ORNL-TM-2712

Page 1

HOME

.

HELP

-

ORNL-TM 2712

C o n t r a c t No. W-7405-eng-26

Reactor Division

FEASIBILITY STUDY OF REIIilOTE CTJTTING AND WELDING FOR NUCiXAR PLANT MAINTENANCE P e t e r P. Holz -

c 8

NOVEMBER 1969

OAK RIDGE NATIONAL LABORATORY O a k R i d g e , Tennessee operated by UNION CARBIDE CORPORATION f o r the U . S . ATOMIC ENERGY COMMISSION

L E G A L NOTICE-



fii

.

CONTENTS Page

............................ ACK,NOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . .

ABSTRACT

1

2

SECTION A

4

.

.

.................... 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . 1.2 Approaches to Maintenance . . . . . . . . . . . . . . . 1.2.1 Some Examples of Maintenance Methods . . . . . . 1.3 Remote Maintenance Considerations. . . . . . . . . . . 1.3.1 Equipment Location for Maintenance . . . . . . . 1.3.2 Mechanical Joint Considerations . . . . . . . . 1.3.3 Welded Joint Closure Considerations . . . . . . 2. HISTORY OF RBIOTE WELDING . . . . . . . . . . . . . . . . . 2.1 Background . . . . . . . . . . . . . . . . . . . . . . 2.2 The Pennsylvania Advanced Reactor Program. . . . . . . 2.3 The Atomics International Program . . . . . . . . . . . . 2.4 State of the Art Survey . . . . . . . . . . . . . . . 2.5 Survey Findings. . . . . . . . . . . . . . . . . . . . 2.6 Continued Need f o r Remote Welding Development . . . . . 3. THE SELECTION OF A SYSTEM TO BE DEVELOPED FOR REMOTEMAINPENANCE ..................... 3.1 "Orbital-Vehicle" System Advantages . . . . . . . . . . 3.2 Future System Expansion and Modification Plans . . . . 3.2.1 Development of Additional Modules . . . . . . . 3.2.2 Alternate Carriage for Seal-Weld Capability . . 1

MAINTENANCE PHILOSOPHY

3.2.3

Development of Special Features for Nuclear System Applications

3 3

4 5 6 6 6 7 10 10

10

10 11

11

13 15

15 15 15

16

..........

16

PRESENT PROGRAM STATUS .

.................. General . . . . . . . . . . . . . . . . . . . . . . . .

1.7

4.1 4.2 ORNL's Prototype Automated Remote Cutting and Welding System for 6 and 8-in. Pipes . . . . .

17

SECTION B

4

.

4.2.1

e-

4.2.2

.... Carriage . . . . . . . . . . . . . . . . . . . . Universal Machining Head . . . . . . . . . . . .

17 18

18


iv

........... 4 . 2 . 4 Welding Programmer and C o n t r o l U n i t . . . . 4.2.5 Power Supply . . . . . . . . . . . . . . . . 4.2.6 Equipment M o d i f i c a t i o n s f o r Remote Work . . 5 . MACHINING SJYJDIES . . . . . . . . . . . . . . . . . . . . . 4.2.3

U n i v e r s a l Welding Head

. . . .

. . . .

5 . 1 General . 5.2

5.3 j.4

5.5

....................... Equipment E v a l u a t i o n . . . . . . . . . . . . . . . . . Tooling . . . . . . . . . . . . . . . . . . . . . . . . Machining Feeds and Speeds . . . . . . . . . . . . . .

Machining Techniques for S l i t t i n g and Beveling Pipes; Pipe End P r e p a r a t i o n Requirements f o r Welding

..... 6 . WELDINGSTUDIES . . . . . . . . . . . . . . . . . . . . . . 6.1 General . . . . . . . . . . . . . . . . . . . . . . . . 6 . 2 Preweld J o i n t Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.3

J o i n t Fitup Tolerance

6.4 6.5 6.6 6.7 6.8

................... Electrode Configuration . . . . . . . . . . . . . . . . Automatic Arc Voltage C o n t r o l . . . . . . . . . . . . . Pre-Weld P o s i t i o n i n g . . . . . . . . . . . . . . . . . Root Pass . . . . . . . . . . . . . . . . . . . . . . . Fillpasses. . . . . . . . . . . . . . . . . . . . . . . Repair Weldirig . . . . . . . . . . . . . . . . . . . .

6.9 6.10

I n e r t Shield G a s

7 . SPECIAL ORBITAL EQUIPMENT MAINTENANCE mQUIREMFNTS. . 7.1 Carriage . . . . . . . . . . . . . . . . . . . . . .

7.2

. . . . 7.1.1 Drive R o l l e r s . . . . . . . . . . . . . . . . . 7.1.2 I d l e r s . . . . . . . . . . . . . . . . . . . . . E l e c t r i c a l Items . . . . . . . . . . . . . . . . . . .

7.3 M i l l i n g Head 7.4 Welding Head 7.5 General . . .

..................... ..................... .....................

18 25

25 28 28 28

30 30 31 33 34 34 40 40 40 41 41 4.2

43

43 43

44 b4

44 44

44 44 45

45

SECTION C

8 . PROGRAM PROPOSAL:

DZVELOPBENT OF RENOTE CUTPING. WELDING AND INSPECTION EQUIPKENT FOR REACTOR SYSTEM MAINTENANCE .

8.1

O v e r a l l Requirexents f o r Remote Cut/Weld Maintenance

. .

46 46


v

8.2 A Long-Range, Three-phase Development Program for

. . . . . . . . . . 8-2.1 Phase I, The General Program. . . . . . . 8.2.2 Phase 11, The Pipe Joint Program. . . . . 8.2.3 Phase 111, The Vessel Closure Program . . Pipe and Vessel Maintenance.

. . . .

. . . .

. . . .

47 47 48 48


,


1 U

.

FEASIBILITY STUDY OF REMOTE CUTTING AND WELDING FOR NUCLEAR PLANT MAINTENANCE P e t e r P . Holz

ABSTRACT When r e a c t o r s and r e l a t e d systems r e q u i r e maintenance and r e p a i r s on h i g h l y r a d i o a c t i v e components, t h e r e i s an important need f o r remotely c o n t r o l l e d equipment t o remove and r e p l a c e p a r t s of t h e n u c l e a r systems. Remote c u t t i n g and welding can be v a l u a b l e t e c h n i q u e s f o r component r e p l a c e ment as w e l l as f o r s e a l i n g f l a n g e s and v e s s e l c l o s u r e s . Welding o f f e r s very a t t r a c t i v e advantages: j o i n t s can b e made l e a k t i g h t , j o i n t c o n f i g u r a t i o n s r e q u i r e l e s s c e l l space t h a n f l a n g e d j o i n t s ; and t h e l o c a t i o n s of j o i n t s can be changed comparatively e a s i l y , i f n e c e s s a r y . I n s e e k i n g equipment which could b e adapted t o remotely c o n t r o l l e d o p e r a t i o n f o r r e a c t o r maintenance, ORNL s e l e c t e d t h e A i r Force " o r b i t a l v e h i c l e " cut-and-weld system as c u r r e n t l y b e i n g most promising f o r f u r t h e r development t o meet n u c l e a r system r e q u i r e m e n t s . The concept of an o r b i t a l v e h i c l e equipment system f o r automated p i p e work o r i g i n a t e d i n 1964 a t t h e Rocket P r o p u l s i o n Laboratory of t h e A i r Force Systems Command a t Edwards A i r Force Base. The development of t h i s system w a s performed i n c o n j u n c t i o n w i t h North American Rockwell Corporation, Los Angeles D i v i s i o n , who designed, b u i l t and t e s t e d i n i t i a l models. ORNL h a s s t a r t e d t o modify and adapt t h e o r b i t a l d e s i g n f o r completely remote work applications. The o r b i t a l system i n c l u d e s a c a r r i a g e , i n t e r c h a n g e a b l e modules f o r machining or t u n g s t e n - a r c welding, a w e l d programmer, and a c o n v e n t i o n a l power s u p p l y . The working u n i t i s q u i t e compact, about 4 i n . t h i c k i n r a d i a l dimension x 10 1/2 i n . long, designed t o b e clamped around a p i p e .

To d a t e , w e have completed t h e d e t a i l e d drawings f o r f a b r i c a t i o n of t h e p r o t o t y p e o r b i t a l system and have procured a l l t h e components f o r i n i t i a l non-nuclear t e s t s of t h e equipment. We have demonstrated t h e f o l l o w i n g o p e r a t i o n s by remote c o n t r o l methods t h a t were g e n e r a l l y s a t i s f a c t o r y : clamping of t h e c a r r i a g e on t h e p i p e , c u t t i n g and b e v e l i n g w i t h one o r b i t a l head, changing heads, and performing f i l l e r p a s s welding o p e r a t i o n s . We n s t e d t h a t n e a r l y p e r f e c t p i p e j o i n t p r e p a r a t i o n and alignment were r e q u i r e d t o a c h i e v e a c c e p t a b l e r o o t p a s s welding without t h e a d d i t i o n of weld i n s e r t s . These requirements were t h e most d i f f i c u l t t o meet w i t h t h e o r b i t a l equipment, and r o o t p a s s welding gave t h e most t r o u b l e . However, an a l t e r n a t e method of r o o t p a s s


2 welding gave good r e s u l t s when j o i n i n g s u r f a c e s were machined t o provide e x t r a metal on one i n s i d e p i p e edge and were g i v e n a f u s i o n welding without f i l l e r wire on t h e r o o t p a s s . These weldments showed f u l l p e n e t r a t i o n and e x c e l l e n t , even bead shape a l l t h e way around t h e p i p e . I n a l l c a s e s , t h e subsequent f i l l e r p a s s e s were made e a s i l y and were of good q u a l i t y . S i n c e welding v a r i a b l e s such as t r a v e l speed, c u r r e n t , wire f e e d r a t e , a r c v o l t a g e , and a r c c o n t r o l v o l t a g e a l l a f f e c t weld q u a l i t y , it was observed d u r i n g t h e t e s t s t h a t weld d e f e c t s could o f t e n be d e t e c t e d as t h e y occurred by n o t i n g t h e p i p s on r e c o r d e r c h a r t t r a c e s . The r e p o r t d e s c r i b e s f a c t o r s involved i n r a d i o a c t i v e system maintenance, summarizes some p r e v i o u s work on remote maintenance development, and e x p l a i n s how t h e automated o r b i t a l c u t t i n g and welding machinery system may overcome problems t h a t have been encountered i n n u c l e a r r e p a i r work. P r o g r e s s of t h e f e a s i b i l i t y study t o d a t e i s summarized, i n c l u d i n g d e s c r i p t i o n s of t h e p r o t o t y p e equipment and t h e r e s u l t s of machining and welding t e s t s . The r e p o r t d e s c r i b e s a d d i t i o n a l requirements f o r development t o p r o v i d e f u l l y remote o p e r a t i o n s and c o n t r o l s and proposes a long range program f o r development of a complete remote maintenance system f o r r a d i o a c t i v e system equipment replacement by c u t t i n g and welding.

ACKNOWLEDGMENTS The a u t h o r acknowledges w i t h thanks t h e e x c e l l e n t c o o p e r a t i o n and a s s i s t a n c e of t h e Permanent Tube J o i n t Technology S e c t i o n of t h e A i r Force Rocket P r o p u l s i o n Laboratory, A i r Force Systems Command, Edwards, C a l i f o r n i a . The p r o j e c t e n g i n e e r , Captain John L. Feldman, USM', alia h i s s t a f f , p a r t i c u l a r l y M r . Edward H . S t e i n and L t . A l b e r t B . Spencer, USAF, a l l have done an o u t s t a n d i n g j o b i n supplying r e q u e s t e d t e c h n i c a l information and d a t a . C . Bruce Deering of t h e A E C ' s Oak Ridge Operations S i t e O f f i c e provided l i a i s o n between AEC and t h e A i r Force. Carl M. Smith, J r . , gave i n v a l u a b l e day t o day a s s i s t a n c e with equipment d e s i g n , development, shakedown and checkout, and W i l l i a m A . B i r d and Robert L . Moore gave important h e l p with t r o u b l e - s h o o t i n g and r e f i n i n g of t h e e l e c t r o n i c s and i n s t r u m e n t a t i o n . E . L . Armstrong, W. I?. C a r t w r i g h t , T . Ray Housley, Dunlap S c o t t , G . M. S l a u g h t e r , I r v i n g Spiewak, T . K . Walters, and L . C . W i l l i a m s provided v a l u a b l e guidance and s u p p o r t . S p e c i a l t h a n k s a l s o t o W . E . Thompson f o r h i s a s s i s t a n c e i n e d i t i n g t h i s r e p o r t , and t o o t h e r s , u n l i s t e d f o r b r e v i t y , who c o n t r i b u t e d i n many ways.


3 SECTION A 1. MAINTENANCE PHILOSOPHY 1.1 I n t r o d u c t i o n

I n t h e d e s i g n , development, and t e s t i n g of molten s a l t r e a c t o r s a t t h e Oak Ridge N a t i o n a l Laboratory, t h e need f o r remote welding equipment was encountered. However, t h e development of r e a c t o r d e s i g n s which i n c l u d e p r o v i s i o n s f o r maintenance by remote welding l o g i c a l l y r e q u i r e s t h a t a welding p r o c e s s b e proven feasible b e f o r e t h e d e s i g n s t u d i e s are completed. S i m i l a r l y , t h e c a p a b i l i t y f o r remote welding must be f u l l y developed b e f o r e a l a r g e r e a c t o r i s designed on t h e b a s i s of maintenance methods which r e q u i r e remote welding. The p o t e n t i a l of remote welding f o r s a v i n g t i m e i n r e p l a c i n g r e a c t o r system components and f o r producing more r e l i a b l e j o i n t s and seals was recognized, and f e a s i b i l i t y s t u d i e s of remote welding were s t a r t e d as p a r t of t h e Molten S a l t R e a c t o r Program. From d i s c u s s i o n s of remote maintenance w i t h t h e d e s i g n e r s , b u i l d e r s , and o p e r a t o r s of o t h e r r e a c t o r s , it h a s become c l e a r t h a t t h e s p e c i a l welding equipment and t e c h n i q u e s t h a t have been d e v i s e d on many o c c a s i o n s for s p e c i f i c r e p a i r or replacement j o b s are n o t g e n e r a l l y a p p l i c a b l e . There i s s t r o n g i n t e r e s t i n a p o r t a b l e , remotely c o n t r o l l e d welding system t h a t would b e g e n e r a l l y a p p l i c a b l e i n r e a c t o r maintenance and r e p a i r work. A r e l i a b l e , automated system t o produce h i g h - q u a l i t y welds, even without remote c o n t r o l s , would b e welcomed b y t h e r e a c t o r b u i l d e r s , who r e p o r t c o n s i d e r a b l e d i f f i c u l t y i n o b t a i n i n g q u a l i f i e d welders and i n a c h i e v i n g a c c e p t a b l e weld q u a l i t y on f i e l d work a t t h e c o n s t r u c t i o n s i t e . U s e of automated systmes f o r c o n s t r u c t i o n welding would a l s o g i v e c o n f i dence and e x p e r i e n c e which would h e l p t h e a p p l i c a t i o n of remotely c o n t r o l l e d u n i t s i n maintenance and r e p a i r work. The problems of maintenance and r e p a i r on r e a c t o r systems a f t e r o p e r a t i o n h a s b u i l t up t h e r a d i a t i o n l e v e l s are important and widespread-no r e a c t o r i s immune. The need f o r remote welding equipment has been recognized b y r e a c t o r d e s i g n e r s , b u i l d e r s and o p e r a t o r s ; b u t , t o d a t e t h e r e i s no remote welder t h a t can b e used for g e n e r a l p i p e and seal welding a p p l i c a t i o n s , a l t h o u g h s p e c i a l purpose d e v i c e s have been employed f o r some r e a c t o r maintenance j o b s . Automatic welding equipment i s b e i n g used t o d a y f o r many a p p l i c a t i o n s . Some of t h e a u t o m a t i c welding methods and equipment seem w e l l s u i t e d t o development f o r remote welding. I n p a r t i c u l a r , a n a u t o mated pipe-welding a p p a r a t u s developed b y North American A v i a t i o n f o r t h e A i r Force showed promise f o r remote c o n t r o l a p p l i c a t i o n s i n n u c l e a r r e a c t o r systems. I n a l l r e a c t o r systems maintenance must be performed b y some method whenever t h e need arises. If it could be accomplished w i t h r e l i a b i l i t y a t r e a s o n a b l e c o s t , completely remote maintenance would be p r e f e r r e d , because, it reduces p e r s o n n e l r a d i a t i o n exposures and s i m p l i f i e s t h e problems of decontamination p r i o r t o u n d e r t a k i n g t h e maintenance operat i o n s . Remote welding o f f e r s g r e a t promise f o r g e n e r a l a p p l i c a t i o n i n


t h a t almost any p a r t of a r e a c t o r system which might f a i l can be c u t ou'; arid r e p l a c e d i f equipment i s a v a i l a b l e f o r remote c u t t i n g and rewelding. With f i r s t - o f - a - k i n d r e a c t o r s , it i s n e c e s s a r y t o t e s t t h e d e s i g n s u s i n g mock-ups of t h e more complicated systems and components. I f , a t t h i s stage, t h e a b i l i t y t o perform remote mainteriance can b e t e s t e d on t h e mock-ups, t h e f i n a l d e s i g n can be demonstrated t o be f u n c t i o n a l l y sound and c a p a b l e of b e i n g maintained. The s a t i s f a c t o r y performance of remote h a n d l i n g d e v i c e s and t e c h n i q u e s can be proved i n mock-up t e s t s , g i v i n g i n c r e a s e d confidence i n t h e i r r e l i a b i l i t y and p r o v i d i n g t r a i n i n g i n maintenance t e c h n i q u e s which w i l l reduce downtime.

It i s recognized t h a t provisioris f o r remote c o n t r o l removal and r e placement of a l l components of a r e a c t o r system would b e p r o h i b i t i v e l y expensive. I n p r a c t i c e , t h e r e f o r e , t h e degree of e a s e provided t o accomp l i s h remote maintenance depends upon t h e a n t i c i p a t e d frequency of maint e n a n c e on each component. A r e a c t o r v e s e l designed f o r a 30-year maintenance-free l i f e w i l l h o p e f u l l y r e q u i r e no remote maintenance equipment. Pumps, v a l v e s , c o l d t r a p s arid o t h e r items which f a i l or need maint e n a n c e more f r e q u e n t l y may j u s t i f y r a t h e r e l a b o r a t e remote c o n t r o l d e v i c e s t o speed up and make more reliable t h e o p e r a t i o n s of maintenance and replacement. If p o r t a b l e remote welding equipment can be proved workable, even a l r e a d y - b u i l t r e a c t o r s not designed f o r remote maintenance may r e c e i v e many of t h e b e n e f i t s . I n October 1968, a d r a f t of t h e "Code f'or I n s e r v i c e I n s p e c t i o n of Nuclear Reactor Coolant Systeins" was developed under t h e s p o n s o r s h i p of t h e American S o c i e t y o f Mechanical S n g i n e e r s arid t h e AEC. The Committee which prepared t h e d r a f t of t h e Code n a t e d t h a t " r e c o g n i t i o n w a s g i v e n t o t h e problems of examining r a d i o a c t i v e areas where human a c c e s s i s i m p o s s i b l e , and p r o v i s i o n s are i n c o r p o r a t e d i n t h e Code f o r t h e examination of such areas by remote means which a r e n o t y e t f u l l y developed." The Code c l e a r l y shows t h a t welds a r e considered t o be of prime importance amont t h e areas r e q u i r i n g i n s p e c t i o n . The g e n e r a l need f o r remote c u t t i n g and welding equipment which can r e p a i r f l a w s d i s c l o s e d by t h e i n s p e c t i o n s i s given emphasis by t h e c r i t e r i a speLled o u t i n t h e Code. 1.2

Approaches t o Maintenance

Components which f ' a i l e d or developed t r o u b l e a f t e r r a d i o a c t i v i t y l e v e l s had b u i l t up have been r e p a i r e d i n many r e a c t o r s . The methods employed i n :flaking r e p a i r s have i n v a r i a b l y been make-shift i n terms of equipment, t e c h n i q u e s acd procedures because s t a n d a r d equipment f o r r e mote maintenance i s n o t a v a i l a b l e . There seem t o have been two g e n e r a l approaches t o r e a c t o r system maintenance: Where p o s s i b l e , floodirig w i t h water h a s been used t o provide r a d i a t i o n s h i e l d i n g while s t i l l a l l o w h g v i s i b i l i t y and m o b i l i t y . I n o t h e r c a s e s p o r t a b l e o r temporary s h i e l d s , u s u a l l y l e a d , have been employed t o p r o t e c t workers who must e n t e r r a d i a t i o n f i e l d s . The methods have been combined a t times.

