HOME
\
HELP O A K RIDGE N A T I O N A L LABORATORY operated by
UNION CARBIDE CORPORATION NUCLEAR DIVISION for the
U.S. ATOMIC ENERGY COMMISSION
ORNL- TM- 2997 COPY NO.
DATE
EXPERIMENTAL DYNAMIC ANALYSIS OF THE MSRE WITH
23%
-
April,
1970
FUEL
R . C . S t e f f y , Jr.
ABSTRACT
(J
i b
Tests were performed on t h e Molten-Salt Reactor Experiment t o determine t h e system time response t o s t e p changes i n r e a c t i v i t y , t h e neutronf l u x - t o - r e a c t i v i t y frequency response, and t h e o u t l e t - t e m p e r a t u r e - t o power frequency r e s p o n s e . The r e s u l t s o f each of t h e s e were found t o agrek favorably with t h e o r e t i c a l predictions. The t i m e response tests were performed w i t h t h e r e a c t o r o p e r a t i n g a t 1, 5 , and 8 MW and s u b s t a n t i a t e d t h e t h e o r e t i c a l p r e d i c t i o n s t h a t f o l lowing a r e a c t i v i t y p e r t u r b a t i o n t h e system would r e t u r n t o i t s o r i g i n a l p o w e r l e v e l more r a p i d l y a t h i g h e r p o w e r l e v e l s t h a n a t lower power l e v e l s and w a s l o a d - f o l l o w i n g a t a l l s i g n i f i c a n t power l e v e l s . A n o i s y f l u x s i g n a l (caused by c i r c u l a t i n g v o i d s ) hampered d e t a i l e d comparison of t h e e x p e r i m e n t a l r e s u l t s and t h e o r e t i c a l p r e d i c t i o n s . Neutron flux-to-reactivity frequency-response measurements were per-
formed u s i n g p e r i o d i c , pseudorandom b i n a r y and t e r n a r y sequences. T h i s t y p e of t e s t e f f e c t i v e l y prevented much of t h e random n o i s e contamination o f t h e n e u t r o n f l u x from e n t e r i n g t h e f i n a l a n a l y s e s and gave r e s u l t s which c o n t a i n e d l i t t l e s c a t t e r . The r e s u l t s were i n good agreement w i t h t h e degree of t h e t h e o r e t i c a l p r e d i c t i o n s and v e r i f i e d t h a t f o r t h e &!,%E, s t a b i l i t y i n c r e a s e s w i t h power l e v e l .
Outlet-temperature-to-Wwer frequency-response measurements were compared w i t h similar measurements made d u r i n g o p e r a t i o n w i t h t h e 23% f u e l and v e r i f i e d t h a t t h e basic t h e r m a l p r o p e r t i e s of t h e r e a c t o r system were e s s e n t i a l l y t h e same as e x p e c t e d . Keywords : MSm, f u s e d salts, r e a c t o r s , o p e r a t i o n , r e a c t i v i t y , t e s t i n g , t i m e response, frequency response, s t a b i l i t y , pseudorandom b i n a r y sequences, pseudorandom t e r n a r y sequences. NOTICE This document contains information of a preliminary nature and was prepored primarily for internal use a t the Oak Ridge National Laboratory. It is subject to revision or correction and therefore does not represent a final report.
T h i s report was prepored as an account of Government sponsored work.
Neither the United States,
nor the Commission. nor any person acting on behalf of the Commission:
A.
Makes any warranty
or represmntation, expressed or implied, w i t h respect t o the occurocy,
completeness, or usefulness of the information contoined i n t h i s report, or that the use of any
information, apporotus,
method,
or process disclosed
i n t h i s report may not infringe
privately owned rights; or
6. Assumes any l i a b i l i t i e s w i t h respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed i n t h i s report. As used i n the above, “perron
acting on behalf of the Commission.’
controctor of the Commission, or employee of such contractor, t o or contractor
the
includes ony employee or extent that such employee
of the Commission, or employee of such contractor prepares,
provides access to, any information pursuant t o h i s employment or contract w i t h or h i s employment w i t h such contractor.
disseminates,
or
the Commission, c
4. I
L
3
CONTENTS Page ABSTRACT ............................ INTROllLTCTION .......................... TRANSIENTRESPONSE. ....................... FREQUENCYRESPONSE........................ ................. Neutron Flux to Reactivity Testing Procedure ...................
.
Analysis Programs ................... Discussion. ...................... Outlet Temperature to Power. ................ CONCLUSION. ...........................
. 13 . 14 . 22
- 5 - !I . 12 . 12 . 12
. 25 . 26
LISTOFREFERFNCES ........................
-LEGAL
1
NOTICE--------1
5 I
EXFERDENTAL DYNAMIC ANALYSIS OF THE MSFE WITH 23% FUEL R. C . Steffy, Jr.
INTRODUCTION
S e v e r a l r e p o r t s and a r t i c l e s (References 1 -
6) r e l a t i n e i t h e t o
t h e t h e o r e t i c a l o r a c t u a l ( o r b o t h ) dynamic response of t h e Molten S a l t Reactor Experiment have been p u b l i s h e d .
However, none of t h e s e has re-
p o r t e d i n a c o n c i s e form t h e dynamic response of t h e U-233 f u e l e d MSRE. Reference
4 contains
much of t h e frequency-response i n f o r m a t i o n r e p o r t e d
h e r e i n , b u t it i s p r e s e n t e d i n a l e n g t h y c o n t e x t which i s p r i m a r i l y concerned w i t h comparing t e s t i n g s i g n a l s and t e c h n i q u e s .
The purpose of
t h i s r e p o r t i s t o g i v e a b r i e f d e s c r i p t i o n of t h e observed dynamic r e sponse of t h e U-233 f u e l e d MSRE, compare it w i t h t h e t h e o r e t i c a l and sugg e s t p o s s i b l e r e a s o n s f o r d i f f e r e n c e s when a p p l i c a b l e , b u t t o eschew any l e n g t h y d e s c r i p t i o n of t h e t e s t i n g t e c h n i q u e s .
TRANSlENT RESPONSE
A common method of d e s c r i b i n g t h e dynamic response of a s t a b l e s y s t e m i s t o d i s p l a y t h e system response t o a s t e p change i n a n i n p u t v a r i able.
For a n u c l e a r r e a c t o r , r e a c t i v i t y i s u s u a l l y t h e p e r t u r b e d p a r a -
meter.
T h i s type d e s c r i p t i o n ( i . e . d e s c r i p t i o n i n t h e time domain) has
t h e advantage of an i n t u i t i v e a p p e a l t o people s i n c e we d e a l d i r e c t l y w i t h t i m e i n day-to-day l i v i n g .
