This report was prepared as a n account of work sponsored Dy the United States Governnwit. Neither the United States nor the United States Atomic 4tomic Energy Comrnission, nor any of their employees, nor any of thelr contractors, implied, or subcontractors, or their employees. makes any warranty, express or Implied, assumes any legal liability or responsibility for t h e accuracy, r~mpleteness or usefulness of any information, apparatus, product or process disclosed, or represents that i t s use would not infringe privately owned rights. I
ORNL-TM-3140 C o n t r a c t N o . W-7405-eng-26 CKEMICAL TECHXOLOGY D I V I S I O N
E N G I N E E R I N G DEVELOPMENT S T U D I E S FOR MOLTEN-SALT BREEDER REACTOR P R O C E S S I N G NO. 5
L. E. M c N e e s e
OCTOBER 19711
OAK R I D G E NATIONAL LABORATORY Oak R i d g e , Tennessee o p e r a t e d by UNION C A R B I D E COFSORATION f o r the U . S . ATOMIC ENERGY COMMISSION
3 44.56 0 3 3 5 2 8 7 9
ii
Reports p r e v i o u s l y i s s u e d i n t h i s series are as f o l l o w s :
ORNL--)+235
OKNL-4364 ORNL- b 365 ORNL-4 366
ORNL-TM-3053
ORNL-TM-33.37
O , p i l ~ -TM- 3138
ORNL-TM-3139
P e r i o d ending December 1.967 l e r i o d end-ing March 1968 P e r i o d ending June 1968 Period ending September 1.968 P e r i o d ending December 1968 P e r i o d ending March 1.969 Period endi.ng June 1969 Period. ending September 1969
iii CONTENTS
Page
S U M I v I A R I E S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
v
1. INTRODUCTION
1
..........................
. . Equilibrium Data and Concentrations . . . . . . . . . . . . Removal of Rare Earths and Thorium from LiCl . . . . . . . . Conceptual Process Flowsheet and Mathematical Analysis . . . Calculated Rare-Earth Removal Times . . . . . . . . . . . . Effect of Rare-Earth Removal Time on Breeding Ratio . . . .
12
.
15
..
15
2. RARE-EARTH NENOVAL USING THE METAL-TRANSFER PROCESS
2.1
2.2
2.3
2.4 2.5
e
2.6 Miscellaneous Points Related to the Metal-Transfer Process 3. PROTACTINIUM ISOLATION USING FLUORINATION--REDUCTIVE EXTRACTION 3.1
4.
Proposed Flowsheet for Isolating Protactinium by Fluorination--Reductive Extraction
......... 3.2 Calculated System Performance . . . . . . . AXIAL DISPERSION IN OPEN BUBBLE COLUMNS .... 4.1 Experimental Technique and Equipment . . . .
...... ...... ...... ...... Experimentally Determined Dispersion Coefficients . . . I
4.2
.. ..
..
..
5. SEMICONTINUOUS REDUCTIVE EXTRACTIOI’T EXPERIMENTS IN A MILD-STEEL FACILITY..
......
*
5 . 1 Hydrodynamic Run HR-6
.
I
.............. ..................
...
,
5.2 Hydrodynamic Runs HR-7 and IIR-8;Tests for Obstructions < .
6. SIf4ULATION OF 6.2
THE: FLOW CONTROL SYSTEMS FOR THE REDUCTIVE EXTFiAC-
. . . . . . . . . . . . . . . . .. . . . . . . . Analog Simulation of Jackleg and Extraction Column ... Digital Simulation of Salt Flow Control System, Jackleg, and Extraction Column . . . . . . . . . . . . . . . . . . .
TIONFACILITY
6.1
7. CALIBRATION OF
ORIFICE--HEAD POT FLOWMETER WITH MOLTEN SALT
.......................... 7.1 Data from Steady-State low Experiments . . . . . . . . . . 7.2 Data from Transient Flow Experiments . . . . . . . . . . . ELECTROLYTIC CELL DEVELOPMENT: STATIC CELL EXPERIMmTS ... AND BISMUTH
8.
..
AN
I
2 2
5
5 9
12
17 22
26 27
30
30
32
36 37
46 56
56 58
65
iv
CONTENTS (Continued)
9.
ELECTROLYTIC CELL DEVELOPMENT :
9.2
9.3
F O I W T I O N OF FROZEN FILMS WITH
..................... Mathematical Analysis . . . . . . . . . . . . . . . . . Experimental Equipment . . . . . . . . . . . . . . . . . Expected Mode of Operation . . . . . . . . . . . . . . .
AQUEOUS ELECTROLYTES
9.1
Page
10. DEVELOPMENT OF A BISMUTH--bl’3bTEIV
SALT INTERFACE DETECTOR
...
10.1 Testing and Modification of Electronic Circuit P r i m to Installation
11.
1.2.
13.
...................... 10.2 Fabrication of S i g h t Tube . . . . . . . . . . . . . . . CONTIPJUOTJS SALT PUXIFICATION . . . . . . . . . . . . . . . . . MSRE DISTILLATION EXPERIMENT . . . . . . . . . . . . . . . . . RECOVERY OF 7Li FROM 7 Li--BISMUTH--RARE-EARTH DISTILLATION.
SOLUTIONS BY
........................ 13.1 Mathematical Analysis . . . . . . . . . . . . . . . . . 13.2 Cal-culated Results . . . . . . . . . . . . . . . . . . . 11.1. PEiEVENTiON OF AXIAL DISPERSION IN PACKED COLUMNS . . . . . . .
64
64
69 71
74
74 76 77 79
88 a8 93
97
15. HYDRODYNAMICS OF PACKED COLUMN OPERATION WITH HIGH-DENSITY FLTJIDS 102
15.1 15.2
15.3
. Pressure Drop Across the Column . . Dispersed-Phase Holdup . . . . . . . Correlation of Fl-ooding Rates . . . Experimental Technique and Results
.......... .......... .......... ..........
15.4 15.5 Prediction of Molten-Saltf3ismuth Flooding ’iiates in Packed
........................ ..........................
Columns
16. REFERENCES
103
104
112 113
116 118
v SUMVAR IES RARE-EARTH REMOVAL USING THE METAL-TRANSFER PROCESS
We have d e v i s e d a new p r o c e s s , c a l l e d t h e m e t a l - t r a n s f e r p r o c e s s , f o r removing r a r e - e a r t h f i s s i o n p r o d u c t s from t h e f u e l s a l t o f a s i n g l e I n t h e p r o c e s s , bismuth c o n t a i n i n g thorium and l i t h i u m i s
f l u i d MSBR.
used t o t r a n s f e r t h e r a r e - e a r t h f i s s i o n p r o d u c t s f r o m t h e r e a c t o r f u e l
s a l t t o an a c c e p t o r s a l t such as L i C 1 . Both t h o r i u m and rare e a r t h s t r a n s f e r t o t h e bismuth; however, because of f a v o r a b l e d i s t r i b u t i o n c o e f f i c i e n t s , o n l y a s m a l l f r a c t i o n of t h e thorium t r a n s f e r s w i t h t h e r a r e e a r t h s from t h e bismuth t o t h e LiCI.
The e f f e c t i v e t h o r i m a r e - e a r t h s e p a r a t i o n f a c t o r s f o r r a r e
4
e a r t h s f o r which d a t a e x i s t ( i . e . , Nd, L a , and Eu) r a n g e from about 1 0
a.
t o about 10
The f i n a l s t e p of t h e p r o c e s s i s removal of t h e r a r e
e a r t h s from t h e L i C l by e x t r a c t i o n w i t h bismuth c o n t a i n i n g 0.05 t o 0.5
mole f r a c t i o n l i t h i u m . cell.
The new p r o c e s s does n o t r e q u i r e a n e l e c t r o l y t i c
T h i s i s an important advantage o v e r t h e e a r l i e r r e d u c t i v e e x t r a c t i o n
p r o c e s s , which a l s o had t h e d i s a d v a n t a g e of r a r e - e a r t h - t h o r i u m s e p a r a t i o n f a c t o r s near u n i t y . PROTACTINIUM ISOLP~TION USING FLUORINATION--REDUCTIVE EXTRACTION W e have r e c e n t l y developed a new p r o c e s s f o r removing r a r e e a r t h s
from a s i n g l e - f l u i d . MSBR.
T h i s p r o c e s s does n o t r e q u i r e an e l e c t r o l y t i c
cell.,which h a s l e d us t o c o n s i d e r p r o t a c t i n i u m i s o l a t i o n methods t h a t do n o t r e q u i r e e l e c t r o l y z e r s .
One such method i s f l u o r i n a t i o n - - r e d u c -
t i v e e x t r a c t i o n , i n which most of t h e uranium would b e removed pri-or
t o i s o l a t i o n o f t h e p r o t a c t i n i u m by r e d u c t i v e e x t r a c t i o n .
C a l c u l a t e d r e s u l t s i n d i c a t e d t h a t an a t t r a c t i v e p r o c e s s i n g system based on f l u o r i n a t i o n - - r e d u c t i v e
e x t r a c t i o n c a n b e d e v i s e d and t h a t t h i s
system w i l l b e q u i t e s t a b l e w i t h r e s p e c t t o v a r i a t i o n s as l a r g e as 20%
vi
f o r most of t h e important o p e r a t i n g parameters such as flow r a t e s , r e d u c t a n t c o n c e n t r a t i o n s , and number o f e x t r a c t i o n s t a g e s .
AXIAL DISPERSION IN OPEN BUBBLE COLUMNS A x i a l d i s p e r s i o n c o e f f i c i e n t measurements and gas holdup measurements were c a r r i e d o u t i n a 2-in.-ID
open column.
Aqueous s o l u t i o n s
of g l y c e r o l and 2-butanol were used i n o r d e r t o determine t h e e f f e c t of l i q u i d - p h a s e v i s c o s i t y and s u r f a c e t e n s i o n on a x i a l d i s p e r s i o n .
At; low gas flow r a t e s , i n c r e a s i n g t h e Iiquid-phase v i s c o s i t y from 1 CP
t o 15 CP r e s u l t e d i n a 30% d e c r e a s e i n t h e d i s p e r s i o n c o e f f i c i e n t .
At
f i c i e n t was n o t e d ; however, o n l y a l i m i t e d r a n g e of gas flow r a t e s
bras
h i g h e r gas flow r a t e s , l i t t l e e f f e c t of v i s c o s i t y on d i s p e r s i o n coefexamined. SEMICONTINUOUS REDUCTIVE EXTRPlCTION EXPERIMENTS IN A MILD-STEEL FACILITY Hydrodynamic experiments u s i n g t h e Oe82-in.-diam column packed w i t h s o l i d c y l i n d e r s o f molybdenum were conti-nued.
Only l i m i t e d u s e f u l f l o o d i n g
d a t a were o b t a i n e d because o f d e p o s i t i o n of i r o n i n t h e column as well as
i n t h e bismuth e x i t l i n e from t h e column and t h e salt f e e d l i n e t o t h e c o l -
imn.
The d a t a o b t a i n e d are i n g e n e r a l agreement w i t h p r e d i c t i o n s based on
d a t a from a mercury-water
system.
The col.urnn and t h e a f f e c t e d l i n e s were r e p l a c e d .
The new column i s
shnilar t o t h e o r i g i n a l column e x c e p t t h a t it i s pwked w i t h
molybdenum Kaschig r i n g s .
L/4 -in.4 i . m
SIMTJLATION 08â&#x20AC;&#x2122; TIE FLOW CONTROL SYSTEMS
FOR THE REDUCTIVE EXTRACTION FACILITY
A s t u d y of t h e s a l t and bismuth flow c o n t r o l systems f o r the
Reductive KxtracLion F a c i l i t y w a s made i n o r d e r t o determine t h e b e s t niode of o p e r a t i o n of t h e e x i s t i n g equipment, t o e v a l u a t e p o s s i b l e
vii equi-pment changes, m d t o v e r i f y t h e v a l i d i t y of f l o o d i n g d.ata o b t a i n e d t o date.
One analog and t h r e e d i g T t a l s i m u l a t i o n s w e r e c a r r i e d ou-t.
Each s i m u l a t i o n r e p r e s e n t e d a d i f f e r e n t manner o f c o n t r o l l i n g flow through the column and allowed s e l e c t i o n o f optimum v a l u e s f o r system parameters
All o f t h e systems were found t o be s t a b l e and t o perform s a t i s f a c t o r i l y ; t h u s we b e l i e - v e t h a t t h e a c t u a l system w i l l f u n c t i o n p r o p e r l y . CALIBRFI'TION OF AN ORIFICE--HEAD POT FLOWMETER WITH MOLTEN SALT AND BISMIJTH
A d d i t i o n a l o r i f i c e c a l i b r a t i o n d a t a , b o t h s t e a d y - s t a t e and t r a n s i e n t , were o b t a i n e d .
S i n c e t h e s e d a t a s u g g e s t t h a t t h e o r i f i c e d r a i n chamber
may have been f l o o d e d a t t i m e s , p r o v i s i o n s were made f o r p r e s s u r i z i n g t h e gas volume above t h e f l u i d i n t h e o r i f i c e - - h e a d i n f u t u r e experiments,
p o t and d i s c h a r g e chamber
T h i s w i l l e n s u r e t h a t t h e o r i f i c e d r a i n chamber
does n o t f i l l w i t h l i q u i d . ELECTROLYTIC CELL DEVELOPMENT:
STATIC-CELL EXPERIMEJE'S
Two experiments r e l a t e d t o c e l l development were made i n a 4-in.-diam
quartz c e l l .
I n t h e f i r s t , c u r s e n t w a s passed between two molybdenum
e l e c t r o d e s t o d e t e r m i n e whether a d a r k m a t e r i a l , observed i n t h e s a l t i n p r e v i o u s t e s t s , would b e formed.
Although t h e p r e s e n c e of a d a r k material
w a s n o t e d , w e were not a b l e t o i d e n t i f y t h e mechanism f o r i t s f o r m a t i o n . I n t h e second experiment, we t e s t e d a porous carbon anode having a
much h i g h e r gas p e r m e a b i l i t y t h a n t h a t of a g r a p h i t e anode which had p r e v i o u s l y been observed t o p o l a r i z e , d e n s i t i e s were observed.
A s i n t h e e a r l i e r t e s t , low c u r r e n t
viii
ELECTXOLYTIC CELL DEVETJOPMENT : FORMLlTlON OF ~'KO%F'I\T FILMS WITH AQUHOUS ELECTTIOTJYTES
Formation o f f r o z e n s a l t f i l m s on s t r u c t u r a l . s u r f a c e s exposed t o t h e iiiolten-sa1.t e l e c t r o l y t e i n e l e c t r o l y t i c eel-1.s i s b e i n g c o n s i d e r e d as a means f o r p r o t e c t i n g t h e s e s u r f a c e s from corrosi.on by BiF c e l l anode.
3
produced al; the
A s t u d y of f r o z e n f i l m formation under c o n d i t i o n s s i - m i l a r t o
t h o s e expected i n a c e l l i s i n p r o g r e s s .
P a r t of t h e work wi.1.l b e c a r r i e d
o u t u s i n g an aqueous e l e c t r o l y t e i n ord-er t o avoid problems a s s o c i a t e d wi.th molten salt--bismut,'n
systems.
Equipment has ' o e m i n s t a 1 l . d f o r s t u d y i n g
t h e formation o f i c e C i l m s on s u r f a c e s of a simulated e l e c t r o l y t i c c e l l - t h a t u s e s an aqueous s o l u t i o n , r a t h e r t h a n molten s a l t , f o r t h e e l e c t r o l y t e . A l t e r n a t i n g c u r r e n t wi1.l b e used t o minimize t h e e f f e c t s of e l e c t r o d e r e a c t i o n s and mass t r a n s f e r . DEVELOPMENT OF A BISMlJTH-MOLTEN-SALT INTERFACE DETECT013 An i n t e r f a c e d e t e c t o r based on t h e p r i n c i p l e of eddy c u r r e n t genera t i o n i n l i q u i d metals i s b e i n g developed.
It i s d e s i r e d t,hat a , l l s u r f a c e s
i n c o n t a c t w i t h bismuth be made of a r e f r a c t o r y m e t a l such as molybdenum, which has a r e l a t i v e l y low e l e c t , s i c a l p e r m e a b i l i t y . I n i t i a l t e s t i n g of t h e e l e c t r o n i c c i r c u i t p r i o r t o i n s t a l l a t i o n e s t a b l i s h e d t h e need f o r s e v e r a l m o d i f i c a t i o n s .
P r e l i m i n a r y t e s t s of
t h e system a t t e m p e r a t u r e s above room t e m p e r a t w e
a r e i n progress.
CONTINUOUS SALT PURIFlCATlON A f a c i l i t y has been designed f o r t h e development of continuous
methods f o r removing contaminants from molten s a l t s .
s i s t s of a l - l / b - i n . - d i m ,
Bl-in.-long
The system con-
column packed w i t h l / b - i n .
Raschig r i n g s , f e e d and r e c e i v e r t a n k s , a s a l t f i l t e r , a flowing stream s a l t sampler, and t h e n e c e s s a r y flow, t e m p e r a t u r e ,
and p r e s s u r e i n s t r u -
ix
mentation,
I n - l i n e i n s t r u m e n t s a r e provided f o r c o n t i n u o u s l y measuring
t h e water and EIF c o n t e n t s of t h e column e x i t g a s stream.
Systems have
a l s o been designed t o p r o v i d e p u r i f i e d hydrogen, a r g o n , and HF g a s . PdSRE DISTILLATION EXPERIMENT
Analyses have been o b t a i n e d f o r L i , B e , Z r , 9 5 Z r 7 144C!e,
155Eu, ”Y,
90Sr, 89Sr, and 137Cs i n t h e 11 condensate samples t a k e n
d u r i n g t h e MSRE D i s t i l l a t i o n Experiment. ities
Effective relative volatil-
f o r each o f t h e s e materials were tal-culated w i t h r e s p e c t t o L i F
d u r i n g the c o u r s e o f t h e experiment.
The c a l c u l a t e d v a l u e s f o r Be, Z r ,
and 9 5 Z r are i n agreement w i t h p r e v i o u s l y r e p o r t e d v a l u e s ; however
,
v a l u e s c a l c u l a t e d €or t h e r a r e e a r t h s a r e s i g n i f i c a n t l y h i g h e r t h a n v a l u e s measured i n an e q u i l i b r i u m s t i l l . RECOVERY OF
7Li FROM “Lj--BISI’.IIJTR--RARE-EAETH
SOLUTIONS BY DISTILLATION
Removal o f d i v a l e n t l a n t h a n i d e s from t h e L i C l stream i n t h e metalt r a n s f e r p r o c e s s produces a bismuth s t r e a m t h a t c o n t a i n s l a n t h a n i d e s and has a h i g h concentrati.on o f 7 L i ( 5 to 50 a t . % ) .
Because 7 L j i-s
e x p e n s i v e , i t s r e c o v e r y may be economical.
The l o w vapor p r e s s u r e s of t h e l a n t h a n i d e metals r e l a t i v e t o l i t h i u m and bismuth s u g g e s t t h a t d i s t i l l a t i o n might be used e f f e c t i v e l y to r e c o v e r
b o t h t h e l i t h i u m and bismuth.
However, l i t h i u m and bimsuth form a n i i i t e r -
m e t a l l i c compound ( L i - B i ) having a high m e l t i n g p o i n t (lL)-+5;°C) , which may
3
l i m i t t h e f r a c t i o n of t h e l i t h i u m t h a t c o u l d b e r e c o v e r e d a t s t i l l - p o l t e m p e r a t u r e s o f 800 t o 900°C.
The f r a c t i o n a l r e c o v e r y of Lithium w a s
c a l c u l a t e d f o r a r a n g e of c o n d i t i o n s t h a t vould a l l o w r e a s o n a b l y h i g h recovery of t h e lithium.
X
PREVENTION OF AXIAL DISPERSION I N PACKED COLUMNS Devices t h a t w i l l reduce a x i a l d i s p e r s i o n i n packed columns Lo acceptable l e v e l s a r e being evaluated.
Two d i s p e r s i o n p r e v e n t e r s irere
t e s t e d d u r i n g t h e c o u n t e r c u r r e n t flow o f mercury and water i n a. 2-in.d i m colwnn packed w i t h 3/8-in.
Xaschig r i n g s .
The p r e v e n t e r s c o n s i s t
o f (1)a seal. formed by a r e g i o n i n which t h e metal. phase a c c i u m l a t e s
and p r e v e n t s flow o f t h e less-dense phase ( s a l t o r w a t e r ) , and ( 2 ) r e s t r i c t i o n s through which t h e s a l t flows a t an i n c r e a s e d v e l o c i t y .
The f r a c t i o n of t h e l e s s - d e n s e phase t h a t i s r e c y c l e d through a d - i s p e r s i o n p r e v e n t e r depends mainly on ,thewater flow r a t e pe-e. r e s t r t c -
t i o n and t h e diameter of t h e r e s t r i c t i o n .
It a p p e a r s that, d e v i c e s o f
t h i s t y p e w i l l reduce a x i a l d i s p e r s i o n t o d e s i r e d l e v e l s ; however, t h e d e v i c e s t e s t e d t o d a t e have reduced the column throughput a t flooding. HYDROUYNAMICS OF PACKED COLWIJY OPERnTION WITH BIGR-DENSITY FLUIJIS Measurements were made of p r e s s u r e d r o p , holdup, and f l o o d i n g d u r i n g t h e c o u n t e r c u r r e n t flow of mercury and water i n columns packed w i t h
i n . s o l i d c y l i n d e r s , 3/8-in.
Raschig r i n g s , and 1 / 2 - i n .
114-
Xaschig r i n g s .
â&#x20AC;&#x2DC;The d a t a on holdup and f l o o d i n g can be c o r r e l a t e d i n terms of a c o n s t a n t s u p e r f i c i a l s l i p v e l o c i t y , which i s a f u n c t i o n o f packing s i z e o n l y .
simple r e l s t i o n has not been found for c o r r e l a t i n g t h e p r e s s u r e drop
data.
An e x p r e s s i o n based on t h e mercury-water d a t a i s g i v e n f o r pre-
d i c t i n g f l o o d i n g and dispersed-phase holdup i n packed columns through which s a l t and bismuth a r e i n c o u n t e r c i r r r e n t flow.
A
1 1. II!JTRODLJCTION
A molten-salt breeder reactor (MSBR) will be fueled with a molten
fluoride mixture that will circulate through the blanket and core regions
of the reactor and through the primary heat exchangers. We are developing
processing methods for use in a close-coupled facility for removing fission
products, corrosion products, and fissile materials from the molten fluoride
mixt w e
Several operations associated with MSBR processing are under study.
The remaining parts of this report describe:
(1)a newly devised process
(called the metal-transfer process) for removing rare earths from an MSBX,
(2) 2 protactinium isolation process based on fluorination for uranium
removal, followed by reductive extraction, ( 3 ) measurements of axial dis-
persion coefficients in open bubble columns, ( h ) experiments carried out
in a mild-steel reductive extraction facility to study the hydrodynamics
of packed column operation during countercurrent flow oâ&#x201A;Ź molten salt and
bismuth, (5) simulation of the flow control. systems for the reductive
extraction facility, ( 6 ) calibration of an orifice--head pot flowmeter
with molten salt and bismuth, ( 7 ) experiments related to the development or" electrolytic cells f o r use with molten salt and bismuth, (8) design
and installation of a -facility for studying the formation of frozen films in electrolytic cells, using aqueous solutions to simulate molten salt,
( 9 ) development of an induction-type bismuth-salt interface detector,
(LO) design and insta1:lation of a facility for developing continuous
methods for the purification of molten salt, (11)calculation o f
effective relative volatilities for various materials present in the
MSRE Distillation Experiment, (12) calculations concerning the recovery
of 7Li from 7Li--Bi--rare-earth solutjons by low-pressure di stillation,
and (13) measurement of axial dispersion coefficients in packed columns
in which immiscible fluids having large density differences are in countcr-
current flow, and (14) experiments on the hydrodynamics of packed column
operation with liquids having high densities and a large density difference. This wark was carried out in the Chemical Technology Division during the
period October-December 1969.
2
2
e
RmE-E4RTI-I REMOVAL U S I N G THJ3 METAL-TRANSFER PROCESS
L. E . McNeese We have d e v i s e d a new p r o c e s s , c a l l e d t h e m e t a l - t r a n s f e r p r o c e s s ,
f o r removing r a r e - e a r t h f i s s i o n p r o d u c t s from t h e f u e l s a l t of a s i n g l e f l u i d MSBK.
In t h i s p r o c e s s , bismuth c o n t a i n i n g thorium and l i t h i u m i s
uscd t o t r a n s f e r t h e r a r e - e a r t h f i s s i o n p r o d u c t s from t h e r e a c t o r f u e l s a l i t o an a c c e p t o r s a l t such as L i C l .
Both thorium and r a r e e a r t h s t r a n s f e r t o t h e bismuth; however, be-
cause o f f a v o r a b l e d i s t x - i b u t i o n c o e f f i c i e n t s , o n l y a s m a l l f r a c t i o n of t h e thorium t r a n s f e r s w i t h t h e r a r e eizrths from t h e bismuth t o t h e L i C 1 . The e f f e c t i i - v e t h o r i u m - r a r e - e a r t h
separatlon factors for r a r e earths for
4
a.
which d a t a e x i s t ( i . e . , Nd, L a , and Eu) range from about 10 t o about 1 0
'The f i n a l s t e p o f the p r o c e s s i s removal o f t h e r a r e e a r t h s from t h e LiCl
by e x t r a c t i o n w i t h bismuth c o n t a i n i n g 0.05 t o 0.50 mole f r a c t i o n I.ithium, The new p r o c e s s does n o t r e q u i r e an e l e c t r o l y t i c cell..
T h i s i s an impor-
t a n t advantage over t h e e a r l i e r r e d u c t i v e e x t r a c t i o n p r o c e s s , which al.so had t h e d i s a d v a n t a g e of rare-earth--thorium 2.1
separation factors near unity.
E q u i l i b r i u m Data arrd C o n c e n t r a t i o n s
F e r r i s and Smith
1
have measured t h e d i s t r i b u t i o n of T1h and t h e r a r e
e a r t h s L a , Nd, and Eu between L i C l and blsmuth c o n t a i n i n g a r e d u c t a n t and have summarized t h e i r d a t a as f o l l o w s :
3 where
D = d i s t r i b u t i o n r a t i o for material A , A x*(si)/xA(Licl)~ = mole f r a c t i o n of A i n B i y 'A(Si) I
= mole fraction of A i n L i C L , 'Ii(Lic1) c1 = lithium concentration i n B i , at. Li
%.
The data for a l l materials except europium were o b t a i n e d a t 640OC; t h e europium data were o b t a i n e d a t
630째C.
Data for t h e d i s t r i b u t i o n o f t h e
makerials b e i n g c o n s i d e r e d between 72-16-12 mole
% LiF-BeF2-ThF4
and
bismuth coiitrzining a r e d u c t a n t have been summarized by F e r r i s as:
log 1) = n l o g DLi A
I
f
l o g KA,
where
DA = d i s t r i b u t i o n r a t i o o f material A , n = v a l e n e e of A i n s a l t , I
log KA = m o d i f i e d e q u i l i b r i u m c o n s t a n t . The v a r i a t i o n of l o g K
1
A w i t h temperature is:
log
1
r(La
= -2.005
+ 7628/11,
where T = t e m p e r a t u r e , OK, and T h , La, and Eu have v a l e n c e s of
2 i n t h e salt respectively,
4,
3, and
For Nd, t h e measured value of t h e Md-Th
s e p a r a t i o n f a c t o r ( 3 . 0 ) was t a k e n a t Th s a t u r a t i o n a t 600째C, and t h e
same t e m p e r a t u r e dependence w a s assumed f o r l o g
The d e r i v e d e x p r e s s i o n i s , t h e n : 1
Log R Nd
-1.942
-t-
7628/T,
and N d i s assumed t o b e t r i v a l e n t i n t h e s a l t .
I
as t h a t f o r log K, La .
h Using t h e s e d a t a , t h e c a l c u l a t e d e q u i l i b r i u m c o n c e n t r a t i o n s i n Bi
and L i C l a t
640"~are
as shown i n Table 1, where t h e r a r e - e a r t h con-
c e n t r a t i o n s in t h e f u e l s a l t a r e t h o s e r e s u l t i n g from a 50-day removal
t i m e f o r t h e rare e a r t h s .
The r e d u c t a n t c o n c e n t r a t i o n i n t h e B i w a s
chosen such t h a t t h e T h c o n c e n t r a t i o n w a s approximately 95% of t h e Th solubility i n B i at
6hoOc.
