n*
'
I
HOME
HELP
O A K RIDGE N A T I O N A L LABORATORY operated by
UNION CARBIDE CORPORATION
NUCLEAR DIVISION for the
U.S. ATOMIC ENERGY COMMISSION
ORNL- TM- 2724
COMPATIBILITY OF MOLYBDENUM-BASE ALLOY TZM,WITH c
LiF-BeF
2-
ThF UF (68-20-1 1.7-0.3 mole %) at 1100% 4- 4 J. W. Koger and A. P. Litman
NOTICE This document contains information of a preliminary nature and was prepared primarily for internal use a t the Oak Ridge National Laboratory. It i s subiect to revision or correction and therefore does not represent a final report.
c
LEGAL NOTICE
~
T h i s report was prepared as an account of Government sponsored work.
Neither the United States,
nor the Commission, nor any person acting on k h a l f of the Commission:
A.
Makes any warranty or representation, expressed completeness, or usefulness of the any
information,
apparatus,
method,
or
implied,
with respect t o the accuracy,
information contained i n t h i s report, or that the use of
or process disclosed i n t h i s report may not infringe
privately awned rights; or
6. Assumes any l i a b i l i t i e s w i t h respect t o the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed i n thio report.
As used i n the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission. or employee of such contractor, t o the extent that such employes or contractor
of the Commission,
or employee of
such contractor
prepares,
disseminates,
or
provides access to, any information pursuont t o h i s employment or contract w i t h the Commission,
or h i s employment w i t h such contractor.
t
ORNLTM-2724
C o n t r a c t No. W-7405-eng- 26
METALS AND CERAMICS D I V I S I O N
COMPATIBILITY O F MOLYBDENUM-BASE ALLOY TZM WITH LiF-BeF*-ThF&-UF4 (68-20-11.7-0.3 m o l e at 1100째C
4)
J. W. Koger and A. P. Litman
DECEMBER 1969
c
OAK RIDGE NATIONAL LABORATORY
V
O a k R i d g e , Tennessee operated by UNION CARBIDE CORPORATION f o r the U.S. ATOMIC ENERGY COMMISSION
,
.
.
iii
CONTENTS Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . Experimental Procedure . . . . . . . . . . . . . . . . . . . . . Results and Discussion . . . . . . . . . . . . . . . . . . . . . S a l t Analysis . . . . . . . . . . . . . . . . . . . . . . . Weight Changes . . . . . . . . . . . . . . . . . . . . . . X-Ray Fluorescence and Microprobe Analysis . . . . . . . . Microstructural Changes . . . . . . . . . . . . . . . . . . Re c r ys t a l l i z a t i o n . . . . . . . . . . . . . . . . . . . . . Strength . . . . . . . . . . . . . . . . . . . . . . . . .
............. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . Corrosion Reactions and Kinetics
Page 1 1
2 3 3
3
4 4
5 8 9 11
12
V
COMPATIBILITY OF MOLYBDENUM-BASE ALLOY TZM WITH LiF-BeF2-ThF4-UF4 (68-20-11.7-0.3 mole %) a t 1100"C
J. W. Koger and A. P. Litman
ABSTRACT
The TZM a l l o y (Mo-O.5% Ti-0.08% Zr-O.02$ C ) showed a very small amount of a t t a c k by t h e fused f l u o r i d e s a l t (LiF-BeF2-ThF4-UF4, 68-20-11.7-0.3 mole %) a t 1100"C for 1011 h r . Corrosion manifested i t s e l f as leaching of t i t a n i u m and possibly zirconium from t h e a l l o y . The TZM a l l o y exposed t o t h e s a l t p a r t i a l l y r e c r y s t a l l i z e d , while t h a t exposed t o t h e vapor did not. This r e c r y s t a l l i z a t i o n w a s a t t r i b u t e d t o t h e removal of t i t a n i u m and zirconium. On t h e basis of t h i s s i n g l e t e s t t h e magnitude and mechanism of corrosion i n d i c a t e no s e r i o u s problems f o r longterm use of TZM i n t h e vacuum d i s t i l l a t i o n processing scheme f o r t h e Molten S a l t Breeder Reactor. However, t h e s t r e n g t h p r o p e r t i e s of t h e TZM a l l o y would approach those of unalloyed molybdenum as s a l t exposure time increased; t h i s i s not considered a problem now.
INTRODUCTION
The current success of t h e Molten S a l t Reactor Experiment a t ORNL has stimulated work on a thermal Molten S a l t Breeder Reactor (MSBR).' One of t h e r e q u i r e m e n t s for a s u c c e s s f u l MSBR s y s t e m w i l l be t h e con-
tinuous reconditioning of t h e fuel s a l t t o remove unwanted f i s s i o n products.
A p o s s i b i l i t y under study f o r one s t e p of t h e s a l t reprocessing
i s vacuum d i s t i l l a t i o n .
