a t t h e r a t i o of t r i t i u m t o hydrogen
+
t r i t i u m i n t h e metal
a t t h e s u r f a c e i s t h e same as t h a t i n t h e s a l t a t t h e s u r f a c e , we can
write 'TI - S(k C )=-= I I
s
CI
and a s i m i l a r e x p r e s s i o n f o r t h e o u t e r s u r f a c e .
Q,
=
DSA t
kICTI
1
(kICIF
Then,
19
and by s u b s t i t u t i n g t h e p e r m e a b i l i t y c o e f f i c i e n t , p, f o r t h e p r o d u c t , DS, w e o b t a i n Eq. 28b.
This t r e a t m e n t i s n e c e s s a r y h e r e because
t h e n e t flows of hydrogen and t r i t i u m may b e i n o p p o s i t e d i r e c t i o n s . The e q u a t i o n s p r o v i d e a means f o r t a k i n g i n t o account t h e e f f e c t of t h e
mass a c t i o n l a w s on t h e c o n c e n t r a t i o n s of t r i t i u m i n t h e m e t a l and i t s t r a n s p o r t through t h e m e t a l .
5.
Removal by g r a p h i t e o r o t h e r s o r b e r : ‘FT
Q35 = -
Q5
cF
6.
Removal by purge:
7.
Removal by g r a p h i t e o r o t h e r s o r b e r as t r i t i u m f l u o r i d e : ‘FT
4 3 7 =--
47
cF
8.
Removal by purge as t r i t i u m f l u o r i d e :
The t r i t i u m b a l a n c e o v e r t h e primary system i s : 38
Qi
R1 =
i=31
E.
Secondary s y s t e m :
1. Hot-leg p i p i n g :
(33)
20
2.
Cold-leg p i p i n g : 441
‘CT
(35)
= -411
cC
3.
T r a n s p o r t through primary h e a t exchanger t u b e w a l l s i n t o primary system:
4.
T r a n s p o r t through steam g e n e r a t o r t u b e w a l l s i n t o t h e steam
system: 4 4 3 =
hi3Ai3(CCT - C43)
(374
C a l c u l a t i o n s of t h e t r i t i u m d i s t r i b u t i o n are b a s e d on t h e assumption t h a t t r i t i u m w i l l exchange s o r a p i d l y w i t h t h e hydrogen i n t h e steam t o form t r i t i a t e d water t h a t t h e t r i t i u m c o n c e n t r a t i o n w i l l b e e f f e c t i v e l y zero.
5.
T r a n s p o r t through t h e s u p e r h e a t e r t u b e s i n t o t h e steam system: 444
6.
= hi4Ai4(CCT
-
C44)
T r a n s p o r t through t h e r e h e a t e r t u b e s i n t o t h e steam system:
(38a)
21
7.
Removal by s o r b e r as tritium:
8.
Removal by purge as t r i t i u m :
‘CT
=-
447
417
cC 9.
Removal by s o r b e r as tritium f l u o r i d e :
‘CT
=-
448
QIS
cC 10.
Removal by purge as t r i t i u m f l u o r i d e :
449
‘CT
=-
(43)
Qi9
cC The b a l a n c e over t h e secondary system i s :
R3 =
49 C i=40
Qi
(44)
S i n c e t h e t r i t i u m c o n c e n t r a t i o n i n t h e steam system i s assumed t o b e n e g l i g i b l e , no e q u a t i o n s a r e needed f o r t h e s t e a m system.
To c a l c u l a t e t h e d i s t r i b u t i o n of t r i t i u m , w e s o l v e Eqs. 25-44 i n t h e f o l l o w i n g sequence, d i s c u s s e d i n more d e t a i l i n S e c t i o n 111.
1. Assume a t r i t i u m c o n c e n t r a t i o n , CCT, i n t h e secondary system and c a l c u l a t e
QbO,
Q41,
Q43
through
Q49
from Eqs. 34, 35, 37a,
37b, 38a, 38b, 39a, 39b, 40, 41, 42 and 43.
2.
C a l c u l a t e Q 4 * from t h e material b a l a n c e , Eq. 44.
3.
C a l c u l a t e CFT from Eqs. 28a, 28b, 36a and 36b, t h e r e l a t i o n -
ship
Q34
=
‘442
and t h e v a l u e of
442
from s t e p 2.
of CFT i s n e g a t i v e , i n c r e a s e t h e estimate f o r C s t e p s 1 through 3. proceed t o s t e p 4.
CT
I f the value and r e p e a t
When w e have found a p o s i t i v e C
FT’
we
22
5.
Calculate R
F’
where
i s t h e t e r m t h a t must b e added t o t h e l e f t s i d e of Eq. 33 i n
is positive, tritium F are too must be added t o t h e primary system, so CFT and C CT and C a r e t o o small. Adjust large; i f R i s negative, F ‘FT CT t h e v a l u e of C and r e p e a t s t e p s 1 through 5. When IRF/R1 CT is s u f f i c i e n t l y s m a l l , t h e c a l c u l a t i o n s are finished. o r d e r f o r t h e e q u a t i o n t o balance.
If R
I
23
SOLUTION OF EQUATIONS
111.
I n t h e procedure d i s c u s s e d above, w e begin w i t h t h e c a l c u l a t i o n of CCF,
C I S , Q I S and Q19 w i t h Eqs. 19a, 19b and 20, and t h e material b a l a n c e ,
Eq. 21b: QIS
= hisAie(CCF - CIS)
(194
0 and Eq. 20 r e q u i r e s t h a t Q 1 9 > 0, so i f
Eq. 19b r e q u i r e s t h a t Q l e
2
RS = 0, 21b r e q u i r e s t h a t
Q18
=
= 0.
Q19
I f R5 > 0 , w e combine 21b, 20
and 1 9 a t o o b t a i n
or
S u b s t i t u t i n g 19c i n t o 19a, s e t t i n g t h e r e s u l t e q u a l t o 19b and c o l l e c t i n g terms we o b t a i n
a where w e have d e f i n e d
and
- CIS
1
=
sczl
Y
(19d)
24 Squaring b o t h s i d e s of 19d r e s u l t s i n a q u a d r a t i c e q u a t i o n f o r C i s ; s i n c e t h e right-hand
s i d e of 19d i s p o s i t i v e , w e want t h e r o o t of t h i s
q u a d r a t i c which i s less t h a n
c:, -
a.
We have
(2a+B2)C1e
+
a2
= 0
Y
To o b t a i n t h e r o o t l e s s than a, w e want t h e r o o t w i t h t h e n e g a t i v e s i g n .
To a v o i d p o s s i b l e l o s s of s i g n i f i c a n t f i g u r e s , w e n o t e t h a t t h e product of t h e r o o t s i s a2, s o t h a t w e can w r i t e t h e s o l u t i o n i n t h e form
C1e =
) i q *
Then w e have
and
1 i t h some v a l u e f o r C Q16,
Q17
and C16.
C w e proceed t o t h e c a - c u l a t i o n of Q l o ,
E q s . l l a , l l b , 12a and 12b r e a d
910
=
PloAlo t l 0
(kloClo)'
,
Qll,
25
Qll =
PllAll tll
(kllCll)'
.
These e q u a t i o n s (11 and 1 2 ) are i d e n t i c a l i n s t r u c t u r e , as a x E q s . 1, 2, 3 , 5, 7, 1 7 and 19.
For E q s . 11 and 1 2 we d e f i n e
and E q s . 11 and 12 t h e n can b e w r i t t e n i n t h e form of q u a d r a t i c s i n t h e concentration C
i:
c;
- (2C1+Cr)Ci
+ c:
= 0
.
From E q s . l l b and 12b, t h e f l o w rates Q l o and Q l l must b e p o s i t i v e , s o t h a t t h e r o o t d e s i r e d i n each case i s t h e smaller one.
ci =
,...4('.) '
i = 1 0 , 11
W e have
,
and Qi
-- -P i A i t
1
(kiCi)=
,
i = 1 0 , 11
.
i
By p u t t i n g
C l b can b e c a l c u l a t e d i n t h e same f a s h i o n ( E q s . 17a and 17b) and t h e f l o w rates
416 and
Q17
are
26 We c o n t i n u e w i t h s t e p 4 , t h e c a l c u l a t i o n of t h e f l o w r a t e s
414 and Q l s , and t h e corresponding c o n c e n t r a t i o n s c13,
413)
C14 and C 1 5 ,
u s i n g Eqs. 1 4 a , 14b, 1 5 a , 15b, 1 6 a , 16b, 22a, 22b, 23a, 23b, 24a and 24b.
Note t h a t t h e secondary system and t h e steam system are coupled
by t h e e q u a t i o n s
The t h r e e e q u a t i o n s 14, 1 5 and 16 a l l have t h e same s t r u c t u r e and can be w r i t t e n i n t h e form
where K = 1 3 , 14 and 15, C1 = Cc, C z as C
SG '
Css
and C
SR
L = 21, 22 and 23, and we i d e n t i f y
f o r K = 13, 14 and 1 5 , r e s p e c t i v e l y .
W e can
s o l v e Eq. b f o r CL:
Since C
L
must b e non-negative,
t h e r e i s a maximum p e r m i s s i b l e v a l u e
C p ) , which i s t h e v a l u e such t h a t
or
If w e s u b s t i t u t e ( c ) i n t o ( a ) and r e a r r a n g e , w e have
27
o r , more c o n c i s e l y , CK = F(CK)
.
To l o c a t e t h e s o l u t i o n s ( i f any) of t h i s e q u a t i o n , w e need t o
< Cb a x > K
examine t h e behavior of F(C ) f o r 0 < C
K
- K-
.
We f i n d t h a t
and F'(CK) < 0, F ' ( 0 ) =
-
F"(CK) > 0
-a
.
The graph of F(CK) then looks l i k e t h e curve i n Fig. 2.
F i g . 2.
Sketch of F(CK ) vs CK.
F o r t h e r e t o b e a s o l u t i o n between z e r o and C ( m a d K
, we
must have
(max) > F ( C Y ) ) and upon s u b s t i t u t i o n of o u r e x p r e s s i o n (d) i n t o cK F(CK), w e f i n d t h a t t h i s c o n d i t i o n i s s a t i s f i e d .
the function
We w i l l now examine
28
W e note t h a t G(0) = -F(O) < 0
and G'(CK) = 1 - F'(CK) > 0
[since F'(CK) < 01
.
This i n s u r e s t h a t G(C ) h a s one and o n l y one z e r o i n t h e r a n g e K
5
cK
5
(mx).
S i n c e G"(CK) = -F"(CK)
-
G"(CK) < 0 , and t h e graph
of G(C ) l o o k s l i k e t h e curve shown i n Fig. 3. K
Fig. 3.
With a s u i t a b l e C(')
K
s t a r t i n g w i t h C(') K
, to
Sketch of G(CK) vs C K
we can compute G I = G(Ckl)) < 0 ( f o r example,
= 0) and w i t h a s u i t a b l e C('),
K
start).
G2 = G(Ci2)) > 0
An approximation t o t h e s o l u t i o n C ( T ) , i s K
d e r i v e d from t h e i n v e r s e l i n e a r i n t e r p o l a t i o n :
as shown i n F i g . 2.
A b e t t e r approximation can b e d e r i v e d w i t h i n v e r s e
quadratic interpolation:
29
With G"(CK) < 0 as shown and G'(C K ) > 0, G T = G(C:T)) w i l l b e p o s i t i v e and C F ) should be l a r g e r t h a n t h e r o o t . I f C?) i s l a r g e r t h a n CK(TI ,
w e r e p l a c e C;"' polation.
by
Cp),
G 2 by GT, and r e p e a t t h e i n v e r s e l i n e a r i n t e r -
we calculate I f , however, C F ) i s smaller t h a n C(T), K
= G ( C F ) ) ; and i f t h i s v a l u e i s n e g a t i v e , w e r e p l a c e C ( l ) by CK( X I
G
,
K
X
G1 by G x y C i 2 ) by C p ) and G 2 by G T y and repeat t h e i n v e r s e l i n e a r
interpolation.
If G X
i s p o s i t i v e , w e r e p l a c e C(2) by C F ) and G 2 by G K X
and r e p e a t t h e i n v e r s e l i n e a r i n t e r p o l a t i o n .
We t e r m i n a t e t h i s p r o c e s s
when
o r when ?e have done 50 i t e r a t i o n s . DATA s t a t e m e n t i n our program.
i n about f o u r i t e r a t i o n s f o r C
The t o l e r a n c e CTOL i s d e f i n e d -n a
We have found t h a t t h e procedure converges TOL
=
lo-'
and i n about s i x i t e r a t i o n s f o r
cTOL= The r e q u i r e d flow rates
413,
QZl,
Q14,
= h.A.(CC 11
- Ci>
QZ2,
Q15
and
QZ3
c a n now b e
computed from
Qi
Qi+8 - -Qi,
i = 13, 1 4 , 15
.
The flow r a t e of hydrogen and tritium through h e a t exchanger t u b e
w a l l s from t h e secondary t o t h e primary system, Q 1 2 ,
and from Eq. 1 3 a ,
c12
=
c
hlZA4
is
30 If t h e v a l u e f o r C l z i s n e g a t i v e , w e have used too s m a l l a v a l u e f o r Cc,
s o w e double our p r e v i o u s g u e s s and s t a r t over a t s t e p 3.
If the
computed v a l u e i s p o s i t i v e , w e proceed t o c a l c u l a t e (Eq. 13b)
and f i n a l l y ,
I f t h e computed v a l u e f o r CF i s n e g a t i v e , w e need a l a r g e r v a l u e f o r C,,b
s o w e double o u r p r e v i o u s guess and r e t u r n t o s t e p 3.
I f positive,
we proceed t o s t e p 7, t h e computation of t h e remaining flow rates 429
4 3 , 45, 46, 4 7
Q1,
a d QE and t h e c o n c e n t r a t i o n s C 5 , CFF and C 7 .
W e can write Eqs. I, 2 and 3 i n t h e form
Q. = h A L i i
(â&#x20AC;&#x2DC;F
-
and w i t h
t h e r e s u l t i n g q u a d r a t i c e q u a t i o n s can be s o l v e d i n t h e same way as t h o s e f o r C l o and C l 1 .
Eqs. 5 can b e manipulated i n t o t h e same form
with
s o t h a t we can c a l c u l a t e C5, and from i t
31 Again, Eqs. 7a and 7b can b e w r i t t e n as a q u a d r a t i c f o r
C7
with
s o t h a t w e can c a l c u l a t e 1
(k7C7lT
4 7 = B2W2A7
and
8 RF = where C
FF
Qi
-
R1
-
R2
i= 1
is CFF = M U $ , C F ) T
1
k7 This i s t h e end of t h e f i r s t p a r t of t h e procedure i f enough.
%
is s m a l l
W e t e s t t h e condition
(where t h e q u a n t i t y TTOL i s d e f i n e d i n a DATA s t a t e m e n t i n o u r program) and i f i t i s s a t i s f i e d , w e proceed t o t h e second p a r t . not, we adjust C
C
i n a v a r i e t y of ways, depending on what i n f o r m a t i o n
we have accumulated s o f a r .
two v a l u e s of C
C
If
W e carry out a preliminary search f o r
which b r a c k e t t h e r o o t , i . e . , one f o r which
n e g a t i v e and t h e o t h e r f o r which
% is
positive.
