HOME
HELP O A K RIDGE NATIONAL LABORATORY operated by
UNION CARBIDE CORPORATION NUCLEAR DIVISION for the
U.S. ATOMIC ENERGY COMMISSION
ORNL - TM - 2685 COPY NO.
DATE
-
- August 10, 1969
INHERENT NEUTRON SOURCE IN MSRE WITH CLEAN 233UFUEL R. C, Steffy, Jr. ABSTRACT
I I
After about three years of nuclear operation, the MSRE fuel, enriched 235U,was replaced with a 233Ufuel mixture. In this new mixture there are quantities of 232u , 233U,and 234U Each of these, along with the 232U decay chain, is a strong alpha emitter and interacts with fluorine, beryllium, and lithium to produce neutrons. This neutron source is time-dependent because of the buildup of 232Udaughters, and at the time of reaching critieality with the 233Ufuel, the neutron source in the MSRE core was about 4 x lo8 neutron/sec, primarily from the reactions 9Be(ol,n)I2C and "F(~t,n)~~Na. Alpha-n reactions with lithium will produce <3 X lo6 neutrons/sec. Spontaneous fission will produce <lo2 neutrons/sec.
.
Keywords: Inherent neutron source, 3U fuel, (a,n> reactions, alpha particles , particle sources, 2U decay chain, fluorine, beryllium, lithium.
nOTlCL This document contains information of a preliminary nature and was prepared primarily for internal use a t the Oak Ridge National Laboratory. It is subject to revision or correction and therefore does not represent a final report.
T h i s report was prepored o s an account of Government sponsored work.
Neither the United Stater,
nor the Commission, nor any person octing on behalf of the Commission:
A.
Mokes o n y worronty completeness, any
or
information,
or representation, expressed or implied,
with respect t o the occurocy,
usefulness of the infwmation contoined i n t h i s report, or that the use of apparatus,
method,
or process disclosed i n t h i s report may not infringe
privately owned rights; or
B.
Assumes any l i a b i l i t i e s w i t h respect to the use of, or for domoges resulting from the use of any informotion, opporotus, method, or process disclosed i n t h i s report.
As used i n the above, "person
octing on behalf of the Commission"
includes ony employee or
contractor of the Commission, or employee of such contractor, t o the extent that such employee or controctor of the Commission,
or employee of such contractor
prepares,
disseminates,
or
provides access to, any informotion pursuant t o h i s employment or controct w i t h the Commission, or h i s employment w i t h such contractor.
3
CONTENTS Page
Introduction
...........................
4
......................... .......................... ..........................
4 6 7
.........................
7
Fuelcomposition Alphasource. Neutron Source
7Li(a,n)10B Spontaneous F i s s i o n s . 'Be(a,n) Discussion.. Appendix..
.................... and 1gF(ap)2%a. . . . . . . . . . . . . . . . . ..........................
...........................
C a l c u l a t i o n of I n h e r e n t Neutron Source i n MSRF: f o r 23% F u e l Mixture Source
................... from 'Be(a,n)l% and ''F(c~,n)~%a . . . . . . . .
Source from 7Li(a,n)'oB
................
7
8 8 12 12
12
1'7
4
INTRODUCTION
I n t h e KRE f u e l mixtures, a l p h a - e m i t t e r s a r e d i s p e r s e d i n l a r g e q u a n t i t i e s of f l u o r i n e , beryllium, and l i t h i u m .
All t h r e e of these e l e -
ments undergo alpha-n r e a c t i o n s t o produce neutrons.
Haubenreichâ&#x20AC;&#x2122; c a l c u -
l a t e d t h e i n h e r e n t neutron source f o r t h e i n i t i a l f u e l l o a d i n g (- 35% 23% and
65% 2â&#x20AC;&#x2122;8U),
N
t h e 23%
b u t t h e d i f f e r e n t c o n c e n t r a t i o n s of uranium i s o t o p e s for
f u e l loading, a l l of which a r e s t r o n g a l p h a e m i t t e r s , r e q u i r e d
t h a t a n o t h e r c a l c u l a t i o n be performed.
were performed b e f o r e t h e
23%
The c a l c u l a t i o n s r e p o r t e d h e r e i n
w a s loaded i n t o t h e r e a c t o r .
T h i s memorandum i s d i v i d e d i n t o two p a r t s .
The f i r s t p a r t p r e s e n t s
f i n a l r e s u l t s and g e n e r a l d i s c u s s i o n s ; t h e second p a r t (appendix), i n t e r m e d i a t e r e s u l t s and d e t a i l s of t h e c a l c u l a t i o n s .
FUEL COMPOSITION The s t r e n g t h of t h e i n h e r e n t neutron s o u r c e is, of course, determined by t h e composition of t h e f u e l s a l t .