No c o r r e c t i o n was made i n t h e d a t a f o r
europium t o account f o r t h e f a c t t h a t t h e y a r e b e i n g used a t 640째C ( a l t h o u g h t h e y were o b t a i n e d a t 6 3 0 " ~ ) . A l l t h e c o n c e n t r a t i o n s are
g i v e n i n mole f r a c t i o n s ,
Table 1. E q u i l i b r i u m C o n c e n t r a t i o n s i n Fuel S a l t , Bismuth, and Li.CI. a t 61-cO"C Fuel S a l t = 0.72
JT' iF
XhF* =
%hF4 'LaF
'NdF %uF
Bismuth
L' i = 0.00201
0.16
yrh =
= 0.12
3
-6
=
10.8 x 10
=
26.2 x 1 0
-6
3 = 0.287 x 2
LiCl
'IJa
'Nd
0.0025
-6
= 0.524 x 10 =
1.47 x IO-6
= 0.664 x
= 0.331 x 1 0-7
'ThC14
'Lac]. 'NdC I.
3 3
'EUC 1
= 0.607 x lom6
-6
=
1.02 x 10
=
8 . 2 2 x io
-6
T'he d a t a i n t h e t a b l e show t h a t t h e rare e a r t h s a r e p r e s e n t i n t h e LI.Cl
a t low c o n c e n t r a t i o n s and a r e a s s o c i a t e d w i t h o n l y a s m a l l amount of thorium.
C l e a r l y , i f a p r a c t i c a l means i s a v a i l a b l e for removing t h e
r a r e e a r t h s and thorium :From t h e L i C l i n t h e r e l - a t i v e c o n c e n t r a t i o n r a t i o s shown, one w i l l have achieved t h e d e s i r e d g o a l of r e m w i n g t h e r a r e e a r t h s w i t h an a c c e p t a b l e thorium d i s c a r d r a t e .
5 2-2 Removal of Rare E a r t h s and Thorium from L i C l The minimum r a t e a t which t h e L i C l s o l u t i o n must b e processed f o r removal of t h e r a r e e a r t h s i s g i v e n by t h e r a t i o of t h e p r o d u c t i o n r a t e of a g i v e n r a r e e a r t h t o i t s e q u i l i b r i u m c o n c e n t r a t i o n i n t h e L i C 1 .
These data, which are shown below, i n d i c a t e t h a t t h e minimum process-
6 g-moles
i n g r a t e , as s e t by Nd, i s 1 . 2 9 x 1 0
i s e q u i v a l e n t t o 1320 f t
o f L i C l p e r day.
3 o f L i C l p e r day, which a p p e a r s t o be a
This
h i g h e r p r o c e s s i n g r a t e t h a n would be p r a c t i c a l f o r low-pressure d i s -
ti l l a t i o n . Rare Ealpth
Prod-uct i o n
Rate
(moles/day)
Concentrat i o n in LiCl (mole f r a c t i o n )
0,607 x low6
Minimum Processing R a te (moles/day)
0.889 x 106
La
0.54
Nd
1.31
1.02 x
1.29 x io
Eu
0 0144
8.22 x
1.75
6
lo3
F u r t h e r c o n s i d e r a t i o n s u g g e s t s t h a t c o n t a c t of t h e L i C l w i t h a small volume of bismuth c o n t a i n i n g a r e l a t i v e l y h i g h c o n c e n t r a t i o n o f l i t h i u m
( 5 t o 50 a t . % ) would p r o v i d e t h e d e s i r e d removal of t h e rare e a r t h s
from t h e L i C l as w e l l as t h e removal o f t h e thorium a s s o c i a t e d w i t h t h e
rare e a r t h s , 2.3
T h i s i s t h e method s e l e c t e d f o r a d d i t i o n a l e v a l u a t i o n .
Conceptual P r o c e s s Flowsheet and Mathematical A n a l y s i s
The c o n c e p t u a l p r o c e s s f l o w s h e e t c o n s i s t s of t h r e e c o n t a c t o r s through which t h e p r o c e s s f l u i d s a r e c i r c u l a t e d , as shown i n F i g . 1. F u e l s a l t
from t h e Pa i s o l a t i o n system, which i s f r e e o f U and Pa. b u t which c o n t a i n s
t h e rare e a r t h s a t t h e r e a c t o r c o n c e n t r a t i o n , i s c o u n t e r c u r r e n t l y c o n t a c t e d
w i t h B i c o n t a i n i n g approximately 0.002 mole f r a c t i o n L i i n c o n t a c t o r 1. The r a r e e a r t h s t r a n s f e r , i n p a r t , t o t h e downflowing m e t a l s t r e a m and
a r e c a r r i e d i n t o c o n t a c t o r 2 by t h e bismuth stream.
I n contactor 2, t h e
bismuth s t r e a m i s c o n t a c t e d c o u n t e r c u r r e n t l y w i t h LiCl, and f r a c t i o n s of
6
TQ React o r
XM2
i
FRS,XSI Fuel S a l t From Pa isolation
Li C
Li-Bi
Li-Bi FS M XM6
+ Rare
1- T h
Earths
FM,XMG
r i g . 1. Sletal-'i'ransfer* Process f o r Removinc Rare E a r t i i s from a Sinele-: 1 u i d I\ISBR.
7 the r a r e earths transfer t o t h e LiC1.
The r e s u l t i n g LiCl s t r e a m i s
f i n a l l y c o n t a c t e d w i t h Bi c o n t a i n i n g a h i g h c o n c e n t r a t i o n o f L i ( 0 . 0 5
t o 0.5 mole f r a c t i o n ) i n c o n t a c t o r 3, where most o f t h e r a r e e a r t h s and thorium t r a n s f e r from t h e L i C l t o t h e B i stream.
A small stream of B i
c o n t a i n i n g Li i s f e d t o t h e c i r c u l a t i n g B i stream i n c o n t a c t o r 3, and an equal volume o f bismuth i s withdrawn.
From material b a l a n c e and e q u i l i b r i u m c o n s i d e r a t i o n s , t h e f o l l o w i n g r e l a t i o n s f o r a g i v e n t r a n s f e r r i n g m a t e r i a l can be w r i t t e n f o r t h e t h r e e countercurrent contactors.
The nomenclature o f Fig. 1 i s u s e d .
= KC
xs3 - xs4
-
ASNSfl - AS
= KS
From m a t e r i a l b a l a n c e c o n s i d e r a t i o n s
xsi - x w XMl
-
xs3
- xs4
XM6
-
=
L/FRS
XM2 = L/FMl = LFCS
XM5 = L/FSM
X M ~=
L/FM,
(3)
8 where X S 1 = c o n c e n t r a t i o n of t r a n s f e r r i n g material i n f u e l salt e n t e r i n g
c o n t a c t o r 1, mole f r a c t i o n , XS2 = c o n c e n t r a t i o n of t r a n s f e r r i n g material. i n f u e l sa1.t l e a v i n g c o n t a c t o r 1, mole f r a c t i o n ,
xT4l
:= c 0 n c e n t r a t i . m of t r a n s f e r y i n g
material 'I.n .Ai l e a v i n g con1;actor
1, mole frac-Lion,
XM2 = c o n c e n t r a t i o n of t r a n s f e r r i n g material i n B i l e a v i n g c o n t a c t o r 2 , mole f r a c t i o n ,
XS3 = c o n c z n . t r a t i o a o f t r a n s f e r r i n g m a t e r i a l i n LiCl l e a v i n g c o n t a c t o r 2 , mole f r a c t t o n ,
X S ~= c o n c e n t r a t i o n of t r a n s f e r r i n g material i n L i C l e n t e r i n g c o n t a c t o r 2 , mole f r a c t i o n ,
XM5
r=
c o n c e n t r a t i o n of t r a n s f e r r i n g material i n Bi e n t e r i n g c o n t a c t o r
3, mole f r a c t i o n ,
XM6 =: e o n c e n t r a t i o n
of t r a n s f e r r i n g m a t e r i a l in
3, mole f r a c t i o n ,
Bi. l e a v i n g c o n t a c t o r
DF = d - i s t r i b u t i o n r a t i o between f u e l s a l t and B i i n c o n t a c t o r 1, DC = d i s t r i b u t i o n r a t i o between L i C l and B i i n c o n t a c t o r 2 , DS = d i s t r . i . b u t i o n r a t i o between L i C l and B i i n c o n t a c t o r 3, A =
FMl.
*
FMI
*
J?
AC =
DE'
FRS
DC
FCS
FRS = f i e 1 s a l t flow r a t e , moles/unit t i m e ,
FM1 = metal flow r a t e in c o n t a c t o m 1 and 2 , moles/u.nit t i m e ,
FCS = L i C l s o l u t i o n flow r a t e i n c o n t a c t o r s 2 a.nd 3 , m o l e s / u n i - t t i m e , FM = m e t a l a d d i t i o n and withdrawal r a t e , moles/uni't t i m e , = nunher of e q u i l i b r i u m s t a g e s i.n c o n t a c t o r I ,
N
U N_ = number of equi.li.briurn s t a g e s i n c o n t a c t o r 2 , J_I
NS = number o f e q u i l i b r i u m s t a g e s i n c o n t a c t o r 3 ,
9 KF = c o n s t a n t , d e f i n e d above,
KC = c o n s t a n t , d e f i n e d above, KS = c o n s t a n t , d e f i n e d above,
L = p r o d u c t i o n r a t e o r l o s s r a t e o f t r a n s f e r r i n g material.
The d i s t r i b u t i o n r a t i o s a r e assumed t o be c o n s t a n t s i n c e t h e r e w i l l be
a very s m a l l change i n r e d u c t a n t c o n c e n t r a t i o n in t h e c o n t a c t o r s ; hence
t h e A ' s and K's d.efined above a r e c o n s t a n t .
The e i g h t r e l a t i o n s l i s t e d above d e f i n e t h e s t a t e o f t h e system
and can be s o l v e d simultaneou.sly f o r t h e removal e f f i c i e n c y f o r a g i v e n m a t m i a l i n e o n t a c t o r 1 as:
AC 1 AC 1 (71 -1) a +(- 1) + KF AF LC *F KS AF%
-1= - 1
E
where
(g
4 ) ,
(9)
E = f r a c t i o n o f rcaterial removed from f u e l s a l t i n c o n t a c t o r 1.
The removal. t i m e f o r a g i v e n t r a n s f e r r i n g m a t e r i a l i s , t h e n :
Where T
= removal times, d a y s ,
V /FRS = p r o c e s s i n g c y c l e t i m e , d a y s .
R
'2-4
C a l c u l a t e d Rare-Earth Removal Times
There a p p e a r s t o be g r e a t l a t i t u d e i n choosing o p e r a t i n g c o n d i t i o n s t h a t w i l l y i e l d a d e s i r e d r a r e - e a r t h removal t i m e .
Conditions t h a t g i v e
r a r e - e a r t h removal times e q u a l to, o r somevhat s h o r t e r t h a n , removal t i m e s p r e s e n t l y assumed i n r e a c t o r e v a l u a t i o n c a l c u l a t i o n s w i l l be g i v e n f i r s t .
Those c a l c u l a t i o n s assume a 50-day removal time for a11 r a r e e a r t h s except europium which i s removed on a 225-day c y c l e . Tile table below shows t h e removal t i m e s ( i n days) â&#x201A;Źor t h e f o l l o w i n g c o n d i t i o n s : FRS = 2.94 gpin
10 (3-day p r o c e s s i n g c y c l e f o r r e a c t o r ) ; FM1 = FSM = 8.35 gpm (Bi r a t e s i n c o n t a c t o r s ) ; FCS = 11.2 gpm ( L i C 1 f l o w r a t e ) ; FM = 22.7 I _ i t e r s / d a y ( L l i f e e d and withdrawal r a t e ) ; L i e o n c e n t r a t i o n i n S i i n c o n t a c t o r s 1 and 2 = 0.00201..mole f r a c t i o n ; Li c o n c e n t r a t i o n i n Bi i n c o n t a c t o r 3 = 0.05
mole f r a c t i o n ; and number o f s t a g e s i n c o n t a c t o r 3 = 1.
Rare Earth
No. of E q u i l i b r i i m Sta.ges 1. 2 3
La
$2 * 1.
Nd
58.0
Eu
222.4
382 42.7
34.0
4
C o n t a c t o r s l and 2
32.1
36.5
38.4
219.4.
j.n
219.4
5
31.,0
35.4
6
30.2
34.8
21.9.1~ 219.1~ 219.4
It is a p p a r e n t t h a t , w i t h two o r t h r e e s t a g e s i n c o n t a c t o r s 1 and 2 and w i t h volume-Lric flow r a t i o s near u n i t y , one can o'otain s a t i s f a c t o r y
removal t i m e s w i t h r e l a t i v e l y s m a l l p r o c e s s i n g streams, U U ~ S were
6 in.
If packed c o l -
used as t h e c o n t a c t o r s , t h e di.ameters would be approximately
S i n c e t h e number of s t a g e s needed i s low, t h e u s e of m i x e r - s e t t l e r s
similar t o t h o s e b e i n g used a t Argonne N a t i o n a l Laboratory should n o t be d i s m i s s e d , p a r t i c u l a r l y f o r experiments aimed a t demonstrating t h e p r o c e s s concept. The r a t e a t which 7Li i s removed from t h e system i n t h e withdrawal which thorium i.s removed. is
stream i s 52.4 g-moles/day.
The r a t e
l e s s t h a n 0 069 g-mole/day.
If t h e B i withdrawal stream were hydro-
3.t
f 1uori.nat ed o r h y d r o c h l o r i n a t e d i n t h e p r e s e n c e of a s u i t a b l e waste s a l t
i n o r d e r t o r e c o v e r o n l y t h e Bi, t h e c o s t due t o loss of 7 L i would amount
t o 0.0018 m l l / k W h r .
It i s a p p a r e n t t h a t one can o b t a i n removal times much s h o r t e r t h a n t h o s e d i s c u s s e d i n t h e p r e v i o u s s e c t i o n by i n c r e a s i n g t h e bismuth and L i C l flow r a t e s and hence t h e s i z e o f t h e processing p l a n t .
-the r e a c t o r p r o c e s s i n g c y c l e time i s 3 days (2.94 gpm).
I n each c a s e ,
The removal
times r e s u l t i n g from i n c r e a s i n g t h e bismuth and L i C l flow r a t e s t o t e n
tirnes t h e i r p r e v i o u s v a l u e s are g i v e n i n 'Tab12 2 f o r t h e f o l l o w i n g conditions :
11 FRS =
FMl
=
2.94 gpm (3-day c y c l e ) , FSM = 83.5 gpm ( B i f l o w r a t e i n c o n t a c t o r s ) ,
FCS = 112 gpm ( L i C 1 flow r a t e ) , FTyl =
16 f t '3/day (Bi-Li f e e d and withdrawal r a t e ) ,
L i c o n c e n t r a t i o n i n c o n t a c t o r s 1 and 2 = 0.00201 mole f r a c t i o n , number of s t a g e s i n e o n t a c t o r 3 = 1. Ta.ble 2.
V a r i a t i o n of Rare-Earth Removal T i m e ( i n d a y s ) w i t h Lithium C o n c e n t r a t i o n i n C o n t a c t o r 3 and Number of S t a g e s i n C o n t a c t o r s 1 and 2a
Ear e Earth
1
No. of Stages i n C o n t a c t o r s 1 and 2 2 3 4 5
6
L i C o n c e n t r a t i o n i n C o n t a c t o r 3 = 0.05 male f r a c t i o n La Nd
Eu
7.75 8.36 16.6
5.26 5.85
14.7
4.43
5.05
1-4 L e
4.03 4.67
13.8
3.79
4.46
13.7
3.54 4.34 13.6
L i C o n c e n t r a t i o n i n Contactor 3 = 0.20 mole f r a c t i o n La
7.59
5 .io
Ell
8.71
6.81
8.22
Nd
5-71
4.28 4.91 6.23
3.87
4.54 5.98
3.63 4.33
5.86
i?
4.20
5 .'Y9
L i C o n c e n t r a t i o n i n C o n t a c t o r 3 = 0.50 mole f r a c t i o n
La
7.59
Eu
8.27
Nd
8.32
5.10 5 -71 6.37
I+. 27
4.91 5.79
3.87 4.53 5.54
3.63
4.33
5.42
3.48
4.20
5.35
d
The bismuth and L i C l f l o w rates i n each e a s e a r e assumed t o b e t e n t i m e s t h e v a l u e s used t o produce t h e d a t a shown i n t h e t a b l e on p . 1 0 .
Thus, r a r e - e a r t h removal t i m e s of 3.5 t o about 1.5 days c a n b e obt a i n e d , depending on t h e c o n c e n t r a t i o n of l i t h i u m used i n t h e final contactor.
It s h o d d be noted t h a t one cannot a f f o r d t o Lose t h e L i b y
12 a h y d r o f l u o r i n a t i o n o p e r a t i o n as S e f o r e , but would have t o r e c o v e r most A possib1.e r e c o v e r y method c o n s i s t s of d i s t i l l i n g t h e
o f t h e L i and B i .
stream a t t h e r a t e of about
Li-Bi
1.6 i?t3 /day.
The s t i l l would o p e r a t e
st, a t e m p e r a t u r e of about 800Oc and a p r e s s u r e of approximately 0 . 1 mm Hg,
and t h e r a r e e a r t h s would b e removed i.n a s t i l l - b o t * t o m s volzime of about
20 l i t e r s / d a y .
( T h e bismuth c o u l d be r e c o v e r e d from t h t s volume.)
The
thorium would. be discard-ed a t t h e r a t e of about 1.4 g-moles/day.
2.5
E f f e c t o f Xaye-Earth Removal T i m e on Breeding R a t i o
T h e e f f e c t of r a r e - e a r t h removal. t h e on b r e e d i n g r a t i o has been
c a l c u l a t e d by B e l l 2 and i s shown i n Fig. 2.
The cha.nges are gliven w i t h
r e s p e c t t o t h e base c a s e , i n which a removal time of 50 days i s used f o r a l l t h e r a r e e a r t h s except europi.iim. time. )
(Europtim.has a 225-day removal
It s h o u l d be noted t h a t r a r e - e a r t h removal t h e s of 5 d a y s , 3 days ,
or 7 days would r e s u l t i n i n c r e a s e s i n t h e b r e e d i n g r a t i o of 0.0126, 0 , 0 1 4 , and 0.0115 r e s p e c t i v e l y
2.6
.
Miscellaneous P o i n t s Related t o t h e Metal-Transfer P r o c e s s
T h e f o l l o w i n g o b s e r v a t i o n s r e l a t i v e t o t h e proposed p r o c e s s have
been n o t e d . 1..
According t o experimental d a t a and c a l c u l a t i . o n s made by F e r r i s L i B r would probably b e a t least as s a t i s f a c t o r y as L i C l as t h e a c c e p t o r saLt.
respec-ts
I
T h i s f i n d i n g may b e important i n two
It o f f e r s a n o t h e r material w i t h which t o work;
perhaps more i m p o r t a n t l y , however, t h e use of L i B r would
not i n t r o d u c e c h l o r i d e i n t o the i-eactor b u t , i n s t e a d , would siaiply i n c r e a s e t h e c o n c e n t r a t i o n o f bromide a.l.:ready i n t h e system.
2.
'].'hefeed s t r e a m e x i t i n g from {;he Pa i s o l a t i o n system w i l l
have t o b e e s s e n t i a l l y free of U and P a , s i n c e t h e s e mate-
r i a l s would likely nccuniulate i.n .Lhe 9f c i r c u l a t i . n g i-n
0 .Oi 6
ORNL DWG. 69-12121 RI
I
I
1
I
r
I
I
l
I
I
1
1
I
1
I
l
l
I
1
1
I
I
I
I
I
I
I
1
I
I
L
0.014
-
:!012
U
0.0IO
a
z 0.008
0 W
m Z -
0006 3.004
W
Cn 0002
a w
LL
u z -
o
-0.002
pig.
- 9
2.
i
1
I
E f f e c t of R a r e E e r t h Kernoval T i m e on BreediRg R a t i c .
14 c o n t a c t o r s 1 and 2 and t h u s consume t h e L i and Th r e d u c t a n t and p r e v e n t t h e t r a n s f e r of r a r e e a r t h s .
It w i l l probably
be n e c e s s a r y i o t r e a t t h e s a l t stream l e a v i n g t h e Pa i s o l a t i o n system for f u r t h e r removal of U and Pa.
3.
S i n c e v i r t u a l l y a l l of t h e p a r t i t i o n i n g of t h e rare eai-ths from Th i s a. remit o f t h e B i - L i C l
e q u i l i b r i u m , one does
n o t have t o m a i n t a i n t h e p r e s e n t t r e e f l u o r i d e c o n t e n t of
t h e f u e l s a l t and, hence, c o u l d a l t e r t h e r e a c t o r f u e l s a l t composition.
4.
While t h e r e
j
s no chemical method f o r t r a n s f e r r i n g c h l o r i d e
i o n t o t h e r e a c t o r fuel. s a l t , entrainment of L i C l i n t h e b i s muth l e a v i n g t h e second c o n t a c t o r would t r a n s f e r c h l o r i d e t o the reactor.
Foi-tunately, t h e r e a p p e a r s t o be l e s s l i k e l i -
hood o f t h i s t y p e of entrainrrient t h a n t h e entrainment of t h e bismuth i n t h e s a l t .
It may be n e c e s s a r y t o t r e a t t h e s a l t
r e t u r n i n g t o t h e r e a c t o r by h y d r o f l u o r i n a t i o n o r f l u o r i n a t i o n
for removal of c h l o r i d e .
Another a l t e r n a t i v e w0ul.d be t o pass
t h e bismuth from c o n t a c t o r 2 through a c a p t i v e f l u o r i d e salt
volume ( s u c h a s 72-2.6-12mole
7
LiF-HeF -ThF ); t h i s would
2
4
probably r e s u l t i n removal o f t h e e n t r a i n e d c h l o r i d e salt.
5.
Although t h e i n h e r e n t consumption o f r e d u c t a n t f o r t h i s p r o c e s s
i s q u i t e low (%15 g-moles of l i t h i u m p e r d a y ) , t h e i n t r o d u c t i o n
of o x i d a n t s (or even hydrogen) could i n c r e a s e t h e l i t h i u m consumption s i g n i f i c a n t l y .
6.
The proposed r a r e - e a r t h removal p r o c e s s does not r e q u i r e an e l e c t r o l y t i c c e l l , and t h e o p e r a t i o n of p r o t a c t i n i u m removal systems not r e q u i r i n g a c e l l should be k e p t i n mind as a desired goal.
A n a l t e r n a t i v e t o u s i n g a cell i s f l u o r i n a t i o n
of t h e uranium on a 3-day c y c l e followed by reducLive e x t r a c t i o n processing f o r p r o t a c t i n i u m i s o l a t i o n .
The c o s t of t h e
f l u o r i n e , assuming 100% f l u o r i n e u t i ] - i z a t i o n and a f l u o r i n e
pri-ce of $ 2 / l b , would be 0.02 mill/k!dhr.
7,
Conditions i n t h e c i r c u l a t i n g B i l o o p s a r e always r e d u c i n g
s o t h a t a c o r r o s i o n i n h i b i t o r such as Z r ~roul-dl i k e l y remain i n the B i .
T h i s may a l l o w Croloy t o be used as t h e material
of c o n s t r u c t i o n , a l t h o u g h t h e o p e r a t i n g t e m p e r a t u r e i s s i g n i f i c a n t l y h i g h e r t h a n t h e r a n g e i n which t h e use of Croloy
w i t h zj.rconium i n h i b i t i o n was s u c c e s s f u l .
3.
PROTACTINIUM ISOLATION TJSING FLUORINATION--REDUCTIVE EXTRACTION 1,. E . McNeese
W e have r e c e n t l y developed a new p r o c e s s f o r removing r a r e e a r t h s from a s i n g l e - f l u i d MSBK.
The advantages of t h i s p r o c e s s , which does not
r e q u i r e a n e l e c t r o l y t i c c e l l , have l e d u s t o c o n s i d e r p r o t a c t i n i u m i s o l a t i o n systems t h a t do not r e q u i r e e l e c t r o l y z e r s .
One p r o t a c t i n i u m i s o l a -
t i o n method i n which a n e l e c t r o l y z e r i s not r e q u i r e d i s f l u o r i n a t i o n - reductive extraction.
I n t h i s method, most of t h e uraniuE would b e r e -
moved from t h e f u e l s a l t by f l u o r i n a t i o n p r i o r t o i s o l a t i o n of t h e p r o t a c t i n i u m by r e d u c t i v e e x t r a c t i o n .
3.1
Troposed Flowsheet f o r I s o l a t i n g : P r o t a c t i n i u m by Fluorination--Reductive E x t r a c t i o n
The f l u o r i n a t i o n - - r e d u c t i v e
e x t r a c t i o n system f o r i s o l a t i n g p r o t -
a c t i n i u m i s shown i n i t s s i m p l e s t form i n F i g . 3.
The salt s t r e a n from
t h e r e a c t o r f i r s t p a s s e s t h r o u g h a f l u o r i n a t o r , where most of t h e uranium
i s removed by f l u o r i n a t i o n .
Approximately 90% of t h e s a l t l e a v i n g t h e
f l u o r i n a t o r i s f e d t o a n e x t r a c t i o n column, where it is c o u n t e r c u r r e n t l y c o n t a c t e d w i t h a bismuth stream c o n t a i n i n g l i t h i u m and thorium.
The
uranium i s p r e f e r e n t i a l l y removed from t h e s a l t i n t h e lower e x t r a c t o r , and t h e p r o t a c t i n i u m i s removed b y t h e upper c o n t a c t o r .
A tank through
which t h e bismuth flows i s provided f o r r e t a i n i n g most of t h e p r o t a c t i n i u m i n t h e system.
16
ORNL- DWG-59-13169
uF6
t
Li,Th
Sig. 3. Extraction.
Isolation of P r o t a c t i n i u m by - l u o r i n a t i o n - R e d u c t i v e
T h e bismuth stream l e a v i n g t h e lower c o n t a c t o r c o n t a i n s some p r o t a c t i n i u m , as w e l l as t h e uranium t h a t w a s n o t removed i n t h e f l u o r i n a t o r
and t h e uranium t h a t w a s produced by t h e decay o f p r o t a c t i n i u m .
This
s t r e a m i s c o n t a c t e d w i t h a H -1IEâ&#x20AC;&#x2122;mixture Fn t h e presence of approximately 2 lo$ o f t h e s a l t l e a v i n g t h e f l u o r i n a t o r i n o r d e r t o t r a n s f e r t h e uranium
and t h e p r o t a c t i n i i m t o t h e s a l t .
The s a l t stream, c o n t a i n i n g UF4 and
PaF4, i s t h e n r e t u r n e d t o a p o i n t upstream of t h e f l u o r i n a t o r , where most of t h e uranium i s removed.
The p r o t a c t i n i u m p a s s e s through t h e
f l u o r i n a t o r and i s s u b s e q u e n t l y e x t r a c t e d i n t o t h e bismut,li:.
Reductant
(Li and Th) i s added t o t h e B i stream l e a v i n g t h e o x i d i z e r , and t h e
r e s u l t i n g s t r e a m i s r e t u r n e d t o t h e upper c o n t a c t o r .
The s a l t s t r e a m
l e a v i n g t h e upper e o n t a c t o r i s e s s e n t i a l l y f r e e of uranium and p r o t a c t i n i u m and would b e processed f o r remova.1 of r a r e e a r t h s b e f o r e b e i n g returned t o the reactor. 3.2
C a l c u l a t e d System Performance
C a l c u l a t i o n s have shown t h a t t h e system i s q u i t e s t a b l e w i t h r e s p e c t t o v a r i a t i o n s as l a r g e as 20% for most of t h e important p a r a m e t e r s ( i . e . , flow r a t e s , r e d u c t a n t c o n c e n t r a t i o n s , and number o f e x t r a c t i o n s t a g e s ) .
The r e q u i r e d uranium removal e f f i c i e n c y i n t h e f l u o r i n a t o r i s l e s s t h a n
90%. The number o f s t a g e s r e q u i r e d i n t h e e x t r a c t o r s i s r e l a b i v e l y l o w , and t h e m e t a l - t o - s a l t
f l o w r a t i o ( a b o u t 0 . 2 6 ) i s i n a r a n g e where t h e
e f f e c t s o f a x i a l d i s p e r s i o n i n packed column e x t r a c t o r s w i l l be n e g l i gible.
S i n c e t h e p r o t a c t i n i u m removal e f f i c i e n c y i s v e r y h i g h arid t h e
system i s q u i t e s t a b l e , materials such as 231Pa, accumulate w i t h t h e 233Paa
Zr, and Pu should
These materials; can be removed by hydroflu-
o r i n a t i o n o f a small T r a c t i o n of t h e bismuth stream l e a v i n g t h e lower e x t r a c t o r i n t h e p r e s e n c e of s a l t which i s t h e n f l u o r i n a t e d f o r uranium recovery.
