HOME .I/":.,
HELP
*
a: V t
OAK RIDGE NATIONAL LABORATORY operated by
UNION CARBIDE CORPORATION NUCLEAR DIVISION for the
U.S. ATOMIC ENERGY COMMISSION ORNL- TM-2180
DATE-March
2
.. '
ELECTRICAL CONDUCTIVITY OF MOLTEN FLUORIDES. A REVIEW.
G. D. Robbins
.
ZI
"b, c
NOTICE This document contains information of a preliminary nature and was prepared primarily for internol use at the Oak Ridge National Loborotory. It i s subject to revision or correction and therefore does not represent o final report.
26, 1968
_ _ _LEGAL ~NOTICE T h i s report was prepared os an occount of Government sponsored work.
Neither the United States,
nor the Commission, nor any person acting on behalf of the Commission:
A. Maker any worronty or representation, expressed or implied, w i t h respect completeness, or usefulness of the any
information,
apparatus,
msthod,
t o the accuracy,
information contoined i n t h i s report, or that the use of
or process disclosed in t h i s report may not infringe
privately owned rights; or
B. Assumes any l i a b i l i t i e s w i t h respect to the use of, or for damages resulting from the use of any information, opporatus, method, or process disclosed i n t h i s report. As used i n the obove, “person
acting on behalf of the
Commission�
controctor of the Commission, or employee of such controctor, or contractor
of the Commission,
or employee of
includes ony employee or
t o the extent that such employee
such controctor
prepares,
disseminates,
or
provides access to, any informotion pursuont t o h i s employment or contract with the Commission, or h i s employment w i t h such controctor.
r
A
iii
ELECTRICAL CONDUCTIVITY OF MOLTEN FLUORIDES.
A REVIEW G. D. R o b b i n s
Reactor C h e m i s t r y D i v i s i o n Oak R i d g e N a t i o n a l L a b o r a t o r y Oak R i d g e , T e n n e s s e e
ABSTRACT/SUMMARY
A review of electrical c o n d u c t i v i t y measurements i n m o l t e n f l u o r i d e s y s t e m s c o v e r i n g t h e p e r i o d 1927 t o 1967 h a s b e e n made, w i t h p a r t i c u l a r e m p h a s i s on e x p e r i -
I t is p o i n t e d o u t t h a t t h e common p r a c t i c e of m e a s u r i n g r e s i s t a n c e w i t h a W h e a t s t o n e b r i d g e h a v i n g a p a r a l l e l r e s i s t a n c e and c a p a c i t a n c e , R and C i n t h e b a l a n c i n g arm c a n r e s u l t i n c o n s i d e r P P’ able e r r o r i f t h e r e l a t i o n R P = Rs[ 1 + Rp2CpZ (2IIf)’] is
mental approach.
n o t employed i n d e t e r m i n g t h e s o l u t i o n r e s i s t a n c e , Rs. The f r e q u e n c y d e p e n d e n c e o f t h e m e a s u r e d r e s i s t a n c e a n d t h e p r a c t i c e of e x t r a p o l a t i n g measured r e s i s t a n c e s t o i n f i n i t e f r e q u e n c y v e r s u s 1 / d f is examined i n terms of e l e c t r o d e p r o c e s s c o n c e p t s . A summary o f e x p e r i m e n t a l a p p r o a c h e s a n d r e s u l t s f o r 56 m o l t e n f l u o r i d e s y s t e m s
is p r e s e n t e d .
.~
r------lEGAL
I
1
ELECTRICAL CONDUCTIVITY OF MOLTEN FLUORIDES.
A REVIEW* Introduction I n v e s i t g a t i o n of t h e e l e c t r i c a l c o n d u c t i v i t y o f m o l t e n
s a l t s y s t e m s h a s been a n area o f l i v e l y r e s e a r c h i n r e c e n t y e a r s , a n d a number o f r e v i e w s h a v e a p p e a r e d w h i c h d e a l w i t h t h i s a s p e c t of t r a n s p o r t phenomena. (1-3)
I t w i l l be t h e
i n t e n t of t h i s review to l i m i t i t s e l f t o t h e s u b j e c t of conductance measurements i n molten f l u o r i d e s .
The c o n t a i n m e n t
p r o b l e m s e n c o u n t e r e d w i t h t h e s e m a t e r i a l s s e t them a p a r t from t h e o t h e r m o l t e n h a l i d e s w i t h respect t o e x p e r i m e n t a l d i f f i c u l t i e s a n d t h e c o n s e q u e n t p r e c i s i o n o f measurement w h i c h c a n be e x p e c t e d .
By l i m i t i n g t h i s r e v i e w t o f u s e d f l u o r i d e s , it
is hoped t h a t s u f f i c i e n t d e t a i l s may be p r e s e n t e d t o p e r m i t workers i n t h e f i e l d t o o b t a i n a comprehensive survey covering t h e p e r i o d 1927 t o 1 9 6 7 .
To o u r knowledge, n o s u c h r e v i e w
e x i s t s w h i c h a d d r e s s e s i t s e l f t o t h e q u e s t i o n s which w e p o s e be l o w . Many i n v e s t i g a t i o n s i n t h e p a s t h a v e been c o n c e r n e d w i t h c r y o l i t e - c o n t a i n i n g melts b e c a u s e o f t h e i r r e l e v a n c e t o t h e aluminum i n d u s t r y , a n d a r e v i e w o f t h e s e s y s t e m s h a s been g i v e n by G r j o t h e i m a n d M a t i a s o v s k y . (4) Renewed i n t e r e s t i n t h e t r a n s p o r t p r o p e r t i e s of f u s e d f l u o r i d e s i n g e n e r a l h a s r e s u l t e d from t h e i r u s e as f u e l , b l a n k e t , a n d c o o l a n t materials i n m o l t e n
s a l t reactors. ( 5 )
*R e s e a r c h
s p o n s o r e d by t h e U.S. A t o m i c E n e r g y Commission u n d e r c o n t r a c t w i t h t h e Union Carbide C o r p o r a t i o n . V
2
B e c a u s e o f t h e h i g h s p e c i f i c c o n d u c t a n c e of most mol t e n
s a l t s (1-6
Q-1
cm-'
1, (6
e x p e r i m e n t a l a p p r o a c h e s have t e n d e d
t o f a l l i n t o t w o groups''):
(1) u s e of c a p i l l a r y - c o n t a i n i n g
c e l l s , which r e s u l t s i n a c e l l c o n s t a n t of s e v e r a l hundred
cm-',
t h e c a p i l l a r i e s b e i n g c o n s t r u c t e d from e l e c t r i c a l l y
i n s u l a t i n g m a t e r i a l s ; or ( 2 ) u s e of m e t a l l i c c e l l s i n w h i c h t h e c o n t a i n e r is u s u a l l y one e l e c t r o d e , w i t h a s e c o n d e l e c t r o d e positioned i n the m e l t .