Y


5 W

1.2.1

Some Examples of Maintenance Methods

The Gas-Cooled Reactor Experiment i n Idaho w a s flooded w i t h water and r e p a i r e d by d i v e r s working underwater t o b r e a k and remake f l a n g e j o i n t s i n r e p l a c i n g s e c t i o n s of two c o o l i n g water l i n e s . Two d i v e r s worked 112 hours i n making t h e r e p a i r s . No welding was involved. R a d i a t i o n exposures were about 400 t o 600 m r f o r t h e workers' b o d i e s and about 50% more f o r t h e i r hands. 1 D i v e r s were a l s o used i n making r e p a i r s t o t h e c o r e s u p p o r t p l a t e and t h e f u e l channels of t h e Big Rock P o i n t b o i l i n g water r e a c t o r . T h i s work involved b o l t i n g p i e c e s i n p l a c e and n o t welding. Later, r e p a i r work on t h e t h e r m a l s h i e l d of t h e same r e a c t o r was performed underwater w i t h long-handled t o o l s and t e l e v i s i o n viewing. A t t h i s t i m e , t h e r a d i a t i o n l e v e l s had i n c r e a s e d , d u r i n g a d d i t i o n a l r e a c t o r o p e r a t i o n , t o t h e p o i n t where t h e u s e of d i v e r s a g a i n could n o t be c o n s i d e r e d . The underwater maintenance o p e r a t i o n s involved some machining work and included seal welding of a l l n u t s and keepers.a'" The D r e s d e n - l b o i l i n g water r e a c t o r experienced a number of c r a c k s i n welds which were r e p a i r e d by d i r e c t work from behind a l e a d s h i e l d w i t h a l e a d p i p e t o p r o t e c t t h e w o r k e r ' s hand and arm. By having j u s t a small h o l e i n t h e l e a d p i p e t o a l l o w movement of t h e welding head, workers were p r o t e c t e d as much as p o s s i b l e d u r i n g t h e i r working t i m e i n s i d e t h e r a d i a t i o n zone. Even so, more t h a n 50 welders had t o be c a l l e d upon so t h a t no p e r s o n would have t o work i n t h e r a d i a t i o n f i e l d l o n g enough t o r e c e i v e an overexposure t o r a d i a t i ~ n . ~ ' ~ On t h e BONUS b o i l i n g water, n u c l e a r s u p e r h e a t r e a c t o r , O a k Ridge s u p p l i e d a welder t o work on t h e s u p e r h e a t e r steam p i p i n g . With some water s h i e l d i n g and a l e a d box f o r t h e worker, welds were made d i r e c t l y on t h e t u b e s . 6 The b o i l i n g water r e a c t o r of t h e Oyster Creek Nuclear Power P l a n t w a s found t o have c r a c k s i n f i e l d w e l d s on t h e t u b e s f o r t h e c o n t r o l rod d r i v e s .7 F o r t u n a t e l y t h e c r a c k s w e r e discovered b e f o r e t h e r e a c t o r had been o p e r a t e d . N e v e r t h e l e s s a one-year d e l a y r e s u l t e d from t h e t i m e req u i r e d t o diagnose t h e problem and i t s e x t e n t and t o p r e p a r e t o make t h e n e c e s s a r y r e p a i r s , even though remote c o n t r o l o p e r a t i o n s were n o t necessary. Similar c r a c k s have been found, a l s o b e f c r e o p e r a t i o n s s t a r t e d , i n t h e b o i l i n g water r e a c t o r s f o r t h e Nine-Mile P o i n t Power P l a n t of Niagara Mohawk and t h e Tarapur Nuclear Power S t a t i o n i n I n d i a . Had t h e s e c r a c k s n o t been d i s c o v e r e d b e f o r e o p e r a t i o n s s t a r t e d , t h e j o b of f i x i n g them would have involved long shut-downs.

v

For work on t h e c a l a n d r i a of t h e Sodium G r a p h i t e Reactor, Atomics I n t e r n a t i o n a l developed a remotely c o n t r o l l e d c u t t i n g and welding system. Bench t e s t s were promising f o r s p e c i a l i z e d welding on t h e SGR c a l a n d r i a , which t h e remote welder was s p e c i f i c a l l y designed t o f i t ; however, t h e r e a c t o r p r o j e c t w a s t e r m i n a t e d and t h e equipment w a s never used i n a radiation f i e l d

.'


b

A remote welder w a s r e n t e d from Atomics I n t e r n a t i o n a l t o make weld r e p a i r s on t h e t u b e - t o - t u b e s h e e t welds of t h e steam g e n e r a t o r of t h e Fermi sodium-cooled, fast r e a c t o r . T h i s machine w a s used t o make 1200 w e l d s , t a k i n g 45 s e e p e r

The Dounreay F a s t Reactor developed a s m a l l l e a k i n a sodium c o o l a n t o u t l e t p i p e n e a r t h e r e a c t o r v e s s e l . The r e a c t o r w a s down f o r one y e a r t o l o c a t e and r e p a i r t h e leak.'' The c u t t i n g of t h e l e a k i n g s e c t i o n was done d i r e c t l y u s i n g a l e a d s h i e l d , b u t a s p e c i a l remote welding gadget w a s designed and b u i l t f o r rewelding t h e p i p e . 1 2 , 1 3 Welders r e c e i v e d t h e i r t h r e e months' r a d i a t i o n exposure l i m i t i n s i x h o u r s ' working t i m e . Problems were encountered i n o b t a i n i n g s k i l l e d welders t o do t h e j o b . The H a l l a m sodium-graphite r e a c t o r used an automated remotely cont r o l l e d welder i n s i d e a h o t c e l l t o s e a l weld t h e c o n t a i n e r s f o r s p e n t f u e l e l e m e n t s . Manipulators are used t o o p e r a t e t h e remote welding apparatus.1 4

1 . 3 Remote Maintenance C o n s i d e r a t i o n s I n g e n e r a l , r a d i o a c t i v e r e a c t o r system components are i n t e r c o n n e c t e d with l a r g e p i p e s which must b e disconnected and r e j o i n e d when components are r e p l a c e d . Also l a r g e v e s s e l a c c e s s openings must b e opened for Lns p e c t i o n and replacement of i n t e r n a l s arid t h e n r e s e a l e d . Flanges w i t h mechanical seals and remote welding are two p o s s i b l e methods of r e j o i n i n g p i p e o r c l o s i n g v e s s e l openings. Some o f t h e c o n s i d e r a t i o n s which a f f e c t t h e c h o i c e of t h e appraach are given below. More d e t a i l e d d i s c u s s i o n s on weld j o i n t maintenance are included i n S e c t i o n B.

1.3.1 Equipment Location f o r Maintenance TO b e b e s t s u i t e d f o r remote maintenance, r e a c t o r components and p i p i n g should be p h y s i c a l l y l o c a t e d s o as t o p e r m i t a c c e s s from above f o r removal and replacement o p e r a t i o n s . T h i s , however, imposes r a t h e r s e v e r e r e s t r i c t i o n s on l a y o u t s i n c e it v i r t u a l l y e l i m i n a t e s s t a c k i n g of equipment w i t h i n a c e l l . T h e r e f o r e , i f c e l l space s a v i n g s from s t a c k i n g of components a r e t o b e achieved, c o n s i d e r a t i o n must be g i v e n t g t h e p r e d i c t e d frequency of'rnaintenance an any s p e c i f i c assembly of p i F i n g arid components s o t h a t t h e most f r e q u e n t l y worked-on assemblies w i l l be placed i n t h e most r e a d i l y a c c e s s i b l e l o c a t i o n s . The d e s i g n e r t h u s p r o v i d e s u n r e s t r i c t e d overhead a c c e s s on a f i r s t p r i o r i t y basis f o r t h e components needing maintenance on a r e g u l a r l y scheduled basis, and t h e n p r o v i d e s a c c e s s f o r a n t i c i p a t e d " t r o u b l e area" work. When t h i s has been done: remote methods can b e employed most e f f e c t i v e l y t o reduce t h e c o s t and i n c r e a s e t h e r e l i a b i l i t y of maintenance o p e r a t i o n s .

1 . 3 . 2 Mechanical J o i n t C o n s i d e r a t i o n s a.

A l l r e a c t o r system j o i n t s must b e l e a k - t i g h t t o p r e v e n t t h e o u t l e a k a g e o f c o o l a n t and r a d i o a c t i v i t y or t h e i n - l e a k a g e of e x t e r n a l g a s e s which might contaminate t h e contained f l u i d . Furthermore, some of t h e r e a c t o r c o o l a n t s become v e r y c o r r o s i v e


7 Y

when exposed t o atmospheric oxygen or m o i s t u r e . An i n e r t gas b u f f e r between t h e gas or l i q u i d i n t h e p i p e s and t h e atmosphere i s sometimes employed, a t s l i g h t l y h i g h e r p r e s s u r e , t o a s s u r e that mechanical j o i n t s a r e e f f e c t i v e l y l e a k t i g h t . Since t h i s seal i s s o important f o r t h e i n t e g r i t y of t h e system, t h e equipment which m a i n t a i n s t h e o v e r p r e s s u r e must be e x t r a r e l i a b l e . b.

Any mechanical seal r e q u i r e s l a r g e f o r c e s t o keep t h e s e a l i n g s u r f a c e s i n c o n t a c t d u r i n g a l l e x c u r s i o n s of system temperat u r e and p r e s s u r e . A s a n example, t h e s o l i d m e t a l s e a l s which use r i n g s i n grooves r e q u i r e a c e r t a i n minimum f o r c e t o maint a i n t h e seal. A d d i t i o n a l s t r e n g t h i s needed t o r e s i s t t h e axial and bending s t r e s s e s t r a n s m i t t e d through t h e p i p e . There are a c c e p t a b l e clamping and b o l t i n g methods f o r p r o v i d i n g t h i s s t r e n g t h where t h e j o i n t i s not s u b j e c t e d t o l a r g e t h e r m a l stresses which deform t h e r i n g s e a l , or t o h i g h t e m p e r a t u r e s which m i g h t a n n e a l t h e clamps. Unfortunately, t h e h i g h e r t e m p e r a t u r e s (1000 t o 1500째F) o f advanced r e a c t o r systems make s a t i s f a c t o r y b o l t i n g o r clamping a d i f f i c u l t problem.

c.

I n h i g h - r a d i a t i o n f i e l d s , t h e f l a n g e d j o i n t s must be o p e r a t e d and maintained by remote means. There a r e problems of o p e r a t i n g b o l t s o r bulky clamps by remote c o n t r o l , of removing t h e component without damaging t h e j o i n t , i n s p e c t i n g and c l e a n i n g t h e p r e c i s i o n seal s u r f a c e s , i n s t a l l i n g t h e p o l i s h e d r i n g undamaged, i n s t a l l i n g t h e new component, a l i g n i n g t h e j o i n t , remaking t h e clamp, and l e a k checking t h e seal. Some of t h e s e problems would b e encountered i n remote welding, a l s o . When a mechanical j o i n t l e a k s , t h e maintenance crew has a choice of r e p a i r by t i g h t e n i n g t h e j o i n t o r by r e p l a c i n g t h e r i n g with one p l a t e d w i t h a s o f t metal such as g o l d .

d.

For replacement by welding or by f l a n g e d connections, a l l j o i n t s connecting t h e component i n t o t h e system must be i n proper a l i g n m e n t b e f o r e b o l t i n g o r clamping. Warpage d u r i n g t h e t h e r m a l c y c l i n g t h a t occurs i n any p l a n t may r e q u i r e awkward placement of t h e j o i n t and a complicated i n s t a l l a t i o n sequence as t h e new component i s brought i n t o t h e f i n a l p o s i t i o n . The changes i n p r e v i o u s l y e s t a b l i s h e d l o c a t i o n s w i l l r e q u i r e c a r e f u l measurement by remote means t o determine t h e e x a c t l o c a t i o n of t h e i n c e l l j o i n t s o t h a t adjustments can b e made t o a l i g n t h e new component. A mechanical j o i n t does n o t permit much margin f o r e r r o r i n alignment and f i t t i n g a f t e r t h e component i s i n t h e c e l l , wherea:, with a welded j o i n t , i n - c e l l machining of mating s u r f a c e s could b e used t o c o r r e c t c e r t a i n misalignments.

~

Welded J o i n t Closure Considerat i o n s

a. W

I n j o i n i n g p i p e s , welding can b e used e i t h e r t o provide a f u l l s t r e n g t h , f u l l p e n e t r a t i o n welded j o i n t , or t o provide a s e a l around a gasketed f l a n g e j o i n t . Most f u l l - s t r e n g t h weld c l o s u r e s r e q u i r e m u l t i - p a s s welds which are d i f f i c u l t t o make.


Yet t h e s e all-welded j o i n t s , t o be l e a k t i g h t , must be metall u r g i c a l l y sound. J o i n t alignment, purge gas, weld a r c , and weld metal f e e d v a r i a b l e s w i l l a f f e c t bead shapes and weld q u a l i t y . These v a r i a b l e s a r e d i s c u s s e d i n more d e t a i l i n Section B. b.

Numerous problems t h a t are a s s o c i a t e d w i t h t h e i n s p e c t i o n of welds are n o t encountered 3r a r e less s e v e r e w i t h f l a n g e d j o i n t s . It i s an accepted f a c t t h a t welds must be thoroughly and p r o p e r l y i n s p e c t e d t o a s s u r e j o i n t i n t e g r i t y . Nuclear p l a n t weld q u a l i t y r e q u i r e n e n t s exceed t h e s p e c i f i c a t i o n s for c o n v e n t i o n a l steam power p l a n t s . Weld i n s p e c t i o n t e c h n i q u e s must work i n h i g h r a d i a t i o n backgrounds which make normal radiogrzphy i m p o s s i b l e . I n s p e c t i o n equipment m a n i p u l a t i o n s must b e c o n t r o l l a b l e from remote l o c a t i o n s and viewing i s p o s s i b l e o n l y by i r i d i r e c t means. I n s p e c t i n g w i t h magnetic f i e l d s , or charged p a r t i c l e beams, g e n e r a l l y i s u n s u i t a b l e t o n u c l e a r p l a n t m a t e r i a l s and/or c o n d i t i o n s . U l t r a s o n i c i n s p e c t i o n has shown promise, although much more must b e done t o a d a p t u l t r a s o n i c t e c h n i q u e s t o remote work. The P a c i f i c N o r t h w e s t Laboratory has proposed an ultrasonic i n s p e c t i o n development program f o r t h e FFTF. Another u l t r a s o n i c i n s p e c t i o n development program i s b e i n g sponsored by iridustry through t h e Edison E l e c t r i c I n s t i t u t e , arid i s beirig conducted under s u b c o n t r a c t a t t h e S x t h w e s t Research I n s t i t u t e , Hous:on,

Texas. 1 5 c.

Preweld j o i n t p r e p a r a t i o n r e q u i r e d f o r remote welding i n v o l v e s a c c u r a t e , a x i a l l y square p r e c u t t i n g of t h e j o i n t , matching o f t h e r e s p e c t i v e i n s i d e and (outside d i a m e t e r s a l o n g w i t h p r e c i s i o n alignment of t h e p i g e s t u b t o b e welded, arid p o s s i b l e r e b e v e l i n g t o o b t a i n a c c e p t a b l e alignment of mating j o i n t members. It i s i m p e r a t i v e t h a t a thorough c l e a n i n g of t h e p i p e i n t e r i o r a t t h e j o i i i t area precede a l l work, and t h a t utmost c a r e b e t a k e n t o c o x p l e t e l y remove a l l weld p r e p a r a t i o n c u t t i n g s which might damage pumps, v a l v e s , e t c . , i f allowed t o remain i n t h e system and c i r c u l a t e with t h e f l u i d . Wire b r s h i n g and s o l v e n t c l e a n i n g may a l s o be r e q u i r e d t o p r e p a r e t h e w e l d area.

d.

R e p a i r s t o f a u l t y reweld j o i n t s a r e e q u a l l y d i f f i c u l t . The p r e v i o u s l y d e s c r i b e d i n s p e c t i o n and c l e a n i n g requirements a p p l y t o rewelding a l s o . WFERENCES

1. Divers Repair GCRE Vessel, Nucleonics, p . 78, May 1961. 2.

-

J . I . Riesland and E . A . Gustafson (GE San J o s e ) , Work Performed on F u e l Channels and t h e Core Support P l a t e a t Big Rock P o i n t Nuclear Power P l a n t , Conference on Reactor Operating Experience, J u l y 28-29, 1965, Supplement t o Vol. 8, T r a n s a c t i o n s of t h e American Nuclear S o c i e t y , 1965.


9 v

3.

L. M. Hausler Modifications Conference on Supplement t o

and R. L . Hauter (Consumers Power), In-Vessel of I r r a d i a t e d Reactor I n t e r n a l s a t Big Rock P o i n t , Reactor Operating Experience, J u l y 28-29, 1965, Vol. 8, T r a n s a c t i o n s of t h e American Nuclear S o c i e t y ,

1965

4. R .

H . Holyoak (Commonwealth Edison) The 1967 In-Service I n s p e c t i o n of Dresden 1 Nuclear Power P l a n t , T r a n s a c t i o n s of t h e American Nuclear S o c i e t y , V o l . 10, p . 635, November 1967.

5.

C l i f f o r d Z i t e k , P e r s o n a l communication d u r i n g a v i s i t t o ORNL, l9@.

6.

E v e r e t t Rogers (Oak Ridge Y-12 P l a n t ) P e r s o n a l communication; Rogers d i d t h e welding f o r t h e BONUS r e p a i r s , 1968.

7.

United S t a t e s Atomic Energy Commission Licensing Docket No. 50-219, Amendment 35, F i n a l Report on Reactor Vessel Repair Program, March

8.

1968.

L . Newcomb, C a l a n d r i a Remote Maintenance Tool Development, Atomics I n t e r n a t i o n a l Report NAA-SR-11202, A p r i l 1966.