*
Uranium would be s t r i p p e d from t h e f u e l s a l t ,
and t h e remaining s a l t would be d i s t i l l e d a t 1000째C and 2 t o r r .
The
d i l u e n t s o f t h e f u e l s a l t , l i t h i u m and beryllium f l u o r i d e s , would d i s t i l r e a d i l y and leave behind t h e r a r e - e a r t h and a l k a l i n e - e a r t h f i s s i o n products.
This process has been demonstrated i n laboratory experiments
and w i t h some r a d i o a c t i v e s a l t from t h e E R E .
1968,
'M. W. Rosenthal et al., MSR Program Semiann. Progr. Rept. Aug. 31, ORNL-4344, pp. 53-108.
2J. R. Hightower and L. E. McNeese, MSR Program Semiann. Frogr. Rept. Aug. 31, 1968, ORNL-4344, pp. 306-308.
2
The s t r e n g t h and corrosion r e s i s t a n c e required o f a container m a t e r i a l f o r t h e high-temperature vacuum d i s t i l l a t i o n s t e p eliminate most conventional a l l o y s from consideration.
Our preliminary survey
d i s c l o s e d t h a t c e r t a i n r e f r a c t o r y a l l o y s , p a r t i c u l a r l y molybdenum-base m a t e r i a l s , may be s u i t a b l e f o r t h i s s p e c i a l s e r v i c e .
(Mo-O.5% Ti4.08’$ Zl-o.O2$
The a l l o y TZM
C ) w a s s e l e c t e d f o r an i n i t i a l experiment
because it i s s t r o n g e r and u s u a l l y m r e f a b r i c a b l e t h a n pure molybdenum. Accordingly, t h e experiment reported here provides a preliminary t e s t of t h e c o m p a t i b i l i t y of TZM a l l o y with a t y p i c a l f e r t i l e - f i s s i l e s a l t (LiF-BeF2-ThF4-UF4, 68-20-11.7-0.3
mole $) a t 1100°C.
This s a l t i s a
s t r o n g candidate f o r t h e s i n g l e - f l u i d MSBR now being designed.
No t e s t s
were s p e c i f i c a l l y conducted t o determine t h e s t r e n g t h p r o p e r t i e s of TZM a l l o y , but conditions caused by t h e exposure t o t h e s a l t t h a t could a f f e c t t h e s t r e n g t h were noted. EXPERIMENTAL PROCEDURE
The experimental system used f o r t h i s study c o n s i s t e d of a simple capsule f a b r i c a t e d of cold-worked TZM a l l o y , containing specimens of t h e same a l l o y , and shown i n Fig. 1.
Note t h a t t h e specimens were
l o c a t e d i n t h e s a l t , at t h e salt-vapor i n t e r f a c e , and i n t h e vapor.
The
p u r i f i e d s a l t (60 g ) w a s supplied by t h e Fluoride Processing Group of t h e Reactor Chemistry Division.
P u r i f i c a t i o n involved sparging w i t h an
HF-Hz mixture a t 600°C t o remove oxides and s u l f i d e s and s t r i p p i n g w i t h H2
at 790°C t o remove m e t a l l i c impurities.
The loading operation, which
c o n s i s t s of introducing t h e f l u o r i d e s a l t i n t o t h e capsule, welding t h e t e s t capsule, and s e a l i n g t h e outer Inconel p r o t e c t i v e container, was c a r r i e d out i n an inert-gas atmosphere charriber containing argon purer than 99.995%. After being t e s t e d i n t h e p o s i t i o n shown i n Fig. 1 f o r 1011 h r a t
llOO°C, t h e capsule w a s removed f r o m t h e furnace, i n v e r t e d t o keep t h e specimens out of t h e s a l t , and quenched i n l i q u i d nitrogen t o r e t a i n high-temperature corrosion products.
Af’ter t e s t , weight changes of t h e
specimens were determined, t h e salt was analyzed f o r i m p u r i t i e s , and t h e specimens and capsules were analyzed by x-ray fluorescence and examined metallographically.
3 ORNL-DWG
69-10034
1.625 in
~
0.88 in.
/0.125-in. WALL INCONEL PROTECTIVE CONTAINER
_ 0.040 , -in. WALL T Z M CAPSULE
--00.004-in.
TANTALUM FOIL L I N E R
,-ARGON /’
L i F- Be F2 -Th
5 - U F4 SALT
(68- 2 0 - 11.7 - 0.3 MOLE % ) -TZM
SPECIMEN (0.30 in.x 1.0 in. x 0.02 in.)
Fig. 1. Schematic Drawing of Corrosion Test Capsule Used t o Study Compatibility of TZM Alloy w i t h a Fused Fluoride S a l t . RESULTS AND DISCUSSION S a l t Analys i s
Concentrations of t h e c o n s t i t u e n t s of t h e s a l t and i t s i m p u r i t i e s b e f o r e and a f t e r t e s t a r e given i n Table 1.