%
I f t h i s is the
f i r s t i t e r a t i o n o r i f b o t h o u r p r e s e n t and p r e v i o u s v a l u e s of R have t h e same s i g n , w e m u l t i p l y C
C
by a f a c t o r m such t h a t
F
is
32
b u t l i m i t e d t o t h e range .01
5
m
100
When w e have b r a c k e t e d t h e r o o t , w e combine i n v e r s e l i n e a r and i n v e r s e q u a d r a t i c i n t e r p o l a t i o n i n much t h e same way as w e d i d f o r t h e s o l u t i o n of t h e e q u a t i o n s f o r
C13,
C14
and C 1 5 , keeping t h e r o o t
b r a c k e t e d and a t t e m p t i n g t o reduce t h e l e n g t h of t h e i n t e r v a l containing the root.
When t h i s p r o c e s s has converged, w e proceed t o
t h e tritium c a l c u l a t i o n . With a v a l u e f o r C
CTâ&#x20AC;&#x2122;
t h e c o n c e n t r a t i o n of t r i t i u m i n t h e
secondary s a l t , we compute
Q40
â&#x20AC;&#x2DC;CT
=-
Qio
(34)
cC
(35)
33
Qi+30 442 =
= -‘CT
Cc
R3-44 0 - 4 4
Qi
i
9
=
1 6 , 17, 18, 19
1-44 3 - 4 4 4 - 4 4 5 - 4 4
(40-43)
(44)
6 - 4 4 7-44 8 - 4 4 9
and f i n a l l y
If t h i s v a l u e i s n e g a t i v e , we have used t o o small a v a l u e f o r
‘CT;
i n t h e same way as b e f o r e , we double C
a t Eq. 34.
When w e have found a p o s i t i v e
CT
and t r y a g a i n , s t a r t i n g
c42y
Again, i f C34 i s n e g a t i v e , w e need t o double C
w e compute
CT
and t r y a g a i n .
When w e have found a p o s i t i v e C34, w e compute
and c o n t i n u e w i t h t h e doubling scheme u n t i l positive.
C42,
C34 and C
FT
are a l l
W e can now compute t h e flow rates
and
38
s = cQ
i - R i
i=31
Our t e s t i s now on I%/R11,
and w e use t h e same adjustment and
i n t e r p o l a t i o n procedures as f o r C
C’
35 IV.
NOMENCLATURE
Reference Value;k
A
A = s u r f a c e area, c m z
h o t l e g of primary system ( p i p i n g and pumps)
6 X
c o l d l e g of primary system ( p i p i n g )
5
lo5
x lo5
r e a c t o r vessel and h e a t exchanger s h e l l s
3.5
x
6 10
t u b e s of primary h e a t exchanger
4.9
x
7 10
c o r e g r a p h i t e f o r s o r p t i o n of hydrogen
7 5.2 X 1 0
c o r e g r a p h i t e f o r s o r p t i o n of hydrogen fluoride
5.2 X 10
7
hot l e g of secondary system ( p i p i n g , pumps, h a l f of s h e l l s on s t e a m - r a i s i n g equipment)
1.1 x 10â&#x20AC;&#x2122;
c o l d l e g of secondary system ( p i p i n g , h a l f of s h e l l s on s t e a m - r a i s i n g equipment)
8.8 X
A4
Name**
7
4.9
x
lo6 10
7
7
t u b e s of steam g e n e r a t o r s
3.1 X 10
t u b e s of s u p e r h e a t e r s
2.7
X 10
t u b e s of r e h e a t e r s
1.8
x lo7
s o r b e r of hydrogen
0
7
--s o r b e r of hydrogen f l u o r i d e
0
*The r e f e r e n c e v a l u e s are based on t h e d e s i g n of a 1000 IWe molten s a l t b r e e d e r r e a c t o r p l a n t d e s c r i b e d i n ORNL-4541. nkAcronym used i n FORTRAN computer program; i f no e n t r y a p p e a r s , t h e parameter i s n o t used i n t h e program.
36
Reference Value
B
= sorption factor, atoms/cm2atm
B1 B2 B3
B4
c
=
+ tritium on
core graphite
hydrogen
=
hydrogen fluoride on core graphite
=
hydrogen system
=
+
B
2
=
3
x
1o2I
3
x
1o2I
1
x
l0l8
1
x
tritium on ssrber in secondary
hydrogen fluoride on sorber in secondary system
Name
concentration, atoms/cm3 cF
=
hydrogen
+
CF
tritium in bulk of primary salt
+ tritium as hydrogen fluoride in bulk of primary salt
CFF
=
tritium in bulk of primary salt
CFT
=
hydrogen
CFF = hydrogen
CFT
Cc
CCF = hydrogen
+ +
cc
tritium in bulk of secondary salt
tritium as hydrogen fluoride in bulk of secondary salt
CCF CCT
CCT = tritium in bulk of secondary salt CSG = hydrogen in bulk of water in steam generator (672'K) Css
=
=
C2
C3
=
9
lolo
x
CSG
css
hydrogen in bulk of steam in reheater (755째K)
CSR
C1
hydrogen in bulk of steam in superheater (783 O K )
2 X
hydrogen + tritium in salt at surface of hot leg of primary system
=
hydrogen + tritium in salt at surface of cold leg of primary system
=
hydrogen + tritium in salt at surface of reactor vessel and heat exchanger shells
1 X 10"
CSR
C
37 Reference Value ‘4
‘5
=
=
hydrogen + tritium in salt at surfaces of heat exchanger tubes in primary system hydrogen + tritium in salt at surfaces of core graphite in primary system
‘6 ‘7
=
hydrogen fluoride in salt at surfaces of core graphite in primary system
‘8 ‘9
‘lo ‘11 ‘12
‘I3
‘I4
‘15 ‘16 ‘17 ‘18
=
hydrogen + tritium in salt at surface of hot leg in secondary system
=
hydrogen + tritium in salt at surface of cold leg in secondary system
=
=
hydrogen + tritium in salt at surfaces of heat exchanger tubes in secondary system hydrogen + tritium in salt at surfaces of steam generator tubes in secondary system
=
hydrogen + tritium in salt at surfaces of superheater tubes in secondary system
=
hydrogen + tritium in salt at surfaces of reheater tubes in secondary system
=
hydrogen + tritium in salt at surfaces of sorber in secondary system
-
--
=
hydrogen fluoride in salt at surfaces of sorber in secondary system
Name
38
Reference Value
Name -
C21 = hydrogen in steam at surfaces of steam generator tubes in steam system C22 = hydrogen in steam at surfaces of superheater tubes in steam system C23 = hydrogen in steam surfaces of reheater tubes in steam system
C34 = tritium in salt at surfaces of heat exchanger tubes in primary system
C42 = tritium in salt at surfaces of heat
exchanger tubes in secondary system C43 = tritium in salt at surfaces of steam generator tubes in secondary system C44 = tritium in salt at surfaces of superheat.er tubes in secondary system C45 = tritium in salt at surfaces of reheater tubes in secondary system
E
=
E
efficiency El
E2
E
E4
=
=
=
=
removal of hydrogen + tritium from purge stream in primary system
5
x
removal of hydrogen fluoride from purge stream in primary system
1.7
removal of hydrogen + tritium from purge stream in secondary system
1.8 X
removal of hydrogen fluoride from purge stream in secondary system
1.8
10-1
x
x
lo-'
39
Reference Value
F
=
F
flow rate, cm3/sec F1
F2
F3
F4
=
=
purge stream for removal of hydrogen tritium from primary system
+
purge stream for removal of hydrogen tritium from secondary system
=
purge stream for removal of hydrogen fluoride from secondary system
5
3 . 6 X 10
purge stream for removal of hydrogen fluoride from primary system
=
x
3.6
+
lo5
5 5.0 X 10 5 5.0 X 10
H
h = mass transfer coefficient, cm/sec hl h2 h3
h4 h5
h6 h7
=
=
=
hydrogen through primary salt to surfaces of hot leg in primary system
1.6 X
hydrogen through primary salt to surfaces of cold leg in primary system
6.0
x
hydrogen through primary salt to surfaces of reactor vessel and heat exchanger shells in primary system
9.0
x
1.9
x
3.0
x
= hydrogen through primary salt to surfaces
of heat exchanger tubes in primary system =
hydrogen t h r o u g h primary s a l t t o s u r f a c e s
of core graphite in primary system
--
--
=
hydrogen fluoride through primary salt to surfaces of core graphite in primary system
h8
--
--
hg
-
--
Name
h,, = hydrogen through secondary salt to surfaces I U of hot leg in secondary system
--3.0
x
----7.4
x
IO-~
40 Reference Value hll
= hydrogen through secondary s a l t t o s u r f a c e s
3.4
x
of t u b e s i n h e a t exchangers i n secondary system
9.7
x
hydrogen through secondary s a l t t o s u r f a c e s of t u b e s of steam g e n e r a t o r s i n secondary system
4.3
x
4.7
x
of c o l d l e g i n secondary system
h12
hI3
h14
h15
= hydrogen through secondary s a l t t o s u r f a c e s
=
= hydrogen through secondary s a l t t o s u r f a c e s
of t u b e s i n s u p e r h e a t e r s i n secondary system = hydrogen through secondary s a l t t o s u r f a c e s
of t u b e s i n r e h e a t e r s i n secondary system = hydrogen through secondary
h16 hl7
h18
k
lo-â&#x20AC;&#x2122;
8.0 X 10-1
---
- -= hydrogen f l u o r i d e through secondary s a l t
t o s u r f a c e s of s o r b e r i n secondary system
-
--
=
hydrogen through water t o s u r f a c e s of t u b e s of steam g e n e r a t o r s i n steam system
=
hydrogen through steam t o s u r f a c e s of t u b e s of r e h e a t e r s i n steam system
= Henryâ&#x20AC;&#x2122;s l a w c o e f f i c i e n t ,
8.0 X 10-1
---
h22 = hydrogen through steam t o s u r f a c e s of t u b e s of steam g e n e r a t o r s i n steam system h23
4.0 X
salt t o surfaces
of s o r b e r i n secondary system
h20 hZ1
Name
(cm3me1t) (atm.) atom H
5.8 12
30 K
41 Reference Value =
,
1.7 I!
kl k2 k3
k4 k5 k6 k7
=
=
=
=
=
moles HF (cm' melt) (atm.)
hydrogen in primary salt in hot leg in primary system (973°K)
1.2
x
10-l~
hydrogen in primary salt in cold leg in primary system (838°K)
2.0
x
10-l~
hydrogen in primary salt in reactor vessel and heat exchanger shells in primary system (908'K)
1.5
x
10-l~
hydrogen in primary salt in heat exchangers in primary system (908°K)
1.5
x
10-l~
hydrogen in primary salt in reactor core in primary system (923°K)
1.4
x
--
--
=
hydrogen fluoride in primary salt in reactor core in primary system (923°K)
---
k8 -
x 10-l~ ---
kg
---
--- --
=
k10 kll k12
k13
=
=
=
=
k14 =
k15
1.5
hydrogen in secondary salt in hot leg in secondary system (894°K)
3.4
hydrogen in secondary salt in cold leg in secondary systern (723O K )
5.0 X
hydrogen in secondary salt in heat exchangers in secondary system (809 OK)
4.0 X
hydrogen in secondary salt in steam generators in secondary system (783°K)
4.5
x
10-l8
hydrogen in secondary salt in superheaters in secondary system (866°K)
3.5
x
10-l8
hydrogen in secondary salt in reheaters in secondary system (810°K)
4.0 X
x
10-l8
Name
42
Reference Value k16 = hydrogen in secondary salt in contact with sorber in secondary system (773°K)
4.4
x
hydrogen fluoride in secondary salt in contact with sorber in secondary system ( 7 73 OK)
1.1
x
hydrogen in steam in steam generators in steam system (660°K)
4.5
x
hydrogen in steam in superheaters in the steam system (755°K)
5.1 X
hydrogen in steam in reheaters in steam system (714%)
-20 4.8 X 10
k18
=
=
k21 =
k22 =
k23
M
=
equilibrium quotient for reduction of UF by 4 hydrogen, atmr/’, (923’K)
1.12 X
M
P
p = permeability coefficient for hydrogen in metal (atoms H) (mm) = 1.5 (sec) (cm’) (atm) 112 p1
p2 p3
p4
=
=
=
=
x
Name
16 (cm” H, STP)(mm) 10 p’ (hr) (em’) (atm) ”’
at average temperature of metal in hot leg in primary system (973’K)
2.1
at average temperature of metal in cold leg in primary system (838°K)
6.7 X 10
at average temperature of metal in reactor vessel and heat exchanger shells in primary system (873’K)
9.0
x
10
at average temperature of metal in tubes in heat exchangers in primary system (873 O K )
9.0
x
14 10
x
15 10
14
14
43
Reference Value
*lo
=
=
at average temperature of metal in hot leg in secondary system (893°K)
1.1
at average temperature of metal in cold leg in secondary system (723°K)
14 1.8 X 10
-
9.0
p12 - p4
p13 = at average temperature of tubes in steam generators in secondary system (723°K)
'14
=
=
P
=
x
Name -
15
10
x 14
1.8 X 10
at average temperature of tubes in superheaters in secondary system (838°K)
6.7 X 1 0
at average temperature of tubes in reheaters in secondary system (773°K)
3.5
14
x
14
10
pressure, atm. or other appropriate units
Q = rate of transport, atoms of hydrogen and/or tritium per second Q,
Q2
=
hydrogen + tritium through walls of hot leg in primary system
=
hydrogen + tritium through walls of cold leg in primary system
+ tritium through wall of reactor vessel and shells of heat exchangers in primary system
Q3 = hydrogen
Q,
Q, Q6
=
=
hydrogen + tritium through walls of tubes in heat exchangers from primary system to secondary system hydrogen + tritium to core graphite in primary system
= hydrogen
system
+
tritium to purge in primary
Q
44 Reference Value = hydrogen f l u o r i d e t o c o r e g r a p h i t e i n
Q,
primary system = hydrogen f l u o r i d e t o purge i n primary
Q,
system
+ t r i t i u m through w a l l s of h o t l e g i n secondary system
= hydrogen
‘lo
+ t r i t i u m through w a l l s of c o l d l e g i n secondary system
= hydrogen
+ t r i t i u m through w a l l s of t u b e s i n h e a t exchangers from secondary system t o primary system =
Q,,
Q13
Q14
Q,,
= hydrogen
= hydrogen
steam g e n e r a t o r t u b e s from t h e secondary system i n t o t h e s t e a m system =
hydrogen + t r i t i u m through w a l l s of t h e s u p e r h e a t e r t u b e s from t h e secondary system i n t o t h e steam system
+ t r i t i u m through w a l l s of t h e r e h e a t e r t u b e s from t h e secondary system i n t o t h e steam system
= hydrogen
= hydrogen
Q16 Q,,
+
-Q4 t r i t i u m through walls of t h e
+
t r i t i u m t o s o r b e r i n secondary
+
t r i t i u m t o purge i n secondary
system = hydrogen
system = hydrogen f l u o r i d e t o s o r b e r i n secondary
Q18
system = hydrogen f l u o r i d e t o purge i n secondary
‘19
system
‘”
= hydrogen through w a l l s of steam g e n e r a t o r
t u b e s from steam system i n t o secondary system = -Q13
Name
45
Reference Value Q,,
=
hydrogen through walls of superheater tubes from steam system into secondary system =
-Q14
Q23
=
hydrogen through walls of reheater tubes from steam system into secondary system = -Q15
-
--
Q,,
=
tritium through walls of hot leg in primary system
Q,,
=
tritium through walls of cold leg in primary system
Q,,
= tritium through wall of reactor vessel
Q24-Q30
and shells of heat exchangers in primary system =
tritium through walls of heat exchanger tubes from primary system into secondary system
Q35
=
tritium to core graphite in primary system
Q,,
=
tritium to purge in primary system
Q,,
=
tritium fluoride to core graphite in primary system
,Q
=
tritium fluoride to purge in primary system
Q34
â&#x20AC;&#x2DC;40
Q41
= tritium through walls of hot leg in
secondary system =
tritium through walls of cold leg in secondary system
Q42 = tritium through walls of heat exchanger tubes from secondary system into primary system = -Q34
Name
46 Reference Value Q,,
=
tritium through walls of steam generator tubes from secondary system into steam system
Q,,
=
tritium through walls of superheater tubes from secondary system into steam system
Q45
=
tritium through walls of reheater tubes from secondary system into steam system
Q,
=
tritium to sorber in secondary system
Name
Q47 = tritium to purge in secondary system
R
=
Q,,
=
tritium fluoride to sorber in secondary system
Q,,
=
tritium fluoride to purge in secondary system R
rate of production or addition, atoms/sec
- tritium in primary system R1 - hydrogen to primary system R2 R
3
R4 R5
17 5.8 X 10
= tritium in secondary system
- hydrogen to secondary system - hydrogen fluoride to secondary system
-
or tritium to primary system % = hydrogen in order to obtain overall material balance
T
=
temperature,
O K
t = wall thickness, mm t t
1 2
T
=
hot leg in primary system
13
=
cold leg in primary system
13
47 Reference Value t3 t
t
t t t t
reactor vessel and heat exchanger shells in primary system
50
tubes in heat exchangers in primary system
1
=
hot leg in secondary system
13
=
cold leg in secondary system
13
=
=
10 11 12
13
14
t
15
= t
4
=
tubes in steam generators
=
tubes in superheaters
=
tubes in reheaters
U
=
ratio X UF4'XUF 3
w
=
replacement rate, fractiodsec W1
W2 W3 W4
X
=
=
Name
core graphite or other sorber of hydrogen in primary system
100
W 1
= core graphite or other sorber of hydrogen
fluoride in primary system
1
=
sorber of hydrogen in secondary system
1
=
sorber of hydrogen fluoride in secondary system
1
mole fraction
U
49
V.