9. J . F . McCarthy, Compilation of Current T e c h n i c a l Experience a t t h e E n r i c o Fermi Atomic Power P l a n t , Monthly Report No. 7 t o t h e U . S. Atomic Energy Commission, February 1967. 10.

L. T . Bogarty, Modular Steam Generator F a b r i c a t i o n , Atomics I n t e r n a t i o n a l Report NAA-SR-11739,

February

1966.

11. Dounreay Developments: Good p r o g r e s s on PFR; DFR i s back a t f u l l power, Nuclear Engineering, p . 633, August 1968. 12.

Memo t o Myron B. Kratzer, A s s i s t a n t General Manager I n t e r n a t i o n a l A c t i v i t i e s , U . S. AEC, from Carl R. Malmstrom, AEC S c i e n t i f i c Rep r e s e n t a t i v e , U. s. Embassy, London, England; T r i p Report t o Dounreay, February 20,

1968.

13. R. R . Matthews and K. J. Henry, Dounreay Experimental Reactor Establishment, TRG Report 1854R, Nuclear Engineering, Vol. 13, No. 149, pp. 840-844, October 1968.

14.

S. Berger e t a l . , S i x Element I r r a d i a t e d Fuel Shipping Cask, Atomics I n t e r n a t i o n a l Report NAA-SR-12547, Appendix 10, pages 310-319, November 1967.

15.

Grady Whitman, Welding Research Council, P r e s s u r e Vessel Research Committee, P e r s o n a l communication, September 1968.


10 2.

HISTORY OF REMOTE WELDING 2.1

Background

Attempts t o develop automated remote welding systems f o r use i n n u c l e a r work have been pursued, of'f and on, f o r more t h a n t e n y e a r s . Most of t h e e f f o r t s , i n c l u d i n g some at ORNL, were on a s m a l l s c a l e . Limited f i n d i n g s from t h e e a r l i e s t remote welding work formed t h e background f o r t h e Pennsylvania Advanced Reactor (PAR) maintenance welding development program. 2.2

The Pennsylvania Advanced Reactor Program

The Pennsylvania Advanced Reactor (PAR) w a s planned i n t h e mid

1950's t o use a c i r c u l a t i n g aqueous s l u r r y f u e l p r e s s u r i z e d t o 1000 p s i . The h i g h - p r e s s u r e system r e q u i r e d e x t r a c a r e i n f a b r i c a t i o n t o a v o i d l e a k s and a l s o placed a premium on b e i n g able t o r e p a i r l e a k s t h a t developed. It w a s recognized t h a t c i r c u l a t i n g f u e l would i n c r e a s e t h e r a d i a t i o n l e v e l s i n t h e r e a c t o r system areas and would make com@ e t e l y remote maintenance a n e c e s s i t y . I n p l a n n i n g t h e PAR,16 Westinghouse s p e c i f i e d remote welding as t h e mandatory method f'or performing maintenance on t h e r e a c t o r p l a n t . Alkhough c e r t a i n phases of t h e development program were completed, t h e PAR p r o j e c t w a s t e r m i n a t e d b e f o r e t h e remote welding t e c h n i q u e s were e v e r demonstrated i n a n o p e r a t i n g r e a c t o r system. A t u b e - p l u g g i n g procedure had been devised t o use remote welding i n m a i n t a i n i n g t h e system g e n e r a t o r ; t h e p l u g w a s t:, b e i n s e r t e d i n t o t h e t u b e and welded t o t h e t u b e s h e e t . A f l a n g e on t h e p l u g provided t h e m e t a l f o r t h e weld and a l s o covered t h e l e a k p a t h between t h e t u b e and t u b e s h e e t . The t u n g s t e n - a r c welding p r o c e s s w a s s e l e c t e d by t h e PAR group f o r remotely b u t t welding j o i n t s i n t h e f i x e d p i p i n g . To s i m p l i f y equipment, it w a s decided t h a t each remote welding head would be designed t o f i t no more t h a n two p i p e s i z e s . A c o n t r a c t had been n e g o t i a t e d w i t h a man'if a c t u r e r of welding equipment t o improve an e x i s t i n g machine t o permit continuous r o t a t i o n welding with 100 p e r c e n t a r c t i m e , with a u t o m a t i c and complete c o n t r o l , and w i t h completely dependable weld q u a l i t y . A p r o t o t y p e model of t h e machine w i t h f u l l y automatic c o n t r o l s showed promise i n bench t e s t s , b u t it w a s n o t equipped f o r remote work. Also, t h e machine needed f u r t h e r development t o b e s u f f i c i e n t l y r e l i a b l e f o r remote maintenance work.

2 . 3 The Atomics I n 5 e r n a t iorial Program During t h e 1960k, Atomics I n t e r n a t i o n a l , now a D i v i s i o n of North American Rockwell Corporation, developed and p e r f e c t e d a number of a u t o mated welding systems. Some were remotely c o n t r o l l e d f o r work i n conn e c t i o n w i t h A E C ' s sodium-cooled r e a c t o r s ; o t h e r s were automated, bu'; n o t remotely c o n t r o l l e d , f o r space program requirements and for t h e shop f a b r i c a t i o n of h e a t exchangers and t u b i n g systems f o r c i v i l i a r i power r e a c t o r s . While much of t h e i r work w a s c o n c e n t r a t e d on p m d u c t i o n


11

welding o p e r a t i o n s i n shop f a b r i c a t i o n , A I a l s o developed advanced remote welding technology f o r s p e c i f i c a p p l i c a t i o n s , such as i n t e r n a l tube welding f o r steam g e n e r a t o r f a b r i c a t i o n , deep-hole welding f o r work on t h e c a l a n d r i a of t h e sodium-graphite r e a c t o r , and s e a l welding t h e c o n t a i n e r s f o r n u c l e a r f u e l canning. I n t e r n a l welding equipment makes t u b e - t o - t u b e - s h e e t welds and a l s o t u b e - t o - t u b e welds, with t h e welding head l o c a t e d i n s i d e t h e t u b e . A I ' S a u t o m a t i c a l l y programmed system was developed f o r f a b r i c a t i o n of hightemperature, h i g h - p r e s s u r e modular steam g e n e r a t o r j o i n t s f o r t h e Sodium Component T e s t I n s t a l l a t i o n . It d i d not o p e r a t e by remote control.'' Deep-hole welding equipment w a s developed as a n e x t e n s i o n of i n t e r n a l welding technology t o permit remote removal and replacement of p r o c e s s t u b e and a s s o c i a t e d g r a p h i t e l o g assemblies from t h e Sodium G r a p h i t e Reactor C a l a n d r i a Core. Blind c u t t i n g and T I G rewelding were accomplished by remote c o n t r o l equipment r e a c h i n g as f a r as 40 f t through a b i n . inside-diameter tube. 8 The seal welding of s p e n t f u e l i n c a n s w a s performed i n a manipul a t o r c e l l at Hallam. 14

2.4

S t a t e of t h e A r t Survey

Seeking i n f o r m a t i o n on remote maintenance equipment and t e c h n i q u e s t h a t might b e a p p l i c a b l e t o molten s a l t r e a c t o r s , ORNL conducted a survey e a r l y i n 1968 t o determine t h e s t a t e of t h e a r t . Emphasis w a s placed on remote welding, which was considered t o be of g r e a t e s t i n t e r e s t f o r molten s a l t r e a c t o r systems. S p e c i f i c i n q u i r i e s were made about a l l development and a p p l i c a t i o n s of remotely o p e r a t e d , automated equipment f o r r e a c t o r system maintenance and r e p a i r s . Equipment and t e c h n i q u e s f o r c u t t i n g b e v e l i n g , welding and t e s t i n g weld q u a l i t y were p a r t i c u l a r l y sought o u t . i 7 We s p e c i f i c a l l y looked f o r a u t i l i t y machine t h a t would do c u t t i n g , b e v e l i n g and welding w i t h one s e t up.

2.5

Survey F i n d i n g s

The survey d i s c l o s e d a f e w s p e c i a l l y designed, automated welding assemblies which were remotely c o n t r o l l e d by m a n i p u l a t o r s . Argonne N a t i o n a l Laboratory has performed welding on t h e complex e x p e r i m e n t a l equipment i n s i d e a h o t c e l l i n t h i s way; a t H a l l a m , Nebraska, Atomics I n t e r n a t i o n a l h a s a m a n i p u l a t o r c e l l equipped f o r making s e a l welds on c o n t a i n e r s f o r s p e n t f u e l elements; A e r o j e t Corporation a t Azusa, C a l i f o r n i a , used a similar s e t u p f o r canning r a d i o i s o t o p e s o u r c e s . The E l e c t r i c Boat Company at Groton, Connecticut, and t h e Liquid Carbonics Company of Chicago, b o t h D i v i s i o n s o f General Dynamics, developed an automated welding system â‚Źor use on shop f a b r i c a t i o n work, without remote c o n t r o l s . I n t h e p r o d u c t i o n of components f o r submarines, welding i s b e i n g done i n c r e a s i n g l y by t h e automated welding systems (TIG, w i t h weld i n s e r t s f o r r o o t p a s s ) . The Nav claims t i m e and d o l l a r s a v i n g s a l o n g w i t h s u p e r i o r weld q u a l i t y . Y7 It was p o i n t e d out by a number of t h e people interviewed t h a t , a t


12 p r e s e n t , no one markets automated welding machinery f o r f i e l d use, a l t h o u g h t h e r e are many a p p l i c a t i o n s where automated equipment would be most v a l u a b l e . The f o l l o w i n g comments from Mr. Richard H . Freyburg, A s s i s t a n t Manager of Operations f o r Consolidated Edison Company of New York, p o i n t o u t some of t h e r e a s o n s why r e a c t o r b u i l d e r s have keen i n t e r e s t i n automated welding equipment, even without remote c o n t r o l s : " I n d u s t r y can n o t t a k e t r a i n e d n u c l e a r welders from s i t e t o s i t e f o r r e a c t o r c o n s t r u c t i o n because union r e s t r i c t i o n s u s u a l l y permit only one company welder f o r every 12 welders s u p p l i e d by t h e l o c a l union. The t r a i n i n g program f o r n u c l e a r welders i s t e d i o u s ; we're lucky t o g e t 60% of t h e new men q u a l i f i e d . Many of t h o s e p a s s i n g t h e n u c l e a r welding q u a l i f i c a t i o n t e s t s are not w e l l s u i t e d f o r c o n s t r u c t i o n work i n o t h e r r e s p e c t s . If we had r e l i a b l e , r e l a t i v e l y simple, automated machinery f o r b e v e l i n g and welding, we could t r a i n w e l d e r s faster t o o p e r a t e t h e automated equipment and t h e q u a l i t y of t h e welds would be b e t t e r , with fewer r e j e c t i o n s . I n f a c t , automated b e v e l i n g and welding machines, on construction, could b e worked around t h e c l o c k . We could even a f f o r d t o p u t on an e x t r a man t o permitcoflee b r e a k s f o r t h e o p e r a t o r s and s t i l l b e w e l l ahead. Furthermore, i f o u r people g a i n confidence i n t h e automated machinery d u r i n g c o n s t r u c t i o n of t h e r e a c t o r , t h e y w i l l b e g l a d t o pay t h e p r i c e l a t e r f o r a more expensive, remotely operated machine f o r r e a c t o r maintenance work. My most u r g e n t need i s f o r a r e l i a b l e , automated welder t h a t reduces r e j e c t i o n s on c o n s t r u c t i o n f i e l d work. I11 8 Maintenance and a s s o c i a t e d program and c o n t r o l equipment f o r a u t o mated welding have not y e t been s i n p l i f i e d and made rugged t o t h e p o i n t where such systems economically c h a l l e n g e manual welding f o r f i e l d work. Our survey, however, r e v e a l e d two automated systems which, w i t h modif i c a t i o n s , might be u s e f u l f o r remote n u c l e a r work. One i s a n " o r b i t a l v e h i c l e combination c u t , b e v e l , weld c a r r i a g e concept" developed and t e s t e d by North American A v i a t i o n , Lss Angeles, a D i v i s i o n of North American Rockwell Corporation, under A i r Force C o n t r a c t ; t h e o t h e r i s 8 combination of e i t h e r Wachs ( E . H . Wachs Company, Wheeling, I l l i n o i s ) or F e i n ( P r e s c o t t Tool Company, West Boylston, M a s s a c h u s e t t s ) p i p e c u t t e r s f o r c u t t i n g , p l u s s p e c i a l l y automated Dyna-Surge APW S e r i e s Systems (Liquid Carbonic D i v i s i o n , General Dynamics Corporation, Chicago, I l l i n o i s ) f o r welding. The Dyna-Surge system technology o r i g i n a t e d a t t h e E l e c t r i c Boat D i v i s i o n of t h e General Dynamics Corporation and w a s 1 ~ s e dfor t h e i r p r o d u c t i o n welding i n submarine work. Dyna-Surge weld head a s s e m b l i e s employ a s t a t i o n a r y c y l i n d r i c a l t r a c k , clamped around t h e p i p e , with a geared r o t a t i n g p a r t on which t h e e l e c t r o d e h o l d e r i s mounted. Torch support and t r a v e l components are similar t o equipment marketedby AB ASEA SVETSMASKINER, t h e Stockholm, Sweden manufacturer t'cr s p e c i a l European automated weld machinery, o r by Clarke, Chapman & Co., L t d . of England. Wachs and F e i n p i p e c u t t e r s a r e commongly used 5.n coal mining o p e r a t i o n s , i n f a b r i c a t i n g g a s p l a n t equipment, i n

V


V

marine s a l v a g e work, and i n production pre-weld p i p e end shaping. A s t i l l e x p e r i m e n t a l automatic welding machine f o r l a r g e s i z e overland t r a n s m i s s i o n p i p i n g only i s .being b u i l t by CRC-CROSE, I n c . of Houston, Texas, and i s now b e i n g t r i e d o u t i n a f u l l s c a l e f i e l d t e s t on a C o a s t a l S t a t e s G a s Producing Company p i p e l i n e i n t h e Southwest .19

2.6

Continued Need f o r Remote Welding Development

There were two f u l l - f l e d g e d remote welding development programs p r i m a r i l y a s s o c i a t e d with r e a c t o r p r o j e c t s , t h e PAR and t h e SGR, which were d i s c o n t i n u e d b e f o r e remote welding equipment w a s f u l l y developed. Other d e v i c e s f o r remote welding have been b u i l t and used t o perform s p e c i f i c j o b s i n making r e p a i r s t o r e a c t o r systems.

For a number of y e a r s , ORNL h a s used an automated, remotely c o n t r o l l e d welding a p p a r a t u s i n s i d e a h o t c e l l t o s e a l r a d i o i s o t o p e source c o n t a i n e r s . I n t h i s case t h e c o n t a i n e r s are s m a l l , t h e j o b i s r e p e t i t i v e , and t h e remote welding equipment does n o t have t o b e moved about w i t h i n t h e c e l l . I n g e n e r a l p r a c t i c e , r e a c t o r f u e l elements a r e seal welded i n t h i n - w a l l e d c o n t a i n e r s b e f o r e b e i n g placed i n t h e s h i e l d e d c a r r i e r when t h e y are t o b e shipped o f f s i t e . T h i s seal weld i s u s u a l l y made by remotely c o n t r o l l e d equipment i n a h o t c e l l . Other remote welding o p e r a t i o n s have been performed a t v a r i o u s t i m e s and p l a c e s using equipment s p e c i a l l y adapted f o r t h e s p e c i f i c job. The state of t h e a r t seems t o be t h a t automated welding equipment has been developed t o a p o i n t where it i s p o s s i b l e t o a d a p t comm e r c i a l l y a v a i l a b l e equipment t o t h e performance of s p e c i f i c and, t o remote welding j o b s . d a t e , f a i r l y simple

-

-

Although automated welding i s b e i n g used i n c r e a s i n g l y i n shops f o r a v a r i e t y of a p p l i c a t i o n s , t h e r e a r e no p r e s e n t a p p l i c a t i o n s of automated welding t o n u c l e a r r e a c t o r system components b e i n g welded i n t h e f i e l d . I n t h e shop production of components f o r t h e n u c l e a r power systems of submarines, automated welding i s b e i n g i n c r e a s i n g l y used. Weld i n s e r t r i n g s a r e used t o f u s i o n weld Naval. j o i n t r o o t p a s s e s . The N a v y r e p o r t s s a v i n g s i n t i m e and c o s t ovdr manual welding, and claims s u p e r i o r weld q u a l i t y , a l s o . Needs f o r remote welding equipment have become more widespread and a c t u a l a p p l i c a t i o n s of equipment f o r performing s p e c i f i c remote welding j o b s have become more numerous. To d a t e , however, no one has p e r f e c t e d a g e n e r a l l y u s e f u l remote welding system, It i s i n s t r u c t i v e t o c o n s i d e r why t h e equipment h a s n o t been developed t o d a t e , even though a t t e m p t s have been made, and t o e v a l u a t e t h e p r o s p e c t s f o r s u c c e s s i f a n o t h e r a t t e m p t i s made. The f o l l o w i n g f a c t o r s seem important:

1. Limited funding f o r c e d p r e v i o u s d e v e l o p e r s t o r e s o r t t o crude c o n t r o l and programming equipment and t o l i m i t t h e i r mechanical d e s i g n s t o o v e r s i m p l i f i e d hardware items.


2.

Welding and programmed c o n t r o l a p p a r a t u s of t h e p a s t lacked pulsed-arc and a r c l e n g t h r e g u l a t i o n , i n t e g r a t e d d i g i t a l f u n c t i o n a l c o n t r o l s and s o l i d s t a t e d e v i c e s f o r i n s t a n t response a c t u a t i o n . Today ' s remote c o n t r o l c a p a b i l i t i e s are much more s o p h i s t i c a t e d and a d a p t a b l e t o meeting welding quality specifications.

3. M i n i a t u r i z e d components and automated welding hardware were n o t a v a i l a b l e for a p p l i c a t i o n i n t h e p r e v i o u s l y attempted remote welding systems. Welding equipment systems t h a t have been developed r e c e n t l y for t h e N a t i o n a l A e r o n a u t i c s and Space A d m i n i s t r a t i o n and for advanced a i r c r a f t a p p l i c a t i o n s are much s u p e r i o r t o t h o s e t h a t were a v a i l a b l e i n t h e e a r l i e r a t t e m p t s t o a d a p t equipment for remotely c o n t r o l l e d welding operations. REFERENCES

Vol. N , Peansylvania Advanced Reactor P r o j e c t , Layout and Maintenance, P a r t s 1 and 2, WCAP 1104 and 1105; Westinghouse E l e c t r i c Corporation and Pennsylvania Fower and Light Company, March 1959.

Memo from P. P. Holz t o D i s t r i b u t i o n , A P r e l i m i n a r y Survey of Remote C u t t i n g and Welding Techniques Under Development i n t h e United S t a t e s , MSR-68-44, February 20, 1968. Richard H . Freyburg, A s s i s t a n t Manager of Operations, Consolidated Edison Company of N e w York, P e r s o n a l communication by telephone, October 1, 1968.

Wall S t r e e t J o u r n a l , J u l y graph 5 .