The l a t t e r t y p e o f c e l l s h a v e c e l l
c o n s t a n t s o f t h e o r d e r of a f e w t e n t h s c m - ' ,
requiring very
a c c u r a t e m e a s u r i n g b r i d g e s a n d d e t e r m i n a t i o n of l e a d resistances.
S i n c e t h e v a l u e of m e a s u r e d r e s i s t a n c e i n s u c h c e l l s
is l e s s t h a n
la,
errors due t o t e m p e r a t u r e g r a d i e n t s , c h a n g e s
i n c e l l c o n s t a n t w i t h t e m p e r a t u r e , a n d p o l a r i z a t i o n become a s i g n i f i c a n t problem.
Hence, c e l l s of t y p e (1) are c l e a r l y
d e s i r a b l e for u s e i n m o l t e n s a l t s .
However, e l e c t r i c a l l y
i n s u l a t i n g m a t e r i a l s for c a p i l l a r y c o n s t r u c t i o n w h i c h are r e s i s t a n t t o a t t a c k by m o l t e n f l u o r i d e s are scarce. Measurement o f e l e c t r i c a l c o n d u c t i v i t y i n m o l t e n s a l t s d i f f e r s from s i m i l a r s t u d i e s i n a q u e o u s s o l u t i o n s i n s e v e r a l significant aspects.
I t is o f t e n t h e p r a c t i c e t o employ some
form o f a W h e a t s t o n e b r i d g e '7)
( F i g u r e 1) i n w h i c h t h e t w o
u p p e r arms a r e m a t c h e d , s t a n d a r d r e s i s t a n c e s , a n d t h e impeda n c e of t h e c e l l i n one l o w e r a r m is b a l a n c e d by a v a r i a b l e impedance, 2 , i n t h e f o u r t h a r m .
The b a l a n c i n g impedance is
and c a p a c i t a n c e , RP cP , The s o l u t i o n r e s i s t a n c e , R s , a n d
usually a variable resistance, connected i n p a r a l l e l . solution-electrode
i n t e r f a c i a l c a p a c i t a n c e s , Cs,
are c o n s i d e r e d t o be i n s e r i e s ( 8 ) ( F i g u r e 2 ) .
i n the cell
By r e q u i r i n g
3 v a
o n e e l e c t r o d e t o h a v e a much g r e a t e r area t h a n t h e o t h e r , t h e impedance associated w i t h s u c h a n e l e c t r o d e becomes n e g l i g i b l e , a n d t h e e q u i v a l e n t c i r c u i t r e d u c e s t o t h a t shown i n F i g u r e 3 . ( A l t e r n a t i v e l y , o n e c a n employ e l e c t r o d e s o f s i m i l a r area a n d
t r e a t t h e c a p a c i t a n c e r e s u l t i n g from t h e i r s e r i e s c o m b i n a t i o n 1
as a s i n g l e t o t a l c a p a c i t a n c e ,
- 1
- r + r.) S I
The c a p a c i -
3 . 2
t a n c e r e s u l t i n g from t h e electrode leads is i n p a r a l l e l across t h e e n t i r e c e l l shown i n F i g u r e 2 .
However, a t f r e q u e n c i e s
o r d i n a r i l y e m p l o y e d , a n d w i t h some care i n p o s i t i o n i n g , t h i s c a p a c i t a n c e can be n e g l e c t e d . When a s i n u s o i d a l a l t e r n a t i n g p o t e n t i a l is i m p r e s s e d a c r o s s the cell, a sinusoidal alternating current results.
If t h e
p o t e n t i a l is i n s u f f i c i e n t t o c a u s e e l e c t r o c h e m i c a l r e a c t i o n s
t o o c c u r a t t h e electrodes, t h e e q u i v a l e n t c i r c u i t o f F i g u r e 3
is v a l i d , a n d t h e i n t e r f a c i a l c a p a c i t a n c e is c h a r g e d a n d d i s charged during each half-cycle
through t h e s o l u t i o n r e s i s t a n c e .
By e m p l o y i n g a n o s c i l l o s c o p e as t h e n u l l d e t e c t o r , one c a n b a l a n c e t h e c e l l impedance w i t h t h e p a r a l l e l c o m b i n a t i o n of R a n d Cp shown i n F i g u r e 1.
P The two b a l a n c e e q u a t i o n s (when t h e
s t a n d a r d r e s i s t a n c e s are matched) are RS
Rp
+
C P=1 cS
and RsRpCsCp(211f)Z
=
1
T h e s e may be combined i n t o RP
=
Rs[l
-F
CpZRp2(211f)2]
(3 1
I t is o f t e n t h e p r a c t i c e t o e q u a t e R
( t h e v a l u e o f t h e bridge P d i a l s ) t o Rs ( t h e t r u e s o l u t i o n r e s i s t a n c e ) . (9y10) ( I n t h e case
o f unmatched s t a n d a r d r e s i s t o r s , t h e i r r a t i o is u s e d . )
This
4 is u s u a l l y v a l i d i n a q u e o u s s o l u t i o n s w h e r e Rs a n d Cs a r e s u c h
a s t o r e s u l t i n R 2 C 2(211f)2 b e i n g n e g l i g i b l y s m a l l e r t h a n P P unity. However, i n m o l t e n s a l t s e x p e r i m e n t a l c o n d i t i o n s f o r t h e measurement o f e l e c t r i c a l c o n d u c t a n c e c a n r e s u l t i n c o n s i d e r a b l e e r r o r i f t h e s e e q u a t i o n s are n o t c o n s i d e r e d when u s i n g p a r a l l e l components i n t h e b a l a n c i n g arm o f a W h e a t s t o n e bridge.