Except f o r t h e change i n uranium,
t h e major c o n s t i t u e n t s of t h e f u e l s a l t were e s s e n t i a l l y unchanged by t h e
chemical processing which removed t h e 235U-rich uranium and r e p l a c e d it with
8
233J f u e l
load.
Thus, changes i n t h e s t r e n g t h of t h e i n h e r e n t
neutron source were b a s i c a l l y a f u n c t i o n of t h e change i n t h e a l p h a production r a t e and t h e a s s o c i a t e d a l p h a e n e r g i e s .
Table 1 l i s t s t h e
approximate weight percentages of t h e components i n t h e
233Jf u e l
ioading.
These were estimated based on t h e p r e d i c t e d c r i t i c a l uranium c o n c e n t r a t i o n
of 15.8 grams o f uranium p e r l i t e r of s a l t (- 1 l b / f t 3 ) .
It w a s assumed
t h a t a l l o f t h e uranium i n t h e f u e l w a s loaded as p a r t of t h e
235f E e l
loading, and t h a t t h e small amount p r e s e n t from o t h e r s o u r c e s was n e g l i gible.
The c o n c e n t r a t i o n s o f t h e uranium i s o t o p e s which are p r e s e n t i n
t h e 23%1 f u e l l o a d i n g are l i s t e d i n Table 2 w i t h a comparable l i s t i n g f o r the
2qf u e l
loading.
5
Ta.ble 1 MSRE F u e l S a l t Composition
wt; % E 1emen t
23-%
in Mixture
68.1
F
* Li
11.0
Be
8.8
Zr
11.0
u
0.73
*
99.99% 7 L i
Table 2 Uranium I s o t o p i c Concentration i n YSRE Fuels
A t o m $ in a
Nuclide
23%
Mixture
Atom $ i.n b I n i t i a l Loading
0.022
91.49 7 .6 0.7
0.3 35
0.05
0.3
0.14
64.4
a
Data from Reference 2.
s Data
from Reference 1.
6 ALâ&#x201A;Ź"ASOURCE Each of t h e uranium i s o t o p e s i n t h e 23%-fuel a l p h a emission.
mixture decays by
These a l l have long h a l f - l i v e s and e m i t a l p h a p a r t i c l e s
a t e s s e n t i a l l y a c o n s t a n t r a t e f o r t h e l i f e t i m e of t h e MSRE.
W i t h one
exception, t h e daughters of t h e uranium i s o t o p e s a l s o have long h a l f - l i v e s f o r a l p h a emission and never reach high enough c o n c e n t r a t i o n s t o e m i t a l p h a p a r t i c l e s a t a s i g n i f i c a n t rate. 228Th,
t h e daughter of
a l p h a emission.
The v e r y important exception i s
which decays w i t h a 1.91 y e a r h a l f - l i f e by
23%,
T h i s i s fpllowed by an e n t i r e s t r i n g of a l p h a e m i t t e r s
w i t h very s h o r t h a l f - l i v e s ; s o s h o r t , i n f a c t , t h a t t h e y a r e e s s e n t i a l l y i n e q u i l i b r i u m w i t h t h e 228Th.
An a l p h a decay by 228Th is q u i c k l y f o l -
lowed by a cascade of alpha emissions u n t i l the p a r e n t has f i n a l l y decayed t o x)8Pb,
which i s s t a b l e .
Immediately a f t e r t h e
was p u r i f i e d (- June
23%
1964),
t h e only a l p h a
emissions were from t h e decaying uranium atoms, b u t as t h e c o n c e n t r a t i o n of 228Th increased, t h e a l p h a a c t i v i t y obviously i n c r e a s e d .
So t h e a l p h a
a c t i v i t y i n t h e f u e l s a l t i s composed of a time-independent c o n t r i b u t i o n from t h e decaying uranium atoms and a time-dependent c o n t r i b u t i o n from t h e decay c h a i n .
23%
The time-dependent c o n t r i b u t i o n i s c o n t r o l l e d by t h e
22&rh h a l f - l i f e of 1.91 y e a r s and reaches 755 of t h e s a t u r a t i o n v a l u e about
4 years
after t h e
23%
purification.
The e n e r g i e s a t which t h e a l p h a p a r t i c l e s are e m i t t e d a r e a l s o i m -
portant.
A l l o f t h e s i g n i f i c a n t a l p h a emissions from t h e uranium atoms
are between 4 . 1 and 5.3 23%
MeV.
The a l p h a s from t h e lower members o f t h e
decay c h a i n are emitted w i t h e n e r g i e s between 5.2 and 8.77
MeV.