8-69 i s s u e , Page

23, Column

4, Para-


'v

3. THE SELECTION OF A SYSTEM TO BE DEVELOPED FOR REMOTE MAINTENANCE 3.1

"Orbital-Vehicle" System Advantages

The A i r F o r c e ' s o r b i t a l v e h i c l e machinery developed by North American-Rockwell f o r p i p e j o i n t - r e p l a c e m e n t maintenance o f f e r s a number of advantages f o r c u t t i n g and rewelding n u c l e a r p i p i n g . A s i n g l e , compact c a r r i a g e p r o p e l s i n t e r c h a n g e a b l e heads f o r c u t t i n g o r welding. T h i s s i n g l e s e t u p f o r a l l phases of r e p a i r work s i m p l i f i e s t h e indexing on t h e s p o t t o be c u t and welded and a s s u r e s r e p e t i t i v e p r e c i s i o n t o o l alignment. Equipment s e t u p time s a v i n g s a l s o r e s u l t , e s p e c i a l l y where weldment r e p a i r s might b e r e q u i r e d . The t u n g s t e n i n e r t gas (TIG) welding p r o c e s s which had been used by t h e A i r Force i n t h e i r work w i t h o r b i t a l machinery w a s a l s o chosen f o r i n i t i a l t e s t s a t ORNL because it o f f e r s most promise of meeting n u c l e a r weld requirements. T h i s p r o c e s s has s e v e r a l i n h e r e n t c h a r a c t e r i s t i c s t h a t are e s p e c i a l l y s u i t a b l e f o r remote f i x e d - p o s i t i o n welding. TIG welding i s a low i n e r t i a p r o c e s s and i s r e l a t i v e l y slow, which makes it much easier t o c o n t r o l and monitor f o r h i g h i n t e g r i t y welds. The amount of molten metal a t any time i s r e l a t i v e l y s m a l l , c r e a t i n g a q u i c k - f r e e z i n g puddle with s u f f i c i e n t s u r f a c e t e n s i o n t o c o u n t e r a c t g r a v i t y . The p r o c e s s t h u s works e q u a l l y w e l l whether t h e weld i s going u p - h i l l , down-hill o r h o r i z o n t a l l y . The a r c l e n g t h of t h e non-consumable e l e c t r o d e can be maintained more e a s i l y t h a n t h a t o f a consumable e l e c t r o d e . There i s no f l u x or s l a g a s s o c i a t e d w i t h t h e process t o r e q u i r e s p e c i a l i n t e r p a s s cleaning, although brushing t o remove t h e l i g h t oxide f i l m i s d e s i r a b l e . F i l l e r wire i s f e d d i r e c t l y i n t o t h e weld puddle. The metal does n o t have t o b e t r a n s f e r r e d i n t o a molten state a c r o s s an e l e c t r i c a r c , an o p e r a t i o n t h a t sometimes r e s u l t s i n s p a t t e r and uneven bead f o r m a t i o n s . A system w i t h i n t e g r a l wire f e e d h a s t h e c a p a b i l i t y t o complete a weld of t h i c k e r s e c t i o n t h a n can be made by autogenous welding. It a l s o i s more l i k e l y t o provide s a t i s f a c t o r y c r a c k - f r e e weld metal of good composition, g r a i n s i z e and p o r o s i t y . T I G equipment c a n b e made compact and p o r t a b l e . 3.2

F u t u r e System Expansion and M o d i f i c a t i o n P l a n s

The o v e r a l l development program f o r an automated c u t -and-weld r e a c t o r maintenance system i s d i v i d e d i n t o two p a r t s ; a system f e a s i b i l i t y s t u d y and development phase, and f u t u r e system expansions and m o d i f i c a t i o n s a l o n g t h e l i n e s d e s c r i b e d below.

3.2.1

Development of A d d i t i o n a l Modules

The a b i l i t y t o change modules on t h e o r b i t a l v e h i c l e c a r r i a g e s u g g e s t s t h a t development and a p p l i c a t i o n of a d d i t i o n a l , i n t e r c h a n g e a b l e modular i n s e r t packages might b e t h e easiest way of accomplishing a d d i t i o n a l f u n c t i o n s . S i n c e welding o p e r a t i o n s r e q u i r e s t r i c t c l e a n l i n e s s c o n t r o l and it i s important t o keep c h i p s and d i r t out of t h e p r o c e s s system, a clean-up module or attachment may b e needed. Welding


16 r e q u i r e s t h a t oxide and dye p e n e t r a n t t e s t films b e removed from bead s u r f a c e s b e f o r e making a d d i t i o n a l weld f i l l e r p a s s e s . A modular head could b e developed t o a p p l y s o l v e n t c l e a n e r s and t o d r i v e a r o t a r y w i r e b r u s h f o r p h y s i c a l l y c l e a n i n g t h e w e l d . We p l a n t o a l s o develop a d d i t i o n a l modular heads f o r a welding i n s p e c t i o n package, complete w i t h TV camera, d i a l i n d i c a t o r s , p e n e t r a n t i n s p e c t i o n d e v i c e s , e t c . 3.2.2

A l t e r n a t e C a r r i a g e f o r Seal-Weld C a p a b i l i t y

P r e s e n t machinery i s designed f o r work on p i p i n g only, w i t h t h e c a p a b i l i t y of p r e p a r i n g j o i n t s f o r b u t t - w e l d i n g , and of performing t h e welds. I n v e s t i g a t i o n s have been s t a r t e d t o determine whether t h e e x i s t i n g modules a l o n g with t h e programmer can b e used f o r s e a l welding a p p l i c a t i o n s . Such a system may i n c l u d e a s u b s t i t u t e c a r r i a g e t o "walk" about a s e t of indexed mating contoured seal l i p s . Motor p r o p u l s i o n equipment for t h i s a l t e r n a t e s e a l - j o i n t c a r r i a g e should be compatible w i t h t h e o r b i t a l v e h i c l e c a r r i a g e d r i v e so t h a t it can be o p e r a t e d w i t h t h e same c o n t r o l s and i n s t r u m e n t a t i o n . An a l t e r n a t e approach under c o n s i d e r a t i o n for v e s s e l seal-weld c l o s u r e s i s based on a free-swinging c a r r i a g e o p e r a t e d from a r a d i u s l i n k a g e a t t h e c e n t e r l i n e of t h e opening. 3.2.3

Development of S p e c i a l F e a t u r e s f o r Nuclear System A p p l i c a t i o n s

A number of a d d i t i o n a l d e s i g n m o d i f i c a t i o n s w i l l b e n e c e s s a r y i n a d a p t i n g t h e p r e s e n t A i r Force machinery t o p r o v i d e b e t t e r i n s t a l l a t i o n and o p e r a t i o n c a p a b i l i t i e s f o r n u c l e a r a p p l i c a t i o n s . These m o d i f i c a t i o n s w i l l i n v o l v e changes t o p o s i t i o n i n g and h a n d l i n g a t t a c h m e n t s s o t h a t a l l of t h e equipment can be i n s t a l l e d and operated from any a v a i l a b l e overhead a c c e s s . The A i r Force d e s i g n was modified somewhat b e f o r e b e i n g used t o f a b r i c a t e a p r o t o t y p e u n i t f o r t h e ORNL f e a s i b i l i t y s t u d i e s . The ORNL p r o t o t y p e , l i k e t h e A i r Force equipment, u t i l i z e s readily-machinable, l i g h t - w e i g h t materials, g e n e r a l l y aluminum. Reactor maintenance a p p l i c a t i o n s w i l l r e q u i r e equipment which i s rugged, i s a b l e t o b e decontamin a t e d and r e p a i r e d , i f n e c e s s a r y , while b e i n g k e p t i n s i d e a h o t c e l l , and i s r e s i s t a n t t o r a d i a t i o n an6 h i g h t e m p e r a t u r e s . It should b e p o s s i b l e t o i n c o r p o r a t e materials and t o develop d e s i g n m o d i f i c a t i o n s which w i l l a d a p t t h e system t o n u c l e a r work w i t h o u t r e d u c i n g t h e proven e f f e c t i v e n e s s of t h e o v e r a l l system d e s i g n o r o p e r a t i o n s . For i n i t i a l t e s t s with t h e p r o t o t y p e , s i g n i f i c a n t s a v i n g s i n t i m e and money were achieved by u s i n g u n i t s t h a t i n c o r p o r a t e s t a n d a r d i n d u s t r i a l components and m a t e r i a l s . T h i s approach w i l l be continued t h r o u g h most o f t h e development program. The more c o s t l y u n i t s , i n c o r p o r a t i n g s p e c i a l m a t e r i a l s f o r ease of decontamination and f o r r e s i s t a n c e t o r a d i a t i o i t arid t o h i g h t e m p e r a t u r e s , w i l l only be b u i l t a f t e r p r e s e n t t e s t s have shown complete s u i t a b i l i t y and performance of t h e d e s i g n . For f u t u r e machinery systems we contemplate r e l o c a t i n g some e l e c t r o n i c c o n t r o l components from t h e i r p r e s e n t module s t a t i o n s t o t h e programmer, and p o s s i b l y r e p l a c i n g some of t h e e l e c t r i c a l s e n s i n g and c o n t r o l equipment i n t h e module with f l u i d i c systems t o minimize r a d i a t i o n damage problems.


SECTION B

4.

PRESENT PROGRAM STATUS

4.1

General

ORNL r e p r e s e n t a t i v e s v i s i t e d t h e North American A v i a t i o n Los Angeles, C a l i f o r n i a D i v i s i o n o f North American Rockwell Corporation and t h e Rocket P r o p u l s i o n Laboratory, U.S. A i r Force Systems Command, Edwards A i r Force Base, C a l i f o r n i a d u r i n g March 1968. A t t h a t t i m e North American Rockwell, as A i r Force c o n t r a c t o r , had a l r e a d y f a b r i c a t e d two p r o t o t y p e o r b i t a l v e h i c l e machines f o r c u t t i n g and welding 1- t o 3 - i n . and 3- t o 6 - i n . diameter t u b i n g . Performance t e s t i n g had j u s t been started. Designs had a l s o been completed b y NAR f o r u n i t s t o handle l a r g e r diameter pipes; 6- t o 9 - i n . , 9- t o 12-in., and 12t o 16-in. Arrangements were made f o r t h e Atomic Energy Commission t o r e c e i v e A i r Force c o n t r a c t o r d e s i g n data. Design drawings f o r t h e 6- t o 9 - i n . diameter o r b i t a l v e h i c l e machinery were s u p p l i e d t o t h e AEC d u r i n g A p r i l and M a y 1968. The Commission, i n t u r n , r e l a y e d t h e i n f o r m a t i o n t o ORNL. A f t e r d e t a i l e d review, ORNL redesigned equipment t o i n c l u d e p r o v i s i o n s f o r remote i n s t a l l a t i o n and o p e r a t i o n c a p a b i l i t i e s , and prepared d e t a i l e d drawings and s p e c i f i c a t i o n s f o r t h e commercial purchase of mechanical assemblies. F a b r i c a t i o n of t h e p r o t o t y p e u n i t f o r t e s t i n g at ORNL began i n August 1968 and was completed d u r i n g February 1969. To save time and i n i t i a l c o s t s , arrangements were made t o borrow a s p a r e A i r Force programmer t o c o n t r o l t h e o p e r a t i o n of t h e equipment f o r a l i m i t e d e v a l u a t i o n p e r i o d . A replacement prog r a m e r i s b e i n g f a b r i c a t e d by ORNL and w i l l be completed by September

1969 The i n i t i a l ORNL development e f f o r t s started i n March

1969 and

were d i r e c t e d toward e s t a b l i s h i n g t h e f e a s i b i l i t y of using remotely

o p e r a t e d machinery that w i l l c u t , b e v e l , and e i t h e r seal or s t r e n g t h weld j o i n t s and p i p i n g f o r n u c l e a r a p p l i c a t i o n s . I n i t i a l c u t t i n g and welding s t u d i e s and t e s t s c l o s e l y followed c u r r e n t USAF r o c k e t system welding technology developments. D e t a i l e d d i s c u s s i o n s on e a r l y development f i n d i n g s a t ORNL are r e p o r t e d on i n t h e f o l l o w i n g c h a p t e r s on p i p e machining and welding s t u d i e s . The development work t o date shows t h a t it i s feasible t o use automated o r b i t a l machinery f o r remote c u t t i n g and welding.

4.2

ORNL's P r o t o t y p e Automated Remote C u t t i n g and Welding System f o r 6 and 8 - i n . P i p e s

The A i r Force h a s o r b i t a l c a r r i a g e s f o r t h e f o l l o w i n g o u t s i d e d i a m e t e r ranges; 3 t o 6 i n . , 6 t o 9 i n . , 9 t o 12 i n . , and 12 t o 16 i n . W e s e l e c t e d t h e 6- t o 9 - i n . c a r r i a g e f o r work w i t h 6- and 8 - i n . p i p e s . A l l l i s t e d c a r r i a g e s u s e t h e same i n t e r c h a n g e a b l e machining and welding heads.


18 The automated remote c u t t i n g and welding machinery package i n c l u d e s t h e f o l l o w i n g components shown i n F i g . 1, 2, and 3: c a r r i a g e , machining head, welding head, weld p r o g r a m e r , and welding power s u p p l y . The f u n c t i o n s performed by t h e s e components and b r i e f equipment summations are d e s c r i b e d i n t h e f o l l o w i n g p a r a g r a p h s . 4.2.1

Carriage

The c a r r i a g e p r o v i d e s a r i g i d , stable p l a t f o r m on which t h e machining head and t h e welding head can b e mounted, indexed, and o p e r a t e d . F i g u r e 4 shows t h e c a r r i a g e w i t h t h e welding head. The c a r r i a g e s u p p l i e s a d r i v e mechanism t o r o t a t e t h e p l a t f o r m around t h e p i p e circumference a t p r e s e t , r e p r o d u c i b l e speeds, w i t h c o n t r o l s t o m a i n t a i n t h e p l a t f o r m s u r f a c e a t a c o n s t a n t d i s t a n c e from t h e p i p e s u r f a c e s o t h a t t h e m i l l i n g c u t t e r depth and a r c l e n g t h c o n t r o l s w i l l perform p r o p e r l y . The p l a t f o r m w i l l m a i n t a i n i t s l a t e r a l p o s i t i o n w i t h r e s p e c t t o t h e p i p e j o i n t while r o t a t i n g about t h e p i p e , s o t h a t when modules are changed from c u t t i n g , b e v e l i n g and welding, t h e a l i g n ment w i l l a l r e a d y b e c o r r e c t . The c a r r i a g e geared a c t u a t o r arm a s s e m b l i e s clamp s e c u r e l y t o t h e p i p e ; i t s d r i v e r o l l e r s are loaded by s p e c i a l t o r s i o n bars t o m a i n t a i n c o n t r o l l e d r o l l e r clamping p r e s s u r e and t o compensate f o r p i p e o v a l t y w i t h i n commercial. s p e c i f i c a t i o n s . C a r r i a g e d e s i g n p e r m i t s a l l l i s t e d t a s k s t o b e accomplished w i t h i n a 4 1/2-in. r a d i a l clearance. The c a r r i a g e s t r u c t u r e c o n s i s t s of two s i d e p i e c e s which p r o v i d e a p l a t f o r m f o r t h e welding and machining heads, and two end s u p p o r t s . These s u p p o r t s c o n t a i n t h e water, i n e r t gas and e l e c t r i c a l power conn e c t i o n s and switches; t h e f r o n t s u p p o r t a l s o c o n t a i n s t h e clamping d e v i c e , namely worn g e a r s which p o s i t i o n t h e i d l e r o l l e r s through a s l i d e r c r a n k l i n k a g e . The c a r r i a g e r o t a t e s v i a a d i r e c t d r i v e system from motors mounted a t t h e two hinge p o i n t s of t h e a c t u a t i n g arms w i t h i n t h e r o l l e r s . The v u l c a n i z e d h i g h t e m p e r a t u r e , a b r a s i o n r e s i s t a n t viton coating provides t h e necessary r o l l e r t r a c t i o n . 4.2.2

U n i v e r s a l Machining Head

The machining head shown i n F i g . 5, can b e mounted on t h e c a r r i a g e t o c u t p i p e o r t u b i n g , m i l l t h e t u b e ends square, and b e v e l t h e edges t o t h e d e s i r e d c o n f i g u r a t i o n f o r welding. The machining head i n c l u d e s an o u t e r housing, a T r i a c , speed-regulated, 1/4-hp a i r - c o o l e d e l e c t r i c d r i v e motor of t h e t y p e produced f o r hand d r i l l s , p l u s t h e d r i v e motor housing and c u t t e r a s s e m b l i e s . Two-axis manual c u t t e r adjustment i s a v a i l a b l e . S e v e r a l t y p e s of c u t t e r b l a d e s can be i n s t a l l e d as needed. 4.2.3

U n i v e r s a l Welding Head

The welding head, F i g . 6, can b e mounted on t h e c a r r i a g e i n p l a c e of t h e machining head a f t e r t h e c u t t i n g and. b e v e l i n g o p e r a t i o n s have been completed. The welding head i s designed w i t h ad j u s t a b l e v e r t i c a l and h o r i z o n t a l s l i d e s t o l o c a t e t h e e l e c t r o d e a c c u r a t e l y w i t h r e s p e c t t o t h e c u t and beveled edges of t h e weld j o i n t . F i l l e r wire w i l l be



20

.

-.*

J


bl i

-


22


*


'.

Fig.