For e x a m p l e , on r e w r i t i n g e q u a t i o n s ( 2 ) and ( 3 ) i n
t h e form
Rp
=
Rs[l
1
Cs2Rs2 (211f)2
4-
1
(4)
i t is e v i d e n t t h a t i n m o l t e n s a l t s , w h e r e RsZ may be smaller by a f a c t o r of 1 O 1 O
t h a t i n aqueous s o l u t i o n s
*
(Cs h a v i n g a p p r o x i -
m a t e l y s i m i l a r v a l u e s ( 1 3 ) ) , a n a w a r e n e s s o f t h e s e r e l a t i o n s is necessary. U s e o f e q u a t i o n ( 3 ) t o c a l c u l a t e Rs
i s l i m i t e d by t h e
a c c u r a c y w i t h which t h e v a l u e s of t h e v a r i a b l e capacitance,
C p , a n d t h e f r e q u e n c y a r e known.
U s e of p r e c i s i o n c a p a c i t o r s
c a n be a v o i d e d by e m p l o y i n g a b r i d g e i n w h i c h t h e b a l a n c i n g components a r e i n s e r i e s . ( 1 4 )
Then i n t h e case of no e l e c t r o -
c h e m i c a l r e a c t i o n , t h e v a l u e o f Rs
is w e l l r e p r e s e n t e d by t h e
r e a d i n g on t h e b a l a n c e d b r i d g e ; however, t h i s method does r e q u i r e t h e u s e of l a r g e c a p a c i t o r s . When a s u f f i c i e n t l y l a r g e a . c . p o t e n t i a l i s i m p r e s s e d on t h e c e l l t h a t c h a r g e is t r a n s f e r r e d a c r o s s t h e s o l u t i o n -
e l e c t r o l y t e i n t e r f a c e s d u r i n g part of each h a l f - c y c l e ,
corres-
p o n d i n g t o a n e l e c t r o c h e m i c a l r e a c t i o n , t h e s i t u a t i o n becomes
-----
c o n s i d e r a b l y more c o m p l e x . ~
However, i t is u n d e r t h e s e c o n d i t i o n s
The m e a s u r e d r e s i s t a n c e o f 0 . 0 0 0 5 m K C 1 i n c e l l s employed
by J o n e s a n d B o l l i n g e r (I1) w a s a p p r o x i m a t e l y 5 0 , 0 0 0 0.
Cuthbertson
a n d Waddington ( 1 2 ) r e p o r t a m e a s u r e d r e s i s t a n c e o f a p p r o x i m a t e l y 0 . 5 $2 i n m o l t e n c r y o l i t e .
W
5
.
W
t h a t c o n d u c t i v i t y measurements are u s u a l l y p e r f o r m e d .
Based
on t h e work o f J o n e s a n d C h r i s t i a n , ( 1 5 ) r e s i s t a n c e i n a q u e o u s s y s t e m s is g e n e r a l l y m e a s u r e d a t a s e r i e s o f f r e q u e n c i e s a n d e x t r a p o l a t e d t o i n f i n i t e frequency employing t h e f u n c t i o n a l
-1
form f-’.
U s e of t h i s p a r t i c u l a r f u n c t i o n a l form is a t t r i -
b u t e d ( 1 5 ) t o Warburg ( 16’17) a n d Neumann (18) who, on t h e b a s i s of F i c k ’ s l a w s of d i f f u s i o n , p r e d i c t e d t h a t t h e p o l a r i z a t i o n r e s i s t a n c e ( t h a t p a r t o f t h e measured r e s i s t a n c e d u e t o elect r o d e p o l a r i z a t i o n ) was i n v e r s l y p r o p o r t i o n a l t o d f . A p p l y i n g t h e c o n c e p t s r e s u l t i n g from electrode p r o c e s s (19-21) studies,
o n e may e n v i s i o n t h e e q u i v a l e n t c i r c u i t shown
i n Figure 4 f o r an e l e c t r o d e - s o l u t i o n c h a r g e is b e i n g t r a n s f e r r e d .
i n t e r f a c e across which
r e p r e s e n t s t h e impedance r associated w i t h t h e r e a c t i o n , which is i n p a r a l l e l w i t h t h e
solution-electrode
Z
i n t e r f a c i a l capacitance.
Under t h e e x a c t -
z r may be re-
i n g a s s u m p t i o n s o f f a r a d a i c impedance s t u d i e s ,
p r e s e n t e d by a f r e q u e n c y - i n d e p e n d e n t r e s i s t a n c e , 0, i n s e r i e s w i t h a f r e q u e n c y - d e p e n d e n t impedance, -W-, ance.
t h e Warburg imped-
The l a t t e r is c o n v e n i e n t l y r e p r e s e n t e d as a r e s i s t a n c e
a n d c a p a c i t a n c e i n s e r i e s , Rr a n d C r , (Figure 5).
a t constant frequency
A t a g i v e n f r e q u e n c y t h e impedances r e s u l t i n g from 1
Rr a n d Cr are e q u a l .
However, b o t h v a r y as f - ” .
The a s s u m p t i o n s upon w h i c h t h e m a t h e m a t i c a l a n a l y s i s 1 1 w h i c h r e s u l t s i n f-” d e p e n d a n c e o f Rr a n d 2nfcr rests i n c l u d e 1 ) s e m i - i n f i n i t e l i n e a r d i f f u s i o n of r e a c t a n t s and p r o d u c t s a n d 2 ) a s m a l l a m p l i t u d e a . c . p o t e n t i a l s u p e r i m p o s e d on a n e t d.c. p o l a r i z i n g p o t e n t i a l .
T h e s e are n o t t h e c o n d i t i o n s of
c o n d u c t i v i t y measurements.
However, d u r i n g t h a t p a r t of e a c h
6 h a l f - c y c l e d u r i n g w h i c h r e a c t i o n is o c c u r r i n g a t t h e e l e c t r o d e s , t h e e q u i v a l e n t c i r c u i t o f F i g u r e 4 is a u s e f u l c o n c e p t , e v e n though 2
r
may n o t be t r e a t e d r i g o r o u s l y a c c o r d i n g t o F i g u r e 5 .
T h a t t h e above c o n s i d e r a t i o n s lead t o t h e same f r e q u e n c y d e p e n d e n c e as t h a t e x p e r i m e n t a l l y d e t e r m i n e d f o r many conduct i v i t y m e a s u r e m e n t s (15? r e n d e r s t h i s c o n c e p t u a l a n a l y s i s worth cons i d e r i n g
.