COMPUTER PROGRAM, INPUT INSTRUCTIONS AND SAMPLE PROBLEM
The FORTRAN-IV program listed in the Appendix was written to provide a flexible and easily used tool for parameter studies.
Many of the
system parameters listed in Sec. IV have standard or reference values, and we have written the program to allow the user to specify a new value for any parameter, to use the reference value, or to reset a parameter to its reference value.
Instructions to the program are in the form of
simple commands, followed by numerical values as required. Output from the program consists of the summary of concentrations, flow rates and fractions shown in Fig. 2, any input commands, and various messages from the program to display the progress of the iterative parts of the calculation. The three options currently available to the user are (a)
OUTPUT
(b)
OUTPUT--ALL- CRBE*
(c)
OUTPUT--ALL-PRINTER
all commands begin in column 1; (the underline indicates a blank space)
With choice (a), the summary output is sent to logical unit 20 and all other output is sent to logical unit 6 (the line printer); with choice
(b), all output is sent to logical unit 20; and with choice (c), all output is sent to logical unit 6 .
For choices (a) and ( b ) , appropriate
data definition (DD) statements for unit 20 must appear in the user's job control language. *The program was designed to be used from a remote terminal with the Conversational Remote Batch Entry system; hence the use of "CRBE" as a keyword. However, the program in no way depends upon the availability of the CRBE system.
50
To change v a r i o u s system parameters, t h e command i s CHANGE--XXX
where XXX i s r e p l a c e d by t h e a p p r o p r i a t e v a r i a b l e name as l i s t e d i n Sec. I V .
CFF,
(CF,
I f t h e v a r i a b l e name r e f e r s t o one of t h e named c o n c e n t r a t i o n s
..., CSR>,t h e n e x t l i n e of
parameter v a l u e i n c o l s . 1-10.
i n p u t must c o n t a i n t h e new
I f t h e v a r i a b l e name r e f e r s t o any of
t h e s u b s c r i p t e d v a r i a b l e s i n Sec. I V , t h e n e x t l i n e must c o n t a i n a s t a r t i n g i n d e x , nl,
a s t o p p i n g index n
and t h e new v a l u e s f o r t h e
2
v a r i a b l e s s p e c i f i e d by t h e s u b s c r i p t s n
1
through n
2'
A maximum of
seven c o n s e c u t i v e v a l u e s i s allowed; i f t h e r e are more t h a n seven, p u t t h e subsequent v a l u e s on subsequent l i n e s .
s t a r t i n g index of zero.
1 3 0
I
The f o l l o w i n g example i l l u s t r a t e s t h e format.
6 2 *
+
T h i s w i l l i n s e r t new v a l u e s f o r A
1.0 X
lo6,
End w i t h a l i n e w i t h a
6 7.0 X 10 and 62 X
lo6,
and A13
A2, A
1'
of 1 . 2 X 1 06 ,
3
respectively.
I f o n l y one v a l u e i s
t o be changed, t h e second s u b s c r i p t need n o t a p p e a r . t h e concenThe u s e r can supply s t a r t i n g estimates f o r C C and C CT ' t r a t i o n s of hydrogen p l u s t r i t i u m and t r i t i u m i n t h e b u l k of t h e secondary s a l t , w i t h t h e "CHANGE" t h e program w i l l u s e 1 X 10"
command.
for Cc and 1 X
I f no v a l u e s are s u p p l i e d
lo1'
for C
CT
T o perform a c a l c u l a t i o n when a l l t h e n e c e s s a r y changes have been
made, t h e command i s RUN A c a l c u l a t i o n w i l l then be done w i t h t h e parameters s p e c i f i e d .
For subsequent c a s e s , a l l parameters w i l l have t h e v a l u e s p r e s e n t a t t h e end of t h e p r e c e d i n g c a l c u l a t i o n ; t o change t h e p a r a m e t e r s , t h e u s e r can supply a d d i t i o n a l "CHANGE"
commands.
T o reset p a r a m e t e r s t o
t h e i r r e f e r e n c e v a l u e s , t h e command i s RESET
---XXX i s l e f t b l a n k , a l l p a r a m e t e r s w i l l b e r e s e t ; i f "XXX"
I f "XXX"
is the
name of a s u b s c r i p t e d v a r i a b l e , a l l e n t r i e s w i t h t h e given name w i l l b e reset; and i f r l ~ X X ' 'i s t h e name of one of t h e named c o n c e n t r a t i o n s (CF,
CFF,
..., CSR )
then j u s t t h a t c o n c e n t r a t i o n w i l l b e reset.
f o r example, a f t e r running t h e c a s e s p e c i f i e d by t h e "CHANGE"
If,
command
i n t h e example, a u s e r p u t RESET ---A
t h e n a l l t h e A ' s would b e reset t o t h e i r r e f e r e n c e v a l u e s . The program w i l l s t o p when an e n d - o f - f i l e on t h e s t a n d a r d i n p u t u n i t , i . e . ,
condition is detected
when i t r u n s o u t of d a t a .
The i n p u t and o u t p u t f o r a sample problem are shown i n F i g s . 4 and 5. tion.
Reference v a l u e s from S e c t i o n I V w e r e used i n t h e sample c a l c u l a The r e s u l t s i n d i c a t e t h a t 30 p e r c e n t o r more of t h e t r i t i u m might
r e a c h t h e steam system i n a l a r g e power r e a c t o r u n l e s s s p e c i a l measures
are t a k e n t o c o n f i n e t h e t r i t i u m ,
52
1
1
1 2 ' 3 1 4 ' 5 16 7 18 9 10 11/12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
/ /
E X E C
F @ R T H L G Y G O S I Z E = 6 2 K
/ / L K E D . S Y S I N H E X
*
D D
D E C K
/ * / / G @ . F T 0 5 F 0 0 1 @ U T P U T
A L L
D D
*
P R I N T E R
R U N C H A N G E 1 1 3
3
A 1 . 2
+ 6
6 . 2
+ 7
1 . 0
+ 6
0
R U N Z I L C H
/ * / / Fig. 4 .
Sample Problem Input
7 . 0
+ 6
53
V A L U E S I N ARRAY V
18 S T A R T S A T
1
3 5 ~ 0 0 0 0 0 005 5o200000 07 ---8,80090D_Db 4.*9OQ04D 07. 0.0 - 1 ~ O O O O O D 00 6.000000 -1-000000
HAME B
05
00
5 USEC
0IMEkSIO)r
1
~
I
2
~
~
50 USED
1
Q.O 0.0
_.
10 U S E D
2
~LiQOO_O_O130 0 10000000 10
NAWE E
-1.COOOOQ 00 2 ~ 0 0 0 0 0 0 10 5 usEn
CIMENSION
1
2
- 5 ~ O Q Q O Q O ~ O 1 1.700000-02
.__
hAPE
F
-1oooocco
3o100090 0 7
2-700CCC
5 USE0
DIWEkSIGh
1
2
3.600000
05
4 STARTS A T 3
45 S T A R T S A T
5.2CCOOD 0 7 lo100000 0 7
1-80000D 0 7
21
5
4
1.ooocco
18
26 5
4
0.0
0.0
0.0
0.0 0 .o 0 00 0.0 0.0 0 -0 0 00 0 00
0.0
0.0
0.0 0.0 0.0 0.0 0.0 0- 0 0.0
0.0 COG 0. c
9 STARTS A I 3
-lo000000 00 9-000000 A1
4 STIRTS 3
AT
1.8COOOO-01 4 STbRTS A T 3
05
5oOGOOOO 0 5
25 USEC
23 S I A R T S A T
3.600000
07 00 07
0 00
3
0 00 -0 00 0.0 0.0 0.0 0.0 0 00
OIMENSIOh:
4.900COO
00
2
hAPE CN 1
06
.3eGWOOD l l 2 1 _ 1*000000 1 8
DIYEhSION
hAME C
3.500000
-1.ocoooo
5
4
c. c 0.0 0.0
c.
0
16
4 1.OOOCCO 11 1 e O O O G C O 11
5 -1-COOOOD
00
n6 4
5
Ao8OOCCC-03
91
4
5
5 o O O C C C C 05
..
OIPFhSIOh
NAWF H
1 lo600000-02 - 1 o C O O O O O 00 - - -.3340GOOC-0.2 R,OOQ000-01 5 o 8 0 0 0 0 0 00
Fig. 5A.
2 6.000000-03 3.000000-03 90 700000-02 -1.000000 00 l o 2 0 0 0 0 0 01
3 9-OCOOOO-05 ~ 1 ~ 0 0 0 0 000 0 4m3COOoD-02 8.000000-01 3 ~ 0 0 0 0 0 001
96 4
1. 9 O O C C C - 0 2 -1. COOCCO 00 4- 7 O O C C C - 0 2 -1.OOOCCO 00
5
3-000000.03 7.400000-02 4~COOOOD-02 -1.COOOOO OC
List of Parameter Values Used in Calculation.
54
VALUES I N A R R I Y V -__-___ NAPE K OIHENSION
1 l o 200000-1
4,400000-18 4rSOOOOD-20 NACIE
P
000-1 7 1-500000-19
7
-1oOOOOOC 00 S,PQQQQ&18
2.000
4maOQOQO-l& -1 oOoO000 0 0
-
5~100000-20
_______
.
NAME II
9,000000
5,600000
17
2-
1oSOOOOO-17
A- 5 O O C C D - 1 7
. l o O C O O O D 00 4 500000-1 8
-1,OQOCCC 00 3-500C CO- 18 -1, C O O C C O 00
1.1OOOOD-20 4 oR00000-20
1 -
1,300000
01 00 01
4-
14
-1oOOOOOD 00 Lm8COOOD A4
9,ooocco 14 -P,OOOCCO 00 60700CCO 14
5 S T A R T S A T 156 0.0
LO
USED
-1,COOOOD
00 1,lOOOOD 15 3,500000 14
e
5 co0
0.0
15 S T P R T S A T 176 4
5
1 - O O O C C O CC -1,oooccc 00 00 2mGOOCCO 00
-1,c00600 1,300000
3
-.
-1,000000 1,300000 hAWF h
QAIOOOOD
5
4
3
2
1o4COOOO-17 3,4C0000-18 4 0000 OD- 1 8 ~ 1 ~ C O O O O0D0
A5 S T A R T S AT A46
.
0-0
OIMENSIOL
LAWF T
lo300000 01 -1,000000 1,000000
00 00
OIWENSIOh 5 USEO 2
1000Q000 0 0
1,000000
00
1 USED
CIMCNSIOA
1 .
10 U S E O
CIWENSION
A -
14
5
4
3
15 6-700000 14 00 -10000000 0 0
lo800000 14
AAMF ?4
3
_ .
.
7,100000
_-____
23 S T A R T S AT A21
2
-1+oooooo
.
2 0 USED
DIPElrSIOh 1
___.
2 5 USED 2
2
5aOOOOOO 0 1 00
-1,000000 2.000000
4 S T A R T S A T 196 3
1,000000
A,OOOCCO
00
1 S T b R T S A T 201 3
1,cooooo oc 5
4 00
4
5
4
5
.
1o120000-06
NAME U
1 USED
OIMENSlflh
1
2
1 S T A R T S A T 202
3
a
F i g . 5A. (Continued)
.
00 01
55
I T E R A T I V E S O L U T I O N FOR CC NCC
cc 1
0
1 2
2.521160 2.52116D
10 10
5.931311)
LO 5.742381) 10
4
2.521161)
10
5.740250
LO 5.740120
CC2
RFX
CGX
CCL
10
3.474620 -2.912240 1,623790 1.927410 1.13535D 1.027470
17 17 16 14 13 08
1.00000D
11
1.OOOOOD
11
5.742380
10
I T E R A T I V E S O L U T I O N FOR C C T NCC
0
cc L
cc 1 1-000000 10
1
Fig. 5B.
cc x
cc2
RFX
-4.714000 4.337840
17 16
Output from Iterative Calculations.
5.740120
10
56
O U T P U T SUMMARY STEAM SYSTEM FLOW OF H + T I N T O STEAM S Y S T E M F L O W OF T I N T O S T E A M SYSTEM FLOW O F H I N T O S T E A M S Y S T E M F R A C T I O N O F T I N T D STEAM S Y S T E M SECONDARY S Y S T E M FLOWS H + T I N T O SECONDARY FROM P R I M A R Y T I N T O SECONDARY F R O M P R I M A R Y H + T THRU P I P E W A L L S I N T O C E L L S T THRU P I P E WALLS I N T O C E L L S S O R P T I O N @Y S I N K H + T T HF TF R E M O V l V B Y PURGE H + T T HF TF FRACTION OF 1 P A S S I N G THRU P I P E M A L L S SORBED B Y S I N K A S T SORBED BY S I N K A S T F REMOVED B Y P U R G E A S T REMOVED B Y PURGF A S TF C O N C E N T R A T I O N S I N SECONDARY S A L T H + 1 (CC) T (CCT)
HF
(CCF)
1 . 7 1 0 7 2 0 17 1.76310D 17 -5.238000 15 30 03983D-01
2.385010 2.390470
17 17 6,226260 16 5.79300D 16
0.0 0.0
0.0 0.0 5.16611D 4.806620 0.0 0.0
15 15
9.98793 0-02 0.0 0.0 8 2 872 70-03 0.0
.