During t h e experiment
t i t a n i u m , zirconium, and chromium concentrations i n t h e s a l t increased and t h a t of i r o n decreased.
The t i t a n i u m and zirconium a r e i n t e n t i o n a l
a l l o y i n g a d d i t i o n s , b u t chromium i s an unwanted impurity. Weight Changes The specimens exposed t o t h e s a l t showed small (0.5 mg/cm2) weight gains, and t h e one exposed t o t h e vapor did not change weight measurably.
Table 1. Chemical Analysis of F e r t i l e - F i s s i l e S a l t Exposed t o TZM Alloy Capsule f o r 1011 h r at 1100°C (2010°F)
Constituent Mo
Zr Ti Fe Cr 0 H20
Content, ppm Before
After
< 5 37
< 10
74 80
151
20
58 40
Constituent
134
38 97 < 50 70
Li Be Th U F
Content, w t $ Before
After
6.71 2.65 43.1 1.75 45.5
7.01 2.55 42.6 1.93
45.7
X-Ray Fluorescence and Microprobe Analysis Table 2 gives t h e concentrations of t h e major elements i n t h e TZM a l l o y as determined by x-ray fluorescence before and a f t e r t e s t .
Iron
w a s found on t h e s u r f a c e and probably caused a major p o r t i o n of t h e
weight gains, but no q u a n t i t a t i v e value w a s obtained.
Significantly,
t h e q u a n t i t a t i v e a n a l y s i s shows a decrease i n t i t a n i u m concentration, no s i g n i f i c a n t change i n zirconium concentration, and a corresponding increase i n t h e concentration of molybdenum a f t e r exposure t o t h e s a l t . Care must be taken i n i n t e r p r e t i n g t h e s e r e s u l t s , s i n c e t h e s e n s i t i v i t y of t h e fluorescence a n a l y s i s i s questionable a t t h e s e low concentrations and i r o n w a s deposited over t h e surface.
The e l e c t r o n microprobe
a n a l y s i s showed 0.3% T i on t h e surface and 0 . 5 $ T i i n t h e matrix.
The
zirconium content w a s about ‘2.1%i n a l l portions of t h e specimen.
Any
changes at t h e l e v e l of O.l$ a r e beyond t h e l i m i t of d e t e c t i o n of t h e instrument.
Hawever, t h e s e r e s u l t s agree reasonably with t h e increase i n
concentration of c e r t a i n a l l o y i n g elements i n t h e s a l t and a r e i n accord with t h e proposed corrosion mechanism(s).
(See Corrosion Reactions and
Kinetics. ) Microstructural Changes Figure 2(a) shows t h e t y p i c a l cold-worked s t r u c t u r e of t h e specimens and capsule before t e s t .
This f i g u r e i s a l s o t y p i c a l of t h e specimen
Y
5 Table 2. Concentration of Alloying Elements i n TZM Alloy Specimen Before and After Exposure t o a F e r t i l e - F i s s i l e S a l t a t 1100째C f o r 1011 h r , as Determined by X-Ray Fluorescence Analysis" Content. w t %
Sample Analyzed Mo
Zr
Untested a l l o y
99.4
0.08
0.5
Exposed specimens i n vapor at interface i n salt
99.8 99.87 99.90
0.08 0.09 0.0%
0.1 0.04
Ti
0.013
a
The a n a l y s i s disclosed s u b s t a n t i a l i r o n on t h e a l l o y surface a f t e r t e s t , but i r o n w a s not considered i n determining t h e quantit i e s above. exposed t o t h e vapor, where no m i c r o s t r u c t u r a l change occurred.
An
unetched specimen, Fig. 2 ( b ) , exposed t o t h e s a l t shows no a t t a c k a t t h e surface.
The same specimen etched, Fig. 2 ( c ) , shows r e c r y s t a l l i z a t i o n
for a maximum depth of about 0.004 i n .
Examination of t h i s specimen at
a lower magnification, Fig. 2 ( d ) , shows t h a t both surfaces r e c r y s t a l l i z e d as t h e r e s u l t of t e s t .
The i n s i d e capsule w a l l a l s o r e c r y s t a l l i z e d i n
t h e same manner. Recrsst a l l i z a t ion I n view of t h e m i c r o s t r u c t u r a l and chemical changes induced i n t h e TZM a l l o y by t h i s t e s t , we compared reported r e c r y s t a l l i z a t i o n tempera-
t u r e s f o r molybdenum and TZM a l l o y (Table 3 ) .
It i s c l e a r from t h e
above and from general m e t a l l u r g i c a l considerations t h a t an increase i n annealing tlme from 1 h r t o s e v e r a l thousand hours should lower t h e r e c r y s t a l l i z a t i o n temperature of TZM a l l o y only 100 t o 200째C.