S i n c e t h e neutron y i e l d i n c r e a s e s s h a r p l y w i t h i n c i d e n t s l p h a energy, t h e higher-energy a l p h a s i n t h e 23%
decay c h a i n add weight t o t h e importance
of t h e c h a i n . Tabulated information p e r t a i n i n g t o t h e p r o p e r t i e s of t h e decay of t h e uranium i s o t o p e s and t h e 23%
decay-chain a r e given i n t h e appendix
i n a d d i t i o n t o tables of t h e numbers o f alphas/sec e m i t t e d by t h e v a r i o u s isotopes.
7 NEXJTIION SOURCE
C a l c u l a t i o n of t h e neutron source i s necessary p r i m a r i l y t o i n s u r e t h a t , even when s u b c r i t i c a l , t h e r e a r e enough neutrons a v a i l a b l e t o meet d e t e c t i o n c r i t e r i a and guard a g a i n s t a s t a r t u p a c c i d e n t . 3
From t h i s
s t a n d p o i n t , t h e g r a p h i t e r e g i o n i n t h e c o r e i s t h e r e g i o n of concern, f o r only i n t h i s region of t h e MSRE is c r i t i c a l i t y f e a s i b l e .
The c a l c u -
l a t i o n s p r e s e n t e d h e r e i n are f o r 25 f t 3 of s a l t , t h e approximate voiurne of s a l t i n t h e e f f e c t i v e core, whereas t h e t o t a l volume of s a l t i s about
75 f t 3 . So m u l t i p l i c a t i o n of t h e source s t r e n g t h i n t h e c o r e by
-3
will
g i v e t h e approximate source i n a f u e l d r a i n t a n k when it c o n t a i n s t h e e n t i r e f u e l loading. 7 L i ( a , n) 'OB Haubenreich'
found l i t h i u m t o be a n i n s i g n i f i c a n t neutron producer
when compared t o b e r y l l i u m and f l u o r i n e i n t h e
23%
f u e l mixture.
A cai-
c u l a t i o n ( s e e appendix) of t h e neutron y i e l d from t h e most e n e r g e t i c a l p h a (8.77 MeV) i n t h e
23%
f u e l showed t h a t l i t h i u m produced l e s s tLlan
one neutron f o r every 110 produced by b e r y l l i u m and f l u o r i n e .
Alphas
s t a r t i n g a t lower e n e r g i e s produce p r o p o r t i o n a t e l y fewer neutrons from l i t h i u m because of t h e r a p i d decrease with d e c r e a s i n g a l p h a energy i n t h e c r o s s s e c t i o n o f l i t h i u m f o r (a,n) r e a c t i o n s . * 7Li(a,n)10B
is
-
4.3 Mev.)
(Threshold energy f o r
The t o t a l neutron source from a l l ( a , n ) r e -
a c t i o n s w i t h l i t h i u m i s <3 x lo6 n/sec. Spontaneous F i s s i o n s
All of t h e uranium i s o t o p e s which a r e p r e s e n t i n t h e
23%
f u e l loading
undergo spontaneous f i s s i o n , w i t h h a l f - l i v e s f o r t h i s process ranging frotx
8x
y r for
'3%
to 3 x
yr for
23%.
The t o t a l r a t e of spon-
taneous f i s s i o n s i n t h e MSRF: i s simply t h e sum of t h e products of t h e inventory of each i s o t o p e and i t s spontaneous f i s s i o n t i m e c o n s t a n t . Less t h a n 100 n/sec w i l l be produced i n t h e MSRE c o r e by spontaneous fission.
8
'Be(a, n) 13C and "F(a, n) 22Na High neutron production r a t e s r e s u l t from a l p h a r e a c t i o n s w i t h b e r y l l i u m and f l u o r i n e .
For t h e a l p h a p a r t i c l e s emitted from t h e uranium
i s o t o p e s ( e n e r g i e s between 4 . 1 and 5.3 MeV) t h e n e u t r o n production r a t e s The neutron
from t h e b e r y l l i u m and f l u o r i n e a r e approximately e q u a l , y i e l d of f l u o r i n e '
i n c r e a s e s more r a p i d l y w i t h i n c r e a s i n g a l p h a energy
t h a n does t h e y i e l d of b e r y l l i u m (see Fig. l ) ; 6 , 7 therefore, f o r the higher-energy a l p h a p a r t i c l e s produced by t h e
23%
decay chain, most of
t h e neutrons r e s u l t from ( a , n ) r e a c t i o n s w i t h f l u o r i n e . F i g u r e 2 shows t h e t o t a l c a l c u l a t e d neutron s o u r c e f o r t h e MSRE c o r e r e g i o n and t h e i n d i v i d u a l production r a t e s f o r t h e most s i g n i f i c a n t a l p h a -
emitters. with
The
23%
decay c h a i n obviously dominates t h e n e u t r o n production
"'90b e i n g t h e a l p h a e m i t t e r ( a l p h a energy of 8.77
MeV)
which causes
t h e most p r o l i f i c neutron production.