5.74012D 5.340690 0.0
10 10
P R I MAR Y S Y S T E M FLOWS
+ T THRU WALLS I N T O CELL T THRU WALLS I N T O C E L L SORPTION ey SINK H + T H
T HF TF R E M O V A L B Y PURGE H + T T HF TF F R A C T I O N Of T P A S S I N G THRU WALLS I N T O C E L L SORBED BY S I N K AS T S O R B t C BY S I N K AS TF REMOVED B Y PURGE A S 1 R E M C V E D B Y PURGC A S TF C O N C E N T R A T I O N S IN P R I M A R Y S A L T ti + T ( C F ) T ( CFT HF ( C f F )
F i g . 5C.
O u t p u t Summary.
3 . 6 8 4 3 6 0 15 3067847D 15 4.451300 4.44419D 2.328010 2.324350
16 16 17 17
5.136120 5.127910 9.13321D 9. 1 1 8 6 1 0
16 16
15 15
6-342190-03 7.662390-01 4. 007500-01 8 - 84122 D-02 1.57217D-02
2 o 8 5 3 4 D D 11 2 . 8 4 8 6 4 0 11 1 . 4 9 2 3 5 0 12
57
Fig. 5D.
Output Produced by "CHANGE" Command.
58
IN
VALUES
AAAIY V - -.
___- -_
hAMf A
OIWENSIOh
1 1.200000
06
-1.COOOOO
00
20 USED 2
1.000000 06 5 ~ 2 0 0 0 0 007
18 STdRTS A T 3 7.000000
06
-1.000000
00
4c9000Q@4 7
.
0.0 AACF B
OIWENSION 1
5 USEC
4 STARTS AT
3*aOQo.QD 21-
c
OIMENSIClh 1
50 USED 2
7-944140 07 -_(LO---.
2.996290
09
2.873iao
4.041490 3,038670 0 *# 0 -0
02
0.0 9.001530
10
11
nao
1.055700
10 U S E C
OIWENSION
5,435520
10
-
1 m O O O C C C 18 26 5
4
011
1.3795EC 0.0
10
1-413130 OS 0.0
11
0-0
c. c
2.867830 00 0
08
10
407459IC 08
0. 0
0.0 1.165100 5
4
4 STARTS A T
08
76
3
5.2a42co
i.aooccc
io 11
0.0
86
3
2
0.0
0. 0
9 STbRTS A T
5 USEC
5
6 944380- 0'3 6,136180 00
ld6002R-_12 2.90143~ AA 2m000000 10 9.oaoow 11
DIWENSIOk
1
21
10
2
-AUQ3D_U_-
oa
7.732730 0.0
3.167720
11
07 07
OS
1.000640
0.0
1
L ~ Q O C C D 07
5.200000 1.100000 1.800000
1.620350
0.0 11
00
0no 6.774C80 0 00 0 00 0a0
QLa__ _ _ _ _ _ _ _ _
NAUE E
45 S T L R T S A T 3
0.0
000 k b P & CN
4-YOOCCD 07 -1oOOOCCO
4
l a O C O Q Q i 2 18
6.585480 07 - - lcB2245D-PS
5
4
3
2
-21_-
kAWF
51201)000 97 0 00
-1~000000 00
1
5
4
5 3-600000 0 5
3.600000
05
--__ - - - __-AdWE H 1
OIWENSIOh. 25 U 5 E D 2
1.600000-02 - 1 ~ 0 0 0 Q 0 000
1
9
05
-1,COOOOO 1.200000
CO
01
S.OOOCO0
05
.
23 S T L R T S A i 3
6 ~ 0 0 0 0 0 0 ~ 0 3 9.000000-05 -1-OCOOOD 00 3.000000-03
3.40COOa-82- 9 ~ 7 O o O ~ Q D - 0 2 8m000000-01 5.800000 0 0
5.000000
- ._
96 4
1-9OOCCD-02 - 1 - O O O C O C 00 4 ~ 3 0 0 0 0 0 ~ 0 2 4m1OOCCC-92 8.00QOOO-01 -1.COCCCD 00 3.OQOOOD 0 1
5 3.000000-03
7.400000-02 4.00000D-92 -1.cooooo 00
Fig. 5E. List of Parameter Values Used in Calculation After ~ ~ Command. ~ ~ 9 1
59
I N ARRAY V
VALUES ---
__
_-- .
-
hAWF K
CIMENSIQE
1
25 USED 2
1-200001)-17 -lo000000 00
23 S T A R T S A T 121 3
2-000000-17 1-500000-19
1-500000-17 -1.000000
--_._I*QOQQQD-lB.. 4.000000-18
4.500OOD-i8 1.100000-20
4,4000oc-18 - 1 -oooooo 0 0 4-500000-?0 5~100000-20
hAWF
F
DIWFhSIflN 1
.-__
. -
. _
.
2*100000 15 -LOOC)OOO 00 1-800000 14
&AWE T -
-1- ooocco 0 0
1-400000-17 3-400000-18 4. COOOOD-18
-1,coooao oc
15 S T A R T S AT 146 3
5
4
__
6o700000 14
-i,oooooo 9-000000
00
9.000000
-i.oooooo 1.800000
14
14 00
14
20 USE0
00
6-700CCO 14
3
-1.COOOOO
OC
~ i o o o o ois
3.500000
14
5
4
0.0
OIMENSIOk
9-000000 14
-1-aoccco
5 S T A R T S A T 166
USFC
0.0
0- 0
COG
15 S T b R T S A T 176
7
1 - ---
1- 5OOCCD-17 OC 3- 5 O O G C C - 1 8
-1oCOOCCD
4.800000-20
20 USED 2
NAPF A OIHEhrSICjN 10 ~- l-. _ _ . . 2 S ~ ~ O O Q O 1O7
00
5
4
3
5
4
-- -
1-300000 01 -1-COO0OD
00
1-300000 01
1.300000 01 -1-000000 00 1-OOOOCO O C
5.00C000
01 00 2 ~ 0 0 0 0 0 000
-1.000000
1 - O O O C C O 00 -1-COOOOO 00 1.300000 01 -1-OOOCCC 00 2oOOOCCC 00 l~C0000000 5
1-cooooo
hAWE l~
1
00
1-aooooo
00
1 USED
OIWENSION
i.oo0000
00
4
F i g . 5E.
00
1 S T A R T S A T 202 P
2
i.oootcc
(Continued).
4
5
60
I T E R A T I V E S O L U T I O N FOR CC NCC
0 1 2
cc 1
ccx
CCL
1,440890
3.241680 3.241680
10
40445220 LO
4 3.241680 10 4.419000 I T E R A T I V E S O L U T I O N FOR C C T
0 1
cc 1
cc L
2.672770
F i g . 5F.
10
17 17 20914080 15 6,331820 12 1 * 4 1 9 0 9 0 11
5.740120 1 0
-1.339230
10 4.419060
N CC
cc2
RF X
10
ccx
10
4 * 4 1 9 0 6 0 10 CCZ
RFX
1.74565D -2.023750
50740120 10
17 17
50340690 L O
Output from Iterative Calculations With New Parameters.
61
OUTPUT SUMMARY
STEAM SYSTEM FLOW OF H T INTO S T E A M S Y S T E M FLOW OF T INTO S T E A M SYSTEM FLOW O f H INTO STEAM SYSTEM FRACTION OF T INTO STEAM S Y S T E M SECONDARY S Y S T E M FLOWS H + T INTO SECONDARY FROP PRIMARY T INTO SECONDARY F R O M PRIMARY H + T THRU PIPE WALLS INTO CELLS T THRU PIPE WALLS INTO CELLS SORPT ION B Y SINK H + T T Hf TF REMOVAL B Y PURGE H * T T HF TF FRACTION O F T PASSING THRU P I P E WALLS S O R B t D BY SINK A S T SORBED BY SINK A S TF REMOVED BY PURGF A S T REMOVED BY PURGE A S T f CONCENTRATIONS I N SECONDARY SALT H T (CC) T (CCT) HF (CCF)
PRIMARY SYSTFM FLOWS H + T THRU WALLS INTO CELL T THRU WALLS INTO CELL SORPTION B Y S I N K H + T T HF TF REMOVAL BY PURGE
H + T T HF TF FRACTION OF T PASSING THRU WALLS INTO CELL SORBED BY SINK A S T SORBED B Y SINK A S T F REMOVED BY PURGF A S T REMWED BY PURGE A S TF CONCENTRATIONS I N PRlMARY SALT H + T (CF) T(CFT) HF (CFF)
Fig. 5G.
1.858510 1 7 1.899890 1 7 -4.138110 15 3.275680-01
2,380321) 2.384640 4.820350 4.417990
11 17 16 16
0.0 0.0
0.0 0.0 3.977100 3.694630 0.0
15 15
0.0 70 720670-02 0.0 0.0 6 37006 0-03 0.0
.
4.419000 4.105150 0.0
10 10
7.263280 7.254100
15 15
4.387590 4,382050 2.311350 2.308430
16 16 17 17
50062610 5,056210 9.067610 9.056160
16 16 15 15
1.25071 C-02 7,555260-02 3.980060-01 8.717600-02 1,561410-02 2,812560 11 2. 8 0 9 0 1 0 11 1.481640 1 2
Output Summary (New Parameters).
._
ERROR UhRECflGNlZEC CARD .IHAGE IS...
INPLT 1
2 4 3 5 6 17345678901234S~~7~S012345678901234567~SC1234567890123456789012345678901234567890 z ILCH
Fig.
5H.
Response
to Unrecognized
Command Card.
7
a
63
hCRCAL STOP
-
bL1 CbTA PRCCESSED -..
IHC002I STOP
F i g . 51.
--
--
0
Normal Ending Message.
65
APPENDIX PROGRAM L I S T I N G
6G
LFVFl
?1.6
IOFC
771
UC/?tO
CllCPIiFR CPTlnhC
hA.CF= M b I N . U P l = U L , L l h E C N l - ~ 5 ~ S l Z E = 0 0 U O I . Cl1LRCF.EULOIC.NUL ICl.hCCECK~LCbC~NOHAP.hOEOlT~hOlC~NOXRFF I C P L l C I T H E b l * d (A-H. 0-Ll R F A I * R K.C REAl*4 h b l L . ~ C U l , n L R ~ ~ H P R l ~ ~ C ~ b ~ C R E S ~ ~ R U N ~ H R L I ~ C ~ ~ ~ ~ C A Q O D I M f k C l C h b1201. 8151. C I 5 O l . C N I I O I . E l 5 1 . F I S I , H l Z S l r I K l 7 5 I . F1201. Y l 1 0 1 . T1201, h l 5 1 . C b F C I 2 0 ) . V b L U l 7 l OirEh\irh c i s 0 1 FEU I Y A l E h C E 1 1 1 11 . V I I I 1. I R I 11. k12 1 I I v I C I I I V I 2 6 I I v I I C h l I I . V I 7 6 I 1. I E l L I . V l d b ) 1. I F ( I ) . V l q l I I . ( H I 11. V I 5 6 1 1. 2 I K l l I ~ ~ l l 2I . l I ( P I 1I.VI 1261 I . IQI 1 1 . V I 1661 I . I T I I l , V l 17611. 3 lYIII.\l156ll. lM.VlLOI11. IL.VIZC2ll I C N I41 .CC 1. F OU l V b l FhCE I C N I I I . C t l . I CN I 2 I . CFF 1. I C N I 3 1 . C F l l . I C N I P I .C S i 1 ILN lo I . CLT 1 . I Ch I 1 I , C S G I . I C N 181. C S S l 1 I C h IS I . C C F l . C f l M H O N / P l K ? / I h ~ I W I . I P R . KCLT. K P Q Ci'MVCN / P L L I / VILZOI CTMHCN/PLK3/ I U l H l 2 O l . I U S E l iClv hM12C). I B E G l 2 C I . N M C h l IC) * 1 hVbQ.hfh UATL I-.bll/4HbLL I . n U U l / 4 ~ U U T P / . ~ C R ~ / ~ ~ C R R F / ~ H P R l / 4 H P R l h / ~ I H C C b / 4 H C H A W . n H t S I 4 H P F s E / . ~ R U h / ~ ~ R ~ /N. H B L K / 4 H I n b i A X C L ~ C / Z . ~ L O I . H ~ ~ ~ / I~ H ~ O b l b CTCL/I.C-7/. TTUL/I.C-7/
ICN nnnz I C N 0003 I F N on04 I C N nons ICN ISN
fllRlRbN H
-
nnnh nnni
.
c c
r
C l l i l b N C T T 6 L AUF I H E CONbFRCENCE I C L E R b N C E S FOR CSCLVE AhC I C QECFtLllVELV.
C C
H b l h P R C G R b M FUN C A L L U L 4 T I C h OF H S P R T R I T I U M F L O h
c
c c
S E I L P QFFEHENLt
VALUES
I h h C R K I h G bRRbV
V
C
CALI
SEIREFICPLKI
r C C
e F L C b CbFC W U C H t L L
l e 0 RFbCllh.I.EhC-YYIl
FOR
lhSlRLCllONS
CbHU
1 FCRCbll20b41 IFlCbYO1lI.hF.nUUTl
LU 10 120
r
t c ICN ISN ICN ICN :CN ICN ISN ISN 1st. ICN ICN ICN ICN ICN ICN ICN ICN ICN
( F 1 C U T F U l U h l T NUYUERS IFlC3lOi3I.NF.hALLl LO TO I15 IFICARU141.NE.nCI(Il L.0 TO 1 0 5 IC4 KllUI=ICLI KPR=lCUT G o IC l o o I t 5 IFlCbYflI4l.FC.liPYll L.0 10 L I C Y R l I F 1 U I I I .7 1 7 FnbrbTl;-rLiFbI NUT S P t C l t l E C C T Q Q E C I L Y ' I Y R I I F 1 R C l i T . 2 0 1 I I . l = l . 81. CbRC 70 F r R P A T l ' C L R C l M 4 G t IS'.IX. 819x1 l l / L 5 X . e l l O H l 2 3 4 5 b l 8 9 0 l / 1 5 X ~ Z O A 4 / I 1x1 YRI TFiLfUl.21 I ? I F l l R H b T l * ALL C U I P U I T U S U M M A R V Lhll'l G C T C lC4 110 K r U I - I F C 114 K P R = l P Q GO I C 100 115 KfUI=:CLl
1-10717 0077
onz-
cn75 0026 0077 0079 0030
no31 no37
no11 0034 0035 17036
0037 O03R
now
G O I C I14
9040
c C
CHFCW FCR CnANbFC
I N wURKIhG VblUES
c ICN ICN I FN ICN
0041 0043
on44 0046
I F N no47 I F N 0049 ISN a 0 5 0 ICN n o 5 1 TCN ICN IZN ICN ICN
0057 0053 0054 0055 on56
IZN 0057 ICN 0 0 5 8
GI1 T O 135 C b L 1 C b I C H I C L Q U I 51. IN*. NV AR. NU I IFIhl.hE.OI GC TL) 1 1 5 CbLI CblCHlCPRUlJl.NYCN~NCN~ hC I IFlhC.hF.01 6 C TO 121 U R I IE i n r l i i . 4 1 F l l R C b T l ' F P R C Q IN C H b N L t S P E C I F I C b l l C h S ' l Y R I lFIKCUT.201 II.I-1.8l.CbRC cn T O i o n RFACllh.11 VbLUlIl FCRCIllCIfl.Ol J=I PEG1 4 l t h C - 1 VIJI-VPLUI II U Q I TE I KCUT - 1 2 I CIMIJI 3 1 9 V A L U I 1 I F CR Hb I I I X I b 4 . 1 P E l 4 . 5 1
l7fl IFICbQDlll.hf.nCHAI
C
IC6 121 7
I7
I ~ Nn o 5 9 I C N 00hn I C N OOhl I S N 0367 ICN 0064
ICN 0065 I F N COh7 1 C N 006R I C N OOhP I C N on70 I C N 0071 I ~ Nno77 ICN no73 ICN 0074 ICN 0075
J-lRFG1hKl-l+hl :FlhZ.FC.OI h2=N1 LF1 on 130 h i h 1 . h ~ VI J I-VALUILI I .L+L
.I=Jtl 130 C f l N l l h L F NV=hZ-hItI WR I TE I K C L T I 3 I L A R O I 3 I N I N 2 e I V b L U I L I t L = I .N V I I3 + C R C b T I I X . b 4 ( ' e 12. ' . I , 12. I ' / I I X 1 P S F l 4 - 5 1 I
.'