However, a n a l y s i s of a system r e s p o n s e
i n t h e t i m e domain does have some d i s a d v a n t a g e s .
Notably, i f t h e system
o u t p u t of i n t e r e s t i s contaminated w i t h a l a r g e n o i s e component, t h e p a r t of t h e o u t p u t r e s u l t i n g from a s t e p i n p u t may b e u n d i s c e r n i b l e from t h e p a r t caused by t h e n o i s e .
The r e a s o n f o r making t h i s p o i n t i s t h e l a r g e
d i f f e r e n c e i n t h e n e u t r o n n o i s e l e v e l between t h e 23%J 23?J
f u e l l o a d i n g of t h e MSRF,.
f u e l l o a d i n g and
(The i n c r e a s e i n n o i s e l e v e l w a s due t o
a concomitant i n c r e a s e i n c i r c u l a t i n g v o i d f r a c t i o n and was n o t a n i n I
t r i n s i c f u n c t i o n of t h e f i s s i l e i s o t o p e . )
An example of t h e u n c o n t r o l l e d
4
neutron f l u x d u r i n g high-power o p e r a t i o n f o r each f u e l i s shown i n F i g . 1, a n d t h e r e l a t i o n s h i p between t h e f l u x n o i s e and v o i d f r a c t i o n i s r e a d i l y
The v o i d f r a c t i o n estimates which are l a b e l e d on F i g . 1 were
observable.
achieved by v a r y i n g t h e f u e l pump speed; however, t h e f u e l pump w a s o p e r a t e d a t f u l l speed (-
1180
r p ) f o r a l l of t h e dynamics t e s t s r e p o r t e d
here During t h e i n i t i a l approach t o power w i t h t h e
23%
f u e l , time re-
sponses of t h e neutron f l u x t o a s t e p change i n r e a c t i v i t y were recorded and a r e shown i n F i g u r e s 2, respectively.
*
3,
and
4 for
t h e r e a c t o r a t 1,
5, and 8 MW,
**
Also shown i n t h e s e f i g u r e s are t h e t h e o r e t i c a l p r e d i c t i o n s
f o r s t e p r e a c t i v i t y changes of t h e same magnitudes.
The t h e o r e t i c a l c a l -
c u l a t i o n s were performed u s i n g t h e mathematical model and method d e s c r i b e d i n Reference 2 .
The n o i s y f l u x s i g n a l h i n d e r s a comparison of t h e f i n e r
d e t a i l of t h e t h e o r e t i c a l and e x p e r i m e n t a l c u r v e s , b u t t h e n o i s e w a s low
enough t h a t sone f e a t u r e s may b e compared.
I n general, t h e t h e o r e t i c a l
and t k e experirnental c u r v e s a r e i n good agreement.
For t h e 1 - I G c a s e ( F i g u r e 2), t h e i n i t i a l f l u x peak w a s s l i g h t l y higher
thaK
t h e t h e o r y p r e d i c t e d , t h e n it o s c i l l a t e d below t h e i n i t i a l
l e v e l anE l a t e r i n c r e a s e d a g a i c w i t h a second peak o c c u r r i n g a f t e r about
360 s e e .
The t h e o r e t i c a l c u r v e s a g r e e t h a t t h e change i n power should
'nave r e t u r n e d t o a p o s i t i v e i n d i c a t i o n a t t h i s t i m e b u t i n d i c a t e t h a t it should n o t have been as l a r g e i n magnitude as t h e observed b e h a v i o r .
The
e x t e n t t o which n o i s e c o n t a m i n a t i o c f o r c e d t h e p o s i t i v e i n d i c a t i o n i s n o t mcwn The n o i s e contamination i n t h e 5-MW c a s e ( F i g .
3) makes it
diffi-
c u l t t o compere d i r e c t l y t h e e x g e r i m e n t a l and t h e o r e t i c a l r e s u l t s .
They
ic
The o r i g i n a l p l o t of t h e response a t 1 MW w a s made by a d i f f e r e n t machine t h a n t h e o t h e r two p l o t s . T h i s accounts f o r t h e d i f f e r e n c e i n g e n e r a l appearance of t h e p l o t s . -H
Full p o w e r w a s t a k e n as 8.0 MW d u r i n g t h e d a t a a n a l y s i s and w r i t i n g of t h i s r e p o r t .
7
ORNL- DWG 69- 537 t R
P.RCLNT
50
RCf NT
60
LO
PYRCENT
50
0
PLRCENT
40
50
RCFNT
60
1480 rpm <0.1VOI 70 235"
RR-8400
10
0
1460 rpm
PERCENT
40
1420 rpm
0.6 VOIYO 0 . 3 vOI 70
50
4070 rpm 0.1 VOI Yo
233"
CHART (percent of 45 Mw)
F i g . 1. Secti-ons of Nuclear Power Recorder Chart C o n t r a s t i n g 235U Fuel, Full Flow and Few Bubbles w i t h 23% Fuel, Varying Flow and Bubble F r a c t i o n . Conditions i n each c a s e : 7 MW, 12100F, 5 psig, 52 56% F u e l Pump Level.
-
a
ORNL-DWG 70-2922
0.7 POWER L E V E L = 1 Mw
0.6
--- THEORETICAL
0.5
EX PE R IM E NTAL REACTIVITY INSERTED = 0.0139 'YO
0.4
-
8k/k -
a 0.2 0.1
+ %
A -
0 - 0.1 60
120
180
240
300
360
420
TIME AFTER REACTIVITY INSERTION ( s e d F?g. 2. Response of' t h e Neutron Flux t o a S t e p Change i n R e a c t i v i t y of 0.0139% 8 k , k w i t h t h e Reactor I c i t i a l l y a t 1 MW.
9
0.8 POWER LEVEL = 5 Mw
0.6 .
--- THEORETICAL -EX PER IM ENTA L
-
REACTIVITY INSERTED =0.0190% 6k/k 0.4 3
r a
0.2 0 - 0.2
F i g . 3.
Response of t h e Neutron Flux t o a S t e p Change i n R e a c t i v i t y of O.OlgO% 6k/k w i t h t h e Reactor I n i t i a l l y a t 5 MW.
10
a r e i n g e n e r a l agreement, b u t d e t a i l e d comparison would b e guess-work. The swells aid r o l l s t h a t occur a f t e r about 1-50s e e a r e almost s u r e l y n o t d i r e c t l y r e l a t e d t c t h e o r i g i n a l r e a c t i v i t y i n p u t s i n c e t h e system s e t tling t i m e at 5
i s about 1-50s e e .