DISCUSSION
When t h e 233,mixture w a s p l a c e d i n t h e E R E : f u e l salt, the reactor a l r e a d y had about t h r e e y e a r s of o p e r a t i n g h i s t o r y .
The long runs a t high
power i n s u r e d t h a t a l a r g e photoneutron source would be p r e s e n t f o r some time a f t e r shutdown of t h e r e a c t o r .
However, i f s u f f i c i e n t time were a l -
lowed t o e l a p s e , t h i s source would weaken.
More important as a r e l i a b l e
neutron source i n t h e MSRE i s t h e i n h e r e n t neutron production from ( a , n ) reactions w i t h the salt constituents.
The (a,n) source i s e s s e n t i a l l y
independent of power h i s t o r y ana SLctualiy i n c r e a s e s a s y m p t o l i c a l l y t o a l i m i t i n g value.
A t t h e time t h e MSEiE achieved c r i t i c a l i t y w l t r ,
the fissile material (the
23%
mixture w a s t h e e q u i v a l e n t of
o l d ) , a t h e i n h e r e n t neutroll source ir. t h e c o r e r e g i o n was
-
-
23%
as
4 years
k x loa n/sec,
about a f a c t o r of 1000 Over the i n h e r e n t s m r c e which was c a l c u l a t e d f o r t h e 235U f u e l mixture.
The accuracy of t h e s e c a l c u l a t i o n s i s dependent on t h e accuracy t o which t h e f u e l i s o t o p i c composition and t h e v a r i o u s y i e l d data are known.
The f u e l composition is thought t o b e known t o w e l l w i t h i n k
s$
and i s
9 ORNL-DWG
L
69- 40029A
I o3
5
2
2I IO2 a
-I
Q
z
0 -
5
_J
-
-J
I E W Q
m
z
2
0
L1: I-
3
W
40â&#x20AC;&#x2122; 3-
5
2
1 oc 0.5
I
2
5
10
E, ALPHA ENERGY ( M e V )
Fig. 1. Neutron Yield from Thick Beryllium and Fluorine Targets as a Function of Incident Alpha-Particle Energy.
10
O R N L - D W G 6 9 - 10030A
io9
5
W
a 0 0
2
W ( I
In 5 W
I I-
z W
0
5
108
0 v)
z
0
l
a
I
I
I
&-
2 W
z +z a
TOTAL URANIUM
I
W
w
I
I
-
5
Y
5
I
I
1
1
2
( O C T 1968 - M S R E C R I T I C A L I
I
o7 0
1
TIME
2 3 A F T E R PURIFICATION
W I T H 233U) 4 5 OF T H E 2 3 3 ~F U E L ( y e a r s )
6
7
Fig. 2. Total Inherent Neutron Source and the Neutron Source Resulting from Individual Alpha Emitters in the 3U-Fueled-MSRE Core.
11
The a r e a of t h i s c a l c u l a t i o n
probably n o t a n a p p r e c i a b l e s o u r c e of e r r o r .
which c o n t a i n s t h e most p o s s i b i l i t y of e r r o r i s t h e y i e l d data f o r t h e r e a c t i o n , igF(ar, n) *'%a.
Due t o i n s u f f i c i e n t data, we had t o e x t r a p o l a t e
t h e known y i e l d d a t a ( s e e F i g . 1), which only went t o a l p h a e n e r g i e s of
5.3 MeV, t o g e t t h e y i e l d from t h e h i g h e r - e n e r g i e d a l p h a s from t h e
23%
We made t h e assumption t h a t t h e y i e l d c o n t i n u e d i n c r e a s i n g
decay c h a i n .
w i t h t h e same f u n c t i o n a l r e l a t i o n s h i p t o t h e h i g h e r e n e r g i e s .
While it
i s r e a s o n a b l e t o e x p e c t t h e neutron p r o d u c t i o n r a t e t o i n c r e a s e w i t h a l p h a energy, it i s n o t known whether t h e y i e l d w i l l i n c r e a s e a c c o r d i n g t o t h e same power f u n c t i o n which could b e used t o d e s c r i b e i t s b e h a v i o r f o r lower energied alphas.
Yield data f o r b e r y l l i u m (which i s known from experiment
f o r a l p h a s t o % Mev and i s e x t r a p o l a t e d t o
-
8 Mev by t h e e x p e r i m e n t e r s ) 6
i s a l s o shown i n F i g . 1 and does indeed i n c r e a s e as a power f u n c t i o n w i t h i n c r e a s i n g a l p h a energy.
