HOME HELP
ORNL/TM-4210 Dist. C a t e g o r y UC-76
, C o n t r a c t No. W-7405-eng-26
CHEMICAL TECHNOLOGY D I V I S I O N
- - MULTIREGION
MRPP
_ -
PROCESSING PLANT CODE
C. W. K e e and L. E. M c N e e s e
SEPTEMBER
1976
~
-NOTICE
V
OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37830 operated by UNION CARBIDE CORPORATION f o r the ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION
iii
TABLE OF CONTENTS
Page No
........................... 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . 1 EQUATIONS AND ASSUMPTIONS . . . . . . . . . . . . . . . . . . . 3 2 . 1 Model f o r t h e Reactor . . . . . . . . . . . . . . . . . . 4 2.2 Model f o r t h e P r o c e s s i n g P l a n t . . . . . . . . . . . . . . 7 N W R I C A L METHODS EMPLOYED . . . . . . . . . . . . . . . . . . 13 3 . 1 S o l u t i o n of Reactor Material Balance Equations . . . . . . 1 3 3.2 S o l u t i o n of t h e P r o c e s s i n g P l a n t Material Balance 14 Equations . . . . . . . . . . . . . . . . . . . . . . . . 3.3 I t e r a t i o n w i t h Reactor Code . . . . . . . . . . . . . . . 15 3.4 C a l c u l a t i o n of Molar Volumes . . . . . . . . . . . . . . . 1 6 3.5 C o r r e c t i o n of D i s t r i b u t i o n C o e f f i c i e n t s . . . . . . . . . 1 7 3 . 6 I n v e s t i g a t i o n of F a s t e r S o l u t i o n Methods . . . . . . . . . 20 LIMITATIONS AND SPECIAL CONSIDERATIONS . . . . . . . . . . . . 2 1 4 . 1 L i m i t a t i o n s of Steady S t a t e C a l c u l a t i o n . . . . . . . . . 2 1 4.2 System of U n i t s . . . . . . . . . . . . . . . . . . . . . 22 4.3 D e s c r i p t i o n of P a r t i c u l a r Items Using Mass T r a n s f e r Coefficients . . . . . . . . . . . . . . . . . . . . . . . 22 4.4 Uses Requiring M o d i f i c a t i o n s . . . . . . . . . . . . . . . 23 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . 25 APPENDIX A: DESCRIPTION OF SUBROUTINES USED . . . . . . . . . 27 42 APPENDIX B: INPUT . . . . . . . . . . . . . . . . . . . . . . APPENDIX C: OUTPUT . . . . . . . . . . . . . . . . . . . . . . 60 ABSTRACT
.
1
.
2
.
3
.
4
.
5
.
.
1
MRPP
-
MULTIREGION PROCESSING PLANT CODE
C. W. b e and L. E. McNeese
ABSTRACT T h i s r e p o r t d e s c r i b e s t h e machine s o l u t i o n of a l a r g e number (% 52,000) of simultaneous l i n e a r a l g e b r a i c e q u a t i o n s i n which t h e unknowns are t h e c o n c e n t r a t i o n s of n u c l i d e s i n t h e f u e l s a l t of a f l u i d - f u e l e d r e a c t o r (MSBR) having a continuous f u e l p r o c e s s i n g p l a n t . Most of t h e e q u a t i o n s d e f i n e c o n c e n t r a t i o n s a t v a r i o u s p o i n t s i n t h e p r o c e s s i n g p l a n t . The code a l l o w s as i n p u t a g e n e r a l i z e d d e s c r i p t i o n of a p r o c e s s i n g p l a n t f l o w s h e e t ; i t a l s o performs t h e i t e r a t i v e adjustment of f l o w s h e e t parameters f o r d e t e r m i n a t i o n of c o n c e n t r a t i o n s throughout t h e f l o w s h e e t , and t h e a s s o c i a t e d e f f e c t of t h e s p e c i f i e d p r o c e s s i n g mode on t h e o v e r a l l r e a c t o r o p e r a t i o n .
1
INTRODUCTION
I n a r e a c t o r s u c h as a Molten-Salt Breeder Reactor f o r which continuous p r o c e s s i n g i s planned, t h e a b i l i t y t o compare a l t e r n a t e p r o c e s s i n g methods i s e s s e n t i a l i n determining t h e e f f e c t of small changes i n process i n g method on the s t e a d y - s t a t e o p e r a t i o n of a r e a c t o r and p r o c e s s i n g p l a n t . Because of t h e d e g r e e of i n t e r a c t i o n between t h e r e a c t o r performance and t h a t of t h e p r o c e s s i n g p l a n t , i t i s n e c e s s a r y t o c o n s i d e r t h e r e a c t o r and t h e p r o c e s s i n g system simultaneously.
The s h o r t c o o l i n g times r e s u l t i n g
from continuous p r o c e s s i n g cause a p p r e c i a b l e decay of n u c l i d e s i n t h e p r o c e s s i n g system and r e s u l t i n h i g h decay h e a t i n g rates and time-dependent chemical compositions.
Most p r o c e s s i n g p l a n t f l o w s h e e t s of i n t e r e s t , when
coupled c l o s e l y w i t h a r e a c t o r , produce numerous feedback streams t h a t
2
comp 1icat e m a t e r ia1 b a l a n c e c a l c u l a t i o n s and l e a d t o accumulation of
materials over long t i m e p e r i o d s .
To o b t a i n an a c c u r a t e r e p r e s e n t a t i o n
of t h e performance of t h e r e a c t o r and p r o c e s s i n g p l a n t i n such cases,
a flowsheet must be r e p r e s e n t e d i n d e t a i l , and a l a r g e r number of n u c l i d e s than considered p r e v i o u s l y must b e t a k e n i n t o account.
1
Computer programs have been developed and are d i s c u s s e d that a l l o w
a p r o c e s s i n g p l a n t and t h e a s s o c i a t e d r e a c t o r t o b e r e p r e s e n t e d i n such a manner t h a t the programs can be used i n d e p e n d e n t l y t o r e p r e s e n t e i t h e r t h e r e a c t o r o r p r o c e s s i n g p l a n t i n d e t a i l o r i n combination t o o b t a i n a d e t a i l e d r e p r e e e n t a t i o n o f t h e r e a c t o r and p r o c e s s i n g p l a n t system. Although each code s o l v e s a l a r g e system of simultaneous l i n e a r a l g e b r a i c e q u a t i o n s , because of t h e d i f f e r e n t c h a r a c t e r i s t i c s of t h e two systems, d i f f e r e n t methods of s o l u t i o n are u s e d ; b o t h methods were adapted f o r u s e w i t h s p a r s e matrices.
The r e a c t o r code u s e s a Gauss-Seidel i t e r a t i o n
t o s o l v e approximately 750 e q u a t i o n s . approximately 52,500 e q u a t i o n s .
The p r o c e s s i n g p l a n t code s o l v e s
However, a s p e c i a l o r d e r i n g scheme a l l o w s
a d i r e c t s o l u t i o n i n which t h e e q u a t i o n s are c o n s i d e r e d i n b l o c k s of 70 e q u a t i o n s each. The c a l c u l a t i o n s are c a r r i e d o u t i n an i t e r a t i v e manner between t h e r e a c t o r and t h e p r o c e s s i n g p l a n t f o r d e t e r m i n a t i o n of flowsheet parameters. These parameters i n c l u d e t h e molar d e n s i t y of p h a s e s i n each holdup v o l -
ume and t h e d i s t r i b u t i o n c o e f f i c i e n t s for each mass t r a n s f e r o p e r a t i o n i n t h e f l o w s h e e t ; t h i s f e a t u r e allows t h e s i m u l a t i o n of complw s t e p s i n a flowsheet by u s i n g e i t h e r an e q u i l i b r i u m o r f i r s t - o r d e r r a t e mechanism.
3
S e c t i o n s 2 through 4 of t h i s r e p o r t d i s c u s s t h e g e n e r a l problem and t h e set of e q u a t i o n s employed i n i t s s o l u t i o n , t h e method used f o r s o l u t i o n of t h e e q u a t i o n s , and t h e e x t e n s i o n s of t h e code t o s i m i l a r problems.
The appendixes e s s e n t i a l l y form a u s e r ' s manual and i n c l u d e
a d e s c r i p t i o n of t h e s u b r o u t i n e s , t h e i n p u t , and t h e o u t p u t from b o t h
t h e r e a c t o r and p r o c e s s i n g p l a n t codes.
A code l i s t i n g is a v a i l a b l e
from t h e a u t h o r s .
2.
EQUATIONS AND ASSUMPTIONS
The m u l t i r e g i o n p r o c e s s i n g p l a n t code i s based on a model i n which
a MSBR and t h e a s s o c i a t e d p r o c e s s i n g p l a n t are r e p r e s e n t e d by s e p a r a t e r e g i o n s of uniform composition; allowance i s made f o r continuous flow between r e g i o n s , r a d i o a c t i v e decay of materials i n each r e g i o n , and t r a n s f e r of materials between r e g i o n s i n o r d e r t o r e p r e s e n t common m a s s t r a n s f e r effects.
Allowance is also made f o r f i s s i o n and n e u t r o n c a p t u r e r e a c t i o n s
i n regions representing the reactor.
The e q u a t i o n s which d e s c r i b e r e g i o n s
i n t h e p r o c e s s i n g p l a n t are similar t o t h o s e f o r the r e a c t o r ; however, t h e r e a c t o r i s r e p r e s e n t e d by a s e p a r a t e code, MATADOR,
2
which receives i n p u t
from a s i n g l e r e g i o n of the p r o c e s s i n g p l a n t ( t h e r e g i o n from which processed s a l t is returned t o t h e r e a c t o r ) .
The e q u a t i o n s f o r t h e p r o c e s s i n g
p l a n t are d e s c r i b e d s e p a r a t e l y from t h o s e f o r t h e r e a c t o r t o accommodate
the d i f f e r e n t assumptions t h a t are r e q u i r e d .
4
2.1
Model f o r t h e Reactor
A p r e v i o u s l y developed computer program, MATADOR, i s used f o r calc u l a t i o n of t h e c o n c e n t r a t i o n s of n u c l i d e s i n t h e primary c i r c u i t of a MSBR under s t e a d y - s t a t e c o n d i t i o n s i n which f u e l s a l t i s c o n t i n u o u s l y c i r c u l a t e d between t h e r e a c t o r and a p r o c e s s i n g system.
A s such, t h e pro-
gram serves as a s u b r o u t i n e t h a t c a l c u l a t e s t h e i n p u t f o r t h e p r o c e s s i n g p l a n t program ( i n t h e form of c o n c e n t r a t i o n s and flow r a t e of t h e s a l t t o b e p r o c e s s e d ) based on o u t p u t from t h e p r o c e s s i n g p l a n t ( i n t h e form of c o n c e n t r a t i o n s and flow rate of t h e processed s a l t t h a t i s r e t u r n e d t o the reactor).
F r o m t h e s t a n d p o i n t of t h e p r o c e s s i n g p l a n t program, t h e
r e a c t o r i s t r e a t e d as a s i n g l e r e g i o n ; however, t h e r e a c t o r program t r e a t s t h e r e a c t o r as a m u l t i r e g i o n system.
The e q u a t i o n s permit t h e u s e of
terms which are n o t n e c e s s a r y f o r e v e r y r e g i o n ; f o r example, flow of
material between any two r e g i o n s can be s p e c i f i e d , b u t t h i s seldom occurs. The e q u a t i o n s have been d e s c r i b e d p r e v i o u s l y Y 2 a l t h o u g h much of t h a t description i s repeated here. The accumulation rate of s p e c i e s i i n t h e f u e l s a l t i n t h e r e a c t o r i s t h e i n p u t r a t e of s p e c i e s i by f e e d , f i s s i o n , r a d i o a c t i v e decay, and n e u t r o n c a p t u r e i n t h e f u e l s a l t , g r a p h i t e , and c i r c u l a t i n g bubbles minus t h e d i s a p p e a r a n c e rate of s p e c i e s i due t o r a d i o a c t i v e decay, n e u t r o n c a p t u r e , d e p o s i t i o n on exchanger s u r f a c e s , and chemical p r o c e s s i n g . s t e a d y s t a t e , t h i s r a t e of accumulation i s z e r o , s o t h a t :
At
5
where
%
=
2 s u r f a c e area of c i r c u l a t i n g b u b b l e s , cm ,
A g
=
2 s u r f a c e area of g r a p h i t e , an ,
F
=
v o l u m e t r i c flow rate of f u e l s a l t t o t h e r e a c t o r , c c / s e c ,
=
c o e f f i c i e n t f o r loss of s p e c i e s i by d i f f u s i o n i n t o
Gi
g r a p h i t e , un/sec, Hi
=
c o e f f i c i e n t f o r loss of s p e c i e s i by m i g r a t i o n t o bubbles,
cm/sec, pi 'i
=
e f f e c t i v e chemical p r o c e s s i n g rate f o r s p e c i e s i , c c / s e c ,
=
rate a t which s p e c i e s i p l a t e s on t h e h e a t exchanger s u r f aces , cm/sec,
v vC C
c
i
io
e..
=
volume of f u e l s a l t , c c ,
=
volume of f u e l s a l t i n c o r e , c c ,
=
c o n c e n t r a t i o n of s p e c i e s i, moles/cc,
=
f e e d c o n c e n t r a t i o n of s p e c i e s i, moles/cc,
=
f r a c t i o n of d i s i n t e g r a t i o n s by s p e c i e s j which l e a d s t o
1J
formation of s p e c i e s i ,
f
13
=
f r a c t i o n of n e u t r o n c a p t u r e s by s p e c i e s j which l e a d s t o f o r m a t i o n of s p e c i e s i,
=
gij
c o e f f i c i e n t f o r p r o d u c t i o n of s p e c i e s i by d i f f u s i o n of s p e c i e s j i n t o g r a p h i t e , cm/sec,
h
=
ij
c o e f f i c i e n t f o r p r o d u c t i o n of s p e c i e s i by m i g r a t i o n of s p e c i e s j t o g a s b u b b l e s , cm/sec,
=
sij
rate of p r o d u c t i o n of s p e c i e s i from s p e c i e s j p l a t e d on t h e heat exchanger s u r f a c e s , c c / s e c ,
Yij
=
f i s s i o n y i e l d of s p e c i e s i from f i s s i o n of s p e c i e s j ,
6
12I ‘i
‘fi
4
-I
,
2
,
=
r a d i o a c t i v e d i s i n t e g r a t i o n c o n s t a n t of s p e c i e s i , sec
=
average neutron-capture c r o s s s e c t i o n of s p e c i e s i , cm
=
2 average f i s s i o n c r o s s s e c t i o n of s p e c i e s i , cm ,
=
-2 -1 average n e u t r o n f l u x , cm see
.
Thus, f o r I n u c l i d e s , t h i s e q u a t i o n i s a system of I simultaneous a l g e b r a i c e q u a t i o n s and I unknowns. unknowns are considered by:
Two o t h e r s e t s of I e q u a t i o n s and I
(1) allowing f o r a volume of gas bubbles and
a holdup f o r materials p l a t e d o u t i n t h e r e a c t o r f l u x , and (2) allowing a r e g i o n i n which t h e e v o l v i n g g a s bubbles and t h e materials p l a t e d o u t o u t s i d e t h e r e a c t o r c o r e are h e l d i n c o n t a c t w i t h f u e l s a l t so t h a t s o l u b l e decay p r o d u c t s may be r e t u r n e d t o the r e a c t o r . A l l t h r e e sets of I e q u a t i o n s are s o l v e d by t h e Gauss-Seidel
s u c c e s s i v e s u b s t i t u t i o n a l g o r i t h m , w i t h i t e r a t i o n o c c u r r i n g over each of t h e s u c c e s s i v e sets of I e q u a t i o n s .
Because of the s i z e of t h e
d i a g o n a l terms, t h e system of e q u a t i o n s converges r a p i d l y .
Direct s o l -
u t i o n s were n o t used because of t h e s t o r a g e r e q u i r e d f o r remembering a c o e f f i c i e n t matrix. The t r e a t m e n t of d i f f u s i o n of n o b l e g a s e s i n t o and decay p r o d u c t s This o u t of t h e g r a p h i t e u s e s a model developed by Kedl and H ~ u t z e e l . ~ model assumes that the g r a p h i t e moderator i s r e p l a c e d by s e m i - i n f i n i t e s o l i d c y l i n d e r s w i t h t h e same surface-to-volume
r a t i o , and t h a t t h e
g r a p h i t e i s c o a t e d w i t h a low p e r m e a b i l i t y material t o a d e p t h of l m i l . D i f f u s i o n of n o b l e g a s e s i n t o t h e g r a p h i t e o c c u r s through a l i q u i d f i l m and t h e c o a t i n g , and i s s i m u l a t e d by a lumped r e s i s t a n c e model.
The
model developed f o r t h e m i g r a t i o n o f n o b l e g a s e s and n o b l e metals t o c i r c u l a t i n g helium bubbles i s an e x t e n s i o n of t h e model proposed by Kedl and Houtzeel.3
Both of t h e s e models are d e s c r i b e d i n r e f . 2.
