HOME HELP ORNLTM-2741
C o n t r a c t No. W-7405-eng-26
'
c
U
METALS AND CERAMICS DIVISION
CATASTROPHIC CORROSICIN OF TYPE 304 STAINLESS STEEL IN A SYSTEM CIRCuLclTING FUSED SODIUM FLUOROBORATE
-& 'L
J. W. K o g e r and A. P. L i t m a n
JANUARY 1970
OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee operated by UNION CARBIDE CORPORATION for the U.S. ATOMIC ENERGY COMMISSION
Y
iii
b i
I t
CONTENTS
............................ Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . Visual and Metallographic . . . . . . . . . . . . . . . . . Chemical.......................... Physical Property Changes . . . . . . . . . . . . . . . . . Discussion.. . . . . . . . . . . . . . . . . . . . . . . . . . Impurity Effects . . . . . . . . . . . . . . . . . . . . . . Effect of Imposed Electromotive Force . . . . . . . . . . . Stainless Steel Corrosion . . . . . . . . . . . . . . . . . Dissimilar-Metal Corrosion . . . . . . . . . . . . . . . . . Corrosion Mechanism and Mode . . . . . . . . . . . . . . . . Summary . . . . . . . . . . . . . . . . . . . . . . . . . . Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . Recommendations . . . . . . . . . . . . . . . . . . . . . . . Abstract
Page 1 1 3 3 6 10 11
I2 12 I2 14
14 16 16
16
,
.
”
W
CATASTROPHIC CORROSION OF TYPE 304 STAINLFSS STEEL IX A SYSTEM CIRCULATING FUSED SODIUM FLUOROBORATE J. W. Koger and A. P. Litman
ABSTRACT A type 304 s t a i n l e s s s t e e l l i q u i d l e v e l probe contacted fluoroborate s a l t (NaBF4-8 mole ’$ NaF) i n an Inconel 600 pump loop a t constant temperatures i n t h e range 540 t o 690°C f o r 192 hr. The probe exhibited heavy attack, evidenced by severe leaching of C r , Fe, Mn, and S i f r o m t h e a l l o y . Equivalent uniform a t t a c k w a s about 4 mils/day. Corrosion of t h e s t a i n l e s s s t e e l , which i s i n f e r i o r t o nickel-base a l l o y s i n fused f l u o r i d e s , became catastrophic i n t h i s system due t o dissimilarmetal e f f e c t s .
INTRODUCTION
The PIP-1 loop, constructed of Inconel 600, i s a forced-circulation loop and p a r t of t h e Fuel Pump High Temperature Endurance Test F a c i l i t y . The loop i s used f o r performance t e s t i n g c e n t r i f u g a l pumps of t h e type developed f o r t h e Molten-Salt Reactor Experiment (MSRE).
The loop was
a l t e r e d t o accept NaBF4,-8 mole $ NaF as t h e c i r c u l a t i n g medium as p a r t of t h e program t o q u a l i f y t h e s a l t f o r use a s a coolant i n molten-salt reactors.
The experimental program c u r r e n t l y involves t h e measurement
of t h e c a v i t a t i o n pressure of t h e pwrrp as a M c t i o n of temperature of t h e molten s a l t .
For t h e s e experiments t h e loop i s operated under
nearly isothermal conditions i n t h e range 540 t o 690°C. A l i q u i d - l e v e l probe (Fig. 1) w a s i n s t a l l e d i n t h e pump bowl of
PKP-1 on June 20, 1968, t o i n d i c a t e changes i n t h e l i q u i d l e v e l t h a t occurred independently of changes i n s a l t density.
The probe w a s i n i -
t i a l l y thought t o be constructed with an Inconel 600 outer sheath, but l a t e r examination showed it was type 304 s t a i n l e s s s t e e l .
The i n s t r u -
ment used a 1000-Hz e l e c t r i c a l s i g n a l across a conductance probe immersed i n t h e s a l t and had an output s i g n a l t h a t was a l i n e a r function
2
,
3
W
of immersion depth.'