For t h e r e a c t o r o p e r a t i n g a t 8 WG, t h e f l u x response t o a r e a c t i v i t y s t e p of
0.0248$ 6k/k
i s shown i n Figure
4.
The maximum power l e v e l was
reached d u r i n g t h e f i r s t second a f t e r t h e r e a c t i v i t y i n p u t .
This r a p i d
i n c r e a s e w a s accompanied by a r a p i d i n c r e a s e i n f u e l temperature i n t h e core, which, coupled w i t h t h e n e g a t i v e temperature c o e f f i c i e n t of r e a c t i v i t y , more t h a n counter-balanced tine s t e p r e a c t i v i t y i n p u t , s o t h e power l e v e l began t o d e c r e a s e .
The temperature of t h e s a l t e n t e r i n g t h e c o r e
w a s c c n s t a n t d u r i n g t h i s i n t e r v a l , and when t h e power had d e c r e a s e d enough
f o r t h e r e a c t i v i t y a s s o c i a t e d w i t h t h e i n c r e a s e d n u c l e a r a v e r a g e temperat u r e t o j u s t caficel t h e s t e p r e a c t i v i t y i n p u t , t h e power l e v e l e d f o r a b r i e f t i m e (from
- 6 t o - 1.7 s e c
after the reactivity input).
About
1-7s e c
a f t e r t h e r e a c t i v i t y increase, t h e hot f l u i d generated i n t h e i n i t i a l p w e r i n c r e a s e completed i t s c i r c u i t of t h e l o o p e x t e r n a l t o t h e c o r e , and
t h e n e g a t i v e t e m p e r a t u r e c o e f f i c i e n t of t h e s a l t a g a i n reduced t h e r e a c tivi;y
s o t h a t t h e power l e v e l s t a r t e c , down a g a i n .
A t l a r g e times t h e
r e a c t o r power r e t u r n e a t o i t s i n i t i a l l e v e l , and t h e s t e p r e a c t i v i t y i n p u t w a s counter-balanced by an i n c r e a s e i n t h e n u c l e a r average t e m p e r a t u r e i n the core.
Fer t h e 5-MW case, a s h o r t p l a t e a u w a s probably p r e s e n t
also, b u t t h e x o i s y s i g n s 1 ok,scured i t s p r e s e n c e .
A t l o x e r powers, how-
e v e r , t h e slower system response prevented t h e r e a c t o r from r e a c h i n g t h e peak of i t s firs:
o s c i l l a t i c n k e f c r e t h e f u e l completed one c i r c u i t of
the external f u e l loop. case
The p l a t e a u t h e r e f o r e d i d n o t appear i n t h e 1-MW
a
An i n p o r t a n t c h a r a c t e r i s t i c of t k e MSRE dynamic r e s p o n s e w a s t h a t as t h e power decreased t h e r e a c t o r kecame b o t h more s l u g g i s h ( s l o w e r respondi n g ) and more o s c i l l a t o r y ; t h a t i s , a t low powers t h e t i m e r e q u i r e d f o r o s c i l l a t i o n s t o d i e o u t was much l a r g e r t h a n a t h i g h e r powers, and t h e f r a c t i o n a l amplitude of t h e o s c i l l a t i o n s
(A power/power) was l a r g e r .
11
CRNL-DWG 70-2923
1.4
POWER LEVEL = 8 Mw --- THEORETICAL -EXPERIMENTAL REACTIVITY INSERTED = 0.0248% 6k/k
1.2 i,o
0.8 3
1
1
-t 1
0.6
E
a
I
1
0.4
0.2
0 - 0.2
0 20 40 60 80 TIME AFTER REACTIVITY INSERTION (sec) Fig.
4.
100
Response of t h e Neutron Flux t o a S t e p Change i n R e a c t i v i t y of 0.248% 6k/k with t h e Reactor I n i t i a l l y a t 8 MW.
12
Neutron Flux t o R e a c t i v i t y Most o f t h e e f f o r t i n e x p e r i m e n t a l l y d e t e r m i n i n g t h e dynamic response of t h e MSREi w a s expended i n determining t h e n e u t r o n - f l u x - t o - r e a c t i v i t y frequency r e s p o n s e .
One advantage of working i n t h e frequency domain i s
t h a t a p e r i o d i c waveform may be c o n t i n u o u s l y imposed on a system i n p u t ( e . g . r e w t i v i t y , through c o n t r o l rod movement) u n t i l s e v e r a l p e r i o d s of data have been c o l l e c t e d .
All of t h e s i g n a l power of a p e r i o d i c s i g n a l
i s c o n c e n t r a t e d a t harmonic f r e q u e n c i e s , and subsequent a n a l y s i s a t a
harmonic frequency v e r y e f f i c i e n t l y e l i m i n a t e s most of t h e n o i s e contamin a t i o n which i s u s u a l l y d i s p e r s e d over a wide frequency band.
There are
r ; t h e r advantages to w c r k i n g i n t h e frequency domain, b u t t h e more n o i s y
flux signal w i t h the
23?J
f u e l l o a d i n g makes t h i s a s a l i e n t advantage.
S e v e r a l s t e p and -pulse t e s t s ( a R r i o d i c t e s t s ) were a l s o a t t e m p t e d b u t t h e s e do r o t have t h e s i g n a l energy c o n c e n t r a t e d a t p a r t i c u l a r f r e q u e n c i e s and t h e system n o i s e w a s l a r g e enough t h a t t h e r e s u l t s c o n t a i n e d t o o much s c a t t e r t o be u s e f u l . T e s t i n g Procedure
I
The p e r i o d i c s i g n a l s used i n t h e frequency-response t e s t s were e i t h e r pseudorandom b i n a r y o r pseudorandom t e r n a r y sequences
These are par-
t i c u l a r s e r i e s of square wave p u l s e s t h a t were chosen because t h e y e v e n l y d i s t r i b u t e d t h e s i g n a l power a t t h e harmonic f r e q u e n c i e s over a w i d e f r e quency range, which p e r m i t t e d d e t e r n i n a t i o n cf t h e frequency r e s p o n s e over a w i d e s p e c t r i n w i t h only one t e s t .
The frequency r a n g e over which
we o b t a i n e d frequency-response r e s u l t s was from a b o u t 0.005 t o 0.8 r a d / s e c ,
The lower l i m i t w a s s e t by t h e l e n g t h of one p e r i o d of t h e t e s t p a t t e r n and t h e high-frequency l i m i t was determined by t h e t i m e width of t h e s q u a r e wave p u l s e of s h o r t e s t d u r a t i o n which t h e s t a n d a r d equipment would a d e q u a t e l y reproduce. was 3.0 s e e .