I n b r i e f , t h e n , o n e may c o n s i d e r t h e e q u i v a l e n t c i r c u i t of Figure 4 as a rough analog of t h e s o l u t i o n r e s i s t a n c e , electrode-solution
i n t e r f a c i a l c a p a c i t a n c e , and reaction
impedance ( b e a r i n g i n mind t h a t Zr c a n n o t be r e p r e s e n t e d e x a c t l y by a n y f i n i t e c o m b i n a t i o n o f r e s i s t a n c e , c a p a c i t a n c e , and i n d u c t a n c e which w i l l r e n d e r i t f r e q u e n c y i n d e p e n d e n t ) . During t h a t p a r t of each half-cycle
i n w h i c h t h e p o t e n t i a l is
below t h a t w h i c h r e s u l t s i n a n e l e c t r o d e r e a c t i o n , t h e e q u i v a l e n t c i r c u i t of Figure 4 reduces t o t h a t of Figure 3 , i . e . , becomes i n f i n i t e . I t is a l s o u s e f u l t o c o n s i d e r t h e e q u i r v a l e n t c i r c u i t o f F i g u r e 4 i n view o f t h e p r a c t i c e o f e x t r a -
Z
p o l a t i n g measured r e s i s t a n c e t o i n f i n i t e frequency.
I t can
be s e e n t h a t a t i n f i n i t e f r e q u e n c y t h e impedance o f Cs is
i n f i n i t e l y l e s s t h a n t h a t of Z r ,
and F i g u r e 4 a g a i n r e d u c e s
t o Figure 3. I t s h o u l d be e m p h a s i z e d t h a t w h i l e one m e a s u r e s r e s i s t -
a n c e a t a series o f f r e q u e n c i e s and e x t r a p o l a t e s t o i n f i n i t e f r e q u e n c y , one does n o t make measurements a t f r e q u e n c i e s which a p p r o a c h i n f i n i t y .
I n f a c t , v e r y h i g h f r e q u e n c y measure-
m e n t s ( i n t h e m e g a h e r t z r a n g e ) are t o be a v o i d e d b e c a u s e of t h e i n c r e a s e d a d m i t t a n c e of t h e l e a d s a n d t h e f a c t t h a t a t v e r y h i g h f r e q u e n c i e s o n e ceases t o m e a s u r e a p r o p e r t y a s s o i c a t e d w i t h i o n i c
7 m o b i l i t y a n d o b s e r v e s p r o p e r t i e s a s s o c i a t e d w i t h d i p o l e moments and p o l a r i z a b i l i t i e s . viz, -
Hence t h e q u e s t i o n o f c o n c e r n r e m a i n s
w h a t f u n c t i o n a l form of t h e f r e q u e n c y d o e s o n e employ t o
e x t r a p o l a t e t h e measured r e s i s t a n c e t o i n f i n i t e frequency? R o b i n s o n a n d S t o k e s ( 2 2 ) c o n s i d e r t h i s q u e s t i o n i n terms o f electrode p r o c e s s c o n c e p t s as a p p l i e d t o a q u e o u s media a n d give balance equations for a bridge with a parallel-component b a l a n c i n g a r m , a s s u m i n g v a r i o u s r e l a t i v e m a g n i t u d e s of Rs, 0, a n d Rr
.
Under t h e c o n d i t i o n s employed by J o n e s a n d C h r i s t i a n , ( 1 5 )
1
f-'
d e p e n d e n c e is p r e d i c t e d .
Robinson and S t o k e s c o n c l u d e t h a t
o n e s h o u l d m e a s u r e r e s i s t a n c e as a f u n c t i o n o f f r e q u e n c y a n d e x t r a p o l a t e t o i n f i n i t e frequency i n accordance w i t h t h e observed behavior.
T h i s is a l s o t h e c o n c l u s i o n of N i c h o l a n d FUOSS,( 2 3 )
who o b s e r v e d a
f-I
f r e q u e n c y d e p e n d e n c e of r e s i s t a n c e i n m e t h a n o l
solutions. I n m o l t e n s a l t s f r e q u e n c y d e p e n d e n c e of t h e r e s i s t a n c e h a s been r e p o r t e d a t p o l a r i z i n g p o t e n t i a l s much l o w e r t h a n r e q u i r e d
for f a r a d a i c p r o c e s s e s . ( 2 4 * 2 5 )
Buckel and T s a u s s o g l o u (2 6 , have
found t h a t measured r e s i s t a n c e v s . f r e q u e n c y p l o t s show a p l a t e a u in t h e range 1 0 - 1 0 0 k H z i n aqueous potassium c h l o r i d e a n d m o l t e n
p o t a s s i u m bromide.
They s u g g e s t t h a t e x t r a p o l a t i o n of r e s i s t a n c e
1
vs. -
f-"
would l e a d t o e r r o n e o u s c o n d u c t a n c e s a n d t h a t o n e s h o u l d
s t u d y f r e q u e n c y d i s p e r s i o n i n a p a r t i c u l a r a p p a r a t u s and s e l e c t
a frequency-independent r e g i o n f o r performing conductivity experiments.
D e N ~ o i j e r ' ~r e~p)o r t e d t h a t i n m o l t e n n i t r a t e
m e l t s p l o t s of measured r e s i s t a n c e
E.
-1
f - 2 were n o t l i n e a r , b u t
a p p r o a c h e d l i n e a r i t y as t h e f r e q u e n c y a p p r o a c h e d i n f i n i t y .
His
8 W
v a l u e s o f m e a s u r e d r e s i s t a n c e a t 2 0 kHz o n l y d i f f e r e d from v a l u e s e x t r a p o l a t e d t o i n f i n i t e f r e q u e n c y by a b o u t 0 . 1 %. W i n t e r h a g e r a n d Werner ( 2 8 ' 2 9 ) h a v e c o n s i d e r e d f r e q u e n c y d i s p e r s i o n i n m o l t e n n i t r a t e , c h l o r i d e , and f l u o r i d e m e l t s and have a p p l i e d "electrical l o c u s c u r v e t h e o r y " (30) t o t h e i r r e s u l t s o b t a i n e d e m p l o y i n g a Thomson-type b r i d g e .
They c o n c l u d e t h a t a t s u f f i c i e n t l y h i g h
f r e q u e n c i e s m e a s u r e d r e s i s t a n c e becomes i n d e p e n d e n t o f f r e q u e n c y , a n d t h e y employ a m e a s u r i n g f r e q u e n c y of 5 0 kHz.