The s a l t temperatures seen by t h e probe a r e given
i n Table 1. Signals from t h e probe stopped s h o r t l y a f t e r i n s t a l l a t i o n . The probe w a s removed on June 28, 1968, a f t e r 192 h r i n t h e s a l t , and extensive corrosion had obviously occurred.
This paper describes our
m e t a l l u r g i c a l analysis of t h e probe, discusses t h e corrosion phenomena t h a t occurred, and d e t a i l s t h e significance of t h e incident f o r t h e Molten-Salt Reactor Program.
Table 1. S a l t Temperatures i n MSRP-PKP-1 Pump Loop Temperat ur e
( "C> 21
540
92
552
26
649
53
690
RESULTS
Visual and Metallographic The portion of t h e probe t h a t was immersed i n s a l t was 0.25 i n . i n diameter
X
0.030 i n . w a l l thickness.
A s shown i n Fig. 2, heavy a t t a c k
occurred over t h e lower 2 i n . of t h i s section.
The l e v e l of t h e s a l t
on t h e probe during operation i s not known and appears t o have varied. For analysis, t h e tubing was cut i n t o eight 3/4-in.-long
samples, num-
bered such t h a t sample l w a s f u r t h e s t from t h e exposed end. Figure 3 shows two magnified views of t h e end of t h e probe (sample 8 ) .
Severe d i s t o r t i o n and very l a r g e p i t s a r e seen.
places t h e w a l l w a s completely penetrated.
In some
W e calculated t h a t t h e cor-
rosion i n t h i s region was equivalent t o a uniform a t t a c k of 3.75 mils/day (1.4 i n . /year).
Damage decreased w i t h increasing distance from t h e probe
'Private communication, A. N. Smith, ORNL, t o J. W. Koger, 1968.
Fig. 2. Lower End of Liquid-Level Probe t h a t Contacted NaBF4-8 mole $ NaF i n PKP-1 Loop f o r 192 h r a t 540 t o 690OC. ( a ) Entire a c t i v e length. (b) Bottom 2 in.
o
c
5
r)
t
Liquid- Level Probe.
6 tip.
P i t t i n g was l e s s severe on sample 7 (about 1 in. from the t i p ) ,
but t h e photomicrographs (Fig. 4) show t h a t t h i s area was a l s o heavily The attack in t h i s region extended f o r about 20 mils through
attacked.
Figure 5, a photomicrograph of t h e upper
the tubing (about 3 mils/day).
end of sample 7, shows a p r e f e r e n t i a l attack i n the grain boundaries, with the voids linking t o form holes.
Here t h e attack only extends f o r
about 10 mils through t h e tubing, thus, demonstrating the varying l e v e l of the s a l t , as indicated by corrosion, on t h e probe. Chemical The salt was chemically analyzed j u s t before t h e probe was placed i n t h e system and j u s t a f t e r it was removed.
The results are given i n
Table 2.
The Li, Be, U, and Th are from an e a r l i e r f u e l salt used i n t h i s loop. As expected, no significant changes in t h e amounts of the
corrosion products i n the s a l t resulted from corrosion of t h e probe because (1)the surface area of t h e probe was small compared t o t h a t of the loop, and (2) the volume of salt was large compared t o t h e quantity of corrosiongroducts removed.
The reported changes i n t h e iron and
oxygen concentrations are attributed t o sampling and analytical procedures. Each probe sample was analyzed, and the results are given i n Table 3 .
W e removed the attacked area from the base metal on sample 8
and determined t h e composition of each region.
We found that t h e base
material of t h e probe was type 304 s t a i n l e s s s t e e l and not Inconel 600 as originally thought by project personnel. The analysis of t h e attacked area disclosed t h a t mainly C r , Fe, MI, and S i had been leached f r o m t h e base metal by the salt.
This removal resulted i n an apparent
enrichment i n N i , Mo, and Cu, although i n t h e areas of complete dissolution, of course, a l l t h e alloying elements were removed.
Also, about
2O$ unidentified material was associated with t h e attacked area.