7
Once t h e set of c o n c e n t r a t i o n s i s o b t a i n e d , i t i s p o s s i b l e t o calc u l a t e h e a t g e n e r a t i o n r a t e s , f i s s i o n product p o i s o n i n g , p r o d u c t i o n r a t e s of t h e materials i n t h e r e a c t o r , i n v e n t o r y i n moles of t h e m a t e r i a l i n
t h e r e a c t o r , t h e uranium mole f r a c t i o n , and t h e b r e e d i n g r a t i o .
The
breeding r a t i o i s c a l c u l a t e d by assuming t h a t i t varies l i n e a r l y v i t h small changes i n t h e f i s s i o n product poisoning.
Thus, t h e breeding r a t i o
i s determined from t h e d i f f e r e n c e between t h e r e f e r e n c e f i s s i o n product p o i s o n i n g (from ROD4 c a l c u l a t i o n s ) and t h e c a l c u l a t e d f i s s i o n product poisoning. I n c a l c u l a t i n g t h e f i s s i o n product p o i s o n i n g , the poisoning from 135Xe
i s excluded because i t w a s a l s o excluded i n t h e r e a c t o r d e s i g n code,
ROD, where i t w a s always assumed t o be one-half
of 1%.While MATADOR
c a l c u l a t i o n s of f i s s i o n p r o d u c t poisoning i n c l u d e a b s o r p t i o n s by t h e n o b l e g a s e s and n o b l e metals i n t h e gas b u b b l e s , n o b l e metals p l a t e d o n t o s u r f a c e s o u t s i d e the r e a c t o r c o r e are n o t assumed t o absorb n e u t r o n s . Neptunium a b s o r p t i o n s are i n c l u d e d , because the r e f e r e n c e f i s s i o n product p o i s o n i n g used by ROD from p r e v i o u s c a l c u l a t i o n s i n c l u d e d t h e neptunium
a b s o r p t i o n s w i t h f i s s i o n p r o d u c t poisoning.
2.2
Model f o r the P r o c e s s i n g P l a n t
The p r o c e s s i n g p l a n t code c a l c u l a t e s s t e a d y - s t a t e
concentrations
based on material b a l a n c e e q u a t i o n s , and c o n s t a n t r e a c t o r e f f l u e n t concent r a t i o n s as determined by t h e l a s t MATADOR c a l c u l a t i o n .
The m u l t i r e g i o n
code assumes t h a t t h e p r o c e s s i n g p l a n t i s composed of a number of r e g i o n s ( o r holdup volumes) connected by flowing streams.
A r e g i o n c o n s i s t s of
a well-mixed volume c o n t a i n i n g one o r two phases i n e q u i l i b r i u m .
The
8
e q u i l i b r i u m i s s p e c i f i e d by a p r o p o r t i o n a l i t y c o n s t a n t t h a t v a r i e s w i t h atomic number and may be changed between s u c c e s s i v e flowsheet c a l c u l a tions.
Any two r e g i o n s may b e l i n k e d by flowing streams o r by r a t e
e x p r e s s i o n s , and each r e g i o n may have f e e d s o r d i s c a r d s .
(These are
streams which do n o t connect two r e g i o n s i n t h e p l a n t . ) 2.2.1
Material b a l a n c e e q u a t i o n s
The r a t e of accumulation of n u c l i d e i i n a r e g i o n (0 a t s t e a d y s t a t e ) i s t h e r a t e of appearance of i i n t h e r e g i o n from f e e d streams, from flowing streams from o t h e r r e g i o n s , from m a s s t r a n s f e r from o t h e r r e g i o n s , and from p r o d u c t i o n of o t h e r n u c l i d e s by r a d i o a c t i v e decay minus t h e rate of d i s a p p e a r a n c e of i from t h e r e g i o n by flow o u t , by m a s s t r a n s f e r t o o t h e r r e g i o n s , and by r a d i o a c t i v e decay. s t e a d y state i n r e g i o n n : =
jSi
+
FSm,n
+ Kj , n V B,n ) cj , n
'jeij('S,n
j
Ci
,m +
m m#n
'
F m , n Ki , m c i , m
m m#n
m#n
-C
'i('S,n
Sn,m i- DSn
+
K i , n 'B,n)
+K.
r,n
C F
'i,n
+
FIi,n
Thus, a t
9
where =
DSn
F
3
Sm,n
FIi,n K
i,n
flow rate of phase S from r e g i o n m t o r e g i o n n , cm / s e c , f e e d r a t e of n u c l i d e i t o r e g i o n n , m o l e s / s e c , d i s t r i b u t i o n r a t i o f o r nuclide i i n region n , volume of phase S i n r e g i o n n , c c ,
'Sn C
3 d i s c a r d r a t e of phase S from r e g i o n n , cm / s e c ,
c o n c e n t r a t i o n of n u c l i d e i i n f i r s t phase of r e g i o n n ,
i,n
moles/cc,
e
f r a c t i o n s of d i s i n t e g r a t i o n s of s p e c i e s j which l e a d t o
ij
formation of s p e c i e s i, (kia)m,n
mass t r a n s f e r r a t e c o n s t a n t f o r t r a n s f e r of s p e c i e s i
3
from r e g i o n m t o region n , cm / s e c [ t h e r a t i o of ( k . a ) I
and (kia)
n,m
m,n
i s a d i s t r i b u t i o n f u n c t i o n , as d i s c u s s e d
i n Sect. 2 . 2 . 2 1 ,
h
decay c o n s t a n t f o r n u c l i d e i , s e c
i
s u b s c r i p t s B and S
=
-1 , and
phases
i and j = n u c l i d e s m and n = r e g i o n s .
Hence, t h e r e i s one e q u a t i o n and one unknown f o r each n u c l i d e i n each region.
There are 52,500 e q u a t i o n s f o r 750 n u c l i d e s i n 70 r e g i o n s .
Because of t h e number of e q u a t i o n s and t h e number and s i z e of r e c y c l e
streams p r e s e n t i n a f l o w s h e e t , t h e Gauss-Seidel i t e r a t i o n i s t o o time consuming.
S i n c e n e u t r o n c a p t u r e s are n e g l e c t e d , i t i s p o s s i b l e t o
a r r a n g e t h e n u c l i d e s s o t h a t e a c h n u c l i d e p r e c e d e s a l l of i t s decav daughters.
For N r e g i o n s , t h e r e i s one set of N e q u a t i o n s w i t h N unknowns
10
f o r each n u c l i d e .
By a r r a n g i n g t h e n u c l i d e s i n t h e p r o p e r o r d e r and
s o l v i n g each s e t of e q u a t i o n s , a d i r e c t s o l u t i o n f o r t h e e n t i r e set of equations is obtained.
S o l u t i o n s i n t h e p r o c e s s i n g p l a n t are a l t e r n a t e d
w i t h c a l l s t o MATADOR t o o b t a i n a converged s o l u t i o n f o r a r e a c t o r coupled with continuous p r o c e s s i n g . The program used h a s been designed t o s o l v e a l a r g e system of e q u a t i o n s i n which t h e n o n t r i a n g u l a r c o e f f i c i e n t matrix may be expressed
as a lower t r i a n g u l a r c o e f f i c i e n t matrix whose elements are m a t r i c e s . Each matrix on t h e d i a g o n a l i s s o l v e d d i r e c t l y , w i t h s u b s t i t u t i o n s b e i n g made f o r unknowns t h a t were c a l c u l a t e d p r e v i o u s l y .
In t h i s case, t h e
lower t r i a n g u l a r matrix h a s o f f - d i a g o n a l terms i n row i and column j of t h e form:
-
A . eij V
4
J
,
where V %j
=
d i a g o n a l m a t r i x w i t h t h e n t h term on t h e d i a g o n a l being + K
' S n
j ,n 'Bn
*
The terms on t h e d i a g o n a l ( i = j ) are matrices of the form: R.
+
hi&
.
R. i s a m a t r i x whose element i n row n and column m i s
where
6
= 1 i f n=m, and
6
=
n,m n3m
0 i f nfm.
11
The r e s u l t i n g system of e q u a t i o n s , when used w i t h a c o n s t a n t v e c t o r i n d i c a t i n g f e e d streams, i s t h e s e t of E q s . ( 2 ) .
2.2.2
Mass t r a n s f e r c o e f f i c i e n t s
Three models w e r e used f o r mass t r a n s f e r between l i q u i d and gas For t r a n s f e r of n o b l e g a s e s t o gas bubbles, t h e o v e r a l l l i q u i d
phases.
m a s s t r a n s f e r c o e f f i c i e n t was e s t i m a t e d from t h e Hughmark c o r r e l a t i o n g i v e n by S c h a f t l e i n and Russell.’
This i s s u b s t i t u t e d i n t o t h e r e l a t i o n
f o r mass t r a n s f e r : Ni
= KOLA&
-
=
KoL%cR
- KoL$H
cg’
where 2
,
%
= bubble s u r f a c e area,
H
= Henry’s l a w c o n s t a n t , m o l e s / c c (liq) p e r mole/cc ( g a s ) ,
KoL Ni
cR and c
g
cm
= o v e r a l l l i q u i d m a s s t r a n s f e r c o e f f i c i e n t , cm/sec, =
rate of m a s s t r a n s f e r , m o l e s / s e c ,
= c o n c e n t r a t i o n s i n l i q u i d and g a s , moles/cc.
T h i s e q u a t i o n is broken i n t o two c o n t r i b u t i o n s to matrix terms analogous t o a flow rate so that:
(kia)m,n
=
ICoL
H = H(k a) i n,m’
where r e g i o n n i s t h e l i q u i d phase, and r e g i o n m the g a s phase. I n a d d i t i o n t o t h i s t r a n s f e r , the r a t e of m a s s t r a n s f e r a t t h e s u r f a c e between the l i q u i d and cover g a s must a l s o b e considered.
For
v o l a t i l e components, the mass t r a n s f e r r e s i s t a n c e i s assumed t o b e a c r o s s a l i q u i d f i l m of t h i c k n e s s XR:
12
Ni =
DRAs (ca
- Hcg)
= D 9, Ag
CR
-DRAsH
xa
xR
xa
c
g
,
(5)
where 2
DE = d i f f u s i v i t y i n l i q u i d , cm /sec, 2 As = s u r f a c e area, cm ;
thus, (kia)n ,m = (DRAB /Xa
The same model i s used t o d e s c r i b e t r a n s f e r of n o n v o l a t i l e decay p r o d u c t s of v o l a t i l e f i s s i o n p r o d u c t s a c r o s s a g a s f i l m of t h i c k n e s s X
*
g’
however,
s i n c e t h e t r a n s f e r from l i q u i d t o g a s i s z e r o , t h e r e i s o n l y one term. A l l of t h e s e terms must be added t o o b t a i n t h e m a t r i x c o e f f i c i e n t s t h a t
are used. I n both models t h e d e s i g n c r i t e r i o n i s based on some c o n s i d e r a t i o n
o t h e r than t h e removal of v o l a t i l e n u c l i d e s .
For example, t h e g a s rate
might b e based on t h e amount of r e d u c t a n t n e c e s s a r y f o r a h y d r o f l u o r i n a t o r o r a hydrogen-sparged probe i n a s u r g e tank.
v e s s e l , o r on t h e amount of argon needed f o r a level I n a f l u o r i n a t o r , however, t h e d e s i g n i s chosen
t o a c h i e v e a s p e c i f i e d performance such as p e r c e n t removal of uranium. For z e r o i n l e t c o n c e n t r a t i o n i n t h e g a s , a material b a l a n c e g i v e s : F c = F c L I G G
or
+
FLcL = P RF Lc I
+
FLcL,
13 V
where F~ , F ~ C
I’CL’CG
=
f l o w rates i n l i q u i d and g a s , c c / s e c ,
=
c o n c e n t r a t i o n s i n i n l e t l i q u i d , o u t l e t l i q u i d , and out l e t gas
PR =
moles / c c ,
p e r c e n t removal;
thus, the transfer across the interface is P
R
CI
F
L
c
I’
S u b s t i t u t i n g for
: D
In the s i m u l a t i o n , F
L
element, and P R / ( l
w a s i n c l u d e d as a parameter independent of t h e
- PR) w a s
l i s t e d as a c o n s t a n t t h a t depended on t h e
element number.
3. 3.1
NUMERICAL METHODS EMPLOYED
S o l u t i o n of Reactor Material Balance Equations
The number of e q u a t i o n s t o b e s o l v e d by t h e r e a c t o r code i s e q u a l
t o the number of n u c l i d e s , Y 7 3 9 .
T h e coupling of t h e e q u a t i o n s used for
t h e s a l t i n t h e d r a i n t a n k with t h o s e used f o r t h e gas bubbles adds two a d d i t i o n a l sets of t h e same number of e q u a t i o n s .
The d i r e c t s o l u t i o n
of such a s e t of e q u a t i o n s would r e q u i r e a m e t h o d that would take advant a g e of s p a r s e n e s s and might need o n l y l i m i t e d p i v o t i n g t o minimize f i l l . These problems are e l i m i n a t e d by t h e u s e of an iterative s o l u t i o n , prov i d i n g t h e s o l u t i o n i s o b t a i n e d i n a r e a s o n a b l e number of i t e r a t i o n s . The number of i t e r a t i o n s has always been less than 30.
14
3.2
S o l u t i o n of t h e P r o c e s s i n g P l a n t Material Balance Equations
The number of e q u a t i o n s and unknowns f o r a flowsheet of 70 r e g i o n s and a n u c l e a r l i b r a r y of 739 n u c l i d e s i s about 52,000.
S t o r a g e of t h e
c o e f f i c i e n t matrix of t h i s system of e q u a t i o n s i s completely i m p r a c t i c a l , and s t o r a g e of even t h e nonzero terms could e a s i l y exceed t h e s t o r a g e c a p a c i t y of machines a v a i l a b l e ; t h e r e f o r e , a d i r e c t Gauss r e d u c t i o n could n o t be used. iteration.
Various approaches were made by u s i n g a Gauss-Seidel
The b e s t method w a s found t o b e a series of s o l u t i o n s f o r
a l l n u c l i d e c o n c e n t r a t i o n s i n the f l o w s h e e t ; t h e n u c l i d e s w e r e considered one a t a time s o t h a t some n u c l i d e s r e q u i r e d o n l y a f e w i t e r a t i o n s .
Even
w i t h t h e rearrangement of n u c l i d e s , which n e c e s s i t a t e d only one s o l u t i o n f o r each s p e c i e s , t h e t i m e requirements w e r e s t i l l e x c e s s i v e ; t h i s w a s because t h e d i a g o n a l element of t h e c o e f f i c i e n t matrices w a s comparable i n magnitude t o t h e off-diagonal terms, e x c e p t f o r n u c l i d e s w i t h s h o r t half -lives. For each s u c c e s s i v e n u c l i d e , a 70 by 70 m a t r i x w a s s o l v e d t o o b t a i n t h e c o n c e n t r a t i o n of t h a t n u c l i d e i n each of 70 r e g i o n s .
The time
requirement f o r a d i r e c t s o l u t i o n f o r a l l c o n c e n t r a t i o n s i n the p r o c e s s i n g p l a n t by t h i s method w a s q u i t e r e a s o n a b l e IBM 360/91.
-
less t h a n a minute f o r t h e
I n a d d i t i o n , t h e memory r e q u i r e m e n t s w e r e e s s e n t i a l l y t h e
same as t h o s e f o r t h e i t e r a t i o n technique.
The s t o r a g e of t h e s o l u t i o n
v e c t o r i s a s i g n i f i c a n t f r a c t i o n of t h e s t o r a g e r e q u i r e m e n t , and f o r l a r g e r f l o w s h e e t s (the IBM 360/91 a t ORNL w a s a b l e t o h a n d l e 250 r e g i o n s ) t h e s o l u t i o n v e c t o r uses most of t h e s t o r a g e .
15 V
3.3
I t e r a t i o n w i t h Reactor Code
The e x i s t e n c e of t h i s reasonably r a p i d s o l u t i o n f o r t h e p r o c e s s i n g p l a n t c a l c u l a t i o n enabled i t e r a t i o n s w i t h t h e MATADOR r o u t i n e which s i m u l a t e d t h e r e a c t o r performance.
MATADOR w a s coupled t o t h e p r o c e s s i n g
p l a n t c a l c u l a t i o n by u s i n g removal times d e f i n e d as the r e a c t o r i n v e n t o r y of a s p e c i e s d i v i d e d by i t s n e t removal rate by chemical p r o c e s s i n g . F a i r l y r a p i d convergence of c o n c e n t r a t i o n s w a s achieved f o r most n u c l i d e s i f t h e p a r a m e t e r s that passed between r o u t i n e s were averaged w i t h t h e i r p r e v i o u s v a l u e s t o p r o v i d e damping.
20 i t e r a t i o n s .