S i n c e t h e data f o r b e r y l l i u m i n c r e a s e s uniformly
t o h i g h e r a l p h a e n e r g i e s , one would t e n d t o e x p e c t t h e assumption about f l u o r i n e t o b e good, b u t even i f t h e assumption were n o t good and t h e y i e l d d a t a f o r t h e 8.77-Mev a l p h a were lower by a f a c t o r of 2 t h a n t h e
-
e x t r a p o l a t e d curve, t h e c a l c u l a t e d t o t a l n e u t r o n s o u r c e would be i n e r r o r
by only of
25$.
k 25% t o
We f e e l t h a t it i s fair to assign a probable error band
t h e s e c a l c u l a t i o n s w i t h t h e e x p e c t a t i o n t h a t t h e e r r o r i s much
smaller b u t w i t h t h e r e a l i z a t i o n t h a t more e x p e r i m e n t a l d a t a on high-energy alpha i n t e r a c t i o n s with f l u o r i n e is necessary before stronger confidence i n t h e c a l c u l a t e d n e u t r o n y i e l d i s warranted.
1.2
APPENDIX C a l c u l a t i o n of I n h e r e n t Neutron Source i n E R E f o r 23%
Source from 'Be(a,, n) 1%
F u e l S a l t Mixture
and 19F(a,n) 22Na
For b o t h r e a c t i o n s 'Be(a, n) I;%
and 19F(a, n ) 22Na,
t h e g e n e r a l equation
used t o determine t h e neutron source w a s
where Aa, = Alpha a c t i v i t y ( a / s e c ) i n E R E : c o r e ( 2 5 f t 3 of s a l t )
N = Neutron source (n/sec) Nmax
= Maximum number of neutrons produced i f t a r g e t were
( N/Nmax)=
composed completely of neutron-producing n u c l e i ('Be o r I9F as t h e c a s e may b e ) . %ax i s given i n u n i t s of neutrons p e r m i l l i o n a l p h a s . F r a c t i o n a l y i e l d of neutrons produced i n f u e l mixture t o number t h a t would be produced i n pure t a r g e t material.
Each of t h e t h r e e terms enclosed i n p a r e n t h e s e s i n t n i s equa%ion i s found independently.
Each term i s d i s c u s s e d i n t h e f o l l o w i n g paragraphs.
For. t h e l i f e of t h e MSRE, each of t h e irraniun; i s o t o p e s p r e s e n t i n
t h e f u e l w i l l b e a n e a r - c o n s t a n t a l p h a source due t o i t s long h a l f - i i f e ( s e e Table 3 ) .
Each of t h e i s o t o p e s , except
which a l s c has a long decay h a l f - l i f e .
23%,
decays t o a n u c i i a e
The secona, ana subsequent n u c l i d e s
i n each of t h e s e decay c h a i n s a r e Thus e l i m i n a t e d as s i g n i f i c a n t a l p h a sources. Whiie 232U produces a c o n s t a n t supply of a l p h a s , F t also produces t h e same number of 22&rh atoms.
Thorium-228 has a i.91 y e a r h a l f - l i f e
and s t a r t s a c h a i n of s h o r t h a l f - l i v e d elements ( s e e Table 4 ) .
Since t h e
f u e l mixture w a s about f o u r y e a r s o l d when loaded i n t o t h e r e a c t o r , w e may assume t h a t 228Th and i t s decay c h a i n are i n e q u i l i b r i u m ( i . e . 9 t h e a c t i v i t y (alphas/sec) from 22&rh and each member of i t s decay c h a i n w i l l be t h e
same).
Table Alpha Source i n %RE:
Isotope
Core from Uranium I s o t o p e s
a Energy (MeV)
Emission Percentage
a
Source (a/sec)
232tr
74
5.31 5.26 5.13
68 31 0.3
1.29 x io12 0.59 x lo1* 0.06 x io12
a33J
1.62 x 10’
4.82 4.78 4.73
83 15 2
3.01 x 1 O I 2 0.54 x 10’’ 0.07 x 1Ol2
4.76 4.70 4.60
74
1.45 x lo1’
23
0.45 x 10’’ 0.06 x io1’
234v
“#U
236v
Y
Decay Half Life (Yr)
3
2.48 x io5
7.13
X
10’
2.39 x 107
3
4.39 4.57 4.18
86
4.50 4.45
73 27
10
4
5.30 x lo6 0.63 x lo6 0.25 x
lo6
9.80 x lo6 3.61 x lo6
11 Table
4
Inforrnntion Relateci t o Members of' 'v IJ Chain
i h c 1i de
Decay Mode
22"Th
Q
Decay Half- L i f e
1.91 y r
Alpha Energy (MeV)
Erniss ion I'e r c en t a g e
5.42
5.20
71 28 0.6
5.68
95
5.33
a
'0
3.64 day
5.44
4.6
5.19
0.1;
a
52 s e c
6.25
'l"po
a
0.16 s e c
6.77
?12pn
R-
10.64 h
none
0
21231
0-(66.35) a( 33.7%)
60.5 m i r ? 60.5 min
riorie
0
6.09
27
6.05
70
8.77
100
k : '
L L
Rti
Activity
Oi'
1-00
each o f t h e uranium n u c l i d e s i s simply t h e product X3,
where X is t h e decay c o n s t a n t ana I3 i s t h e number of atoms of t h e part i c u l s r isotope.