Moreover
t h e presence of as l i t t l e as 0.01% of a f o r e i g n element i n s o l i d s o l u t i o n can r a i s e t h e r e c r y s t a l l i z a t i o n temperature as much as s e v e r a l hundred degrees.
Conversely, t h e removal of a l l o y i n g c o n s t i t u e n t s would f r e e
3R. E. Reed-Hill, Physical Metallurgy P r i n c i p l e s , V a n Nostrand, Princeton, N. J . , 1964, p. 198.
6
Fig. 2. TZM Alloy Exposed t o F e r t i l e - F i s s i l e S a l t , LiF-BeF2-ThF4-UF4 (68-20-11.7-0.3 mole $) for 1011 hr at llOO째C. (a) Typical cold-worked s t r u c t u r e of capsule and specimens before t e s t ; a l s o the s t r u c t u r e of t h e specimen exposed t o the vapor during t e s t . 50Ox. Etchant : H20, H202, H2S04* (b) &-polished capsule and specimen exposed t o salt. 500x. and specimen exposed t o salt. 50Ox. Etchant: H20, H202, Specimen exposed t o salt. 1OOx. Etchant : H20, H202, H2SO4.
7 Table 3. R e c r y s t a l l i z a t i o n Behavior of Wrought, S t r e s s Relieved, Unalloyed Molybdenum and TZM Alloy Temperature
.
("C)
Time ( h r)
Percent Recrys t a l l i z a t ion
Reference
1130
1
100
a
TZM
560
4400
0
b
TZM
1100
1
0
a
TZM
1160
4400
85
b
TZM
1250
4400
100
b
TZM
1390
100
a
Unalloyed Mo
1
%. A. Wilcox, p. 26 i n Refractory Metal Alloys, Metallurgy and Technology, ed. by I. Machlin, R. T. Begley, and E. D. Weisert, Plenum P r e s s ; New York, 1968. bD. H. Jans en, Fue Is and Materials Development Program Quart. Progr. Rept. Sept. 30, 1968, ORNL-4350, pp. 107-111, and p r i v a t e communi c a t ion.
t h e g r a i n boundaries and allow them t o move t o form new g r a i n s .
Thus,
t h e enhanced r e c r y s t a l l i z a t i o n (lower r e c r y s t a l l i z a t i o n temperature) i n t h e samples and capsule of t h i s experiment i s due p r i m a r i l y t o t h e removal of t h e t i t a n i u m and p o s s i b l y zirconium f r o m t h e molybdenum matrix.
This i s f u r t h e r s u b s t a n t i a t e d by t h e l a c k of r e c r y s t a l l i z a t i o n
i n t h e samples exposed t o t h e vapor, where t h e composition changed much less. The a d d i t i o n of carbon and one o r more group IV-A elements t o molybdenum g r e a t l y i n c r e a s e s t h e r e c r y s t a l l i z a t i o n temperature.
Thus,
carbon removal from t h e a l l o y should likewise change r e c r y s t a l l i z a t i o n behavior.
However, carbon analyses show no d i f f e r e n c e (about 0.035% C
i n each) between exposed and unexposed TZM samples, s o t h i s e f f e c t i s very small or absent.
Although carbon mass t r a n s p o r t i s comon i n
l i q u i d metal systems, e s p e c i a l l y a l k a l i metals, it i s not considered a problem i n fused f l u o r i d e systems.
W
'W. H. Chang, A Study of t h e Influence o f Heat Treatment on Micros t r u c t u r e and P r o p e r t i e s of Refractory Alloys, ASD-TDR-62-211 ( A p r i l 1962).
8 Strength The molybdenum-base TZM a l l o y i s about t h e b e s t documented r e f r a c t o r y a l l o y i n which base metal s t r e n g t h i s improved by p r e c i p i t a t i o n hardening.
This a l l o y i s strengthened by t h e formation of f i n e carbides
of t i t a n i u m and zirconium as w e l l as by cold working, and i t s u l t i m a t e t e n s i l e s t r e n g t h i s double or t r i p l e t h a t of unalloyed molybdenum.
The
100-hr rupture s t r e n g t h of TZM at 1100째C i s a l s o much g r e a t e r than t h a t of molybdenum.5
Although TZM i s much m r e d i f f i c u l t t o f a b r i c a t e t h a n
commercial a l l o y s and many r e f r a c t o r y a l l o y s , it i s u s u a l l y much e a s i e r t o work than unalloyed molybdenum.
Thus, as an engineering m a t e r i a l TZM
has many advantages over molybdenum. Comparing t h e s t r e n g t h and d u c t i l i t y o f wrought, s t r e s s - r e l i e v e d , and r e c r y s t a l l i z e d TZM, Wilcox et a L 6 noted a s i g n i f i c a n t i n c r e a s e i n y i e l d and u l t i m a t e s t r e n g t h s due t o working a t t e s t temperatures of 1200 t o 1300째C.