All c o n c e n t r a t i o n s converged w i t h i n
However, t h e v a r i a t i o n of more parameters between i t e r a -
t i o n s , and t h e c o n s i d e r a t i o n of more d i f f i c u l t f l o w s h e e t s r e q u i r e d improvement t o t h e code.
The u s e of r e a c t o r i n l e t c o n c e n t r a t i o n s r a t h e r
than removal times r e s u l t e d i n comparable performance, b u t p e r m i t t e d a d i f f e r e n t set of n u c l i d e s t o converge r a p i d l y .
Hence, the c o n c e n t r a t i o n s
i n the stream r e t u r n i n g t o t h e r e a c t o r can be d e s c r i b e d as t h e sum of t h e amount remaining a f t e r p r o c e s s i n g and t h e amount due t o p r o d u c t i o n i n the processing plant. At the same t i m e t h e s o l u t i o n i s found f o r t h e p r o c e s s i n g p l a n t c o n c e n t r a t i o n s , a s o l u t i o n i s also found f o r t h e f i r s t d e r i v a t i v e of the r e a c t o r i n l e t c o n c e n t r a t i o n w i t h r e s p e c t t o t h e o u t l e t concentra-
t i o n of t h e same n u c l i d e .
T h i s i s p o s s i b l e because t h e same c o e f f i c i e n t
m a t r i x i s used f o r b o t h sets of e q u a t i o n s .
The c o n s t a n t v e c t o r i n t h e
s o l u t i o n f o r t h e d e r i v a t i v e i s a v e c t o r w i t h u n i t c o n c e n t r a t i o n of each n u c l i d e i n t h e r e a c t o r and no terms f o r p r o d u c t i o n by decay.
Hence,
w i t h l i t t l e i n c r e a s e i n c a l c u l a t i o n a l e f f o r t and complexity, p r o v i s i o n
16
can be made f o r small changes i n c o n c e n t r a t i o n t o a l l o w t h e r e a c t o r code t o p r e d i c t t h e p r o c e s s i n g p l a n t performance.
I n a d d i t i o n , an even
g r e a t e r s a v i n g of t i m e i s made by c o n s i d e r i n g o n l y t h o s e n u c l i d e s whose c o n c e n t r a t i o n s are slowly converging, and by p e r i o d i c a l l y r e c o n s i d e r i n g
a l l nuclides. 3.4
C a l c u l a t i o n of Molar Volumes
The s t e a d y - s t a t e performance of a p r o c e s s i n g p l a n t depends on t h e
rates of decay and, t h e r e f o r e , t h e molar i n v e n t o r i e s of r a d i o a c t i v e n u c l i d e s throughout t h e p r o c e s s i n g p l a n t .
It i s t h u s n e c e s s a r y f o r t h e
molar i n v e n t o r i e s and molar volumes t o be c o n s i s t e n t with t h e volumes specified.
It i s a l s o n e c e s s a r y t o know t h e r a t i o of t h e molar volumes
of t h e two phases i n c e r t a i n r e g i o n s f o r u s e as a conversion f a c t o r t o c o n v e r t t h e d i s t r i b u t i o n c o e f f i c i e n t s from r a t i o s of mole f r a c t i o n t o t h e r a t i o of c o n c e n t r a t i o n s i n moles p e r c u b i c c e n t i m e t e r .
T h i s problem
i s n o t a l l e v i a t e d by u s e of molar flow rates and mole f r a c t i o n s , because
the parameters must be such t h a t t h e mole f r a c t i o n s add up t o 1.0. Between i t e r a t i o n s , each f l o w rate from a r e g i o n i s expressed as
a f r a c t i o n of t h e t o t a l f l o w from t h a t r e g i o n .
The molar volume of each
stream f o r which a molar volume c o r r e c t i o n i s t o b e made i s determined by assuming a d d i t i v e molar volumes.
The c o r r e c t e d f l o w r a t e i s g i v e n
by t h e p r o d u c t of t h i s molar volume; t h e molar f l o w rate and the r a t i o of molar volumes f o r r e g i o n s c o n t a i n i n g s a l t and bismuth p r o v i d e s a conversion f a c t o r f o r t h e d i s t r i b u t i o n c o e f f i c i e n t s .
17
C o r r e c t i o n of D i s t r i b u t i o n C o e f f i c i e n t s
3.5
For a g i v e n r e g i o n n , t h e set of c o n c e n t r a t i o n s of t h a t r e g i o n i s the solution of: 'iVS,n
[FS
+
(INPUT)
Ki,n(FB
+
hiVB,njCi,n = j
j ei j ('S,n
+ K
V )c j , n B,n j , n
i ,n
where
F~
FSn,m
=
(INPUT)
+ Dn,
and
= t o t a l i n p u t of n u c l i d e i t o r e g i o n n from f e e d s o r o t h e r
i ,n
regions. From a t a b l e of v a l e n c e s , i t is p o s s i b l e t o c a l c u l a t e an e q u i v a l e n t d e n s i t y i n t h e second phase i n e q u i v a l e n t s p e r c u b i c c e n t i m e t e r .
It i s
t h i s number which must remain c o n s t a n t through any series of r e d u c t i v e e x t r a c t i o n o p e r a t i o n s t o s a t i s f y t h e c o n d i t i o n of an e q u i v a l e n t balance. The e q u i v a l e n t d e n s i t y , E
0'
i n the second phase t h a t e n t e r s the r e g i o n
may b e a c a l c u l a t e d v a r i a b l e o r an i n p u t v a r i a b l e . variable D
Li
E - E
0
--
%i,n
I n e i t h e r case, t h e
must be determined s o t h a t
"0,
where = C(VAL)i E = E E i iYn i
KiYn
ciYn = t o t a l number of e q u i v a l e n t s p e r
m i l l i l i t e r i n t h e bismuth p h a s e , and (VAL)i = v a l e n c e of i i n s a l t .
We have a l s o d e f i n e d :
since
where A and A are c o n s t a n t s . n C The p r o p e r v a l u e of DLi
can b e found i t e r a t i v e l y by Newton's method
i f w e have a means f o r e v a l u a t i n g
Although the s p e c i f i c d e r i v a t i v e may b e found, an approximation i s g i v e n because i t r e q u i r e s less time and memory, i n v o l v e s terms a l l of the same s i g n , and s t i l l arrives a t t h e p r o p e r DLi. t h e c o n s t a n t terms:
A1 A2
=
FS
+
=
FB
+ Ai
Ai V V
S ,n
B ,n
so that (PROD)
(PROD)i K i ,n (VAL)i E
i ,n
=
A~ + Ki ,nA2
By o b t a i n i n g t h e d e r i v a t i v e of E
from Eq. (12):
-
E0
It i s convenient t o r e d e f i n e
19
dEi ,n
1
= (PROD) (VAL)
d Di~
A~
+ Ki ,nA2
KipnA2 21 ( A ~ K~ , , A ~ )
+
assuming t h a t (PROD) i s independent of DL i
dKi,n dDLi
(14)
While t h i s assumption i s
*n AnAcDLi = -An K. DLi DLi 1,n for DLi
# 0
Y
then
E
i,n
(
A1
+
Kiyn2
(16)
DLi
Thus, as c a l c u l a t i o n s are made f o r E = C Ei , n ’ c a l c u l a t i o n s are e a s i l y made f o r
f o r u s e in t h e n e x t i t e r a t i o n can b e o b t a i n e d by allowing
The p r o p e r DLi convergence of
(DLilel
=
(DLilm
(E
-
(E
-
.
Eo)
dDLi S i n c e (PROD).1 i s dependent upon DLi,
two terms have been l e f t o u t .
Some p r o v i s i o n must a l s o be made f o r the f a i l u r e of t h i s scheme t o converge. The c a l c u l a t i o n procedure examines t h e s i g n of E u o u s l y s p e c i f y upper and lower bounds f o r DLi.
-
E 0 i n o r d e r t o contin-
Any new DLi v a l u e t h a t
i s o u t s i d e t h i s i n t e r v a l i s r e p l a c e d w i t h t h e v a l u e a t t h e midpoint of the interval.
T h i s v a l u e of DLi might t e n d t o o v e r c o r r e c t i n a f l o w s h e e t ,
20
e s p e c i a l l y i f t h e s e r e g i o n s are i n series.
As a means of p r o v i d i n g a
damping e f f e c t , t h e v a l u e r e t u r n e d f o r t h e n e x t i t e r a t i o n i s a weighted average of t h i s v a l u e and t h e o l d v a l u e .
3.6
I n v e s t i g a t i o n of F a s t e r S o l u t i o n Methods
When flowsheet parameters such as flow rates ( i . e . , molar volume) and d i s t r i b u t i o n c o n s t a n t s are n o t changed between i t e r a t i o n s , t h e solution f o r a l l b u t t h e f i r s t i t e r a t i o n can be speeded up.
The s o l u t i o n
by r e d u c t i o n and back s u b s t i t u t i o n i s a series of row o p e r a t i o n s on an augmented matrix; much of t h e c a l c u l a t i o n a l time i s used t o perform o p e r a t i o n s on t h e c o e f f i c i e n t m a t r i x .
For double p r e c i s i o n c a l c u l a t i o n s ,
t h e i n f o r m a t i o n r e q u i r e d f o r making t h e n e c e s s a r y row o p e r a t i o n on o n l y t h e c o n s t a n t v e c t o r i s a double p r e c i s i o n c o n s t a n t and two i n d e x e s which i n d i c a t e t h e rows involved.
T h i s i n f o r m a t i o n can b e s t o r e d e a s i l y i n
t h e e l i m i n a t e d matrix p o s i t i o n s d u r i n g the f i r s t i t e r a t i o n s o t h a t t h e y may be used on subsequent i t e r a t i o n s .
The c a l c u l a t i o n s after t h e f i r s t
i t e r a t i o n are m a n i p u l a t i o n s performed on a v e c t o r r a t h e r than o p e r a t i o n s
on a matrix; i n a d d i t i o n , t h e matrix, which i s n o t r e q u i r e d , need n o t b e determined i n t h e s e subsequent i t e r a t i o n s . Before t h e i n t r o d u c t i o n of changing flowsheet p a r a m e t e r s , t h e number of row o p e r a t i o n s r e q u i r e d f o r a 50 by 50 f l o w s h e e t m a t r i x w a s determined.
Between 200 and 280 row o p e r a t i o n s w e r e p e r f o m e d w i t h
about 80% of t h e c a l c u l a t i o n a l t i m e r e q u i r e d f o r O p e r a t i o n s on t h e c o e f f i c i e n t matrix.
The number of c o n s t a n t s needed f o r a l l n u c l i d e s
r e q u i r e s more memory t h a n i s a v a i l a b l e as f a s t memory; however, because t h e c o n s t a n t s need o n l y be accessed s e q u e n t i a l l y , s t o r a g e on a d i r e c t a c c e s s d e v i c e is s u f f i c i e n t , and o n l y a small b u f f e r s p a c e i s r e q u i r e d .
21
4.
LIMITATIONS AND SPECIAL CONSIDERATIONS
4.1
L i m i t a t i o n s of Steady S t a t e C a l c u l a t i o n
A number of problems arise from t h e c o n s i d e r a t i o n of a s t e a d y s t a t e process ( i . e . ,
f l o w s h e e t s t e p s t h a t are designed t o b e i n t e r m i t t e n t ) .
A
good example i s a waste t a n k t h a t i s slowly f i l l e d w i t h waste s a l t over
a p e r i o d of about 1 y e a r , a f t e r which t h e s a l t i s h e l d up f o r a decay p e r i o d and f l u o r i n a t e d f o r uranium recovery.
I n a d d i t i o n , a number of
materials are accumulated o v e r t h e l i f e t i m e of a r e a c t o r .
As a r e s u l t ,
some materials must be removed by a d i s c a r d stream so t h a t t h e r e s i d e n c e time i s about one r e a c t o r l i f e t i m e i f the n u c l i d e s (e.g.,
l e a d ) are t o
be discarded. It i s a l s o d e s i r a b l e t o treat some n u c l i d e s (e.g.,
transuranium
i s o t o p e s ) i n a s t e a d y s t a t e c o n c e n t r a t i o n , even though s t e a d y s t a t e r e q u i r e s s e v e r a l r e a c t o r l i f e t i m e s t o achieve.
Although the code makes
a s t e a d y - s t a t e material b a l a n c e c a l c u l a t i o n , t h e convergence i s slowed down by t h i s k i n d of c a l c u l a t i o n , because the code r e q u i r e s t i m e t o p e r m i t t h e c o n c e n t r a t i o n s of t h i s material t o b u i l d up d u r i n g successive iterations. A steady state c a l c u l a t i o n â‚Źor processing p l a n t s with near t o t a l
r e c y c l e of any s p e c i e s r e q u i r e s u s e r c a u t i o n .
The e x i s t e n c e of any
material t h a t cannot b e removed from some r e g i o n o r group of r e g i o n s c a u s e s t h e system of e q u a t i o n s t o be s i n g u l a r , . s i n c e t h e c o n c e n t r a t i o n of t h i s material i n t h o s e r e g i o n s is undefined.
Iterations with the
r e a c t o r code do n o t a l t e r t h e c o n c e n t r a t i o n s of major s a l t components, and p r o v i s i o n i s made i n the p r o c e s s i n g p l a n t code f o r t h e c o n c e n t r a t i o n
of any n u c l i d e t o b e d e f i n e d by the i n p u t a t any p o i n t .
22
4.2
System o f U n i t s
I n t h e system o f u n i t s t h a t w a s u s e d , t h e code c a l c u l a t e d concent r a t i o n s i n moles p e r c u b i c c e n t i m e t e r by u s i n g flow r a t e s i n c u b i c c e n t i m e t e r s p e r second, volumes i n c u b i c c e n t i m e t e r s , e t c . ; however, t h i s i s n o t n e c e s s a r i l y implied by t h e e q u a t i o n s , s i n c e t h e y are j u s t
as v a l i d i n o t h e r systems of u n i t s (the n u c l e a r l i b r a r y u s e s seconds as t h e u n i t of time).
The most l o g i c a l a l t e r n a t e s e t of u n i t s i s t h e
d e s c r i p t i o n of volume i n moles, rates i n moles p e r second, e t c . , which r e s u l t s i n c o n c e n t r a t i o n s i n mole f r a c t i o n .
Some c a l c u l a t i o n s might
be changed by t h e u s e r who p r e f e r s t h i s s y s t e m of units.
For example,
t h e c a l c u l a t i o n of mole f r a c t i o n s i s redundant and might be r e p l a c e d by t h e c a l c u l a t i o n of c o n c e n t r a t i o n s i n moles p e r c u b i c c e n t i m e t e r . The g r e a t e s t a l t e r a t i o n r e q u i r e d i n such a change o f u n i t s i s t h e replacement of t h e o u t p u t headings.
By such l a b e l changes, i t would
b e p o s s i b l e t o t r e a t any system of e q u a t i o n s of t h i s form.
4.3
D e s c r i p t i o n of P a r t i c u l a r Items Using Mass T r a n s f e r C o e f f i c i e n t s
I n most s i m u l a t i o n s , t h e u s e of m a s s t r a n s f e r c o e f f i c i e n t s was limited t o gas-liquid
c o n t a c t s r e q u i r i n g one r e g i o n f o r t h e g a s phase
and one r e g i o n f o r t h e l i q u i d phase c o n t a i n i n g o n l y one o r two l i q u i d s . I t w a s assumed t h a t t h e n o b l e g a s c o n c e n t r a t i o n s w e r e small enough s o
t h a t no a p p r e c i a b l e e r r o r would occur by t r e a t i n g the g a s bubbles as i f they had t h e same c o n c e n t r a t i o n s as t h e b u l k g a s .
This i s n o t an essen-
t i a l assumption, however, s i n c e by u s i n g more r e g i o n s , the same case might be d e s c r i b e d as having more than one gas r e g i o n .
The b u l k gas
23 would be a s e p a r a t e r e g i o n from t h e gas b u b b l e s , and t h e gas bubbles i n s e p a r a t e l i q u i d s could e a s i l y be s e p a r a t e r e g i o n s .
I f t h e gas con-
c e n t r a t i o n changes as i t rises through t h e l i q u i d and i s n o t s m a l l r e l a t i v e t o i t s e q u i l i b r i u m c o n c e n t r a t i o n , t h e gas a t v a r i o u s levels i n t h e l i q u i d would be i n d i f f e r e n t r e g i o n s and would r e p r e s e n t a column. C a r e f u l c o n s i d e r a t i o n h a s a l s o been given t o s i m u l a t i o n of m a s s transfer-limited
t r a n s f e r rates as a replacement of e q u i l i b r i u m s t a g e s
i n a liquid-liquid
contactor.
For t u r b u l e n t flow when t r a n s f e r i s E m -
i t e d by eddy d i f f u s i v i t y , t h e o n l y d i f f i c u l t y arises i n s p e c i f i c a t i o n of the d i s t r i b u t i o n c o e f f i c i e n t s a t the i n t e r f a c e .
d e s c r i b e d by three r e g i o n s :
This case can be
the b u l k l i q u i d phase S , t h e b u l k l i q u i d
phase B , and t h e i n t e r f a c e c o n t a c t of b o t h phases.