Fig. 4. Microst (b) 500X.
Lower End of Samp
8
-
.
.
.
Fig. 5 .
(b) 500%
. >
Microstructure of Upper End of Sample 7.
.
(a) 1OOX.
,
9
Table 2.
Element
Ana
i s of Fluoroborate S a l t in PKP-la
Content, ppm Before After Insertion Removal
Element
Content, w t $I Before After I n s e r t ion Removal 21.0
Na
93
21.5 9.31
Fe
97 272
229
B
Ni
27
25
F
1u9
380
Li
0.182
0.193
Be
0.18
0.19
U
0.229
0.241
Th
0.170
0.172
Cr
0
9.18
65.9
66.7
%ater content not analyzed. Table 3.
Sample
Chemical Composition of Sections of Type 304 Stainless S t e e l Liquid-Level Probe i n PKP-1 Loop Portion Analyzed
.
Fe
Cr
Content, Ni Mn
4 Mo
si
cu
Before Test Nominal composition type 304 stainless steel
18-20
Major
0.6
8-10
1.5
9.4
1.4
8.1
1.3
0.U 0.14
0.52 0.44
11.0
1.4
0.14
11.7 1.4
0.13 0.11 0.12 0.12 0.15 1.00
0.58 0.64
After Test 1
2
3 4 5 6 7 8 8
i f any
17
69 68 68 68 67 67 67 69 15
11.2 9.0 10.2 10.0 60.0
1.3 1.2 1.3 1.7 0.1
0.70 0.46 0.52 0.60 0.27
0.12 0.10 0.12 0.12 0.10 0.10 0.11 0.10 0.50
10 Physical Property Changes I n i t i a l examination disciosed t h a t some p a r t s of t h e probe were highly ferromagnetic.
Each of t h e eight samples was t e s t e d with a Radio
?
Frequency Letboratory gaussmeter No. 1890 t o determine i t s magnetic f i e l d strength (Table 4). This i s a rapid nondestructive t e s t suitable f o r
many engineering systems.
This device i s quite useful on iron- or
nickel-base alloys t h a t a r e selectively attacked enough t o change t h e i r magnetic properties.
The magnetic f i e l d strength of t h e samples
increased as t h e end of the probe was approached. Table 4. Magnetic Field Strength and Seebeck Effect Sample
B (gauss)
1
Seebeck Effect (instrument u n i t s )
5.0 7.5
2
5
0.20 0.30 0.50
8
Standards Monel Nickel
10.0
0.75
9.5 11.5 13.5
2.00
U.0
Too f r a g i l e t o be measured but highly ferromagnetic
0.20
Too fragile
>30
0.50 0.06
27 8.5
Inconel
0.04
Hastelloy N
0.06
-13.0 -ll.5
Type 304 stainless steel
I
n
11
s,
Another t e s t i n g device u t i l i z e d i n t h i s study was a metal comparison meter.
t
This instrument nondestructively i d e n t i f i e s metals by
measuring the Seebeck effect3 of the unknown metal and comparing t h e value t o t h a t obtained from a piece of known metal.
The standards
b u i l t i n t o t h e device a r e nickel, type 304 s t a i n l e s s s t e e l , Monel,
Table 4 gives t h e r e l a t i v e Seebeck e f f e c t
Inconel 600, and Hastelloy N.
readings f o r t h e various samples and t h e standards. mde t o determine absolute values.
No attempt was
The examination r e s u l t s were t h a t
t h e Seebeck e f f e c t increased as t h e end of t h e probe was approached, i n agreement w i t h the gaussmeter t e s t s . The metallurgical evaluation showed t h a t t h e attack by the fluoroborate salt d r a s t i c a l l y changed t h e composition and properties of the type 304 s t a i n l e s s s t e e l probe during service.
The highly attacked
region had a f i n a l composition near t h a t of 78 Permalloy (Ni-224 Fe), a highly ferromagnetic material.
The changes of the magnetic f i e l d
strength and the Seebeck e f f e c t as a f'unction of attack were a l s o indici
a t i v e of composition changes and are often more sensitive t o small composition changes than chemical analysis.