A t 1550째C a f t e r r e c r y s t a l l i z a t i o n of t h e wrought sample
there was r e l a t i v e l y l i t t l e difference i n t h e materials.
However, at
l l O O 째 C , t h e temperature of our capsule t e s t , Wilcox's r e c r y s t a l l i z e d
a l l o y had much lower s t r e n g t h than t h e wrought a l l o y .
Thus, t h e use of
a s t r e s s - r e l i e v e d TZM a l l o y f o r conditions given i n t h i s experiment should a l s o be considered. Although TZM would g e n e r a l l y be favored over molybdenum f o r t h e previous reasons, through t h e l o s s of i t s a l l o y i n g elements ( t i t a n i u m and zirconium) during exposure t o t h e fused f l u o r i d e s a l t t h e composit i o n and t h e s t r e n g t h p r o p e r t i e s of t h e cold-worked TZM approach those of unalloyed r e c r y s t a l l i z e d molybdenum.
Although unalloyed molybdenum
or r e c r y s t a l l i z e d TZM i s weaker than t h e i n i t i a l cold-worked m a t e r i a l , t h e s t r e n g t h of t h e exposed m a t e r i a l would probably be ample f o r t h e loads proposed i n t h e lvlSBR vacuum d i s t i l l a t i o n system.
However, before
t h e depleted TZM i s used, it should be t e s t e d t o more c a r e f u l l y define 5T. E. Tietz and J. W. Wilson, Behavior and P r o p e r t i e s of Refractory Metals, Stanford University Press, C a l i f o r n i a , 1965, pp. 156-205.
6B. A. Wilcox, A. G i l b e r t , and B. C. Allen, Intermediate Temperature D u c t i l i t y and Strength o f Tungsten and Molybdenum TZM, AFMETR-66-89 ( A p r i l 1966).
9 t h e s t r e n g t h p r o p e r t i e s of t h e r e c r y s t a l l i z e d material.
An advantageous
t r a d e - o f f with t h e s e mechanical property changes i s , of course, t h a t pure molybdenum i s more r e s i s t a n t than T Z M t o t h e f l u o r i d e s a l t s of i n t e r e s t t o t h e MSRP.
Thus, s e v e r a l b e n e f i t s come from f a b r i c a t i n g t h e
system with TZM while o t h e r s accrue from t h e "conversion" of TZM t o molybdenum during t h e f l u o r i d e s a l t exposure. Corrosion Reactions and Kinetics In f l u o r i d e salt systems one of t h e major corrosion r e a c t i o n s i s t h e oxidation of one of t h e c o n s t i t u e n t s o f t h e container a l l o y by t h e reduction of a l e s s s t a b l e impurity metal f l u o r i d e i n i t i a l l y i n t h e s a l t , ? f o r example
The reduced metal s u b s t i t u t e s f o r t h e oxidized metal on t h e container material.
This type of r e a c t i o n apparently occurred i n our experiment
involving t h e strong reducing agents t i t a n i u m and zirconium:
Zr
+ 2FeF2
--3
ZrFL + 2Fe
.
(3)
The reported* free energy changes for t h e r e a c t i o n s shown by
Eqs.
,
(1) (2), and (3) a r e s t r o n g l y negative, and E q s .
(3) seem t o be i n d i c a t e d by t h e r e s u l t s r e p o r t e d above.
( 2 ) and p o s s i b l y
A s noted e a r l i e r ,
t h e i r o n metal t h a t formed i n t h e s e r e a c t i o n s deposited i n t h i n l a y e r s on t h e container and specimens.
7W. R. Grimes, G. M. Watson, J. H. DeVan, and R. B. Evans, "Radio-Tracer Techniques i n t h e Study of Corrosion by Molten Fluorides pp. 559-574 i n Conference on t h e Use-of Radioisotopes i n t h e Physical Sciences and Industry, September 6-17, 1960, Proceedings, Vol. 111, I n t e r n a t i o n a l Atomic Energy Agency, Vienna, 1962.
,"
'A. Glassner, The Thermochemical Properties of t h e Oxides, Fluorides, and Chlorides t o 2500"K, ARE5750 (1957).
10 A l t e r n a t i v e l y t h e f u e l s a l t corrosion r e a c t i o n s i n which UF4 i s
v
reduced t o UF3 a l s o may have occurred t o remove t i t a n i u m and zirconium from t h e a l l o y :
However, no data w t h which t o determine t h e extent of L e s e r e a c t i o n s are available. Assuming t h a t t h e removal of t h e elements from t h e TZM was c o n t r o l l e d by s o l i d - s t a t e d i f f u s i o n , one can c a l c u l a t e f r o m t h e increase of t h e
t i t a n i u m and zirconium i n t h e s a l t t h e apparent d i f f u s i o n c o e f f i c i e n t s of t i t a n i u m and zirconium i n t h e TZM a l l o y .