The f l o w s between
t h e i n t e r f a c e r e g i o n and t h e b u l k l i q u i d r e g i o n are the r a t e s of eddy t r a n s p o r t i n each phase.
The product of eddy d i f f u s i v i t y and concentra-
t i o n d r i v i n g f o r c e i n each phase is I m p l i c i t l y o b t a i n e d i n two flow r a t e
terms f o r each phase i n t h e same manner d e s c r i b e d i n the s e c t i o n on m a s s transfer coefficients.
I n t h i s case, t h e d i s t r i b u t i o n c o e f f i c i e n t s can
s t i l l b e determined i t e r a t i v e l y by t h e same t e c h n i q u e used f o r e q u i l i b -
rium s t a g e s even though t h e d i s t r i b u t i o n c o e f f i c i e n t s are n o t expected t o b e t h e same.
4.4
U s e s Requiring Modifications
I t is p o s s i b l e t o c o n s i d e r f l o w s h e e t s i n v o l v i n g b a t c h p r o c e s s e s
t h a t might n o t b e r e p r e s e n t e d by either an e q u i l i b r i u m p r o c e s s o r a rate l i m i t e d p r o c e s s , because t h e amount of material t r a n s f e r r e d between t h e
24
phases w a s dependent on t h e c o n c e n t r a t i o n s of o t h e r elements as w e l l (e.g.,
oxide p r e c i p i t a t i o n ) .
The r a t e c o e f f i c i e n t s t h a t are used have
always remained c o n s t a n t , b u t t h i s i s n o t e s s e n t i a l t o t h e code s i n c e i t e r a t i o n i s r e q u i r e d t o converge o t h e r parameters i n t h e flowsheet. By u s i n g a r e a s o n a b l e estimate f o r p e r c e n t removal ( i . e . ,
rate c o n s t a n t s )
f o r v a r i o u s components, a set of c o n c e n t r a t i o n s would b e o b t a i n e d . Subroutine VOLUME would then b e used t o c a l c u l a t e t h e p r o p e r removal
rates on t h e b a s i s of t h e s e c o n c e n t r a t i o n s , and i t would modify the r a t e constants accordingly f o r t h e next i t e r a t i o n .
This system f o r t r e a t i n g
more g e n e r a l p r o c e s s i n g s t e p s should cause no g r e a t e r convergence probl e m than t h e i t e r a t i v e d e t e r m i n a t i o n of d i s t r i b u t i o n p a r a m e t e r s d e s c r i b e d
later. An a l t e r n a t i v e t o t h i s approach i s t o p r o v i d e c o n c e n t r a t i o n o r f e e d
rate l i n k s t o such a s u b r o u t i n e as i s done withMATADOR, o r even t o r e p l a c e MATADOR with a r o u t i n e s i m u l a t i n g some s e c t i o n o f the f l o w s h e e t . However, t h e most l i k e l y s u b s t i t u t i o n f o r MATADOR i s either a s u b r o u t i n e t h a t r e a d s and s t o r e s e n t e r i n g p r o c e s s i n g p l a n t c o n c e n t r a t i o n s o r one t h a t simulates a d i f f e r e n t r e a c t o r type.
I n t h i s l a s t c a s e , the r e a c t o r
and p r o c e s s i n g p l a n t need n o t b e l i n k e d d i r e c t l y and p r o c e s s i n g need n o t b e continuous ( i . e .
,
t h e r e can b e b a t c h replacements o f f u e l and a
decay p e r i o d ) ; t h e r e f o r e , t h e s t e a d y s t a t e performance of a system of r e a c t o r s and p r o c e s s i n g p l a n t s can b e o b t a i n e d .
25
5. 1.
REFERENCES
J . S. Watson, L. E. McNeese, and W. L. Carter, MSR Program Semiannu. P r o g r . Rep. Aug. 31, 1967, ORNL-4191, pp. 245-47.
2.
M. J. B e l l and L. E. McNeese, Engineering Development S t u d i e s f o r Molten-Salt Breeder Reactor P r o c e s s i n g No. 1, ORNL/TM-3053
(November
1970) , pp. 38-48.
3.
R. J. Ked1 and A. Houtzeel, Development of a Model f o r Computing 135Xe M i g r a t i o n i n t h e MSRE, ORNL-4069
4.
H. F. Bauman e t a l . , ROD:
(June 1967).
A Nuclear and Fuel-Cycle A n a l y s i s Code f o r
C i r c u l a t i n g - F u e l R e a c t o r s , ORNL/TM-3359
(September 1971).
5.
R. W. S c h a f t l e i n and T. W. F. R u s s e l l , "Two-Phase Reactor Design,"
6.
W. L. Carter, ORNL, p e r s o n a l communication, June 1972.
7.
M. J. B e l l , ORIGEN ORNL-4628
- The
(May 1973).
ORNL I s o t o p e Generation and D e p l e t i o n Code,
27
AF'PENDIXE S USER'S MANUAL
APPENDIX A:
DESCRIPTION OF SUBROUTINES USED
A d e s c r i p t i o n of each r o u t i n e used i n t h e program i s given i n t h e
approximate o r d e r of use.
S u f f i c i e n t i n f o r m a t i o n i s a v a i l a b l e t o permit
u s e of t h e program and some m o d i f i c a t i o n by u s e r s .
In p a r t i c u l a r , t h e
u s e r should be a b l e t o u t i l i z e the r e a c t o r s u b r o u t i n e s i n d e p e n d e n t l y of t h e p r o c e s s i n g p l a n t code by supplying any n e c e s s a r y i n f o r m a t i o n and
a main program which c a l l s MATADOR (with t h e BLOCK DATA r o u t i n e d e s c r i b e d i n t h e p r o c e s s i n g p l a n t code). S u b r o u t i n e MATADOR MATADOR d i r e c t s a l l the r e a c t o r c a l c u l a t i o n s .
It b e g i n s by r e a d i n g
t h e i n p u t d e f i n i n g the r e a c t o r and t h e v a r i a b l e s t h a t w i l l p r o v i d e an
i n i t i a l g u e s s f o r p r o c e s s p l a n t removal rates,
Through several calls
t o GRAPHT, i t sets up t h e c o e f f i c i e n t m a t r i x f o r n u c l e a r t r a n s i t i o n s
in t h e g r a p h i t e .
Whereas t h i s m a t r i x i s s t o r e d s e p a r a t e l y from the
corresponding matrix f o r t r a n s i t i o n s i n the s a l t , the p r o c e s s i n g p l a n t code can u s e t h e matrix f o r decay i n the s a l t , and the m a t r i x f o r g r a p h i t e may be changed between i t e r a t i o n s when the code i s used i t e r a t i v e l y w i t h ROD.
MATADOR b e g i n s by s e t t i n g up t h e c o n s t a n t v e c t o r and t h e d i a g o n a l ( t h e i n v e r s e of t h e d i a g o n a l e l e m e n t s i s c a l c u l a t e d t o save c a l c u l a t i o n a l
t i m e l a t e r on) f o r t h e c a l c u l a t i o n of t h e r e a c t o r s a l t c o n c e n t r a t i o n s . While t h e v a r i a b l e s X I N and DXIN are z e r o f o r t h e first c a l l t o MATADOR, t h e chemical removal r a t e o f each n u c l i d e i s assumed t o b e p r o p o r t i o n a l t o the reactor concentration. i n the d i a g o n a l element.
Hence, chemical p r o c e s s i n g i s s p e c i f i e d
28
Two a d d i t i o n a l o p t i o n s are a v a i l a b l e on subsequent c a l l s .
First,
i t may b e assumed t h a t t h e flow rate of a n u c l i d e i n t o t h e r e a c t o r (XIN)
i s independent of i t s c o n c e n t r a t i o n i n t h e r e a c t o r .
Second, i t may b e
assumed t h a t t h e f l o w r a t e of material i n t o t h e r e a c t o r i s a l i n e a r funct i o n of t h e r e a c t o r c o n c e n t r a t i o n .
I n t h i s c a s e , DXIN and t h e d e r i v a t i v e
of X I N w i t h r e s p e c t t o r e a c t o r c o n c e n t r a t i o n are nonzero.
I n considering
chemical p r o c e s s i n g , i t w a s n e c e s s a r y t o a l l o w n e g a t i v e e f f i c i e n c i e s t o a d e q u a t e l y t r e a t t h o s e n u c l i d e s produced by decay i n the p r o c e s s i n g p l a n t t h a t were removed p r i m a r i l y by n e u t r o n c a p t u r e s i n t h e r e a c t o r . Accordingly, care i s taken t o e n s u r e t h a t t h e d i a g o n a l elements do n o t approach zero.
A message i s p r i n t e d i f the d i a g o n a l element r e a c h e s some
predefined l i m i t i n g value. The program o b t a i n s a s o l u t i o n f o r t h e r e a c t o r s a l t w i t h a f i r s t
estimate b e i n g made f o r only t h e f i r s t c a l l t o MATADOR.
S o l u t i o n s are
t h e n o b t a i n e d f o r t h e n o b l e g a s e s and n o b l e metals that are i n c o n t a c t w i t h s a l t b o t h i n s i d e and o u t s i d e t h e r e a c t o r .
Noble g a s e s l e a v i n g t h e
holdup r e g i o n i n s i d e t h e r e a c t o r are s e n t t o t h e r e g i o n o u t s i d e t h e reactor.
The d i a g o n a l elements and t h e c o n s t a n t v e c t o r s a r e d e f i n e d s o
t h a t t h e c a l c u l a t i o n s p r o v i d e t h e holdup i n moles f o r n o b l e g a s e s and n o b l e metals, and the flow rate i n t o the s a l t i n moles p e r second f o r
a l l o t h e r materials.
The c a l c u l a t i o n a c t u a l l y assumes t h a t the r e t u r n i n g
n u c l i d e s are h e l d up f o r 1 s e c d u r i n g which t h e y may decay o r c a p t u r e neutrons.
I n t h e c a l c u l a t i o n s of t h e t r a n s f e r rates from t h e s e holdup
volumes t o t h e s a l t , t h e t h r e e systems of I e q u a t i o n s are weakly coupled and are assumed t o converge i n three p a s s e s .
T h i s may n o t be t r u e f o r
long holdup t i m e s i n these p h a s e s ; t h e r e f o r e , the v a l u e s are remembered
29 V
between c a l l s t o MATADOR s o t h a t each c a l l improves t h e v a l u e of t h e s e t r a n s f e r rates. Several o u t p u t parameters a r e c a l c u l a t e d b e f o r e c a l l i n g KEE, which
c o n t r o l s o u t p u t ; t h e s e are f i s s i o n product poisoning p e r f i s s i l e absorpt i o n Âś n u c l i d e p r o d u c t i o n rates, molar volume, uranium mole f r a c t i o n , and breeding r a t i o . is obtained.
I f t h e i n p u t v a r i a b l e KARD i s nonzero, punched o u t p u t
If KARD i s p o s i t i v e , t h e c o n c e n t r a t i o n s are i n a format f o r
6 i n p u t t o t h e CALDRON code; i f KARD i s n e g a t i v e , the c o n c e n t r a t i o n s are
i n a format f o r i n p u t t o ORIGEN.2
The ORIGEN i n p u t can a l s o b e prepared
by t h e c a l l i n g program s o t h a t a modified ORIGEN code may b e used as a second j o b s t e p .
S u b r o u t i n e AMATRX
The main f u n c t i o n of AMATRX i s t h e c o n s t r u c t i o n of the m a t r i x A , which c o n t a i n s decay and c a p t u r e rates f o r a l l t r a n s i t i o n s between i s o topes, except f i s s i o n .
The s u b r o u t i n e r e a d s the d a t a i n t h e format
d e s c r i b e d i n the s e c t i o n on i n p u t and writes a t a b l e summarizing the nuclear library.
N u c l i d e s are i d e n t i f i e d b y the v a l u e of 10,000 t i m e s
t h e atomic number p l u s 10 t i m e s t h e m o l e c u l a r weight ( p l u s 1 f o r e x c i t e d state).
It s t o r e s the i d e n t i f i c a t i o n of a l l decay d a u g h t e r s and c a p t u r e
p r o d u c t s i n a matrix NPROD w i t h t h e corresponding p r o d u c t i o n rates i n
COEFF.
I t a l s o s t o r e s t h e p a r e n t n u c l i d e i d e n t i f i c a t l o n , NUCL, t h e t o t a l
decay r a t e , DIS, and t h e c a p t u r e c r o s s s e c t i o n , TOCAP, as w e l l as h e a t g e n e r a t i o n r a t e s , the f r a c t i o n of heat which i s gamma energy, f i s s i o n product y i e l d s , e t c .
Thermal, r e s o n a n t , and f a s t n e u t r o n c r o s s s e c t i o n s
are s t o r e d so that the program can b e used i t e r a t i v e l y w i t h ROD by
30
allowing c o r r e c t i o n s based on t h e s p e c t r a l f a c t o r s determined by ROD t o be made t o t h e c r o s s s e c t i o n d a t a f o r t h e n e x t MATADOR c a l c u l a t i o n . The program then c o n s t r u c t s t h e v e c t o r A (C i n t h i s subroutine:, which c o n t a i n s t h e v a l u e of a l l nonzero p r o d u c t i o n r a t e s , and t h e corresponding v e c t o r LOC, which c o n t a i n s t h e o r d i n a l number of t h e p a r e n t n u c l i d e , assuming t h a t t h e daughter n u c l i d e s are i n t h e same o r d e r of t h e NUCLs.
These c o n s t a n t s are s t o r e d i n t h e o r d e r of p r o d u c t i o n by
decay, and by t h e r m a l , r e s o n a n t , o r f a s t n e u t r o n c a p t u r e s .
For each
n u c l i d e t h e r e are v a r i a b l e s KD, KTH, KRI, and NONO which s t o r e t h e cumulative number of terms f o r t h a t n u c l i d e w i t h t h e sum of a l l t h e NONOs b e i n g s t o r e d i n NON.
I n t h e s e v a r i a b l e s only members of a g i v e n S i m i l a r l y , t h e r e i s a set of
group produce n u c l i d e s i n t h a t group.
v e c t o r s i n d i c a t i n g t h e p r o d u c t i o n r a t e of f i s s i o n p r o d u c t s from t h e f i s s i o n of a c t i n i d e s . NOF
These v a r i a b l e s are denoted by F, LOF,
Kp,
and
. A v e c t o r NSTAR i s c o n s t r u c t e d s o t h a t f o r any NUCL w i t h atomic m a s s
NMASS, atomic number NATNO, and i s o m e r i c s t a t e (0 o r 1) NISOM:
NSTAR = NTEMP
+ NATNO*10
f o r p o s i t r o n e m i t t e r s , and NSTAR = NTEMP
- NATN0*10
f o r a l l o t h e r s , where NTEMP = NMASS*lOOOO
+
1000
+ NISOM.
A v e c t o r I O i s c o n s t r u c t e d which c o n t a i n s t h e o r d i n a l numbers of a l l
t h e n u c l i d e s i n d e c r e a s i n g o r d e r of NSTAR.
This i s i n decreasing order
of atomic m a s s w i t h t h e o r d i n a l number of e x c i t e d s t a t e n u c l i d e s appearing b e f o r e t h a t of t h e corresponding ground s t a t e n u c l i d e .
The sequence
I ’
31
i n c l u d e s p o s i t r o n emitters w i t h d e c r e a s i n g atomic numbers f o r a given atomic mass, followed by o t h e r n u c l i d e s w i t h i n c r e a s i n g atomic numbers. T h i s sequence i n c l u d e s a l l n u c l i d e s b e f o r e any of t h e i r decay d a u g h t e r s
as long as a l l decays r e p r e s e n t a l o s s of energy, mass, o r r e d u c t i o n i n E
+ MC2,
r a t h e r than a c a p t u r e of some kind.
T h i s sequence i s used
l a t e r i n t h e p r o c e s s i n g p l a n t code as t h e o r d e r of c a l c u l a t i o n . The v a r i a b l e s are dimensioned s o t h a t as many as 800 n u c l i d e s can b e i n c l u d e d , of which as many as 100 may b e a c t i n i d e s ; i n a d d i t i o n , t h e r e may b e as many as 1500 p r o d u c t i o n rates of n u c l i d e s from o t h e r n u c l i d e s by decay o r n e u t r o n a b s o r p t i o n .
The n u c l e a r l i b r a r y c o n t a i n s
739 n u c l i d e s , 99 a c t i n i d e s , and 1466 p r o d u c t i o n rate terms.
S u b r o u t i n e GRAPHT (DIS1, C A P 1 , DIS2,CAP2,COEFF,N,I,P2,VR,DEP,Dl,Pl,FLTJX2)
The s u b r o u t i n e GRAPHT c a l c u l a t e s rate c o e f f i c i e n t s f o r f i s s i o n product d e p o s i t i o n i n g r a p h i t e based on t h e d i f f u s i o n model d e s c r i b e d i n r e f . 2 , and t h e v a r i a b l e names are analogous: etc.