S u f f i c i e n t decay t i m e would b e allowed f o r most of t h e 233Pa
t o decay t o 233U, and t h e 233Pa and 233U l o s s e s would b e a c c e p t a b l y l o w .
18 Operating c o n d i t i o n s t h a t w i l l y i e l d a 10-day protactixiium r,amoval t i m e i n c l u d e a f u e l s a l t flow r a t e of 0.88 gpm (10-day p r o c e s s i n g c y c l e ) ,
a bismuth flow r a t e oT 0.23 gpm, two s t a g e s i n -the lower c o n t a c t o r and
s i x t o e i g h t s t a g e s i n the upper c o n t a c t o r , and a decay t a n k vol.ume of 200 t o 300 f t3 The r e q u i r e d q u a n t i t y of r e d u c t a n t i s 340 toj1.30
.
equiv/day, which will c o s t 0.012 t o 0.015 mill/kWir i f 7 L i i.s purchased.
The remainder of t h i s s e c t i o n i s devoted t o
e f f e c L s of important system p a r a m e t e r s .
8,
d i s c u s s i o n of t h e
Unless o t h e r w i s e s t a t e d , t h e
o p e r a t i n g c o n d i t i o n s i.ncl_u.de an o p e r a t i n g t e m p e r a t u r e of 640째C,
a
p r o c e s s i n g c y c l e time of 10 d a y s , a. r e d u c t a n t a.ddi.tion r a t e o f 4-29
eqizi.valents/day, a p r o t a c t i n i u m d.ecay t a n k volume of 300 f t 3 , a ruaxinim
thorium c o n c e n t r a t i o n e q u i v a l e n t t o 50% of t h e thorium s o l u b i l i t y a t
64OoC, and a uranium removal e f f i c i e n c y d u r i n g f l . u o r i n a t i o n of 98%. The e f f e c t of t h e number o f e q u i l i b r i u m s t a g e s i n t h e upper ext r a c t o r on p r o t a c t i n i u m removal Lime and uranium i n v e n t o r y i n t h e decay t a n k i s shown i n F i g . c o n t a c t o r ; however contac Lor.
4.
, inore
Less t h a n two s t a g e s a r e r e q u i r e d i n the lower s t a g e s can h e used t o advantage i n -the upper
Approximately- f i v e s t a g e s are adequate ; l i t t l e b e n e f i t i s
o b t a i n e d f r o m u s i n g addi1;ional o n e s . The e f f e c t of t h e f r a c t i o n of urariiuni t h a t i s n o t removed d u r i n g f l u o r i n a t i o n i s shown i n F i g . 5 .
High uranium removal e f f i c i e n c i e s
are not r e q u i r e d s i n c e the r e t e n t i o n of a s niuch as 1 2 % of t,he i r a n i i m
i n t h e s a l t c a u s e s no harmful consequences.
The e f f e c t o f reductant, a d d i t i o n r a t e i s shown i n Fig. 6.
No
e f f e c t o f d e c r e a s i n g t h e a d d i t i o n r a t e i s seen u n t i l one r e a c h e s a v a l u e o f 390 e q u i v l d n y , where a gradual b u t s i g n i f i c a n t e f f e c t b e g i n s
t o b e observed.
The changes shown a r e approximately t h o s e changes
which r e s u l t from v a r i a t i o n s i n the bismuth f l o w r a t e f o r a. constant;
inl.et reductant Concentration.
Hence, t h e r e i s l i t t l e e f f e c t of
v a r i a t i o n s i n t h e bismuth f l o w r a t e .
TEMPERATURE, 640 *C PROCESSING CYCLE, IO DAYS Li REQUIREMENT, 4 2 9 MOLES L i / D A Y DECAY TANK VOLUME, 300 f t 3 M E T A L TO SALT FLOW RATIO, 0.26
4
3
Fig.
4.
5
NUMBER
6
OF STAGES
7
8
IN UPPER COLUMN
9
10
V a r i a t i o r i of Prot;aetinium Removal T i m e and Urtznii-un Inven-Lory in I>ecay Tsnk w i t h Nurnber of Stages in TJpper Cohxnn.
20
ORNL DWG 69-13179 R l
17
I
16 cn
n
0
15
W
r... k-
z'>
14
0
E
W
[L
0 a
-
13
TEMPERATURE 6 4 6 O C DECAY TANK VOLUME, 300 f t 3 STAGES IN UPPER COLUMN, 6 STAGES IN LOWER COLUMN, 2 METAL TO S A L T FLOW R A T I O , 0 . 2 6 REDUCTANT FEED RATE, 428.6 e q l d a y
12
I
IC
0
0.02
0.04
0.06
0.08
0.10
0.12
0.14
F R.A C I J NOT REMOVED BY FLUORINATION - TIO - N OF -
Fig. 5. Variation of P r o t a c t , i n i u m R m o v a l Time ana Uranium Inveniory in Decay Tank w i t h Fraction of Uranium IJot Removed by Fluorination.
21
O R N L DWG 69-13178
'6
7
7 TEMPERATURE 6 4 0 ' C DECAY TANK VOLUME 300 f t 3 STAGES I N UPPER COLUMN I O STAGES I N LOWER COLUMN 2 PROCESSING CYCLE 10 DAYS
I
300
I
320
I
I
340
1
I
360
I
1
380
400
REDUCTANT FEED RATE T e q / D A Y )
I
420
I
0 440
~~ Time F i g . 6. E f f e c t of Reductant Feed Rate on P r o t a c t i n i . ~Removal and. LJr:mium 1nventor.y i n the Protactinium Decay Tank.
22 The e f f e c t of p r o c e s s i n g c y c l e t i m e on p r o t a c t i n i u m removal!. t i m e and uranium i n v e n t o r y i n t h e decay t a n k i s shown i n F i g .
7.
The removal
time i s e q u a l t o t h e p r o c e s s i n g c y c l e time (100% removal e f f i c i e n c y ) Tor p r o c e s s i n g c y c l e t i m e s g r e a t e r t h a n about 1 0 days. c y c l e t i m e i s d e c r e a s e d below t h i s p o i n t
loses etficiency.
~
A s t h e processing
however., t h e system slowly
F i g u r e 7 shows t h a t t h e sys-t,em i s r e l a t i v e l y insen-
sit,.ive t o minor v a r i a t i o n s i n t h e s a l t f e e d r a t e . The e f f e c t o f t h e p r o t a c t i n i u m decay t a n k volume i s shown i n F i g .
8.
No change i.s seen as t h e t a n k volume i s d e c r e a s e d from t h e nominal
volume of 300 f t 3 u n t i l a v a l u e o f 280 f t ’3 i s r e a c h e d ; a t t h i s p o i n t , t h e system slowly l o s e s e f f i c i e n c y .
Smaller tank volimes c o u l d be used
without loss o f removal e f f i c i e n c y by i n c r e a s i n g t h e r e d u c t a n t concen-
t r a t i o n i n t h e bismuth f e d t o t h e e x t r a c t o r s .
The e f f e c t s o f o p e r a t i n g t e m p e r a t u r e and r e d u c t a n t a d d i t i o n r a t e on p r o t a c t i n i u m removal time a r e shown i n F i g .
9. The optimum o p e r a t i n g
t e m p e r a t u r e i s about 6~+ooc,and ‘the system i s r e l a t i v e l y i n s e n s i t i v e t o minor temperature v a r i a t i o n s .
The r e d u c t a n - t c o s t s a s s o c i a t e d w i t h t h e
a d d i t i o n r a t e s showri d e c r e a s e i n increments of 0.001 mi.3.l./kWhr from v a l u e o f 0.015 milL/kWhr f o r a n a d d i t i o n r a t e of
4. AXIAL DISPERSION IN OPEN J. S . Watson
;t
429 equiv/day.
BUBBLE COLUMNS
L. E . McNeese
A-xial mixing or d i s p e r s i o n i s l i k e l y t o be important i n continuous f l u o r i n a t o r d e s i g n and perforinance.
Because molten s a l t s a t u i - a t e d wit;h
f l u o r i n e i s c o r r o s i v e , f l u o r i n a t o r s w i l l be s i m p l e , open v e s s e l s that, have a p r o t e c t i v e l a y e r of f r o z e n s a l t c o v e r i n g a l l exposed m e t a l wa1.l~ and s u r f a c e s .
i n the salt.
T h e r i . s i n g gas bubbles may cau.se a p p r e c i a b l e a x i a l mixing
We have p r e v i o u s l y 3 measured a x i a l d i s p e r s i o n c o e f f i c i e n t s
column u s i n g a i r and water t o sirnulate f l u o r i n e and s a l t . 2 Axial. d i s p e r s i o n c o e f f i c i e n t s between 2’5 and 35 cm / s e e were observed f o r i n a 2-in.-diam
gas flow r a t e s between 3 and 30 cm3 / s e c and were independent of t h e l i q u i d
23
30r ORNL
..........
D W G 69-13176
~
28
26
-
24 TEMPERATURE
m
DECAY TANK VOLUME STAGES IN UPPER COLUMN STAGES IN L O W E R COLUMN REDUCTANT FEED RATE
%
0 '0
v
22
W
z
64O0 C
300 f t 3 6
2 4 2 0 . 6 sq/do
F
a >
J
2o
0
I w
(1:
18
a 0
16
14
12
IO
0
2
1
4 6 E! IO PROCESSING C Y C L E T I M E ( d a y s )
12
Fig. 7. E f f e c t of Processin!; Cyc1.e T i m e on P r o t a c t i - n i u m Removal T ' t m e an83 IJranium I r i v e n t o r y in Decay Ta.nk.
24
> a
0 IP
w
>
z
I
a
6
E-
1.0 o
a w a:
LL
Q
.8
o"-" x E
T FEED RATE 4 2 8 6 eq/da UPPER COLUMN I O
F
6 % 0 w c3
z 4 & 8
I-
2
z Ld > z -
I 3
z
I
Q
180
200
220 240 260 280 Pa D E C A Y TANK V O L U M E , f t 3
300
cz o =
320
r i g . 8. Effect of t h e Protactinium Decay Tank Volume on Protactiniim Removal Y'be and Uraniixn Inventory in the Protactinium Decay Tank.
2(
I!:
......
PROCESSING CYCLE, 10 DAYS
..._.
STAGES IN UPPER COLUMN, 10 STAGES IN LOWER COLUMN, 2
I€
DECAY TANK VOLUME, 300FT3
17
16 v,
x
0
-
-CY
W
15
5
t-
3 0 z W
J
44
2
13
12
11
10 TEMPERATURE ( O C ) Fig. 9.
V a r i a t i o n of Protac-Liriiurn fiernova.l 'Tim(? writh Reductant
Addi.tion Ra-Le a n d O p e r a t i n g Temperature.
26 ( w a t e r ) flow r a t e .
i n t h i s flow r a n g e , termed "bubbly flow," t h e gas
moves up the column i n Liie form of d j - s c r e t e b u b b l e s .
When t h e g a s flow
r a t e i s i n c r e a s e d t o g r e a t e r t h a n 30 c m3/ s e e , "sl.u.gging flow" occurs
and t h e gas bubbles c o a l e s c e and may f i l l t h e e n t i r e c r o s s s e c t i o n of t h e column.
I n t h i s flow r a n g e , t h e d i f f u s i o n coeffl.ci.ent i s more
dependent on gas flow r a - t e ; it i s approximately p r o p o r t i o n a l t o t h e s q u a r e r o o t o f t h e voliimetric g a s flow r a t e . The air-water system d i f f e r s from t h e s a l t - f l . i m r i n e system i n two significant respects:
(1)t h e v i s c o s t t y of s a l t i s 1.5 t o 30 t i m e s h i g h e r
t h a n t h a t o f water, and (2) t h e s u r f a c e t e n s i o n o f water i s about 7 5 dynes/cm as compared w i t h about 200 Clyneslcm for s a l t .
O f course, t h e
d e n s i t y of s a l t i s about t h r e e times t h a t of w a t e r , b u t t h i s d i f f e r e n c e
i s b e l i e v e d t o be of l e s s importance.
The p r e s e n t s t u d y , performed by I+ a group of MIT P r a c t i c e School s t u d e n t s , w a s carried o u t t o i n v e s t i g a t e
t h e e f f e c t s o f v i s c o s i t y and s u r f a c e t e n s i o n on t h e d i s p e r s i o n c o e f f i c i e n t .
4.1
Experimental Technique and Equipment
The e x p e r i m e n t a l t e c h n i q u e and equipment were t h e same a s t h o s e used e a r l i e r . 3
6
ft.
T'ne column was 2 i n . i n d i a m e t e r and had a l e n g t h of
'The gas i n l e t w a s 0.04 i n . I D .
A 0.5 M Cu(N0 ) I
3 2
tracer was
c o n t i n u o u s l y i n j e c t e d i n t o t h e bottom o f t h e column, and t h e steadys t a t e c o n c e n t r a t i o n o f t r a c e r was meamred. p h o t o m e t r i c a l l y upstream
at several points.
A t each measuring p o i n t , a sanqi1..e o f solution w a s
removed from t h e col.unm, c i i - c u l a t e d through a photocell., and r e t u r n e d t o t h e colwmi a t t h e same e l e v a t i o n .
The e f f e c t s of l i q u i d v i s c o s i t y and s u r f a c e t e n s i o n were s t u d i e d separately.
The v i s c o s i t y of t h e l i q u i d f e d t o t h e colimn w a s increa.sed
t o 1 5 cP by adding glycerol.
The s u r f a c e t e n s i o n of t h e l i q u i d was
va.ried between 37.8 and 67.4 dynes/cm by adding E-butanol. t o w a t e r . (The s u r f a c e t e n s i o n of w a t e r i s
75 c P . )
Addition of t h e g l y c e r o l
r e s u l t e d i n p r o p e r t i e s c l o s e r t o t h e p r o c e s s c o n d i t i o n s ; hoxever, t h e d e c r e a s e i n s u r f a c e t e n s i o n r e s u l t e d i n p r o p e r t i e s f a r t h e r removed from process conditions.
N e v e r t h e l e s s , d a t a were o b t a i n e d on t h e e f f e c t s of
v a r i a t i o n s i n s u r f a c e t e n s i o n and v i s c o s i t y .
4-2
Experimentally Determined D i s p e r s i o n C o e f f i c i e n t s
E x p e r i m e n t a l l y determined v a l u e s f o r t h e d i s p e r s i o n c o e f f i c i e n t a r e swrunarized i n F i g . 1 0 .
A t low gas f l o w rates, t h e d i s p e r s i o n c o e f f i c i e n t s
f o r a g l y c e r o l - w a t e r m i x t u r e w i t h a v i s c o s i t y o f 15 cP ase about 30% belob;
'chose observed f o r water a l o n e .
The t r a n s i t i o n from bubbly t o s l u g g i n g
flow o c c u r s a t a g a s flow r a t e o f about 26 em3 / s e c .
A t higher r a t e s , the
d i s p e r s i o n c o e f f i c i e n t v a l u e s approach t h o s e observed w i t h w a t e r .
Unfor-
t u n a t e l y , t h e d a t a f o r g l y c e r o l i n F i g . 10 do not extend t o h i g h a i r flow
r a t e s ; however, t h e data a t t h e s e r a t e s p r o b a b l y approximate t h o s e obt a i ned w i t h w a t e r .
I n t h e bubbly r e g i o n , t h e gas b u b b l e s were smaller t h a n t h o s e ob-
s e r v e d a t t h e same g a s f l o w r a t e w i t h water, and t h e t e r m i n a l r i s e v e l o c i t i e s were lower.
However, t h e t e r m i n a l v e l o c i t y of "slugs" of
g a s i n t h e h i g h gas flow r a t e r e g i o n became independent of v i s c o s i t y , a l t h o u g h t h e s l u g s were p r o b a b l y l a r g e r t h a n w i t h w a t e r .
This i s
because t h e gas holdup or v o i d f r a c t i o n i n c r e a s e d w i t h i n c r e a s i n g v i s c o s i t y (Fig. 3.1). The a d d i t i o n of ;-butanol
t o water t o d e c r e a s e t h e s u r f a c e t e n s i o n
r e s u l t e d i n a n i n c r e a s e i n d i s p e r s i o n c o e f f i c i e n t , as shown i n F i g . 10. These r e s u l t s , however, are n o t c o n c l u s i v e because of p o s s i b l e concen-
t r a t i o n of t h e E-butanol a t t h e g a s - l i q u i d i n t e r f a c e s .
Butanol
and
o t h e r s u r f a c e - a c t i v e m a t e r i a l s may have c o n c e n t r a t e d a t t h e i n t e r f a c e
so t h a t t h e a c t u a l c o n c e n t r a t i o n s a t t h e i n t e r f a c e (and t h u s t h e s u r f a c e t e n s i o n ) would n o t be known.
The i n t e r f a c e c o u l d be more r i g i d t h a n ,an
air-water i n t e r f a c e , and t h i s e f f e c t a l o n e could i n c r e a s e t h e d i s p e r s i o n
28
J4
O R N L - DWG-70-11038 R Z
200
-u
0
100
N
80
E
Butanol-Woter Solutton,
A - Butanol-Water Solution,
2
\
-
00
-
Butanol-Water Solution,
u
37.8 dynes/cm
(r
= 53.2 dynes/cm
u = 67.4 dyneslcrn (single r u n )
Glycerol-Water Solution, y
= 15 c p
I
E Y
.-* *b
V
c
60 50 40
.O
30
x
20
r
'1
I
n
IQ
!
4
I
2
3
4
5
6
L
8 1 0
r
GOS FIOW
-
20
. L . 30 40 5060 80 100
-
L
.
200
Rate (cm31sec)
F i g . io. E f f e c t of Liquid Surface Tension and V i s c o s i t y on Dispersi-on in an Open Bubble Column.
ORNL D W G 70-11040RI
50
I
2ts 5
'
6
I
1
I
1
I
20
I
I
I
1
0 Butanol-Water S o i u t i o n , a = 37.8 dynes/cm A Butanol-Water Solution, u = 53.2 dyneslcm 0 D i s t i l l e d Water 0 G l y c e r o l - W a f e r Solution. ~ = 1 CP 3
I
8
I
10
I
I
1
3 8 40 50 60 G o s Flow R a t e (crn3/sec)
1
I
I
1
I
80 100
1
30
coefficient.
The same problem could have e x i s t e d i n t h e g l y c e r o l -
water experiments; however, t h e g l y c e r o l c o n c e n t r a t i o n w a s s u f f i c i e n t l y high t h a t t h e c o n c e n t r a t i o n of g l y c e r o l a t t h e s u r f a c e i s no-t bel.j.eved. t o have been s e r i o u s .
Although i t i s d e s i r a b l e i n experiments siich as
t h e s e t o use pure components, i t i s f r e q u e n t l y , as i n t h i s c a s e , not practical.
5. SEMICONTINUOUS REDUCTIVE
EX'~'LUCTIONEXPERIMENTS
IN A IllILD-STEEL FACILITY
B. A . Hannaford C . W. Kee L. E. McNeese Hydrodynamic experiments w i t h t h e 0 . 8 2 - i n . 4 i a m 1/4-in.
s o l i d c y l i n d e r s of rnolybdenum were c o n t i n u e d .
column packed with 0nl.y l i m i t e d u s e f u l
f l o o d i n g data w e r e o b t a i n e d because o f d e p o s i t i o n of i r o n i n t h e column as
w e l l as i n t h e bismuth e x t t l i n e from t h e column and t h e s a l t f e e d l i n e t o t h e colimm.
T h e d a t a o b t a i n e d are i n genel-a1 agreement w i t h p r e d i c t i o n s
based on d a t a from a mercury-wat,er
system.
The column al?d t h e a f f e c t e d
7.ines were removed f o r repl.acemftnt.
5.1
Hydrodynamic Run
HR-6
Only Limited u s e f u l f l o o d i n g data were o b t a i n e d i n run m-6 de:;pi.te
good coni;rol o f t h e r a t e s of flow of 'oismuth and s a l t from the r e s p e c t i v e
feed tanks.
Subsequent exaLminat,ion of t r a n s f e r l i n e s a t t a c h e d t o t h e c c l -
umn suggested -thaL t h e unexpectedly h i g h bismuth holdup may have been due t o a d e p o s i t o f i r o n accumulating i n t h e t r a n s f e r I.iiles.
The schematic diagram o f t h e experimental equipment (Fig. 1 2 ) i n -
d i c a t e s the m.etbod by T i h i c h the p r e s s u r e at the base of the col.umn ( a
wensiire of t h e bismuth holdup) w a s deduced.
A s long as s a l t i s e n t e r i n g
t h e column, t h e p r e s s u r e a t t h e b a s e of t h e column i s e q u a l t o t h e sum
of (7.) t h e s t a t i c column of sa7.t between t h e column i n l e t and t h e j a c k l e g
31 O R N L DWG 70-11039 Pressurizing 1 A
D--pl-.s - - _.- -- -
1 ........1........................
A r g o n Bleed
-,,++
JConpot
oit Level 1 l e i - Recorder J
+Argon
Bubbler
~
S a l t Jackleg
T6
'
Bismuth Entrainment Detector SG-12
Salt
Feed
/Sa i t B ismc In t erfoc (Constant I
(
(
\Dendritic Iron Deposits
Fig. 12. Packed Column and :<elated Coriiporiertts Shown i n 'Yrue Elev a t i o n ; Schemat,ic Diagram of Level C o n t r o l S y s t e m f o r Salt J a c k l e g -
32 b u b b l e r , ( 2 ) t h e v a r i a b l e s a l t head i n t h e j a c k l e g , and ( 3 ) t h e v a r i a b l e argon p r e s s u r e above t h e s a l t i n t h e j a c k l e g .
P r e s s u r e drop due
t o s a l t flow i n t h e l i n e connecting t h e j a c k l e g and t h e column i s negligible
e
Run HR-6 began w i t h a s a l t flow to t h e column of about 75 ml./min;
however, when bismuth f l o w was s t a r t e d , t h e p r e s s u r e a t t h e b a s e of t h e co1i.im.n began t o i n c r e a s e r a p i d l y as r e f l e c t e d by a r a p i d l y i n c r e a s i n g argon p r e s s u r e i n t h e j a c k l e g ,
By s t e p v i s e i n c r e a s e of t h e
l e v e l s e t - p o i n t i n t h e j a c k l e g , it w a s p o s s i b l e t o accommodate t h e i n c r e a s i n g p r e s s u r e d r o p a c r o s s the column. about
1'75 ml/min
A t a bismuth flow r a t e of
and a s a l t flow r a t e of '75 ml/xnin, t h e p r e s s u r e a t
t h e b a s e of t h e column w a s about 250 i n . H 0 and was i n c r e a s i n g slowly. A t t h i s pressure
, the
2
b i s m u t h - s a l t i n t e r f a c e below t h e colimin would b e
w i t h i n a few i n c h e s of -the bottom o f t h e bismuth d r a i n l o o p ; t h u s t h e bismuth -flow r a t e vas reduced i n o r d e r to p r e v e n t t h e salt-metal i n t e r f a c e from being f o r c e d through t h e d r a i n loop.
D e s p i t e a high bismuth
holdup ( % B O % ) i n f e r r e d from t h e p r e s s u r e a t t h e base of t h e column, no o b s e r v a b l e q u a n t i t y of bismuth w a s c a r r i e d o u t -the t o p of t h e column
w i t h t h e s a l t ; t h a t i s , no v a r i a t i o n s were observed i n t h e s i g n a l from
t h e bismuth entrainment d e t e c t o r (Fig* 1 2 ) t h a t w a s b e i n g o p e r a t e d w i t h
the f r e e z e v a l v e open. 5.2
Hydrodynamic Runs IiR-7 and. HR-8 ; Tests f o r 0bst:ructicJns
Run HR-7 was begun a t t h e lowest p o s s i b l e flow r a t e s (%SO ml/min
f o r each p h a s e ) ; however, flow of s a l t through t h e column was o b t a i n e d o n l y during a b r i e f i.nterva1 d u r i n g v h i c h t h e s a l t j a c k l e g showed a p r e s s u r e e q u i v a l e n t t o a s t a t i c column of bismuth f i l l i n g t h e e x t r a c t i o n column.
Bismuth flowed from t h e column o n l y by way of t h e s a l t
overflow * The p r e s e n c e of s u s p e c t e d p l u g s i n l i n e s a t t a c h e d t o t h e b a s e o f t h e column w a s v e r i f i e d by removing t h e l i n e s and s e c t i o n i n g them. f o r
33 De-
examination a f t e r m e l t i n g o u t t h e bismuth i n an argon a h o s p h e r e .
p o s i t s of i r o n c r y s t a l s , some of which were e x t e n s i v e enough t o con-
s t l t u t e impermeable p l u g s ( F i g . 131, were found i n t h e l o c u t i o n s i n -
d i c a t e d i n Fig. 1 2 .
S a l t and bismuth we1.e d r a i n e d from t h e column i n t o a temporary r e c e i v e r t o permit t e s t s t o determine t h e c o n d i t i o n of t h e molybdenum packing.
Radiographs of t h e column showed r e g i o n s of t r a p p e d bismuth
which might i n d i c a t e a plug.
Measurements showed a presslire d r o p about
2 . 5 times t h a t of a, r e f e r e n c e col-umn packed w i t h p o l y e t h y l e n e cyl.inders;
however, t h i s w a s n o t r e g a r d e d as c o n c l u s i v e evidence o f
2
restriction,
The colimn w a s reconnected t o the systen?. w i t h 1 / 2 - i n . -
and S / h - i a . -
GL t u b i n g t o reduce t h e l i k e l i h o o d o f plugging t h e full c r o s s s e c t i o n o f
t h e t r a n s f e r l i n e s with i.ron d e p o s i t s .
I n m l d i i i c l n , a quaatity of
Zircaioy-2 e q u i v a l e n t t o 100 ppm of' zirconium i n bismuth
was d d e d t o
t h e bismuth f e e d t a n k in an a t t e m p t t o i r i l i i b i t mass t r a n s f e r of i r o n .
I n t h e f i n a l hydrodynamic experiment (HR-8) in t h e original. column,
the column flooded a t salt and 'ojsriiuth flow r a t e s of" '75 ml/min. t h e col-mn
HE-5,
Sirice
had o p e r a t e d s a t i s f a c t o r i l y a t t h e s e flow rates during cun
i t was a p p a r e n t t h v t t h e c o n d i t i o n of t h e coliuun had changed.
T h e r e f o r e , the column was removed f o r examixia1,ion and replarmerit
a
The .Lower half o f t h e colurnn w a s f i l l e d . w i - L h epoxy resin i n o r d e r
t o p r e s e r v e t h e packlng arrangement w h i l e t h e s t e e l p i p e v-as b e i n g
s t r i p p e d %way.
D e n d r i t i c i r o n d e p o s i t s were no-bed i n t h e pxk',ng
(Ftg*
i l c j i n an. amount s u f f i c i e n t t o i n c r e a s e the r e s i s t a n c e t o f l o w , t h a t i s , t o d e c r e a s e t h e throughput at, f l o o d i n g .
The i r o n d e p o s i t s were not
uniformly d i s t r i b u t e d throughout the column bu-t; were located. p r i r n a r i l y
i n t h e lower s e c t i o n .
A i r o x i d a t i o n of the c a r b o n - s t e e l column w a s s e v e r e , = a o i l n t i n g t o
a l o s s o f about 0.050 i n . of w a l l t h i c k n e s s .
The al.uminurn p a i n t a p p l i e d
i n i t i a l l y , which was expected to w i t h s t a n d h i g h t e m p e r a t u r e s
t o have a f f o r d e d l i t t l e p r o t e c t i o n a g a i n s t o x i d a t i o n .
appeared
34
PHOTO 97581
Fig. 13. Section of Salt Transfer Line Between Salt Jackleg and Column Inlet, Plugged with Dendritic Iron. Darkening of lower specimen occurred during examination, when it was accidentally exposed to air while h o t .
35
PHOTO 98389
m
c I
PHOTO 98381
Fig. 14. S e c t i o n of 0.082-in.-ID Column Showing D e n d r i t i c I r o n Deposit (Upper P h o t o g r a p h ) . The lower h a l f o f t h e column w a s p o t t e d i n epoxy r e s i n , and t h e s t e e l p i p e w a s s t r i p p e d away.
36
6.
SIMULATION OF THE FLOW CONTROL SYSTEMS FOR THE REDUCTIVE EXTRACTION FACILITY C . W. Kee
L . E. McNeese
The s u c c e s s f u l o p e r a t i o n of t h e Reductive E x t r a c t i o n F a c i l i t y (see S e c t . 5 ) depends on a flow c o n t r o l system t h a t w i l l a l l o w s a l t and bismuth flow r a t e s i n t h e f a c i l i t y t o b e q u i c k l y e s t a b l i s h e d a t d e s i r e d v a l u e s and t o be maintained r e l a t i v e l y c o n s t a n t d u r i n g t h e c o u r s e o f an experiment.