The s h o r t e s t b a s i c p u l s e width used i n t h e s e t e s t s
?he frequency range covered by t h e s e t e s t s w a s e s s e n t i a l l y
t h e range elver which t h e r m a l feedback e f f e c t s are i m p o r t a n t .
The o n - l i n e computer, a Bunker-Ramo
340, was
programmed t o g e n e r a t e
t h e sequences by opening and c l o s i n g a set of r e l a y s .
Voltage was f e d
through t h e r e l a y s from a n a n a l o g computer ( E l e c t r o n i c A s s o c i a t e s , I n c , , Model TR-10).
T h i s v o l t a g e was used t o determine t h e movement of t h e con-
t r o l rods, which were f o r c e d e i t h e r t o f o l l o w t h e pseudorandom t e s t p a t t e r n themselves o r t o cause t h e f l u x t o f o l l o w t h e t e s t pa?;tern.4
The
c o n t r o l - r o d p o s i t i o n and t h e neutron f l u x were d i g i t i z e d and r e c o r d e d e v e r y 0.25 s e c on magnetic t a p e .
The data were r e t r i e v e d from t h e t a p e
and s t o r e d on punched c a r d s which could t h e n be processed w i t h t h e a n a l y s i s programs t o y i e l d t h e frequency-response i n f o r m a t i o n . A n a l y s i s Programs Before d i s c u s s i n g each of t h e programs used t o a n a l y z e t h e data, it i s p e r t i n e n t t o n o t e t h a t i n some i n s t a n c e s t h e d i f f e r e n t a n a l y s i s pro-
grams y i e l d e d markedly d i f f e r e n t r e s u l t s when a p p l i e d t o t h e same d a t a .
It i s beyond t h e i n t e n t of t h i s r e p o r t t o d e l v e i n t o t h e p o s s i b l e theor e t i c a l e x p l a n a t i o n s , b u t t h e i n t e r e s t e d r e a d e r may c o n s u l t Reference
4
f o r a more complete t r e a t i s e on t h e s u b j e c t . FOURCO. records.
T h i s code d i r e c t l y F o u r i e r transformed t h e time
The transformed o u t p u t ( f l u x ) w a s t h e n d i v i d e d by t h e t r a n s -
formed i n p u t ( r o d p o s i t i o n ) t o g i v e t h e frequency response.
This a n a l y s i s
w a s u s u a l l y performed on t h e f u l l data record, which would c o n t a i n s e v e r a l p e r i o d s of t h e same waveform, b u t o c c a s i o n a l l y w a s performed on i n d i v i d u a l p e r i o d s of d a t a w i t h t h e s e v e r a l r e s u l t i n g answers t h e n ensemble averaged. T h i s l a t t e r method i s denoted FOURCO ENS5MBI;F: on t h e f i g u r e s
CPSD.3.r6
T h i s a n a l y s i s method u t i l i z e d a d i g i t a l s i m u l a t i c n o f
an a n a l o g f i l t e r i n g t e c h n i q u e f o r o b t a i n i n g cross-power s p e c t r a l d e n s i t y , CFSD, f u n c t i o n s .
T h i s code c a l c u l a t e d t h e p c w e r spectrum o f t h e i n p u t
s i g n a l and t h e cross-power spectrum of t h e i n p u t and o u t p u t s i g n a l s and d i v i d e d t h e cross-power spectrum by t h e i n p u t power spectrum t o o b t a i n t h e frequency r e s p o n s e a t each frequency of a n a l y s i s .
The key f e a t u r e of
t h i s code i s an a d j u s t a b l e f i l t e r width a b o u t t h e a n a l y s i s f r e q u e n c y .
C A B .7 The t h i r d c a l c u l a t i o n a l procedure w a s more involved.
7
The a u t o - c o r r e l a t i o n f u n c t i o n s of t h e i n p u t and o u t p u t s i g n a l s were c a l c u l a t e d and t h e c r o s s - c o r r e l a t i o n f u n c t i o n of t h e s i g n a l s was c a l c u l a t e d .
14
These were t h e n F c u r i e r transformed t o o b t a i n t h e i n p u t , o u t p u t , and cross-power s p e c t r a .
The i n p u t power-spectrum w a s t h e n d i v i d e d i n t o t h e
crcss-power spectrum t o o b t a i n t h e frequency r e s p o n s e . Discuss i o n With t h e f u e l s t a t i o n a r y , t h e frequency r e s p o n s e of t h e zero-power
MSRE w a s e s s e n t i a l l y t h e same as t h a t o f any s t a t i o n a r y - f u e l , zero-power, The measured frequency response w i t h t h e f u e l n o t
z3%-fueled r e a c t o r .
c i r c u l a t i n g i s shown i n F i g u r e
5.
The magnitude r a t i o ,
fjn/N,.fjk,
is
seen t o be i n g e n e r a l agreemect with t h e theory, b u t t h e phase a n g l e i s c o t i n p a r t i c u l a r l y good agreement.
A t the higher frequencies f o r t e s t s
a t a l l power l e v e l s , t h e magnitude r a t i o and t h e phase a n g l e were lower than the theoretical.
This i s thought t o have been caused by t h e c o n t r o l
rod not adequately following t h e t e s t p a t t e r n y e t giving t h e i n d i c a t i o n t h a t it w a s .
The i n d i c a t o r s , which a r e p h y s i c a l l y l o c a t e d w i t h t h e d r i v e
assembly, a c c u r a t e l y d i s p l a y t h e a c t i o n of t h e r o d - d r i v e motors; however, t h e f l e x i b i l i t y of the c o n t r o l rod makes it d o u b t f u l t h a t t h e t i p of t h e rqd,
whick i s a k o u t
1.7 f t
from t k e d r i v e assembly, r e p r c d u c e s t h e high
frequency congmnent of t h e r o d - d r i v e movement. The res1Alts of a t y p i c a l aero-power t e s t w i t h t h e f u e l c i r c u l a t i n g a r e shown i n F i g u r e
6.
The shape of $he magnitude r a t i o curve i s i n ex-
c e l l e n t agreeKent w i t h t h e t h e o r e t i c a l curve, b u t t h e r e s u l t s have been norrnalized by m u l t i p l y i n g each e x p e r i m e n t a l v a l u e by 1.75.