2 EN=n, E L = l , ENSQ=n ,
The c a l c u l a t i o n s are made t o determine FLUX2, which i s r e t u r n e d
t o b e i n s e r t e d i n a m a t r i x G , and i s analogous t o the m a t r i x A (described
w i t h AMATRX).
T h i s v a l u e r e p r e s e n t s the c o n t r i b u t i o n t o the concentra-
t i o n of s p e c i e s i from d i f f u s i o n i n t o g r a p h i t e of s p e c i e s j (A
i3
described e a r l i e r ) .
g
ij’
as
The a d j u s t e d d i a g o n a l m a t r i x element for the p a r e n t
i s o t o p e (G ), t h e c o n t r i b u t i o n t o p o i s o n i n g by b o t h p a r e n t and daughter j i s o t o p e s i n t h e g r a p h i t e , and the d e p o s i t i o n rates of n o n v o l a t i l e daugh-
ters are a l s o c a l c u l a t e d . GRAPHT a l s o u s e s t h e v a r i a b l e s i n common b l o c k G R A T E that were r e a d by MATADOR:
AREA,VOL,PORTY,FILM,DTPFY,RADIUS, and SOLBTY.
These
32
v a r i a b l e s have been d e s c r i b e d i n t h e s e c t i o n on i n p u t .
The s u b r o u t i n e
r e q u i r e s a s u b r o u t i n e BESI f o r computing Bessel f u n c t i o n s . Subroutine BESI (X ,N ,B I ,IER) T h i s i s a l i b r a r y r o u t i n e which computes t h e Bessel f u n c t i o n , B I , of o r d e r N w i t h argument X , where N and X are g r e a t e r than o r e q u a l t o I E R is used as an e r r o r i n d i c a t i o n .
zero.
IER
=
meaning
0
=
no e r r o r
1
=
N is negative
2
=
X is negative
3
=
underflow, BI.LT.l.E-69,BI
4
=
overflow, X.GT.170 where X.GT.N
set t o 0.0
Only Bessel f u n c t i o n s of o r d e r s 0 and 1 are r e q u i r e d by G W H T . Subroutine CHEMPL
The v a l u e of t h e r e c i p r o c a l o f the removal time f o r the group of
which t h a t n u c l i d e i s a member i s s t o r e d i n the v a r i a b l e PR(1) ( p r o c e s s i n g r a t e ) f o r each n u c l i d e .
On t h e f i r s t c a l l , the r o u t i n e u s e s the group
removal t i m e s (NTIME) t h a t are used f o r o u t p u t purposes and the e f f i c i e n c i e s assumed f o r each element t o c a l c u l a t e a removal time f o r each element i n t h e u n i t s used f o r t h a t group of elements. f o r output.
This is written i n a t a b l e
I n a d d i t i o n , on t h e f i r s t c a l l t h e program adds t o the
m a t r i x elements f o r p r o d u c t i o n of uranium from p r o t a c t i n i u m an amount which assumes t h a t a l l p r o t a c t i n i u m removed by chemical p r o c e s s i n g decays t o uranium and i s r e t u r n e d t o t h e r e a c t o r .
A c a l l t o another e n t r y point
-
33 V
(ENTRY REPAIR) c a u s e s t h e s e amounts t o b e s u b t r a c t e d from t h e proper
m a t r i x e l e m e n t s , t h u s assuming t h a t t h e l i n k t o t h e p r o c e s s i n g p l a n t r o u t i n e s t a k e s t h i s i n t o account. S u b r o u t i n e GAUSS (XEQL ,C ,D,*) GAUSS s o l v e s t h e matrix e q u a t i o n :
A(XEQL) = C
%!
,
p\,
where A i s t h e c o e f f i c i e n t matrix, and r e c i p r o c a l s of t h e d i a g o n a l elements are given by D.
A nonstandard r e t u r n i s made i f t h e system does
n o t converge w i t h i n t h e maximum a l l o w a b l e number of i t e r a t i o n s .
The
groups of terms i n c l u d e d i n t h e c o e f f i c i e n t matrix are determined by t h e v a l u e of t h e l o g i c a l v a r i a b l e s REGION, and REG2. Subroutine KEE
S u b r o u t i n e KEE e n s u r e s t h a t s u b r o u t i n e RESULT (described n e x t ) i s c a l l e d i f t h i s is t h e l a s t call t o MATADOR as i n d i c a t e d by t h e l o g i c a l v a r i a b l e ILLOG.
Subroutine KEE p r i n t s t h e number of c a l l s t o MATADOR
and a convergence message, and c a l l s RESULT a t s p e c i f i e d i n t e r v a l s .
S u b r o u t i n e RESULT (XEQL)
RESULT p r i n t s o u t p u t t a b l e s f o r a given set of r e a c t o r concentrat i o n s (XEQL).
It f i r s t c a l c u l a t e s t h e number of moles of material i n t h e
stream r e t u r n i n g t o t h e r e a c t o r f o r u s e i n t h e c a l c u l a t i o n of mole f r a c t i o n f o r t h a t stream. W
v a r i a b l e s such as:
It t h e n i n i t i a l i z e s o r c a l c u l a t e s o t h e r important
34
m a s s of materials l o s t due t o f i s s i o n ,
F I SSL
= the
FISSN
= a b s o r p t i o n r a t e by t h e f i v e f i s s i o n a b l e i s o t o p e s ,
FISSA
= a b s o r p t i o n r a t e by f i s s i l e i s o t o p e s ,
DMOLAR
= molar d e n s i t y ,
TOCAP(1GAS) = t h e a d j u s t e d c r o s s s e c t i o n f o r n o b l e g a s e s t h a t r e f l e c t s t h e number of a b s o r p t i o n s of n o b l e g a s e s i n graphite. The program c a l c u l a t e s t h e gamma h e a t rate i n t h e s a l t , t h e absorpt i o n rate i n t h e s a l t normalized t o a b s o r p t i o n s p e r f i s s i o n , t h e removal
r a t e due t o chemical p r o c e s s i n g , and t h e c o n t r i b u t i o n t o r a d i o a c t i v i t y i n t h e s a l t f o r each of t h e t h r e e groups of n u c l i d e s ( l i g h t e l e m e n t s , a c t i n i d e s , and f i s s i o n p r o d u c t s ) .
A series of c a l l s t o s u b r o u t i n e SORT
i s used t o i d e n t i f y t h e 2 5 most important materials i n each c a t e g o r y . C a l c u l a t i o n s f o r t h e f i s s i o n p r o d u c t s are somewhat complicated by t h e c o n t r i b u t i o n of n u c l i d e s i n t h e c i r c u l a t i n g bubbles and by t h e c o n t r i b u t i o n of n u c l i d e s p l a t e d o n t o t h e r e a c t o r s u r f a c e s .
Once t h e s e are p r i n t e d ,
t h e program p r i n t s t h e t o t a l s f o r removal of f i s s i o n p r o d u c t s and a c t i n i d e s , t h e burnup r a t e of thorium, and a c o r r e c t i o n f a c t o r based on t h e n u c l e a r t r a n s i t i o n s t o nuclides not l i s t e d i n the l i b r a r y .
A correction factor
n o t considered i s t h e amount by which t h e average m a s s y i e l d from f i s s i o n ,
as g i v e n i n t h e l i b r a r y , f a i l s t o match t h e m a s s of t h e f i s s i o n a b l e n u c l i d e less t h e average number of n e u t r o n s e m i t t e d .
Additional important v a r i a b l e s
i n t h i s s u b r o u t i n e are : COMPNG = composition of n o b l e g a s e s ,
COMPNM
= compositions of n o b l e
me ta ls,
HEATNM = h e a t g e n e r a t i o n r a t e s of n o b l e metals,
35
COMPBI = composition of materials e x t r a c t e d i n t o bismuth, COMPRE = composition of rare e a r t h s ,
COMPF2 = compositions of materials removed from f l u o r i n a t o r s , primarily t h e halogens, COMPLB = compositions of materials removed i n group 6 by chemical
processing, SRATE = sum of t h e removal r a t e f o r each n u c l i d e group, SHEAT = sum of t h e h e a t g e n e r a t i o n rates i n each group, and
SCAPT = sum of t h e a b s o r p t i o n rates i n each group.
MAIN Program
The main program c o n t r o l s t h e p r o c e s s i n g p l a n t c a l c u l a t i o n s , and b e g i n s by c a l l i n g MATADOR f o r s e t t i n g up t h e m a t r i x f o r decay c h a i n s . It t h e n r e a d s t h e i n p u t d e s c r i b i n g t h e f l o w s h e e t and p r i n t s t h e t a b l e s
of i n p u t d a t a .
Region names are compared w i t h stream o r i g i n and des-
t i n a t i o n s t o c o n s t r u c t v e c t o r s which d e s c r i b e t h e s e streams by t h e o r d i n a l numbers of t h e r e g i o n names,used. f r a c t i o n a l flows are determined.
I n a d d i t i o n , t o t a l flows and
A l l streams with a d e s t i n a t i o n n o t i n
t h e l i s t of r e g i o n names are assumed t o be d i s c a r d streams and are added t o t h e l o s s rates.
The program c a l l s s u b r o u t i n e EQKN t o d e f i n e t h e
e q u i l i b r i u m c o n s t a n t s t o be used. The program t h e n alternates c a l l s t o MATADOR w i t h c a l c u l a t i o n s of processing plant concentrations.
P r o c e s s i n g plant c o n c e n t r a t i o n s are
c a l c u l a t e d f o r one n u c l i d e a t a t i m e i n t h e o r d e r d e f i n e d by I O t o e n s u r e t h a t decay p r o d u c t s f o l l o w t h e i r p r e c u r s o r s .
The program d e f i n e s
a c o e f f i c i e n t matrix and two c o n s t a n t v e c t o r s f o r each n u c l i d e b e f o r e
36
c a l l i n g a s u b r o u t i n e MATQD t o s o l v e t h e two s e t s of e q u a t i o n s r e p r e s e n t e d . The f i r s t c o n s t a n t v e c t o r d e f i n e s t h e p r o d u c t i o n rates of t h e n u c l i d e and r e s u l t s i n t h e l i s t of c o n c e n t r a t i o n s .
T h e second v e c t o r has i t s
only nonzero v a l u e corresponding t o t h e r e a c t o r , and i t r e s u l t s i n t h e s o l u t i o n of t h e c o n c e n t r a t i o n s f o r t h e c a s e of no p r o d u c t i o n by decay i n t h e p r o c e s s i n g p l a n t ; i f i n s t r u c t e d t o do s o , i t determines t h e i n f l u e n c e of r e a c t o r c o n c e n t r a t i o n on the e f f l u e n t from t h e p r o c e s s i n g plant. I f t h e i n p u t i n s t r u c t i o n s s p e c i f y averaging between i t e r a t i o n s , t h e program averages c o n c e n t r a t i o n s t o and from t h e r e a c t o r , and a v e r a g e s removal times w i t h t h e i r p r e v i o u s v a l u e s .
It a l s o checks f o r conver-
gence (perhaps an ordered l i s t of t h e r e a c t o r i n l e t c o n c e n t r a t i o n s i n d e c r e a s i n g o r d e r of t h e i r r e l a t i v e change i n t h e l a s t i t e r a t i o n ) and p r i n t s t h e f i r s t 50 i n t h i s l i s t .
VOLUME i s c a l l e d f o r p o s s i b l e modifi-
c a t i o n of t h e flowsheet p a r a m e t e r s , and a l o g i c a l v e c t o r i s d e f i n e d t h a t i d e n t i f i e s t h e n u c l i d e s that have converged; t h e r e f o r e , t h e y need o n l y b e considered on every t e n t h i t e r a t i o n . A f t e r t h e c a l c u l a t i o n s have converged, o r t h e program r e a c h e s t h e allowed t i m e l i m i t o r number of i t e r a t i o n s , a deck of punched c a r d s is prepared.
I f I 2 i s g r e a t e r t h a n z e r o , t h e deck i n c l u d e s r e a c t o r e f f l u e n t
c o n c e n t r a t i o n s and removal e f f i c i e n c i e s f o r a l l t h e n u c l i d e s .
I f I6 is
g r e a t e r than z e r o , much of t h e d e s c r i p t i o n of t h e p r o c e s s i n g p l a n t i s included.
The program then calls OUT0 and s t o p s .
BLOCK d a t a .
A b l o c k d a t a s u b r o u t i n e i s used t o i n i t i a l i z e t h e
100-element v a r i a b l e ELE t o t h e element symbols, and the v a r i a b l e STA(1) and STA(2) t o b l a n k and
"MI'.
37
Subroutine EQKN
EQKN r e a d s d a t a f o r d i s t r i b u t i o n c o n s t a n t s and ass-gns v a l u e s t o
t h e d i s t r i b u t i o n c o e f f i c i e n t m a t r i x , EQK.
The d a t a are s e l e c t e d f o r
c h a r a c t e r i z i n g a r e g i o n by matching an i n p u t v a r i a b l e (NS) i n t h e d a t a w i t h t h e i n p u t v a r i a b l e (NSTR) corresponding t o t h e r e g i o n .
For region
REGION(N), t h e d i s t r i b u t i o n c o e f f i c i e n t f o r t h e element w i t h atomic number NZ i s EQK((N-l)*lOO+NZ).
For NS = 1 o r NS = 2 t h e v a l u e of NSTR
i s used t o choose between two temperatures.
I f NS = NSTR(N),
t h e calcu-
l a t i o n assumes a temperature of 6 4 0 O C ; i f NS+20 = NSTRCN), t h e c a l c u l a t i o n assumes a temperature of 550째C.
Sufficient data is stored i n variables
IAE, A I E , AKE, and BKE t o later a l l o w a d i f f e r e n t c a l c u l a t i o n f o r t h e s e d i s t r i b u t i o n c o e f f i c i e n t s i n VOLUME.
S u b r o u t i n e VOLUME ("LEFT)
On t h e f i r s t c a l l t o VOLUME, t h e i n p u t v a r i a b l e s are r e a d , each phase i s a s s i g n e d a s t a r t i n g molar d e n s i t y , and each r e g i o n i s a s s i g n e d
a r a t i o of molar d e n s i t i e s f o r u s e i n c o n v e r t i n g d i s t r i b u t i o n c o n s t a n t s from r a t i o s of mole f r a c t i o n t o r a t i o s of c o n c e n t r a t i o n s .
E s t i m a t e s of
molar d e n s i t y are found i n t h e v a l u e s of WEST and W E S T f o r f i r s t and second p h a s e s , r e s p e c t i v e l y .
The 1 6 v a l u e s i n each v e c t o r correspond t o
t h e v a l u e s of t h e two hexadecimal d i g i t s of NC which i d e n t i f y t h e phases present. On subsequent c a l l s , VOLUME b e g i n s by c a l c u l a t i n g new v a l u e s of
X L I B f o r t h o s e r e g i o n s w i t h NV.LT.0.
The e n t e r i n g e q u i v a l e n t d e n s i t y
f o r a given r e g i o n i s determined by u s i n g t h e t a b l e s of v a l e n c e s , and
38
f o r specifying the equivalent density i n t h a t region i f the value s u p p l i e d on i n p u t i s less t h a n 0.
The e q u a t i o n s f o r c o n c e n t r a t i o n s
i n t h e r e g i o n are t h e n solved f o r each new i n t e r m e d i a t e lithium d i s t r i b u t i o n X L I , w i t h t h e e q u i v a l e n t d e n s i t y and t h e d e r i v a t i v e o f e q u i v a l e n t d e n s i t y w i t h r e s p e c t t o XLI being determined f o r each s o l u t i o n .
Each
new X L I v a l u e i s t h e n determined by Newton's method, b u t w i t h X L I confined t o c o n t i n u a l l y r e a d j u s t i n g narrowing limits based on t h e s i g n of t h e d i f f e r e n c e of e q u i v a l e n t d e n s i t y and t h e r e f e r e n c e v a l u e .
A logical variable
DECIDE i s d e f i n e d t o i d e n t i f y a l l n u c l i d e s t h a t have a s i g n i f i c a n t i n f l u e n c e
on t h e d e r i v a t i v e of e q u i v a l e n t b a l a n c e w i t h r e s p e c t t o XLI.
NLEFT i s the
number of r e g i o n s r e q u i r i n g more than one i t e r a t i o n . The converged v a l u e s of XLI are s t o r e d i n X L I B s o t h a t new d i s t r i b u t i o n c o e f f i c i e n t s can be determined l a t e r , j u s t b e f o r e r e t u r n i n g t o t h e main program.
Before t h i s c a l c u l a t i o n i s done, however, t h e molar volume
i s c a l c u l a t e d f o r a l l p h a s e s i n d i c a t e d by t h e f i r s t d i g i t of NC.
This
i s used t o r e d e f i n e t h e v a l u e s f o r molar d e n s i t y , t o t a l flow rate, and r a t i o s of molar d e n s i t i e s f o r u s e as a conversion f a c t o r f o r t h e d i s t r i bu t i o n coef f i c i e n t s
.