.'
67
PAGE 002 1SN 0 0 7 6
C C C ISN ISN ISN 16N
0077 0079
GC 1C 125
OORl 0087 C
r
L I P € hOT C L A M
t ISN oon3 ISN 0084
0006
0087 00R9 0090 0091
r C C
ISN ISN ISN lSN
PUT YEFCPENCF V A L U E S B b C K I N T O V
-
1 E S T A G b l h S T kP ARRAV
1 3 7 C A L L L I l C H I C b P O l 3 ~.NM.NWAR.NLI lFlhl.hE.01 GC TO 136
C C C ISN ISN ISN ISN ISN
-
CHFCN FCR RESET
135 IFICbRCIIl.NE.HRE~l GU 10 15C IFICAR0131.NF.HMKI Go TU 1 3 1 13b C A L L S E I P E F l C b R U l 3 I I GC TC 100
0097 0094 0096
hO M I T C C FOUND I N NM
C
C
TRV hMCN
ChECC FCR P R l N l
GU TO 1 5 5 GU TO 1 5 2
150 IFICARDIII-NE-HPRTI IFICIRCl3l.NE.H8LKl 151 CbLL LCCKlCAP013Il GO T O 100
0097
-
C A L L M b T C H l C b R U l 3 1 .NMLN.NCN. hC 1 IFlhC.hE.01 GC TO 136 YRITFILCUT.~I 5 F O R C b T l ' EPRCR IW R E S E l S P E C I F I C b l l O N S ' l GC TC IC6
LAVE NGT e L b N K
-
1EST A G b l h S T hW b R R b Y
C
ISN 009n ISN 0099
157 CALI ~ I ~ C H l C b R O l ~ l ~ N M ~ N W A * . k l ) IFIhK.hE-OI GC 10 151 C C
r ICN ICN 1SN ISN ICN ISN ISN ISN I t N ICN ICN ICN ICN
ntni
hC CbTCH FCUNU I N NM
-
T R V hPCN
C A L L P 1 T C H l C b R O l 3 l .NMCN.NLN.hC 1 lFlhC.hE.01 GC T O I51 Ye1 IEIKCUT.01 8 F f l R C A l l * EPRCR I N P Y I N l S P E C I F I C A T I O N S ' I
0107 0104
0105
G O TC I C 6
0106 0107
1 5 5 IFlCbRClIl.EC.HRUNl Y R I TE I K C U T - 6 1 6 F f l R C A l I ' EPRCR Gfl TC l o b 160 U T 9 1 = 1
oinq
-
0110 0111
nil7 0113 0114 0115
GO IO 160 UNRtCOGNIZEC I N P L T ' I
ISY-1 NCC-0
CCZ=O.cO C C
CHFCN FCR F I I L U R E TU S E T C C bNC C C I
t I F 1 CC .L F.O.00 1FICCT.LE.O.COI
ICN 0116 ISN n i i n C C
ISN 1SN ISN ISN 1SN
0170 0171 0177 0l?l
I CC- A. 01 I CCl=l.OIU
F R l h T h C R K I N G AYYAY V Uh L l h E P R I N l E R
UCAV=KCLl
UOUI*IPR CALL hFbPG CbLL LTCKICBLKI C A L L NFbPC. L O U 1 - K S 1V G C IC 2 0 0
0174
ISN 0 1 7 5 1SN 0176
t C C C
ISN ISN ISN ISN ISN ISN ICN ISN ISN ISN ISN ISN ISN ISN ISN ISN ISN
G E T CII~I. CCF. FCC. 1qb.e. 2 0 .
o i i a i ANO
CIIPI
zin
7C0 C l l P 1 - 0 . 0 0
0177 O17R
CCFr0.00
o~lnl=o.co
0129
nim
o1191=o.cn C A L L hEbPG I F l R I 5 ~ . E C ~ O ~ D O(iU l TU 205 Ff=Fl4l*El41 Hb-hllRl*AIIRl FEPB-HbrFE
0131 0137 Ill34 0135 0136
0131
BY*Ql4l*hl41
01 38 0139 0140 0141 0147 0143 0144
RFSC-lRh*FEPH/lFE*Hl1811)..2.1(lel ALFb-Rl5lfFE ClI0~=~LFb**Z/lIYFbt.5M)rgESt.(1.DCIOSC~ll~CCtOSCPTl~~DOt4.OO*ALFb/~ESOll~ 01 IRl*l'b*I I41 *OSORT I C l 1 U I * K l I0 b 1
CCF=lRl5ltCA*ClAdll/fEPH 01 1 S l - C C F I F E 7C5 CONTINLE C C C C C
R E G l h C A L C U L A T I O N OF O U A h l I T I C S CEPENCENT ON CC G E T C I I C I . C I I I I . 01101. C l I 1 l FOS- 1Lb.R. 1Lb.8
3CO NCC-NCCtl IF(LCC.LF.SOI YRIlElNCUT.351
GO Tn 301 HRLK
68 F
P A G E 003 I C N 0149 I S N 0150 ICN 0lยงl I S N 0157 I T N 0153 ISN n i 5 4 I S N 0155
011
l=PIIl*Al II*OSORTlKlll*ClIIlITlIl
3C5 C O N T l h L E
r ISN ISN ISN ISN
0156 0157 015R
0159
I S N 0161 I S N 0162 ICN ICN ICN 1SN ICN ISN ISN 1SN
.CTCL.
0163 11-13
0165 0166
K2=21
cz=ccC. Itl,&Z 315 MRIIFiKCUT.30l 3 0 FCRCAII' F t I L U Y E I N S U L U T I C L FCR C 1 ' . 1 2 . ' 1
ill67 0168 0169 0170
PNO C l ' s 1 2
'1'1
IGflCF--l
C TO1
0111
I S N 0172 ICN
0179
1CN C114 ICN
K1=14 K2-22 ct t
C176
ICN C l 7 7 ICN 0 1 1 8 I S N 0179 19N 0180
r.2-
G f l lfl 3 1 5
1 S N OlRl 1SN 0183 ISN 01R4
K1-15 KP-23 Cl-CSH Gfl Tfl 3 1 5 1:
cI
C
c I ~ N0 1 8 7 ISN O l R R ISN CLRY I C N 0190
011 l = H l I l * b l Il*ICC-ClI)l O I f l + l I = - C l II
e. GET C l l i l .
r.
0194 GI96
1c=12 YRllElKCLr.801
0197
c
RO F O R P A l l 1 X . 1 3 . '
C
I F CIIZI
e.
c
-
COS.
Zlb.
336
tdCC.HUCK,CC. IC.C(IC1 CL'rAI.' ='e LFE14-5.'
IS NELATIVt.
138.R
CI'.I2.'1
='.E14.51
POJLST CC L N C TRV ACIAlh
r.c-cc*cr
r
S F E I F bN UPPEK L l H l l
C
IF ST.
c
Cr
ha1 F X C E t O
ICC21 k 6 S F C L h C IT.
IFiCC2.FC.C.COl GO TO 300 IFI~C.LI.CCZI G O T U JOU cc=c.5cC*lCC2~~.5oO*ccl G C IC 300
ISN 0200 ISN 0707 I S N 0204 I Z N oi05
C
r
GET
t i 4 1 4ND C k
C
-
FUS-
136.8.
44.8
340 ~ 1 4 1 = 1 C S C C 1 1 K 1 1 ? I * C 1 1 2 ~ l - U 1 ~ 2 l * T 1 4 l / 1 P 1 4 1 * 8 1 4 1 1 ~ * * 2 / K 1 4 ~ C F-C 1 4 I - C I 12 I / I H I 4 l * P l 4 I I 1FICF.Gl.O.CCI GO lfl 5 0 0
1 S N 0206 ICN 0201 1SN 0208
AMI C i 1 2 l
014 1--c 1121 CI I ~I=~~-cIIZI/~~I~I*P(C) IF1~ll7l.Ci.il.0O1 60 I U 340
0193
I Z N 0199
Ci+I
PI 1 2 I =Q I 3 1 11 I4 1-01 I U 1-01 1 1 I - L I 1 3 1-C I I4 1-0 I 1 5 1-0 I I 6 1-0 I I 7 I
1SN 0191 I C N 0197
0198
1. 0 122 1 * 0 i 1 5 1.0 i2' I
335 C P N l l h L F
C
ISN ItN 1SN ICN ISH
I 3 I. 0 12 I I. V I I 4
330 nfl 9 3 5 1-13.15
c I F CF I s NEbPTlVE.
C
AuJuST
CC 6kC T R Y AGAIN
c ISN
0710
I S N 0711 I C N 0712 I C N 0213 ICN 0715 I C N 0216
hQ1 l F l K C L T , 8 1 I NCC.HHLK.CC.*eLK.CF 81 F C R P A l l l X I 1 3 . * LC*.PI.' ='. 1FE14.5.' GC
ic
336
5 C C IFIKTQV.hE.II RFL *0 . C 0 RF2 = O .fC
G(i T O 5 0 1
CF'sAl.'
='.E14.51
69
PAGE 004 ICN ICN ICN ~ C
0717 0718 0719 Nnzzo
c r.
eECIlh C L L C U L b T l U N UF O U A N l I l I f S CEPENCENT ON C F GET C I I I . C I Z I . C l 3 1 . 9111. '2121. C l 3 1 FQS. 1 L . 8 . 1A.8. 31.8
c. c ISN ICN ICN ISN ICN
5 C 1 O C 5 0 5 1.1.3
0771 0777 0223 0774 0775
bLFL=KlIIblPll~/lllll*~lll~l**2
r.
CAL 1 C C U L C I C F .ALFb.Cl Ill 0 I 1 I- P I I l b b l I l*OSORTl K l l 1 b C I II I / l I I I 5C5 C O N l I h L E
c
CET E l 5 1 .
-
ClZ1
c ISN ICN ICN ISN
0776 0771 0 7 1 ~ 0779
c
r. c I S N 0730
GFT C 1 6 1
c
CET
c
6
-
CFF
10
EC-
CFF -MtL*OCCRT I N 1 5 1 b C F 1 f 6 1 7 1
c
f F T CI71.
C
c
ISN ISN ICN 1SN
- EO.
01 6 1-F I 1 1.f I I l b C F
C I C N 0731
5L.e
€OS.
Rh*PIll*hl11 A l C L = & ISl*l8U/HI5J Jr.2 CbLL CCLAOICF.ALtA~C1511 0151=~h*Al51*0SCLTlK15~*Cl511
n*=
0237 0733
-
C171
7b.e
EOC-
P 1 2 1 *Ill i I
AlF ~=Kl7lblBC/Hl7i1b~2 C I L L CCLAD I C F F . b L C b . C l 7 I 1 017 l = ~ h * ~ l 7 l * O S C Y T l K l 7 l b C l17 ~
n134 0235 C C
CFT C I B I
-
8
t(l.
01 8 l = F 1 2 1. E I ? l * C F F
1 S N 0736
c C A I C L L A T E R f FOR EU.
C
9
c RSUC-ll 1 I I tal2 I RF- C I I 1 t C I 2 1 *C I31 +u I C I N lE=BF/PSLP
I S N 0737 I S N 0738 I S N 0239
I 51 t C I 6 1+017 1 4 0 1 @ I-R SUM
C
r.
1EST CC LV ERGENCt
c
I F l O A E S l l E l ~ L l ~ l T U LLOl T O 7 C C
1SN 0740
c hCT CChVElGFO
C C ISN
0747
c
c c.
ICN ICN ISN ISN ICN ISN 1SN ICN ICN ISN ISN
-
-
CHECK K l P I 10
GU 10
IFlKlFl.hF.21
S€E
hbAT N E X l
540
N l P V r Z P E b h S P W E L l M l N A Y l S f P P C b FCP C C 1 bND CC2 C H l C C B P A C K € l THE b N C Y t R
0246
I F IPF.Cl.O.CO1 C C I =CC
n241
P F I IPF
0244
GU I U 510
_ .
URITEIKCUTISSI WC.CCl.RF 1 55 F C R Y 1 7 l 1 X ~ 1 3 . 1 P ~ 1 4 ~ 5 ~ ~ U ~ . t 1 4 . ' 1 c,r i o 5 1 s
074P
0749 0750
crz=cc
0751
510
0757 0253
RF2-RF U R 1 1 E l K C L T . 5 6 1 hCC.MFL.CCZ 56 F f l R C A l I l X . 1 3 . 4 2 X . I P Z E l 4 ~ 5 1 515 I F I B F L * P F 2 1 530.52Ll.516
0254
0755 C C
P F I I P F Z P C S l l l Y E SHUULO N f V E R
CbFCEN
c 516 U R I l E I L C L l . 5 1 1 H B L K 51 F C R Y A T I ' P F I * P F Z P O S l l l Y E GO T C IC0
I C N 0756 ISN 0 7 5 7 1CN 0 7 5 8
C C C
-
S M I E T W l h G YRCNG
S C C f T H l h G FCULED UP I N CC'.A11
C l l l l L C C K I M f U Y ONE L l M l l K E E P bOJUClMCNT
-
-
CC AND 1 R V A G A I N IC0 LNO G R E A l E R 1CLh . D l
PCJUST
FACTOR L E S S I C A N
C ICN ISN ICN ICN 1SN
5 ? c lFXCLG=lE*XCLCL I F 1 CAESllEXCLGI.Cl.C.6DOl ADJ-0LCGICCI-lEXCLL CC=CEXPILCJI GO TO 300
0759 0760 0262 0763 076%
c C C
RFI*nFZ
530 ~
I C N 0265
~
~
1
hrFGAllVE
1
-
TEXCLC-OSIGNl4.6DO~TEICLGl
ANSbER E P P C K E l E C
3
C
c
I L V F P S E LlhEbW I N l E k P D L A l l C h
C I C N 0266
535 C C L - I PF 1 W C Z - . R F Z b C C l l / l
RFI-IF21
70
PAGE 0 0 5 ISN ICN 1Ch ICN ICN ICN
0767
whn 0770
0771 0777 0?73 ICN 0774 I C N C? l h
c
r,c I C 7 c 5 5 4 0 IFILIRI.EC.~I 1FlKTRY.hE-41
c
t u 535 LC TU 5 5 5
GU
K f P V = 4 k E b h S I N V E Y 5 t L l N F b P I h I E R P C L A I l O N H A 5 BEEN CCCFLEIEO bNU H e I C C L I CALCLLbTEC
C
r
Y R I IF I L C LT - 5 2 I NCC. LCI. CC. RF, C C i 5? F f l R C b l l 1 X e 13 e 1P L t 1 4 . Z. 1 W . 2 E 1 4 . 5 I 542 RFT-RF
I S N 11778 I C N 17179 ISN n280 C
t ICN ICN ICN ISN I ~ ICN ICN ICN ICN ICN ICN ICN
wni
IhVFFSF CbLUYAlIC
r
INIEYPCLbTICN
01-PFI-PFI
.