Therefore, i n
t h i s r e v i e w p a r t i c u l a r a t t e n t i o n w i l l be g i v e n t o t h e o b s e r v e d b e h a v i o r of r e s i s t a n c e w i t h f r e q u e n c y a n d t o t h e c o n d i t i o n o f t h e electrode s u r f a c e s , s i n c e i n a q u e o u s mdeia i t is observed t h a t f r e q u e n c y d i s p e r s i o n is less i n cases o f h e a v y p l a t i n i z a t i o n ( i n c r e a s e d C,).
(11)
I n l i g h t of the foregoing d i s c u s s i o n t h e f o l l o w i n g informat i o n w a s s o u g h t from e a c h s t u d y w h i c h was c o n s u l t e d : A.
C e l l material, its g e n e r a l d e s i g n , and t h e r e s u l t i n g c e l l
constant,
( ! , / a ) , or g e n e r a l r a n g e o f m e a s u r e d r e s i s t a n c e ,
B.
E l e c t r o d e m a t e r i a l , s h a p e , s i z e , and s u r f a c e c h a r a c t e r .
C.
Type of b r i d g e employed.
D.
F r e q u e n c y r a n g e employed.
E.
Dependence o f m e a s u r e d r e s i s t a n c e on f r e q u e n c y .
F.
Voltage a p p l i e d t o t h e bridge.
G.
Results.
*
*
R e s u l t s a r e r e p o r t e d e i t h e r i n terms of t h e
The g e n e r a l t y p e s of b r i d g e c i r c u i t s employed a r e shown i n Appendix I a s a n a i d i n d e s c r i p t i o n . The c i r c u i t s a c t u a l l y For employed were u s u a l l y m o d i f i e d v e r s i o n s of t h o s e shown. d e t a i l s of c i r c u i t y , t h e r e a d e r is r e f e r r e d t o t h e c i t e d work.
9 Y
s p e c i f i c conductance,
K
,
t h e e q u i v a l e n t c o n d u c t a n c e , Aeq,
or t h e molar c o n d u c t a n c e , Am.
These q u a n t i t i e s are d e f i n e d
as
Aeq
= K.
Am
=
equivalent weight density
(6)
.molecular weight
(7)
density
These q u a n t i t i e s are r e p o r t e d as f u n c t i o n s of t e m p e r a t u r e f o r t h e minimum, maximum, a n d o n e i n t e r m e d i a t e v a l u e f o r p u r e s a l t s .
For b i n a r y m i x t u r e s a 3 x 3 g r i d a l s o s t a t i n g t h e extremes a n d o n e i n t e r m e d i a t e v a l u e o f c o m p o s i t i o n is employed where convenC o n d u c t i v i t i e s o f m i x t u r e s o f more t h a n two components
ient.
a r e p r e s e n t e d i n a manner d e s i g n e d t o c o n v e y maximum i n f o r m a t i o n . The t a b u l a t i o n is o r d e r e d a c c o r d i n g t o t h e s y s t e m u n d e r c o n s i d e r a t i o n ; a n d w i t h i n e a c h s y s t e m , by d a t e o f p u b l i c a t i o n , the earliest appearing f i r s t .
Where one i n v e s t i g a t i o n h a s
c o v e r e d s e v e r a l s y s t e m s , a c r o s s r e f e r e n c e is g i v e n . v a l u e s of
K
Additional
a n d A may be f o u n d i n J a n z ' s Molten S a l t s Handbook ( 3 1 )
f o r many o f t h e s y s t e m s r e p o r t e d h e r e .
A s previously s t a t e d ,
t h e p r i m a r y c o n c e r n o f t h i s r e v i e w is t o p i c s A-F.
The r e s u l t s
p r e s e n t e d h e r e i n are g i v e n f o r comparison and c o m p l e t e n e s s and
w e r e , i n a l l cases, t a k e n from t h e o r i g i n a l p u b l i c a t i o n s (exception:
Appendix 11).
I t w i l l be o b s e r v e d below t h a t a number of p u b l i c a t i o n s
h a v e n o t a d d r e s s e d t h e m s e l v e s t o some of t h e q u e s t i o n s r a i s e d above.
If t h i s r e v i e w s e r v e s o n l y t o remedy t h i s p r a c t i c e , i t
is c o n s i d e r e d j u s t i f i e d .
TABULATION I'ridge
-.( D e t e c t o r )
f Range (kHz)
R
Wheatstone (telephone)
- ..
.
..
~
electrodes.
-
~
-
__
-
P t c r u c l b l e ( 0 . 2 mm wall) IR)
r,. ...
-
f
N.S. Not Stated
VPP (v)
N.S
TT Specially devel oped by E. F a i r s t e i n . (34) f range-.2-6 kH R range-.oi-ion ("scill0sc"pe)
905 950 995
20.3 23.4 27.2
1040 IORO
5.74 5.95
997
w
N.S.
W h e a t s t o n e , no capacit u r s (oscilloscope)
appreciably between 1 and
(osrilloncope)
a t lower f , independent a t
Jones ( n u l l detector)
1-20 kHZ
-
Kelvin I
extrapolated t o f - m
0.02 R Crucible and a P t c y l i n d e r (area 2 cm'), b o t h p l a t l n i z e d
-
$3
ii3
~
-~
1003
4.960
ion6 1138
5.179
e-1.2
Aeq
860 1000
4.14 1.28 4.77
869
Y
900
#2
42
#2
5.15
Y
.Xeq
~
1040
113
(* 1%)
5.335 =
91
I
_ I
-
(*several %) 5.2,-
1020
K
ii2
=
0-1.05
li
iil
;+-
Results
-
___
l;raphttp crucible ( i d 3.5", 5" ~ ( m t a i n i n gL BN c y l i n d e r s ( i d enoase,d I " .. vraD . h i t P and e n l a r g e d a t toI) t o ~s c c a_ m o d a_t e r ~ t ' o d e_ a .( f /~ aj 100cn' _l r r t _ P t c r u c i b l e ( 4 0 0 ml), ( ? / a ) 0.0815cm' H e m i s p h e r i c a l P t e l e c t r o d e f i . platinized originally. _.
VII.
-
5.29
-
+ 5.64x10-'(T-1I13O0C)
156.6
(t19
(is t o in%) -3.493
+ 1.480x10-zT(oC)
-6.60R~lO'~T~
(o-.oo~~-~c~-~)
System
[R)
Rcf
Cell or ( j / a )
Bridge (Detector)
Electrodes
f Range
R vs. f
(kHz)
VPP (V) _ .