T h i s s u b r o u t i n e i s used t o change f l o w s h e e t p a r a m e t e r s between iterations.
well.
It could e a s i l y be modified t o a d j u s t o t h e r parameters as
The most p r o b a b l e a d j u s t a b l e parameter i s t h e rate c o e f f i c i e n t
t a b l e t h a t would be a d j u s t e d t o match some a r b i t r a r y f u n c t i o n of processing plant concentrations.
T h i s i s t h e method c o n s i d e r e d f o r
s i m u l a t i n g t h e oxide p r e c i p i t a t i o n flowsheet that involved n o n l i n e a r -
i t i e s , n o n e q u i l i b r i u m c o n t a c t s , and b a t c h o p e r a t i o n s .
39
Subroutine MATQD (A,X,NR,NV,DET ,NA,NX)
MATQD s o l v e s a system of l i n e a r a l g e b r a i c e q u a t i o n s i n double
p r e c i s i o n , w i t h c o e f f i c i e n t m a t r i x A and c o n s t a n t v e c t o r X, and r e t u r n s w i t h t h e s o l u t i o n v e c t o r i n X.
Any number, NV, of systems of e q u a t i o n s
w i t h t h e same c o e f f i c i e n t matrix may be s o l v e d by i n c l u d i n g NV c o n s t a n t v e c t o r s , e a c h of which occupies t h e f i r s t NR p o s i t i o n i n c o n s e c u t i v e segments i n X of l e n g t h NX; t h u s , A
= t h e c o e f f i c i e n t matrix, where t h e element i n row I and
column J i s element number (J-l)*NA+I. X
= s o l u t i o n v e c t o r and c o n s t a n t v e c t o r .
The p o s i t i o n r e p r e s e n t e d
by v a r i a b l e I i n t h e s o l u t i o n s e t K i s (K-l)*NX+I.
NR
= number of unknowns.
NV
= number of s o l u t i o n s r e q u i r e d w i t h t h e
m a t r i x A.
DET = r e t u r n s w i t h v a l u e 0.0 f o r a s i n g u l a r m a t r i x and a v a l u e 1.0
f o r a n o n s i n g u l a r matrix.
O r i g i n a l l y , DET w a s t h e v a l u e of
t h e determinant of A. NA
= number of elements i n A allowed f o r each column.
NX
= number of elements i n X allowed for each set of e q u a t i o n s .
V a r i a b l e s A, X, and DET are double p r e c i s i o n . MATQD w a s o r i g i n a l l y o b t a i n e d from t h e ORNL computer l i b r a r y ; however, t h e s o l u t i o n h e r e i n v o l v e s a s p a r s e m a t r i x .
For t h i s r e a s o n ,
m o d i f i c a t i o n s w e r e made t o have t h e s u b r o u t i n e check f o r z e r o s b e f o r e performing m u l t i p l i c a t i o n s and d i v i s i o n s i n t h e c o e f f i c i e n t m a t r i x .
A
v e c t o r ISTAR was d e f i n e d t o remember t h e row numbers of up t o 50 rows, w i t h nonzero elements below t h e p i v o t element t o b e e l i m i n a t e d i n a
40
given r e d u c t i o n s t e p .
A f t e r m o d i f i c a t i o n , the r o u t i n e o b t a i n e d the
solution i n one-fifth the t i m e required previously.
T h i s modified ver-
s i o n h a s been used t o r e p l a c e t h e l i b r a r y v e r s i o n i n one o t h e r i n s t a n c e , and i t achieved a s o l u t i o n i n one-third t h e t i m e r e q u i r e d p r e v i o u s l y .
S u b r o u t i n e OUTO
OUTO s u p p l i e s i n p u t f o r t h e modified ORIGEN7 code used as a second
j o b s t e p and p r i n t s a l l o u t p u t t a b l e s t h a t supply c o n c e n t r a t i o n s o r h e a t
g e n e r a t i o n rates.
I t r e q u i r e s t h e f u n c t i o n NOAH, d e s c r i b e d p r e v i o u s l y ,
f o r producing alphameric names from n u c l i d e i d e n t i f i c a t i o n s .
It a l s o
c a l l s t h e s u b r o u t i n e OUTL.
S u b r o u t i n e OUTL (REG, RAY RB, XL, YL, NR)
OUTL s e a r c h e s through t h e l o s s rates and p r i n t s a summary of t h e
l o s s r a t e s from t h e p r o c e s s i n g p l a n t , where
REG
= l i s t o f r e g i o n names,
RA
= l i s t of f i r s t - p h a s e
RB
= l i s t of second-phase
XL
= f i r s t - p h a s e l o s s rates,
YL
= second-phase
NR
= number of r e g i o n s .
names, names,
l o s s rates, and
Miscellaneous S h o r t Routines
Subroutine SORT (X,LABEL ,Y ,NAME ,NX,NY) SORT makes one p a s s through t h e v e c t o r , Y , and i n s e r t s t h e values of Y and NAME i n t h e v e c t o r s X and LABEL s o t h a t t h e X v a l u e s are i n
41 decreasing order.
X and LABEL have dimension NX i n s u b r o u t i n e SORT,
w h i l e Y and NAME have dimension NY.
S u b r o u t i n e ZERO(A,B,N) ZERO z e r o e s the space between a d d r e s s A and B i n c l u s i v e i n u n i t s
of N b y t e s .
S u b r o u t i n e HALF(A. I)
-1
HALF computes t h e decay c o n s t a n t , A , i n u n i t s of s e c
from the
h a l f - l i f e A i n u n i t s denoted by I , where I corresponds t o IU i n t h e nuclear library.
Function NOAH (NUCLI) T h i s r o u t i n e c o n s t r u c t s a three-word alphameric symbol f o r an i s o t o p e from i t s s i x - d i g i t i d e n t i f y i n g number, NUCLI.
The t h r e e words
c o n s i s t of t h e symbol f o r t h e chemical element, t h e atomic weight, and e i t h e r a b l a n k o r an ”M” t o d e s i g n a t e a ground s t a t e o r m e t a s t a b l e s t a t e . These symbols are used only when p r i n t i n g o u t p u t t a b l e s .
42
APPENDIX B:
INPUT
The i n p u t d e s c r i p t i o n i s arranged by s u b r o u t i n e names i n the o r d e r The i n p u t d e s c r i p t i o n i s f u r t h e r d i v i d e d so
i n which t h e y are c a l l e d .
t h a t each t y p e of i n p u t card can b e i d e n t i f i e d .
The argument l i s t and
t h e format are given f o r each r e a d s t a t e m e n t .
Nuclear L i b r a r y (AMATRX)
A.
NDT:
(-110) used t o determine format f o r n u c l e a r l i b r a r y .
B.
c a r d 1:
80 c h a r a c t e r t i t l e ; alphameric format
card 2:
ERR, NMO,
NDAY, NYR, NGO
FORMAT (F10.5 ,412) ERR = number below which c o n s t a n t s (decay c o n s t a n t s ,
e t c . ) w i l l b e assumed t o b e z e r o NMO, NDAY, NYR = d a t e , month, day, y e a r used as heading NGO
--
no l o n g e r used.
c a r d 3 : NSORS (I), I = l,5 FORMAT (5110) The s i x - d i g i t
mater ia1s
i d e n t i f y i n g numbers f o r t h e f i v e f i s s i o n a b l e
233u
235tT 232Th, Y
Y
238U,
and 239Pu.
These must
be i n o r d e r , because t h e y r e f e r t o columns of d a t a on f i s s i o n product y i e l d s . The s i x - d i g i t
i d e n t i f y i n g numbers are made up s o t h a t t h e h i g h e s t
o r d e r d i g i t s g i v e t h e atomic number, t h e n e x t t h r e e d i g i t s g i v e t h e atomic m a s s , and t h e lowest o r d e r d i g i t i s 0 f o r ground s t a t e and 1 f o r e x c i t e d
state.
This i s t h e same system used by t h e ORIGEN7 code.
The n e x t c a r d s
43 d e s c r i b e t h e p r o p e r t i e s of each n u c l i d e i n the n u c l e a r l i b r a r y .
If t h e
p r e v i o u s l y r e a d v a r i a b l e , NDT i s nonzero, t h e l i b r a r y i s read from u n i t 7 i n t h e f o r m a t s g i v e n i n r e f . 7. disc files.
U n i t 7 h a s u s u a l l y been a series of
For NDT=O t h e l i b r a r y i s r e a d on u n i t 50 i n t h e format and
o r d e r given h e r e .
L i g h t Elements
NUCL(1)
*
, DLAM,TU,FBI,FP,FPI,FT,FA,SIGTH,l?"Gl
,FNA,FNP,RITH,FINA,FINP
SIGMEVyFN2N1,FFNA,FFNP,Q,FG FORMAT (I6 ,F5.3 ,11,5F5.3 ,E5.2,3F3.3 ,E5.2 JF3.3 ,E5.2,3'P3.3 ,F4 3 ,F3 3 ,F6.3) Ended by NUCL ( I ) = O A c ti n i d e s NUCL (I) ,DLAM ,IU ,FBI,FP ,'FPI,FT ,FA,SIGNA ,RING,FNGl ,S IGF ,RIF ,SIG'FF ,SIGN2N ,
FN2N1 ,Q ,FG,SIGN3N ,FSF
FORMAT(I6,F5.3,11,5F3.3,2E5.2,F3.3,4E5.2,F3.3,F4.4,F3.3,2E5.2) Ended by NUCL(I)=O
SIGN3N, and FSF are n o t used. 'Fission P r o d u c t s
*
Ended by NUCL(I)=O
*These v a r i a b l e
names are n o t the names of program v a r i a b l e s but
were chosen t o conform t o the names used i n and d e f i n e d by ref. 7.
44
MATADOR I n p u t
A.
T i t l e c a r d ; 80 c h a r a c t e r s , alphameric format.
B.
RUX, POWER, FLOW1, THERM, RES, FAST, FPABS
FORMAT (8F10.5 ) FLUX
= nominal--flux,
cm
-2
-1 sec
POWER = power, MW(t) F L O W 1 = f e e d r a t e , e q u i v a l e n t p e r second THERM = thermal spectrum f a c t o r
RES
= resonance spectrum f a c t o r
FAST
=
f a s t spectrum f a c t o r
FPAES = r e f e r e n c e f i s s i o n product a b s o r p t i o n . C.
EPS, ERR, MAX, U R D FORMAT (2F10.3 ,2 I 5 )
EPS
= e r r o r c r i t e r i o n i n Gauss-Seidel
solution
ERR
= number l e s s t h a n which c o n c e n t r a t i o n s w i l l b e considered
zero MAX
=
maximum number of i t e r a t i o n s allowed f o r s o l u t i o n
KARD = s i g n a l f o r punched o u t p u t , i f no punched c a r d s from
MATADOR. D.
AREA, VOL, RADIUS, PORTY, FILM, DIFFY, SOLBTY, VRATIO FORMAT (8E10.3) AREA
= g r a p h i t e area,
VOL
= s a l t volume,
2
cm
cc
RADIUS = g r a p h i t e rod r a d i u s , cm
PORTY
= g r a p h i t e p o r o s i t y , cc-void/cc
FILM
= m a s s t r a n s f e r c o e f f i c i e n t f o r krypton,
cm/sec
45
2
= d i f f u s i v i t y of krypton i n p o r e s , cm /sec
DIFFY
SOLBTY = s o l u b i l i t y of krypton i n f u e l s a l t (mole/cc of l i q u i d ) /
(mole/cc of g a s )
VRATIO = r a t i o of g r a p h i t e volume t o s a l t volume i n c o r e ; i f AREA=O n e x t c a r d i s t y p e G. E.
IGAS, IDAU, IENT, 1 3 , I3DEP, NEXT
FORMAT ( 4X,16 ,4X,16,IS ,4X,16,2I5) IGAS
= gas i d e n t i f i e r
IDAU
=
i d e n t i f i c a t i o n of daughter
IENT
=
0 i f daughter d e p o s i t s
=
1 i f daughter i s v o l a t i l e
I3
= i d e n t i f i c a t i o n of granddaughter formed
from v o l a t i l e
daughter I3DEP = same as IENT e x c e p t t h a t i t r e f e r s t o I3 NEXT
= number used t o c o n t r o l program
> 0 r e t u r n t o next type E card = 0 r e a d t y p e G card
< 0 r e a d type F c a r d followed by one of type E. The f i r s t s e t r e f e r s t o d a u g h t e r s of k r y p t o n , t h e n e x t set a f t e r t h e type F c a r d r e f e r s t o d a u g h t e r s of xenon.
F.
PILM,DIJ?E'Y,SOLBTY FORMAT (3E12.5)
The v a r i a b l e s are d e f i n e d i n t h e same way as t h o s e of c a r d type D. t h i s c a r d , t h e n e x t c a r d r e a d i s of t y p e E.
After
46 G.
INPUT(1) ,X(I) ,I=1,4 FORMAT(4(15,F10.3)) INPUT
= six-digit
i d e n t i f i e r of n u c l i d e
X
= composition i n atom f r a c t i o n o r mole f r a c t i o n .
The materials f e d t o t h e r e a c t o r are 'Li, The molar f e e d rate i s FLOW1
H.
* X(1)
'Be,
232Th, and "F.
i n g-atom/sec.
TIME (N) ,N=l,10 FORMAT (10E8.1) TIME(N)
= t h e removal time f o r group
N of elements.
I. NP(1) ,I=1,100 FORMAT (40 (12)) NP(1) = t h e group number f o r element w i t h atomic number I. J.
NZ(1) ,EFF(I) ,I=1,8 FORMAT(8(13,F7.4)) EFF
= t h e removal e f f i c i e n c y of t h e element w i t h atomic number
NZ.
Only t h o s e elements w i t h a removal e f f i c i e n c y d i f f e r e n t from 1.0 need b e specified.
As many c a r d s as n e c e s s a r y may b e used w i t h i n p u t of EFFs,
s t o p p i n g when NZ-0 i s encountered. K.
THETA
= six values.
FORMAT (8F10.3) THETA(1)
= holdup time of group 1 elements (noble g a s e s ) i n t h e
c i r c u l a t ing g a s bubbles
THETA(2)
= holdup of group
.
2 elements (noble m e t a l s ) d e p o s i t e d
i n t h e r e a c t o r core.
THETA(3) = holdup of group 3 elements (seminoble metals) d e p o s i t e d i n t h e r e a c t o r core.
-C.
47
THETA(4) = holdup of group 1 elements i n c o n t a c t w i t h s a l t o u t s i d e t h e f l u x of t h e r e a c t o r .
The gas i s assumed
t o be t h e e f f l u e n t of g a s e s from t h e r e a c t o r . THETA(5),THETA(6) = holdup time of group 2 and 3 elements, respectively, i n contact with salt outside the reactor. L.
NTINE(1) ,PUNIT(I) ,I=1,10 FORMAT(lO(I.4 ,A4))
NTIME(1) = t h e removal t i m e of group I elements expressed i n u n i t s of PUNIT(1); t h e s e are used only f o r p r i n t o u t purposes when going through MATADOR f o r t h e f i r s t t i m e .
M.
NZ(I),EFF(I),I=l,8 FORMAT (8 (13, F7.4) )
The v a r i a b l e s are d m y v a r i a b l e s w i t h no r e l a t i o n t o t h e v a r i a b l e s r e a d as c a r d t y p e J .
Here NZ i s an atomic number as b e f o r e , b u t EFF i s
a f r a c t i o n of t h e element of group 2 o r 3 which i s p l a t e d o u t i n t h e The remaining m a t e r i a l i s assumed t o b e d e p o s i t e d o u t s i d e t h e
reactor.
reactor flux.
A s many c a r d s are r e a d as n e c e s s a r y u n t i l NZ=O i s encountered.
MAIN i n p u t
The main program p r i m a r i l y r e a d s i n p u t d e s c r i b i n g t h e f l o w s h e e t and v a r i a b l e s which c o n t r o l e x e c u t i o n and o u t p u t .
The c a r d s t h a t f o l l o w a r e
r e a d from u n i t 2:
A.
11,12,13,14,15,16,17,18,19,110,NWASTE,112,113,11~,115 FORMAT (1615)
48
Explanation of v a r i a b l e s :
I1
I f I1.GT.O flowsheet i n p u t c o n c e n t r a t i o n s and removal e f f i c i e n c i e s are i n p u t from p r e v i o u s c a s e s w i t h 12.GT.0.
I2
If 12.GT.0 punch o u t p u t t o be r e a d i f I1.GT.O
I3
P r e d i c t e d number of i t e r a t i o n s ; maximum number of i t e r a t i o n s when no t i m e l i m i t i s used.
I4
Not needed
I5
Not needed
I6
If 16.GT.O flowsheet i n f o r m a t i o n i s punched f o r l a t e r i n p u t when I8.GT.O.
I7
Not needed
I8
If 18.GT.0 flowsheet i n f o r m a t i o n i s r e a d from c a r d s punched e a r l i e r .