.
..
07R7 02n3
n>=LF?-RFT
0784
CtX=CCLIRFI*FF2/ IDArOLl-CCIWRf 1FICCX.LT.CCIl L U T U 545 IFlCCX.Cl.CC2) 6 0 T O 545 KIRY-5 I F 1 1Sh.EC.i) GO 10 5 4 s Ct-CCX G C I C 3co
03-cz-01
N0 7 8 5
07R7 0789
0790
0792 0293 0794 n795 ICN 0 7 9 6 I C N 079R I C N c795 I S N 0300 I C N 0301 ICN 0 3 0 2 I C N 0303
544
l * R F i / l G I * 0 3 1 tCCZ*RFI*UFI/(DZ*D3l
cc i = c c x
GO I C 7 c 5 545 I F 1 QFT.1l.C. c c 2 =cc L RFZrRFT G n IO 5 3 0 550 CCl.CC1 RFl-QFT G C T C 530
CCI GO TU 5 5 0
C C C C 1 S N 0304 ICN n f n h I S N 0307 ICN n1on
c
K l R Y = 5 CEAhS l N V t H S E O U b C R b T l C I N T E Q P O L A I I O N HAS BEEN CCCPLETED bNI) H F I C C X I LbCCLLbTEC
555 I F I N T R I . ~ F . S I GO i n 5115 556 R F X = R F WRI TEIKCUl.53l CCa.YFa 5 1 F C R r b l l 3 2 X . I F2E14.5 I
C
I F S T R F T b h O P F X 10 S E t Y I P 1 N E C L I M I T S ARF
c 1SN ICN ICN I ~ ICN ICN
IFIRFX.CT.C.CO1 G O 10 5 7 0 IFILFT.GT.O.CO1 GU T O 5b5 IFlOABSllFXI.GT.OABSO~ t C TC 5 1 0 5 6 0 CCI=CCX R F I =RFX G O TO 530 565 c c z = C c L RF7rRFT GC i c 560 5 7c IFI Q F T . L T . O . ~ ~ ~ cn T U 5 u u IFIRFX.CT.PFTl GO T i l 565 5 75 c c 7 = c c x KF2=RFX c.r IC 5 3 0 580 C C 1 = C C 1 RFI=RFT GO ir 575 5Q5 YRlTElKCUT.541 KTRV 54 F l l R C A T I ' K T R Y - * . I C / ' FRUUR'I G r IC 100
0309 0311 0311 N0 3 1 5 0310 0317
ICN n31n I C N 0319 0370 0371
ICN ICN I ~ 1SN ISN ISN ICN
N0 3 7 3 0375 0370 0377
own
I C N 0379 1CN 0 3 3 0 I C N 0331 I C N 0337
I C N 0333 C C C
C A L C L L A I f C N OF T R I T I U M 0 1 S T Q I 8 U l I C h CHbLGE I k S T Y U C T l U N
-
CCT S E T B Y
C 7co K I R Y = I
I S N 0334 n335 I F N 0336
I sw=2
ICN
NCC T*0
t C C
ICN ICN ICN ICN ISN ISN ISN ITN
7c5
0337
0338 0340 13341 n347 n343 0344 0345
G C T C 100 7 Cb R A I IC=CC T l CC Cl4Cl = P t l l c * c I I O I
c r.
OI41)*PbTIC*CIII) OSUC'rC I 4 1 I +c I401
-
G E T C I ~ ~ ~ . C I C ~ I . C I ~ ~ ~ . ~ I ~ E~O SI. . 316.~. C I ~ ~ 3 8~ 6 ..0 .C I3 9~ ~ ~. 8~
C I S N nv.6 I C N 0347 I C N C34R 1SN C349
O C 710 1 1 4 3 . 4 5 J-1-30 I t - 11 J I * C S C R T I L I d I I K l J I 1
HIC C P = T C*H I J I I P IJ 1
71
P b G E 006
c < I I-cc i*+icrP/ii.0utnzLoPi
ICN ni50
01 I l - F I J l * b l J l * L l
I T N n351 l 5 N 0352 I S N 035’4
IIITC
oPU*=CIIl+cSuP 110 C O N 1 I h b E
t
r.
L E 1 (1461 1 H k U 0 1 4 9 1
t
-
€05.
50 I U R U 4 3
no
IS* r 3 5 4 I C N 0355
7 1 5 1=46.w 0 1 1 1 - O l 1-3CI*QbI10 OCUC-CIIl+cSU*
I C N 0156 I S N 0351
715 C C N l I L L F C
r.
-
6 E l C I k 2 1 I N U Ul341
t I S N 035R I C N 0359
EC.
44
-
M b l t R I b L BAL A hCE
0 1 4 7 1-F 1 3 1 - C C U M OI341=-~142l
t CFT C I S 2 1 - E O .
C
r.
36A
- CUECK
FCR P O S I l I V E
c 147I-rc
1-c142l/IHl ILIbAlC I I IF~C~4i’lrGl.C.DI)l GO TU 725 i.. r - 4 7. hLCl.HItt.CCl.IC.Cl 721 Y R I IElMCUT.80) 720 c r T = c r i t c c i G C I C 705
I S N 0360 ICN 0361
I Z N 0363 I C N fl364 I S N 0365 I S N 0166
r. c
C147l FCSlllUE
t
-
GET C l 3 4 )
IC1
-
EO.
2ee
- CHECK
FCR P O ! I l I V F
~ ~ l ~ ~ l 125 ~ l 3 4 1 ~ l C l 4 2 l / C S O Y T l C ll2ll-Tl~l*C142l/1P14).bl4l $/K1411 IFlCl341.Gl.fl.CflI
I I*OSORTlClII
60 TU 130
ir=34
G O 10 1 2 1
t
r.
C1341 PCS111Vt
-
b t T CFT
-
EC.
i8b
C 0377 I C N 0313 I S N 0375 I S N 0376
-
CHECK F C R P i l S l l l b E
73c C F l = C l 3 4 l - C 1 4 2 1 / 1 H l ~ l * b l 4 l l IFlCF1.Gl.O.I CC 1 0 132
TSN
UQllElITUl.8ll GC i c T Z C
NLLT.HTtE.CCl.~TEE.CFT
C
t
CFT. C I X I ANI) FO@ h L X T S T € P
c
L 1 4 2 l ALL
FCSITIbE
-
CbECK K l R V
t W l n 150 735 I F l C l R V . L E . I l KTUI=2 PFl=O.GC RFZ=O.CC kCC 1 = 0 U Q I I t lICL1.501 HTEF 150 Q 4 T I F * C F l / C F 01SP=0.C0
I C N 0371 I S N fl379 I C N n3nc ISN 0 3 ~ 1
I S N 03137 ICN 0 3 ~ 3 I C N nin4 I C N C3R5 I C L o3nh I C N 0387 ICN f l i R 9
ICN ISN ISN 15N ISN
nn
755 1-31.38
I F I I . F C . 3 4 1 CC TU 7 5 5 011 I=RbllF*OI1-30l
755 OlSe-C1S*tlll I RF-CTCP-RI I1
0390
nsi
TF=GF/QIII I F l ~ A R ~ l T E I . l T i ~ T U L IGU I l l 9CC IFIXTQV.LF.21 G O 10 190 IFIPF.CI.O.001 6U 10 IC0 CCl-CCl uFl=RF U G l TE I L C L T ,551 NCCT . C C I . R F I G C l C 7C5 760 CC?*CCT
0392
0393 0395 I C N 0397 IC& 0399 I C N 0400 I C N 0401 ICN
0407 I S N 0401 ISN 0404
PF71P .... ..F
U R I TElICbT.56l NCCT.RF2.CC.2 765 I F l R F I * R F 2 ) 530.770.766 766 Y R l r E l r c U l . 5 1 1 HTFE
I C N 0405 I 5 N 0406 I C N 0407 I S N 0408
GO I C 1 0 0
C
t t
r. ICN 1CN ICN ISN ICN
04n9
-
S T 1 1 1 L C C I I L ( . FUN O N t L I M I T A C J L I l CCT A N 0 TRY 4 G b l N K E E F b O J U S T M t N T FACTUR L E S S 1 H A h IC0 bNO CREbTER TCAN - 0 1
770 T F X C l G = l F * I C l C G I F 1 O P E S lTEXCLGl.l.l.4.600l T E X C L F - C S I C N l 4.600. ADJ=CICClCCl I-1EXCLG CCl-CEXFILCJI G r T O 7c5 750 I F l I l Q V . € C . 3 1 G U T U 235 IFIFTRV.hE.41 GO I n 195 YQI 1FIllCUl.571 NCCT.CLI.CCI.PF.CC? 6 r i c 542 195 I F I C l O t . h F . 5 l GO 7 0 5615 GO 1C 556
0410 0412 0413 0414 I C N 0415 I C N 0417
I S N 0419 I C N 0470 I S N 0421 I S N n473
t
t C
r. I ~ N0 4 2 4 1 S N 0475 I C N 0426
r L i p L T SECTION CUCPbRV O L i l P U l l f l U N I T
KOUl
900 C b L l L F b P G URIlEIKCUT.92b
$2 F C R P b T l ‘ O L l P U l S U * H A M V ’ / I X I
TE LCLG 1
72
PAGE 001
I CN C47 1 I C N 042R I ~ N0479 I C N 0430
O H l 5 C = C l I 3 l r C l l 4 l + U ( 151 ul~S-Cl431t0l44ltu~~5l OHS'-c~15S-OTSC RSUL=l.OO/lRlLI+L(31 I FRlcS=P>LL*ClSC Y R I I E IKCUT.931 OHlSS.~TSS.CH'S.FRlSS 53 F O R L b T I * STELM S I S l k M ' / Z A . ' F L C h CF H + 7 I N T O S l E A M C V S l E M ' . 1 IPE16.5/5X.'FLOY Uf T I N T O 5 T E b M SVSTEM'.F20.5/5X.'FLCh CF H 7 ' I N 1 0 5 l E b P 5 V S 7 E M * , t Z U . 5 / 5 X ~ ' F P b C l l O N OF T I N l C STEAM SVSTEM'. 3 FLt.5/1Xl OhlFh=CllOlrC~lll OlPb-C14OltC~411 FRlPh=CTPC*RSUC F T C ( K = C I46 18QtuM F U T SF =C I48 1 8 R SUM FUR FT=C I 4 7 l * P 5 U M FRRPF=C(49l*PSUM Y R l TFlKCLT.941 OI4l.Ol34I ~ O C l F h ~ C l P h ~ C ~ l t l ~ O I 4L 6B Il. C~I U4 8l1 . L 01 I 7 1 . C 1 4 1 1 . C l L91.Ul~Yl. FRlPh.FlSSK,FRTSF.FRRPT.FRRPF U P I l E l L C U l . 9 5 1 CC.CCT.CLF 94 F O R L A T I ' SFCCh1)ARV S V C T E M ' / ' FLOhS'/SX,'H + T l h l C SECOhDARV ' * L 'FR C C P P I L bRV I e 1 P t 1 4 . 5 / 5 X e 1 I h 10 SECCNC LRV FROM PR I M A R V ' .E I 8 . 5 / 7 5X.'H + 1 THRU P l P t h A l L S l h T C CFLLS'.E15.5/5X*'T THRL P I P E 3 ' Y A L L S lhTC CkLLS'.ElY.5/' S C R P l l O N PV S I N K ' I S X . ' H + T'.28X. 4 F L4.5/5X.'T'.~A.tl4.5/5X.'CF',31X~E14.5/5X~'TF'.31X.E14-5/ 5' R F L C V P L PV P U H b t ' l 5 X e . H l'.ZPX1E14.5/5X.'l'.32X.E14.5/5X. 6°F '.31x.E14.5/5x.~lF'.31x.E14.5/' FRACTlGN r F 1'/5X.'PASSING'. BY S I N K AS 1 ' , 1 4 X . E I 4 . 5 / 7 ' TCRli FTPE h b L L ~ ' . I O A . t I 4 . 5 / 5 X . ' S C R P E D 8 5X.*SCFREC PV \ I N K A S I F ' . 1 3 X . P L 4 . 5 / 5 X . ' R E M O V E C BV PURGF A S 1'. 9 17X.F14.5/5X.'ktMUVtU H I PUQCP A S lF'.LlX.F14.51 95 F O R P A T I ' C C h C k N T Y A T I O h S I N SECCNCARV SALT'/SX.'H + 1 ICCl'.23X. 1 1PF14.5/5X1'T ICLTJg.ZbX.EL4.515X.'~F lCCFl'.25X.E14.5/lX/IX) 01.1 h=C II ) + ( I 2 Ir(lI31
ICN 0431 I C N 0432 I ~ N0 4 3 3
1" ICN
'.
0434 0435
I s h 0436 15N I ~ I ~ ISN I ~
0437 N0430 N0439
0440 N0441
I S N 0442 C IN 0443
ISN
0444
1SN IqN 1SN 15h ISN ISN
0445
ISN
ISN
'
'.
OlU*C1311rc1321+~1331
0446
F R 1hC = C T h * P C b P F I S c T * C 1 3 5 I*QSLJM FTCSTF=Cl31l*RSUM FlRPT-C136l*QSUM FTR F l F = C 1 3 e l * Y S U U Y R I TE l K C b l . 9 6 ) WTw. U1r.Ul 5 1 , C I 3 5 1 . C 1 7 1 . 0 1 3 7 1 . 0 1 6 ) . 0 ( 3Cl.Cl8l e I C 1 3 R l ~ F R l h C ~ F T ~ S ~ ~ F T ~ ~ T F ~ F l P F T ~ F T ~ P T F UR I 1F ( K CL 1.9 7 I CF .Cf T Lf F 96 F O R L A T l ' PFIPLRV S V S T t H ' / ' FLCnS4/5X.'H + 1 TWRU h A L L S I N T O I 'CElL*.IPE21.5/~X.*l THKU Y L L L S I N 1 0 CELL'.LLX.EL4.5/' SORPTION Z R V SlNK'/SXe'H t T'.2dX.t14.5/5X.'l'.?2X.E14.5/5X.'~'.31X.E14.5/ 3 5X.'1Fg.31X.€14.5/' KEMOVLL BV P L U G E ' / 5 X * ' H + T'.Z8>.E14.5/5X. 4 ~ T ~ . 3 2 X . E 1 4 . 5 / 2 X , ~ H F ' . 3 L X . E L 4 . 5 / 5 X ~ ' l F ' ~ 3 ~ X ~ E l ~ . 5 / ' F R A C T I O N OF 5 1 ~ / 5 X . ~ F A S S l h GTHKU M A L L S l h T C CELL'.E19.5/5X.'SOIBEU BV S l h K A S h . ~ T ~ , 1 4 X . E 1 4 . 5 / 5 ~ . ~ ~ l l k nPV t U C I h K b S TFo.I3X.E14.5/5X. 'REPIObED 7 * R V FURGk L S 1 ' . 1 L X . t l 4 . 5 / 5 X . ' R E M C V E C BV PURGE A S l F ' ~ I I X ~ k I 4 . 5 I 91 F C R L A l l ' C C h C t N T R A l l L i h S I N FRIMARV S A L T ' / S X . ' r + 1 lCFl'.23X. 1 1PEL4.5/5X.'T(Ltll*.ZlX.k14.5/5X.'~F ICFFl'.75X.F14.5l CALL hFhFG G r i c ICO
0447 044R
0449 0450 0451 0457
'.