Fromthese one can estimate t h e
amount of those m a t e r i a l s t h a t would be removed a t d i f f e r e n t times and temperatures.
I n regard t o t h e zirconium removal, we f e e l t h a t t h e salt
a n a l y s i s i s c o r r e c t and t h a t t h e instruments involved i n t h e fluorescence and microprobe analyses a r e not s u f f i c i e n t l y s e n s i t i v e t o measure t h e mvement of t h e zirconium. The t o t a l amount of m a t e r i a l , Mt,
t h a t d i f f u s e s from t h e a l l o y h e l d
under isothermal conditions w i t h a zero s u r f a c e concentration i s given by
where C O = t h e concentration of t h e d i f f u s i n g element, D = t h e d i f f u s i o n c o e f f i c i e n t , and
t
=
t h e time.
We c a l c u l a t e d D = 1 . 2 x 2.9 x
cm2/sec f o r t i t a n i u m i n TZM and
cm2/sec f o r zirconium i n TZM a t 1100째C. We d i d not c a l c u l a t e
f o r chromium removal, as i t s concentration f l u c t u a t e d from sample t o sample and we could not assume t h a t it w a s d i s t r i b u t e d homogeneously through t h e a l l o y .
9J. Crank, The Mathematics of D i f f i s i o n , Clarendon Press, Oxford, England, 1956, p. 11.
J
11 W
The expression
t
- X2/D ,
(7)
where X i s t h e d i s t a n c e of composition change, i s very u s e f u l i n calcul a t i n g approximately whether t h e composition has changed appreciably by d i f f u s i o n under a given s e t of circumstances.
For example, we can calcu-
l a t e t h e time required f o r appreciable removal
-
t h e i n i t i a l and u l t i m a t e concentrations
-
concentration between
o f t h e d i f f u s i n g element a t a
c e r t a i n d i s t a n c e from t h e surface. From t h e c a l c u l a t e d d i f f u s i o n c o e f f i c i e n t s and t h e experimental time of 1011 h r , we f i n d t h e depths of removal of t i t a n i u m and zirconium, r e s p e c t i v e l y , a r e 0.0008 and 0.0040 i n .
Since t h e microstructures shuw
r e c r y s t a l l i z a t i o n f o r a d i s t a n c e of about 0.004 i n . , we may assume t h a t t h e c a l c u l a t e d d i f f u s i o n c o e f f i c i e n t f o r zirconium may be more accurate than t h a t f o r t i t a n i u m
- that is,
be somewhat i n e r r o r .
Extrapolation of t h e c a l c u l a t e d values shows t h a t
t h e s a l t a n a l y s i s for t h e t i t a n i u m may
it would r e q u i r e 4000 hr t o r e c r y s t a l l i z e an a d d i t i o n a l 0.004 in. of material.
This i l l u s t r a t e s t h e decrease of t h e corrosion r a t e with time
and t h e general usefulness of TZM a l l o y f o r MSR reprocessing s e r v i c e .
CONCLUS IONS 1.
This t e s t shawed n e g l i g i b l e corrosion of t h e TZM a l l o y by t h e
fused fluoride s a l t (LiF-BeFz-ThF4-UF4, 68-20-11.7-0.3 mole ’$) at 1100°C
f o r over 1000 h r .
2.
Corrosion manifested i t s e l f as leaching of t i t a n i u m and p o s s i b l y
zirconium from t h e a l l o y .
FeF2 i n i t i a l l y present i n t h e s a l t oxidized
t h e a l l o y i n g elements t o f l u o r i d e s dissolved i n t h e s a l t bath.
The i r o n
metal r e s u l t i n g from t h e r e a c t i o n deposited i n t h i n l a y e r s on t h e specimens and container. 2.9 x
We found t h a t DTi and DZr were 1 . 2 x
and
cm2/sec, r e s p e c t i v e l y , a t 1100°C i n t h e a l l o y . 3.
The TZM a l l o y exposed t o t h e s a l t p a r t i a l l y r e c r y s t a l l i z e d ,
while t h e TZM a l l o y simultaneously exposed t o t h e vapor d i d not.
This
r e c r y s t a l l i z a t i o n w a s a t t r i b u t e d t o t h e removal o f t i t a n i u m and zirconium.
12 4.
On t h e b a s i s of t h i s s i n g l e t e s t , t h e magnitude and mechanism
of corrosion i n d i c a t e no s e r i o u s problems for long-term use of TZM a l l o y
i n t h e IGBR vacuum d i s t i l l a t i o n processing scheme.