A c t i v i t y of 228Th (and o t h e r members o f decay chain)
ii:ny be c a l c u l a t e d using t h e r e l a t i o n
where ( A ( Y ) ~ = 228Th a c t i v i t y ( a / s e c ) = 23%
decay c o n s t a n t
h2 = 22&rh decay c o n s t a n t
N1 = Number of
‘lJ%
atoms
N2 = Number of 228Th atoms
R e s u l t s of t h i s c a l c u l a t i o n a r e shown i n Tables
3 and 5 and completes
t h e c a l c u l a t i o n of t h e a l p h a a c t i v i t y . Runnalls and Boucher6 g i v e t h e neutron y i e l d f o r a l p h a s i n c i d e n t upon a b e r y l l i u m t a r g e t as a f u n c t i o n of a l p h a energy, E ( i n Mev), Nmax = 0.152 E3*65 neutrons p e r m i l l i o n a l p h a s .
(3)
T h i s r e l a t i o n i s expected t o b e good over t h e range of a l p h a e n e r g i e s
encountered i n t h e %RE
fuel.
Apparently l i t t l e work has been performed on t h e n e u t r o n s o u r c e from (a,n) reactions with f l u o r i n e .
The only neutron y i e l d d a t a we could lo-
c a t e was i n an a r t i c l e by S e g r e and Wiegand.’ g i v e n f o r a l p h a e n e r g i e s up t o 5.3 MeV. i n c r e a s i n g as a power f u n c t i o n of energy.
The y i e l d d a t a w a s only
Up t o t h i s energy, t h e y i e l d w a s
Assuming t h a t t h i s h e l d t r u e
up t o 8.77 Mev (as w a s t h e a p p a r e n t c a s e w i t h b e r y l l i u m ) , t h e data was extrapolated.
The a n a l y t i c e x p r e s s i o n f o r t h e n e u t r o n p r o d u c t i o n of
f l u o r i n e as a f u n c t i o n of a l p h a energy was found t o b e
Nmax
= 1.02 x lo‘* E6*83 neutrons p e r m i l l i o n a l p h a s .
Equations (3) and (4) a n a l y t i c a l l y d e f i n e t h e e x p r e s s i o n s t o b e used f o r t h e Nmax term i n Equation (1)
) i n t h e general equation converts t h e neutron y i e l d max from t h e y i e l d i n a pure medium t o y i e l d from a m i x t u r e . An e x p r e s s i o n , The term (N/N
which a g r e e s w e l l w i t h observed d a t a , = f o r c a l c u l a t i n g t h i s term i s
Y
16
(--->N N
n S
=
P P
max
where n
i
i s t h e number d e n s i t y of a n u c l i d e and Si i s t h e " r e l a t i v e atomic
s t o p p i n g power".
S u b s c r i p t "p" refers t o t h e p a r t i c u l a r n u c l i d e f o r which
t h e c a l c u l a t i o n i s being performed.
Number v a l u e s f o r "S" were o b t a i n e d
from a n a r t i c l e by Livingstone and Betheg where d a t a i s g i v e n f o r a v a r i e t y Table 9 g i v e s v a l u e s
o f elements as a f u n c t i o n of i n c i d e n t a l p h a energy.
f o r "S" f o r MSRE f u e l s a l t , o b t a i n e d by i n t e r p o l a t i o n o f t h e LivingstoneBethe data. Table 9 Relatiye Atomic Stopping Powers, Si
4
5
6
9
Li
0.55
0.55
0.55
Be
0.63
0.55 0.63
0.63
0.63
F
1.1
1.1
1.1
1.2
Zr
2.8
3.1
3-2
U
4.0
2.9 4.5
4.8
5 -0
Shown i n Table 10 are t h e c a l c u l a t e d v a l u e s f o r t h e f r a c t i o n a l y i e l d f o r b e r y l l i u m and f l u o r i n e as a f u n c t i o n of i n c i d e n t a l p h a energy.
I n brief,
t o c a l c u l a t e t h e neutron source from a p a r t i c u l a r a l p h a e m i t t e r , Equation (1) i s used.