I9
No averaging i s done on c o n c e n t r a t i o n s u n t i l 19 i t e r a t i o n s a r e complete.
I10
I f IIO.GT.O averaging i s n o t done on c o n c e n t r a t i o n s between i t e r a t i o n s .
WASTE
Number of w a s t e streams
I12
I f t h e number of i t e r a t i o n s i s less than t h i s , n u c l i d e s
are n o t excluded because t h e y do n o t a f f e c t D values. Li
I13
I13 i t e r a t i o n s are made a t end i n which n u c l i d e s do n o t a f f e c t DLi v a l u e s , and are n o t excluded.
I14
I f 114.GT.0, t h e program s u p p l i e s MATADOR w i t h a d e r i v a t i v e of r e a c t o r i n l e t c o n c e n t r a t i o n w i t h r e s p e c t t o reactor o u t l e t concentration,
I15
I f 115.GT.0, t h e program s t a r t s o u t p u t s e c t i o n a f t e r
I15 minutes of c a l c u l a t i o n .
49
B.
EPS, ERR, MAX
FORMAT (2F10.3, 15) Explanation of v a r i a b l e s :
C.
EPS
Convergence c r i t e r i o n d i v i d e d by 10 ( t y p i c a l v a l u e ) .
ERR
Number below which c o n c e n t r a t i o n s are set t o 0.0.
MAX
Not used.
WTDX FORMAT (F10.3) WTDX = t h e weighting f a c t o r g i v e n t o DXIN.
D.
NREG, N I N X , N I N Y , NINP, NRATE, KRATE, SRATE
FORMAT (1615) E x p l a n a t i o n of v a r i a b l e s : NREG
Number of r e g i o n s .
NINX
Number of f i r s t - p h a s e flowing streams.
NINY
Number of second-phase
NINP
Number of f e e d streams i n p r o c e s s i n g p l a n t .
NRATE
flowing streams.
Number of r a t e streams u s i n g a scale f a c t o r and a t a b l e number.
KRATE
Number of r a t e streams d e s c r i b e d by parameters of g a s - l i q u i d c o n t a c t f o r g a s bubbled i n t o tank.
JRATE
Number of r a t e streams p r o p o r t i o n a l t o t h e f i r s t phase flow rate ( t h e s e are f l u o r i n a t o r s d e s c r i b e d by
a p e r c e n t removal mechanism).
Many of t h e s e are used as limits f o r implied do-loops f o r i n p u t d e s c r i b e d below.
50
E.
REGION (N)
--
, VOLX (N) , VOLY (N) , X L I B (N) , NV (N) , NSTR(N) , I P (N) , NC (N) ,
REGA(N) , REGB(N)
, EIN(N) , N = l ,
NREG
FORMAT (A8, 2X, 3E10.0, 1 2 , 13, 1 2 , 23, A8, 2X, A8, E12.0) Each of t h e s e c a r d s d e s c r i b e s a r e g i o n .
Three are NREG c a r d s .
Explanation of v a r i a b l e s : REGION
N a m e of r e g i o n , 8 c h a r a c t e r s .
VOLX
Volume of t h e f i r s t phase, cc.
VOLY
Volume of t h e second phase, cc.
XLIB
Parameter f o r e q u i l i b r i u m ( e . g . , temperature).
lithium distribution,
Number of column a p p l i c a b l e i n t a b l e
of v a l e n c e s NV.LT.0 i m p l i e s a c o r r e c t i o n i s t o be made t o XLIB. NSTR
Number i n d i c a t i n g t h e type of e q u i l i b r i u m .
IP
C o n t r o l s p r i n t o u t on t h e b a s i s of b i n a r y r e p r e s e n t a t i o n .
IP=O P r i n t i n g i n c l u d e s b o t h phases. IP=1 F i r s t phase i n f o r m a t i o n s t o r e d i n l e f t h a l f of l i n e . IP=2
Second phase i n f o r m a t i o n s t o r e d i n l e f t h a l f
of l i n e . IP=3 F i r s t phase i n f o r m a t i o n s t o r e d i n r i g h t h a l f of l i n e . IP=4
Second phase i n f o r m a t i o n s t o r e d i n r i g h t h a l f of l i n e .
P r i n t o u t of a l i n e o c c u r s when a r e g i o n has IP=O o r when two s u c c e s s i v e r e g i o n s have IPSO.
One of t h e s e should have a v a l u e of IP=1 o r 2 , and
t h e o t h e r should have IP=3 o r 4.
1
51 NC
This v a r i a b l e h a s t h r e e hexadecimal d i g i t s . f i r s t d i g i t h a s a v a l u e from 0 t o 3 .
The
Its binary
d i g i t s i n d i c a t e t h e phases whose molar volumes m u s t be i t e r a t i v e l y r e c a l c u l a t e d .
Its v a l u e s are:
0-00
N e i t h e r molar volume i s t o b e r e c a l c u l a t e d .
1-01
Second phase molar volume c a l c u l a t i o n s only.
2-10
F i r s t phase molar volume c a l c u l a t i o n s only.
3-11
Both phases r e q u i r e molar volumes c a l c u l a t i o n .
The n e x t two hexadecimal d i g i t s are used t o i d e n t i f y t h e f i r s t and second p h a s e s , r e s p e c t i v e l y .
Even when
molar volume c a l c u l a t i o n s are n o t made, t h e s e can be used f o r a s s i g n i n g t h e assumed molar volumes. REGA
N a m e of f i r s t phase t o b e used i n o u t p u t , 8 c h a r a c t e r s .
REGB
N a m e o f second phase t o b e used i n o u t p u t , 8 c h a r a c t e r s .
EIN
The number of e q u i v a l e n t s p e r c u b i c c e n t i m e t e r of t h e
materials considered assumed i n t h e second phase.
If
E I N is n e g a t i v e , the number of e q u i v a l e n t s p e r c u b i c c e n t i m e t e r e n t e r i n g i s used. F.
RINTO(I),
INPUT(1) , COMP(1)
, ICP(I),
I=l, NINP
FORMAT (A8, 2X, 110, E12.0, 13) Each c a r d d e s c r i b e s an i n p u t of one n u c l i d e t o a r e g i o n .
Number
of c a r d s i s NINP. Explanation of v a r i a b l e s : UNTO
N a m e of r e g i o n f e d , 8 c h a r a c t e r s .
INPUT
Numeric name (6-digit
cow
Feed rate of INPUT t o RINTO, m o l e s / s e c .
i d e n t i f i c a t i o n ) of t h e n u c l i d e .
52
ICP.GT.0 i d e n t i f i e s streams i n c l u d e d i n c a l c u l a t i o n
ICP
of second phase i n l e t e q u i v a l e n t d e n s i t y . G.
NSET
FORMAT (1615)
(only one v a r i a b l e r e a d ) .
NSET i s t h e number of c a r d s of t y p e H i s NSET.GT.0. H.
RDEF(1) , INDEF(1) , DCOMP(1) , I=1, NSET FORMAT ( A 8 , 2X, 110, E12.0) These c a r d s l i s t t h e p l a c e s where c e r t a i n c o n c e n t r a t i o n s are defined.
They might be bismuth i n a bismuth supply t a n k o r Q0.5
L i - B i s o l u t i o n i n a supply t a n k o f t h a t m a t e r i a l .
RDEF
Region name, 8 c h a r a c t e r s .
INDEF
Numerical name of n u c l i d e .
DCOMP
The c o n c e n t r a t i o n i n moles/cc of n u c l i d e INDEF i n r e g i o n RDEF.
I.
RXFROM(J), RXTO(J), XRATE(J), J=1, N I N X FORMAT ( A 8 , 2X, A 8 , E12.0) RXFROM
Region name, 8 c h a r a c t e r s .
RXTO
Region name, 8 c h a r a c t e r s .
XRATE
Flow r a t e of material of t h e f i r s t phase, c c / s e c , from r e g i o n RXFROM t o r e g i o n RXTO.
J.
RXFROM(J), RYTO(J), YRATE(J), J=1, N I N Y FORMAT ( A 8 , 2X, A 8 , E12.0) V a r i a b l e d e f i n i t i o n s are analogous t o v a r i a b l e s r e a d as type I ,
except t h a t flows are second-phase flow rates.
The c a r d s of t y p e s F , H ,
I , and J , and some of t h e c a r d s t h a t f o l l o w r e q u i r e t h e i d e n t i f i c a t i o n of r e g i o n s by name.
These are t h e r e g i o n s named by c a r d s of t y p e E.
53
The names are compared f o r e x a c t matches ( s p a c e s c o u n t ) .
When a name
f o r a stream d e s t i n a t i o n ( t y p e I , and J) i s n o t i n t h e l i s t of r e g i o n names, the name i s compared w i t h "DISCARD" ( l e f t j u s t i f i e d ) .
If t h i s
comparison i n d i c a t e s a match, t h e stream i s assumed t o be d i s c a r d e d . I f t h e name does n o t match, i t i s assumed t o b e d i s c a r d e d , b u t a message t o t h i s e f f e c t is printed.
Note t h a t t h e comparison w i t h t h i s key word
i s made o n l y when no s u c c e s s f u l comparison i s made t o l i s t e d r e g i o n names. Thus, t h e key word can be a l e g i t i m a t e r e g i o n i f t h e u s e r so d e s i r e s . Cards of type K, L, and M are r e a d only i f WASTE # 0. K.
RWASTE(1W) , I W = l , WASTE FORMAT (10A8) RWASTE
Names of d e s t i n a t i o n of streams t o b e s e n t t o ORIGEN.
L.
FWASTE (IW) , I W = l ,
7
WASTE
FORMAT (10F8.0) WASTE M.
M u l t i p l y i n g f a c t o r t o b e used f o r these streams.
WASTE (IW), I W = l , NWASTE FORMAT (1018) KWASTE
Used by OUT0 t o make a d i s t i n c t i o n between elements i n t h e s e streams.
N.
DET
FORMAT (20A4) The v a l u e r e a d i s n o t used. i n t h e i n p u t stream. 0.
Read only i f I 1 . G T . O
XI0
(800 v a l u e s )
FORMAT
(20A4)
This simply a l l o w s a comment c a r d
54
XI0 i s t h e l i s t o f c o n c e n t r a t i o n s punched from p r e v i o u s programs. The format a l l o w s a v e r y compact r e p r e s e n t a t i o n of s i n g l e prec i s i o n numbers.
One must e n s u r e t h a t t h e f i r s t number on t h e
card does n o t i d e n t i f y t h e card as an end-of-file
o r end-of-
i n f o mat i o n i n d i c a t i o n .
N e x t is read ( i f I1.GT.O): DXIN
(800 v a l u e s )
FORMAT
(20A4)
DXIN may be removal e f f i c i e n c i e s o r molar flow r a t e s ; t h e i r
v a l u e s are examined for i n d i c a t i o n s of which one t h e y r e p r e s e n t , T h i s i s n o t a fool-proof
and t h e o t h e r i s then c a l c u l a t e d . method of i d e n t i f i c a t i o n , however. I f 18.GT.0,
t h e program now r e a d s a d e s c r i p t i o n of t h e f l o w s h e e t i n t h e
format in which i t can l a t e r be punched.
I n addition t o replacing the
values i n the previously defined variables, i t replaces the values i n s e v e r a l v a r i a b l e s determined from t h e s e .
T h i s i s done t o a l l o w t h e u s e
of t h e parameter v a l u e s a r r i v e d a t in p r e v i o u s r u n s and t h u s save recalc u l a t i o n by i t e r a t i o n s . P.
Read o n l y i f NRATE.GT.0 RXNA(1) , RXNB(1) FORMAT [ 2 ( A 8 ,
, SCFACT(1) , NPORM(I), I=1, NRATE
2 X , A 8 , E12.0, 15, 5x11
Elements are assumed t o go from t h e r e g i o n RXNA t o t h e r e g i o n
RXNB a t a r a t e e q u a l t o t h e product of t h e i r c o n c e n t r a t i o n , t h e v a l u e of SCFACT, and t h e v a l u e l i s t e d i n t h e rate t a b l e o p p o s i t e t h e element symbol i n column NFORM.
I f NFORM i s
55
g r e a t e r than 100, t h e t a b l e used i s NFORM-100, b u t t h e t a b l e v a l u e s are changed t o 1 e x c e p t where t h e v a l u e i s 0.0.
Q.
There are JRATE c a r d s of t h i s type. REGL, REGG, I T H , COMM FORMAT (A8, 2X, A 8 , 2X, 1 5 , 5X, 2 5 A 1 ) REGL
Name of r e g i o n a t o r i g i n of t h e stream.
REGG
N a m e of r e g i o n a t d e s t i n a t i o n of t h e stream.
ITH
Column number of rate c o n s t a n t t a b l e .
COMM
25-character comment t o appear i n o u t p u t l i s t i n g .
Streams of t h i s t y p e u s e a s c a l e f a c t o r e q u a l t o t h e flow o f
material through REGL. R,
There are KRATE c a r d s of t h i s type.
REGL, REGG, AKL, AB, A S , XG, XL, ITD, ITH, ITC 'FORMAT (A8 ,2X, A 8 , 2X, 5F10.7, 213, 12) REGL, REGG, ITH are d e f i n e d as above.
AKL
Overall l i q u i d phase m a s s t r a n s f e r c o e f f i c i e n t , cm/ s e c
. 2
.
AB
Bubble area, an
AS
S u r f a c e area, cm
XG
Thickness of s t a g n a n t g a s through which d i f f u s i o n
2
.
occurs.
XL
Thickness of s t a g n a n t l i q u i d through which d i f f u s i o n occurs.
ITD
Column number g i v i n g g a s phase d i f f u s i v i t i e s .
ITC
Variable controlling input.
I f ITC is not 0, the
n e x t c a r d w i l l be an e x t e n s i o n of t h i s card and
56
w i l l r e p l a c e t h e v a l u e of t h e comment w i t h t h e f i r s t 25 c h a r a c t e r s on t h e n e x t c a r d . T h i s type of c a r d produces t h r e e r a t e streams which r e p r e s e n t m a s s t r a n s f e r t o and from t h e g a s a t t h e bubbles and a t t h e s u r f a c e , and
the t r a n s f e r of n o n v o l a t i l e n u c l i d e s from t h e gas t o t h e l i q u i d a t t h e s u r f ace.
s.
FMT
(100 v a l u e s , 5 c a r d s r e q u i r e d )
FORMAT
(20A4)
IWT i s i n t h e form of a format i n s t r u c t i o n and i s t h e heading
p r i n t e d a t t h e t o p o f t h e t a b l e of r a t e c o n s t a n t d a t a r e a d n e x t . T.
RDATA(I), I=1,800 FORMAT
( 8 X , 8E8.0)
RDATA
Contains t h e d a t a r e f e r r e d t o by column number by v a r i a b l e s ITH, I T D , and "FORM.
The d a t a should
b e arranged on c a r d s so t h a t c a r d s are i n o r d e r of
atomic number (100 c a r d s ) w i t h t h e columns cont a i n i n g t h e numbers d e s c r i b e d p r e v i o u s l y .
These
can be d i f f u s i v i t i e s , Henry's l a w c o n s t a n t s , PR/(l-PR)
(where PR i s p e r c e n t removal), o r any
o t h e r c o n s t a n t s which might v a r y w i t h atomic number. A f t e r t h e s e c a r d s are r e a d , i n p u t i s r e a d by s u b r o u t i n e EQKN and s u b r o u t i n e VOLUME, r e s p e c t i v e l y .
57
INPUT TO EQKN
EQKN r e a d s a series of card p a i r s from u n i t 50 t o a s s i g n v a l u e s t o
t h e d i s t r i b u t i o n c o e f f i c i e n t s throughout t h e p r o c e s s i n g p l a n t .
The
cards read contain: A.
LZ, NS, NT, AN, A, B, ENAME
FORMAT (13, 2 1 2 , 8X, F2.0,
B.
lox,
E8.0,
2X, E 8 . 0 ,
3 3 X , A2)
LZ2, NS2, REF
FORMAT (13, 1 2 , 75A1) LZ = atomic number NS = number i d e n t i f y i n g t h e t y p e of e q u i l i b r i u m corresponds
t o NSTR i n t h e d e s c r i p t i o n of r e g i o n s . NT = i d e n t i f i e s t h e t y p e of e q u a t i o n involved.
0
End of i n p u t , r e t u r n
1
loglo(D)
2
D = A
394
log(P) = A / ( 2 7 3 . 2
D
Distribution coefficient
XLIB
Constant r e a d with r e g i o n d e s c r i p t i o n s
P
P a r t i a l pressure
= (AN) loglo
XLIB
+
+ XLIB) +
A+B/T (in
K)
B
AN, A, B = d a t a
ENAME = e l e m e n t a l symbol name f o r o u t p u t of e q u i l i b r i u m LZ2, NS2 = n o t used
REF = 75 character r e f e r e n c e f o r d a t a i n t h e f i r s t card. Two s p e c i a l f l a g s are recognized. 102, t h e v a l u e of NT i s assumed t o b e 2.