#3
#3
__
14
KF
2R
#4
#4
iy4
VgO, s i n g l e c r y s t a l , d i p c e l l ; P t
C o n t a i n e r and P t e l e c t r o d e
Jones
.5-1(
:i2
#2
#2
'4
29
:: 43
33
$4
Y4
859 938 1012
3.573 3.793 4.021
N.S.
905
3.77
Y2
725921
u
737 784 852
2.51 2.73 3.03
590 670
4.0* 6.0*
700 800 950
0.71 x 15.3 x 236 x
1418
Y
#4
940 990
4.75* 5.W
#4
970
2.2*
-
1110
2.5*
#4
900
3.2,*
960
3.7'
-
cOntalner
v a r i e d <0.3%
I
*2
#15
#2
#15
#15
__ #4
#4
Pt-Rh (?/a)
20
I
CaF,
146
I Carbon
(20%) c r u c i b l e ( i d o r .28cm-I
=
2",
h t . = 2+*) C r u c i b l e a n d P t - R h
= .ll
crucible
]Yo e l e c t r o d e s
(20%)
bob
(+2%)
__
"Wheatstone 2-10 R-C b r i d g e " ( s c o p e or VTVM)
I N.S.
f independenl 2 - 1 0 kHz
N.S.
__ 1N.S.
N.S.
N.S.
=
-4.511 + 1 . 6 4 2 ~ 1 0 - ' T ( ~ C ) ((I-. 009R-' cm-' -7.63 Z X ~ O - ~ T ~
)
lo-' (tlO%)
= 3.56
_ .
#4 22
CuF,
28 29
#4
#4
#4
#4
#4
zi
ZnF,
28 29
i,4
#4
#4
#4
#4
24
PbF,
28
l ~ 4
#4
#4
84
#4
#4
820 1000
5.1* 5.8.
-
29 25
KBF,
28 L9
1'4
#4
#4
#4
#4
#4
545 569 652
1.052 1.1Zb 1.245
26
Na,TaF,
28 29
114
#4
#4
#4
#4
54
702 733 814
1.165 1.396 1.595
27
K,TiF,
28
"4
#4
#4
#4
#4
#4
843 888 976
1.346 1.435 1.604
64
d14
747 800 887
0.7285 0.9193 1.0366
__ 29
..
-2
t-J
P
... . .- . I,z,AIF6
- .. .
N~,AIF;
iI
3..
Nn 3 A l F,,
:f,
Y6
A 1 F,
Y7
#7
Nn,AlF6
I'3
#3
N.7,
1000
2.80
1040
2.90
1080
3.00
1013
M
1000
2.80* 2.958
1'1
1h
K,AIF,
37
I.iF ThF,
- && (
several9
2.82* 284 a t 10100 296 a t 1040'
H4
Y4 h n t a i n e r and P t rod (d
Nn,AIF,
2.744
A-
lo60 Nil, AIFa
-
Aeq
-
Thomaon p l u s
3 mm)
phase I n d i c a t n
HJ
Y3
1000
2.84 2.92
in4n
loan
3.00
1000 1060
2.22' 2.42.
-
.~~ ~ . .
LIF
15
+
ThF
-
&(myq)
7.14 + 10.97x10-'(T-H8O0C) Aeq 117.2. for fl 1 . 2
78-22(.4.)
2.50 + 7.58x10-'(T-64OoC) .zeq 2 9 . 9 . for 0 1.2
I
50.2-49.H(rn%)
I
- --
,z=q 3H
LxFtUF,
85 I
A"
60-4O(n%)
x
x
-~ NaF + CaF, (6 7
C u r c i b l c a n d P t rod, b o t h p l a t l n i z e d or l g i n a l l y
Carey-Foster
900 1000
W'l,)
1100
.
-
e -
+ 4.19x10-'(T-820째C)
3 1 . 0 , for
1.2
,*,n
7.55 + 5.86x10-'(T-900째C)
-
9 9 . 3 , for e 1.2 2 . l i + 5.68x10-'(T-70O0C) 2 3 . 8 . for
e
1.2 2.89 + 3.29x10-'(T-9OO0C) heq 33.5. for e 1.2 (114.)
40-60(m%)
',
2.13
--
~~q
.~ >
-
4.837 5.373 5.879
~
(*.5%)
Svstcm
Cell
- . Ket
___ ~.
Ra6ge
Bridge (Detector)
Electrodes
1\39
1139
Hot-pressed Be0 tube in a cylindrical Pt crucible <!/s) 24 cm-'
115
1139
Pt crucible across bottom of the tube and Pt rod at top
439
1139
I
#39
#39 #39
#39
N.S.
and fl in parallel 0.ci110sc0
Results or .4(cmln-'eq-'
p(oc) -
(kHz)
N.S
u(n-' em-'
?OO 1000 1100
4.441 4.961 5.642
300
4.027 4.602 5.319
1000 1100
*
E % g 30.52 &)m . r (1.73 Ts;m 0.92 565'
730'
k5
#5
m)
67-33(&)
#5
I #5
#5
#5
I
=
-
-
NaBF,
Described in R e f . 51, not readily available
Pt electrodes
Wheatstone, with balancing
5
N.S.
d
-
(oscillosco~~
#6
#b
#6
Na,AlF6
#45
Pt cell
#4 5
#45
1 I
46
#45
-
645
N.:
(oscilloscope)
-
(*lo%)
~
1.48 + 5.23~10-~(T-800~C) Aeq 28.6, for e * 1.2 (*lqa) I(
K
=
~
--
=
65-35(m%)
1.37 + 4 . 6 5 ~ 1 0 - ~ ( T - 7 0 0 ~ C ) Aeq 26.6, for 8 1.2
25-75(n%)
2.18 + 3.56~lO-~(T-90O~C) Aeq = 36.9, for e = 1.2 (Llqo)
w;s;3 40-60(w%) 10-90(w%)
#6
4 45
* .5%)
2.81 + 3.56~lO-~(T-850~C) 3%) Aeq 57.7, for e 1.2
5 0-5 0 (m%) - 35.7-64.3(a%)
#6
N.S.
N.S.