Because of t h e importance o f t h i s a s p e c t of o p e r a t i o n ,
a s t u d y o f t h e flow c o n t r o l system i s i n p r o g r e s s .
It has p r e v i o u s l y been shown5 t h a t s t e a d y flow from t h e s a l t and bismuth f e e d t a n k s c a n b e o b t a i n e d i f each phase d i s c h a r g e s a t a c o n s t a n t pressure.
T h i s i s e s s e n t i a l l y t h e c a s e f o r t h e bismuth flow system s i n c e
t h e d i s c h a r g e p o i n t i s a t t h e t o p of t h e e x t r a c t i o n column.
In the case
of t h e s a l t , however, t h e d i s c h a r g e p r e s s u r e i s not c o n s t a n t s i n c e t h e p r e s s u r e i n t h e s a l t j a c k l e g v a r i e s t o match t h a t a t t h e bottom of t h e column.
A t flow rates near f l o o d i n g , changes i n t h e s a l t d i s c h a r g e
p r e s s u r e might b e r a p i d s i n c e p r e s s u r e s u r g e s c o u l d be t r a n s m i t t e d between t h e j a c k l e g and column a t t h e i n h e r e n t r e s o n a n t frequency; t h e s e v a r i a t i o n s c o u l d a f f e c t t h e r a t e s a t which s a l t and bismuth flow t h r o u g h t h e column. It i s t h u s d e s i r a b l e t o s i m u l a t e t h e t r a n s i e n t b e h a v i o r of t h e flow c o n t r o l systems and equipment i t e m s such as t h e j a c k l e g , column, and t r a n s f e r l i n e s , which may a f f e c t o p e r a t i o n of t h e c o n t r o l system.
This
s t u d y w i l l (1) examine t h e s t a b i l i t y of t h e p r e s e n t system, ( 2 ) examine t h e m e r i t s of v a r i o u s o p e r a t i n g methods f o r t h e p r e s e n t system, and
( 3 ) a l l o w e v a l u a t i o n o f proposed equipment m o d i f i c a t i o n s .
Both a n a l o g
and d i g i t a l s i m u l a t i o n s of t h e system have been c a r r i e d o u t and a r e d e s c r i b e d i n t h e remainder o f t h i s s e c t i o n .
37
6.1
Analog S i m u l a t i o n of J a c k l e g and E x t r a c t i o n Column
For t h i s s i m u l a t i o n a s t e p w i s e change i n bismuth flow r a t e w a s i m -
posed on t h e s i m u l a t e d system, which was o p e r a t i n g a t s t e a d y s t a t e .
rate o f salt flow t o t h e salt j a c k l e g w a s assumed t o remain c o n s t a n t
The
d u r i n g t h e ensuing p e r i o d i n which the l e v e l i n t h e s a l t j a c k l e g and t h e bismuth holdup i n t h e column a d j u s t e d t o the new s t e a d y - s t a t e
values Mathematical A n a l y s i s . - The s t e a d y - s t a t e bismuth holdup i n t h e c o l -
umn w a s assumed t o b e g i v e n by t h e r e l a t i o n
where
H1 = f r a c t i o n of column volume occupied by bismuth a t s t e a d y s t a t e (bismuth holdup)
Vd = dispersed.-phase ( b i s m u t h ) flow r a t e t o column,
V
'ref
C
,k ,k,
1 C!
= continuous-phase
( s a l t ) flow r a t e t o c o l w ,
= constants.
The i n s t a n t a n e o u s bismuth holdup i n t h e column w a s assumed Lo change a$
a r a t e p r o p o r t i o n a l t o t h e d i f f e r e n c e between t h e i n s t a n t a n e o u s holdup
and t h e s t e a d y - s t a t e holdup.
Thus, dH
-= dt
k
3
(H1 - H),
where
H = i n s t a n t a n e o u s bismuth holdup,
t = time,
k = constant. 3 The pressure at t h e base of t h e column w a s assumed t o result; from t h e s t a t i c pressure of t h e d i s p e r s e d - p h a s e holdup, and from flow of t h e continuous and
d i s p e r s e d phases; t h e dependence w a s assumed t o be as follows :
38
where
PA = p r e s s u r e a.t t h e base of t h e column, minus t h e s t a t i c pressure when t h e column i s f i l l e d w i t h s a l t ,
k
k
4â&#x20AC;&#x2122; 5
= constanLs.
The r a t e of flow o f s a l t between t h e j a c k l e g and t h e colimn was assumed to correspond t o laminar flow i n t h e l i n e connecting t h e two voI.mes
and i s g i v e n as
where
kâ&#x20AC;&#x2122; = constant,,
PB
=:
pressure a t o u t l e t o f j a c k l e g , minus s t a t i c p r e s s u r e of the s a l t i n t h e column.
The change i n p r e s s u r e w i t h -time a t t h e o u t l e t of t h e j a c k l e g i s r e l a t e d t o t h e n e t r a t e of f l . o w from t h e j a c k l e g as
where p =
d e n s i t y of t h e s a l t ,
a = cross-sectional a r e a of jackleg, F
0
= r a t e a t which s a l t f l o w s t o j a c k l e g .
Scaled Equations and Analog C i r c u i t
.-
Equations (11.)through (15 )
were s c a l e d f o r s o l u t i o n on a n axia.log computer by i n t r o d u c t i o n of t h e following v a r i a b l e s :
39
vC
= v v c My
wher e h
1
= s c a l e d s t e a d y - s t a t e holdup,
HTfl = maximum s t e a d y - s t a t e holdup (l.O),
v
C
= s c a l e d s a l t f l o w r a t e between t h e j a c k l e g and t h e colimn,
VM = maximum s a l t flow r a t e between t h e j a c k l e g and t h e column (10 ml/sec)
h = s c a l e d i n s t a n t a n e o u s holdup,
HM = maximum i n s t a n t a n e o u s holdup (l-O), PI3
= s c a l e d v a l u e o f p r e s s u r e at j a c k l e g o u t l e t , m i n u s s t a t i c
p r e s s u r e a t b a s e o f t h e column when f i l l e d w i t h s a l t ,
PM = maximum v a l u e o f p r e s s u r e at b a s e of column,minus s t a t i c
p r e s s u r e a t b a s e of t h e column when f i l l e d w i t h s a l t (200 i n .
H*O) 5
pA = s c a l e d value of p r e s s u r e a t t h e b a s e of t h e column,minus s t a t i c p r e s s u r e a t base of t h e column when f i l l e d w i t h s a l t .
T'he r e s u l t i n g e q u a t i o n s are :
Irv
k2Vd hl = +- 1M
HM
-dh- dt
HM
k (h 3 1
v C
-
h),
klvref
HM
Y
40
and
A schematic diagram of t h e analog c i r c u i t used f o r s o l u t i o n of Equations
(16)-(20) i s shown i n F i g . 1 5 . Choice of C o n s t a n t s .
- The
v a l u e o f the c o n s t a n t k
2
( 0 . 1 s e c / m l ) was
chosen such t h a t t h e s t e a d y - s t a t e holdup had a v a l u e of 0 . 1 when V
and ref F0 were each assumed t o have a v a l u e of 1 ml./sec. The c o n s t a n t k 1 w a s given t h e v a l u e of 0 . 0 1 sec/ml- on t h e b a s i s of observed holdup d a t a from t h e mercury-water
system and from t h e s a l t - b i s m u t h system ( S e c t . 15).
v a l u e of t h e c o n s t a n t k
3
The
approxi-mates t h e r a t i o o f t h e bismuth flow r a t e
through t h e colurnn t o t h e bismuth volume h e l d up i n t h e column, and w a s -1
a s s i g n e d v a l u e s of 0 . 1 and 1 s e c -; t h e v a l u e of 0 . 1 see
-I
i s considered
t o g i v e a more a c c u r a t e r e p r e s e n t a t i o n o f t h e a c t u a l system.
k
5'
The c o n s t a n t
which w a s assumed t o b e e q u a l t o t h e product of the d i f f e r e n c e i n
d e n s i t i e s o f t h e s a l t and bismuth i n . ) , had a v a l u e of Lo 20 i n .
H20
*
(6.4 g/cm 3 ) and t h e column h e i g h t (30.25
194 i n . II 20. The c o n s t a n t k 11. w a s v a r i e d from
sec/ml.
0.02
The c o n s t a n t k ' , which r e p r e s e n t s t h e s a l t flow
r a t e ( i n crn3/sec) o b t a i n e d between t h e j a c k l e g and t h e column f o r a p r e s s u r e di'ference
of 1 i n .
B2 0 , was v a r i e d from 0 . 2 t o 1 0 cm3 s a l . t / s e c
i n . H20.
A v a l u e of 0.5 is c o n s i d e r e d t o b e iiiost r e p r e s e n t a t i v e of? t h e a c t u a l system. 2 The c r o s s - s e c t i o n a l area of t h e j a c k l e g w a s v a r i e d from 0 . 2 5 t o 4 i n .
Calculated Results.
R e s u l t s c a l c u l a t e d for a r a n g e of o p e r a t i n g
condritions are shown i n F i g s . 16-1.9. The g r e a t e s t change i n system
41
1
1
42
0 20,
I
1
1
1
--I
-
I
T
1
-
- - - T - - T
-T
T
7
-
7
-
r
-
O R N L DWG 7 0 - 11055 R 2
1
1
-
-
T
-
-
1
T
1 ....... ..
Fig. 16. TJariation of Bismuth Holdup in Co1ur.n and Flow of S a l t Retwecii L-ackleg and Column with Time for a k Value of 0.1 and a k' Value 3 of 0.2 in. J 2 G * sec/rnl.
ORNL-DWG-70-11052Rl
4 1 0
-.$ 3
E
2
0
B
c
0
"
3
I
k ' z O . 2 in. H 2 0 - sec/ml
0
I
1
1
1
1
1
1
1 15
1 17.5
J
0.2c
0.15 CI
2
0
* 0.IC
c, Holdup Curves
are m m e for a b o v e c 3 s e s
O.O!
1 2.5
0
1
5
1 7.5
1 IO
1 12.5
Time (sec 1
Fig. 17. Variation of Bismuth Holdup in Colurm and Salt Flow Rate Between J a c k l e g and Column with T i m e â&#x201A;Źor k Equal to 1.0 and k' Equal to 3 0.2 in. H 0 * sec/ml.
2
44
0
response w a s produced by v a r i a t i o n o f k
3’
tile r a t e c o n s t a n t f o r d r a i n a g e
of bismuth from t h e column.
R e s u l t s c a l c u l a t , e d f o r t h e most r e p r e s e n t a -
t i v e value of k
and a range of v a l u e s o f k
F i g . 1.6.
3 ( 0 . 1 see-’)
4
aye shown i n
The s a l t flow r a t e between t h e j a c k l e g and t h e column and t h e
bismuth holdup i n Lhe column are observed t o a d j u s t sxaoothly t o t h e s t e a d y - s t a t e v a l u e s a f t e r an imposed u p s e t i n c o n d i t i o n s . shown i n F i g . 1’9 f o r a k
3
v a l u e of 1 s e c
d r a i n a g e of bismuth from t h e column.
-1
, which
Results are
r e p r e s e n t s more r a p i d
A s e x p e c t e d , t h e system response
i s f a s t e r and t h e s t e a d y - s t a t e v a l u e s are o b t a i n e d more q u i c k l y .
As i n
t h e former c a s e , t h e system r e s p o n s e was smooth and no o s c i l l a t o r y ’oeh a v i o r w a s observed. t r a n s i e n t behavi-or. k
4
Changes i n t h e v a l u e o f k
4 had
l i t t l e e f f e c t on t h e
A s shown i n F i g s . 16-18, a n i n c r e s s e i n t h e v a l u e of
r e s u l t e d i n a small d e c r e a s e i n t h e maximum d e v i a t i o n o f Vc from t h e
steady-state value.
A s e x p e c t e d , a n i n c r e a s e i n t h e j a c k l e g diameter (which r e p r e s e n t s
a d e c r e a s e i n t h e r e s i s t a n c e t o flow between t h e j a c k l e g and t h e c o l ~ u m )
r e s u l t e d i n a h i g h e r r a t e of change o f V
C Y
as showia i n F i g . 19. lIowe-rrer,
t h e r a t e of change of t h e bismuth holdup i n t h e column was not a f f e c t e d . The system remained s t a b l e f o r f l o w r e s i s t a n c e v a l u e s much lower t h a n
t h o s e p y e s e n t i n t h e a c t u a l system. Decreases i n t h e c r o s s - s e c t i o n a l area o f t h e j a c k l e g r e s u l t e d i n a more r a p i d r e t u r n of t h e system t o s t e a d y s L a t e , as shown i n F i g . 1 9 .
The system was observed. t o be s t a b l e over t h e range of c r o s s - s e c t i o n a l
areas of 0.25 t o
6.2
4
in.
2
.
n i g i L a 1 S i m u h t i o n of S a l t FLOW C o n t r o l System, J a c k l e g , and Extrac-Lion Column
Although t h e analog sirnulation discussed p r e v i o u s l y i n d i c a t e d t h a t
s a t i s f a c t o r y flow c o n t r o l shcliild be o b t a i n e d w i t h t h e e x i s t i n g equipment,
i t was n e c e s s a r y t o t r e a t s e v e r a l a s p e c t s of t h e system i n a s i m p l i f i e d manner.
T h e r e f o r e , a d i g i t a l s i m u l a t i o n was c a r r i e d o u t i n o r d e r t o
o b t a i n a more r e a l i s t i c r e p r e s e n t a t i o n of t h e system.
Changes i n sim-
47 u l a t i o n of t h e system c o n s i s t e d of t h e f o l l o w i n g :
(1)a material bal-
ance on s a l t and bismuth i n t h e column was s u b s t i t u t e d f o r Eq. ( 2 ) u s e d p r e v i o u s l y t o d e f i n e t h e r a t e o f d r a i n a g e of bismuth from t h e column; ( 2 ) t h e column w a s segmented i n t o s e v e r a l s e c t i o n s t o a l l o w v a r i a t i o n
of flow r a t e s and holdup a t p o i n t s a l o n g t h e column; ( 3 ) more a c c u r a t e
e s t i m a t e s were made of t h e f r i c t i o n a l l o s s e s i n t h e s a l t t r a n s f e r l i n e s (between t h e s a l t f e e d t a n k and t h e jackleg and between t h e j a c k l e g and
t h e column), and t h e diameter of t h e l i n e s w a s v a r i e d ;
( 4 ) simulation
of t h e s a l t flow c o n t r o l system w a s i n c l u d e d ; and ( 5 ) t h e s a l t f e e d p o i n t
l o c a t i o n i n t h e Jackleg relative t o t h e salt level i n t h e jackleg was varied. Three c a s e s were c o n s i d e r e d .
I n Case I t h e s a l t i n l e t t o t h e jack-
l e g w a s l o c a t e d . above t h e s a l t s u r f a c e i n t h e j a c k l e g .
The g a s p r e s s u r e
above t h e s a l t i n t h e j a c k l e g was h e l d c o n s t a n t , and t h e s a l t l e v e l i n t h e j a c k l e g was allowed t o v a r y . I n Case I1 t h e s a l t i n l e t t o t h e j a c k l e g w a s l o c a t e d below t h e s a l t
szlrface i n t h e j a c k l e g .
The gas p r e s s u r e i n t h e j a c k l e g w a s h e l d c o n s t a n t ,
and t h e s a l t l e v e l i n t h e j a c k l e g w a s allowed t o v a r y .
I n Case 111 t h e s a l t
i n l e t t o t h e j a c k l e g was l o c a t e d below t h e s a l t s u r f a c e i n t h e j a c k l e g . The g a s p r e s s u r e w a s v a r i e d i n o r d e r t o m a i n t a i n a c o n s t a n t s a l t l e v e l i n the jackleg. Cases I1 and I11 r e p r e s e n t two p o s s i b l e methods of o p e r a t i o n for t h e
p r e s e n t e x p e r i m e n t a l f a c i l i t y i n which t h e s a l t i n l e t t o t h e j a c k l e g i s l o c a t e d below t h e s a l t s u r f a c e i n t h e j a c k l e g . Mathematical A n a l y s i s of Segnented Column.
- In
t r e a t i n g the extrac-
t i o n column, t h e column w a s d i v i d e d i n t o a number of segments, each of which w a s assumed t o be a t s t e a d y s t a t e d u r i n g a g i v e n time i n t e r v a l .
For t h e i t h segment (numbered from t h e t o p of t h e column), Eq. (11)w a s r e a r r a n g e d t o yrleld t h e f o l l o w i n g r e l a t i o n :
48
- -Hi Vd il-1 k2 where
,i+l. =
d '
H. 1
2
- -kl
Y
k2
( 21.)
bismuth flow rate leaving the 5th segment,
fraction of calm-n volume in ith segment occupied by
bismuth
Vc ,i = salt flow rate leaving i t h segment,
kl)k2,Vref = constants.
This equation is similar to the relation used f o r the analog simulat,ion, except that the continuous-phase flow r a t e is important only for f3.ow
rates near flooding.
The relati-onused for determining pressure within the column
segments, similar to Eq. (13), is:
where
P. 1
P. = (kb Hi V c y i + k Ri)/N, 1 5
= pressure a t t h e top of ith seginen-t, miniis pressure due to
static head of salt in column above ith segment,
N = number of segments in column,
k k
4' 5
= constants.
are the same as Values used for the constants kl, k2) k4' k5, and V ref used previously in the anal.og simulation.
A material balance on the dispersed phase in segment i yields the
relation
where
t = time, = volume of column.
%Ol
If one assumes t h a t t h e s a l t and bismuth phases a r e i n c o m p r e s s i b l e , one
obtains the relation
Du-ring a g i v e n t i m e i n t e r v a l , Eqs. ( 2 1 ) t h r o u g h (24) were solved by
t r i a l and e r r o r t o d e t e r m i n e p r e s s u r e , holdup, and f l o w r a t e s throughout A v a l u e was assumed for t h e r a t e of
t h e column i n t h e f o l l o w i n g manner.
s a l t flow from t h e t o p o f t h e column ( t o p segment); t h i s v a l u e was used wLth t h e known flow r a t e a t which bismuth e n t e r s t h e t o p of t h e column t o c a l c u l a t e v a l u e s f o r each column segment.
These v a l u e s i n c l u d e t h e
s a l t flow r a t e i n t o t h e bottom of t h e column (bottom segment) as w e l l
as the p r e s s u r e a t t h i s l o c a t i o n .
The p r e s s u r e v a l u e was t h e n used t o
c a l c u l a t e a v a l u e f o r t h e s a l t flow r a t e between t h e j a c k l e g and t h e
column which c o u l d be compared w i t h t h e c a l c u l a t e d r a t e o f s a l t flow i n t o t h e bottom o f t h e column.
When t h e two v a l u e s d i d n o t a g r e e , t h e
assumed s a l t flow r a t e a t t h e t o p of t h e column w a s a d j u s t e d and t h e c a l c u l a t i o n w a s r e p e a t e d t o o b t a i n a b e t t e r approximation. Mathematical D e s c r i p t i o n of J a c k l e g .
- In
Cases I and I1 t h e p r e s s u r e
above t h e salt s u r f a c e i n t h e j a c k l e g w a s assumed t o be c o n s t a n t s o t h a t changes i n p r e s s u r e a t t h e j a c k l e g o u t l e t were r e l a t e d o n l y t o changes i n t h e l e v e l of s a l t i n t h e jackleg.
Thus, t h e v a r i a t i o n of p r e s s u r e a t
the j a c k l e g o u t l e t w i t h t i m e i s g i v e n by t h e r e l a t i o n
where P
B
= p r e s s u r e a t j a c k l e g o u t l e t , minus s t a t i c head of s a l t i n t h e column ,
t = time, p =
d e n s i t y of t h e s a l t ,
a = c r o s s - s e c t i o n a l area o f t h e jack.l.eg,
F
0
vN-.i.l
= s a l t flow r a t e t o j a c k l e g , = s a l t flow r a t e between j a c k l e g and column.
I n Case I11 t h e pressure above t h e salt s u r f a c e i n t h e j a c k l e g was
c o n t r o l l e d i n a inaniier such t h a t t h e s a l t I.eve1 i n t h e j a c k l e g remained constant.
Hence, t h e p r e s s u r e i n 'the g a s space above t h e s a l t s u r f a c e
i n t h e j a c k l e g w a s t h a t r e q u i r e d t o o b t a i n a s a l t flow r a t e between t h e j a c k l e g and column which was e q u a l t o t h e s a l t flow r a t e t o t h e j a c k l e g The r e s i s t a n c e t o flow between t h e j a c k l e g and column w a s due t o f r i c -
t i o n a l l o s s e s i n t h e l i n e between t h e j a c k l e g and column; t h e mannsr o f c a l c u l a t i n g such losses i s d i s c u s s e d i n t h e f o l l o w i n g s e c t i o n . C a l c u l a t i o n of F r i c t i o n a l Losses i n S a l t T r a n s f e r L i n e s . -The
f r i c t i o n a l l o s s e s in t h e s a l t t r a n s f e r l i n e s ( o n e connecting t h e s a l t
f e e d Lank t o t h e j a c k l e g , and one connecting t h e j a c k l e g to t h e column) were c a l c u l a t e d from t h e P o i s e u i l l e e q u a t i o n f o r l a m i n a r flow a~zdfrom These e q u a t i o n s are g i v e n i n
t h e B l a s i u s e q u a t i o n f o r t u r b u l e n t flow.
( 26) and ( 2 ' 1 ) r e s p e c t i v e l y :
Eqs
'
7~
4
(AP)D 128pL
'
where
Q = s a l t flow r a t e ,
D = diameter of' l i n e ,
p = v i s c o s i t y of s a l t , L = l e n g t h of l i n e ,
AP = p r e s s u r e d i f f e r e n c e , ci.niis s t a t i c head between ends of l i n e ;
and
51 The t r a n s i t i o n between laminar and t u r b u l e n t f l o w w a s assumed t o occur at; a Reynolds number of 2200, where Reynolds number i s d e f i n e d as
I n Case I , s a l t was allowed t o flow o n l y from t h e s a l t f e e d t a n k t o t h e j a c k l e g s i n c e t h e s a l t i n l e t t o t h e j a c k l e g w a s l o c a t e d above t h e s a l t surface i n the jackleg.
For t h e remaining l i n e s , s a l t was allowed t o
flow i n t h e d i r e c t i o n i n d i c a t e d by t h e p r e s s u r e d i f f e r e n c e a c r o s s t h e l i n e i n question. Mathematical D e s c r i p t i o n o f S a l t Flow C o n t r o l System. - A
math-
e m a t i c a l d e s c r i p t i o n o f t h e s a l t flow c o n t r o l system has been g i v e n
p r e v i o u s l y 5 f o r a c o n t r o l l e r having o n l y p r o p o r t i o n a l a c t i o n .
In the
p r e s e n t s i m u l a t i o n , b o t h p r o p o r t i o n a l and i n t e g r a l a c t i o n s were assumed. The f o l l o w i n g r e l a t i o n f o r t h e c o n t r o l a c t i o n w a s used:
where G
B' G
max
= r a t e a t which a r g o n flows t o s a l t f e e d t a n k , = r a t e a t which argon i s b l e d from s a l t f e e d t a n k , p l u s one-
h a l f o f maximum argon f e e d r a t e ,
3
= maximum argon f l o w r a t e t o f e e d t a n k (1 s t d f t ' / h r ) ,
PE = p r o p o r t i o n a l band,
RT = r e s e t t i m e , min, .t;
vs , s e t
= time, = c o n t r o l l e r set p o i n t g e n e r a t e d by ramp g e n e r a t o r t o r e p r e s e n t
a l i n e a r l y d e c r e a s i n g s a l t volume i n f e e d t a n k ,
Vs = s a l t volume i n f e e d t a n k d u r i n g c u r r e n t t i m e i n t e r v a l .
52
Calculated Results. - R e s u l t s
cal.culated f o r Case I f o r s e v e r a l jack-
l e g d i a m e t e r s and f o r two s a l t t r a n s f e r l i n e d i a m e t e r s a r e shown i n F i g . 20.
It; i s observed t h a t an u p s e t r e s u l t s i n a r e l a t i v e l y r a p i d response
i n a l l cases.
A s expected, i n c r m s e s i n t h e j a c k l e g diameter r e s u l t i.xi
a slower approach to s t e a d y s t a t e .
more r a p i d w i t h 3 / 8 - i n . - d i m
The approach t o s t e a d y s t a t e i s also
s a l t t r a n s f e r lines t h a n w i t h ,l/l+-in.-diani
lines.
Results c a l c u l a t e d f o r Case I1 a r e shown i n F i g . 21.. The optimum
c o n t r o l l . e r s e t t i n g s appear t o be as f o l l o w s :
proportional. band.,
4
0;
The u s e o f a gas b l e e d stream from t h e f e e d
and r e s e t tJme, 0.5 min.
t a n k i s seen t o be q u i t e h e n e f i c i - a l s i n c e it al.lows t h e f e e d t a n k p r e s s u r e t o q u i c k l y d e c r e a s e without t h e t r a n s f e r of l a r g e volumes o f
s a l t from t h e f e e d t a n k . R e s u l t s c a l c u l - a t e d f o r Case 111 are shown i n F i g , 22.
Here t h e
approach t o be s t e a d y s t a t e a p p e a r s t o be s l i g h t l y more s l u g g i s h than i n t h e previous cases. Conclusions. - T h e
performance of t h e flow c o n t r o l system a p p e a r s
t o be l i m i t e d by t h e kime requtred. for p r e s s u r i z a t i o n and d e p r e s s u r i z a -
t i o n of t h e g a s space
iri
t h e s a l t reed t a n k .
The b e s t mode o f o p e r a t i o n
appears t o be w i t h a c o n s t a n t gas p r e s s u r e i n t h e s a l t j a c k l e g and w i t h
t h e sal..t i n l e t t o t h e jackleg l o c a t e d above t h e s a l t s u r f a c e i n t h e jack-l e g , as i l l u s t r a t e d by Case I .
However, t h e a , c t u a l system w i l l be
mGre
s l u g g i s h t h a n shown i n Case 1 because considerab1.e t i m e w i l l be r e q u i r e d
f o r t h e f e e d t a n k o u t l e t flow r a t e t o become c o n s t a n t d u r i n g start-up,
even though it i s not a f f e c t e d by v a r i a t i o n s i n Lhe column and s a l t jackleg.
It i s b e l i e v e d t h a t t h e a c t u a l system will f u n c t i o n we1.3. s i n c e
t h e s i m u l a t e d system w a s s t a b l e and performed s a t i s f a c t o r i l y i n a l l the cases considered.
53
Joikleq Diomrler 2251n \I
'0
5
-1- ......1 10 15
1..........I... 25
20
.
I
30
6"
35
T ~ m t( r e e l
L
40
l...~ ...... I . I ........1.......... 45 50 55 60 65
70
......
ci5
P i g . 20. E f f e c t of J a c k l e g and T'ransfer Line Diameter on F l o w B a t e to Column and Column Holdup. Upper curves are f o r a l/b-in.-diam l i n e , arid lower curves aye for a 3/8-in.-diCm l i n e .
I'
.-
a C U
c-
;
r.
3
c
-
C
2
a C
I
55
r
-
7
56
7.
CALIBRATION OF AN ORIFICE--HEAD POT FLOhJMETER WITH MOLYEN SALT AND BISTJUTH 6 , A. h m n a f o r d
C. Id. Kee
Use of an orifice-head
p o t flowmeter, d e s c r i b e d p r e v i o u s l y , 6 i s
being c o n s i d e r e d for d e t c r m i n i n g f l o w r a t e s f o r molten s a l t and bismuth streams i n systems used i n e n g i n e e r i n g development work.
S i n c e t h e fJ-or~.-
m e t e r s under c o n s i d e r a t i o n a r e not of a s t a n d a r d d e s i g n , experimental d e t e r m i n a t i o n o f t h e o r i f i c e d i s c h a r g e c o e f f i c i e n t i s i n p r o g r e s s . 'I
A d d i t i o n n l c a l i b r a t i o n d a t a were obtaj-ned d u r i n g b o t h s t e a d y - s t a t e s n d t r a n s i e n t experiments w i t h molten s a l t and bismuth i n a flowmeter
ha-ving a 0.118-in.-dia.m
Results of t h e s e t e s t s a r e g i v e n i n
orifice.
t h e remainder o f t h i s s e c t i o n ,
The d a t a s u g g e s t t h a t t h e o r i f i c e d i s -
charge chamber. w a s flooded p a r t o f t h e t i m e ; t h i s would prodirce a sig-
n i f i c a n t e r r o r i n t h e measus-ed p r e s s u r e drop across t h e o r i f i c e .