8
The gradation i n these
properties along the probe, as opposed t o an abrupt change, indicates t h a t t h e salt l e v e l varied during exposure. DISCUSSION To account f o r the heavy attack observed, we considered several
p o t e n t i a l corrosion mechanisms.
.
--
Summers, Y-12, t o J. W. Koger, 1968. *Private communicati 'The Seebeck e f f e c t e phenomenon of a current passing between two metal junctions held fferent temperatures, when no other source of emf i s present. The actual measuring u n i t consists o probes, one of 'which i s heated, and a millivoltmeter. placed on t h e metal t o be tested, and t h e induced emf i s read.
Impurity Effects Salt analyses were obtained to decide if the salt itself was excessively corrosive. Past work4 has shown that fluoroborates that contain at least 2000 ppmwater and oxygen are highly corrosive to iron- and nickel-base alloys. These impurities react with the salt to form HF, which attacks almost all the constituents of the container materials. The most common evidence of this is detection of an increase in the concentration of the more noble elements, such as nickel, in the salt. This was not found for the system here, so we conclude, even considering the surface area and volume mismatch of probe to salt and container system, that the impurity effects on the probe corrosion were small. Effect of Imposed Electromotive Force We also believe that the passage of current through the probe and the associated emf had no effect on the corrosion rate, since other probes containing essentially the same elements in different cmbinations have s h m no deleterious effects under an imposed emf in prior exposures to fused fluorides.5 Stainless Steel Corrosion In the last two decades a continuing corrosion program at ORNL has been seeking to determine the cqatibility of various f'used fluoride Most of these tests mixtures with nickel- and iron-base 'J. W. Koger and A. P; Litman, Compatibility of Hastelloy N and Croloy 9M with Nal3F4-NaFWJ3F4 (9CM.4 mole $J) Fluoroborate Salt, ORNETM-2490 (April 1968). 5J. W. Koger, unpublished data from MSRP Natural Circulation Loop Corrosion Program, 1967 through 1969. 'G. M. Adamson, R. S. Crouse, and W. D. Manly, Interim Report on Corrosion by Alkali-Metal Fluorides: Work to May 1, 1953, ORNE2337 (March 20, 1959). Declassified May 9, 1959. 7G. M. Adamson, R. S. Crouse, and W. D. Manly, Interim Report on (Jan. 3, 1961). Corrosion by Zirconium-Base Fluorides, 0-2338
have used natural-circulation loops as t h e t e s t i n g device.
No tests
have been conducted t o determine t h e compatibility of s t a i n l e s s s t e e l with fluoroborate salts, although both s t a i n l e s s s t e e l s and fluoroborate s a l t have been separately tested with other materials. P
Table 5 summrizes recent datag, lo obtained from natural-circulation
loop tests and compares t h e compatibilities of some fluoride salts with type 304 s t a i n l e s s s t e e l and w i t h Hastelloy N.
In 5000-hr t e s t s
Hastelloy N loses about seven times as much weight i n NaBF&
mole $ NaF,
4 mg/cm2, as it does i n lithium-beryllium type f i e 1 salt, 0.6 mg/cm2. By analogy and with knowledge of t h e modes and mechanisms of fluoro-
borate s a l t corrosion, we assume that type 304 s t a i n l e s s s t e e l exposed t o t h e same fluoroborate salt f o r 5000 h r a t 605째C i n an a l l - s t a i n l e s s steel system would l o s e about seven times as much weight as i n a
8J. H. DeVan and R. B. Evans 111, Corrosion Behavior of Reactor Materials i n Fluoride S a l t Mixtures, ORNL-TM-328 (September 19, 1962). 1
3
'J. W. Koger and A. P. Litman, MSR Program Semiann. Progr. Rept. Feb. 29, 1968, ORNE4254, pp. 218-225. 'OJ. W. Koger and A. P. Litman, MSR Program Semiann. Progr. Rept. A u ~ . 31, 1968, ORNL-4344, pp. 257-266.