The phase
a n g i e d a t a w a s i n b e t t e r agreement w i t h t h e t h e o r e t i c a l p r e d i c t i o n s t h a n
was t h e c a s e f o r t h e n o n - c i r c u l a t i n g data, b u t t h e r e i s s c a t t e r i n t h e results
~
The need t o normalize some r e s u l t s and n o t t o normalize o t h e r s i s
a l s o c c n s i d e r e d t o b e caused by poor c o n t r c l r o d i n d i ~ a t i o n , The ~ normal,iza%ion w a s n o t power dependent s i n c e some d a t a d i d and some d i d n o t need n o r m a l i z a t i o n a t each power l e v e l , and t h e n o r m a l i z a t i o n f a c t o r s , when t h e y were r e q u i r e d , were d i f f e r e n t f o r d i f f e r e n t t e s t s . A s we mentioned i n t h e introdiAction, s e v e r a l d i f f e r e n t t e s t i n g t e c h niques were used i n o b t a i n i n g t h e e x p e r i m e n t a l r e s u l t s .
An example of
OR N L - DW G 69 - I 2050
lo4 5
2
5
2 IO2 0
-
[r
Q,
-0
-30
v
W
cn
a
I -60
a
-90
IO-^
Fig. 5.
2
5
lo-2 2 5 lo-' FREQUENCY ( r a d / s e c )
2
5
Neutron F l u x - t o - R e a c t i v i t y Frequency Response of' t h e 23%-Fueled MSRE a t Zero-Power w i t h S t a t i o n a r y F u e l .
loo
16
ORNL-DWG 69- 12044
lo4 5
2 E
5
2
IO2 0
0 Q)
U
f
.0
FOURCO CPSD THEORY
-30
v
w
cn
Q
1 a- 6 0
-90
2
5
10-2
2
5
lo-'
2
5
FREQUENCY ( r a d /set) Fig. 6. Keutror. F l u x - t o - R e a c t i v i t y Frequency Response of t h e "%-Fueled
Y&RE a t Zero-Fower with C i r c u l a t i - n g F u e l .
loo
17
r e s u l t s 4 o b t a i n e d u s i n g a technique i s shown i n F i g u r e
7.
*
t h a t was u n s a t i s f a c t o r y on t h e MSRE
The r e s u l t s do n o t d i s p r o v e t h e t h e o r e t i c a l pre-
d i c t i o n s , b u t t h e y do l i t t l e toward v e r i f y i n g them e i t h e r ,
Certainly,
t h e r e s u l t s would have done l i t t l e toward d e s c r i b i n g t h e r e a c t o r f s response i f t h e t h e o r e t i c a l response were unknown.
These d a t a a r e shown
p r i m a r i l y t o d i s p l a y t h e system response a t low, b u t s i g n i f i c a n t , power.
**
A s a t i s f a c t o r y t e s t i n g technique
f o r t h i s r e a c t o r w a s n o t found u n t i l
a f t e r t h e p r e l i m i n a r y t e s t s were completed, and it was n o t convenient t o r e t u r n t o 1 M W t o perform f u r t h e r t e s t s ,
However, t h e good agreement be-
tween t h e e x p e r i m e n t a l r e s u l t s and t h e t h e o r e t i c a l p r e d i c t i o n s a t both h i g h e r and lower powers almost i n s u r e s t h a t t h e t h e o r e t i c a l c u r v e i s v e r y c l o s e t o t h e a c t u a l response, hence t h e 1-MW t h e o r e t i c a l curve may b e t a k e n as t h e a c t u a l response.
In addition, t h i s figure i l l u s t r a t e s
t h e importance of t h e t e s t i n g t e c h n i q u e which accounts f o r t h e d i f f e r e n c e i n appearance of t h e r e s u l t s i n F i g u r e 7 and t h o s e i n F i g u r e s 8 and 9. The s c a t t e r i n t h e r e s u l t s shown i n Figure 7 i s due t o i n a c c u r a c i e s i n t h e i n d i c a t e d c o n t r o l - r o d p o s i t i o n which were a c c e n t u a t e d by t h e t e s t i n g technique. T y p i c a l r e s u l t s from t e s t s which employed t h e most s a t i s f a c t o r y t e s t i n g t e c h n i q u e a r e shown i n F i g u r e s
8 MW, r e s p e c t i v e l y .
8 and 9 f o r t h e r e a c t o r a t 5
and
The r e s u l t s are i n e x c e l l e n t agreement w i t h t h e theo-
r e t i c a l curves except f o r t h e s l i g h t discrepancy a t t h e higher frequencies. T h e dip i n t h e m a g n i t u d e - r a t i o c u r v e s a t
a l o o p t r a n s i e n t time of t h e e x t e r n a l loop.
N
-
0,25 r a d / s e c ( c o r r e s p o n d i n g t o
25 s e c ) r e s u l t s from temperature feedback from
During a p e r i o d i c r e a c t i v i t y p e r t u r b a t i o n a t a f r e -
quency of a b o u t .25 rad/sec,
t h e f u e l i n t h e c o r e d u r i n g one c y c l e r e t u r n e d
*T h i s
was t h e t e c h n i q u e i n which t h e n e u t r o n f l u x w a s f o r c e d t o f o l l o w t o f o l l o w t h e t e s t p a t t e r n . It w a s n e c e s s a r y f o r t h e c o n t r o l rod t o move a l m o s t c o n t i n u a l l y d u r i n g t h i s t y p e t e s t and e r r o r s i n t h e i n d i c a t e d c o n t r o l rod p o s i t i o n caused t h e u n s a t i s f a c t o r y r e s u l t s . The t e c h n i q u e i s b a s i c a l l y sound and c o u l d b e w e l l u t i l i z e d on a system w i t h f a v o r a b l e hardware. H
The t e c h n i q u e t h a t gave t h e most s a t i s f a c t o r y r e s u l t s was one i n which t h e c o n t r o l - r o d p o s i t i o n w a s f o r c e d t o f o l l o w t h e t e s t p a t t e r n . The rod moved t o a new p o s i t i o n and t h e n remained s t a t i o n a r y f o r s e v e r a l seconds u n t i l a d i f f e r e n t p u l s e w a s needed. T h i s minimized c o n t r o l - r o d movement and t h e a s s o c i a t e d e r r o r s .
ORNL-DWG 69-1 2051
io4
I
5
2
5
2 102
90
60
30 h
0 W
U v
ucn
o
a
I
a
- 30
- 60
- 90 2
5
2 5 io-’ FREQUENCY (rad/sec)
!o-2
2
5
ioo
Fig, 7. Neutron Flux-to-Reacti-vity Frequency Response of t h e 23%-Fueled MSRE a t 1 MW.
W
W
ORNL-DWG 69-12245
104
102 90
60
h
30 U Y
w
cn
a I a
O
-30
- 60 {o-~
io-2
{O-’
FREQUENCY (rad/sec)
Fig. 8. Neutron Flux-to-Reactivity Frequency Response of t h e 23%-T-Fueled MSRE at 5 MW.