However, t h e s t r e n g t h
p r o p e r t i e s of t h e TZM a l l o y would approach those of unalloyed molybdenum
as s a l t exposure time increased. ACKNOWLFEMENTS
It i s our pleasure t o acknowledge t h e a s s i s t a n c e of F. D. Harvey, E. J. Lawrence, and J. B. P h i l l i p s with t h e s e experiments.
We a r e a l s o
indebted t o J. R. DiStefano, W. 0. H a r m s , and H. E. McCoy, Jr., f o r t h e i r constructive review of t h e manuscript. Thanks a l s o go t o H. R. Gaddis of t h e Metallography Group, H a r r i s Dunn and o t h e r members of t h e Analytical Chemistry Division, t h e Graphic Arts Department, and t h e Metals and Ceramics Division Reports Office f o r invaluable a s s i s t a n c e .
13 W
ORNL-TM-2724 INTERNAL DISTRIBUTION
1-3.
4-5. 6-15. 16. 17.
18. 19. 20. 21. 22. 23.
24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36.
37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53.
54* 55. 56. 57.
C e n t r a l Research Library ORNL - Y-12 Technical Library Document Reference Section Laboratory Records Department Laboratory Records, ORNL RC ORNL Patent Office R. K. Adam G. M. Adamson, Jr. R. G. A f f e l L. G. Alexander J. L. Anderson R. F. Apple C. F. Baes J. M. Baker S. J. B a l l C. E. Bamberger W. P. Barthold C. J. Barton H. F. Bauman S. E. B e a l l R. L. Beatty M. J. Bell M. Bender C. E. B e t t i s E. S. B e t t i s D. S. B i l l i n g t o n R. E. Blanco F. F. Blankenship J. 0. Blomeke R. Blumberg E. G. Bohlmann C. D. Bopp C. J. Borkowski G. E. Boyd J. Braunstein M. A. Bredig R. B. Briggs H. R. Bronstein G. D. Brunton D. A. Canonico S. Cantor W. L. C a r t e r G. I. Cathers 0. B. Cavin J. M. Chandler F. H. Clark
58. W. R. Cobb D. Cochran C. Cole W. C o l l i n s L. Compere V. Cook H. Cook T. Corbin Cox L. Crowley L. Culler R. Cuneo E. Cunningham M. Dale G. Davis J. DeBakker H. DeVan 74. J. D i t t o 75. S. IMorkin 76. T. Dudley 77. P. E a t h e r l y 78. R. Engel 79. P. Epler 80. B. Evans I11 81. I. Federer 82. E. Ferguson 83. M. F e r r i s 84. Fleischer 85. P. Fraas 86. A. Friedman 87. H Frye, Jr. 88. K. Furlong 89. H. Gabbard 90. B. Gallaher 91. E. Gehlbach 92. H. Gibbons 93. 0. G i l p a t r i c k 94. E. Goeller 95. R. Grimes 96. G. G r i n d e l l 97. W. Gunkel 98. H. Guymon 99. P. Harmnond 100. 101. B. A. Hannaford 102. P. H. Harley 103. D. G. H a r m a n
59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70. 71. 72. 73.
H. N. C. E. K. W. L. B. J. F. D. J. J. D. R. J. S. A. I. W. J. E. R. J. D. L. B. A. H. J. W. C. R. R. J. L. H. W. A. R. R. J.
14 104. 105. 106. 107. 108. 109. 110. 111. 112. 113-115. 116. 117. 118. 119. 120. 121. 122. 123. 124. 125. 126. 127. 128. 129. 130. 131. 132. 133. 134. 135. 136. 137. 138-147.
148. 149. 150. 151. 152. 153. 154. 155. 156. 157. 158-167. 168. 169.
170. 171. 172. 173. 174.
W. C. F. P. F. R. P. D. J. M. H. D. P. R. A. T. W. H. D. W. P. R. M. M. C. T. H. J. D. S. R. D. J. R. A. T. J. C. J. C. E. M. R. A. G. E. A. M. R. R. H.
0. S. D. N. A. E. G. N. R. R. W. K.
Harms Harri11 Harvey Haubenreich Heddleston Helms Herndon Hess Hightower
Hill
Hoffman Holmes P. Holz W. Horton Houtzeel L. Hudson R. Huntley Inouye H. Jansen H. Jordan R. Kasten J. Ked1 T. Kelley J. Kelly R. Kennedy W. Kerlin T. Kerr J. Keyes V. Kiplinger S. Kirslis L. Klueh J. Knmles W. Koger B. Korsmeyer I. Krakoviak S. Kress W. Krewson E. Lamb A. Lane E. Larson J. Lawrence S. Lin B. Lindauer P. L i t m a n H. Llewellyn L. Long, Jr. L. b t t s I. Lundin N. w o n L. Macklin G. MacPherson
175. R. E. MacPherson 176. J. C. Mailen 177. D. L. Manning
1â&#x20AC;&#x2122;78. C . D. Martin 179. 180. 181. 182. 183. 184. 185. 186.