Table 5 .
Weight Loss of Alloys Ekposed t o Various Salts a t Different Temperatures f o r 5000 h r Weight
Uniform
175.0
12.6
Metal Hastelloy N Hastelloy N Hastelloy N r'
less s t e e l 1
less s t e e l
i
bl
&Estimated from comparison with t h e behavior of Hastelloy N i n NaBF4-8 mole $ NaF of t h e same impurity l e v e l and assuming an a l l - s t a i n l e s s s t e e l system.
14 lithium-beryllium type f u e l salt; t h a t is, 175 vs 25 %/an2.
Corrosion
w
of t h i s magnitude would be severe, equivalent t o about 13 mils/year
(0.035 mil/day) attack, more than can be tolerated i n a molten-salt reactor.
1.4 in./year (1370 mils/year) experienced by t h e probe.
W
Dissimilar-Metal Corrosion It should be noted that t h e above comparison of corrosion r a t e s of
s t a i n l e s s s t e e l and Hastelloy N i s r e a l l y v a l i d only i n systems where a l l the container material exposed t o the salt i s of t h e same composi-
tion.
In t h e PKP-1 system described i n t h i s work, t h e iron-base
type 3M stainless s t e e l was surrounded by the more noble and more corrosion r e s i s t a n t nickel-base Inconel600, which can be assumed t o s e t t h e oxidizing potential of the system. Thus, it i s not surprising that t h e l e s s noble and more active stainless s t e e l underwent much more corrosion (I370 vs I3 mils/year) than it would had t h e e n t i r e system been stainless steel.
This well-known effect i s termed dissimilar-metal cor-
rosion and has been noted i n both salt and l i q u i d metal systems.loJ1l Corrosion Mechanism and Mode
Our interpretation of t h e catastrophic corrosion t h a t occurred selectively on austenitic s t a i n l e s s s t e e l i n t h i s dissimilar-metal t e s t system i s consistent with related thermodynamic and electrochemical phenomena.
Exaslination of Table 6 shows t h a t the elements removed from
the s t a i n l e s s s t e e l a r e those whose fluorides are more stable than NiF2. This is i n agreement with Bakish and Kern12 who found almost a l l t h e chromium and most of t h e iron removed from Inconel 600 exposed t o
20s K2TaF7 i n equimolar KC1-NaC1 a t 800째C.
Measuring galvanic c e l l s
with a molten KC1-NaC1-KF electrolyte, they found the nickel electrode "J. H. DeVan, A. P. Litman, J. R. DiStefano, and C. E. Sessions, Lithium and Potassium Corrosion Studies with Refractory Metals, ORNGTM-1673 (December 1966).
16, -
t
However, t h i s r a t e is only 1s of the maximum corrosion rate,
12R. Bakish and F. Kern, "Selective Corrosion of Inconel," Corrosion 553t (1960). \
Table 6:
Relative S t a b i l i t y of Fluoridesa
Compound
Free Ehergy of Formation a t 1000째K (kcal/gram-atom F)
b SiF4
-84 -79
MlF: b
-75
CrF2 b FeF2
-68 -61
-58
MOF6
a
Based on A. Glassner, The Thermochemical ProDerties of the Oxides. Fluorides and Chlorides t o 55OO0K, ANL5750 (195j). bCompounds of the metals known t o be removed from the s t a i n l e s s s t e e l (Table 3 ) . more noble than iron by 0.3 v and chromium by 0.7 v.
Recent O W L mea-
s u r e m e n t ~ ' ~of electrode potentials i n molten fluorides agree qualitat i v e l y with W i s h and Kern's data and our corrosion results. Thus, it i s clear that the corrosive action of a fluoride salt on an alloy with or without dissimilar-metal mass transfer i s fundamentally an electrochemical process wherein some or all of the alloy constituents
a r e oxidized t o t h e i r ionic s t a t e with the formation of fluoride compounds.
The r a t e may be controlled by e i t h e r solid-state diffusion or
boundary-layer d i f f u s i highest energy, such a
-* *
attack concentrated oundaries, subgrain boundaries, certain
crystallographic planes,
islocations.