6. Universal Welding Head.

-

.f

U


25 W

f e d a u t o m a t i c a l l y a t t h e d e s i r e d r a t e t o t h e weld j o i n t from a s p o o l which s t o r e s enough wire f o r m u l t i p l e f i l l e r weld p a s s e s . The welding head w i l l p r o v i d e an i n e r t welding gas t o t h e t o r c h cup, w i l l p r o v i d e power and c o o l i n g water flow t o t h e t o r c h head, and w i l l o s c i l l a t e t h e welding e l e c t r o d e a c r o s s t h e seam. It w i l l a l s o p r o v i d e i n t e g r a l s w i t c h e s f o r t e s t o p e r a t i n g t h e wire f e e d jog, t h e o s c i l l a t o r , and i n e r t gas flow. 4.2.4

Welding Programmer and C o n t r o l U n i t

A pendant-housed s t a r t - s t o p c o n t r o l u n i t and t h e console-welding programmer c o n t a i n t h e measurement r e c o r d e r s and c o n t r o l d e v i c e s t h a t p r o v i d e f o r automated welding. The programmer,shown i n F i g s . 7 and 8, i s designed t o c o n t r o l and/or sequence each of t h e f o l l o w i n g weld v a r i a b l e s or f u n c t i o n s ; welding c u r r e n t v s . t i m e , maximum welding c u r r e n t , welding c u r r e n t p u l s e amperes and p u l s e t i m e , c u r r e n t upslope t i m e , weld t i m e , c u r r e n t downslope t i m e , welding v o l t a g e , welding t o o l speed and s t a r t and s t o p t i m e , w i r e f e e d speed and s t a r t and s t o p time, a r c v o l t a g e c o n t r o l v o l t a g e , and o s c i l l a t o r f r e q u e n c y . The welding c u r r e n t and t h e c a r r i a g e ( t o o l ) d r i v e c i r c u i t s are r e s p e c t i v e l y s e r v o - c o n t r o l l e d . The w i r e feed r a t e can b e a d j u s t e d t o m a i n t a i n c o n s t a n t e l e c t r o d e / w e l d puddle d i s t a n c e s by u s i n g a feedback system t o monitor t h e a r c v o l t a g e and compare it t o a p r e s e t , p r e determined v a l u e , and, as r e q u i r e d , g e n e r a t e a c o r r e c t i o n s i g n a l . Changes i n t h e a r c gap are r e f l e c t e d as changes i n a r c v o l t a g e and t h e s e changes g e n e r a t e a c o r r e c t i o n s i g n a l which changes t h e f i l l e r w i r e speed t o b u i l d up o r t o d e c r e a s e t h e weld puddle t o m a i n t a i n a p r e s e t a r c gap. The wire f e e d system a l s o i n c l u d e s a t r a n s i s t o r i z e d motor c o n t r o l s e r v o system t o q u a n t i t a t i v e l y r e g u l a t e f i l l e r d e p o s i t s i n response t o a tachometer feedback s i g n a l . P i p e o v a l t y c o r r e c t i o n s a r e r e g u l a t e d by a mechanical cam d e v i c e which r i d e s t h e p i p e and s p r i n g l o a d s t h e weld head w i t h i n t h e c a r r i a g e t o t e n d t o m a i n t a i n a constant tool/workpiece spacing. Lighted b u t t o n s are provided f o r f u n c t i o n i n d i c a t i o n and/or s e l e c t i o n . I n d i c a t i n g meters a r e i n c o r p o r a t e d f o r t o o l and wire f e e d speed, a r c v o l t a g e , and weld c u r r e n t . The u n i t i s designed t o p r o v i d e s i g n a l s which c a n b e used w i t h commercially-available r e c o r d e r s t o p r o v i d e permanent r e c o r d s . A t p r e s e n t w e u s e a m u l t i - c h a n n e l Sanborri 150 Recorder. The A i r Force programmer, F i g . 7 a l s o i n c l u d e s p r o v i s i o n s f o r punched c a r d i n p u t t o p r o v i d e a u t o m a t i c c a p a b i l i t y f o r program s e t u p . T h i s f e a t u r e i s e s p e c i a l l y d e s i r a b l e f o r p r o d u c t i o n work. For t h e t i m e being, however, p r i m a r i l y f o r economy r e a s o n s , we are n o t u s i n g punch c a r d t e c h n i q u e s i n our replacement programmer. 4.2.5

W

Power Supply

Most c o m m e r c i a l l y - a v a i l a b l e welding power supply u n i t s are compatible w i t h t h e programmer c o n t r o l c i r c u i t r y and can b e employed as power s o u r c e s . We u t i l i z e a L i n c o l n Model T I G 300/300 welder w i t h minor c i r c u i t m o d i f i c a t i o n s . I n d u c t i v e t r a n s i e n t s u p r e s s o r s and a t r a n s i s t o r i z e d r e a c t o r


26

3

J

.


27

k" k

I

ho

R

PI


28 c o n t r o l a m p l i f i e r shown i n F i g . 9 have been added t o t h e w e l d e r s ' r e a c t o r c o n t r o l c i r c u i t s . Welder c o n t r o l s f o r g a s and water s o l e n o i d v a l v e r e l a y s are t r a n s f e r r e d t o t h e programmer. 4.2.6

Equipment M o d i f i c a t i o n s f o r Remote Work

ORNL's 6- t o 9 - i n . - d i a m e t e r c a r r i a g e and t h e welding and m i l l i n g i n s e r t heads i n c o r p o r a t e a number of changes and m o d i f i c a t i o n s t o similar A i r Force equipment. Our machinery i n c l u d e s a c t u a t o r s , l i f t i n g and p o s i t i o n i n g l u g s designed f o r remote t o o l i n g and h a n d l i n g . We have a l s o e l i m i n a t e d from t h e o r i g i n a l A i r Force weld head two d i s c o n n e c t s i n t h e welding power supply l i n e and t h e water and g a s l i n e s . Our c a b l e s a r e i n t e g r a l . with t h e t o r c h and r o u t e d i r e c t l y from t h e t o r c h h o l d e r through a grommet-' i n s e r t i n t h e ad jacerit c a r r i a g e f r o n t p a n e l . S t r a y RF c u r r e n t s and p o t e n t i a l water l e a k s a r e e l i m i n a t e d . Our d i r e c t l y coupled t o r c h a l s o p e r m i t s completely independent weld head ( i n , o r out of c e l l ) checkout and replacement. The s e p a r a t e power and c o n t r o l l e a d s a t o p p o s i t e ends of t h e c a r r i a g e work w e l l i n remote i n s t a l l a t i o n . Separated c o r d s do n o t t a n g l e while r o t a t i n g t h e c a r r i a g e t o loop c a b l e s p r i o r t o c u t t i n g o r welding, o r d u r i n g a c t u a l work o p e r a t i o n s . We have a l s o added a Lossy-Line Absorptive F i l t e r RF Suppressor t o p r o v i d e i n c r e a s e d p r o t e c t i o n of w i r i n g and components c o n n e c t i n g t o t h e e l e c t r o d e . Our w i r e f e e d e r e x i t t r o u g h i s oxide coated t o e l i m i n a t e a r c i n g and f u s i n g . I t s t r o u g h p i v o t d e v i c e i s a l t e r e d t o permit more f l e x i b i l i t y and t o p r o v i d e a l o c k - i n f e a t u r e t o c e n t e r t r a c k i n g . A s i m i l a r h o r i z o n t a l t r a v e l l o c k i n g d e v i c e w a s added t o t h e c u t t e r head t o p r e v e n t l a t e r a l c a r r i a g e motion while c u t t i n g . Our c u t t e r t o o l f e e d a c t u a t o r includes r a t c h e t depth set c o n t r o l .

5.

MACHINING STUDIES

5 . 1 General Considerable t i m e was s p e n t t o check and g e n e r a l l y confirm A i r Force machining d a t a and t o develop c u t t i n g and m i l l i n g t e c h n i q u e s f o r s t a i n l e s s s t e e l and I n c o n e l p i p i n g . We noted t h a t c u t t i n g c r i t e r i a a p p l i c a b l e f o r 300 s e r i e s s t a i n l e s s s t e e l p i p e s do n o t a p p l y f o r I n c o n e l work. A v a i l a b l e I n c o n e l p i p e w a s chosen t o approach H a s t e l l o y N material c h a r a c t e r i s t i c s . We were a b l e t o p r e p a r e beveled p i p e j o i n t s . C u t t e r t r i a l s s t a r t e d i n l a t e February 1969. Major performance t e s t s h e l d d u r i n g March and A p r i l included saw t r a c k i n g s t u d i e s and runout d e t e r m i n a t i o n s and machining s t u d i e s on ( i n o r d e r ) 304 s t a i n l e s s s t e e l , 347 s t a i n l e s s s t e e l and I n c o n e l p i p i n g . We t e s t e d 1/16 i n . and 3/32 i n . t h i c k high speed s t e e l and C i r c o l o y a l l o y s l i t t i n g saws and h i g h speed s t e e l s i n g l e and double b e v e l c u t t e r s . We v a r i e d c u t t e r speeds, c u t t e r f e e d s , and c a r r i a g e t r a v e l rates t o determine programmed o p e r a t i n g combinations f o r a c c e p t a b l e t o o l performance and p i p e s u r f a c e f i n i s h . T e s t e f f o r t s a l s o served t o e v a l u a t e our equipment, and t o develop a c c e p t a b l e machining t e c h n i q u e s f o r b o t h s l i t t i n g and b e v e l i n g p i p e t o p r e p a r e d e s i r e d p i p e end c o n f i g u r a t i o n s f o r welding. We noted p a r t i c u l a r l y t h a t p i p e w a l l t h i c k n e s s v a r i a t i o n s , even w i t h i n t h e allowed


29

m

31 k

0

d

u


code l i m i t s f o r commercial p i p i n g , g r e a t l y complicate t h e j o i n t machining requirements f o r dependable weld j o i n t g e o m e t r i e s . 5.2

Equipment E v a l u a t i o n

The machining head a p p e a r s t o have c a p a b i l i t y t o c u t p i p e , t r i m ends square, and t o p r e p a r e end b e v e l s . L i t t l e d i f f i c u l t y i s encountered i n machining s t a i n l e s s materials; problems, however, arise i n c u t t i n g I n c o n e l because of i t s work-hardening t e n d e n c i e s . A l l ORNL machining t e s t s were performed on h o r i z o n t a l p i p i n g . S l i t t i n g saws and double b e v e l c u t t e r s t r a c k t r u e w i t h i n approx. .OO3 i n . S i n g l e b e v e l c u t t e r s t e n d t o walk o u t o f , and away from t h e c u t , e s p e c i a l l y on t h e h a r d e r I n c o n e l p i p e . C u t t e r d r i v e motor power and speed c o n t r o l c a p a b i l i t i e s appear a d e q u a t e . The c a r r i a g e and machining head w i l l w i t h s t a n d l o a d i n g and v i b r a t i o n s caused by t h e m i l l i n g c u t t e r s w i t h p r o p e r t r a v e l speed and t o o l f e e d s e l e c t i o n . Improvements, however, a r e x q u i r e d t o p r o v i d e a s t r o n g e r and more p o s i t i v e c u t t e r d e p t h c o n t r o l and t o g i v e more stable l o n g i t u d i n a l a d j u s t m e n t s . A r a t c h e t - c o n t r o l l e d worm g e a r d e p t h c o n t r o l i s contemp l a t e d f o r more p r e c i s e f e e d c a p a b i l i t y . A l o c k i n g clamp a l r e a d y i n s t a l l e d t o t h e l o n g i t u d i n a l adjustment a p p e a r s t o a d e q u a t e l y p r e v e n t axial c u t t e r s h i f t s .

The c u t t e r d r i v e motor and i t s speed r e d u c t i o n g e a r t r a i n work w e l l . We have observed no s i g n s of motor o v e r h e a t i n g d u r i n g performance t e s t s , even d u r i n g s e v e r e m i l l i n g o p e r a t i o n s . The 110 V ac motor i s r a t e d a t about 5 anps; 2.5-amp r e a d i n g s were t h e h i g h e s t noted i n t e s t o p e r a t i o n s . Motor speed c o n t r o l appears adequate, f o r speeds r a n g i n g from about 30 rpm t o about 120 r p n . Observations t o d a t e i n d i c a t e t h e c a r r i a g e d r i v e may be t h e l i m i t i n g f a c t o r on c u t t i n g c a p a b i l i t y . We have observed r o l l e r s l i p p a g e on t h e p i p e , and a t t i m e s have t r i p p e d t h e d r i v e r o l l e r c i r c u i t b r e a k e r p r o t e c t i o n . Cutter f e e d and c a r r i a g e speed adjustment changes, however, r e s t o r e d o p e r a t i o n s . During a r e c e n t maintenance p e r i o d t o r e v u l c a n i z e t h e r o l l e r v i t o n f r i c t i o n s u r f a c e s w e found a broken s h e a r p i n on one of t h e two c a r r i a g e d r i v e r s . We do n o t know when t h i s p i n sheared, o r f o r how long we may have o p e r a t e d w i t h b u t a s i n g l e c a r r i a g e d r i v e r o l l e r . (The o t h e r motor operated s a t i s f a c t o r i l y , b u t slipped within i t s concentric c a n n i s t e r housing. A v a i l a b l e i n d i c a t o r s i g n a l s r e g i s t e r e d p r o p e r d u a l motor o p e r a t i o n b u t n o t t h e e f f e c t of t h e sheared p i n . ) T h e r e f o r e , w e are u n c e r t a i n how much t h e c u t t i n g performance may be l i m i t e d by t h e c a r r i a g e d r i v e system. However, w e were a b l e t o make t h e machine work even w i t h only one motor a c t u a l l y d r i v i n g i t s r o l l e r .

5.3 Tooling We have c u t w i t h high speed s t e e l and C i r c o l o y a l l o y s l i t t i n g saws and m i l l i n g c u t t e r s . The a l l o y e d t o o l t e e t h a p p e a r t o s t a y s h a r p e r l o n g e r , p o s s i b l y by as much as a f a c t o r of one and a h a l f . E a r l y r e s u l t s from I n c o n e l machining e x p e r i m e n t a t i o n i n d i c a t e t h a t t h e c u t t i n g edges of a l l c u t t e r t e e t h must be generously r e l i e v e d t o


V

provide ample c l e a r a n c e f o r c h i p f a l l o u t . Free f a l l i n g c h i p s minimize work hardening t e n d e n c i e s f o r I n c o n e l p i p e . It i s a l s o q u i t e important t h a t a l l t e e t h of a c u t t e r engage t h e work d u r i n g t h e c u t t i n g . O f f t h e s h e l f commercial c u t t e r s used t o d a t e appear t o c u t w i t h u s u a l l y only about a f o u r t h of t h e i r t e e t h . Improved c u t t i n g w a s noted when c u t t e r s were regound l o c a l l y t o p r e c i s i o n s p e c i f i c a t i o n s ; almost s e v e n t y - f i v e p e r c e n t t o o t h engagement can b e a t t a i n e d . We f u r t h e r noted t t z import a n c e of t o o l t r a v e l and c u t t e r speed a d j u s t m e n t s f o r I n c o n e l p i p e work. A v a i l a b l e machine shop machining d a t a do n o t a p p l y t o t h e o r b i t a l c u t t i n g assembly because it does n o t have t h e d r i v i n g power of shop machines. Also, d r y machining i s s p e c i f i e d f o r n u c l e a r system maintenance because c o o l a n t s might contaminate t h e n u c l e a r system. T h e r e f o r e t h e t o o l t r a v e l , c u t t i n g speeds and t o o l f e e d rates must b e much lower t h a n u s u a 1 shop p r a c t i c e . The t a b l e on t h e f o l l o w i n g page shows t h e number of i n c h e s of c u t a b l a d e can b e expected t o make b e f o r e it must be resharpened. The t a b l e a l s o shows how deep t h e b l a d e would c u t i n t r a v e l i n g t h e i n d i c a t e d number of i n c h e s around a 6 - i n . - d i a m e t e r p i p e , t a k i n g a 30-mil or a 12-mil c u t , as i n d i c a t e d . The s h o r t c u t t e r l i f e experienced i n t e s t o p e r a t i o n s means t h a t b l a d e s w i l l have t o b e r e p l a c e d f r e q u e n t l y . We p l a n t o t e s t c a r b i d e c u t t e r b l a d e s i n hopes t h a t t h e y w i l l last l o n g e r .

5 . 4 Machining Feeds and Speeds E f f i c i e n t cutting requires t h e thickest possible chip per c u t t i n g t o o t h , b u t may have t o be compromised somewhat t o o b t a i n r e a s o n a b l e c u t t e r l i f e and p r o p e r s u r f a c e f i n i s h . T h i s i s p a r t i c u l a r l y t r u e i n t h e c a s e of h i g h - n i c k e l s t e e l s where t h e base material t e n d s t o work harden w i t h t h e r e s u l t t h a t c h i p removal i s inadequate or incomplete. We s e l e c t e d A i r Force recommended c u t t i n g speeds between 70 and 80 s u r f a c e f e e t p e r minute f o r s t a i n l e s s s t e e l s and chose 50 f e e t p e r

minute f o r I n c o n e l i n o r d e r t o a c h i e v e r e a s o n a b l e c u t t e r l i f e . The c u t t i n g speeds correspond t o approximately 100 and 62.5 r e v o l u t i o n s p e r minute f o r o u r 3 i n c h d i a m e t e r a l l o y s t e e l s l i t t i n g saws. T e s t v e r i f i e d f e e d p e r t o o t h s e l e c t i o n s compatible w i t h t o o l s t r e n g t h and r i g i d i t y were .001 i n . f o r s t a i n l e s s work, and about .0005 i n . f o r I n c o n e l . We chose r e s p e c t i v e t r a v e l speeds of 3 1/4 in./min. and 1 in./min. f o r t h e 32 t o o t h saws based- on t h e formula FEED p e r TOUCH ( m i l s ) =

TRAVERSING SPEED ( i n . / m i n . ) No. TEE?TH CUTTER x SPEED (rpm)

Our f e e d p e r t o o t h rates are low when compared t o rates i n s t a n d a r d machine shop work, b u t are s t i l l c r e d i t a b l e c o n s i d e r i n g our small s i z e d arid low powered equipment. The d e p t h s of c u t depend on a v a i l a b l e h o r s e power and c u t t e r shapes, and on t h e s h a r p n e s s of t h e c u t t e r s , as t h e y i n t u r n a f f e c t t h e power r e q u i r e d a t t h e c u t t e r motor s p i n d l e . We rep e a t e d l y c u t .O3O i n . deep i n t o s t a i n l e s s , and . O l 5 i n . i n t o I n c o n e l . W e a n t i c i p a t e deeper c u t t i n g c a p a b i l i t y w i t h t h e " a l l c a r b i d e c u t t e r s " now on o r d e r .


T a b l e 1. Expected Life of C u t t e r Blades ~

~

De s c r i p t i o n

In Inconel

70 t o 80 f't/min 3 1/4 in./min

50 f t / m i n 1 in./min .OOO5 i n .

.001 i n . I n c h e s of' c u t , average d e p t h j 0 u1Lls. inches

1/16-in. - t h i c k s l i t t i n g saw, 3 i n . d i a . , 32 t e e t h h i g h speed s t e e l

~

Blade L i f e t i m e

I n Stainless Steel Saw Tooth Speed C a r r i a g e Speed Feed P e r Tooth

~~

T a t a l Depth of c u t , 6-inch pipe w a l l . inches

I n c h e s of c u t , average d e p t h 12 m i l s . inches

T o t a l Depth of c u t , 6-inch pipe w a l l . inches.

W

5 30

314

Circoloy alloy*

800

I 1/8

3/32-in. - t h i c k s l i t t i n g s a w , 3 i n . d i a . , 32 t e e t h h i g h speed s t e e l

430

5/8

Circoloy a l l o y - %

650

7/8

600

11/32

70" i n c l u d e d double a n g l e m i l l 2 3/4 i n . d i a . , 20 t e e t h , 1/2 i n . wide h i g h speed s t e e l

470

11/16

420

1/4

ro

1/16-in. - t h i c k s l i t t i n g saw,

3 i n . d i a . , 32 t e e t h

730

3/32-in. - t h i c k s l i t t i n g saw,

3 i n . d i a . , 32 t e e t h

*

Trade name f o r C i r c u l a r T o o l Company (Providence, R.I.) s p e c i a l high-speed s t e e l a l l o y e d b l a d e s o f h i g h carbon, medium chrome, h i g h vanadium, high t u n g s t e n and medium c o b a l t composition.


33 v

5.5

Machining Techniques f o r S l i t t i n g and Beveling Pipes; Pipe End P r e p a r a t i o n Requirements f o r Welding

An important feature d e s i r e d f o r p i p e weld j o i n t s i s a p e r f e c t match f o r a d j o i n i n g pipe ends. P i p e i n s i d e walls must a l i g n and must be c o n c e n t r i c . R e g a r d l e s s of t h e geometry of a s e l e c t e d j o i n t , whether it i s V-bevel, J-bevel, or b u t t , p r e c i s i o n f i t u p and mating g e o m e t r i c a l c o n c e n t r i c i t y w i l l be r e q u i r e d , a l o n g w i t h square-cut ends and a uniform gap, o r complete c o n t a c t , of t h e j o i n t ends. ASME Materials S p e c i f i c a t i o n s , S e c t i o n Two, B o i l e r Code f o r P i p i n g permit v a r i o u s d i a m e t r i c a l and w a l l t h i c k n e s s dimensional v a r i a t i o n s . S e c t i o n SB 167 f o r Nickel-Chrome A l l o y Pipe, as an example, p e r m i t s an a l l o w a b l e e c c e n t r i c i t y of p i p e i n s i d e and o u t s i d e d i a m e t e r up t o t e n p e r c e n t of t h e nominal w a l l t h i c k n e s s . Comparable SA 106 S t e e l Pipe Specs a l l o w f o r 12 1/2 p e r c e n t t h i c k n e s s v a r i a t i o n s below nominal p i p e w a l l t h i c k n e s s . Diameters f o r l a r g e p i p i n g may v a r y as much as 1/8 i n . A l l commercial p i p e i s governed by t h e s e s p e c i f i c a t i o n s . Our e x p e r i e n c e i n d i c a t e s t h a t p i p i n g dimensions v a r y at least as much as, or s l i g h t l y more t h a n t h e a l l o w a b l e t o l e r a n c e s .