N.S
(
1.76 + 3.88x10-'(T-80OoC) 1.2 28.1, for e
=
I
* .5%)
3.49 + 3.74x10-'(T-90O0C) Aeq 71.3, for 0 1.2 I
Aeq
50-50(.%)
(
885'
- 50-50(m%)
#5
#5
(mol-' ) )
K
K
~
-
=
so
450'
0,905 2.408
6.350 8.801
P
800' ?Ti02 14.105 14.978
W
1000D
;040째
1080'
A ~ ~ O O o
3.19 3.12
3.30 3.23
3.41 3.33
99 100
450'
650'
-
40-60(w%) 2.255 3.601 lO-sO(w%) 0.281 7data taxen from grapns)
800' -KT61 11.495 12.703
f
System CaFI 4 Nn,AlF,
Rrf 53
12
.R:,
Cell or V / a )
G r a p h i t e c r u c i b l e K R j W 0.511
Bridge (Detector)
Electrodes
Carbon anode and m o l t e n A 1 cathode
Wheatstone, and e* i n
Range
(w;)i
;,;;, i
f.
d f'*
( 1 I ti3
/t6
11
I
*6
#3
43 43
1010 1040 AlF -Na AIF * - T ;0 h
*1070'
2.5-97.5(1%) 7.5-92.5(~%)
2 . 86
AlF,-NI AlF . - 82'1(&) 11.6-88.4(m%)
m
#4R
P48
t48
&6
&6
46
#P
t 3
#3
13
#3
C u r r e n t e l e c t r o d e s : crucible and P t spherc; potential electrodea: c r u c i b l e and P t c y l i n d e r s u r r o u n d i n g mphcre
No bridge: VTW a n d ammeter
.5
N.S.
N.S.
P55
155
455
232
242
.
740
2.12'
880
2.R2*
565 675 815
1.18' 1.528
1000'
2.68
1040'
10BOo
rn
276
2.77
2.86
'?:0Oo
7Fb 88
1.80'
"#55
#55
NIP-ZrF -VF 33.5-4046.fim%) 50-46-4 ( d o )
565' m 8 0.79
730' m 8 1.08
885'
P
.r
n 3 1.60
* I n t e r p o l a t e d f r a a l i n e a r p l o t of
I
VS.
T
15
REFERENCES 1.
J a n z , G. J. and R. D. Reeves, "Molten-Salt T r a n s p o r t P r o p e r t i e s , " i n Adv.
Electrolytes
-
i n Electrochem.
and E l e c . Eng., V o l . 5 , C . W. T o b i a s , E d . , John Wiley and Sons, New York, 1967. 2.
Sundheim, B. R . ,
" T r a n s p o r t P r o p e r t i e s of L i q u i d E l e c t r o -
--
l y t e s " i n F u s e d S a l t s , B. R . Sundheim, E d . ,
McGraw-Hill,
New York, 1964. 3.
Klemm, A . ,
" T r a n s p o r t P r o p e r t i e s of M o l t e n S a l t s , " i n
Molten S a l t Chemistry, M. Blander, Ed.,
John Wiley and
Sons, New York, 1964. 4.
--
G r j o t h e i m , K. and K. Matiasovsky, T i d s s k r . K j e m i Bergv.
M e t a l l u r g i , 2 6 , 226 ( 1 9 6 6 ) . 5.
G r i m e s , W. R . ,
"Materials P r o b l e m s i n M o l t e n S a l t Reactors ,"
i n M a t e r i a l s a n d F u e l s for High T e m p e r a t u r e Nuclear E n e r g y A p p l i c a t i o n s by M . T. Simnad a n d L . R . Zumwalt, t h e M.I.T.
Press, Mass., 1 9 6 4 . 6.
Y a f f e , I . S . a n d E. R . Van A r t s d a l e n , J . P h y s . Chem., 60,
1125 (1956). 7.
J o n e s , G . and R . C . J o s e p h s , J . Am. Chem. S O C . , 5 0 , 1049 (1928).
-
8.
Grahame, D . C . ,
9.
D a n i e l s , F., e t a l . , Experimental P h y s i c a l Chemistry, 5 t h
J . Am. Chem. S O C . , 6 3 , 1 2 0 7 ( 1 9 4 1 ) .
ed., McGraw-Hill,
10.
New York, 1 9 5 6 , p. 3 9 6 .
G l a s s t o n e , S . a n d D. L e w i s , E l e m e n t s of P h y s i c a l C h e m i s t r y , Van N o s t r a n d , P r i n c e t o n , N e w J e r s e y , 1 9 6 0 , p. 4 3 0 .
11.
J o n e s , G . a n d G. M .
B o l l i n g e r , J . Am. Chem. S O C . , 53, 411
(1931). 12.
C u t h b e r t s o n , J. W. 3 2 . 745 ( 1 9 3 6 ) .
a n d J . Waddington, T r a n s F a r a d a y S O C . ,
13.
K . E. J o h n s o n , a n d H . A . L a i t i n e n , i n M o l t e n
Liu, C.H.,
S a l t C h e m i s t r y , M.
Blander, Ed.,
Interscience Publishers,
N e w York, 1 9 6 4 , p . 715. 14.
R o b b i n s , G . D. a n d J . B r a u n s t e i n , Reactor C h e m i s t r y D i v i s i o n A n n u a l Progress R e p o r t for Period E n d i n g
December 3 1 , 1 9 6 7 , ORNL-4229, 15.
p.
57.
J o n e s , G . a n d S . M . C h r i s t i a n , J . A m . Chem. S O C . , 5 7 , 272 (1935).
16.
Warburg, E . , Wied. Ann. P h y s i k , 6 7 , 493 ( 1 8 9 9 ) .
17.
Warburg, E . , D r u d e Ann. P h y s i k , 6 , 125 (1901).
18.
Neumann, E . , Wied. Ann. P h y s i k , 67, 500 (1899).
19.
Grahame, D . C . ,
J. Electrochem. SOC., 9 9 , 370C ( 1 9 5 2 ) .
20.
Grahame, D . C . ,
Ann. Rev. P h y s . Chem., 6 , ( 1 9 5 5 ) , pp. 345-6.
21.
Delahay , P.
,
N e w I n s t r u m e n t a l Methods i n E l e c t r o c h e m i s t r y ,
I n t e r s c i e n c e P u b l i s h e r s , N e w York, 1 9 5 4 , pp. 146-168. 22.
R o b i n s o n , R . A . a n d R . H. Stokes, E l e c t r o l y t e S o l u t i o n s , B u t t e r w o r t h s , London, 2nd e d . ( r e v i s e d ) ,
23.
Nichol, J. C . and R . M.
1 9 6 5 , pp. 88-95.