13H. W. Jenkins, G. of Several Redox Couples i n chemical Society, i n press.
ntov, and D. L. Manning, "Electrode Potentials luorides," Journal of the Electro-
16
The severe corrosion of type 304 s t a i n l e s s s t e e l exposed t o a fluoroborate salt i n an Inconel 600 system was interpreted.
Drawing analogies From similar systems we conclude that t h e main cause of t h e catastrophic corrosion was dissimilar-metal corrosion.
The s t a i n l e s s
s t e e l was the l e a s t noble p a r t of t h e t e s t system and thus suffered t h e brunt of t h e attack.
z
However, we believe t h a t the corrosion of stain-
l e s s s t e e l i n an a l l - s t a i n l e s s - s t e e l system by fused fluoroborate s a l t of the impurity'level that existed i n t h i s case would s t i l l be excessive.
We shared t h a t from comparison of f r e e energies and electrode
potentials one can predict the r e l a t i v e s t a b i l i t y of the constituents of an alloy i n fused fluorides. CONCLUSIONS
1.
!L'ype 304 stainless s t e e l i n an Inconel 600 system i n the tem-
perature range 54.0 t o 690째C was severely corroded by NaBF4-8 mole $ NaF.
2.
The fact that t h e type 304 s t a i n l e s s s t e e l was the l e a s t noble
p a r t of an Inconel 600 system increased t h e amount of corrosion.
3.
The mode of attack invylves leaching large quantities of C r , Fe,
and S i from the s t a i n l e s s steel, leaving a highly ferromagnetic nickel alloy. 4. The order of element remwal i n type 304 s t a i n l e s s s t e e l by
I&,
t h e fused sodium fluoroborate salt i s i n agreement with electrode poten-
t i a l measurements and f r e e energy data i n other halide s a l t systems and a l s o is i n agreement with other corrosion studies. 5 . Type 304 s t a i n l e s s s t e e l in an a l l - s t a i n l e s s - s t e e l system exposed t o fluoroborate salt of t h e impurity l e v e l used i n these experiments would corrode too much t o be useful i n engineering systems. 8
~
RECOMMENDATIONS
1. This experience emphasizes the necessity f o r more careful cont r o l over materials being placed in a system containing a r e l a t i v e l y uncharacterized fused fluoride salt.
Lid
17
In our judgment, low corrosion in nickel- and iron-containing alloys is favored by decreasing chromium and iron concentrations; that is, in order of decreasing corrosion resistance, we find modified Hastelloy N (containing no iron), Hastelloy N, Inconel 600, and stainless steel. While the general use of Hastelloy N alloys in the 2.
Inconel PKP-1 loop service is recommended, dissimilar-metal corrosion effects prohibit the use of any alloy less noble than Inconel 600.
c
8
19
h,
m L TM-2741 INTERNAL DISTRIBUTION
1-3. 4-5. 6-25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44.
45. 46.
47. 48. 49. 50. 51.
52. 53. 54.
55. 56.
57. 58. 59. 60. 61.
62. 63. 64. 65. 66. 67.
Central Research Library ORNL Y-l2 Technical Library Document Reference Section Laboratory Records Laboratory Records, ORNL RC ORNL Patent Office R. K. Adams G. M. Adamson, Jr. R. G. Affel J. L. Anderson R. F. Apple W. E. Atkinson C. F. Baes J. M. Baker S. J. B a l l C. E. Bamberger C. J. Barton H. F. Bauman M. S. Bautista S. E. Beall R. L. Beatty M. J. Bell M. Bender C. E. Bettis E. S. Bettis D. S. Billington R. E. Blanc0 F. F. Blankenship J. 0. Blomeke E. E. Bloom R. Blumberg E. G. Bohlmann B. S. Borie C. J. Borkowski H. I. Bowers C. M. Boyd G. E. Boyd J. Eraunstein M. A. Eredig R. B. Eriggs H. R. Bronste G. D. Brunton 0. W. Burke S. Cantor D. W. Cardwell J. H. C a r s w e l l , Jr.