Alpha a c t i v i t y ( A a ) may be o b t a i n e d from Table 3 o r
l a t e d u s i n g Equation ( 2 ) .
Using Equations (3) and
l a t e d f o r b o t h b e r y l l i u m and f l u o r i n e .
(4),
5 o r calcu-
Nmax may be c a l c u -
The a p p r o p r i a t e ( N / h a x )
may be
found i n Table 10. Multiplying these q u a n t i t i e s , one g e t s t h e s o u r c e from b e r y l l i u m and f l u o r i n e .
a p a r t i c u l a r alpha.
Addition o f these two g i v e s t h e t o t a l s o u r c e from
Table 10
F r a c t i o n a l Yie1.d Data f o r Be and F
4 079 0.695
Be
0
0
F
6
9
0.078 0.688
0.074
5 079
0.692
0.647
Source from 7 ~ ( ai,n) 'OB Haubenreich' found t h a t f o r lower energy a l p h a s (<5 MeV) l i t h i u m w a s n o t a s i g n i f i c a n t neutron producer i n t h e E R E .
To be s u r e t h a t it d i d
n o t become s i g n i f i c a n t a t h i g h e r a l p h a energies, t h e neutron s o u r c e from t h e 8.77-Mev a l p h a s w a s c a l c u l a t e d . Neutron y i e l d from l i t h i u m may be c a l c u l a t e d u s i n g t h e r e l a t i o n " N'=
Aa J E o
Np a(E) ( - d x / a ) dE.
4.3
Where
N = Neutron Y i e l d (n/sec)
Aa = a l p h a a c t i v i t y ( a l p h a s / s e c of energy E) Eo = Energy of i n c i d e n t a l p h a (Mev)
N = Number d e n s i t y of l i t h i u m P o(E) = Cross s e c t i o n f o r (a,n) r e a c t i o n
4.3
= Threshold energy f o r 7 L i ( a , n ) l 0 B r e a c t i o n .
The term (-dx/dE) was o b t a i n e d from an a r t i c l e by HarrisL1 i n which he p l o t s (-dx/dE) as a f u n c t i o n of a l p h a energy for a number of elements. For t h e MSRE f u e l mixture t h i s was found by t h e r e l a t i o n
18
where wi corresponds t o t h e weight f r a c t i o n of component i and (-dx/dE)i is t h e v a l u e t a k e n from Harris for t h e i
are gm*cm'2*Mev'1.
th
component.
U n i t s on (-dx/dE)
Table 11 g i v e s t h e v a l u e s of (-dx/dE)
for t h e components
of t h e MSRE f u e l mixture.
Table 11 f o r MRF, F u e l Components
(-dx/dE)
~
I-dxldE) x lo3
-~ ~~_
_
( g m -cm-2 SMev'lr
I n c i d e n t Alpha Energy (Mev) Element
Li
11
Be F
8.8 68.4
Zr
11
U
i
0.73
'
4
5
6
9
1.1
1.4 1.5 1.8 3.1 5.5
1.9 1.9
4.4
1.3 1.4 1.5 2.8 5 *o
3.9 7.3
1.4
1.6
1.9
2.5
1.2
1.3 2.5
2.4
~
~
Y
Lithium's microscopic cross s e c t i o n f o r (a,n) r e a c t i o n 4 reaches a maximum of
cv
250 mb f o r 7.1-Mev alphas, and drops e x p o n e n t i a l l y w i t h de-
c r e a s i n g energy.
at
-
Between 7.5 and 8.8 Mev t h e c r o s s s e c t i o n i s c o n s t a n t
150 mb.
By approximating t h e c r o s s s e c t i o n by s t r a i g h t l i n e s and c a r r y i n g o u t t h e i n t e g r a t i o n , t h e neutron source from w i t h l i t h i u m is found t o be U . l x lo6 n/sec,
g i b l e when compared w i t h t h e
-
8.77-Mev a l p h a r e a c t i o n s T h i s is s e e n t o be n e g l i -
lo8 n/sec from f l u o r i n e and b e r y l l i u m .
The lower energy a l p h a s w i l l produce p r o p o r t i o n a t e l y less due t o t h e e x p o n e n t i a l decay of t h e cross s e c t i o n a t lower e n e r g i e s .
20
REFERENCES
1.
P. N. Haubenreich, I n h e r e n t Neutron Source i n Clean MSRE F u e l S a l t , USAEC Report ORNL-TM-611, Oak Ridge N a t i o n a l Laboratory, August 27,
1963* 2.
Oak Ridge National Laboratory, MSRP Semiann. P r o g r . Rept. Aug. 31, 1967, USAEC Report ORNL-4191, p. 50.