The
remaining d a t a appear t o have been o b t a i n e d under c o n d i t i o n s WheY"e t h e
I n f u t u r e experiiiie:nts, the o r i f i c e - -
d i s c h a r g e chamber was not f l o o d e d .
head p o t and d i s c h a r g e chamber w i l l be p r e s s u r i z e d t o e n s u r e t h a t t h e o r i f i c e d i s c h a r g e chamber does n o t f i l l w i t h Liquid.
7.1.
Data from Steady-State Flow Experiments
Three c a l i b r a t i o n experiments were made i n which a s t e a d y bismuth flow was maintained through t h e m i l d - - s t e e l head p o t , and. one experiment
w a s c a r r i e d o u t w i t h a s t e a d y s a l t flow.
a r e g i v e n i n Tables 3 and
4. The
R e s u l t s from -these experiments
d a t a f o r s a l t flaw appear t o i.ndica.te
t h a t h i g h e r o r i f i c e c o e f f i c i e n t s a r e a s s o c i a t e d w i t h h i g h e r Reynolds
numbers.
The Val-ues f o r t h e o r i f i c e c o e f f i c i e n t a l s o appear t o approach
a c o n s t a n t val-ue n-t high l3eynol.d.s numbers.
d e f i n e d as
--
QP
cD-AfzGy
'The o r i f i c e c o e f f i c i e n t i s
Table
F1ow Rate (rill ! m in )
3. Orifice Ijischarge C o e f f i c i e n t Data Obtained with Salt Flow During R i m OP-5
132
Ori r i c e
P e r i o d of Ste:idy Flow
278
0.28
8.3
515
0.36 0.37
Reynolds Number a
407
194 245 29 6
Coefficient
0.31r
623
(min)
5.3
4.3
3 .‘7
a Based or? o r i f i c e di:meter.
Tzb.Le
-
4.
O r i f i . c e Discharge C o e f f i c i e n t Data Obtained w i t h B i s r m t h Flow Flow Rate
(ml/min )
-Fur! ,7L’-
185
12070
182
I 1840
1.27
jp-6
256
330 282
175
222
397 368 a Eased
or1
Reynolds Number a
8283
1.6644 18870 18363
11410 1L4It 0 25830
23940
o r i f i c e diameter.
Orifice
Ccef fI.c ient
0.77 0.68 0.76 0.74 0.8110.81
Period O Y
Steady Flow (minj
3.75
3.7 6.7 1.7 3
8.2
0.734
13
1.114 0.773
1
0.773
9 3
whei-e
CD = o r i f i c e c o e f f i c i e n t , Q = l i q u i d flow r a t e ,
p = d e n s i t y of l i q u i d ,
A = c r o s s - s e c t i o n a l area. of t h e o r i f i c e , hP = p r e s s u r e drop a c r o s s o r i f i c e .
Data from t h e experiment w i t h bismuth flow do not show t h e t r e n d
observed w i t h salt flow; however, t h e Reynolds numbers d u r i n g t h e s e ex-
periments are about two orders of magnitude h i g h e r t h a n i n t h e experimen-t
with salt.
One of t h e cal.cula.ted v a l u e s f o r t h e o r i f i c e c o e f f i c i e n t
( l . . l l h ) i s much h i g h e r t h a n expected.
This higher value i s believed t o
b e t h e r e s u l t of t h e o r i f i c e d i s c h a r g e I.ine b e i n g filled w i t h bismu-Lh,
which l e d t o a decreased p r e s s u r e below t h e o r i f i c e .
7.2 Data from T r a n s i e n t Flow Experiments R e s u l t s are shown i n F i g . 23 f o r a n experiment (OP-5) i n which
dyainage o f s a l t from t h e o r i f i c e - - h e a d
p o t was observed.
A s seen i n
e a r l i e r experiments, t h e o r i f i c e c o e f f i - c i e n t a p p e a r s t o d e c r e a s e as the p r e s s u r e drop a c r o s s t h e o r i f i c e d e c r e a s e s .
This i s believed t o r e s u l t
from submergence of t h e o r i f i c e . Some o f -the d a t a o b t a i n e d d u r i n g di-ainage of bismuth from t h e o r i f i c e - head p o t are shown i n F i g . 211.. These d a t a i n d i c a t e lower v a l u e s than expected f o r t h e o r i f i c e c o e f f i c i e n t .
The lower v a l u e s a r e probab1.y caused
by t h e f i l l i n g o f t h e o r i f i c e d i s c h a r g e chamber. The remainder of t h e d a t a o b t a i n e d d u r i n g d r a i n a g e of bismuth from
t h e head p o t i s shown i n F i g . 25. These d a t a a r e b e l i e v e d t o b e more r e l i a b l e t h a n those shown i n Fig.
24.
The values f o r tile o r i f i c e d i s -
c h a r g e c o e f f i c i e n t a r e i n good agreement w i t h t h e expected v a l u e s and w i t h each o t h e r .
E CL
cd I
$ e
C
2 I
1
0
%t (u
L/
0 0 N
I
I
0
‘D
59
I
E?
0
I
0 a,
I
0
0
.
c
E
E .-
v
E .-
I-
60
O R N L - OWC-YO-11063
320
I
I
I
I
I
1 -
B)
a
L
00 + 0 0
a: 40U
a
D v)
I -
OO
0.5
I
I
I
I
1.0
1.5
20
2.5
Time [ niin )
I
3.0
u 3.5
4 .O
Fig. 2h. Qata Obtained During D r a i n a g e of Bismuth from Orifice-.H e a d P o t Having a n O r i f i c e Diameter o f 0.118 i n .
61
-(u
ORNL D W G 70-l1056
"E 2 4 0 V \
u)
Q)
c
*
0
0,
2Q0
.-V
* I-
L
0 v, v)
160
0
L
0
a
a 0 I20 L
n Q, L
3
u)
80
Q)
L
a Y-
O 4-
40
0 0
LIT W
L
0 3
W
cn
0
0
0.5
P .O
Time (rnin)
1.5
2.o
i. g . 25. Data Obtained During Drainage of Bi.saiuth from O r i f i Bend p o t [laving an G r i . f i c e n i n n i e t e r of 0.118 in. L-,
I
â&#x201A;Ź2
8,
ELECTROLYTIC CELL DEVELOPMENT :
.
J . R . Hightower, Jr L. E. McNeese
ST'A'I'IC CELL EXPERIMENTS M. S. Lin
The proposed flowsheet for p r o c e s s i n g a m o l t e n - s a l t b r e e d e r r e a c t o r
recpj.res t h e u s e of e l e c t r o l y t i c c e l l s f o r r e d u c i n g l i t h i m - and thor4im f l u o r i d e s a t a bismuth cathode and for oxiclizing m a t e r i a l s from bismuth s o l u t i o n s a t a bismuth anode.
Two experiments r e l a t e d . t o c e l l develop-
ment were made i n a h-in.-diam
quartz c e l l .
I n t h e f i r s t , c u r r e n t was
passed between two molybdeniim e l e c t r o d e s t o determine whether t h e u s u a l d a r k material wou1.d be formed when bismuth w a s not p r e s e n t i n tile system.
The second experiment was a t e s t o f a porous carbon anode having a much
h i g h e r g a s p e r m e a b i l i t y t h a n t h e g r a p h i t e anode t h a t had been used i n an earl.i.er experiment in which poor r e s u l t s had. been o b t a i n e d .
It was
believed. t h a t a h i g h e r gas p e r m e a b i l i t y might a l l o w removal of the C F
4
formed a t t h e anode (by flow through t h e g r a p h i t e ) and therreby p r e v e n t
t h e e l e c t r o d e s u r f a c e from b e i n g i n s u l a t e d by a layer o f t h i s materi.al..
The s a l t
(66-34 mo1.e % LiF-BeF,2 ) and bismuth were sparged w i t h H2 b e f o r e
b e i n g t r a n s f e r r e d t o t h e quartz, v e s s e l .
For t h e f i r s t t e s t , t h e d e p t h of s a l t i n t h e c e l l . w a s 3 i n . ; t h e c e l l c o n t a i n e d no bismuth. t o a dep-th of 1 i n .
The anode w a s
3
I / b i n . - d i a m molybdenim r o d immersed
zt t h e cenLer o f t h e c e l l .
The cathode w a s a 1/4.-in.
molybdenum t u b e i n s e r t e d t o w i t h i n ahout I i n . of t h e bottom of t h e c e l l and l o c a t e d about 1/2 i n . from t h e c e l l wa.l.le A q u a r t z t u b e surrounded
t h e c a t h o d e , and o n l y about 1/h i n . of t h e molybdenum t u b e was exposed
s i n c e i t was t o be used as t h e e 3 . e c t r i c a l l e a d i n t h e second experiment.
I n i t i a l l y , an a l t e r n a t i n g c u r r e n t o f about 2
A w a s passed between t h e
e l e c t r o d e s f o r approximately 2 min w i t h a c e l l t e m p e r a t u r e of approximately 600Oc.
A t t h e end of t h i s t , i m e , a small anounl; of black m a t e r i a l vas ob-
served near t h e e l e c t r o d e having the q u a r t z s h e a t h around i t .
c u r r e n t o f about 5 A w a s then passed between t h e e l e c t r o d e s .
A direct
There was
a r a p i d formation o f b l a c k m a t e r i a l i n t h e v i c i n i t y o f tine anode, and t h e
63
s a l t became opaque w i t h i n 1 min.
A f t e r s t a n d i n g o v e r n i g h t , most of t h e
material had s e t t l e d o u t , a l t h o u g h a f e w l a r g e p a r t i c l e s ( W 8 i n . i n d i a m e t e r ) were s t i l l . suspended i n t h e s a l t phase.
Current
( 5 A, d c )
w a s a g a i n p a s s e d , arid t h e c e l l r a p i d l y became opaque a g a i n ; t h e b l a c k m a t e r i a l t h a t formed a t t h e anode r o s e a l o n g t h e anode, s p r e a d o u t a t t h e s a l t su.rface, and d i s p e r s e d throughout t h e s a l t from t h e s u r f a c e . A.nalysis o f some of t h e s o l i d m a t e r i a l suspended i n t h e s a l t i n d i c a t e d t h a t s i l i c o n might have been p r e s e n t .
It w a s concluded from t h i s e x p e r i -
ment t h a t t h e p r e s e n c e o f bismuth i s n o t n e c e s s a r y f o r f o r m a t i o n of t h e black r a t e r i a l . A f t e r t h e t e s t w i t h t h e molybdenum e l e c t r o d e s , s u f f T c i e n t bismuth
w a s t r a n s f e r r e d t o t h e c e l l t o produ-ce a 3 - i n . d e p t h of t h i s m e t a l , and t h e molybdemm r o d a t t h e c e n t e r of t h e c e l l w a s r e p l a c e d w i t h a 1 - i n . diam porous carbon e l e c t r o d e ( d e n s i t y = 0 . 1 g / c c ) immersed t o a d e p t h
of 1 i n . i n t h e s a l t . With t h e c e l l a t 600째C,
a p o t e n t i a l of 5 V was a p p l i e d between t h e
bismuth cathode and t h e carbon anode.
4
The i n i t i a l c u r r e n t , approximately
A , decayed r a p i d l y t o a s t e a d y v a l u e of about 0.2 A ( c o r r e s p o n d i n g t o
a c u r r e n t d e n s i t y of 0.04 A/crn2, based on t h e area o f t h e end o f t h e carbon a n o d e ) .
The e e l 1 was t h e n evacuated t o an a b s o l u t e p r e s s u r e of
l e s s t h a n 29 i n . Hg w i t h o u t a f f e c t i n g t h e c u r r e n t d e n s i t y .
Sparging t h e
c e l l p e r i o d i c a l l y produced s h o r t - t e r m i n c r e a s e s i n c u r r e n t , but c o n t i n u o u s sparging d i d not h e l p appreciably.
If t h e CF
4
had escaped from t h e carbon
r e a c t i o n s u r f a c e a t a r a t e l i m i t e d o n l y by r e s i s t a n c e t o g a s flow t h r o u g h t h e porous e l e c t r o d e , a c u r r e n t d e n s i t y of 1 2 t o 29 A/cm obtained.
2
would have been
A p p a r e n t l y , a n i n s u l a t i n g f i l m of gas w a s formed on t h e anode.
A l t e r n a t i v e l y , w i t h such a h i g h p e r m e a b i l i t y , t h e s a l t may have p e n e t r a t e d t h e e l e c t r o d e a short d i s t a n c e , t h u s i s o l a t i n g t h e r e a c t i o n s u r f a c e from
t h e s a l t - f r e e porous carbon and n u l l i f y i n g t h e b e n e f i t of t h e low r e s i s t a n c e t o g a s flow o f f e r e d by t h i s material. We a r e c o n t i n u i n g experi-nients i n s t a t i c c e l l s i n o r d e r t o i d e n t i f y the b l a c k material.
We a r e i n s t a l l i n g a n all-metal c e l l -to determine whether
t h e m a t e r i a l forms i n t h e absence of s i l i c a .
64 9.
ELECTROLYTIC cmr, DEVELOPMENT: FORMATTON OF FROZEN FITIMS WITH AQUEOUS ELECTROLYTES J . R. Hightower, J r .
C . W . Kee
Formation of f r o z e n s a l t f i l m s on s t r u c t u r a l s u r f a c e s exposed t o tlie m o l t e n - s a l t e l e c t r o l y t e i n c e l - l s is b e i n g c o n s i d e r e d as a means f o r pro-
t e c t i n g t h e s e surfaces from c o r r o s i o n by BiF. produced a t t h e cell. anode. 3 A s t u d y of f r o z e n film foymation under c o n d i t i o n s s i m i l a r t o t h o s e ex-pected i n a c e l l i s i n progress.
Part, of t h e work w i l l b e c a r r i e d o u t
u s i n g an aqueous e l - e c t r o l y t e i n o r d e r t o avoid problems a s s o c i a t e d w i t h
m o l t e n salt--bismuth
systems.
Equipment h a s been i n s t a l l e d f o r s t u d y i n g t h e f o r m a t i o n o f i c e f i l m s on s u r f a c e s of a s i m u l a t e d e l e c t r o l y t i c c e l l t h a t u s e s a n aqueous s o l u t i o n r a t h e r t h a n molten s a l t as t h e e l e c t r o l y t e .
A l t e r n a t i n g current w i l l be
used t o minimize t h e e f f e c t s o f elec-Lrode reac-Lions and. mass t r a n s f e r .
The rernainder o f t h i s s e c t i o n will d e s c r i b e t h e equipment t h a t has
been b u i l t , and outI.ine a mathematical a n a l y s i s f o r u s e i n d e s i g n i n g c e l l s and i n t e r p r e t , i n g r e s u l t s .
9 . 1 Mathematical Anal.ysis
- One
Average Current D e n s i t y _ a n d Power D i s s i p a t i o n .
conceptual
d e s i g n f o r an e l e c t r o l y - t i c c e l l c o n s i s % s of flowing molten bismuth electrod.es ( a l t e r n a t e l y anodic and cat1iodi.c ) i n long, narrow t r a y s
t h a t are c l o s e l y spaced and a r e submerged i n t h e e l e c t r o l y t e .
The
d i v i d e r between t h e e l e c t r o d e s inus-L be e l e c t r i c a l 1 . y i n s u l a t i n g , and t h e t o p edge o f it must be pro.tected from c o r r o s i o n by a f l . I m of
frozen s a l t . F i g u r e 26 i s a diagram of a half-anode--half-cathode
combination
and shows a conveni-en-L i d e a l i z a t i o n of an a c t u a l c e l l t h a t w i l l be ? x e d i n c e l l design.
The c u r r e n t i s assumed t o be c o n f i n e d t o an e l e c t r o l y t e
r e g i o n bounded by t h e f r o z e n f i l m a t a r a d i u s of
i-
1
and by a h y p o t h e t i c a l
I-
I
W
66 insiil.ating s u r f a c e a t a r a d i u s of r electrode t r a y ) .
2 (which i s h a l f t h e width of a n
A c o o l i n g t u b e of r a d i u s r
0
i s positioned a t t h e
t o p of t h e e l e c t r o d e d i v i d e r and i s covered w i t h a f r o z e n f i l m of thickness r insulating.
1
-
r
0'
The c o o l i n g t u b e i s assumed t o be e l e c t r i c a l l y
The c u r r e n t d e n s i t y i n t h e conductirlg r e g i o n i s g i v e n by Ohm's
1-aw as:
where
+-
3 = v e c t o r c u r r e n t d e n s i t y , A/m
+
2
E = v e c t o r e l e c t r i c f i e l d s t r e n g t h , V/m, ohm-l -1 g = conductivi.ty o f t h e e l - e c t r o l y t e , m
.
With no s o u x e s of emf i n t h e conducting r e g i o n , t h e f i e l d s t r e n g t h i s d e r i v a b l e from a s c a l a r p o t e n t i a l : 8
E = -grad U>,
(32)
-f
where U = electric potential, V,
grad U = gradient of U. I n c y l i n d r i c a l p o l a r c o o r d i n a t e s , Eq. ( 3 2 ) becomes
E
-f
au
= (a - + a -+
r ar
+-
1
au
--), 0 r 36
(33)
+ -+ r and 2 d i r e c t i o n s r e s p e c t i v e l y . where a and a a r e u n i t v e c t o r s i n t h e r 0 S u b s t i t u t i o n of E q . ( 3 3 ) i n t o E q . (31) yie1.d.s t h e r e l a t i o n
I n t h e c o n d u c t i n g r e g i o n , i f one assumes t h a t g i s c o n s t a n t ,
a
t h e po-
t e n t i a l U satisfies t h e d i f f e r e n t i a l equation 2
V TJ = 0 ,
(35 1
which may be s t a t e d i n c y l i n d r i c a l p o l a r c o o r d i n a t e s as f o l l o w s :
r
a ( r 5) au + -a2u = ar
0.
ae2
(36)
The boundary c o n d i t i o n s assumed for t h e model shown i n F i g . 26 are: 1.
The radial c u r r e n t component a t r = r
2.
The r a d i a l c u r r e n t component r
3.
The p o t e n t i a l a t t h e anode
(e
=:
r
u
= Vl
(1 -
i s 0 , so t h a t
i s 0 , so t h a t
= 0 ) is V
a t t h e c a t h o d e ( 0 = n ) is 0 .
Equation (37 ) ,
2
1
1'
and t h e p o t e n t i a l
0 --I,
(37)
< r L r 2 and 0 < e < IT/^ (36) in t h e r e g i o n r1 end s a t i s f i e s t h e boundary c o n d i t i o n s . S u b s t i t u t i o n of Eq. (37) i n t o j s a s o l u t i o n t o Eq.
Pq. ( 3 4 ) r e s u l t s i n t h e f o l l o w i n g e q u a t i o n f o r c u r r e n t d e n s i t y :
From Eq. (38)
it; c a n be seen t h a t c u r r e n t f l o w s o n l y i n t h e a n g u l a r
d i r e c t i o n ; t h e r a d i a l component i s everywhere z e r o .
T h i s r e l a t i o n will
be used t o c a l c u l a t e t h e average c u r r e n t d e n s i t y i n t h e c e l l and t o c a l c u l a t e t h e power Loss due t o t h e r e s i s t a n c e of t h e e l e c t r o l y t e .
68 The power l o s s can be c a l c u l a t e d by i n t e g r a t i n g t h e s p e c i f i c power d i s s i p a t i o n over t h e volume of t h e c e l l .
The s p e c i f i c power d i s s i p a t i o n
i s g;iven by:
P = 1.g J2, i n w/m 3 , where J i s t h e magnitude o f t h e c u r r e n t d e n s i t y ; and t h e t o t a l power d i s s i - p a t i o n i s g i v e n by
=j
p dV,
P
V
where V i s t h e volume of t h e r e g i o n c a r r y i n g c u r r e n t .
P2 3 d r
d e n s t t y i s g i v e n by
Javg = r where R
In
= (r2
-
2
- r1
The average c u r r e n t
gV I
n.
.irR
In
'
(41.)
r l ) / l n (r /r ). 2
1.
The power d i s s i p a t e d i n t h e c e l l i s c a l c u l a t e d from Eq. ( 4 0 ) and i s g i v e n by :
(42) where H
avg
= 1/2(r2 +
rl).
~f a c o o l a n t a t temperature T
C
( T ~< T f , t h e f r e e z j n g t e m p e r a t u r e of
t h e e l e c t r o l y t e ) flows t h r o u g h t h e c o o l i n g t u b e a l o n g t h e e l e c t r o d e d i v i d e r ,
a f r o z e n f i l m w i l l form and grow u n t i l t h e t o t a l r e s i s t a n c e t o h e a t flow
f r o m t h e b u l k of t h e e l e c t r o l y t e c a u s e s t h e r a t e a t which h e a t flows into
t h e t u b e t o be e q u a l to t h a t a t which h e a t i s c a r r i e d away by t h e c o o l a n t . A t s t e a d y s t a t e , t h e h e a t c a r r i e d away wi1.1. b e e q u a l t o t h a t g e n e r a t e d i n
the b u l k of t h e e l e c - t l ' o l y t e , mi.nus t h a t l o s t through o t h e r s u r f a c e s ( e . g . , t h e t o p s u r f a c e of t h e e l e c t r o l y t e ) .
For t h e s e c a l c u l a t i o n s , w e w i l l
assume t h a t a known f r a c t i o n of h e a t g e n e r a t e d i n t h e semiannular r e g i o n and r ( s e e F i g . 26) i s removed through t h e c o o l i n g t u b e . We 1 2 w i l l assume t h a t a l l h e a t flow through t h e f r o z e n f i l m and t u b e w a l l i s between r
i n the radial direction.
W e w i l l a l s o assume t h a t t h e r e s i s t a n c e t o h e a t
flow through t h e t u b e wall and t h r o u g h t h e c o o l a n t i s n e g l i g i b l e when
compared t o t h e r e s i s t a n c e t o h e a t f l o w through t h e f r o z e n f i l m on t h e outside of the tube,
Under t h e s e assumptions, t h e e q u a t i o n r e l a t i n g t h e
frozen film thickness t o t h e heat generation i s :
where Q = h e a t t r a n s f e r r e d through t h e frozen f i l m , W,
L = l e n g t h of c o o l i n g t u b e , cm, T~ = f r e e z i n g t e m p e r a t u r e of e l e c t r o l y t e ,
Oc,
k = t h e r m a l c o n d u c t i v i t y of t h e f r o z e n f i l m , IJ/째C-cm,
'rC r
0
= t e m p e r a t u r e of c o o l a n t ,
Oc,
= o u t s i d e r a d i u s of c o o l a n t t u b e , cm,
t = f r o z e n f i l m t h i c k n e s s , em.
Equations (hl), ( I - c ~ ) , and ( 4 3 ) a r e o n l y approximate and. t h u s c a n be
u s e d only as guides i n t h e d e s i g n of equipment and f o r p r e d i c t i n g i t s performance
9.2 Coolant System. - A P i g . 27.
Experimental Equipment flow diagram of t h e c o o l a n t system i s shown i n
T h i s system c o n s i s t s of c o o l i n g t u b e s ( t h a t p a s s through t h e
e l e c t r o l y t i c c e l l ) f o r removing h e a t from t h e c e l l , a c h i l l e r for removing
t h i s h e a t from t h e system and c h i l l i n g t h e c o o l a n t ( t r i c h l o r o e t h y l e n e )
below t h e f r e e z i n g p o i n t of w a t e r , a pump t o r e c i r c u l a t e t h e c o o l a n t , and
Q
E
71 flowmeters and valves t o c o n t r o l t h e flow.
There are t h r e e c o o l a n t c i r -
c u l a t i n g loops t h a t a l l o w t h e t e m p e r a t u r e o f t h e c o o l a n t a t t h e c e l l i n l e t and t h e flow r a t e o f t h e c o o l a n t t h r o u g h t h e c e l l t o b e a d j u s t e d indepeadent ly
.
The c h i l l e r c o n s i s t s of a 55-gal s t a i n l e s s s t e e l drum c o n t a i n i n g a
c o i l made o f 50 f t o f 3/4-in.-diam i n a trichloroethylene--dry
a t l e a s t as Low as -5O*C.
copper t u b i n g .
The t u b i n g i s immersed
i c e b a t h , t h e t e m p e r a t u r e o f which should b e
Dry i c e w i l l be added a t a r a t e of 0.24 l b p e r
minute p e r k i l o w a t t o f h e a t g e n e r a t e d by t h e c e l l and pump.
Experimental C e l l Vessel.-- The f i r s t c e l l v e s s e l t o be used i n t h e s e experiments i s made of P l e x i g l a s and c o n t a i n s two t r a y s 1 2 i n . l o n g x 2 i n . d e e p ) s e p a r a t e d by a l / b - i n . - t h i c k
w i l l c o n t a i n mercury pools f o r e l e c t r o d e s .
(1-7/8 i n a
wide
x
divider; t h e trays
A diagram of t h e c r o s s s e c t i o n
of t h e c e l l i s shown i n F i g . '28; a photograph of t h e c e l l v e s s e l i n s t a l l e d
i n t h e c o c l i n g l o o p i s shown i n F i g . 29.
The wider s e c t f o n s a t each end
OS t h e c e l l v e s s e l accommodate i n s t a l l a t i o n o f t h e c o o l i n g t u b e s .
The
maximum h e a t g e n e r a t i o n r s t e o f i n t e r e s t c o r r e s p o n d s t o a n average c u r r e n t d e n s i t y of
5 A/cm2 i n molten s a l t having a r e s i s t i v i t y
16-12 mole
%
of
0.65 o h - c m
('72-
LiF-BeF2-ThFlc) a t 600"~. For ICBr o r KI s o l u t i o n s (27 zlnd 33
w t $, r e s p e c t i v e l y ) a r e s i s t i v i t y of about
a f r e e z i n g p o i n t of -1O'C.
8 o:m-cm can h e o b t a i n e d w i t h
With t h e s e s o l u t i o n s , t h e h e a t g e n e r a t i o n r a t e
of" i n t e r e s t cou.1d be o b i a i n e d w i t h an average c u r r e n t d e n s i t y of about 1.5 A/cm 2 C a l c u l a t i o n s show t h a t , i f t h i s h e a t i s removed through t h e
.
e l e c t r o d e d i v i d e r c o o l i n g t u b e , an i c e f i l m having a t h i c k n e s s of o n l y
about 0.05 i n . w i l l f o m .
Consequently, o t h e r c o o l i n g t u b e s were added
a l o n g t h e walls of t h e c e l l v e s s e l t o reduce t h e h e a t load on each t u b e .
I n an a c t u a l e l e c t r o l y t i c c e l l
p r o t e c t i o n also.
9.3
t h e s e s u r f a c e s would r e q u i r e c o r r o s i o n
Expected Mode of O p e r a t i o n
Temperature measurements of t h e e l e c t r o l y t e , e l e c t r o d e s , and c o o l a n t
f l u i d , and measurements o f c u r r e n t and v o l t a g e , w i l l be made i n o r d e r t o
72
b DWG '70-4541
AQUEOUS ELECTROLYTE SOLUTION
-COOLING TUBES
Fig. 28. D i a g r a m of Cross S e c t i - o n of Electrclytic Cell to Ae Used w i t h Aqueous Electrolytes i n Stud3-ing F o r m a t i o n o f Ice F i l m s .
EL
74 make energy b a l a n c e c a l c u l a t i o n s on t h e system.
Measurements of t h e
amount of h e a t t h a t i s removed by each c o o l i n g t u b e should a i d i n d e t e r m i n i n g h e a t g e n e r a t i o n rates a t v a r i o u s p o i n t s i n t h e c e l l . The c e n t e r t u b e w i l l have t h e g r e a t e s t h e a t removal r a t e and t h e thinnest i c e f i l m .
Observations o f f r o z e n f i l m t h i c k n e s s , shape, and
s t a b i l i t y w i l l b e made.
I n a d d i t i o n , q u a l i t a t i v e o b s e r v a t i o n s w i l l be
made of t h e b e h a v i o r o f t h e i c e l a y e r below t h e s u r f a c e of t h e m e t a l electrodes.
10. DEVELOPMENT OF A BISMUTH--MOLTEN SALT INTERFACE DETECTOR J . Roth
*
L. E. McNeese
An i n t e r f a c e d e t e c t o r based on t h e p r i n c i p l e of eddy c u r r e n t generat i o n i n l i q u i d metals i s b e i n g developed f o r u s e a t molten s a l t - - l i q u i d bismuth o r gas-liquid
bismuth i n t e r f a c e s .
It i s d e s i r e d t h a t a l l s u r f a c e s
c o n t a c t i n g bismuth be made o f a r e f r a c t o r y metal such as molybdenum; however, t h e s e materials have a r e l a t i v e l y low e l e c t r i c a l p e r m e a b i l i t y , which makes t h e i r use d i f f i c u l t .
The d e v i c e under development i s a m o d i f i c a t i o n of a
l i q u i d - l e v e l i n d u c t i o n probe developed a t Argonne N a t i o n a l Laboratory 9 and h a s been d e s c r i b e d p r e v i o u s l y . â&#x20AC;?