I f t h e element atomic number i s
In a d d i t i o n , a l l elements are
58
a s s i g n e d t h e same d i s t r i b u t i o n c o n s t a n t f o r t h e d i s t r i b u t i o n type NS. T h i s o v e r r i d e s p r e v i o u s i n p u t , b u t i t i s assumed t h a t e x c e p t i o n s follow. T h i s d e v i c e g r e a t l y reduces t h e amount of i n p u t .
I f t h e atomic number
LZ i s 101, no d a t a are taken from t h e c a r d s , b u t t h e v a r i a b l e REF i s assumed t o be a page heading f o r t h i s t y p e of e q u i l i b r i u m .
For p r o p e r
output t a b u l a t i o n , i t i s assumed t h a t a l l c a r d s s p e c i f y i n g a p a r t i c u l a r
type of e q u i l i b r i u m are t o g e t h e r and t h a t t h e s e are s e p a r a t e d by t i t l e changes. The program p r i n t s t h e form of t h e e q u a t i o n i n the o u t p u t t a b l e . The space allowed between c o n s t a n t s on i n p u t c a r d s may be used t o type t h e e q u a t i o n t h a t will b e used.
INPUT TO VOLUME
A l l i n p u t t o VOLUME i s r e a d from u n i t 2 and i s used t o make estimates
of molar volumes and a t a b l e of v a l e n c e s .
A.
NTA, NTB FORMAT (3212) Each v a r i a b l e h a s 1 6 elements corresponding t o t h e v a l u e of t h e second and t h i r d hexadecimal d i g i t of NC, which corresponds t o r e g i o n s and i d e n t i f i e s t h e phases p r e s e n t .
The values
i d e n t i f y t h e column numbers i n VOLC. B.
VOLC
FORMAT (8X, 8E8.0)
E i g h t hundred v a l u e s are r e a d , corresponding t o 8 v a l u e s each
(1 c a r d ) f o r t h e elements i n i n c r e a s i n g o r d e r of atomic number. A l i s t i n g g i v e s 8 columns, which correspond t o p h a s e s , and 100
59
rows, which correspond t o elements.
VOLC c o n t a i n s t h e c o n t r i -
b u t i o n of t h e elements t o t h e molar volume of each of t h e phases.
c.
VAL
FORMAT (8X, 8E8,O) VAL h a s 800 v a l u e s arranged s i m i l a r l y t o VOLC.
The v a l u e s of
VAL are v a l e n c e s f o r u s e i n c o n t a c t o r s , w i t h columns being
r e f e r r e d t o by t h e v a r i a b l e NV.
60
APPENDIX C:
OUTPUT
Output Produced by MATADOR and i t s S u b r o u t i n e s
A.
Output from AMATRX:
(1) Nuclear L i b r a r y (2)
Summary of f i s s i o n y i e l d s
The f i s s i o n y i e l d s are summarized by mass c h a i n s i n two groups, and cumulative t o t a l s are given a f t e r each group f o r p a r t i c l e and mass y i e l d s as i n d i c a t e d by t h e n u c l e a r l i b r a r y . B.
Output from MATADOR on t h e f i r s t c a l l : MATADOR produces a l i s t of t h e i n p u t v a r i a b l e s .
C.
Output from CHEMPL on t h e f i r s t c a l l : CHEMPL produces an element-by-element
t a b l e of removal times u s i n g
t h e s t a r t i n g e f f i c i e n c i e s , the removal time given by NTLME, and t h e u n i t s given by PUNIT.
The u s e r i s r e s p o n s i b l e f o r e n s u r i n g agreement of NTIME
and PUNIT w i t h t h e v a r i a b l e TIME i n u n i t s of seconds. D.
Output from RESULT produced each time RESULT i s c a l l e d :
(1) A t a b l e i s produced t h a t l i s t s t h e c o n c e n t r a t i o n f o r each n u c l i d e i n moles p e r c u b i c c e n t i m e t e r and atom f r a c t i o n , i t s c o n t r i b u t i o n t o p o i s o n i n g , i t s i n v e n t o r y i n c u r i e s , i t s cont r i b u t i o n t o t h e power d e n s i t y , t h e f r a c t i o n of that power produced as gamma h e a t , i t s chemical p r o c e s s i n g rate, and i t s mole f r a c t i o n i n t h e i n l e t stream as determined by t h e process i n g p l a n t code. (2)
T h i s t a b l e is followed by a l i s t of c a l c u l a t e d v a l u e s which i n d i c a t e r e a c t o r performance.
61
(3)
This i n f o r m a t i o n i s summarized f o r t h e 25 g r e a t e s t v a l u e s under most of t h e headings i n t h e f i r s t t a b l e ; a n o t h e r t a b l e i s given p r o v i d i n g t o t a l s f o r each stream.
(4)
A summary i s p r e s e n t e d t h a t compares thorium burnup rate w i t h
t h e weight of f i s s i o n p r o d u c t s and a c t i n i d e s removed.
(5)
A summary t a b l e i s given t h a t l i s t s t h e t o t a l rate of chemical
p r o c e s s i n g f o r each element.
(6)
A n o t e i s i n c l u d e d on t h e number of c a l l s t o MATADOR.
(This
i s o n l y a c c u r a t e i f KEE i s c a l l e d e v e r y time a p a s s i s made through MATADOR. ) Output from t h e P r o c e s s i n g P l a n t Program
P r i n t e d Output
The o u t p u t b e g i n s w i t h o u t p u t o b t a i n e d by the f i r s t c a l l t o MATADOR. The program t h e n p r i n t s the i n p u t v a r i a b l e s .
T a b l e s appear t h a t d e s c r i b e
a l l r e g i o n s , l i s t - f e e d streams and s p e c i f i e d c o n c e n t r a t i o n s , d e s c r i b e flowing streams i n each phase and streams d e f i n e d by r a t e c o e f f i c i e n t s , i n d i c a t e e x p r e s s i o n s f o r d i s t r i b u t i o n c o e f f i c i e n t s , and compute a d d i t i v e molar volumes and v a l e n c e s .
A number of i n t e r m e d i a t e c a l c u l a t e d r e s u l t s are p r i n t e d t o monitor t h e p r o g r e s s of t h e c a l c u l a t i o n s .
Between i t e r a t i o n s , t h e r e i s a l i s t
of t h e 50 n u c l i d e s w i t h t h e g r e a t e s t r e l a t i v e change i n c o n c e n t r a t i o n r e t u r n i n g t o t h e r e a c t o r , and t h e c o n c e n t r a t i o n s and t h e r e l a t i v e changes.
Upon convergence, t h i s l i s t i s p r i n t e d f o r a l l n u c l i d e s .
The l i t h i u m d i s t r i b u t i o n X L I B c a l c u l a t e d by VOLUME i s a l s o p r i n t e d between i t e r a t i o n s , w i t h t h e change i n e q u i v a l e n t d e n s i t y e n t e r i n g
62
each s t a g e f o r which t h e d i s t r i b u t i o n c o e f f i c i e n t s are r e c a l c u l a t e d . A s a means of m o n i t o r i n g t h e p r o g r e s s of c a l c u l a t i o n s , t h e t i m e i n
hundredths of a second i s p r i n t e d a t v a r i o u s p o i n t s i n the c a l c u l a t i o n . When t h e t i m e l i m i t o r convergence c r i t e r i o n i s m e t , a n o t h e r c a l l
i s made t o RESULT t o o b t a i n o u t p u t summarizing the r e a c t o r c a l c u l a t i o n s . A p a r t i a l l i s t i n g of t h e f l o w s h e e t d e s c r i p t i o n i s made which r e f l e c t s t h e new flow r a t e s used.
A t a b l e , whose heading g i v e s t h e h a l f - l i f e
and removal t i m e of t h e n u c l i d e , i s i n c l u d e d f o r each n u c l i d e i n t h e library.
The t a b l e l i s t s t h e c o n c e n t r a t i o n (moles/cc)
, the
inventory
( i n moles and i n c u r i e s ) , and t h e t o t a l flow r a t e ( i n moles/day) of t h e n u c l i d e i n each phase of each r e g i o n in t h e p r o c e s s i n g p l a n t .
The t a b l e s
are s h o r t e n e d by t h e combining of one-phase r e g i o n s as i n d i c a t e d by t h e input variable, IP.
Each of t h e s e t a b l e s i s followed by a l i s t of a l l
d i s c a r d rates i n moles p e r day, and a l i s t of flow rates i n moles p e r day i n a l l streams which do n o t r e p r e s e n t t h e t o t a l f l o w of one phase out of a region. by t h e i r names.
I n a l l of t h e s e , t h e r e g i o n s and phases are i d e n t i f i e d When two r e g i o n s each have one phase t o b e l i s t e d on
t h e same l i n e , as s p e c i f i e d by I P , t h e r e g i o n name of the f i r s t of t h e two r e g i o n s in t h e i n p u t i s used t o a p p l y t o both.
This output i s repeated
i n a summary t a b l e f o r each element i n which t h e t o t a l s are given f o r t h e v a l u e s in t h e p r e v i o u s t a b l e s .
These t a b l e s are followed by a t a b l e g i v i n g
t h e t o t a l s f o r a l l materials. T h i s series i s followed by a series of t a b l e s which g i v e heat generat i o n rates i n each phase of each r e g i o n .
For each t a b l e , the 50 n u c l i d e s
w i t h t h e h i g h e s t h e a t g e n e r a t i o n rate a t t h a t p o i n t in t h e f l o w s h e e t are l i s t e d along w i t h t h e i r c o n t r i b u t i o n t o t o t a l heat g e n e r a t i o n r a t e , gamma
-
63 h e a t g e n e r a t i o n rate, and b e t a h e a t g e n e r a t i o n rate.
Each of t h e s e is
g i v e n as t o t a l power i n megawatts, and as power d e n s i t y of k i l o w a t t s p e r
liter.
These are t o t a l e d f o r a l l n u c l i d e s , and an a d i a b a t i c temperature
rise i n 'C p e r minute is p r i n t e d . I n a d d i t i o n t o p r i n t e d o u t p u t , the program p r e p a r e s punched o u t p u t
which i n c l u d e s r e a c t o r c o n c e n t r a t i o n s and p r o c e s s i n g p l a n t removal t i m e s f o r a l l n u c l i d e s , and a d e s c r i p t i o n of the flowsheet.
T h i s output, i f
r e q u e s t e d by p o s i t i v e v a l u e s f o r t h e i n p u t v a r i a b l e s I 2 and 1 6 , can be used l a t e r t o e s s e n t i a l l y c o n t i n u e t h e c a l c u l a t i o n s from t h e p o i n t a t which o u t p u t was o b t a i n e d .
The r e a c t o r c o n c e n t r a t i o n s and p r o c e s s i n g
p l a n t removal t i m e s can a l s o b e used t o e l i m i n a t e many of t h e i t e r a t i o n s r e q u i r e d when a flowsheet with similar performance i s used.
Output t o b e Used by ORIGEN
A copy of ORIGEN
7 w a s o b t a i n e d , and m o d i f i c a t i o n s w e r e made t o allow
t h e p r i n t i n g of only t h o s e t a b l e s s p e c i f i e d by i n p u t v a r i a b l e s , t o a l l o w input formats to be used which r e q u i r e flow rates i n a form convenient
f o r o u t p u t by t h e p r o c e s s i n g p l a n t code, and t o a l l o w i n p u t t o b e r e a d
from a s o u r c e o t h e r t h a n the c a r d r e a d e r ,
Output i n t h i s form d e s c r i b i n g
a series of streams i s produced on u n i t 28 f o r l a t e r i n p u t t o ORIGEN.
I n a l l programs used t o d a t e , t h i s o u t p u t w a s w r i t t e n on a d i s c f i l e r e a d by ORIGEN i n a second j o b s t e p . The first streams i n c l u d e d are s p e c i f i e d by the i n p u t v a r i a b l e s WASTE, RWASTE, FWASTE, and KWASTE.
F o r o u t p u t stream I W ENWASTE), t h e
v a r i a b l e RWASTE(1W) g i v e s t h e name of t h e d e s t i n a t i o n of all streams t h a t
are i n c l u d e d .
Streams t h a t are d i s c a r d e d may b e s e n t t o a n o n e x i s t e n t
64 r e g i o n name i n t h e l i s t of waste r e g i o n s .
The i n c l u d e d streams are
f u r t h e r decreased by t h e use of KWASTE(1W) t o s p e c i f y t h e phase as f o l l o w s : MJASTE'LT'O
o n l y f i r s t - p h a s e streams are c o n s i d e r e d ,
KWASTE*EQ*O streams from e i t h e r phase are c o n s i d e r e d ,
KWASTE'GT'O
o n l y second-phase streams are considered.
The molar flows of streams meeting t h e s e requirements are added and m u l t i p l i e d by ABS[FWASTE(IW)] b e f o r e being sent t o ORIGEN and i n c l u d e d i n the t o t a l ,
F o r t h e s p e c i a l case of KWASTE(IW)*NE*O,and FWASTE(1W)
between -0.001 and 0.0, t h e v a l u e of FWASTE(1W) i s 0.001 when c o n s i d e r i n g i s o t o p e s of neptunium.
Streams are then o u t p u t which r e p r e s e n t 5 l i t e r s
of s a l t s t i c k i n g t o t h e g r a p h i t e d i v i d e d by t h e number of days i n 4 years, t h e s e r e p r e s e n t d a i l y d i s c a r d rates of n o b l e metals from t h e r e a c t o r c o r e , n o b l e g a s e s from t h e s a l t d r a i n t a n k , and n o b l e m e t a l s from o u t s i d e t h e r e a c t o r core.
All of t h e s e , e x c e p t t h e s a l t s t i c k i n g t o t h e g r a p h i t e ,
are added t o t h e flow o u t p u t streams w i t h FWASTE(IW)*GT'O; t h e t o t a l i s o u t p u t t o r e p r e s e n t t o t a l d a i l y waste o t h e r t h a n g r a p h i t e removal. F i n a l l y , t h e d a i l y rate of d e p o s i t i o n of materials on the g r a p h i t e i s o u t p u t as a stream t h a t ORIGEN will assume i s i r r a d i a t e d f o r 4 years,
V
65
ORNL/TM-4210 D i s t . Category UC-76
INTERNAL DISTRIBUTION
MSRP D i r e c t o r ' s O f f i c e C. E. Bamberger 4. M. Bender 5. R. E. Brooksbank 6. C. H. Brown, Jr. 7. W. D. Burch 8. W. L. Carter 9. H. D. Cochran, Jr. 10. R. M. Counce 11. F. L. C u l l e r 1 2 . J. M. Dale 13. F. L. Daley 14. J. R. DiStefano 15. R. L. E g l i , ERDA-OR0 16. J. R. Engel 17. G. G. Fee 18. D. E. Ferguson 1 9 . L. M. F e r r i s 20. A. T. Gresky 21. W. R. G r i m e s 22. W. S. Groenier 23. R. H. Guymon 24. B. A. Hannaford 25. R. F. Hibbs J . R. Hightower, Jr. 26-27. 28. V . A. Jacobs C. W. Kee 29-43. 44. 0. L. Keller A. D. Kelmers 45 46. H. T. Kerr 47. J . A. Lenhard, ERDA-OR0 1-2.
3.
48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70. 71. 72. 73. 74. 75. 76-77. 78. 79-81. 82.
H. G. MacPherson, UT R. E. MacPherson A. P. Malinauskas C. L. Matthews, ERDA-OR0 G. T. Mays H. E. McCoy T. W. P i c k e l H. Postma M. W. Rosenthal H. C. Savage C. D. S c o t t J. T. Shannon M. J. Skinner F. J. Smith J . W. S n i d e r I. Spiewak M. G. S t e w a r t D. B. Trauger D. Y. V a l e n t i n e J. W. Wachter J . S. Watson A. M. Weinberg, ORAU J. R. Weir M. E. Whatley J. C. White M. K. Wilkinson R. G. Wymer E. L. Youngblood C e n t r a l Research L i b r a r y ( 2 ) Document Reference S e c t i o n Laboratory Records (3) Laboratory Records (LRD-RC)
66
' I
CONSULTANTS AND SUBCONTRACTORS
83.
84. 85. 86. 87.
J. C. E. W. R.
C. Frye
H. A. K. B.
Ice Mason Davis Richards
EXTERNAL DISTRIBUTION
88. 89. 90-91. 92-195.
Research and T e c h n i c a l Support D i v i s i o n , ERDA, Oak Ridge Operations O f f i c e , P. 0. Box E , Oak Ridge, Tenn. 37830 D i r e c t o r , Reactor D i v i s i o n , ERDA, Oak Ridge O p e r a t i o n s O f f i c e , P. 0. Box E , Oak Ridge, Tenn. 37830 D i r e c t o r , ERDA D i v i s i o n of Reactor Research and Development, Washington, D.C. 20545 For d i s t r i b u t i o n as shown i n TID-4500 under UC-76, Molten S a l t Reactor Technology