IO0
20
ORNL-DWG 69-42246
t o4
ANALYSIS METHODS
5
0
FOURCO, CABS, CPSD (EACH GAVE S A M E R E S U L T S )
- THEORY
2
(o3 5
2 4 O2
90 0
60
30
0
-30 to-3
Fig.
2
5
40-2 2 5 jo-’ F R EQU E NCY ( ra d/sec)
2
9. Neutron Flux-to-Reactivity Frequency Response of the 23%-Fueled MSRE at 8 MW.
IO0
21
t o t h e c o r e one p e r i o d l a t e r and, because of t h e n e g a t i v e temperature c o e f f i c i e n t of r e a c t i v i t y ,
produced a r e a c t i v i t y feedback e f f e c t t h a t p a r t i a l l y
canceled t h e e x t e r n a l perturbation.
The d i p i s obviously p r e s e n t i n t h e
e x p e r i m e n t a l r e s u l t s as w e l l as i n t h e t h e o r e t i c a l c u r v e s ; however, t h e d i p i n t h e e x p e r i m e n t a l d a t a i s n o t as pronounced as t h e t h e o r y p r e d i c t s . S i n c e t h e magnitude of t h e d i p has been shown2 t o b e a f u n c t i o n of t h e amount of s a l t mixing which occurs as t h e f u e l c i r c u l a t e s around t h e loop, t h i s d i f f e r e n c e between t h e e x p e r i m e n t a l and t h e o r e t i c a l i m p l i e s t h a t n o t enough mixing w a s assumed i n t h e t h e o r e t i c a l model.
A d d i t i o n a l work w i t h
t h e t h e o r e t i c a l model has shown t h a t i f t h e s a l t t r a n s p o r t i n t h e p i p i n g i s r e p r e s e n t e d by a s e r i e s of 2-sec f i r s t - o r d e r l a g s ( w e l l - s t i r r e d t a n k s
w i t h mean holdup t i m e s of 2 s e c ) r a t h e r t h a n t h e pure d e l a y s t h a t were assumed i n t h e e a r l i e r work, t h e d i p i n t h e e x p e r i m e n t a l and t h e o r e t i c a l r e s p o n s e s are i n good agreement. Below a b o u t 0.5 rad/sec, i s increased.
t h e magnitude r a t i o d e c r e a s e s as t h e power
T h i s s u b s t a n t i a t e s t h e o b s e r v a t i o n drawn from t h e t i m e
response p l o t s ; t h e degree of s t a b i l i t y f o r t h e MSRE i n c r e a s e s w i t h power level.
The lower magnitude r a t i o a t t h e h i g h e r power l e v e l s over t h e
frequency range i n which t h e r m a l e f f e c t s a r e important says, i n e f f e c t , t h a t f o r t h e same change i n r e a c t i v i t y t h e f r a c t i o n a l power (A power/power) change w i l l be l e s s a t h i g h e r power. The frequency-response c u r v e s shown i n t h i s document d i s p l a y t h e MSREgs frequency response a t s e v e r a l power l e v e l s .
O f course, several
t e s t s were performed a t s e v e r a l d i f f e r e n t power l e v e l s , b u t i n o r d e r to
keep t h e p r e s e n t a t i o n as s t r a i g h t f o r w a r d as p o s s i b l e , we chose t o show t h e r e s u l t s from r e p r e s e n t a t i v e t e s t s .
Table 1 summarizes t h e frequency-
r e s p o n s e t e s t s performed w i t h t h e 23% f u e l l o a d i n g and i n d i c a t e s t h e scope of t h e t e s t i n g program which i n c l u d e d 28 d i f f e r e n t t e s t s of approximately one-hour d u r a t i o n each.
Other e x p e r i m e n t a l r e s u l t s f o r t h e
f u e l l o a d i n g are g i v e n i n References
4 and 5 .
233J
Complete r e s u l t s of theo-
r e t i c a l dynamic a n a l y s e s are g i v e n i n References 2, 5 , and 6.
Note t h a t
some t e s t s were performed s h o r t l y a f t e r t h e s t a r t of o p e r a t i o n w i t h
23%
f u e l , and o t h e r s were performed n e a r t h e end of o p e r a t i o n w i t h
fuel.
23%
There were no i n d i c a t i o n s t h a t t h e response of t h e r e a c t o r had changed w i t h o p e r a t i n g time.
22
Table 1
Information R e l a t e d t o Frequency-Response T e s t i n g of 23%â&#x20AC;&#x2122;-Fueled MSRl3
Testing Dates
10/15/68 11/7-8168 1/16/69 1/20 /6 9 2/3/69 2/17/69 2/20/69 3/11/69 4/24/69 5 /26 /6 9*
*These
Integrated Power (MW-hrs)
Pcwe r Leve 1
No. of Tests Performed
w w
6
86
1Mw
3
435 2,390 L, 080 L , 490
5Mw
1
8MW
1
5Mw 8MW 10 kW
1
14,000
8MW
2
19,500
8MW
9
0
100
0
50
7,220
1
3 1 L
t e s t s were performed f o r M . R . Buckner and
T. W . K e r l i n of t h e U n i v e r s i t y of Tennessee as p a r t of a g r a d u a t e s t u d i e s program.
O u t l e t TeKperature t o Fower
DLzring t h e n e u t r o n - f l u x - t o - r e a c t i v i t y
frequency-response t e s t s which
were conducted a t s i g n i f i c a n t p w e r l e v e l s , t h e response of a thermocouple (TE-100-lA) on t h e o u t l e t p i p e w a s a l s o r e c o r d e d .
The data r e c o r d s t h e n
i n c l u d e d power ( o r more s p e c i f i c a l l y , n e u t r o n f l u x ) and o u t l e t t e m p e r a t u r e d u r i n g a time i n which t h e power was v a r i e d i n a p e r i o d i c waveform.
Hence,
t h e outlet-temperature-to-power frequency response c o u l d b e determined a t t h e same harmonic f r e q u e n c i e s as t h e n e u t r o n - f l u x - t o - r e a c t i v i t y
frequency
23
response.
The r e s u l t s of t h i s d e t e r m i n a t i o n c o u l d t h e n b e compared w i t h
t h e r e s u l t s of t h e o r e t i c a l p r e d i c t i o n s . The outlet-temperature-to-power
frequency-response r e s u l t s from a
t e s t conducted d u r i n g o p e r a t i o n w i t h 235 f u e l as w e l l as two t e s t s per-
formed d u r i n g o p e r a t i o n w i t h
23%
f u e l are shown i n F i g u r e 10. The e x p e r i -
m e n t a l r e s u l t s of a l l t h r e e t e s t s a r e e s s e n t i a l l y t h e same.