The d e s i g n of t h e i n d u c t a n c e c o i l
h a s been modified so t h a t a l l l e a d wires are a c c e s s i b l e from one end; t h i s s i m p l i f i e s t h e replacement o f l e a d w i r e s . 10.1
T e s t i n g and M o d i f i c a t i o n of E l e c t r o n i c C i r c u i t P r i o r t o I n s t a l l a tion
I n i t i a l t e s t i n g of t h e e l e c t r o n i c c i r c u i t p r i o r t o i n s t a l l a t i o n e s t a b l i s h e d t h e need f o r several m o d i f i c a t i o n s .
An a t t e m p t w a s made t o
e s t a b l i s h component c o m p a t i b i l i t y u s i n g t h e expected materials of construction.
Core m a t e r i a l s t e s t e d i n t h e i n d u c t a n c e c o i l i n c l u d e d aluminum,
Woods m e t a l , and bismuth, i n a i r , i n a 304 s t a i n l e s s s t e e l s i g h t tube,and i n the required
n
347 s t a i n l e s s steel--molybdenum duplex s i g h t t u b e
On l o a n from Combustion Engineering.
that is
75 d e s c r i b e d below.
The m o d i f i c a t i o n s involved changes i n s i g n a l ampli-
f i c a t i o n , as w e l l a s s t a b i l i z a t i o n of t h e s i g n a l r e c e i v e d from t h e detection coil.
The e l e c t r o n i c a m p l i f i c a t i o n f a c t o r w a s f i r s t i n c r e a s e d by a f a c t o r
of 1 0 , which %hen n e c e s s i t a t e d replacement of t h e dc a m p l i f i e r w i t h one g e n e r a t i n g a "(:leaner"
signal.
A f t e r t h e s e m o d i f i c a t i o n s had been com-
p l e t e d , it w a s found t h a t , w i i h t h e 347 s t a i n l e s s steel--molybdenum
sight
Lube, i n s e r t i o n o f a Woods metal r o d i n t o t h e c o i l caused a pen d e f l e c t i o n of 90% of f u l l s c a l e ,
I n s e r t j o n o f a bismuth r o d i n t o t h e c o i l caused a
pen d e f l e c t i o n o f o n l y
24% of
F u l l s c a l e ; however, t h i s d e f l e c t i o n i s
b e l i e v e d t o be s u f f i c i e n t l y h i g h if t h e s i g n a l - t o - n o i s e increased.
r a t i o can be
Toward t h i s end, several a d d i t i o n a l m o d i f i c a t i o n s were made.
All e l e c t r i c a l lead wires were s h i e l d e d .
The d e t e c t o r c o i l w a s s h i e l d e d
from t h e f u r n a c e element by a sched 40 t y p e 347 s t a i n l e s s s t e e l p i p e , which e s s e n t i a l l y e l i n i i n a t e d induced s i g n a l s g e n e r a t e d by t h e f u r n a c e element.
A I 1 segments of t h e e l e c t r o n i c c i r c u i t were connected t o a common ground,
which reduced t h e s i g n a l v a r i a t i o n s caused by d i r f e r i n g ground p o t e n t i a l s . Al.1 e l e c t r o n i c components, w i t h t h e e x c e p t i o n of t h e f u r n a c e element, were
connectcd t o a l-kva
Sola constant-voltage transformer.
F i n a l t e s t i n g of
t h e system at room t e m p e r a t u r e r e v e a l e d t h e p r e s e n c e o f a 2-V impressed s j g n a l t h a t ( c o u l d n o t be e l i m i n a t e d e l e c t r o n i c a l l y .
T h i s s i g n a l w a s found
t o be dependent on l e a d w i r e l o c a t i o n and was e l i m i n a t e d by p ~ o p e r -p l a c e -
ment of t h e l e a d w i r e s .
Upon completion of t h i s phase of t h e work, it was
found t h a t n o i s e l e v e l had been reduced from about 20% of f u l l s c a l e t o
&out
6% of f u l l s c a l e .
T e s t i n g o f t h e system a t t e m p e r a t u r e s above room t e m p e r a t u r e w a s
t h e n s t a r t e d by f Y r s t h e a t i n g t h e coil s l o w l y t o about ?5OoC i n an
a t t e m p t t o dl-y o u t t h e d e t e c t o r c o i l and t o determine t h e e f f e c t s o f b o t h
h e a t and c u r r e n t flow t h r o u g h t h e f u r n a c e c o i l s on bhe d e t e c t o r c o i l .
f o l l o w i n g c o n c l u s i o n s were drawn as a result of these t e s t s : 1.
Loss o f ground c o n n e c t i o n t o t h e s t a i n l e s s s t e e l f u r n a c e s h i e l d caused a pen d e f l e c t i o n o f 9% o f f u l l s c a l e .
i n d i c a t e s t h e need for good ground c o n n e c t i o n s on a l l
p o r t i o n s o f t h e system,
This
The
2.
The r e c o r d e r r e s p o n s e s r e s u l t i n g from f u l l inser-Lion of a bismuth rod i n t o t h e det,ector c o i l were
11%
and 20% o f f u l l
s c a l e a t mom t e m p e r a t u r e and a t 220째C, r e s p e c t i v e l y . These d a t a i n d i c a t e t h a t t h e s e n s i t i v i t y of t h e s y s t a i i n c r e a s e s w i t h i n c r e a s i n g tempera-t-ure and t h a t a f u l l - s c a l e pen d e f l e c t i o n might be
observed at. t h e 0pera.tin.g t e m p e r a t u r e of 600째C.
However, t k e l e c t r i c a l
p r o p e r t i e s of bismu-Lh e x h i b i t a d i s c o n t i n u i t y a t t h e m e l t i n g p o i n t , which
It w a s d e c i d e d t o modify t h e e l e c t r o n i c
may d e c r e a s e t h e s e n s i t i v i t y .
c i r c u i t such t h a t t h e o u t p u t stgnal. w i l l . b e a;mpl.ified by an a d d i t i o n a l f a c t o r o f 10, The opiirnum c o i l o p e r a t i n g frequency i n c r e a s e s w i t h i n c r e a s i n g t e m p e r a t u r e ; however, t h e corresponding o u t p u t s i g n a l d e c r e a s e s with i n c r e a s i n g frequency. frequency.
I n a d d i t i o n , t h e e l e c t r o n i c z e r o i s a l s o dependent on the
A t room t e m p e r a t u r e , t h e optimum frequency w a s
o u t p u t o f 8 V was observed.
A t 450 t o 5OO0C t h e optimum fr.eqi.iency was
59 kIIz, w i t h a corresponding o u t p u t of 6 V .
over a p e r i o d of t i m e .
47 kHz, and
an
The e l e c t r o n i c z e r o d r i f t e d
A Zener d i o d e feedback c i r c u i t w i l l be i n s t a l l e d
i n t h e system i n a n a t t e m p t t o s t a b i l i z e i t . 10.2
F a b r i c a t i o n of S i g h t Tube
The second a t t e m p t by t h e Me'Lals and Ceramics D i v i s i o n t o c o a t t h e i n t e r n a l s u r f a c e of a O.5OO-in.-diam
ty-pe 347 s t a i n l e s s s t , e e l t u b e w i t h
0.005 .Lo 0.010 i n . of t u n g s t e n by chemical vapor d e p o s i t i o n was successful.
However, r e p e a t e d a t t e m p t s t o c o a t t h e e x t e r n a l s u r f a c e of t h e t u b e
f a i l e d because of an i n a b i l i t y t o produce a c o n t i n u o u s bond between t h e i n t e r n a l and e x t e r n a l c o a t i n g s .
F a i l u r e of t h i s t e c h n i q u e
'LO
establish
a s u i t a b l e bond between the two s u r f a c e c o a t i n g s was a t t r i b u t e d to the
high s t r e s s l e v e l s t h a t are i n h e r e n t w i t h t h i s t y p e o f j o i n t .
These
s t r e s s l e v e l s a r e caused p a r t i a l l y by t h e d i f f e r e n t i a l t h e r m a l expansion c h a r a c t e r i s t i c s of t u n g s t e n and s t a i n l e s s s t e e l and partia.1I.y by t h e f a i l u r e o f t h e vapor-deposited t u n g s t e n t o bond t o t h e s t a i n l e s s s t e e l substrate.
t h i s method.
No f u r t h e r a t t e m p t s w i l l be made t o p r e p a r e si.ght t u b e s by
77 The s i g h t t u b e s r e q u i r e d f o r t h e t e s t a p p a r a t u s have been produced by machining tlie e x t e r n a l s u r f a c e s of s e v e r a l 36-in.-long
p i e c e s of
molybdenum t u b i n g , which were o r i g i n a l l y 0,375 i n . OD w i t h a 0.040-in. w a l l , t o produce a w a l l t h i c k n e s s of 0.02 i n .
Although t h i s t h i c k n e s s
i s considerably greater than anticipated, tests indicate t h a t s a t i s f a c t o r y
r e s u l t s can s t i l l be o b t a i n e d .
11
e
COMTINUOUS SALT PURIFICATION
R. B. Lindauer E . 1,. Youngblood L. E . McNeese Molten s a l t f o r t h e MSRE and f o r development work i s p r e s e n t l y p u r i f i e d from contaminants (mainly s u l f i d e s , o x i d e s , and iron f l u o r i d e ) by a
b a t c h process."
The t o t a l . c o s t of s a l t ( n a t u r a l l i t h i u r n ) t h u s produced
has m o u n t e d t o about $1600/ft3, o f which l e s s t h a n 40% i s m a t e r i a l c o s t ,
In - 4 p r i l 1968, a commercial vendor b i d $ 2 6 6 0 / f t -3 on a 280-ft 3 q u a n t i t y .
It i s b e l i e v e d t h a t t h e labor c o s t s c o u l d be reduced c o n s i d e r a b l y by use
or" a continuous p r o c e s s for t h e most time-consuming o p e r a t i o n (hydrogen r e d u c t i o n of i r o n f l u o r i d e ) .
Although t h e removal of s u l f i d e s and oxides
by t h e b a t c h p r o c e s s is f a i r l y r a p i d , a 4 d i t i o n a l advantages would probably b e g a i n e d by performing t h i s o p e r a t i o n c o n t i n u o u s l y . P r e l i m i n a r y experiments on t h e r e d u c t i o n of i r o n f l u o r i d e i n molten
s a l t weye performed by MIT P r a c t i c e School s t u d e n t s i n 1968 w i t h encouraging
results.
A s u b s t a n t i a l r e d u c t i o n i n t h e c o n c e n t r a t i o n of i r o n f l u o r i d e w a s
o b t a i n e d , a l t h o u g h most of t h e o p e r a t i o n w a s c a r r i e d o u t a t l e s s t h a n 2% o r the calculated flooding rate.
For t h e p r e s e n t s t u d i e s , t h e column d i a m e t e r
has been reduced from 3.375 i n . t o 1.38 i n . ( 1 . 2 5 - i n . , al-low o p e r a t i o n nearez. t h e f l o o d i n g point;. i s packed w i t h
1 / 4 - i n . Haschig r i n g s .
supply p u r i f i e d hydrogen, a r g o n , and t o o p e r a t e a t t h e higher r a t e s .
the system.
sehed
40 p i p e )
to
The column is 81 i n . l o n g and
Equipment h a s been designed t o
HF gas i n s u f f i c i e n t q u a n t i t i e s
Figure 30 i s a s i m p l i f i e d flowsheet of
Molten s a l t i s charged Co tlie r e c e i v e r t.ank and t h e n t r a n s -
f t , r r e d v i a p r e s s u r i z a t i o n t o t h e f e e d t a n k , which 5s e l e v a t e d about 5-1/2
78
f t t o red.uce
t h e argon p r e s s u r e r e q u i r e d t o r e e d s a l t t o t h e coli.lmn.
The s a l t feed r a t e i s eon-troll.ed by a d j u s t i n g the argon flow rz1;e t o
I n o r d e r t o 1.imi.t t h e s t r e s s on t h e f e e d t a n k , the t a n k
t h e feed. t a n k .
i s m a i n t a i n e d a t 650Oc; a d d i t i o n a l h e a t i s supplled t o i : ? ~ feed l i n e t o
i n c r e a s e the t e m p e r a t u r e o f t h e s a l t t o t h e coliunn o p e r a t i n g teniperature
of 700°C.
The hydmgen i s also preheat;ed to 700°C b e f o r e 3 . t e n t e r s t h e
bottom of t h e c o l m n . throug!i
2
Hydrogen I.ea7ii.ng t h e t o p of’ t h e coli:.mn
flows
p r e s s w e c o n t r o l valve in order to m a i n t a i n t h e t;a.l.t-gss
f a c e a t t h e bottom. of t h e eal.imn below the gas i n l e t .
bottom of t h e colunn passes
first
inter-
Sa1.t l e a v i n g t h e
through a liqii..id. s e d l a o g and, t h e n ,
t’mo~ighEL f i h r o u s m e t a l filter t o remove p a r t i c u l z t e i r o n
a
The f i l t e r e d
salt p a s s e s t’nro1.1.gh a. flowing s-tiremfi ss..mpler anci i s sii’oseqiuenLly r o u t e d
t o the r e c e i v e r
Bydrogen f l u o r i d e t n a t j.s produced d u r i n g r.eduction i s
removed tiy a NaF t r a p . I n s t rumentat i o n is provided t o measure the d . i :Werenti.?in. p r e B s u r e
ilci:oss t h e coluriin, t h e p r e s s u r e u t t h e t o p oJs khe col.1.m.fi, a,nd t h e salt
head above the s d t f i l t e r .
A n a n a l y s i s for water i n the system off-
gas i s Imde d u r i n g ox.ide remova:L t o determine the r a t e a t which o x i d e
i s removed, and an a n a l y s i s f o r fl.uori.de 5.n t h i s stream i s mmde d u r i n g
i;he i.ron r e d u c t i o n s t e p
t G
provi.de a cheek on t h e r a t e of r e d u c t i o n as
i n d i c a t e d by t h e a n a l y s i s o f f i l t e r e d salt samples.
P e r i o d i c examination
of t h e f i l t e r (and p ~ s s i . % l yo f t h e column p a c k i n g ) will provide informa-
t i o n on t h e p a r t i c l e s i z e , f i l t e r a b i l i t y , and d i s p o s i t i o n o f t h e i r o n .
J. R . Hightower, Jr
1-44
.
I,. E . McNeese
R e s u l t s of f i n a l . a n a l y s e s have been o b t a i n e d f o r Li, Be, Zr, 95Zr,
Ce, ’’‘‘Pm,
155Eb, 91Y, ”ST,
(.I
9S r , and 137Cs i n t h e 1.1 condensate
samples taken d u r i n g t h e MSRE D i s t i l l a t i o n Experiment.
These r e s u l t s
(shown i n Table 5 ) have been used t o c a l c u l a t e t h e e f f e c t i v e r e l a t i v e
v o l a t i l i t y o f each component, w i t h r e s p e c t t o LiF, d w i n g t h e course 1% of t h e experiment by methods d e s c r i b e d p r e v i o u s l y .
?url i l o r a g e t a n k - l :Dnt.r analyzeGI
(Date m a i y z e 11 -1
-2
-3 -I/
-5 -6 -7 -8 -9 -10
. 1 (Datr nnx'yaed)
3 . i 8 x 109
3.11
3.2: x 1010 L 5/2/69)
3 . 7 5 x 109
3.35 x -39
(4/25/69)
F u e l stsrage tank-? CondPnsatr samples
3.14 x lo1'
3.88 4.67 6.86
ii.-A
1i.U
8.48
12.05
7.211
9 . i6
8.15
10.00
10.09 10.48
7.05
;C.39
9.93
7.82
9.2'.
8.77 9.80
8.46
13.02 Li.23
7.66
10.04
6.83 x i o 6
1 . 2 1 x 10'
2.39 x 10' 1.97 x 10'
101
8.09
IC.53
2.89 Y 10' a 1.99 x 10
8.71
4.63 x LO8
10.L9
9.83
5.11
5.26
5.77
e.11
( 5 / 2 1 / 6 9 ) (5/23/69) (5/29/69)
3.01 x 10'
4.75
x 108
~ . g xi
(7/2i/Q)
159 :lii24/691
(>/?i/69)
(4/29/69)
(~1/10/6?1
.r.6 x i o 6 1.53 x 2.78 x 2 . 2 3 x 10' 8.85 x 106
3 . 2 0 x 107
2.16
x
107
3.08 107 1.98 x A 7 6.21 Y lo7 6.90 x &07 17/2/69]
6.54
x
105
1 . 1 8 x 106 1.44 x
lo6
1.32 x 106
6.14 1.81 x 1.i5 x 1.60 x 2.29 x 6.01 x
105
106
LO'
lo6 lo6
lo6
4.10 x 1 0'
(9130169)
.2.1 x 166
( 5 . 2 x 106
9.54 x 106 5.76
x
18
100
s2.5 x 106
8.93 x 106 e.57 loL 8.75 x 106 1 . 5 6 x 10' 2.37 x 107 3.011 x 10'
(7/8/6?1
9.u 109 6.19 x 3.33 109 3 . 5 3 x LO9 3.14 109 2.61
--09
1.66 x
i09
5.91 X 10' 4.06 x LO8 2.6;
x 10'
2 . 9 6 x 10' (:'/21/69)
7.9 10.0
11.2 12.6
13.4
0.42
1.93 p.96
3.81
4.35
13.6
4.95
13.8 13.8 13.8
6.89
13.5
13.5
5.80
6.34 7.49 7.85
m
0
81 The e f f e c t i v e r e l a t i v e v o l a t i l i t y of each component, w i t h r e s p e c t t o LiF, i s shown i n F i g s . 31-34 as a f u n c t i o n of t h e volume of c o l l e c t e d
The most s e l f - c o n s i s t e n t v a l u e s were o b t a i n e d when t h e car-
condensate.
r i e r s a l t composition i n t h e f e e d was assumed t o be 65-30-5
mole
% LiF-
BcF2-ZrP’4 r a t h e r than a s l i g h t l y d i f f e r e n t composition as i n d i c a t e d by t h e a n a l y s i s of t h e s a l t from t h e f u e l s t o r a g e t a n k .
The d i f f e r e n c e be-
tween t h e a n a l y t i c a l v a l u e s and t h e v a l u e s used i s probably due t o t h e p r e s e n c e of zirconium m e t a l i n t h e f u e l s t o r a g e t a n k .
The zirconium was
f i l t e r e d a u t when t h e s a l t was t r a n s f e r r e d t o t h e s t i l l f e e d t a n k . The e f f e c t i v e r e l a t i v e v o l a t i l i t i e s of t h e major s a l t components 3eF
2
and ZrF
4
arid o f t h e f i s s i o n p r o d u c t 95ZrF
The e f f e c t i v e r e l a t i v e v o l a t i l i t y of Bel?
2’
4
a r e shown i n F i g . 31.
which was e s s e n t i a l l y c o n s t a n t
d u r i n g t h e r u n , had an average v a l u e of 3.8.
This value agrees favorably
w i t h t h e v a l u e of 3.9 r e p o r t e d by Smith, F e r r i s , and T h o ~ n p s o n ,b~u~t i s lower t h a n t h e v a l u e of
4.7 measured by Nightower and McPJeese.l4
Slight
i n a c c u r a c i e s i n c a l c u l a t i o n s ( e s p e c i a l l y t h e material b a l a n c e c a l c u l a t i o n s d e s c r i b e d e a r l i e r ) and a n a l y s e s p r o b a b l y account f o r t h e s e d i f f e r e n c e s . Tihe e f f e c t i v e r e l a t i v e v o l a t i l i t i e s o f f i s s i o n product 95Zrl?
n z t u r a l ZrF
4 are
4 and of
‘hen t h e a n a l y s i s of t h e f u e l s t o r a g e tank
i n agreement.
s s l t was used i n t h e r e l a t i v e v o l a t i l i t y c a l c u l a t i o n , t h e r e s u l t i n g r e l a t i v e v o l a t i l i t i e s of t h e n a t u r a l ZrF
va.lues f o r 95ZrFb. v a l u e near
4
4
were about a f a c t o r o f 2 lower t h a n the
F i g u r e 31 shows t h a t a ZrF4-LiF d e c r e a s e d from a n i n t i a l
a t t h e s t a r t of t h e Tun t o about 1 a t t h e end o f t h e r u n .
These v a l u e s b r a c k e t t h e v a l u e o f 2.2 measured by Smith and co-workers i n
s a l t m i x t u r e s having a ZrFk c o n c e n t r a t i o n about 2% of t h a t used i n our sy stem.
The e f f e c t i v e r e l a t i v e v o l a t i l i t i e s f o r t h e l a n t h a n i d e f i s s i o n p r o d u c t a ,
144CeI:
3’
147h F 3 ,
and 155EuF2, a r e shown i n F i g . 32.
t i v e y e l a t i v e v o l a t i l i t y of 144CeF
3
The -value of t h e e f f e c -
i n c r e a s e d s h a r p l y froin
6.1 x
-4
10
at t h e
t i m e of t h e f i r s t sample t o about 1 . 0 x I O w 2 , where it remained f o r n e a r l y all t h e subsequent samples.
x lom2 by a f a c t o r o f 3.
The fifth s a m p l e , however, w a s lower t h a n 1 . 0
The l o w i n i t i a l v a l u e was 1 . 5 to 3.4 times t h e
va.1-ue measured i n a n e q u i l i b r i u m still;’*
t h e h i g h e r v a l u e s were 24 t o
t i m e s t h e v a l u e measured i n t h e e q u i l i b r i u m s t i l l .
56
10-
I
I
I
1
I
I
I
I
I
I
I
I
0RNL.- DWG 70- 4 5 i 5 1
I
1
10-3
a >-'
r-
z! I-
a
-I
0
> W
L
s J
w
p:
A
10-2
10-4
a
10-0
I
I
1
0.86 x 1 2
I
I 3
1
-
I 4
I
6
0
n
0
0
0 <1.4 x
0
0
0
ls5Ei
10-4
I 5
1
I
6
I
I 7
I
8
LITERS CONDENSATE C O L L E C T E D
Fi.g. 3 2 . E f f e c t i v e R e l a t i v e Volatilities of 155E:u'i.'2 in the MSRE D i s t;il.lat, i.oLi E x p e i - i r ~ ~ c n t .
144CeF3, 147EmT3, and
ORNL DWG 70-4514
Y
A"%7
LITERS CONDENSATE COLLECTED
Fig. 33. E f f P c t i v e R e l a t i v e Volatilities of 91Yj'3 snri 9Osil2 in t h z I G R E Distillation Experiment.
0.l
O
1
2
3
4
5
LITERS CONDENSATE COLLECTED
6
7
Pig. 31.4. E r f c c t i v e F?elative V o l a - t i l i . t y of 137CsF in YSI?E D i s t i l l a t i o n Experiment, Showing Effect of Variation of A s s u m e d Feed Concentration.
86 The e f f e c t i v e r e l a b i v e v o l a t i . l i t y f o r 147PmF f e e d c o n c e n t r a t i o n , which i s bel.ieved t o be
3
i s based on a computed
'3
more a c c u r a t e v a l u e t h a n
t h e measu.red f e e d c o n c e n t r a t i o n ( s i n c e measured c o n c e n t r a t i o n s of o t h e r l a n t h a n i d e f i s s i o n p r o d u c t s were i n good agreement w i t h computed concent r a t i o n s and s i n c e t h e measured c o n c e n t r a t i o n i s i n d o u b t ) . A s i n t h e 1411. eF t h e r e l a t i v e v o l a t i l i t y of 14''hF,. a t t h e t i m e o f t h e case of
3'
t h a n 7.8 x
f i r s t sample w a s low--less
3.4 x
low3 for
t h e o t h e r samples.
3
it r o s e s h a r p l y t o about
r e l a t i v e v o l a t i l i t y of t h e f i f t h sample w a s low. measured v a l u e s of t h e r e l a t i v e v o l a t i l i t y o f PmF
There were no p r e v i o u s l y
3
w i t h which t o compare
It i s f n t e r e s t i n g t o n o t e t h a t when t h e e f f e c t i v e r e l a - -
these results.
t i v e v o l a t i l i t y of llr7F'mF t r a t i o n of
1 4 4 eF 3' t h e
Again, as i n t h e c a s e of
1.47
3
was c a l c u l a t e d based on t h e measured concen-
Pm i n the f u e l s t o r a g e t a n k ( i n s t e a d of a c a l c u l a t e d con-
c e n t r a t i o n ) , t h e r e l a t i v e v o l a t i l i t y v a l u e f o r each sample except t h e f i r s t near1.y c o i n c i d e d w i t h t h e r e s p e c t i v e v a l u e f o r
1 4 4CeF
3'
'
The v a r i a t i o n of t h e r e l a t i v e v o l a t i l i t y of 155EuF d u r i n g t h e Fun
1 4 4CeF, and 147PmF,. The val-ue f o r t h e f i r s t sample w a s low ( l e s s t h a n 1 . 5 x 1 0-5 ) ' b u t t h e v a l u e s
c l o s e l y p a r a l l e l e d t h e v a r i a t i o n s far
J
J
f o r a l l o t h e r samples except for t h e f i f t h sample were a g r e a t d e a l
-4
h i g h e r ( a b o u t 2.2 x 1 0 a f a c t o r of 2 . 6 .
)
.
The v a l u e f o r t h e f i f t h sample w a s lower by
These c a l c u l a t e d e f f e c i f v e r e l a t f v e v o l a t i l i t i e s (which
were based on a computed f e e d c o n c e n t r a t i o n of t h e v a l u e of l.1 x lo-'
were lower t h a n
measured i n r e c i r c u l a t i n g e q u i l i b r i u u i s t i l l s .
However, t h e v a l u e s f o r lS5Eu i n t h e condensate are s u s p e c t e d o f b e i n g i n a c c u r a t e s i n c e d i f f i c u l t y w a s experienced i n t h e a n a l y s e s ; t h e r e f o r e ,
a l l 155Eu a n a l y s e s f o r t h e condensate smples were r e p o r t e d as approximate v a l u e s ( s e e Table
5).
On t h e o t h e r hand, it i s s i g n i f i c a n t t h a t
t h e varia-Lion i n t h e r e l a t i v e v o l a t i I . i t y o f 155Eu d u r i n g t h e r u n c l o s e l y
p a r a l l e l e d t h e r e l a t i v e v o l a t i l i t i e s of "'"CeF seen l a t e r , "YF
3
and "SrF2).
3
and 147h1F
( a n d , as
3
F i g u r e 33 shows t h e e f f e c t i v e r e l a t i v e v o l a t i l i t i e s of "YF, The e f f e c t i v e r e l a t i v e v o l a t i l i t y of "YF
aria -3 average v a l u e
had ax1 3 -2 d-uring t h e r u n o f 1.14 x 1.0 , about 410 -timest h e v a l u e measured i n "SrF
2'
recirculating equilibrium s t i l l s .
The v a r i a t i o n of t h e 'lYF
3
relative
v o l a t i l i t y d u r i n g t h e r u n resembled v a r i a t i o n s i n t h e r e l a t i v e v o l a t i l i -
t i e s of t h e l a n t h a n i d e s ; t h e low v a l u e f o r t h e f i f t h s m p l e w a s t h e most n o t i c e a b l e similari t,y. During t h e r u n , t h e e f f e c t i v e r e l a t i v e v o l a t i l i t y of 90SrFg (based on t h e measured c o n c e n t r a t i o n i n t h e f e e d ) had an average v a l u e of
h.1
x lom3, which i s about 84 times Lhe v a l u e measured i n r e c i r c u l a t i n g
Although n o t shown i n F i g . 33, t h e average v a l u e
equilibrium s t i l l s .
(based on a computed c o n c e n t r a t i o n 2 i n t h e f e e d ) was 0.193, about 3900 t i m e s t h e v a l u e measured i n e q u i l i b -
of t h e r e l a t i v e v o l a t i l i t y of 89SrF
rium s t i l l s ; and t h e r a t i o of t h e 8gSr a c t i v i t y t o t h e 90Sr a c t i v i t y i n t h e condensate samples, which should have been about 0.002 f o r each sample, v a r i e d from 0.22 t o g r e a t e r t h a n LO. The c o n c e n t r a t i o n o f 137Cs i n t h e f e e d s a l t w a s n o t measured; i n s t e a d ,
c a l c u l a t i o n of t h e e f f e c t i v e r e l a t i v e v o l a t i l i t y w a s based on an e s t i mated f e e d c o n c e n t r a t i o n .
Since
has a f a i r l y long-lived gaseous
pyecursor (137Xe, h a l f - l i f e of 3.9 m i n ) , i t s a c t u a l c o n c e n t r a t i o n i n t h e s a l t w i l l be lower t h a n t h a t c a l c u l a t e d i f we assume t h a t a l l t h e pre-
c u r s o r s remained i n t h e s a l t .