I5N 0453 ICN 0454
*.'
ISN 0455 C IN 0456 I ~ N0 4 5 7
c c c ICN ISN ISN ISN 15N
0458 0459
EN0 C f F I L E O E T F C T t U Uh l h F L 1 L h l l S S 7 C A L L CFbFG UR11EIKCLT.99l 99 F O R L A T I ' k C R C b L ) T O P STCF €NO
0460 0461
0467
*nPiinhC
IN
*rlPlICLS
I N FFFFCTI
FFFFCT*
*STAllSllrS+
*5lATl5lICS*
h AL € 1
ALL
C P T b PRCCCSSEC'I
.
PA I h U P T - 0 2 . L I NEC h 1-9 5 . 5 12 E= C C C O K e
STUPCF.EBCClC.
CnURCF 5 T A l E C E h l C Nil
-
=
N I I L I S T . N L O E C K . L C A C . N C M b P . N O E D l l ~ N O I D ~ hCXREF 4.51
.PWGI(LP
SIZE
*
10188
OlAGkOSTlC> GEhERLltU
888888 F N n CF C O M P I L L T I G N 888888
4 5 U BVTES OF CORE NOT USED
73
LFVFL
IDFC 721
71.6
OSI360
FCRTRAN H
-
hAPE= 11AIN~OPI-02.LlhECNT-95~SIZF=OOOOK~ SOURCE . t t l C O I C. IIOLIST.LMOECY.LCAC.NDMAP. hOED I T h C I DsNOXREF .n. i .n. r.i. CITA . .. C C M C O h I E L K 3 I 10111120). I U S E I Z O J . N M 1 2 0 J . I B E G I Z O ) . N H C h ( 1 O I . C L V A R . hCN O A T b I D I l l I2 0 . 5 . 5 0 . 1 U . 5 . 5 . 2 S . 2 5 . 2 C 1 1 C ~ 2 0 ~ 5 . 1 . 1 . 6 . 0 1 O A T L I L S E I 18.+.+5. 9.*.*.23.23.15. 5.15.4.1.1.6*01
CCIMPILFR W T I O h S
- - -
.I C-.U. nnn, ....... S IN no03 ISN no04 S IN noos S IN nom ISN 0007
D A T L I E E G I 1 ~ 2 I ~ Z L . I L ~ B 6 . 9 L . S t . L 2 L1 .~ 6 . L 6 6 ~ 1 7 6 ~ 1 S b . Z 0 1 ~ Z O 2 ~ b * O I DATL h P / 4 U b .+Ha .4HC -4bCN .4bF -4HF .4HH ~ H U .wP .IC" ,4bT .4bY .4nH ,4HU I D A T L L Y L S . NCh I 14. 9 / DAlb NICh I 4 H C F s 4 k C F F . 4 h C F T .4bCC - 4 H C C F .4HCCT - 4 H C S G 6 w c s s .CWSII .+H I
t I S h OOOB S IN no09
.
CflMVCh I E L K Z I IN. LOUl. I P R . KCbT. D A T L I h . [CUT. I P U I S . PO. 6 /
ISN 0010 S IN noli
C C C
IN
C
IPS
ICCT
C
ISN
oniz
--
-
KPR
lhFUT U N I T NO. L U X l L l A R V O U I P U T U N I T NC. L l h E PRINTER U N I T I C .
F ND Cb Ih.OP1-O2.L
*OPTlflhS
I N EFFFCT.
hAME-
*OPTIONS
I N FFFFCT.
SCU~CE~EEC~lC~NOLISl1NOOECU~LCbC~NCMAP~NOEDIl~NOlO~hCXREF
*STATISTICS* *STbTISTlCS*
******
SCURCE S T A T E I E L T S Nn
-
lNtCNT=PS.
I 1 .PROGRbC
S 12E=OOCOK.
SIZE =
8
O l P G N O S l l C S GEhEPblEO
FND CF C O Y P l l A T l O N * e * * * *
LZSK R I T E S OF CORE NOT USED
74
LEVEL
71.6
IOEC 7 2 1
OS136C
CblE
FCRIPbN H
-
LACE= MAIN.OPT-OZ.LILEChT=55.S12EIOOOOK~ SOUPCE.EBCOIC.NOL 1Sl.LCCECK.LCIC.NOMAP. hOEOIT. hOIG.NOXREF SUBPCUIlhE SElREF IhAMEI SETS V A R I A B L E S T O 1 I i E l R REFERENCE VALUES. I F NAME I S BLANK. L L L k I R I A E L E S AS S P E C I F I E C I h Tt-E ARRbY NM WILL @E SET. IF LAM€ IS P W T . A L L V A R I A I L E S I h 1HE ARRAY VREF h l 1 L B E PRINTEO.
COMPILER C P l I O L S
1SN 0007 C C C
t C I S N 0003 1 S N 0004 I S N 0005
1 hVbR.hCLI I S N 0006 1 S N 0007
OIMEhSlCh kPFFiZZ01. V O l l 1 5 5 l . W C 2 0 5 1 E O U I V A L E L C E l V C I l I l ~ V R t F l 9 6 l l l ~V 0 2 ~ l I ~ V R E F l 1 7 6 l l
C
c
W O I b h C VC2 AR& W M M Y A R R b I S USIC I N THE P A R l S O F VREt. THE R t F E R E h C E A R R A Y .
c C S IN noon ISN no09 I S N 0010 I S N 0011
DATA I R L L I I 4 H I . I PRT/4HPRLI/ n A T b VbCO/4HV@EF/. Vm/+HV / CCMCCh/BLK2/1L. L O U T . IPR. K C L l . C G W P C L / R L K L / VI2501
r. C C
IPP
1HF CCWCELT CA&US I N T E Y $ P E R S E O APOhG ThE F O L L O U I N G C C N l l h L L T l O N CA&US CAUSE L C T Q O L E L E U l l H THE ORNL C C M P I L F R i n i s I S CCNTRAKY ro rnk RULE ON PG. 12. GC28-6515-8. 1 R C S Y S l F C 1 3 6 0 ANU S I S I E M I 3 7 0 F C R T R I N I V LANGUAGE.
C C C 1SN COl2
I N l l l b L I Z A l I O h OF
O A T b WPEF
r.
r.
PEFFLENCE V A L U t S FOR A l l 1
t l / . 6 0 6 ~ . 5 0 6 ~ 3 . 5 U o ~ ~ Y + U O . Z Z ~ C 6 ~ - 1 . 0 0 ~ 5 2 ~ 0 6 ~ 2.1I.Cf.8.806. *-1.00 7 49.06.3l.C6.21.U6.1U.U6.
O.CC.-I.OO.O.OG.2*-I.OC
C
r.
P E F F P E N C E VALUE<
c.
c C
mri d d i i
7 i.r71.3.0ii.1.uiu.1.~1~.-1.~~. P E F E F E h C E V P L U 6 5 FOY C I I I
C
3 45*0.0C
.5*-1.00
c
.
REFERELCE V I L U C S k O R C h l
C
IRE b l l l E Q C
II
C .2.CIO.~.Oll.I.Ull.-l.CC~
4 b*-I.CC
c c.
PfFCREhCt
V L L U t F FUR E i I l
c 5 .5U0~.L1700~.IdOO~.UUlbDO.-L.CO~-l.C0~
C
c
Q E F F R F L T E VALUES kUY F I I I
r.
6
3.fOS.?.bC5.5.US.5.U5.-l.D0/
C C
REFEPFhCE V A L U t S FGK H i l l
r.
nPra V C I /
I 5 N 0013
I ~.~O-~~~.C-~.L.O-~.~~YU-~.~.C-~~-I.CCI~.C-~.Z*-~.OC 7 7.40-7.3.40-2.~. 70-2. 4.3~-2.4. 3 Z*-I.CC .5.RoO.ll.u0.30.CO.2*-l.oc
t c
F E F E F E h f F LIpILUE<
IC-2.4.00-2.
.
.aon.-i.oo.
.aoo.
fUK K i l l
c
-
4 1.2C17.2 -0- 17.1.50-1 7. I 5C- 17.1- 40- 11. -1.00.1 5 0 19.2.1-00. 5 3 . 4 c-1 B.5.c18.4. 0- I d e 4.50- I e. 3.50- 18.6 .O-I a. 4.40- I 8. I .OK.
c
x 1.10-2C.2*-l.~u.+.5~-~o.5.lc-2C,4.eC-iC.2*-l.cC~ RFFEPFhCE
C C
WALUtS F O U P I 1 1
6 2 . 1 0 1 5 ~ t . 7 C 1 4 ~ P . 0 0 1 4 ~ ~ ~ U U 1 4 ~ 5 * - 1 ~ C C ~11- ~ 8 011041. 95. 0~0
r.
l 4 ~ 1 ~ 8 0 1 6 ~
76.7C14.3.5C14.5*-1.00.
C
QEFFCFNCF Y b L U t C kUi( R i l l
r.
R 5.E011.4*C.CC
.2*-1.00
/
c
r.
F E F F F E h C I kALUES F U R 1 1 1 1
c I S N 0014
c
L
c
r.
2
4.i.ro
.-I.CC.
IIFFEPFLCE VALUt FOR M
c
31.1 2 0 - c .
c c c
L .oa
P E F E F E N f E VbLUES PO*. Y i I l
r. c
OATb V C ? / 20 13.~0 .50 .OO. i -00.51-
REFERELCE V A L U t FOR U 4 I.C?/
.2* 13.cc
.
i -00.2~ 2 .oc
.I.
cc. 5s- L .oar
74.3G4/09.19.12
75
PAGE 0 0 2
c c
CHECX hbYE
c
I F 1 hAPF.EO.lELhNl IFlhACE.FC.IFPII
60 T O 102 GU T O 1 1 5
C
c.
ICCK
FCF
CP1C.H
I N hM IABLE
C C b L L PblC~lhbCE.WM.NVAL.NK1 IFlhK.hF.01 GT TO IUl
c
c.
L C P d l C k FCUNO
c c
C
c ISN IFN C IN ISN C IN ISN ICN IFN
on77 on73
CHFCU h I P E
PYlNl MESSICE
ALAINSI CN I b E L t
r bL L
PATCH 1hIMt.NMLN.NC.N. KCI IFIKC.FC.OI GC i n j o o J=1 B E G I 4 1t L C - I VlJI-VREFlJ~ RFTLPh 3C0 Y R 1 l E l L C L l . 1 1 hAMt 1 F l l R P L l l I X f ' L C MATCH FUN ' s b 4 . ' RFTLRh
nn75 0076 0077 0078
no79 no30
r. c IFN n n 3 i IFN on37 IFN nn33 I S N on34 I S N no35 15N 01136 I C N 0031 I ~ Noo3n I C N 0039 ISN n o w I ~ Nno41 I F N no42 ICN no43
-
c
hbCE
-
I N SEIPEF
- NO
CbANGE
Ih U'I
LCILKI
1c 1 h l - L K N?=LK GL IC 1C3 1c7 Nl-1 NZ= h r bF I C 3 D r i i c L=~I.LZ 1 I = ILSF l h l J=l RFGI h l
no
105 1 - 1 . i ~
VIJI-rPEFIJl
1 C5 J = J t l
1 in C O N l l h L F RFTLRh
r. C
F E I h T L L L R t F t Y E N C E VALUES
c. 115 L I N E S - 5 C Y0R C=YbPC
I S N no44
I C N 0045 C IN no46 I S N no47 C IN
15N C IN I ~ ISN ICN ICN
own 0050
no51 Nno57
0053 no54 0055
LIhE5-C NMlNl.1DlMlhl. I L S E l N l ~ l ~ E G l NI l. ~1-1.51 l LAME '.AI.' OlMEhSICN'.IS.* USEO'.14.' STARTS A1'14/
170 Y R I 1 E l N C U l . 3 1 3 FllRVITIlX/'
I 7X.4111.13Xl~llflXl 1SN ICN I ~ IFN
Jl- IEFGlLI
0056 no57
11=J1 JZ=I1tILSElhl-I
N005n
o r 12s ~=Jl.J2.5 12-PlhOll l + 4 , J Z I
nn59
I C N 0060
YRI 1ElLCLT.41 l V I l t F l I I . I = I I . 4 F1lRCITllX.lP5E14.51
I C N 0061 I C N no67 ICN 0 0 6 3 IXN 0064
121
11-12+1 125 C O N l l h L E L I N F S - L I hF 9 I 1 130 C O N T l h L E RFTLRh FNTFV LCCK YORC=Vb
I 5 N 0065 I C N 0066
I S N 0067 ISN 006n I C N 0069
c C
r
F R I h l S bALUEC I N V S E L C C I E I 0 1 hbME. I S P I A h U . P N I N I ALL.
I F NAME
c
C
c
CHECK hbME IFlhAPE.EC.lE!LhKl
I S N 0070
60 IO 132
r C
LCCK FCI. P l T L H I N T A U L E
C I Z N 0077 1SN 0073
C A L L PATChIhbCt.NM.NVAH.NK1 I F I h X . h E ~ O 1 GC IO L O 1
c C
CHFCU h l f l f A G A I N S T CN I A B L €
C IZN ISN ICN IZN
0075 0076 n070
ISN
nono ooni onai
no19
ICN ISN ISN nnn3 I F N 00R4
CAL L P I T C H IhbCt.NMCN.NCN.