F i g u r e 10 i l l u s t r a t e s problems encountered when we c u t commercial p i p i n g f o r a J - b e v e l weld j o i n t w i t h our o r b i t a l equipment. The c a r r i a g e r o l l e r s r i d e t h e p i p e o u t s i d e s u r f a c e , which t h e n becomes t h e r e f e r e n c e s u r f a c e f o r t h e c u t t e r . For s i m p l i c i t y , F i g . 10 shows t h e end view e c c e n t r i c i t y about only one c e n t e r l i n e . I n p r a c t i c e , one e n c o u n t e r s e c c e n t r i c i t i e s i n s e v e r a l p l a n e s . The two e l e v a t i o n s shown r e p r e s e n t matched and mismatched j o i n t a l i g n m e n t . Mismatching d e s t r o y s mating i n s i d e d i a m e t e r s u r f a c e c o n t a c t and p r o h i b i t s p r o p e r r o o t p a s s weld p e n e t r a t i o n . To a c h i e v e matched and a l i g n e d j o i n t s u r f a c e s r e q u i r e s s e n s o r s and c o n t r o l s which w i l l p r o p e r l y r e g u l a t e t h e r o o t p a s s weld v a r i a b l e s (weld c u r r e n t , -speed, - w i r e f e e d , and - a r c v o l t a g e ) t o a d d u s t f o r v a r i a t i o n s of t h e j o i n t . To d a t e we have no s e n s i n g means which w i l l a u t o m a t i c a l l y a d j u s t t h e programmed weld v a r i a b l e s f o r nonuniform geometries of the weld joint. F i g u r e 11 i l l u s t r a t e s how a remedial c u t can be t a k e n t o approach uniform w a l l t h i c k n e s s f o r p i p e weld j o i n t s . T h i s r e q u i r e s t h a t t h e o p e r a t o r o b t a i n a c c u r a t e dimensional i n f o r m a t i o n from h i s i n i t i a l s l i c i n g cut so t h a t he can p r o p e r l y p o s i t i o n and feed t h e c u t t e r f o r subsequent machining. A wax impression of t h e p i p e end c o n t o u r could b e used f o r remote work a p p l i c a t i o n s . If t h e p i p e i s contaminated and t h e n c o n t a m i n a t e s t h e impression device, d u p l i c a t e non-contaminated r e p l i c a s can be made i n h o t c e l l s o r g l o v e boxes v i a a r e c a s t p l a s t e r of p a r i s p r o c e s s . T h i s t e c h n i q u e of remote r e p l i c a t i o n h a s been used s u c c e s s f u l l y i n working w i t h v e r y h i g h l y r a d i o a c t i v e m a t e r i a l s .

W

F i g u r e 12 shows one way o f f i e l d matching a p i p e end w i t h a p i p e s t u b p r e v i o u s l y welded o n t o a replacement component. For r e a c t o r maintenance, replacement items such as pumps, h e a t exchangers, e t c . , are a l l j i g p r e f a b r i c a t e d . A b l a n k end s t u b of s l i g h t l y h e a v i e r s c h e d u l e pipe, t o g a i n a s m a l l e r i n s i d e d i a m e t e r for subsequent f i t u p machining, could be f i e l d ground t o a n i m p r e s s i o n r e p l i c a of t h e p i p e end.


34 A machining t e c h n i q u e has been developed f o r remotely p r e p a r i n g J - b e v e l p i p e ends f o r welding. F i g u r e 13 s c h e m a t i c a l l y r e p r e s e n t s a n i n - c e l l maintenance c u t t i n g procedure which t e n d s t o compensate f o r t h e v a r i a t i o n s i n p i p e w a l l t h i c k n e s s which, under t h e ASME Code, can be as much as 12 1/25.

v

1. Step 1: Make a l i g h t c u t around t h e p i p e with a t h i c k s l i t t i n g s a w and i n s p e c t for t r u e t o o l t r a c k i n g . Continue s l i t t i n g t o t h e predetermined d e p t h which w i l l l e a v e a land s u r f a c e f o r t h e r o o t weld. 2.

S t e p 2: On t h e c u t t e r s h a f t , mount a hardened s t e e l t h r u s t washer and a s i n g l e - a n g l e m i l l i n g c u t t e r so t h a t t h e washer w i l l r i d e i n t h e s l i t made by t h e saw and w i l l guide t h e bevel cutter.

3.

S t e p 3: A f t e r making t h e b e v e l c u t , i n s e r t a t h i n s l i t t i n g sawblade and c u t through t h e w a l l .

4. Make

a w a x impression of t h e c u t j o i n t .

Make a p l a s t e r of

paris non-contaminated r e p l i c a .

5.

Machine t o a c o n s t a n t land w a l l t h i c k n e s s a t t h e j o i n t by c u t t i n g metal from segments of t h e land s u r f a c e where measurements of t h e r e p l i c a i n d i c a t e it i s t o o t h i c k .

6 . Make a second r e p l i c a t i o n of t h e j o i n t f o r u s e i n o u t - o f c e l l machining on t h e s t u b end of a replacement component t o make it f i t t h e p i p e i n s i d e t h e c e l l .

7.

Use i n f o r m a t i o n from t h e r e p l i c a t o s e t programmer weld c u r r e n t c u r v e s s o t h a t t h e y w i l l compensate for v a r i a t i o n s i n t h e arc gap caused by out-of-roundness o r by t h e machining t o g i v e c o n s t a n t land w a l l t h i c k n e s s .

A l l of o u r machining o p e r a t i o n s must b e accomplished i n t h e s t a n d a r d " m i l l i n g up" mode of o p e r a t i o n where t h e c u t t e r t o o t h i n c o n t a c t w i t h t h e p i p e i s moving i n t h e same d i r e c t i o n as t h e c a r r i a g e . We l a c k r i g i d i t y f o r r e v e r s e , or "climb m i l l " c u t t i n g . Our t o r s i o n bar clamping a c t i o n on t h e c a r r i a g e r o l l e r does n o t g i v e enough f r i c t i o n c o n t a c t f o r climb c u t t i n g .

6.

WELDING STUDIES

6.1

General

O r b i t a l T I G welding o p e r a t i o n s on p i p e r e q u i r e p r e c i s e w e l d j o i n t machining t o o b t a i n c o n c e n t r i c p i p e i n s i d e d i a m e t e r s and matched p i p e w a l l t h i c k n e s s e s as w e l l as n e a r - p e r f e c t alignment of t h e r e s p e c t i v e t.wo j o i n t members. F a i l u r e t o meet t h e s e requirements r e s u l t s i n r o o t welds t h a t are undercut, l a c k f u l l p e n e t r a t i o n , or t h a t have t o o much p e n e t r a t i o n , r e s u l t i n g i n e x c e s s i v e convexity. F i l l - p a s s weld c r i t e r i a

W


.

ORNL DWG. 69-11837

w ul

I

END

I

\/WV

STrCTiON

MATCHED ALIGNMENT Fig.

10.

Orbital

Cutter

(Riding

Pipe

O.D.).

Typical

"As Cut"

Pipe

Joints.


ORIlL DWG. 69-11838

ZORRECTIVE CUT

---- - 7

W ch

Fig.

I\AODlFIED SECTION ___...

END VIEW

MODIFIED 11.

Orbital

Cutter

(Tiding

Pipe

O.D.).

Corrective

Joint

Cutting

Plan.

.


ORNL DWG. 69-11839

Fig.

12.

Modified

Final

Joint

Preparation.


ORNL DWG. 69-11840

STEP3

Fig.

13.

Pipe

.

Joint

- Machining

Sequence.

.


39 V

do n o t a p p e a r t o be q u i t e s o c r i t i c a l , though we note a dependence of s u c c e s s i v e welds on p r i o r weld p a s s e s . It i s q u i t e simple t o l a y good f i l l e r s o v e r good r o o t welds, or over good p r i o r f i l l e r welds. It i s d i f f i c u l t t o perform r e m e d i a l t a s k s over poor s u b s t r a t e s . All t h e s e o b s e r v a t i o n s a r e based upon o u r r e c e n t work, which h a s g e n e r a l l y i n volved extra-heavy 6 - i n . -diameter, 347 s t a i n l e s s s t e e l p i p e prepared w i t h V- o r J - b e v e l j o i n t s , and always f i t t e d up without j o i n t gap, and w i t h o u t weld i n s e r t s . Remote work on n u c l e a r systems cannot u s e gap j o i n t s o r t h e common weld i n s e r t r i n g s . T e s t o p e r a t i o n s w i t h t h e o r b i t a l welding equipment were started d u r i n g late February 1969. The f i r s t t e s t s c o n s i s t e d of simply p l a c i n g weld beads around t h e e x t e r i o r s u r f a c e of t h e p i p e . Subseq u e n t l y , V- and J - b e v e l p i p e - j o i n t r o o t and f i l l e r p a s s weld t e s t s were t r i e d . We had hoped t h a t a c c e p t a b l e r o o t p a s s weldments could be o b t a i n e d without having t o do t h e p r e c i s i o n machining t h a t i s r e q u i r e d f o r c l o s e alignment and f i t t i n g of mating s u r f a c e s . However, t h e t e s t welds showed t h a t p r e p a r i n g t h e s u r f a c e s f o r p r e c i s i o n matching and alignment i s important i n a c h i e v i n g q u a l i t y welds. Because it i s time consuming and d i f f i c u l t t o do p r e c i s i o n machining by remote c o n t r o l , we p l a n t o experiment w i t h j o i n t s i n which one p r e a p p l i e s weldwire f i l l e r metal t o one of t h e two j o i n t ends p r i o r t o p l a c i n g t h e p i p e i n s i d e t h e c e l l . T h i s t y p e of j o i n t p r e p a r a t i o n p e r m i t s p l a i n f u s i o n r o o t p a s s welding, and r e q u i r e s no o t h e r f i l l e r w i r e a d d i t i o n s . It should a l s o g r e a t l y reduce t h e r e q u i r e ments f o r p r e c i s i o n j o i n t matching and alignment. S e v e r a l h i g h l y s u c c e s s f u l r o o t p a s s welds have j u s t been performed by a similar method i n which t h e p i p e ends were machined t o i n c l u d e an i n t e g r a l f l a t washer on one of t h e two mating J - j o i n t s e c t i o n s . T h i s washer p e r m i t t e d t h e r o o t p a s s weld t o b e a s i n g l e f u s i o n weld which, i n t h e tests e x h i b i t e d e x c e l l e n t bead shape and f u l l weld p e n e t r a t i o n . A t t h e moment w e s t i l l l a c k e s s e n t i a l i n f o r m a t i o n t o s u i t a b l y program t h e p i p e r o o t p a s s weld ( w i t h f i l l e r wire a d d i t i o n ) f o r p i p e s i n t h e h o r i z o n t a l p l a n e . We have found no e a s y s o l u t i o n t o t h e problem of s e n s i n g t h e weld puddle b e h a v i o r as it relates t o c o n s i s t e n t f u l l weld p e n e t r a t i o n . Such a s e n s i n g c a p a b i l i t y would permit a u t o m a t i c c o n t r o l and would make it p o s s i b l e t o do remote welding w i t h f a r l e s s c r i t i c a l s p e c i f i c a t i o n s f o r p r i o r j o i n t p r e p a r a t i o n . W e have, however, r e c e n t l y coupled a Sanborn 150 Recorder t o our weld programmer t o s t u d y simultaneous d a t a p r i n t o u t s of t h e i n t e r - r e l a t e d weld f u n c t i o n s (weld t r a v e l speed, - w i r e feed r a t e , - a r c v o l t a g e , and - a r c current, e have j u s t begun t o l e a r n how t o s e l e c t and voltage control). W i n t r o d u c e p r o p e r weld programs f o r c o n t r o l l e d h i g h q u a l i t y welding. There a p p e a r s t o b e an e x c e l l e n t chance t h a t we w i l l soon be able t o develop j o i n t p r e p a r a t i o n , f i t u p , and weld c r i t e r i a f o r c o n s i s t e n t r e a c t o r q u a l i t y welding.

-

We observed manual TIG welding o p e r a t i o n s i n an a t t e m p t t o s t u d y j u s t how a welder a c t u a l l y m a n i p u l a t e s h i s feed wire r e l a t i v e t o h i s weld puddle. S l i g h t p u l s i n g of t h e wire advance motions were noted,


40 w i t h speed adjustments t o m a i n t a i n t h e wire a t t h e weld p u d d l e ' s lower edge. For t h e p r e s e n t we l a c k b u i l t - i n programmer w i r e f e e d p u l s e c a p a b i l i t y . We do, however, have t h e c a p a b i l i t y f o r weld c u r r e n t p u l s i n g w i t h up t o 50 amperes peak t o peak p u l s e amplitudes a t either o r 60 p u l s e s p e r minute. However, t h e s e p u l s e s do n o t g i v e t h e puddle s t a b i l i t y observed i n manual welding. An improvised method of wire f e e d p u l s i n g was t e s t e d m d appeared t o g i v e improved puddle s t a b i l i t y , b e t t e r a r c t i e - i n t o t h e j o i n t w a l l s , and uniform bead p e r i p h e r y . A Wavetek wave f u n c t i o n g e n e r a t o r provided 3 c y c l e s p e r second p u l s i n g w i t h 50% on and o f f times. A d d i t i o n a l t r i a l s w i l l b e scheduled with r e f i n e d c i r c u i t r y .

6.2 Preweld J o i n t Cleaning S t o r e d metals w i l l form e x t e r n a l oxide c o a t i n g s . These oxides are r e f r a c t o r y . Excess power ( w e l d c u r r e n t ) i s r e q u i r e d t o o b t a i n i n i t i a l weld p e n e t r a t i o n when m e t a l s u r f a c e s are oxide coated, and t h i s o f t e n r e s u l t s i n weld p o r o s i t y due t o h y d r a t i o n of t h e o x i d e . Once p e n e t r a t i o n has been achieved, new problems a r i s e . One e n c o u n t e r s d i f f i c u l t i e s w i t h weld puddle c o n t r o l , e s p e c i a l l y i n o r n e a r overhead weld positions. Weld d e p o s i t s are uneven w i t h b a l l i n g t e n d e n c i e s and void i n c l u s i o n s . Foutine c l e a n i n g procedures of s t a i n l e s s s t e e l w i r e b r z s h i n g t80 c u t o x i d e c o a t i n g s and wiping w i t h s o l v e n t t o remove s u r f a c e d i r t and g r e s s e t r a c e s a r e n e c e s s a r y f o r a l l welds w i t h t h e p r e s e n t o r b i t a l equipment. A d d i t i o n a l draw f i l i n g , o r g r i n d i n g , may be r e q u i r e d f o r f i l l e r p a s s e s t o renove s h a r p notches or p r o t z u s i o n s t o o b t a i n smooth, blenaed surfaces.

6.3 J o i n t F i t u p T o l e r a n c e J o i n t mismatch h a s a l r e a d y beeii l i s t e d as a cause f o r poor r o o t p a s s welds i n h o r i z o n t a l p i p e l i n e s . Mismatch i s most c r i t i c a l i n t h e overhead o r 6 o ' c l o c k p i p e p o s i t i o n . Here a s l i g h t mismatch of a d j a c e n t i n n e r d i a m e t e r p i p e j c i r , t l i p s , commonly r e f e r r e d t o as mating land s u r f a c e s , c a u s e s t h e weld t o p u l l o u t , o r suck back m e t a l due t o g r a v i t y c o n d i t i o n s . We concluded t h a t it w i l l b e n e c e s s a r y t o match p i p e bottom q u a d r a n t s most p r e c i s e l y f o r b e s t weld r e s u l t s , s i n c e m i s f i t c o n d i t i o n s can b e t o l e r a t e d t o a g r e a t e r degree i n t h e t o p quadrant s u r f a c e s . Pipe j o i n t mating s u r f a c e s should p r e f e r a b l y make p h y s i c a l c o n t a c t on f i t u p f o r r a d i o a c t i v e system remote maintenance welding. Purge g a s l o s s e s are minimized with c o n t a c t i n g s u r f a c e s , and f i l l e r metal a d d i t i o n s are reduced, a l s o .

6.4 I n e r t S h i e l d

Gas

There i s a d i f f e r e n c e i n i o n i z a t i o n p o t e n t i a l of i n e r t g a s e s which a f f e c t t h e h e a t i n p u t t o t h e weld zone. H e l i u m r e q u i r e s o n l y about 60% of t h e welding c u r r e n t r e q u i r e d f o r a n e q u i v a l e n t weld w i t h argon s h i e l d g a s . D i f f e r e n t arc plasma shapes r e s u l t . Argon s p r e a d s t h e welding h e a t ; helium c o n c e n t r a t e s h e a t . A i r Force ' e x p e r i m e n t a t i o n i n d i c a t e d

Y


41 t h a t wide welding. have a l s o gas purge

argon plasmas g i v e b e s t r e s u l t s f o r work w i t h s t a i n l e s s A l l ORNL work h a s been done w i t h argon s h i e l d i n g g a s . We used argon g a s t o purge p i p e i n t e r i o r s , u s u a l l y w i t h a 20 c f h flow.

6.5 E l e c t r o d e C o n f i g u r a t i o n A i r Force e x p e r i m e n t a t i o n i n d i c a t e d t h a t b e t t e r welds can b e o b t a i n e d by t a p e r i n g t h e t o r c h e l e c t r o d e t u n g s t e n t o a 60" included a n g l e . E l e c t r o d e c o n f i g u r a t i o n i n f l u e n c e s t h e a r c spread p a t t e r n . The tendency of an arc t o spread t o an a d j a c e n t area c a u s e s t h e weld nugget t o f u s e o n l y i n t e r m i t t e n t l y t o t h e j o i n t s i d e w a l l s , r e s u l t i n g i n l a c k of f u s i o n and an uneven, knotty-rope a p p e a r i n g s u r f a c e on t h e weld bead. It i s p r a c t i c a l l y impossible t o l a y subsequent a c c e p t a b l e f i l l p a s s e s over such d e f e c t i v e s u r f a c e s ; one must r e s o r t t o c o r r e c t i v e i n t e r p a s s machining and b l e n d i n g p r i o r t o proceeding w i t h f u r t h e r welding. We t e n t a t i v e l y s t a n d a r d i z e d on a 60" included e l e c t r o d e a n g l e f o r o u r s t a i n l e s s welding work.