T h i s should
b e expected s i n c e t h e temperature response t o a given change i n power i s
a f u n c t i o n of t h e t h e r m a l p r o p e r t i e s of t h e system, and t h e s e were changed v e r y l i t t l e w i t h t h e change i n f i s s i o n a b l e m a t e r i a l . Three t h e o r e t i c a l magnitude r a t i o p l o t s are a l s o shown i n F i g u r e 10. Curve 1 i s t h e a s - c a l c u l a t e d curve and curves 2 and 3 a r e t h i s same curve m u l t i p l i e d by 0.5 and 0.1, r e s p e c t i v e l y .
Normalization of t h e t h e o r e t i c a l
by m u l t i p l y i n g by 0.5 f o r c e s agreement w i t h t h e e x p e r i m e n t a l r e s u l t s a t low f r e q u e n c i e s and m u l t i p l y i n g by 0 . 1 f o r c e s agreement a t h i g h f r e q u e n c i e s . The r e a s o n f o r t h e d i s c r e p a n c i e s between t h e e x p e r i m e n t a l and t h e o r e t i c a l have n o t been e x p l a i n e d l e a v i n g t h i s as an area open f o r more a n a l y s i s . i s of i n t e r e s t t o n o t e t h a t i n some e x p e r i m e n t a l workâ&#x20AC;? S,
It
performed by
J. B a l l and T . W . K e r l i n i n which t h e y a t t e m p t e d t o determine t h e re-
sponse of o u t l e t - t e m p e r a t u r e - t o - i n l e t - t e m p e r a t u r e
perturbations, they too
found a l a r g e r degree of a t t e n u a t i o n t h a n had been t h e o r e t i c a l l y p r e d i c t e d . The phase a n g l e p l o t s shown i n F i g u r e 10 a r e i n good agreement i f t h e t h e o r e t i c a l thermocouple response t o a power p e r t u r b a t i o n i s delayed b y 0.7 see more t h a n w a s assumed i n t h e o r i g i n a l c a l c u l a t i o n .
(A pure
d e l a y g i v e s a phase s h i f t t h a t changes l i n e a r l y w i t h f r e q u e n c y . )
The
t h e o r e t i c a l response of t h e thermocouple w a s r e p r e s e n t e d by a 1 - s e c pure d e l a y p l u s a 5-sec f i r s t - o r d e r l a g . formed by 8. J . B a l l . â&#x20AC;?
T h i s w a s based on c a l c u l a t i o n s per-
T h i s r e p r e s e n t s a good estimate, b u t c o u l d be
i n e r r o r by 0.7 s e c f o r t h i s p a r t i c u l a r thermocouple depending on i t s p a r t i c u l a r r e s p o n s e c h a r a c t e r i s t i c s and p h y s i c a l c o n t a c t w i t h t h e p i p e . Another p o s s i b l e s o u r c e of e r r o r i s t h e estimate of t h e l o c a t i o n of t h e thermocouple on t h e p i p e . The experimentally-measured outlet-temperature-to-power
frequency
r e s p o n s e v e r i f i e d t h a t t h e b a s i c t h e r m a l p r o p e r t i e s of t h e MSRE were ess e n t i a l l y unchanged by t h e change i n f u e l l o a d i n g .
The disagreement
24 ORNL-DWG
too
70-3423
50
20 IO
5
2 1
0.5
0.2 0.t 0
-
- 60
UI
W -0
v
W -J
- I 20
(3
z a W
v,
-180
a
I
a
THEORETICAL WITH ADDITIONAL 0.70sec TIME LAG
-240
- 300 10-3
Fig. 1 0 .
2
5
10-2 2 5 40-’ 2 FREQUENCY ( rad/sec 1
5
100
O u t l e t Temperature-to-Power Frequency Response of t h e MSRE with t h e Reactor a t 8 MW.
W
between t h e t h e o r e t i c a l and e x p e r i m e n t a l magnitude r a t i o d e t e r m i n a t i o n s makes it meaningless t o draw any c o n c l u s i o n s about t h e mixing e f f e c t s i n t h e c i r c u l a t i n g system.
CONCWSION
The dynamic response of t h e 23%-fueled MSF8 w a s analyzed by t h r e e d i f f e r e n t methods, each of which had d e f i c i e n c i e s b u t each of which added information.
The t r a n s i e n t response of t h e neutron f l u x t o a s t e p change
i n r e a c t i v i t y a t v a r i o u s power l e v e l s v e r i f i e d t h a t t h e g e n e r a l r e s p o n s e o f t h e system w a s as a n t i c i p a t e d , b u t t h e n o i s y f l u x s i g n a l made d e t a i l e d comparison of t h e t h e o r e t i c a l and e x p e r i m e n t a l r e s u l t s d i f f i c u l t .
The
shape of t h e e x p e r i m e n t a l l y - determined neutron f l u x - t o - r e a c t i v i t y f r e quency-response c u r v e s w a s i n e x c e l l e n t agreement w i t h t h e t h e o r e t i c a l c u r v e s over most of t h e frequency range which w a s r e a l i z a b l e w i t h t h e i n s t a l l e d hardware.
There were problems a s s o c i a t e d w i t h f i n d i n g a t e s t
method which would g i v e good r e s u l t s , and erroneous c o n t r o l r o d p o s i t i o n i n d i c a t i o n s n e c e s s i t a t e d n o r m a l i z a t i o n of some e x p e r i m e n t a l r e s u l t s .
The
o u t l e t temperature-to-power frequency-response d e t e r m i n a t i o n d i d n o t a g r e e w e l l w i t h t h e o r y b u t d i d show t h a t t h e b a s i c thermal p r o p e r t i e s of t h e MSFE w e r e e s s e n t i a l l y unchanged by t h e change from
23%
A t high powers, t h e MSRE i s a h i g h l y damped system.
to
23%
fuel.
It r e t u r n s t o
i t s o r i g i n a l power level r a p i d l y w i t h no undershoot o r wallowing.
At
low power l e v e l s , t h e u n c o n t r o l l e d r e a c t o r t e n d s t o be s l u g g i s h and s l o w i n r e t u r n i n g t o i t s o r i g i n a l power l e v e l .
With t h e r e a c t o r a t 1 Mw,
it
w a s observed t h a t over 400 s e e was r e q u i r e d f o r t h e f l u x l e v e l t o s t a b i -
l i z e a f t e r a s t e p change i n r e a c t i v i t y .
I n summary, t h e MSFB w a s s t a b l e
a t a l l power l e v e l s and t h e s t a b i l i t y i n c r e a s e d w i t h power as p r e d i c t e d .