187. 188. 189. 190. 191. 192. 193. 194. 195. 196. 197. 198. 199. 200. 201. 202. 203. 204. 205. 206. 207. 208. 209. 210. 211. 212. 213. 214. 215-216. 217. 218. 219. 220. 221. 222. 223. 224. 225. 226.
R. Martin V. &-beer E. Mathews H. Mauney McClain W. McClung E. McCoy, Jr. F. McDuffie D. L. McElroy C . K. McGlothlan C. J. McHargue L. E. McNeese J. R. McWherter H. J. Metz A. S. Meyer R. L. Moore D. M. Moulton T. W. Mueller H. A. Nelms H. H. Nichol J. P. Nichols E. L. Nicholson L. C. Oakes P. P a t r i a r c a A. M. Perry J. B. P h i l l i p s T. W. P i c k e l H. B. Piper B. E. Prince G. L. Ragan J. L. Redford M. Richardson G. D. Robbins R. C . Robertson H. C. Roller R. A. Romberger M. W. Rosenthal R. G. Ross H. C. Savage W. F. Schaffer A. C. Schaffhauser C. E. S c h i l l i n g Dunlap Scott J. L. S c o t t H. E. Seagren C. E. Sessions J. H. Shaffer
W. H. C. T. H. R. H. H.
t
15 W
.
227. 228. 229. 230. 231. 232. 233. 234. 235. 236. 237. 238. 239. 240. 241. 242. 243. 244. 245. 246. 247. 24.8.
W. G. A. F. G. 0. P. W. I. R. R. W. H. R. D. J. E. W. R. P. L. D.
H. M; N. J. P. L.
Sides Slaughter
Smith
Smith Smith Smith G. Smith F. Spencer Spiewak C . Steff'y L. Stephenson C. Stoddart H. Stone A. Strehlow A. Sundberg R. Tallackson H. Taylor Terry E. Thoma F. Thomason M. Toth B. Trauger
249. 250. 251. 252. 253. 254. 255. 256. 257. 258. 259. 260. 261. 262. 263. 264. 265. 266. 267. 268. 269.
W. E. Unger R. L. Wagner G. M. Watson J. S. Watson H. L. Watts C. F. Weaver B. H. Webster A. M. Weinberg J. R. Weir, Jr. W. J. Werner K. W. West M. E. Whatley J. C . White R. P. Wichner L. V. Wilson Gale Young H. C. Young J. P. Young E. L. Youngblood F. C . Zapp MSRP D i r e c t o r ' s Office
EXTERNAL DISTRIBUTION
270. 271. 272-273. 274. 275. 276. 277. 278. 279. 280. 281. 282. 283. 284. 285. 286-287. 288. 289. 290. 291. 292. 293. 294. 295. 296.
Allaria, Atomics I n t e r n a t i o n a l Asquith, Atomics I n t e r n a t i o n a l Cope, RDT, SSR, AEC, Oak Ridge National Laboratory Deering, OSR, AEC, Oak Ridge National Laboratory DeGrazia, RDT, AEC, Washington Dieckamp, Atomics I n t e r n a t i o n a l E l i a s , RDT, AEC, Washington J. E. Fox, RDT, AEC, Washington A. Giartibusso, AEC, Washington Norton Haberman, RDT, AEC, Washington F. D. Haines, AEC, Washington C E. Johns on, AEC , Washington W. L. Kitterman, AEC, Washington W. J. Larkin, AEC, Oak Ridge Operations Kermit Laughon, RDT, OSR, AEC, Oak Ridge National Laboratory T. W. McIntosh, AEC, Washington A. B. Martin, Atomics I n t e r n a t i o n a l D. G. Mason, Atomics I n t e r n a t i o n a l C. L. Matthews, RDT, OSR, AEC, Oak Ridge National Laboratory G. W. Meyers, Atomics I n t e r n a t i o n a l D. E. Reardon, AEC, Canoga Park Area Office D. R. Riley, RDT, AEC, Washington H. M. Roth, AEC, Oak Ridge Operations M. Shaw, AEC, Washington J. M. Simmons, RDT, AEC, Washington G. G. J. G. D. F. C. B. A. R. H. M. David
.
16 rr,
297. W. L. Smalley, AEC, Washington 29%. S. R. Stamp, AEC, Canoga Park Area Office 299. E. E. Stansbury, The University of Tennessee 300. R. F. Sweek, AEC, Washington 301. A. Taboada, AEC, Washington 302. R. F. Wilson, Atomics I n t e r n a t i o n a l 303. Laboratory and University Division, AEC, Oak Ridge Operations 304-31%. Division of Technical Information Extension
.