A l s o , because t h e a c t u a l r e l a t i v e vola-
t i l i t y of CsF i s f a i r l y h i g h , t h e r e s u l t s of t h e c a l c u l a t i o n s of t h e e f f e c t i v e r e l a t i v e v o l a t i l i t y a r e s e n s i t i v e t o t h e assumed f e e d concent r a t i o n of 137Cs.
F i g u r e 34 shows c a l c u l a t e d r e l a t i v e v o l a t i l i t i e s of
137CsF for two assumed f e e d c o n c e n t r a t i o n s * The p o i n t s around t h e lower curve r e s u l t from t h e f e e d c o n c e n t r a t i o n t h a t would a r i s e as a conse-
qlJence of a l l p r e c u r s o r s s t a y i n g i n t h e s a l t d u r i n g MSRE o p e r a t i o n and
r e p r e s e n t lower l i m i t s f o r t h e r e l a t i v e v o l a t i l i t y ; t h e p o i n t s around t h e upper l i n e r e s u l t from a f e e d c o n c e n t r a t i o n j u s t h i g h enough t o prevent t h e computed c o n c e n t r a t i o n of "'Cs
i n t h e still p o t l i q u i d from
falling t o z e r o , and. r e p r e s e n t upper l i m i t s f o r t h e e f f e c t i v e r e l a t i v e
v o l a t i l i t y of 137CsE'.
The h i g h e s t e f f e c t i v e r e l a t i v e v o l a t i l i t y of L37CsF
seen i n t h e s e c a l c u l a t i o n s w a s o n l y about 20% of t h e v a l u e measured i n
LiF-BeF ZrF
2
m i x t u r e s by Smith and eo-workers.
A s seen from t h e previous r e s u l t s , a l l components except BeF
4
2
and
had e f f e c t i v e r e l a t i v e v o l a t i - l i t i e s t h a t d i f f e r e d s i g n i f i c a n t l y
( i n some c a s e s , d r a s t i c a l l y ) from v a l u e s p r e d i c t e d from work w i t h equilibrium systems.
P o s s i b l e explana,tions f o r t h e s e d i s c r e p a n c i e s are
being examined.
13. RECOVEIiY OF 7L i FTOM 7Li--BIS~TH--~RE-EARTH SOLUTI ON S BY D I STILLATI ON
J. R . Hightower, 3r.
L . E. McNeese
Removal o f d i v a l e n t l a n t h a n i d e s from t h e L i C l s t r e a m i n t h e metalt r a n s f e r p r o c e s s produces a bismuth stream t h a t contai.ns l a n t h a n i d e s , a l o n g w.i.th a h i g h c o n c e n t r a t i o n of 7L5 ( o n t h e o r d e r of 10 to $0 a t .
%).
Because of t h e h i g h c o s t of 7L i , i t s r e c o v e r y may be economi.ca1.
The low vapor p r e s s u r e s o f t h e l a n t h a n i d e m e t a l s , as compa.red wi-LIi t h o s e o f L i and B i , s u g g e s t t h a t d i s % i l l a t i o n might b e used e f f e c t i v e l y t o recover
L i and Hi.
However, s i n c e L i and Ui form a n i n t e r m e t a l l i c
compound ( L i R i ) having a h i g h m e l t i n g p o i n t (1145'C),
3
t h e Li concen-
t r a t i o n i n t h e s t i l l c o u l d become high enough i n t h e c o u r s e o f d i s t i l l a t i o n t h a t s o l i d L i Bi would. b e formed i n t h e s t i l l p o t .
3
Calcu-
l a t e d r e s u l t s t h a t i n d i c a t e t h e expected perfosmance of a one-stage continuous e q u i l i b r i u m s t i l l are d i s c u s s e d i n t h i s s e c t t o n .
The
f r a c t i o n a l r e c o v e r y of l i t h i u m i s c a l c u l a t e d f o r a s e t of conditrions that, allow a r e a s o n a b l y h i g h r e c o v e r y .
The e x t e n t of s e p a r a t i o n of
t h e r e c o v e r e d l i t h i u m from t h e l a n t h a n i d e s was assumed to be adequate
and w a s not c o n s i d e r e d . 13.1
Ma,thematical A n a l y s i s
Ma-Lerial Balance b o u n d a Continuous S t i l l .
- Consider
a single-
s t a g e e q u i l i b r i u m s t i l l . t o which a bismuth stream c o n t a i n i n g l i t h i u m
i s fed ( t h e l a n t h a n i d e f i s s i o n p r o d u c t s a r e assimed t o b e n o n v o l a t i l e
and w i l l be n e g l e c t e d ) and from which a n overhead stream and a, bottoms stream a r e drawn ( e a c h stream c o n t a i n s bismu.th and 3.ithiu.m). A steady-
s t a t e m a t e r i a l b a l a n c e around t h e s t i l l y i e l d s t h e f o l l o w i n g e q u a t i o n :
z=
where
(1 - f)X
4 fY
,
(441
Li i n t h e feed stream,
Z = atom f r a c t i o n o f
X = atom f r a c t i o n of L i i.n t h e s t i l l bottoms stream,
Y = atom f r a c t i o n of L i i n t h e overhead stream from t h e s t i l l , f = f r a c t i o n of t h e f e e d stream v a p o r i z e d i n t h e s t i l l , moles
vapor p e r mole of l i q u i d f e d . The vapor phase and t h e l i q u i d phase l e a v i n g t h e s t i l l are assumed t o be i n e q . u i l i b r i m ; t h e c o n c e n t r a t i o n s of t h e s e phases a r e r e l a t e d t h r o u g h
t h e relatirre v o l a t i l i t y of l i t h i u m w i t h r e s p e c t t o bismuth, which i s defined as:
aL i - B i
IT
-
Y(1 X(l
- x> - Y) '
(45)
where a
i s a f u n c t i o n of system t e m p e r a t u r e , p r e s s u r e , and compo-
sition.
(The e v a l u a t i o n of aLi -Bi w i l l b e d i s c u s s e d i n a Is-ter s e c t i o n . )
Li-Bi
S u b s t i t u t i o n of Eq.
( 4 5 ) i n t o Eq. ( 4 4 ) y i e l d s t h e f o l l o w i n g e q u a t i o n ,
wliich r e l a t e s t h e s t i l l - p o t
composition t o t h e f r a c t i o n of material d i s -
tilled
Because a
Li-Bi
depends on X , t h i s e q u a t i o n must be solved i t e r a t i v e l y .
The r e l a t i . v e v o l a t i l i t y of l i t h i u m w i t h r e s p e c t t o bismuth i s r e l a t e d
t o t h e vapor p r e s s u r e s o f t h e two components through t h e r e l a t i o n
where
'Li
and y
Bi
are t h e l i q u i d - p h a s e a c t i v i t y c o e f f i c i e n t s o f L i and Bi, r e s p e c t i v e l y , a t t h e t e m p e r a t u r e , p r e s s u r e , and composition of t h e l i q u i d i n t h e s t i l l ;
PLi and PBi a r e t h e vapor p r e s s u r e s of L i and B i , r e s p e c t i v e l y ,
a t t h e t e m p e r a t u r e of t h e s t i l l .
90 Eva,l.uation of .the a c t i v i t y c o e f f i c i e n t s f o r u s e i n Eq.
(1.~7)i s
discussed i n t h e following s e c t i o n .
E v a l u a t i o n of A c t i v i t y C o e f f i c i e n t s for t h e L i - B i System. - T h e a c t i v i t y c o e f f i c i e n t f o r l i t h i u m i n L i - B i s o l u t i o n s h a s been measured.1 5 and i s expressed by t h e f o l l o w i n g e q u a t i o n :
where 2 A(T) = 9397 I- 18.16~- 0.010g'I' cal/mole, 2 R(T) = 7103 - 19.442' I- 0.0068~~c a l / m o l e , R = g a s c o n s t a n t = 1.987 c n l sole-1 OK-l Y
T = absolute temperature,
OK.
T h i s e q u a t i o n i s v a l i d f o r t h e composition r a n g e 0.05 < X < 0.60, i n t h e
t e m p e r a t u r e range
775OK 2 T 2 l l O O 째 K
and a t a p r e s s u r e of 1. atm.
The a c t i v i t y c o e f f i c i e n t of bikmuth i s o b t a i n e d from Eq.
(48) through
t h e Gibbs-Duhem eqiiatj-on f o r a b i n a r y system a t constarit t e m p e r a t u r e ,
16
i n t h e f o l l o w i n g form :
. ClP
ax *
__.
where v = volume of one mole o f L i - B i a l l o y ,
V = molar 2,i - = molar
vol.ume of pure L i , volume of p u r e B i ,
P = t o t a l pressure of system. When E q . 0 + 9 ) i s i n t e g r a t e d w i t h r e s p e c t t o X from X = 0 t o t h e d e s i r e d v a l u e , t l LC- f o l l o w i n g equat i on i s o h t a i ned :
X X
= -
1-x
a
P a t X = X In y
ax
Li dx
[v
f
-
- xvLi - (1 - X)YBJ
dP
RT (1- X )
P a t X = O
0
The l a s t term w i l l h e neglected s i n c e i t s v a l u e i s less t h a n
6 x
-4 ,
10
which i s n e g l i g i b l e as compared w i t h t h e v a l u e of t h e n e x t - t o - l a s t (i.e., > 0.1).
.(50)
term
Thus, t h e following r e l a t i o n , v a l i d f o r low pressures,
w i l l be used t o e v a l u a t e y
-
Bi*
X l n yB i = - [
The q u a n t i t y
3 I n YLi
ax
3 I n y-
(1 - XI
ax
hi
ax
.
(51)
can be e v a l u a t e d from E q . ( 4 8 ) ; s u b s t i t u t i n g
t h i s q u a n t i t y i n t o Eq. ( 5 1 ) and i n t e g r a t i n g t h e r e s u l t i n g e x p r e s s i o n results in:
Equations ( 5 2 ) and (48) can be combined with Eq. ( 4 7 ) t o g i v e t h e following r e l a t i o n f o r t h e r e l a t i v e v o l a t i l i t y o f l i t h i u m , w i t h respect t o bismuth:
The vapor p r e s s u r e of l i t h i u m i s given by t h e following e q u a t i o n , which
was d e r i v e d from data given i n r e f .
17:
92
1n P = Ei
where
16746 16.81.3- T
(54)
'
PL i = vapor p r e s s u r e of L i , mm H g , T
OK.
= absolute temperature,
The e q u a t i o n f o r t h e vapor p r e s s u r e of bismuth used i n t h e s e c a l c u l a t i o n s
was o b t a i n e d from r e f . 18 and i s a s follows:
loglo PBi = 7.6327
where
P
- 9 1T5 0 . 3
(55)
Y
= vapor p r e s s u r e of Bi, mm Hg,
Bi
T
= absolute temperature,
OK.
Method for S o l--v i N Equations. - The method f o r s o l v i n g t h e e q u a t i o n
f o r t h e s t i l l - p o t composition (assumed t o be t h e same as t h e s t i l l bottom s t r e a m ) c o n s i s t e d of t h e f o l l o w i n g s t e p s : 1. A s t i l l - p o t t e m p e r a t u r e im,s chosen; t h i s a,llowed t h e
e v a l u a t i o n of t h e f o l l o w i n g terms i n E q . ( 5 3 ) :
PQi, A(T)/XT, B(T)/RT2.
P
Li,
The above terms were s u b s t i t u t e d i n t o E q . (53) t o g i v e a n e x p r e s s i o n for o n l y on X.
c1
Li-Ri
which was dependent
was s u b s t i t u t e d i n t o Eq. ( 4 6 ) .
3.
The e x p r e s s i o n f o r a
4.
Equation
5.
Once t h e stj.l-l-pot composition was determined, t h e
Li-Bi
(46 ) was solved u s i n g t h e New-ton-Naphson algo-
r i t ? ~ n 'f~o r a range o f v a l u e s o f f and Z .
l i q u i d u s temperature f o r t h i s composition c o u l d be determined from t h e L i - B i phase diagram. * O
The
f r a c t i o n a l r e c o v e r y of l i t h i u m i n t h e overhead stream w a s c a l c u l a t e d from t h e f o l l o w i n g e q u a t i o n :
R = 1 - (1- f ) 7x, ,
93 where R is the number of moles of lithium in the overhead stream per mole of lithium in the feed stream.
13.2 Calculated Results Still-pot compositions, liquid temperatures, and fractional lithium
recoveries were calculated for still-pot temperatures of 800째C and 9 O O 0 C , feed compositions of
0,7O to 0 . 9 9 .
5, 10, and 20 at. % lithium, and values of f from
Figure 35 shows the liquicius temperature of the still-pot
liquid for an operating temperature of 8oo0c, the three feed composi-
tions, and vaporizatioG of up to 95% of the incoming Bi-Li stream. a feed composition of 10 or 20 at.
would be less than
For
lithium, the maximum lithium recovery
36%. For a feed composition of 5 Et. % lithium, a
lithium recovery of greater than 50% could be achieved before solid Li Bi 3 would be formed in the still pot. Figure
36 shows the liquidus temperature of the still-pot liquid
for an operating temperature of gOO째C, the three feed compositions, and
vaporization of up to 95% of the incoming Bi-Li stream.
For a given
fraction vaporized and a given f e e d composition, distillation at 900째C
produces a still-pot composition with a slightly lower liquidus tempera-
ture
-
The lower liquidus temperature, combined with the higher still-
pot temperature, allows higher recovery of lithium than distillation at 8130Oc does. With a feed composition of 10 at. % lithium, a maximum lithium recovery of
66% can
be obtained. With a feed composition of
5
at. % lithium, very high lithium recoveries can be achieved, as shown in Fig. 37.
About 90% of the lithium could be recovered by vaporizing
99% of the incoming Bi-Li stream; the liquidus temperature of the stillp a t material in this case would be only about 630'~. The following difficulties with recovery of 7Li from bismuth by
distillation became apparent as a result of these calculations:
(1) It will be difficult to find materials of construction that can withstand
the high temperatures necessary to achieve high lithium recoveries.
(2) The vapor pressures of the Bi-Li mixtures are low even at temperatures around 900째C (for example, for recovery of 90% of the lithium, a
O R N L - Q W G - 70-6249
0.85 I, craction Distilled
Fig. 35. L i q u i d u s T e n p e r a t J r e o f S ' , i l l - P o t Yaterik; ir, Cocticuous ~ i - S~t l li; Operatirig a t 8 0 0 O c . E f f e c t s of feec composition and f r a c t i o n o f feed v a p o r i z e d .
3
0
8
0
e
0
8
0
5:
0
*0
n
\ c I
I
C
rn
In
0
oci m
0
0
0
e
0 0
u)
0
s:
I!G
0 0 d
0 0
m
0
cu
vspor p r e s s u r e of o n l y 0 . 2 t o 0 . 3 mm Hg w a s c a l c u l a t e d f o r t h e s t i l l pot m a t e r i a l ) ; t h e low vapor p r e s s u r e s would r e s u l t i n low v a p o r i z a t i o n fluxes.
Consequently, l a r g e v a p o r i z a t i o n areas would be needed.
(3)
Because t h e l i t h i u m c o n c e n t r a t i o n i n t h e feed must b e low t o p r e v e n t t h e f o r m a t i o n of L i B i i n t h e s t i l l p o t , a d d i t i o n a l p r o c e s s i n g c o m p l e x i t i e s
3 must be added t o d i l u t e t h e B i - L i stream coming from t h e e x t r a c t i o n column.
Although t h e s e d i f f i c u l t i e s are n o t insurmountable, t h e y pro-
v i d e i n c e n t i v e t o s e a r c h f o r a l t e r n a t i v e methods f o r r e c o v e r i n g t h e 'Li.
14. PREVICM'TION OF AXIAL DISPERSION IN J . S. Watson
PACKED COLUMNS
L . E. McMeese
The use o f packed column c o n t a c t o r s i n MSBR f u e l p r o c e s s i n g systems
i s being considered.
A s shown previously,21 a x i a l d i s p e r s i o n c a n
s i g n i f i c a n t l y r e d u c e t h e performance o f t h i s t y p e o f c o n t a c t o r under o p e r a t i n g c o n d i t i o n s of i n t e r e s t .
A s p a r t of our c o n t a c t o r development
program, we are e v a l u a t i n g m o d i f i c a t i o n s t o packed columns t h a t w i l l
r e d u c e t h e e f f e c t of a x i a l d i s p e r s i o n t o a n a c c e p t a b l e l e v e l .
The pro-
posed m o d i f i c a t i o n s c o n s i s t of i n s e r t i n g d e v i c e s a t p o i n t s a l o n g t h e column t o r e d u c e d i s p e r s i o n a c r o s s t h e column a t t h e s e p o i n t s .
If t h e
devi-ces a r e s e p a r a t e d by a column l e n g t h e q u i v a l e n t t o one t h e o r e t i c a l s t a g e ( a n e x t e n t of s e p a r a t i o n t h a t c a n be achieved even i f t h e f l u i d s between t h e d e v i c e s a r e c o m p l e t e l y m i x e d ) , t h e s t a g e e f f i c i e n c y of t h e column segment w i l l be g r e a t e r t h a n 75% if 15% o r l e s s of t h e s a l t flowing t h r o u g h the segment i s r e c y c l e d t o t h e p r e v i o u s segment. The t y p e of d e v i c e under i n v e s t i g a t i o n i s shown i n F i g . 38.
The
metal stream f l o w s down a n a n n u l a r s e c t i o n i n t h e upper p o r t i o n of t h e
d e v i c e i n t o t h e p o r t i o n t h a t i s e f f e c t i v e l y a n i n v e r t e d a n n u l a r bubble cap.
The accumulated m e t a l forms a seal and f o r c e s t h e l e s s - d e n s e phase
t o flow upward t h r o u g h r e s t r i c t i o n s i n a sieve p l a t e .
A significantly
h i g h e r s a l t v e l o c i t y i s o b t a i n e d t h r o u g h t h e r e s t r i c t i o n s , and a cons i d e r a b l y d i m i n i s h e d r e c y c l e o f s a l t should o c c u r a c r o s s t h e d e v i c e . We have t e s t e d two d e v i c e s of t h i s t y p e , u s i n g mercury and water t o
98
2â&#x20AC;&#x2122;I.g.
38. Schematic Diagram of an
A x l a 1 DisIJersion P r e v c n t e r .
s i m u l a t e bismuth and s a l t .
One o r more d i s p e r s i o n p r e v e n t e r s were
i n s e r t e d near t h e middle of a 2-in.-diam 3/8-in.
c o l m t h a t w a s packed w i t h
Easchig r i n g s .
The e x p e r i m e n t a l t e c h n i q u e c o n s i s t e d of e s t a b l i s h i n g a c o u n t e r c u r r e n t flow of mercury and water t h r o u g h t h e column and i n j e c t i n g a s t e a d y f l o w of t r a c e r s o l u t i o n ( c u p r i c n i t r a t e ) a t a p o i n t near t h e t o p of t h e column,
The t r a c e r c o n c e n t r a t i o n w a s determined a t s e v e r a l
p o i n t s along t h e column.
When t h e l o g a r i t h m of t h e t r a c e r c o n c e n t r a t i o n
w a s p l o t t e d as a f i n e t i o n o f d i s t a n c e a l o n g t h e column, a d i s c o n t i n u i t y i n t r a c e r c o n c e n t r a t i o n w a s observed a t t h e p r e v e n t e r l o c a t i o n , as sho%m i n F i g . 39.
The r a t i o of t h e c o n c e n t r a t i o n s a t t h e d i s c o n t i n u i t y i s a
measure o f t h e f r a c t i o n of t h e water t h a t w a s r e c y c l e d through t h e preventer. The f r a c t i o n o f t h e water r e c y c l e d t h r o u g h a p r e v e n t e r apFears t o depend mainly on t h e water f l o w r a t e p e r sieve opening and t h e diameter oP t h e s i e v e opening.
No dependence on t h e mercury flow rate was e v i -
d e n t , a l t h o u g h t h e s m a l l number o f d a t a g o i n t s and t h e u s u a l d a t a s c a t t e r make t h i s c o n c l u s i o n t e n t a t i v e .
The e f f e c t of metal Tlow r a t e i s
expected t o become q u i t e l a r g e , however, f o r m e t a l flow rates s u f f i c i e n t l y h i g h t o p r e v e n t complete m e t a l c o a l e s c e n c e i n t h e downcomer. The f i r s t p r e v e n t e r t o undergo t e s t i n g c o n s i s t e d of a 1/2-in.-deep bubble c a p and a l / b - i n . - t h i c k holes.
s i e v e p l a t e c o n t a i n i n g f o u r 3/32-ine-diam
A s shown i n F i g . 4 0 , o n l y t h r e e data p o i n t s were o b t a i n e d w i t h
t h i s d e v i c e ; however, t h e f r a c t i o n of water t h a t i s r e c y c l e d i s observed t o d e c r e a s e w i t h i n c r e a s i n g water f l o w r a t e .
Less t h a n 15% of t h e water
was r e c y c l e d f o r a water flow rate g r e a t e r t h a n 90 ml/min ( 2 2 m l p e r minute p e r h o l e ) . 1/21
in.
The openings were t h e n d r i l l e d o u t to a d i a m e t e r o f
A s shown i n F i g . 40, s i m i l a r r e s u l t s were o b t a i n e d , a l t h o u g h
tlie f r a c t i o n of water r e c y c l e d d i d not r e a c h a n a c c e p t a b l y low l e v e l i n
any of t h e s e experiments.
By e x t r a p o l a t i n g t h e c u r v e , one c a n e s t i m a t e
that t h e f r a c t i o n of w a t e r r e c y c l e d would be l e s s than 15% a t a water
f l o w r a t e between 150 and 200 ml/min ( a p p r o x i m a t e l y 50 r n l p e r minute p e r
hole)
.
100
1.6(
0. 0.
I
6 .a 0.
laJ
Q
w La. w
e a 6)
0
0.2
6.1
0
Fig. 39. C o n c e n t r a t i o n P r o f i l e Using a Backflow P r e v e n t e r with a S i n g l e 3 / 8 - i n . Sieve Opening. Mercury flow r a t e , LOO ml/min; w a t e r f l o w r a t e , 115 ml/min.
101
1.0
-
.
1 -
O R N L D W I 70-11045 I
Preventsr
A 0
I
Number of Holes
I
4
I
4
1
Hole Diam, (in)
3/32
.e
0.6
.-cx .-
E
a 0 0
m c
0 .-c 0
0
L
b-1
I
20
40
60 80 W o t r r R o t s , mliâ&#x20AC;&#x2122;min
100
I20
140
ig. 1.10. F r a c t i o n Backmixing Across Two Axial I)ispersj.on P r e v e n t e r s Having Various O r i f i c e Diameters. I
n
102 A second d i s p e r s i o n p r e v e n t e r , which had a 2-in.-deep
and only a s i n g l e 1/16-in.-diam
tested.
bubble cap
opening i n t h e s i e v e p l a t e , w a s a l s o
No r e c y c l e could be d e t e c t e d a t t h e lowest measurable water
r a t e ( 2 3 . 5 ml/min).
T'ne diameter of t h e opening was i n c r e a s e d t o
i n . , and a g a i n no r e c y c l e w a s d e t e c t e d . increased t o
l/j+
1./8
When t h e o r i f i c e diarnet,er w a s
i n . , t h e r e s u l t s shown i n F i g . 40 were o b t a i n e d .
The
f r a c t i o n of water r e c y c l e d is less t h a n S.s% i f t h e water flow r a t e is g r e a t e r t h a n 50 ml/min.
Note t h a t t h i s v a l u e a g r e e s w i t h t h e r e s u l t s
e s t j m a t e d by e x t r a p o l a t i n g r e s u l t s from t h e f i r s t p r e v e n t e r w i t h f o u r 1/4-in.
holes.
The o r i f i c e diameter was f u r t h e r i n c r e a s e d t o 3/8 i n .
t o o b t a i n t h e r e s u l t s shown i n F i g . 40.
The f r a c t i o n o r water recycl-ed
w a s i n c r e a s e d c o n s i d e r a b l y by t h i s change i.n d i a m e t e r ; a g a i n , however, t h e f r a c t i o n of water r e c y c l e d could be reduced t o any d e s i r e d v a . l . 1 ~ a t s u f f i c i e n t l y h i g h w a t e r flow r a t e s . An u n d e s i r a b l e f e a t u r e of d i s p e r s i o n p r e v e i i t e r s o f t h e t y p e d i s cussed above i.s t h a t t h e column c a p a c i t y o r f l o o d i n g r a t e i s reduced. T h i s i s t o b e expected, and i t i s u n l i k e l y t h a t a d e v i c e which w i l l . reduce t h e column c a p a c i t y by l e s s t h a n 50% w i l l b e develope&.
The
d e v i c e s t e s t e d have o p e r a t e d s a t i s f a c t o r i l y w i t h mercury flow r a t e s as
h i g h as
15% of t h e f l o o d i n g r a t e f o r a column packed w i t h 3/8-i11.
Raschig r i n g s .
15. HYDRODYNAMICS OF PACKED COLUMN OPERATION WITH HIGH-DENSITY FLUID8
J.
S.
Watson
1,. E . McNeese
The hydrodynamics of packed colwnn o p e r a t i o n w i t h flu.ids having h i g h d e u s i - t i e s and a l a r g e d e n s i t y d i f f e r e n c e i s b e i n g s t u d i e d i n o r d e r t o e v a l u a t e and d e s i g n countercurrent contactors f o r use in MSBR processing systems based on r e d u c t i v e e x t r a c t i o n .
Mercury and water a r e bei-ng used
t o sirriulate bismuth and molten salt i n t h e s e s t l i l i e s ,
ments,22 c a r r i - e d o u t w i t h 1 / 8 - i n . and 1/4-i.n.
3/16-i.n.
Earlier experi-
s o l i d c y l i n d e r s and w i t h
and 1 / 4 - i n . Raschig r i n g s i n a 1-in.-ID
column,demonstrated
t h a t a t r a n s i t i o n i n mode o f f l o w of t h e d i s p e r s e d phase o c c u r s brbween
1-03
t h e packing s i z e s of 3/16 i n . and 1/4 i n .
The t r a n s i t i o n appeared t o
shape ( s o l i d c y l i n d e r s o r Raschig r i n g s ) .
With t h e l a r g e r packing, t h e
be a f u n c t i o n o f t h e packing s i z e o n l y and w a s n o t r e l a t e d t o packing mercury w a s d i s p e r s e d i n t o s m a l l d r o p l e t s , which produced a l a r g e i n t e r With t h e smaller packing, t h e mercury flowed down t h e column
f a c i a l area.
i n continuous c h a n n e l s and r e s u l t e d i n a much s m a l l e r i n t e r f a c i a l area.
i?l l a r g e i n t e r f a c i a l area (and hence l a r g e packing) i s d e s i r e d i n
o r d e r t o o b t a i n h i g h rates o f mass t r a n s f e r between t h e s a l t and metal phases-. S i n c e o n l y one packing d i a m e t e r above t h e c r i t i c a l s i z e had
been s t u d i e d , :t was c o n s i d e r e d d e s i r a b l e t o s t u d y s e v e r a l larger packing
materials.
T h i s r e q u i r e d two m o d i f i c a t i o n s t o t h e experimental system:
(I) i n s t a l l a t i o n o f a column l a r g e r t h a n t h e l-in,--diam u n i t used
p r e v i o u s l y , and ( 2 ) i n s t a l l a t i o n of a mercury pump having a h i g h e r pimping c a p a c i t y t h a n t h a t used p r e v i o u s l y .
A 2-in.-ID
having a l e n g t h of 24 i n . w a s c o n s t r u c t e d , and a installed.
* Lapp
L u c i t e column CPS-3 pump w a s
The system was used by a group of MIT P r a c t i c e School
s t u d e n t s 2 3 f o r measuring f l o o d i n g r a t e s , dispersed-phase holdup, and pressure drop with 1/4-in. rings.
s o l i d c y l i n d e r s and w i t h 3/8-in0 Raschig
We l a t e r o b t a i n e d d a t a w i t h 1 / 2 - i n . Raschig r i n g s .
Results of
t h e s e s t u d i e s and development of a r e l a t i o n for p r e d i c t i n g packed
column performance d u r i n g c o u n t e r c u r r e n t I"1.o~of molten s a l t and bismuth
are d i s c u s s e d i n t h e remainder of t h i s s e c t i o n .
1 5 .I Experimental Technique and R e s u l t s The e x p e r i m e n t a l t e c h n i q u e i s t h e same as t h a t used p r e v i o u s l y darFng s t u d i e s w i t h t h e 1 - i n . - d i m
column.
22
P r e s s u r e drop t h r o u g h t h e
packed column w a s determined from displacement o f t h e mercury-water i n t e r f a c e a t t h e bottom of t h e column.