68. W. L. Carter 69. G. I. Cathers 70. J. E. Caton 71. 0. B. Cavin 72. J. M. Chandler 73. C. J. Claffey 74. F. H. Clark 75. H. D. Cochran 76. Nancy Cole 77. C. W. Collins 78. E. L. Compere 79. K. V. Cook 80. W. H. Cook 81. J. W. Cooke 82. L. T. Corbin 83. B. Cox 84. J. L. Crowley 85. F. L. Culler 86. D. R. Cuneo 87. J. E, Cunningham 88. J. M. Dale 89. D. G. Davis 90. R. J. DeBakker 91. J. H. DeVan 92. J. R. DiStefano 93. S. J. Ditto 94. F. A. I)OSS 95. A. S. Dworkin 96. W. P. Eatherly 97. J. R. Engel 98. E. P. Epler 99. J. I. Federer 100. D. E. Ferguson 101. L. M. Ferris 102 A. P. l?raas 103 J. K. Fkanzreb 104. H. A. Friedman 105. Do N e Fry 106. J. H Frye, Jr. 107. L. C. Fuller 108. W. K. Furlong 109. C. H. Gabbard ll0 R. B. Gallaher lll. R. E. Gehlbach 112. J. H. Gibbons 113. L. 0. Gilpatrick '
..
.
20 ll4. 115. 116 ll7. 118. ll9. 120. 121. 122. 123. 124. 125. 126. 127 128. 129. 130. 131. 132. 133-135. 136. 137. 138. 139. u0. U1. u2. u3.
G. G o l d b e r g W. R. G r i m e s A. G. G r i n d e l l R. W. G u n k e l R. H. Guymon J. P. Hannnond R. L. H a m n e r T. H. H a n d l e y B. A. H a n n a f o r d P. H. H a r l e y D. G. H a r m a n W. 0. H a r m s C. S. H a r r i l l P. N. H a u b e n r e i c h F. K. H e a c k e r R. E. H e l m s P. G. H e r n d o n D. N. H e s s J. R. H i g h t o w e r M. R. H i l l E. C. H i s e
B. F. Hitch
H. W. H o f f m a n
D. P. R. A. T. w. W. 145. H.
U6. W. 147. P. Ilk$. Re u9. C. 150. M. 151. M. 152 C. 353. T. 154. H. 155 J. 156. R. 157 s. 158 L. 159-163. J. 164. H. 165. R. 166. A. 167. T. 168. J. 169. C. 170. J.
.
. ..
K. H o l m e s P. H o l z W. H o r t o n Houtzeel L. H u d s o n R. H u n t l e y Inouye H. Jordan R. Kasten J. K e d 1 W. K e e T. K e l l e y J. K e l l y R. K e n n e d y W. K e r l i n T. K e r r J. K e y e s T. King s. Kirslis R. K o f f l n a n W. K o g e r W. Kohn B. K o r s m e y e r I. Krakuviak S. Kress W. Krewson E. Iasib A. Lane
171. 172. 173-177. 178. 179.
180. 181. 182 183 184. 185 186. 187. 188.
..
189. 190-194. 195. 196. 197. 198. 199. 200. 201. 202. 203. 2%. 205 206. 207. 208. 209. 210. 2ll. 212. 213. 2u. 215. 216. 217. 218. 219. 220. 221. 222. 223. 224. 225. 226. 227. 228. 229.
.