6.6 Automatic Arc Voltage C o n t r o l It i s n e c e s s a r y t o c o n t r o l b o t h t h e t o r c h - t o - p i p e d i s t a n c e and t h e t o r c h e l e c t r o d e - t o - w e l d puddle d i s t a n c e t o m a i n t a i n a c o n s t a n t a r c l e n g t h and a c k t a n t a r c v o l t a g e w i t h a s e l e c t e d i n e r t welding g a s . The o r b i t a l system weld head i s s p r i n g loaded w i t h i n t h e c a r r i a g e . A cam f o l l o w e r r i d e s t h e p i p e ' s p e r i m e t e r and a c t u a t e s a s p r i n g t o p e r p e n d i c u l a r l y v a r y t h e weld head t o work-piece s p a c i n g and c o n t i n u o u s l y compensate f o r o v a l t y o r l o c a l f l a t s p o t s i n t h e p i p i n g . North American Rockwell a l s o devised an e l e c t r o n i c a r c v o l t a g e c o n t r o l (AVC) system t o m a i n t a i n c o n s t a n t electrode-to-weld puddle s p a c i n g . The A i r Force programmer b u i l t by Rockweel i n c l u d e s a feedback system which monitors t h e a r c v o l t a g e , compares it t o a predetermined v a l u e , and, as r e q u i r e d , g e n e r a t e s a c o r r e c t i o n s i g n a l t o a d j u s t t h e w i r e f e e d rate. The AVC s y s t e m t h u s actually senses o r observes changes i n t h e arc gap as changes i n a r c v o l t a g e t o i n c r e a s e o r d e c r e a s e t h e f i l l e r wire speed t o d e p o s i t l a r g e r or smaller weld puddles t o m a i n t a i n p r e s e t gap. The a n g l e of t h e t i p of t h e e l e c t r o d e d e t e r m i n e s where t h e a r c w i l l i n i t i a t e . A r c emission can occur from any s p o t of t h e heated e l e c t r o d e ' s t a p e r e d e m i t t i n g s u r f a c e . Weld bead shape can b e somewhat v a r i e d by changing e l e c t r o d e t i p a n g l e s . P r e c i s i o n , c a u t i o n and c a r e are r e q u i r e d even w i t h AVC r e g u l a t i o n t o c o n f i n e t h e arc emission d i r e c t i o n t o keep from bumping i n t o p i p e j o i n t s i d e w a l l s or weld puddles. A d d i t i o n a l p r e c a u t i o n s are n e c e s s a r y t o p r e v e n t contacting t h e electrode with t h e f i l l e r w i r e during the overlap p o r t i o n o f t h e weld. The w i r e f e e d motor c u t o f f p o i n t must b e programmed t o s t o p i n t h e i n i t i a l downslope p o r t i o n of t h e weld c u r r e n t .


42

6.7

Pre-Weld P o s i t i o n i n g

P i p e ends t o be j o i n e d by welding must b e r i g i d l y h e l d i n p o s i t t o r i d u r i n g welding t o p r e v e n t weld heat-induced p i p e movement a t t h e joint due t o expansion and c o n t r a c t i o n f o r c e s . P i p e s may be clamped o r f u s i o n t a c k welded p r i o r t o t h e r o o t p a s s .

We p l a n t o use mechanical clamps f o r remote maintenance welding, as machine t a c k welding p r e s e n t s a d d i t i o n a l problems: after t a c k i n g , p i p e j o i n t groove s u r f a c e s of t h e t a c k must be machined t o a t h i n , blended buildup; s u r f a c e s must t h e n b e w i r e brushed and s o l v e n t cleaned; machine t a c k welding must a l s o be confined t o t h e upper h a l f of t h e pipe t o p r e v e n t u n d e r c u t t i n g a t t h e end of t h e tackweld.

6.8 Root Pass The i d e a l root-weld p a s s r e q u i r e s t h e s h o r t e s t p o s s i b l e a r c l e n g t h without " s t i c k i n g " and w i t h a d d i t i o n s of as much f i l l e r wire as p o s s i b l e for c r a c k s e n s i t i v e metals. For p i p e i n h o r i z o n t a l r u n s weld p a s s e s should s t a r t i n t h e overhead p o r t i o n of a j o i n t t o take utmost advantage of t h e c h i l l i n g e f f e c t s of c o l d p i p e s . P i p e j o i n t l a n d s should i d e a l l y b e uniform i n t h i c k n e s s and i n width. The a n g l e f o r wire e n t r y and t h e e x i t l o c a t i o n of t h e wire f e e d e r guide t u b e r e l a t i v e t o t h e weld puddle are c r i t i c a l . Experimentation t o d a t e has f o l l o w e d o t h e l i s t e d A i r Force recommended s e t t i n g s ; For s t a i n l e s s s t e e l welding:

Root P a s s Arc Length = 1/16 i n . F i l l e r Wire Rate, approx. 10 i n . / m i n . with .045-in. w i r e

Tool Drive ( c a r r i a g e ) T r a v e l Speed, approx . 4 in./min. Pipe J o i n t Lands, approx. 1/16 i n . high

1/16 i n . wide x

Wire Feeder E n t r y Angle 25 t o 30" above t h e tangent point with pipe surface, 1/4 i n . away from t h e e l e c t r o d e , w i t h t h e wire dragging t h e groove d i r e c t l y below t h e e l e c t r o d e . AVC s e t a t 8 1 / 2 t o 9 v o l t s w i t h argon purge g a s S t a r t P o s i t i o n approx. Some i n d i c a t i o n s of r o o t p a s s weld programmer v o l t m e t e r and wire f e e d rate i n d i c a t e any v a r i a t i o n s i n a r c l e n g t h . t i n g t h e pipe j o i n t i f voltage readings

9 o'clock

q u a l i t y can b e observed from meter r e a d i n g s . Both meters The weld bead i s n o t p e n e t r a hold s t e a d y b u t w i r e f e e d


43 rates r e g i s t e r o n l y below s e l e c t e d rates. Usually a small i n c r e a s e i n welding c u r r e n t w i l l remedy t h i s s i t u a t i o n . If, however, t h e w i r e f e e d e r motor b u i l d s up t o t h e s e t rate, and v o l t a g e c o n t i n u e s t o climb, poor welding a l s o r e s u l t s , and t h e c y c l e should be stopped a t once. The problem w i l l u s u a l l y b e an e x c e s s i v e j o i i i t gap f o r m a t i o n w i t h t o o much pushthrough i n t h e upper q u a d r a n t s of t h e p i p e , f i l l e r w i r e bound up w i t h i n t h e wire f e e d e r d r i v e and not f e e d i n g i n t o t h e weld, or excessive puddle f l u i d i t y i n p i p e v e r t i c a l p o s i t i o n s c a u s i n g puddle flow away from t h e e l e c t r o d e t i p .

6.9 F i l l P a s s e s S a t i s f a c t o r y weld f i l l p a s s e s do n o t appear t o p r e s e n t g r e a t problems. The second weld p a s s , or f i r s t f i l l pass, r e q u i r e s some s p e c i a l c a r e t o p r o p e r l y add f i l l e r w i r e and o b t a i n weld b u i l d u p without a f f e c t i n g t h e r o o t p a s s drop-through. Heat i n p u t s e l e c t i o n s f o r t h i s and subsequent p a s s e s r e q u i r e o n l y f u s i o n t o t h e p r e v i o u s p a s s and t o t h e j o i n t s i d e w a l l s . O s c i l l a t i o n of t h e weld t o r c h assists t o assure f u s i o n i n t o t h e s i d e w a l l . Current p u l s i n g t e n d s t o m a i n t a i n a stable weld puddle. Few programmer i n p u t changes are r e q u i r e d f o r i n i t i a l f i l l p a s s e s , e x c e p t t o add t o r c h o s c i l l a t i o n and t o h a l v e t h e w i r e f e e d e r e x i t t o p i p e s u r f a c e e n t r y a n g l e . F i n a l f i l l p a s s e s can be made w i t h i n c r e a s e d weld power, wider o s c i l l a t i o n , and faster w i r e f e e d s . An 11 o ' c l o c k f i r s t f i l l e r p a s s start p o s i t i o n g e n e r a l l y h e l p s t o b a l a n c e p a r t i a l d i s t o r t i o n of t h e p i p e c r e a t e d by t h e r o o t p a s s .

6.10 R e p a i r Welding The o r b i t a l welding system can a l s o b e employed t o r e p a i r some weld d e f e c t s . Two common d e f e c t s are i n t e r m i t t e n t l a c k of f u s i o n a l o n g t h e s i d e w a l l s of a j o i n t , and cold, b a l l e d , r o p e y - l i k e d e p o s i t s a l o n g a weld j o i n t s i d e w a l l . R e s u l t a n t d e f e c t i v e s u r f a c e s t h e n p r e v e n t subsequent weld p a s s p u d d l e s f r o m w e t t i n g and f l o w i n g smoothly.

Weld beads e x h i b i t areas of l a c k of f u s i o n and v o i d i n c l u s i o n s . P l a c i n g t h e e l e c t r o d e j u s t ahead of t h e p o o r l y fused area and manually s t a r t i n g a new weld p a s s w i t h o u t f i l l e r w i r e a d d i t i o n s o r o s c i l l a t i o n w i l l g e n e r a l l y remelt ana f u s e t h e weld. P i n h o l e s can a l s o be r e p a i r e d i n a similar manner with t h e t o r c h l o c a t e d d i r e c t l y over t h e p i n h o l e p r i o r t o a delayed e l e c t r o d e " s t a r t - f i r e . " A procedure t o f i l l l o c a l weld areas which have been p u r p o s e l y ground o u t t o remove weld d e f e c t s i s t o p l a c e t h e c a r r i a g e about 1/2 i n . i n f r o n t of t h e area t o be f i l l e d , set a s h o r t arc gap of 1/32 i n . , and i n i t i a t e a weld c y c l e . The AVC wire f e e d c o n t r o l w i l l start t o add w i r e as soon as t h e arc gap i n c r e a s e s once t h e c a r r i a g e t r a v e r s e s t h e r e c e s s e d area. The w i r e f e e d e r motor w i l l a g a i n s h u t o f f on t h e f a r s i d e of t h e depressed area t o permit manual weld downsloping.


44 7.

SPECIAL ORBITAL EQUIPMFIIJT MAINTENANCE R.?ZQUIREMFNTS

Orbital equipment used f o r maintenance of r e a c t o r systems may become contaminated. I n such c a s e s , r e p a i r s t o t h e o r b i t a l equipment, or component replacement o p e r a t i o n s may have t o be performed i n s h i e l d e d h o t c e l l s . Viton-rubber-coated r o l l e r s u r f a c e s may r e q u i r e p e r i o d i c i n t e r c h a n g e ; motors, c u t t e r s , t o r c h e s , e t c . , may have t o be r e p l a c e d . Equipment maintenance procedures are l i s t e d f o r major equipment i n - c e l l components which might b e s u b j e c t e d t o contamination. Work e x p e r i e n c e t o d a t e s u g g e s t s a number of m o d i f i c a t i o n s which could be made t o t h e o r b i t a l equipment t o p r o v i d e b e t t e r a c c e s s f o r r e p a i r s t o be performed by remote c o n t r o l i n s i d e a h o t c e l l and t o reduce t h e time r e q u i r e d f o r maintenance of t h e o r b i t a l equipment. The changes i n d i c a t e d on t h e b a s i s of e x p e r i e n c e t o d a t e are d e s c r i b e d i n t h e f o l l o w i n g p a r a graphs.

7.1 C a r r i a g e 7.1.1 Drive R o l l e r s

7.1.2

Idlers

-

-

Minor changes t o t h e wire t r o u g h of each c a r r i a g e a r m and p r o v i s i o n s f o r an e x t e r n a l l y a c c e s s i b l e , f l a t , Winchester t y p e connector i n r e s p e c t i v e motor c i r c u i t s would permit f a s t e r i n t e r c h a n g e f o r s p a r e r o l l e r a s s e m b l i e s . The removal of two r o l l e r end p l u g s and two r o l l e r end cap screws and opening t h e e l e c t r i c a l c o n n e c t o r frees the drivers.

I d l e r replacement p r e s e n t l y r e q u i r e s t h e somewhat t e d i o u s disassembly of e l e c t r i c a l c o n n e c t o r s , t h e c a r r i a g e rear frame and s i d e w a l l s , and t h e l i n k p i n s . For maintenance t o b e performed i n s i d e a h o t c e l l some s i m p l i f i c a t i o n s a r e p o s s i b l e , e s p e c i a l l y w i t h use of modified r i g h t a n g l e e l e c t r i c a l c o n n e c t o r replacements. We recommend j i g g e d holddown d e v i c e s f o r a l l hot c e l l i d l e r interchange operations t o m a i n t a i n t h e h i g h l y c r i t i c a l c e n t e r l i n e alignment of t h e jackscrews Fjith t h e t o r s i o n b a r g e a r and t h e t o r q u e a:r:n scar.

'7.2

!3 l.ectrica1. Iterris

Access i s avaiLabLe Yor a l l component e l e c t r i c a l w i r i n g and a c c e s s o r y items by simply removing cover p l a t e s . More e x t e n s i v e u s e of m i n i a t u r e c o n n e c t o r s might be d e s i r a b l e f o r e l e c t r i c a l system p a r t s which might r e q u i r e maintenance d u r i n g developmental t e s t p e r i o d s .

7.3 M i l l i n g Head Hot c e l l j i g s w i l l be r e q u i r e d t o s u p p o r t t h e m i l l i n g head f o r c u t t e r replacement. The c u t t e r i s r e p l a c e d by removing t h e b o l t h o l d i n g it t o t h e o u t p u t s h a f t . Washers a r e employed t o hold t h e cutter tightly

.


45 v

Improvements a r e necessary f o r more p r e c i s e d e p t h of c u t a d j u s t ments and f o r t h e h o r i z o n t a l c u t t e r placement adjustment. P r e c i s i o n worm g e a r replacements a r e contemplated f o r e x i s t i n g m i t e r g e a r s . We a l s o p l a n t o add an a i r l i n e connection through t h e r e a r c a r r i a g e p a n e l t o modify c u t t e r motor f o r c e d c o o l i n g and t o keep c h i p s generated d u r i n g c u t t i n g from e n t e r i n g g e a r d r i v e s , t h e motor, and t h e p o s i t i o n i n g adjustments.

No problems a r e expected f o r r o u t i n e c u t t e r motor s e r v i c i n g i n v o l v i n g b a c k p l a t e , c o n t r o l p a n e l and c u t t e r removal. Motor b r u s h e s c a n b e r e p l a c e d by simply moving t h e motor p a r t i a l l y o u t of t h e housing. The g e a r t r a i n connecting t h e motor t o t h e output s h a f t i s s e r v i c a b l e by disassembling t h e motor c a n i s t e r .

For o u r next model, c u t t e r motor speed c o n t r o l c i r c u i t r y w i l l be e l i m i n a t e d from t h e head and t r a n s f e r r e d t o t h e programmer.

7.4 Welding Head P e r i o d i c c l e a n i n g of t h e weld head i s important t o prevent highfrequency a r c i n g . The weld head i s disassembled by f i r s t removing t h e w i r e f e e d s p o o l . The t o r c h , o s c i l l a t o r , and wire f e e d mechanism s l i d e o f f t h e v e r t i c a l guide as a u n i t after t h e removal of t h e v e r t i c a l adjustment knob. The common mounting b l o c k i s removed by unscrewing t h e h o r i z o n t a l guide p i n s and t h e s e t s c r e w on t h e h o r i z o n t a l a d j u s t ment s h a f t . The wire f e e d i s disconnected from t h e t o r c h and o s c i l l a t o r by removing two screws. The feed p r e s s u r e - a d j u s t i n g screw should be removed t o i n s p e c t b e a r i n g r a c e s between r o t a t i n g d i s k s . S p e c i a l , simple remote t o o l i n g w i l l be r e q u i r e d t o r e p l a c e threaded t o r c h assemblies, o r t o i n t e r c h a n g e e l e c t r o d e s .

Jigs a r e recommended t o support t h e weld head f o r h o t c e l l maintenance work. We p l a n weld head d e s i g n change improvements f o r o u r next model's o s c i l l a t o r adjustment cam t o t h e l i d l a t c h device, and t o t h e h o r i z o n t a l and v e r t i c a l t o r c h movement g e a r t r a i n s . P r e s e n t i t e m s do n o t work w e l l with remote t o o l i n g . We a l s o p l a n t o t r a n s f e r t h e p r e s e n t "touchdown" l i g h t , which i n d i c a t e s e l e c t r o d e c o n t a c t w i t h t h e work on s e t u p , from t h e welding head t o t h e programmer.

7.5 General I n t h e f u t u r e w e a l s o hope t o i n c o r p o r a t e b r i g h t e r d i r e c t i o n a l l i g h t i n g f o r b o t h t h e m i l l i n g and weld heads, t o p o s s i b l y e n l a r g e t h e viewport openings, and t o a l t e r t h e f r o n t p a n e l of t h e c a r r i a g e t o p e r m i t improved viewing f o r h o t c e l l and o p e r a t i o n a l s e t u p s and p o s s i b l y f o r monitoring use i n a c t u a l r e a c t o r r e p a i r u s e .

We are a l s o i n v e s t i g a t i n g f l u i d i c s e n s i n g and c o n t r o l d e v i c e s f o r remotely s e t t i n g and c o n t r o l l i n g o s c i l l a t o r o p e r a t i o n . T h i s would reduce c o s t s , g a i n r e l i a b i l i t y , improve weld head r i g i d i t y and compactness and e l i m i n a t e maintenance time requirements t o p l a c e long handled t o o l s i n t o t h e c e l l t o a l t e r t h e p r e s e n t e l e c t r o - m e c h a n i c a l o s c i l l a t o r ' s amplitude s e t t i n g s r e q u i r e d f o r s u c c e s s i v e f i l l p a s s e s .


46 SECTION C

8.

PROGRAM PROPOSAL: DEVELOPMENT OF REMOTE CUTTING, WELDING AND INSPECTION EQUIPMENT FOR REACTOR SYSTEM MAINTENANCE

8.1 O v e r a l l Requirements f o r Remote Cut/Weld Maintenance The q u e s t i o n of how maintenance w i l l be accomplished i s one which must b e answered a t t h e t i m e a r e a c t o r system i s b e i n g designed i n o r d e r t h a t a p p r o p r i a t e p r o v i s i o n s f o r maintenance w i l l be included i n t h e d e s i g n . 'Iln c o n s i d e r i n g t h e d e s i g n of a Molten S a l t Breeder Reactor, ORNL h a s explored t h e r e p o r t e d e x p e r i e n c e i n t h e whole f i e l d of r e a c t o r maintenance problems and methods of making r e p a i r s . The advantages of welded j o i n t s i n n u c l e a r s y s t e m s a r e g e n e r a l l y recognized, b u t t h e r e i s no s u i t a b l e equipment f o r performing remote c u t t i n g and welding o p e r a t i o n s i n t h e ways r e a c t o r system maintenance would r e q u i r e . However, t h e r e are some new t y p e s of equipment which show promise f o r r a d i o a c t i v e system a p p l i c a t i o n s a f t e r f u r t h e r development of remote c o n t r o l s and o t h e r s p e c i a l f e a t u r e s f o r work i n h i g h r a d i a t i o n areas. The o r b i t a l c u t t i n g and welding equipment developed f o r t h e A i r Force and adapted for remote h a n d l i n g and o p e r a t i o n by ORNL demonstrated good performance i n t e s t s of a p r o t o t y p e u n i t , and t h u s gave support t o t h e formation of a new philosophy f o r m a i n t a i n i n g p i p i n g systems and v e s s e l c l o s u r e s i n r a d i o a c t i v e systems. The new maintenance philosophy i s t o r e l y on t h e use of remote c u t t i n g and welding equipment t o remove from t h e n u c l e a r system any component which f a i l s and t o i n s t a l l a replacement. T h i s p r o v i d e s a g r e a t d e a l more f l e x i b i l i t y and r e l i a b i l i t y t h a n a p i p i n g system i n which f l a n g e d j o i n t s must b e opened and r e s e a l e d by remote c o n t r o l . Remote c u t t i n g and welding would provide f o r a l l maintenance on t h e p i p i n g system and on seal welding t h e f l a n g e d openings i n v e s s e l s . For maintenance of t h e e l e c t r i c a l , i n s t r u m e n t a t i o n and o t h e r systems, long-handled t o o l s or s p e c i a l remote c o n t r o l d e v i c e s would be used i n t h e manner a l r e a d y demonstrated i n t h e MSN and o t h e r r e a c t o r s . The o r b i t a l equipment w i l l r e q u i r e f u r t h e r m o d i f i c a t i o n s and a d d i t i o n s t o meet t h e s p e c i a l needs of remote maintenance o p e r a t i o n s on p i p e s and v e s s e l s , s o t h a t , f o r example, t h e equipment can b e p o s i t i o n e d a t t h e work s i t e by remote c o n t r o l , without b e i n g a b l e t o see d i r e c t l y what i s b e i n g done. The A i r Force c u t t i n g and welding equipment h a s semi-remote c o n t r o l s f o r t h e c u t t i n g and welding operat i m s and t h e s e w i l l r e q u i r e a d d i t i o n a l s p e c i a l f e a t u r e s f o r f u l l y remote c o n t r o l .