Dispersed-phase holdup w a s
measured by s i m u l t a n e o u s l y c l o s i n g t w o b a l l v a l v e s , t h e r e b y i s o l a t i n g a s e c t i o n o f t h e column and a l l o w i n g d e t e r m i n a t i o n of t h e t r a p p e d mercury volume
w
Lapp P r o c e s s Eqiaipment, I n t e r p a c e Corp., North S t
:L4482.
e ,
Le Roy, New York
Experimental d a t a showing t h e v a r t a t i o n of column p r e s s u r e d r o p w i t h continuous-phase (water) s u p e r f i c i a l v e l o c i t y f o r s e v e r a l d i s p e r s e d phase s u p e r f i c i a l v e l o c i t i e s a r e shown i n F i g s . s o l i d c y l i n d e r s and 3/8-i.n.
41. and
8aschi.g r i n g s r e s p e c t i v e l y .
42 f o r 1./4-in. Data on t h e
v a r i a t i o n of dispersed-phase holdup w i t h continuous-phase s u p e r f i c i a l v e l o c i t y f o r s e v e r a l dispersed-phase v e b o c i t i e s are shown in F i g s . 143-
1-15 f o r t h r e e packing inaterials studied..
Figs.
Flooding d a t a a f e shown is
46 and 4'7 f o r l / b - i n . s o l i d cyl.i.nders and 3/8-in. Raschig r i n g s
respectively
.
15.2
P r e s s u r e Drop Across t h e Col.wnn
S u r p r i s i n g l y , t h e p r e s s u r e drop a c r o s s t h e colimn w a s observed t o d e c r e a s e w i t h i n c r e a s e s i n water flow rate a t h i g h mercury f l o w r a t e s and low water flow r a t e s .
A t h i g h water f l o w r a t e s , t h e pressure drop
i-ncreased w i t h i n c r e a s e s i n water r a t e as expected.
T h i s e f f e c t was
most a p p a r e n t w i t h 1 / 2 - i n . Raschig r i n g s , a l t h o u g h t h e same b e h a v i o r
i s a l s o observed t o some e x t e n t w i t h 3/8-in.
Raschig r i n g s .
For
example, w i t h 1./2-in. Xaschig r i n g s and a s u p e r f i c i a l mercury v e l o c i t y of 380 f t / h r , t h e column p r e s s u r e d r o p d-ecreased from 1.1 p s i t o 0.2'1 p s i as t h e water v e l o c i t y was i n c r e a s e d from 0 t o 1 2 f t / h r .
This
phenomenon was checked c a r e f u l l y and w a s found t o b e r e p r o d u c i b l e . 'The p r e s e n t d a t a f o r p r e s s u r e d r o p with 1/2-in. Raschig r i n g s a r e conf u s i n g and d i f f i c u l t t o r e p r e s e n t .
1.t i s i n t e r e s t i n g t o n o t e ( F i g . 4 5 )
t h a t t h e r e w a s no s i g n i f i c a n t d e c r e a s e i n dispersed-phase holdup when water flow w a s i n i t i a t e d . On t h e a v e r a g e , t h e mercury i s not b e i n g a c c e l e r a t e d while flowing
through t h e col-umn.
Thus, t h e weight of t h e mercury must b e suppor-Led
by i n t e r a c t i o n w i t h t h e continuous phase and w i t h the packing.
If
i n t e r a c t i o n w i t h t h e packing were n e g l i g i b l e , t h e p r e s s u r e drop i n
t h e continuous phase would b e e q u a l t o the sum o f t h e f o r c e on t h e
column wa1.l. and t h e q u a n t i t y ( A p ) X , where Ap i s t h e d i f f e r e n c e i n t h e d e n s i t i e s o f t h e two f l u i d s and X i s t h e f r a c t i o n of the column v o i d volurne t.kat; i s occupied by t h e d i s p e r s e d phase.
The observed p r e s s u r e
105
I
I
1
I I 1
I
QRNL D W G 7 0 - I I O 5 3 R I I 1 I
I t
+
i +
1I N D I C A T E S
FLOODING
DlSP ERSED- PHASE SUPERFICIAL VELQCIT 0 - i
36 - A
68-0
102-4 139 --'I
15
20 30 50 100 200 300 500 C o n t i n u o u s - Phase S u p e r f i c i a l V e l o c i t y ( f t / h r )
I000
Fig. 41. Variation or" Column Pressure Drop w i t h S u p e r f i c i a l Water Velocit,y and Dispersed-Phase Superficial Velocity for 1./4-in. Cy:Li.ndrica,l. Packing in it 2-in,-diam Colutnri.
106
30
10.0
/"
vd (ft/hr)
4"
0
36 68
A 0
102
r.3
v 6
i39 172 0.1 - t
20
1
I
I
I-
1
1
1
1
1
,
I
,
1
1
I
I
100 SUPERFICIAL WATER VELOCITY, VC (ft/hr)
I
I
I
I
,
600
Fig. 42. Variation of Column Pressure Urop w i t h Superficial Wat,er Velocity and Dispersed-Phase Superficial Velocity for 3/8--in. Raschig ning Packing i.n a ?-iti.-diam Column.
0.8
I
I
1
I
O R N L D W G 70-11050
1
DISPERSED-PHASE SUPERFICIAL VELOCITY 0 - 3 6 ftlhr
I
- 68 f t / h r A - 102 f t l h r 0
-
A 139 f t / h r Vs = 315.4 ft/hr
0.6
a =I
W
0
I 0,
w
O
s
& 0.4
I
'0 0,
cn L
0)
Q
u) .^
a
0.2
0
I
20
1
40
1
60
I
80
1
100
1
120
Continuous- Phase S u p e r f i c i a l V e l o c i t y ( f t / h r ]
F i g . 43.
140
V a r i a t i o n of Dispersed-Phase Holdup with Continuous- and
Di spersed-Phase Superficial. V e l o c i t i e s for 1 / 4 - i n . Sol.id C y l i n d r i c a l P a c k i n g in a 2-in.-diam Column.
1.08
O R N L DWG 70-3005Rl
04
SUPERFICIAL SLIP VELOCITY: 819 f+/hr I PACKING in RASCHIG RINGS DISPERSED PHASE SUPER FlClAL VELOCITY
3/e-
03
a
3
0
J
P LI1
cn Q
02
0
LJJ
cn CT
W
I I I/)
n ~
I
L
3
Ib
~
.,
400
.
303
20c
CONTINUCUS PHASE S U P E R F I C I A L VELOCITY !
tt/
b,r!
I' I#. I+)+. Variati~onof Dispersed-Phase Hol.diip w i t h Continuous- a n d Dispersed-Phase S u p e r f i c i a l Velocitiez for 3/8-in. Raschig Rings i n a 2In.--dlam Column. -7.
1 DISPERSED
- PHASE
-
ft/hr
.-if7
tt/hr
0-246
ft/hr
a 3
I
ft/hr
A-300 ft/hr
A-390 ft/hr
Vs
a
1330 f t / h r
O R N L D W G 70-11051
I
i
SUPERFlClAL VELOCITY
- 93 0 - I50 0
0.4
I
0.3
0,
u)
0
n L: I
U
01
be
L
Ql
&
.E 0.2
n
i
0.I
I I I 100 200 300
*o
Continuous- Phase Superficial Vcloci t y ( f t / h r )
F i g . )+?. V a r i a t i o n of Dispersed-Phase Holdup w i t 1 1 Continuous- and D i spersed-Phsse Superficial V e l o c i t i e s for 1 / 2 - i n . Rasehig Rings i n a 2.-i ri -di run Column
.
11.0
8
2 4 6 8 IO 12 14 16 18 28 22 24 26 Square Root Of-Continuous- Phase Superficial V e l o c i t y ( f t / h r ) 1/21
Fig.
46. Predicted
C y l i n d r i c a l Packing.
and Measured Flooding Rates w i t h 1 / 4 - i n .
Solid
28
111
28
24
20
-$ in.
RASCHIG R I N G S
16
12
8
4
0
Fig. 147. Predicted and. Measured F l o o d i n g Zates in a Packed CoJ.i.rn~n During Countercurrent, Flow oL' Meroin-y and Water.
112 d r o p i s l e s s t h a n t h e q u a n t i t y ( A p ) X , which i n d i c a t e s t h a t a s u b s t a n t i a l f r a c t i o n o f t h e mercury i s supported by t h e packing.
A decrease i n
pressure drop w i t h o u t a corresponding d e c r e a s e i n dispersed-phase holdup i n d i c a t e s t h a t t h e r e i s a n i n c r e a s e i n t h e i n t e r a c t i o n between t h e mercury and t h e packing.
One can q u a l i t a t i v e l y v i s u a l i z e t h e mercury as flowing through a l l
of t h e c h a n n e l s between t h e packing when t h e r e i s no water flow.
When
a water flow i s s t a r t e d , i t lis p o s s i b l e thai; t h e mercury will flow
p r e f e r e n t i a l l y through on1.y p a r t of t h e c h a n n e l s .
I n such a c a s e ,
h i g h e r mercury v e l o c i t i e s would. be o b t a i n e d and i n c r e a s e d i n t e r a c t i o n of t h e d i s p e s s e d phase w i t h t h e packing would o c c u r .
A quantitative
t r e a t m e n t of t h i s phenomenon has n o t been developed.
15.3
Dispersed-Phase Boldup
S e v e r a l methods, i n c l u d i n g a n e x p r e s s i o n used by Prati; r e l a t i o n developed e a r l i e r by Lhe a u t h o r s , c o r r e l a t i n g holdup d a t a .
22
24
and a
have been suggested f o r
The p r e s e n t data i n d i c a t e t h a t holdup can
be c o r r e l a t e d i n terms of a c o n s t a n t s1.i;~ v e l o c i t y , Vs,
which i s
d e f i n e d as:
vs where V V
s C
z-
vC 3.-x
vd
(57)
x ,
6-
= superficial s l i p velocity, = continuous-phase s u p e r f i c i a l v e l o c i t y ,
Vd = dispersed-phase s u p e r f i c i a l v e l o c i t y ,
X
= dispersed-phase holdup.
The c u r v e s drawn through t h e holdup data i n F i g s . 43,
44, and IC5
correspond t o a c o n s t a n t s l i p velocLty for each packing m a t e r i a l .
For
a g i v e n packing, t h e s l i p v e l . o c i t y w a s o b t a i n e d by a v e r a g i n g s l i p
v e l o c i t y v a l u e s c a l c u l a t e d for each d a t a p o i n t from Eq. ( 5 7 ) . The s t a n d a r d d e v i a t i o n s of t h e average s l i p v e l o c i t y t h u s c a l c u l a t e d
10 t o
F E T ~
l 5 $ , which i s e s t i m a t e d t o h e the e x p e r i m e n t a l e r r o r j.n t h e
f
holdup d a t a .
'There are s i g n i f i c a n t d e v i a t i o n s between t h e c a l c u l a t e d
and measured holdup d a t a f o r holdup v a l u e s below lo%,
d a t a for 1 / 4 - i n .
and 3/8-in.
d i c t e d holdup v a l u e s .
Otherwj-se, t h e
packing show no t r e n d away from t h e pre-
The p r e d i c t e d holdup v a l u e s f o r 1 / 2 - i n .
Raschig
r i n g s a r e h i g h e r t h a n t h e measured v a l u e s a t low mercury s u p e r f i c i a l velocities.
T h i s t r e n d i s not considered t o be s i g n i f i c a n t s i n c e it
i o n o t confirmed by d a t a from o t h e r packing materials.
vo>
Average v a l u e s were a l s o c a l c u l a t e d f o r t h e c h a r a c t e r i s t i c v e l o c i t y , 24 suggested. by P r a t t and d e f i n e d as
v0 =
(1 - X I 2
+
x(l
U
-x)
The s t a n d a r d d e v i a t i o n r e s u l t i n g from assumption of a c o n s t a n t charact e r i s t i c v e l o c i t y was l a r g e r t h a n t h a t r e s u l t i n g from assumption o f a c o n s t a n t s l i p v e l o c i t y , and a dependence of V
0
on holdup ( o t h e r t h a n
t h a t shown above) was n o t e d . The holdup d a t a f o r 1 / 4 - i n . Raschig r i n g s and 1 / 4 - i n .
i n 1- and 2-in.-diam
solid cylinders
columns s u g g e s t t h a t t h e s u p e r f i c i a l s l i p v e l o c i t y
i s p r o p o r t i o n a l t o t h e packing v o i d f r a c t i o n , as shown i n F i g .
48.
The
s x p e r f i c i a l s l i p v e l o c i t y i s a l s o expected t o be dependent on packing size,
The s l i p v e l o c i t y f o r 3/8-in.
Raschig r i n g s (819 f t / h r ) i s not
s i g n i f i c a n t l y h i g h e r t h a n t h a t f o r 1/4-in0 packfng when a c o r r e c t i o n
i s made f o r t h e d i f f e r e n c e i n packing v o i d f r a c t i o n .
However, t h e s l i p
v e l o c i t y f o r 1 / 2 - i n , Raschig s i n g s (1530 f t / h r ) i s c o n s i d e r a b l y h i g h e r t h a n t h a t f o r t h e smaller packing s i z e s .
15.4
CorrelaLion of Flooding R a t e s
The o b s e r v a t i o n t h a t t h e dispersed-phase holdup d a t a can be c o r r e l a t e d on t h e b a s i s of a c o n s t a n t s u p e r f i c i a l s l i p v e l o c i t y i s e s p e c i a l l y important s i n c e t h i s s u g g e s t s a method f o r c o r r e l a t i n g f l o o d i n g d a t a . A t f l o o d i n g , it i s assumed t h a t t h e following c o n d i t i o n s e x i s t :
114
RASCH RINGS
0.I
0.2
0.3
ekinn V oid .P n--..,...-.-
0.4 F . raction
8.5
0.6
B
8.7
f i g . 48. V a r i a t i o n o f Superficial S l i p Velocity wi-ih Packi.ng Void I.'ract.ion f o r 1/4-j.n. P a c k i n g i n I-in. and ?--in.-diam Colirmns. - 7 ,
11'5
-ad'- - -
ax
I
avC
ax
- 0 .
(59)
Partial differentiation of Eq. (57) with respect to X, the dispersed-
phase holdup, yields the relation
V
C
(1 - x ) 2
av
av
vd + -1 - =c o . C - x ax - x ax X2
1
+-
If the conditions stated by Eq. (59) are met at flooding, Eq. (60) reduces
to
,flood
(1 -
xy
'd,flood
X2
Multiplying Eq. (57) by 1/(1 - X ) and combining the resulting equation wlth E q . (61) yields the following relation: Vd,flood X2
+
'd,flood
x ( l - x)
-
V
S
1-x
'
which reduces to
Multiplying Eq. (57)by 1 / X and combining the resulting equation with Eq. (61) yields the relation c'
flood
lY=T-E+(1 - X
which reduces to
v
Vc,flood = - s
F
,
(62)
116
1-x=
S
E l i m i n a t i o n of X from E q s , ( 6 3 ) and
vher e
= continuous-phase s u p e r f i c i a l v e l o c i t y a t f l o o d i n g ,
' c ,flood d'
( 6 5 ) yields the final relation
= dispei-sed-phase s u p e r f i c i a l v e l o c i t y a t f l o o d i n g .
,f l o o d
Thus, i f t h e s u p e r f i c i a l s l i p v e l o c i t y remains c o n s t a n t up t o f l o o d . i n g ,
a plot of
(vc , f l o o d )1/2 vs
having a s l o p e of -1.
('d,flood
)l/* should produce a s t r a i g h t l i n e
S b i l a r f l o o d i n g c u r v e s w i t h s l o p e s near -3 have
been observed i n t h e l i t e r a t u r e , 2 5 and our e a r l i e r ( l a t a f o r 3/8-in.
Raschig r i n g s and 1 / 4 - i n .
t h i s manner
e
1 / 4 - and
so1i.d c y l i n d e r s were correl.ated i n
Recent r e s u l t s o b t a i n e d w i t h 1 / 4 - i n .
3/8-in. Raschig r i n g s , s h o ~ ni n F i g s .
1.16
and
sol.id c y l i n d e r s and
47, a r e al.so r e p r e s e n t e t l
well. by t h i s c o r r e l a t i o n .
15.5 P r e d i c t i o n of Molten-Salt--Bismuth i n Packed Columns
Flooding Rates
We have a t t e m p t e d t o extend t h e c o r r e l a t i o n s developed f o r Lhe mercury-water
system i n o r d e r t o o b t a i n r e l a t i o n s that are a p p l i c a b l e
t o molten-salt--bismuth
systems.
were not v a r i e d i n t h e s e s t u d i e s .
The p h y s i c a l p r o p e r t i e s of t h e f l u i d s Significant differences i n properties
e x i s t between t h e mercury-water system and molten-salt--bismuth
systems;
p o t e n t i a l l y important d i f f e r e n c e s i n c l u d e t h e v i s c o s i t y of t h e contlinuous p h a s e , t h e d t f f e r e n c e i n t h e d e n s i t i e s of t h e p h a s e s , and t h e i n t e r f a c i a l tension.
The c o r r e c t i o n a s s o c i a t e d w i t h d i f f e r e n c e s i n i n t e r f a c i a l
t e n s i o n i s b e l i e v e d t o be s m a l l s i n c e t h e i n t e r f a c i a l t e n s i o n f o r the mercury-xater system i s approximately equal. t o t h a t f o r a molten-salt-b t s m u t h system.
A s t h e d i s p e r s e d phase f l o w s down t h e column, it i n t e r a c t s w i t h
b o t h t h e packing and t h e c o n t i n u o u s phase.
I n t e r a c t i o n w i t h t h e con-
t i n u o u s phase i s i n e r t i a l i n n a t u r e , and t h e continuous-phase v i s c o s i t y i s expected t o have o n l y a s l i g h t e f f e c t .
If t h e p r i n c i p a l i n t e r a c t i o n
were between t h e two f l u i d s , t h e s l i p v e l o c i t y would be p r o p o r t i o n a l t o t h e s q u a r e r o o t of t h e d i f f e r e n c e i n d e n s i t i e s of t h e f l u i d s .
As
noted e a r l i e r , however, t h e metal phase i s more n e a r l y supported by i n t e r a c t i o n w i t h t h e packing; for t h i s c o n d i t i o n , it i s e s t i m a t e d
t h a t t h e s l i p velocity i s directly prosortional t o the difference i n t h e d e n s i t i e s of t h e p h a s e s . On t h e b a s i s of t h e s e c o n s i d e r a t i o n s , t h e s u p e r f i c i a l s l i p veloci t y w a s assumed t o be p r o p o r t i o n a l t o b o t h t h e packing v o i d f r a c t i o n arid t h e d i f f e r e n c e i n d e n s i t i e s of t h e p h a s e s .
The r e s u l t i n g r e l a t i o n
f o r t h e f l o o d i n g rates i n a s a l t - b i s m u t h system i s , t h e n :
('c , f l o o d
where
)1/2
c' , f l o o d 'd,flood
's,Bg-H 2 0 AD
--
continuous-phase s u p e r f i c i a l v e l o c i t y a t f l o o d i n g ,
- dispersed-phase s u p e r f i c i a l v e l o c i t y a t f l o o d i n g , - s u p e r f i c i a l s l i p v e l o c i t y f o r mercury-water w i t h t h e t y p e packing t o b e u s e d ,
system
= d i f f e r e n c e i n d e n s i t i e s of t h e phases, d i f f e r e n c e i n d e n s i t i e s of mercury and. water, packing v o i d f r a c t i o n ,
E
ref
- v o i d f r a c t i o n of packing f o r which Vs determined.
9
g-H20
was
16.
REFERENCES
1..
L . M . F e r r i s , ORNL, p e r s o n a l c o m l u n i c a t i o n .
2.
M. J . B e l l , ORNL, personal communication.
3.
M. S . Bau:tista and L. E. McNeese, "Axial Mixtng i n a n Open Bubble Column , ' I RngineeringJevelopmenL - . l l l S_ t u~d i e s f o r Molten-Salt Breeder -Reactor . P r o c e s s i n g No. I + , ORNL-TM-3139 ( i n p r e s s ) I
4.
A . M. Skeikh and J . D. D e a r t h , A x i a l Mixing i n an Open Bubble Col.umn , MIT-CEPS-X-91 (December 1.969)
5.
W. Kee and L. E. McNeese, E n . i n e e r i n g Development S t u d i e s f o r pp. Mal-ten-Salt Breeder Reactor P r o c e s s i n g No. 3 ORNL-TM-3138
.
C.
39-50.
6.
J . R . Hightower, J r . , e t al. , "Design and I n s t a l l a t i o n of t h e F l o w E l e c t r o l y t i c C e l l F a c i l i t y , " E n g i n e e r i n g D e v.-e l o z n t Studis2-for Molten-Salt Breeder Reactor P r o c e s s i n g No. 4, ORNL-TM-3139 ( i n press).
7.
C . W. Kee and B. A. Bannaford, " C a l i b r a t i o n of an Orifice--Head Pot FlowneLer ) I ' Engineering Development S t u d i e s for Molten-Salt Breeder Reactor P r o c e s s i n g No. 4, ORNL-TM-3139 ( i n p r e s s ) .
8.
J . R . R e i t z and F. J . M i l f o r d , Foundations o f Electroinagnetic Theory , 2d ed. , p . 1.36, Addison-Wesley , Readtng , Mass. , 1967.
9.
T . R. Johnson, F. G . Teats, and H. I). P r i c e , An I n d u c t i o n Probe -~ for Measuring Liquid Levels i n Liquid Metals, ANL-7153 (February
10.
5. Roth and L. E . McNccse, "Bisuii.iLh-Salt I n t e r f a c e D e t e c t o r Engineering Development S t u d i e s far Molten-Salt Breeder Reactor P r o c e s s i n g No. 4 , ORNL-'I'M-3139 ( i n p r e s s ) .
11. J. H. S h a f f e r , MSfi Program Semiann. P r o g r . iiept. J u l y 31, ORNL-3708, pp. 288-303.
1964,
12.
J . R . Hightower, J r . , and L. E . McNeese, Engineering Development S t u d i e s for Molten-SgLt B r e e d e ~ a ~ - e a c t oProL3sslng r No. 3 , ORNLTM-3138, pp. 84-95.
13.
F. J . Smith, L . M . F e r r i s , and C. T. Thompson, Liquid-Vapor Equil.ibz>-z l2%F Systems, ORNL-I+)+15 ( J u n e 1969).
1.h.
4
Hightower, Jr., and L. E. McNeese, Measurement of t h e R e l a t i v e V o l a t i l i t i e s of Fl.uoi-ides of C e , L a , PI-,N d , Sm, Eu, B a , S r , Y , ORNL-TM-2058 ( J a n u a r y 1968 ) and Zr i n Mixtui-es of JLiF-BeF 2' J . R.
I_-._
.
15;.
M. S. F o s t e r , S. E . Wood, and C . E . Crouthamel, I n o r g . Chem. 3, 1428 (1964).
16. B.
17*
V. Ibl and B. F. Dodge, Chem. Eng. S c i .
2,
120
(1953).
Handbook of Chemistry and P h y s i c s , 41st e d . , p. 2343, Chemical Rubber P u b l i s h i n g Co., C l e v e l a n d , Ohio, 1960.
45, 375 (1966). IC. A. K. F i s c h e r , J. Chem- Phys, -
19. Leon Lapidus, D i g i t a l Computation f o r Chemical E n g i n e e r s , p. 288, McGraw-Hill, New York, 1962. 20. M. Hansen, C o n s t i t u t i o n of Binary A l l o y s , 2d e d . , p . 316, McGrawH i l l , New York, 1958. 21..
J. S. Watson and H. D. Cochran, J r . , " E f f e c t of Axial Mixing i n Packed Colwrul C o n t a c t o r s Used f o r MSBR P r o c e s s i n g , " Engineering D No. 4 , ORNL-TM-3139 ( i n press).
22.
J . S . Watson and L. E , McNeese, Unit O p e r a t i o n s S e c t i o n Quarterly_ P r o g r e s s R e p o r t , July-September 1368, ORNL-4366, pp. 57-98.
23. A. J . F r e d e r i k s e n , J . J . P r o t u l p a c , and S. C . Trindade, Hydrodynamics o f a Mercury-Water Packed Column , MIT-CEPS-X-88 (1969 )
.
24.
R. Gayler and H. R. C. P r a t t , "Holdup and Pressure Drop i n Packed Columns," Trans. I n s t . Chem. Eng. 29, 1 1 0 (1951).
25.
F. R. D e l l and H. R. C . P r a t t , T r a n s , Inst. Chem. Eng.
(1951) e
3, 89-109
3-21
1NTE:R.ITAL D ISTRIBUTI OM
41.
1, C . F. Baes 2. H . F.. Baumn 3. 3. E . Beall.
42n b3
lt4-45 46. 4'7
4, M. J. Bell
1)
5. )I. R . Bennett 6 R. E:. Blanco 7 - P. F. I3l-ankeiiship 8 , G o E. Boyd 9. R. B. Bxiggs 10. R, E. Bi-ooksbank 11. K. B. B r o m 12, W. L, C a r t e r
0
48 49. s
50 *
51
13" H, 13. Cochran, Jr.-
14, F..L.
1 5 . J.,R , 1 6 n W. P. 17. D. E. 18- L o M, 19. J, H. 20. W. R. 21, A. G a 22, P. A. 23 * B. A.
24, J. R. 25. C. W. 26. R. B. 27, H. E ,
28-38,
L. E, 39. D. M. 40, J. P o
Culler. Distefnno Eatherly Ferguson
Ferris Frye
$1. J. Skinner
F. J " Smith
55. R. E . 56 D . B, 57 W. E. 58" C . D. 59 J . S. w
61. 62*
Bannaford Hightower, Jr. Kee Lindauer McCoy McNeese Moulton Nichols
Nicholson J. H. P a s h l e y (K-25) A. €4. P e r r y M. W. Rosenthal A . D e Ryon 51. F. S c h a f f e r , Jr. Dunlap S c o t t J . H. S h a f f e r 7;.
52. D a D. Sood 53. Martha S t e w a r t 54 * 0 . K. T a l l e n t
60
GriInes
GrEndeL1 Haas
E.
63
I
6L. 65
46 * 67-68
69-70. 71-73 75
0
76.
Thoma Trauger Unger Watson Watson A. €4. Weinberg 3 . R. Weir M. E. Whatley 5 , C . White W. M. Woods E., G , Wymer E. L a Youngblood C e n t r a l Research L i b r a r y Document Reference S e c t i o n Laboratory Records L a b o r a t o r y Records, RC Y-12 Document Reference S e c t i o n ORNL P a t e n t Office
EXTERNAL DISTRIBUTION
J. A - A c c a i r r i , C o n t i n e n t a l O i l Go., Ponca C i t y , Oklahoma 74601 R. 14, Bmhong, UCC, Carbon P r o d u c t s D i v i s i o n , 12900 Snow Road, Parma, Ohio 44130 79. D. F. Cope, Atomic Energy Commission, RDT S i t e Office (OJRNL) 80. C . B o Deering, Black & Veach, P. 0. Box 840.5, Kansas C i t y , Missouri 64114 81. A. R. DeGrazia, USAEC, DRDT, Washington, D . C . 20545 82, Delonde R. deBoisblanc, Ebasco Services, I n e . , 2 Rector S t r e e t , New York, Nay. 10006 83. D. E l i a s , HIT, USAEC, Washington, I3.C. 20545 84, Norton Haberman, RDT, USAEC, Washington, D . C . 20545
77. 78.
122
EXTERNAL DISTRIBUTION (continued)
T. R. Johnson, Argonne National Laboratory, 9700 S. Cass .Avenue, Argonne, Illinois 60439 Kermit Laughon, Atomic Energy Commission, RDT Site Office (ORNL) T. W. McIntosh, Atomic Energy Commission, Washington, D.C. 20545 E. H. Okrent, Jersey Nuclear Go., R e L L e v u e , Washington 98004 H. D. Pierce, Argonne National Labora.tory, 9700 S. Cass Avenue, Argonne, Illinois 60439 91.. J. Rotli, Combustion Engineering, Windsor 91 Connecticut 06095 92. M. Shaw, Atomic Energy Commission, Washington, D.C. 20545 93. N. Srinivasan, Head, Fuel Reprocessing Division, Rhabha Atomic Eesearch Center, Tronibay , Bombay 74, India 94. C. L. Storrs, Combustion Engineering Inc , Prospect H i l l . Roa.d, Windsor, Connecticut 06095 95 â&#x201A;Ź3. L. Tarmy, E s s o Research and. Engr. Co., P. 0. Box 101, Florhwn Park, N . 3 . 07932 96 J. R. Trinko , Ebasco Services , :Tnc 2 Rector S-Lreet, New York, r u . 10006 97 Laboratory and University Di-vision,OR0 98-99 Division of Technical Information ExLension, ORO, AEC
85.
e