3.
J . R. Engel, P. N. Haubenreich, and B. E. P r i n c e , E R E Neutron Source Requirements, USAEC Report ORNL-TM-935, Oak Ridge N a t i o n a l Laboratory, September 11, 1964.
4.
J . H. Gibbons and R . L. Macklin, Charged P a r t i c l e Cross S e c t i o n s ,
Phys. Rev.,
114, p. 571, 1959.
5.
E. Segre and C . Wiegand, Thick-Target E x c i t a t i o n Functions f o r Alpha P a r t i c l e s , USAEC Report LA-136,Los Alamos S c i e n t i f i c Laboratory, September 1944 ( a l s o i s s u e d as USAEC Report MDE-185).
6.
0. J. C . Runnals and R. R . Boucher, Neutron Y i e l d s from A c t i n i d e Beryllium Alloys, Can. J . Phys 34:949 (1956).
7.
J. H. Gabbons and R . L. Macklin, T o t a l Cross S e c t i o n f o r 'Be(a,n), The P h y s i c a l Review, 137, No. 6B. Bl5OB - B1509, 22 March 1965.
8.
J . M. Chandler, p e r s o n a l communication t o P. N. Haubenreich, Oak Ridge N a t i o n a l Laboratory, October 1967.
9.
M. S. Livingstone and H. A . Bethe, Nuclear Dynamics, Experimental, Revs. Mod. Phys., 9:272 (1937)
10.
.,
W. N. Hess, Nuetrons from (a,n) Sources, Annals of Phys.,
2: 115-133,
(1959) 11.
D. R. Harris, C a l c u l a t i o n of t h e Background Neutron Source i n New, Uranium-Fueled Reactors, USAEC Report WAPD-TM-220, B e t t i s Atomic Power Laboratory, March 1960.
21
ORNL-TM-2685 Internal Distribution
1.
2.
3. 4. 5. 6. 7.
8. 9. 10.
11. 12.
13. 14. 1.5. 16. 17. 18. 19.
R. J. C. S. H. S. E. R. E. G. R. J. E. W. W. J.
F. S. W.
G. A f f e l L. Anderson F. Baes J. Ball F. h u m a n E. B e a l l S. B e t t i s Blumberg G. Bohlmann E. Boyd B. Briggs M. Chandler L. Compere H. Cook B. C o t t r e l l L. Crowley L. C u l l e r . J. D i t t o P. E a t h e r l y R . Engel E. Ferguson M. F e r r i s P. F r a a s K. Franzreb N. Fry H. Gabbard B. G a l l a h e r
26. 27.
J. D. L. A. J. D. C. R.
28.
W. R. Grimes
29.
A. R. P. P. J. A. T. P. R. T.
20. 21.
22. 23.
24. 25.
30. 3132.
33. 34 35. 36. 37. 38. 39. 40.
G. Grindell H. Guymon H. Harley N. Haubenreich R. Hightower Houtzeel L. Hudson R. Kasten J. Ked: W. K e r l i n H. T. Kerr S. S. Kirslis
41. A. I. Krakoviak 42. T. S. mess 43. R. B. Lindauer 44. M. Lundin 45. R. N. Lyon 46, R. E. MacPherson 47. H. E. McCoy 48. H. C. McCurdy 49. C . K. McGlothlain 50-51. T. W. McIntosh, AEC 52
53. 54 55. 56. 57 58 59 60. 61. 62. 63-65. 66. 67 68. 69. 70 71.
72-80. 81. 82. 83 84. 85. 86. 87. 88. 89 90
H. L. J. A. R. E. A.
A. McLain
E. McNeese R. McWherter J. Miller L. Moore L. Nicholson M. P e r r y B. E. P r i n c e G. L. Ragan J . L. Redford M. Richardson M. W. Rosenthal A. W. Savolainen Dunlap S c o t t M. J. S k i n n e r A. N. Smith 0. L. Smith I. Spiewak R. C. S t e f f y , Jr. D. A. Sundberg J. R. T a l l a c k s o n R. E. Thoma D. B. Trauger K. W. West J. R. Weir M. E. Whatley G. D. Whitman J. C . White Gale Young
Wash.
22
I n t e r n a l D i s t r i b u t i o n (continued)
91-92. 93-94 94-97 98
99
100.
C e n t r a l Research L i b r a r y (CRL) Y - 1 2 Document Reference S e c t i o n (IIRS) Laboratory Records Department (LRD) Laboratory Records Department -Record Copy (LRD-RC) ORNL P a t e n t O f f i c e . & c l e a r S a f e t y Information Center (NSIC) External Distribution
101-115. 116.
Division of Technical Information Extension (M'IE) Laboratory and U n i v e r s i t y Division, OR0