Work on r a d i o a c t i v e systems n o t o n l y r e q u i r e s remote c o n t r o l s f o r a l l o p e r a t i o n s , b u t a l s o r e q u i r e s t h a t t h e maintenance equipment be f a b r i c a t e d of materials t h a t r e s i s t t h e damaging e f f e c t s of r a d i a t i o n and w i t h s t a n d h i g h t e m p e r a t u r e s and t h e c o r r o s i v e a c t i o n of decontamination chemicals. The performance of remote maintenance


47 V

o p e r a t i o n s w i l l r e q u i r e s p e c i a l attachments for viewing, measuring, and s e n s i n g from a s h i e l d e d work area and f o r performing i n s p e c t i o n o p e r a t i o n s by remote c o n t r o l . T h i s w i l l n e c e s s i t a t e t h e development of h i g h l y s p e c i a l i z e d a p p a r a t u s p l u s new t e c h n i q u e s and procedures f o r examination, measurement and i n s p e c t i o n . Remotely c o n t r o l l e d methods for a c c u r a t e l y p o s i t i o n i n g and a l i g n i n g l a r g e p i p e s must b e developed i n o r d e r t o b e a b l e t o do high q u a l i t y welding on p i p e j o i n t s . There are many i n t e r r e l a t e d and d i f f i c u l t problems f o r which s o l u t i o n s are n o t now a v a i l a b l e . The development programs d e s c r i b e d below are proposed t o provide t h e needed equipment and t e c h n i q u e s f o r remotely c o n t r o l l e d , automated c u t t i n g and welding on h i g h l y r a d i o a c t i v e p i p i n g and components of n u c l e a r systems. The remote maintenance equipment development program w i l l f i r s t be concerned w i t h completion of t h e t e s t i n g and e v a l u a t i o n of t h e A i r Force o r b i t a l equipment with s p e c i a l emphasis on improved c u t t i n g c a p a b i l i t y f o r extra hard m a t e r i a l s such as a l l o y s w i t h h i g h n i c k e l c o n t e n t , and t h e development of p r o p e r t e c h n i q u e s f o r a c c e p t a b l e r o o t p a s s welding. S u c c e s s f u l completion of t h e t e s t i n g and e v a l u a t i o n program should g i v e a s s u r a n c e t h a t t h e b r o a d e r , long range development program c a n produce a f u l l y automated and remotely c o n t r o l l e d system which w i l l meet t h e r i g i d q u a l i t y requirements f o r maintenance on n u c l e a r systems. 8.2

A Long-Range, Three-phase Development Program for Pipe and V e s s e l M a i n t e nanc e

The l o n g range program encompasses t h r e e phases: g e n e r a l i n v e s t i g a t i o n s of welding requirements and remotely c o n t r o l l e d equipment f o r welding, a n extended p i p e - j o i n t program, and a v e s s e l c l o s u r e program. It i s proposed t h a t t h e s t u d y of g e n e r a l remote welding problems and t h e development of equipment t o handle t h e s p e c i f i c problems of r e a c t o r p i p e j o i n t s and v e s s e l c l o s u r e s should b e pursued c o n c u r r e n t l y . Remote welding equipment m o d i f i c a t i o n s can be developed, s t u d i e d , and t e s t e d a t t h e same time g e n e r a l s t u d i e s are i n p r o g r e s s , w i t h r e f i n e ments from t h e g e n e r a l s t u d i e s b e i n g added as t h e y become a v a i l a b l e . 8.2.1

W

Phase I. The General Proaram

Major i n v e s t i g a t i o n s u n d e r t h e g e n e r a l program are t h e b a s i c s t u d i e s of f a c t o r s t h a t determine t h e q u a l i t y of welded j o i n t s i n v a r i o u s metals, t h e s t u d i e s of d i f f e r e n t welding t e c h n i q u e s and c o n t r o l s needed t o assure t h a t weld q u a l i t y c r i t e r i a are m e t , t h e d e t e r m i n a t i o n of materials and components t h a t w i l l w i t h s t a n d t h e e f f e c t s of r a d i a t i o n , t e m p e r a t u r e , and of chemical decontamination t r e a t m e n t s , t h e improvement of welding c o n t r o l s and programming appar a t u s , t h e development of equipment and t e c h n i q u e s for r e m o t e - c o n t r o l alignment of components, and t h e d e t e r m i n a t i o n of environmental and c l e a n l i n e s s c r i t e r i a . For t h e a p p l i e d phase of t h e g e n e r a l program, mockup work i s planned t o e v a l u a t e v a r i o u s new or modified t y p e s of equipment and remote c o n t r o l s , e s p e c i a l l y t h e p i p e p o s i t i o n i n g and movement schemes designed t o a c h i e v e a c c e p t a b l e p i p e j o i n t alignment p r i o r t o welding.


It i s a l s o recommended t h a t t h e welding m e t a l l u r g y of i r r a d i a t e d materials b e i n v e s t i g a t e d . It i s important t o know whether n e u t r o n i r r a d i a t e d p i p e metal shows r a d i a t i o n e f f e c t s which w i l l a f f e c t welding and whether minute c r a c k i n g w i l l occur i n h e a t - a f f e c t e d weld zones. A t p r e s e n t , o n l y l i m i t e d data are a v a i l a b l e from t e s t s conducted a t ORNL.20 Attempts t o weld small c o r r o s i o n samples removed from t h e MSRE gave e f f e c t i v e welds i n only 70% of t h e cases;a1 however, f u r t h e r t e s t i n g i n d i c a t e d t h a t b e t t e r c l e a n i n g of t h e metal s u r f a c e s t o remove s a l t r e s i d u e s p r i o r t o welding would s o l v e t h e problem. Test specimens should b e obtained from a c t u a l i r r a d i a t e d s e c t i o n s of r e a c t o r p i p e i n which t h e combined e f f e c t s of neutron i r r a d i a t i o n and t h e r m a l c y c l i n g are p r e s e n t . The Navy, h a s i n f o r m a l l y expressed i n t e r e s t i n s t u d y i n g t h e welds i n h i g h l y i r r a d i a t e d s e c t i o n s of n u c l e a r submarine p i p e systems. Valuable d a t a and maintenance e x p e r i e n c e might b e o b t a i n e d , i n c o o p e r a t i o n w i t h t h e N a v y , by u s i n g t h e remotely c o n t r o l l e d c u t t i n g and welding equipment t o c u t out and r e p l a c e t e s t s e c t i o n s of t h e s h i p board n u c l e a r system p i p i n g s o t h a t t h e removed s e c t i o n s could be s u b j e c t e d t o d e t a i l e d study of t h e old welds and of new welds made on t h e i r r a d i a t e d metal. 8.2.2

v

Phase 11, The Pipe J o i n t Program

The c o n t i n u a t i o n of t h e p i p e j o i n t program w i l l r e q u i r e development, and t e s t i n g of p r o t o t y p e c a r r i a g e s f o r t h e l a r g e r p i p e s i z e s , d e s i g n , development, and t e s t i n g of second g e n e r a t i o n c u t t i n g and welding heads, and t h e e s t a b l i s h m e n t of s p e c i f i c t e c h n i q u e s , methods and equipment f o r c u t t i n g and welding v a r i o u s metals. It i s also planned t o u s e t h e f i n d i n g s of t h e environmental s t u d y and t h e materials and components study, c a r r i e d out under t h e g e n e r a l program t o upgrade t h e materials and components of t h e p i p e j o i n t maintenance machinery t o w i t h s t a n d t h e e f f e c t s of r a d i a t i o n , temperature, and of decontamination t r e a t m e n t s i n actual nuclear applications.

8.2.3

Phase 111, The Vessel Closure Program

A d u a l approach i s suggested f o r t h e development of equipment f o r c u t t i n g and welding of seals on t h e manhole-type openings i n l a r g e v e s s e l s i n r e a c t o r systems. The i n i t i a l c u t t i n g , b e v e l i n g and welding work w i l l b e performed u s i n g v a r i o u s commercially a v a i l a b l e components adapted f o r remote c o n t r o l . Performance a p p r a i s a l s from t h e s e t e s t s w i l l permit t h e development of m o d i f i c a t i o n s t o overcome t h e problems t h a t are encountered and a f t e r f u r t h e r t e s t s , t h e f i n a l component s p e c i f i c a t i o n s w i l l b e e s t a b l i s h e d f o r i n d u s t r y t o supply complete equipment systems f o r f u r t h e r t e s t i n g on v e s s e l c l o s u r e maintenance. Another p a r t of t h e program w i l l b e concerned with a p p l i c a t i o n of o r b i t a l v e h i c l e machinery t o t h e s p e c i a l problem of seal welding on l i p s i n s t a l l e d around manhole c o v e r s . The p i p e welding development program w i l l determine t h e a p p l i c a b i l i t y of t h e modular i n s e r t carriage scheme f o r remote maintenance work. A f t e r o b t a i n i n g s a t i s f a c t o r y p e r formance on p i p e welds, t h e welding equipment could b e mounted on s p e c i a l c a r r i a g e s designed t o s u i t t h e manhole cover g e o m e t r i e s . These c a r r i a g e s should u t i l i z e t h e same c u t , b e v e l , weld and i n s p e c t i o n

W


49 i n s e r t s and o p e r a t e from t h e same programmer as t h e p i p e welder. Great time s a v i n g s and s i z e a b l e d o l l a r s a v i n g s can r e s u l t from a p p l y i n g such a system d i r e c t l y t o seal welding. Spare p a r t problems and invent o r i e s are a l s o minimized. The f i n a l procurement o f t h e components s e l e c t e d t o s u i t t h e needs of a n u c l e a r environment w i l l i n c o r p o r a t e t h e most promising a p p a r a t u s , materials and components i n d i c a t e d by t h e development and t e s t i n g a c t i v i t i e s .

20.

Molten S a l t Program Semiannual Report f o r t h e Period ending February 28, 1966, ORNL Report No. 0rn-3936, p . 117, 1966.

21. Molten S a l t Reactor Experiment Monthly Report f o r August 1968, ORNL Report No. MSR-68-123, p . 19, 1968.



51 Internal Distribution

1-3. 4. 5. 6. 7. 8. 9. 10. 11. 12.

13* 14. 15 16. 17

-

18.

19 20. 21. 22.

23 * 24. 25 * 26. 27 * 28.

29 30 31 32. 33 34

-

35 *

36. 37 * 38 39 * 40. 41. 42. 43 44. 45. 46. 47 48. 49.

-

50

51

MSRP D i r e c t o r ' s O f f i c e R. K. A d a m s G. M. Adamson J . L. Anderson R . F . Apple E . L. Armstrong, Y - 1 2 D . L. Aubuchon C . F. Baes J . M. B a k e r P . S. Baker S. J . B a l l C . E . Bamberger C . J . Barton H . F. Bauman S. E . B e a l l R. L. Beatty M. J . B e l l M . Bender C . E. B e t t i s E . S. B e t t i s D. S. B i l l i n g t o n W . A - Bird R . E . Blanco F. F . Blankenship R . Blumberg A . L. Boch E . G. Bohlmann C . J . Borkowski G . E. Boyd J. Braunstein M. A. Bredig E . J . Breeding R. B. Briggs H. R. B r o n s t e i n J R Buchanan C . A. Burchsted D. A. Canonico W. F. Cartwright, Y - 1 2 J. M. Chandler C . J. C l a f f e y F. H. Clark W. R . Cobb H. E. Cochran C . W. C o l l i n s E. L. Compere K. V. Cook W. H. Cook J . W. Cooke L. T . Corbin

. .

52. 53 54 * 55 56 * 57 58. 59 * 60. 61. 62. 63 * 64. 65. 66. 67. 68. 69. 70. 71 72 73 * 74 * 75 * 76. 77 * 78. 79

W. B . C o t t r e l l B. COX J . L. Crowley F. L. Culler D. R . Cuneo J . E . Cunningham J . M. Dale D. G . Davis R . J . DeBakker C . B. Deering, AEC-OSR J . H. DeVan S. J . D i t t o H . G. Duggan A . S. Dworkin I . T . Dudley W . P. E a t h e r l y D . E l i a s , AEC-Washington R . J . Emmert J . R. Engel E . P. E p l e r W. K. Ergen R . M. Farnham J . C . Feeman, Y - 1 2 D . E . Ferguson L. M. F e r r i s B. Fleischer M. H . Fontana A . P. F r a a s 80. E . A . F r a n c o - F e r r e i r a , Y - 1 2 81. J . K. Franzreb 82. H . A . Friedman 83. D . N . Fry 84. J . H . Frye 85. R. M. F u l l e r 86. W. K . Furlong 87. C . H. Gabbard 88. W . R . G a l l 89. R . B . G a l l a h e r 90 * J . H. Gibbons 91 * J . M. Googin, Y-12 92 W. R . Grimes 93 A . G. G r i n d e l l 94 * R . W. Gunkel 95 * R . H. Guymon 96. J. P. Hammond 97 * B. A . Hannaford 98. P . H. Harley 99 * W . 0. Harms 100. C . S. H a r r i l l

-


52 101. 102.

103. 104. 105. 106. 107. 108.

P. T. R. P. D. J. J. M.

109. E . 110. H . 111. D .

112-131.

132. 133-134. 135 * 136, 13'7. 138. 1-39*

P. R. T. T. W. H. H. G.

140. W . 1i.l.

S.

142. P . 143. 3 . 1b4.

M.

135. M. P-6. 0 . 147. C .

1M. T .

L49 *

H. 1-50. F . 151. J . 152 * S . 1-53 0 . 15h. R . 155 T . 156. J . 157 C .

-

158. J . 159. C . 160. W . 161. P. 162. R. 163. A . 164.

165. 166. 167. 168. 169. 170.

171.

E. A. M. R. R. H. R. T.

N . Haubenreich E . Haynes E . Helms G. Herndon N . Hess R . Hightower W. H i l l R. H i l l C . Hise W . Hoffman K . Holmes P . Holz W. Horton R . Housley L. Hudsoii R . Huntley Inouye F . Jackson R. Jascey, Y-12 H . Jcrdan I . Kaplan R. Kasten J . Ked1 T . Kelley J . Kelly A . Kelly R . Kennedy W. K e r l i n T . Kerr Kertesz J . Keyes S . Kirslis H . Klepper B . Korsneyer S . Kress W . Krewscn E . Lamb A . Lane G . Lawson J . Leonard S . Lee B . Lindauer P. Litman L . Long L. Lotts I . Lundin N . Lyon L . Macklin G . MacPherson E . MacPherson H . Mauney

172. 173 174. 1.75 176. 177 * 178. 1-79 180. 181. 182.

1-83. 184.

185. 186. 187. 188. 189. 190. 191. 192.

1-93 194. 195 * 196. 197 198. 1-99* 200. 201. 202.

203. 201.

205. 206

0

207-216. 217. 218.

219. 220. 221. 222.

223-227. 228.

229. 230. 231 * 232. 233 * 234. 235 '

Y

R . W . McClung H . E . McCoy H . C . McCurdy D . L . McElroy C . K. McGlothlan J . R . McGuffey H . A . McLain L . E . McNeese J . R . McWherter H . J . Metz A . S. Meyer E. C. Miller R . L . Moore G . Morris D . C . Morrison J C Moyers H. A . N e l m s E . L . Nicholson L. C . Oakes W . R . Osborn L. F . P a r s l y P. P a t r i a r c a A . M. P e r r y T . W. Pickel H . B. P i p e r J . L . Redford M. Richardson R . C . Robertson J . N . Robinson W . C . Robinson R . G . Ross J . Roth T . H . Row H . C . Savage W . F. S c h a f f e r Dunlap S c o t t J . L. Scott H . E . Seagren J . H. Shaffer L . J . Shersky M. D . Silverman M. J . Skinner G . M. S l a u g h t e r A . N . Smith C. M . Smith, J r . F . J . Smith G. P. Smith 0. L . Smith P . G. Smith I . Spiewak R. C. Steffy

. .


53 v

236. 237. 238. 239

H. R. J. E.

240.

W.

241. 242. 243. 244. 245. 246.

247. 248.

249. 250. 251. 252. 253 254.

R. W.

D. W. T. G. J. H. C. B. A. J. K. M.

H. S t o n e r , Y-12 A . Strehlow R. Tallackson H. Taylor Terry E . Thoma E. Thompson B. Trauger E . Unger K . Walters M. Watson S. Watson L. Watts F. Weaver H . Webster M. Weinberg R . Weir W. West E. Whatley

255. 256. 257. 258. 259 260. 261. 262. 263. 264. 265. 266. 267. 268-269. 270-271. 272-274 275 * 276-277 -

-

J . C . White G. D. Whitman R. P. Wichner L. C . W i l l i a m s C. H . Wodtke L. V . Wilson M . M . Yarosh W. J . Yaggi, Y - 1 2 Gale Young H. C . Young J . P. Young E . L . Youngblood F. C . Zapp C e n t r a l Research L i b r a r y Document Reference S e c t i o n Laboratory Records Laboratory Records (LRD-RC) Nuclear S a f e t y Information Center

External Distribution

278. 279

280-281. 282.

283-284. 285. 286. 287. 288. 289-298. 299- 300. 301-302. 303-304. 305 - 306. 307-321 -

D . F. Cope, AEC-OSR A. K. C. T.

Giambusso, AEC-Washington 0. Laughon, AEC-OSR L . Matthews, AEC-OSR W . McIntosh, AEC-Washington H. M. Roth, AEC-OR0 M . Shaw, AEC-DRDT W. L. Smalley, AEC-OR0 D . S . Zachry, Jr., AEC-OR0 AFRPL (RPRPD/Capt. F . M. Cassidy) Capt. F. M. Cassidy, USAF, AFRPL, Edwards Am E . E . S t e i n , AFRPL, Edwards AFB Capt. J . L . Feldman, ASD, ASNJD-10, W r i g h t P a t t e r s o n AFE3 L t . A . B . Spencer, ASD, ASWD-20, Wright P a t t e r s o n AFB D i v i s i o n of T e c h n i c a l Information Extension (DTIE)


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.