KC)
IFINC.EC.OI Ga IO 301 J-I R E G 14 I tUC- I Y R I l F I X C L T . b I NMCNIKCI. J. V I J I 6 FORCITllXfIX.A4.' =Vt'.13.'l. VALUE = ' i l P E L 4 . 5 1 RFILRL 3Cl b P 1 7 E l L C L T . 5 1 hAME 5 F n R P d l l l X f ~ h t MbTCH t W N D F C P '.AS.* I h LOOK
RElLRh
-
NO P R I L T ' I
76
PAGE 0 0 3 ISN ISN 1CN ICN ISN
OORS
7CI hl=LK N7-CK
nnnP
132 NL-1 N7-hVd)l
no86 CCRl
cn i r 1 3 5
no89
c. C C ISN ICN ISN ICN ICN IFN ICN ICN I<N ICN ICN ICN I<N ITN ICN IFN ICN ICN
cas0
IN V
nc
0091 0097
150 L = ~ I . L Z I 1- I USF I L I / S I 4 I F I I I L F I I I I . ~ E . W IGO i o i k a
onoa caq5
C A L L hFhPC YLI1FIKCLT.ZI LINFS-0 140 M R l I E l I I C U T . 3 l J1=lR€GlLI
on96
on91 C098 0099 OlOC 0101 01n7
rnR0
h M I N l . l O l M l h I ~ I(rSf(N1. I E E G l N l . l I .
l*lv5l
ll=Jl J7- I l t l b C E I N I - 1 145 J=JI.J~.S 12-P I L O I I 1*4. JZI W R I IEILCUl.4l 1Vl11.I-I
nn
0103 0104 0105
1. I Z I
11-12+1
145 CON 1 I NL t
0106 ala7
1INFS-L I h E S t l l 150 CflNIlhUE
nim
I ~ Nm a 9 ITN
F P l L l S E L F C l E U VALUES
1 3 5 LINFS-ISC
RFTbRh E Nn
olio
LAHI-
Cdlh.UPI=~Z.LlNtChT-~5.SlZF=~COOU~
-
STUbCE~ERCCIC~NnLISl.NUCECC~LCAC.NCCAP.NOEOIT.NOIO~hOXREF SrLYCF C l b T E P E h l S
*CTdlICTlCC* *ClAllClICC*
e*****
NO
-
109 . P Y O G O b M
SIZE
3996
C l A G N O C I I C ~C E L E F b l t O
Ehn CF C O M P I L A T I O N * * * * * e
10SK @ l T E S OF C O P F NCT U S E D
77
LFVFl
IZN IZN IZN IZN ICN ICN IZh IZN
71.6
OSI?LC
l 0 F C 7))
FOPlRbN H
0007
on03
nnn4 0005
nom
c s n L 110 c s n L 11s C S O L I22
on07 00Ofl 0009
CSOL I 3 0
C C
C S O L 131
r. I Z N 0010 ICL n n i i
i w on12
IF1CZ.Gl.O.i GO TO (15 A Z S l G h 130 TC K PRIhT 4 4 FCRCITI'lhC SCLUTIUY'I
I Z N no14 I C N 0015 I Z h 0016 I ZN 001 I :CN OOIR I Z N 0019
60 10 9 5
C
k E A C I h G FCP D t t l U G P R l N T n U T
t
c I Z N no21 I Z N no77
1SN 007'4
90 P L l h T 1. C l . C?. PK. TK. hK. kL. UK. XL. E P S 1 F P R C A I I ' I C S O L V E AkCU~EkTS'I1kC.6X.'Cl'.l2X~'C2'~lZX~'P&'~12X~'lK'~CSCL x 12X. I 'HII' 12X. 'HL'+121. KK*. IIX'KL'. 12L'EPS' I I X . l P 9 E l 4 . 5 / ' C 11' r 6 X . CKZ0. ICX. 'TEST* I 1 x 1 2 IC II I 1 . I IX. * C K T 0 . 1 I X . *cx' ,121.9 G C Tc II. I S S . I ~ L I I
c
c
START
IlERArlUNS F U k C K
c
ICN ICN IZN ISN ICN
5 5 CKI=O. cucLo=rri CII=YL~IHLCHI~C~+C~I ~1--lC1+PcTH.o~O*T
no74 0075
0076 0027 007fl
nn 1 1 5 I T = I . ~ O
132 133
CSOL CSOL CIOL CCCL
135 136
csaL
IGrrF-i
t.r i r q o 8 5 I C 1 IGCTF.CF.0I
CSOL CSOL
CSOL CSOL CCOL CSCL CSCL CSCL
137 138 139
110
IS1 142 145
150
155 160
CSoL 1 6 1 C C C L 162 163 165
CSCL CSOL CSOL CSOL CSCL
I10 175 176
CSOL
Leo
ICLll I
C
c
I h W E E S F L l h t A R I N I L R P U L A T I C N ANC C k E C K FOR CCNWELGEhGE
C I S N CC79 I C h 0030
CCCL 1 8 2
C K T = I C II I * G 2-C 12.2 1I / lG2-G I I
120
I F I C ~ R S l C K C L C / C K T - I . U O J . L T ~ € P S ~ GO TO
csoc
183
CSOL CSOL CSOL CCOL C SOL CSCL CSOL
192 193 194
c I F h C T CChVERGEO.
C
TRV
INVEPSE OUbORATlC INTEPPCLATICN
C IZN ISN IZN ISN IZN ICN IZN IZN
CLT=LLOI~LCHLOIC1-CKTl~C2~
C032 0033
FF=ClrPCT~~ICSUUTlCL~i-USURTlKK~CKTll
0014 0035
OGI 4 - G I
G=CIIT-FF Dt.2 =G-C?
0036 C037 0038
OF3=0G2-0G 1 CX--GOG2*CL1/ IFI IGCCF.GE.CI
now
I OGj*U(; l i + G l * G Z O C K l / I C 6 I * C G 2 l + G I * G * C K Z / GU
in
LOU
c
CE8bC FFlhTOUT
C
ISN ISN ISN
PRlhT i ~ I T ~ C L l ~ C K T ~ C X ~ C K 2 ~ T E 2 FCRCAlllXl3.lPSFlC.51 7C0 1 F l C X . L E . C K l l GO IO 102 IF1CX.tE.CKTI GO TO I02 TEST-O~ESlCKCL0ICX-I.Do) I F 1 IEST.ET.EFS1 G O T O 201 CKTiCX Gci TO I20 201 C L X - W l I P K C H L O I C . 1 -CX l + C Z I F X - C l +PCTH* I O S U R r I C I X J - O S O R T l I I K * C X I 1 GX=CX-FX CKCLO-CX IFICX.LT.O.1 GO I 0 101 CKP=CX Gl-GX
0041
0047 no43 0045 0047 0048 no50
I S N 0051 ISN IZN ISN ISN ISN ISN ISN ISN ICN
0057 0053 0054 0055
0056 on58 0059 0060
cn i n
no61 I S N 0067
115
-
-
GI-G CKl=CIIT G r i r 115 62-G CKZ-CLT 115 C O N I l h L F
CSOL 191 C S O L 198
C S C L 201
c s n i 202 CCOL 204 CSUL 203 C S C L 206 CSOL 2 0 7 t. s. n. L. -~~ 208 C C C L 225
CSCL 226 CSOL CSOL CSOL CSOL CSOL
c m CSOL
F P l h T LCN-CONWkRGENLk
221
230 231 232 233
C S O L 235
ICs
C C
196
I~
1 C 1 CKL-CX Gl=CX GO T O 105 1 C7 IF 5 1-0 b C S I C K C L U I C K r I .DO) CKOLO CKT 1FITESl.LE.EPSl GO 10 I20 I F I G .fC. 0 . C O i L.(l TU I20 IFIG.CT.O.I GC i n i o 5
ISN no63 I S N fl064 ISN no65 S IN 0066 I S N 006n I S N 0010 I S N 0012 ISN 0073 I S N 0014 ISN 0015 I S N 0016 1 S N 0017
195
240
245 CSOL 250 CSOL 255
C
ISN ISN ISN ISN
I OG3OOGZI
ALIPC
c
PRlhT 3
3 F C R C A I I ' O C S C L W t UNAIILt I C F l h C R O C I ' I
CSOL CSOL
236
215
zeo
zes
C S O L 290 CSOL 2 9 5
78
PAGE 0 0 2
I C N nono I T N 0081 I t N 0087 ICN
C S C L 300
lGOCF=CIXOIL.IGoOF+l1
nom
l t N no84 I Z N OORS
RFiunn 120 C Y = C K l
CSOL 305 CSOL 310
CL-*KCCL*(~l-CKI+CZ 130 R F T L R L E h0
CSCL 3 2 0 CSOL 3 2 5
~Alh.OPI=OL.LINFChl-~5~SlZE-CCCOK~
8flPllOhC
I N FFFFCT.
LAME.:
*OPTtflNC
I N FFFFCT.
SCURCE. EBCCIC.
SCbIIV.E S l A I E C E N I S =
*STAIISTlCC*
NnLISl. N G D E C ~ . L C A I . N C ~ I P ~ N O E D I T S N O IO. hOXREF 84 . P Y O G R I C
SIZE =
2024
fllAGhCSIlCl GELEPITEO
*STAIlSTlCC*
NO
*****I tho TF
CflHPIIATICN
8-8888
121K e V l E S O F CORE NCT U S E 0
79
L f v m
71.6
tnFc
CS/?60
771
CflMPlLFR CPTlOhS
H
C
r
c r
DOOR 0009
0010 nnii
noiz
IN FFFFCT.
LAPF=
*OPTIONS
I N FFFFCTI
SCUPCE.E0CCIC.NULIST~NtiOECK~LCbC~NCMbP~NOEOIT~NOIO~hOXREF
SCLRCE S I b T E P f h T S =
*STAIISTICt*
Nn
****I* FNfl CF
CGMPllbTION
LFVFI
I1 .PRCGPbM
SIZE
-
******
C
FCRlRbN H
S C L V F S I H F UUAURATIC E b U A T I C h
-
c.
CR**i
C
FCR THF RPflT C K Y l i I C H
r
O * C I + ALFLI*CK
+
Cl**i
-
IFN non, I S N tin04 I S N 3005 C IN on06 S IN on07 ICN nnoR
IPPIlClT Ffbl*E RFAl*R LK l=C I l K K
CCUb 1 2 5 CCUA 1 3 0 CCUA 135
1A-W.LI-LI CCUb I40 CCUb 1 4 5
RFTLRh
CCUA 155 CCUA 160
6 NO
IIJFT. 7 7 )
CSI3LC
FOHTRbN H
-
LICEMAlN~UPT~OZ~LIhEChT=~5~SIZE=OOOOK~ SCbRC€.Ft3LUlC.NUL IST.hCCLCK~LCbC.NOMAP.~CEOlT~hOlC~NOXREF S U R P C b T l h E WbTCH (NAME. N I b E . h h . h M b l l
I S N OOO?
c C
I F b R C k F S T k F ARRAY N l A l U I l k NN I T E C S FOR THE F I R S T CCCLPRFLCF U F N b M t . It N b C E IS hCT FOUND I N NTAB. NCAT IS F F I L F N F C Y l T n THE V A L U f Z E R O .
C
c C
flCC3
no04
om5
no06
nnna
01-09
0010 nnii no12
74.304/09.20.38
C
IS L E S S TCbN C I I K K .
CK=CI~*2/lCll.5rALFA*ll.*uSCFTl4.*~ll&LFbtl.lll
CUCPII F R CPTlOhF
1SN ISN C IN ISN S IN S IN ISN ISN S IN
DblF
105 CCUb 110 CCUA 115
t
7l.h
74.3C4109.20.25
1 3 3 K e V T E S OF CORE h C T USEO
CSl360
C
LFVFI
DblE
260
O l C t N O S l l C S CEhEFblEU
I D F C 771
71.6
74.3Ck/09.20.
#blh.OPT=OL~LINtChT-SS.SIIE.OCOOI.
+nPTinh(
*STbT1STltt+
LO
CITE
hb#E= MAIN.OPT-OZ~LlhECNT=55.S12EIOOOOI. CCLRCE~FBCOIC~NflLIST.~CCECK~LCbC~NOYIP~hOEOlT~hOlC~NQXREF SURPCLTIhE NfhPG NEUP 100 NEUP I05 I F I k E SUbPAYV flUrPUT U N l l I K O U T l IS THE L I N E P R I N T f R I I P R l r N E h P 110 E J F C T TT 1 Ne- PA(.€. I F NCT. P R I N I 5 CLANK L I N E S . h E U P 115 N E k P 120 NELIP I25 N E ~ P1 3 0 NEhP 135 NEUP 140 N E h P 145 RFTLPh NEhP 150 100 U R l l E I L C U T . 2 l N E h P 155 7 FORPATIIHII N E h P I60 RFTLRN NEUP 165 FNO
I S N 0007
ISN 1SN IqN C IN S IH
FCRlPbN
-
IC0
f l l M F h S I C h L T I P 1101 NMAI = 0 D C 100 h-1.Nh I F IICCCPblhbMF. NTABINI. NPAT = h RFTLRh CONlIhLl RFTLilh F hO
4 1 .hE-
C l G O Tn IO0
81 ORNL-TM-4804 UC-76 - Molten-Salt Reactor Technology INTERNAL DISTRIBUTION
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13.
L. L. Anthony R. F. Apple C. F. Baes, Jr. C. E. Bamberger J. M. E. D. J. M. R. C.
H. 14. A. 15. 16. 17. 18-27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39.
C. J
.
S.
J. H. J. W. B. R. E. J. W. J. R. J.
F. 40. J. 41. J.
42. J. 43. W. 44-46. J. 47. G. 48. D. 49. L. 50. R. 51. L. 52. W.
53. R. 54. W. 55. P. 56. R. 57. J. 58. B.
T. Bell Bender S. Bettis N. Braski Braunstein A. Bredig B. Briggs R. Brinkman R. Bronstein A. Brooks H. Brown Brynest ad Cantor A. Carpenter P. Carter A. Carter L. Carter R. Clark E. Clausing L. Compere A. Conlin H. Cook H. Cooper M. Counce S . Crowell L. Culler M. Dale H. DeVan R. DiStefano P. Eatherly R. Engel G. Fee E. Ferguson M. Ferris H. Fowler 0. Gilpatrick R. Grimes H. Guymon 0. H a r m s N. Haubenreich W. Henderson R. Hightower, Jr. F. Hitch
59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70. 71. 72. 73.
74. 75. 76. 77 78. 79. 80. 81-85. 86. 87. 88. 89. 90. 91. 92. 93.
94. 95. 96. 97. 98. 99. 100. 101. 102. 103.
104. 105. 106. 107. 108. 109.
W. R. Huntley C. R. Hyman P. R. Kasten C. W. Kee J. R. Keiser 0. L. Keller A. D. Kelmers H. T. Kerr W. R. Laing R. B. Lindauer R. E. MacPherson G. Mamantov D. L. Manning W. R. Martin L. Maya G . T. Mays H. E. McCoy H. F. McDuffie C. J. McHargue H. A. McLain B. McNabb A. S . Meyer C. W. Nestor, Jr. M. R. Patterson S. K. Penny F. A. Posey H. Postma C. E. Prince B. E. Prince T. K. Roche M. W. Rosenthal H. C. Savage M. R. Sheldon M. J. Skinner A. N. Smith F. J. Smith I. Spiewak R. A. Strehlow D. J. Strickler J. G. Sullivan 0. K. Tallent R. E. Thoma D. B. Trauger T. N. Washburn J. R. Weir G. W. West ley J. C. White
82
110. G. E. Whitesides 111. R. P. Wichner 112. M. K. Wilkinson 113. J. P. Young 114. A . Zucker i15-117.
Central Research Library
118. Document Reference Section
119. K-25 Library 120-122. Laboratory Records 123. Laboratory Records - RC 124-125. MSRF' Director's Office, 4500NM, Rm. 147 126. ORNL Patent Office 127. Y-12 Technical Library
EXTERNAL DISTRIBUTION
128.
Research and Technical Support Division, ERDA, Oak Ridge Operations Office, Post Office Box E, Oak Ridge, Tenn. 37830 129. Director, Reactor Division, ERDA, Oak Ridge Operations Office, Post Office Box E, Oak Ridge, Tenn. 37830 130-131. Director, Division of Reactor Research and Development, ERDA Washington, DC 20545 132-235. For distribution as shown in TID-4500 under UC-76, Molten-Salt Reactor Technology