26
LIST OF F3FERENCES
1. S . J . B a l l and T. W . K e r l i n , S t a b i l i t y A n a l y s i s of t h e Molten-Salt Reactor Experiment, USAFX Report ORNL-TM-1070, Laboratory, (December 1965) .
Oak Ridge N a t i o n a l
R. C . S t e f f y , Jr., and P. J . Wood, T h e o r e t i c a l Dynamic Analysis of t h e MSRE w i t h U-233 Fuel, USAEC Report ORNL-TM-2571, Oak Ridge N a t i o n a l Laboratory ( J u l y 1969).
3.
T. W. K e r l i n and S . J. B a l l , Experimental Dynamic Analysis of t h e Molten-Salt Reactor Experiment, USAEC Report O R N L - T M - ~ ~Oak ~ ~ Ridge , N a t i o n a l Laboratory, (October 1966)
.
4.
R . C . S t e f f y , J r . , Frequency-Response T e s t i n g of t h e Molten-Salt ~ ~ ,Ridge N a t i o n a l Reactor Experiment, USAEC Report O R N L - T M - ~ ~Oak Laboratory (March 1970).
5.
MSR Program Semiann. P r o g r . Rept., Feb. 28, ORNL-4396, Oak Ridge N a t i o n a l Laboratory.
1969, USAEC Report
6. MSR Program Semiann. P r o g r . Rept., Aug. 31, 1968, USAEC Report ORNL-4344, Oak Ridge N a t i o n a l Laboratory, pp. 46 - 52. J. B a l l , A D i g i t a l F i l t e r i n g Technique f o r E f f i c i e n t F o u r i e r ~ ~ ,Ridge N a t i o n a l Transform C a l c u l a t i o n s , USAEC Report O R N L - T M - ~ ~Oak Laboratory, ( J u l y 1967) .
7. S .
a.
S. J . E a l l , I n s t r u m e n t a t i o n and C o n t r o l Systems D i v i s i o n Annual Prog r e s s Report, September 1, 1965, USAEC Report ORNL-3875, PP. 126-127, Oak Ridge N a t i o n a l Laboratory (September
1965) .
W. K e r l i n and J . L. Lucius, CABS - A F o r t r a n Computer Program f o r C a l c u l a t i n g C o r r e l a t i o n Functions, Power S p e c t r a , and t h e Frequency Response from E x p e r i m e n t a l Data, USAEC Report ORNL-TM-1663, Oak Ridge N a t i o n a l Laboratory, (September 1966)
9 " T.
.
10
MSR Program Semiann. P r o g r . Rept., Feb, 28, ORNL-3936, Oak Ridge N a t i o n a l Laboratory.
11
S o J. Ball,
D
0
1966, USAEC Report
P e r s o n a l Commur.ication t o R . C . S t e f f y , Jr., J u l y 24,
1968.
ORNL-TM-
2997
INTERNAL DISTRIBUTION
1, N . J . Ackei*mann 2. R . K . Adams
3. 4. 5. 6. 7. 8. 9. 10. 11, 12.
13. 14, 15.
16. 17.
18. 19. 20. 21. 22.
23.
24. 250
26. 270 28.
29. 30. 31. 32.
33. 34. 35. 36. 37. 38. 39. 40, 41.
42. 43. 44.
R . G . Affel J, L . Anderson Z . F, Baes S o J. B a l l H. F , Bauman S. E . B e a l l M. Sender E , S. B e t t i s R . Blumberg E . G . Bohlmann C. J. Borkowski G . E . Boyd R . 3 . Briggs A , R . Buhl 0. W. Surke D. W. Cardwell F. H . C l a r k D, F. Cope, MC-OR0 W , B. C o t t r e l l J. L. CrGwley F. L. C u l l e r S. J, D i t t o W. P. E a t h e r l y J. R . Engel E , P. E p l e r D. E . Ferguson L. M. F e r r i s J. K, Franzreb A. P o Fraas D. N . F r y W . K. Furlong C . H . Gabbard A . Giambusso, AEC-Washington W. R . G r i m e s - G . M. Watson A. G , Grindell R . H . Guymon P. H, Harley W. 0 . Harms P o N . Haubenreich A. Houtzeel T. L. Hudson W. H. J o r d a n
R . Kasten J. Ked1 W. K e r l i n T . Kerr I . Krakoviak S . Kress C . Kryter Kermit Laughon, AEC-OSR M. I. Lundin R . H . Lyon R . E . MacPherson C . D. Martin C . L o Matthews, AEC-OSR H. E . McCoy H . C . McCurdy C . K. McGlothlan T. W. McIntosh, AEC-Washington H. A. McLain L. E . McNeese J . R . McWherter A . J. Miller R . L e Moore E . L. Nicholson L o C . Oakes A . M , Perry H . B. P i p e r B. E . P r i n c e G . L. Ragan J . L. Redford M. Richardson D. R . R i l e y , AEX M. W. R o s e n t h a l H. M. Roth, AEC-OR0 A . W. Savolainen Dunlap S c o t t R . M . S c r c g g i n s , AEC M. Shaw, AEC-Washington W. H. Sides M. J. S k i n n e r W. L. Smalley, AEC-OR0 A . N . Smith I. Spiewak R . C. S t e f f y D. A. Sundberg
45 P. 46. R . 47. T . 48. H . 49. A . 50. T. 51. R . 52*
53 54 55 56 57. 5859. 60 61-62. 63. 64. 65. 66. 67. 68. 69. 0
70 *
71. 72. 73 74 75. 9
76.
77-79. 80
a
81 82 83.
84. 85. 86. 87. 88. 89. 90-94. 95.
28 ORNL-TM-2997 INTERNAL DISTR IBUT I O N
( continued) J. R. D. F. A 100. .
96. 97 98. 99
101. 102. 103. 104. 105. 106-107. 108-109. 110-112* 113.
114. 115.
R . Tallackson E . Thoma B. Trauger N . Watson, AFX-Washington M . Weinberg J. R . Weir M. E . Whatley J. C White - A . S . Meyer G . D. Whitman Gale Young C e n t r a l Research L i b r a r y (CRL) Y-12 Document Reference S e c t i o n (DRS) Laboratory Records Department (LRD) Laboratory Records Department, Record Copy (LRD-RC) Nuclear S a f e t y Information C e n t e r ORNL P a t e n t O f f i c e
.
EXTERNAL DISTRIBUTION
116-130. D i v i s i o n of T e c h n i c a l Information E x t e n s i o n (M'IE) 131. Laboratory and U n i v e r s i t y D i v i s i o n (ORO)