M. S. Lin R. B. LTndauer A. P. Litman E. L. Long, Jr. A. L. Lotts M. I. Lundin R. N. won R. L. Macklin H. G. MacPherson R. E. MacPherson J. C. Mailen D. L. Manning C. D. Martin W. R. Martin R. W. M c C l u n g H. E. McCoy D. L. McElroy C. K. M c G l o t h l a n C. J. M c H a r g u e H. A. McLain B. McNabb L. E. M c N e e s e J. R. McWherter H. J. Metz A. S. Meyer R. L. Moore C. A. Mossman D. M. Moulton T. R. Mueller Me L. Myers H. H. N i c h o l J. P. N i c h o l s E. L. N i c h o l s o n T. S. N o g g l e L. C. Oakes S. M. C h r P. Patriarca A. M. Perry T. W. Pickel H. B. Piper C. B. Pollock B. E. Prince G. L. R a g a n J. L. R e d f o r d J. D. Redmam I). M. Richardson M. R i c h a r d s o n G. D. R o b b i n s R. C. R o b e r t s o n K. A. R o n b e r g e r M. W. R o s e n t h a l
' U
, -
bi
21
Lid " I
i:
*
.
230 231, 232 , 233. 234. 235. 236. 237. 238. 239. 240. 241. 242. 243. 244. 245. 246. 247. 248. 249. 250. 251. 252. 253. 254. 255. 256.
R. G. ROSS J. Roth J. P. Sanders H. C. Savage W. F. Schaffer C. E. Schilling Dunlap Scott J. L. Scott H. E. Seagren C. E. Sessions J. H. Shaffer W. H. Sides G. M. Slaughter A. N. Smith F. J. Smith G. P. Smith 0. L. Smith P. G. Smith I. Spiewak R. C. Steff'y H. H. Stone R. A. Strehlaw R. D. Stulting D. A. Sundberg R. W. Swindeman J. R. Tallackson E. H. Taylor
257 258. 259. 260. 261. 262. 263. 264. 265. 266. 267 * 268. 269. 270. 271. 272. 273. 274. 275. 276. 277. 278. 279. 280. 281. 282.
W. Terry R. E. Thoma P. F. Thomson L. M. Toth A. L. Travaglini D. B. Trauger Chia-Pao Tung W. E. Unger G. M. Watson J. S. Watson H. L. Watts C. F. Weaver B. H. Webster A. M. Weinberg J. R. Weir K. W. West
H. L. Whaley M. E. Whatley J. C. White R. P. Wichner L. V. Wilson Gale Young H. C. Young J. P. Young E. L. Youngblood F. C. Zapp
a
EXTERNAL DISTRIBUTION
I
'5
u
283. 284. 285. 286. 287. 288. 289. 290. 291. 292. 293. 294. 295. 296. 297. 298-299. 300. 301. 302. 303.
Allaria, A t o m i c s International Asquith, Atomics International Cope, RDT, SSR, AEC, Oak Ridge National Laboratory Deering, AEC, OSR, Oak Ridge National Laboratory DeGrazia, AEC, Washington Dieckamp, A t d c s International David Elias, AEC, Washington A. Gimbusso, AEC, Washington J. 8. Fox, AEC, Washington F. D. Haines, AEC C. E. Johnson, AEC, Washington W. L. Utterman, AEC, Washington W. J. Larkin, AEC, Oak Ridge Operations K e r m i t Laughon, AEC, OSR, Oak Ridge National Laboratory C. L. Matthews, AEC, OSR, Oak Ridge National Laboratory T. W. McIntosh, AEC, Washington A. B. Martin, Atomics International D. G. Mason, Atomics International G. W. Meyers, Atomics International D. E. Reardon, AEC, Canoga Park Area Office G. G. J. G. D. F. C. B. A. R. H. M.
22 304. 305. 306. 307. 308. 309. 310. 311. 312. 313. 314. 315. 316. 317. 318-332.
D. R. Riley, AEC, Washington H. M. Roth, AEC, Oak Ridge Operations M. Shaw, AEC, Washington J. M. Simmons, AEC, Washington T. G. Schleiter, AEC, Washington W. L. Smalley, AEC, Washington S. R. Stamp, AEC, Canoga Park Area Office E. E. Stansbury, the University of Tennessee D. K. Stevens, AM=, Washington R. F. Sweek, AEC, Washington A. Taboada, AEC, Washington M. J. Whitman, AEC, Washington R. F. Wilson, Atomics International Laboratory and University Division, AEC, Oak Ridge Operations Division of Technical Information Extension
W