FUOSS, J . A m . Chem. S O C . , 77, 198
(1955). 24.
H i l l s , G.
-
J . a n d K . E. J o h n s o n , J . E l e c t r o c h e m . S O C . , 1 0 8 ,
1013 (1961). 25.
H i l l , D. L . , G . J . H i l l s , L. Young, a n d J . O'M.
Bockris,
J . E l e c t r o a n a l . Chem., 1, 79 ( 1 9 5 9 ) .
26.
B u c k l e , E . R . a n d P. E . T s a o u s s o g l o u , J . Chem. S O C . , London, 667 ( 1 9 6 4 ) .
27.
De N o o i j e r , B . , "The E l e c t r i c a l C o n d u c t i v i t y of M o l t e n N i t r a t e s a n d B i n a r y N i t r a t e s , ' I t h e s i s , U n i v e r s i t y of A m s t e r d a m , The N e t h e r l a n d s , 1 9 6 5 .
W
17 W
28.
W i n t e r h a g e r , H. a n d L . Werner, F o r s c h u n g s b e r . des W i t s c h a f t s - u . Verkehrsministeriums Nordrhein-Westfalen,
29.
Ibid., -
30.
Oberdorfer, G . ,
No.
438, 1957.
N o . 341, 1956.
-
L e h r b u c h der E l e k t r o t e c h n i k , B d . 1 1 , 1 9 4 4 ,
p. 2 1 2 .
31.
J a n z , G . J . , M o l t e n S a l t s Handbook, Academic P r e s s , N e w York, 1 9 6 7 .
2. E l e k t r o c h e m . ,
39,
531 (1933).
32.
Ryschkewitsch, E.,
33.
Yaffe, I . S . a n d E . R . Van A r t s d a l e n , C h e m i s t r y D i v i s i o n S e m i a n n u a l P r o g r e s s R e p o r t f o r Period E n d i n g J u n e 2 0 , 1 9 5 6 ,
34.
Fairstein, E.,
I n s t r u m e n t a t i o n and C o n t r o l s Semiannual
P r o g r e s s Report f o r P e r i o d E n d i n g J u l y 3 1 , 1 9 5 5 , ORNL-1997, P. 9 . 35.
Y i m , E. W .
a n d M.
F e i n l e i b , J. Electrochem. SOC., 1 0 4 , 622
(1957). 626 ( 1 9 5 7 ) .
36.
Ibid.,
37.
Brown, E. A . a n d B. P o r t e r , "U.S. D e p a r t m e n t of I n t e r i o r , B u r e a u of M i n e s , " 1 2 8 . 2 3 : 6500 ( 1 9 6 4 ) .
38.
Edwards, J. D . , C.
S. Taylor, L . A . C o s g r o v e , a n d A . S.
R u s s e l l , J. E l e c t r o c h e m . SOC., 1 0 0 , 508 ( 1 9 5 3 ) . 39.
Edwards, J. D . ,
C . S. T a y l o r , A . S . R u s s e l l , a n d L. F .
Maranville, i b i d ., 9 9 , 527 ( 1 9 5 2 ) . 40.
L a n d o n , G . J . a n d A . R . U b b e l o h d e , Proc. R o y a l S O ~ . , A240, 1 6 0 ( 1 9 5 7 ) .
41.
B r o n s t e i n , H. R . a n d M . A . B r e d i g , C h e m i s t r y D i v i s i o n A n n u a l Progress Report f o r Period E n d i n g J u n e 2 0 , 1 9 5 9 , ORNL-2782,
p . 59.
18 42.
Ibid.,
J . Am. Chem. S O C . ,
43.
B r o n s t e i n , H. R . ,
80, 2077
(1958).
A . S . Dworkin, a n d M .
A. Bredig, Chemistry
D i v i s i o n Annual P r o g r e s s R e p o r t for P e r i o d E n d i n g J u n e 2 0 , 1 9 6 0 , ORNL-2983,
p . 65.
27, -
45.
I b i d . , Rev. S c i . I n s t r . ,
46.
Bagk, T . , Acta Chem. S c a n d . ,
47.
B a j c s y , J . , M . M a l i n o v s k y , a n d K. M a t i a s o v s k y , E l e c t r o c h i m .
Acta, 48.
8,
1727 ( 1 9 5 4 ) .
7 , 543 ( 1 9 6 2 ) .
Thompson, M . deK. a n d A . L. Kaye, T r a n s . E l e c t r o c h e m . S O C . , 67, -
169 ( 1 9 3 5 ) .
49.
Greene, N. D . ,
50.
S e l i v a n o v , V . G. a n d V . V .
4, 51.
297 ( 1 9 5 6 ) .
ORNL-CF-54-8-64
(1954).
S t e n d e r , R u s s i a n J . I n o r g . Chem.,
934 ( 1 9 5 9 ) .
M e e r s o n , G . A . a n d M . P . S m i r n o v , Khimiva R e d k i k h E l e m e n t o v , Akad. Nauk SSSR, 2 , 133 (1955).
52.
B a t s l a v i k , E. and A .
3, 53.
No.
I . B e l y a y e v , R u s s i a n J . I n o r g . Chem.
4 , 324 ( 1 9 5 8 ) .
1, P e a r s o n , T . G . a n d J . Waddington, D i s c . F a r a d a y S O C . , -
307 ( 1 9 4 7 ) . 54.
M a l m s t a d t , H . V . a n d C . G. E n k e , E l e c t r o n i c s for S c i e n t i s t s , W.
55.
A . B e n j a m i n , N e w Y o r k , 1 9 6 2 , p . 273.
Dike, P. H.,Rev.
2, Sci. Instr., -
379 ( 1 9 3 1 ) .
19 DRNL-DWG 68-2215
F i g u r e 1:
Wheatstone b r i d g e :
parallel-component balancing
arm. ORNL-DWG 6 8 - 2216
Figure 2:
E q u i v a l e n t c i r c u i t of c e l l i n a b s e n c e of r e a c t i o n . ORNL-DWG
68-2217
RS GS
Figure 3 :
E q u i v a l e n t c i r c u i t of s o l u t i o n r e s i s t a n c e and electrode-solution i n t e r f a c i a l capacitance i n
Y
a b s e n c e of r e a c t i o n .
20
ORNL-DWG
F i g u r e 4:
68-2248
Equivalent c i r c u i t including reaction.
ORNL-DWG 68-2219
CONSTANT FREQUENCY
F i g u r e 5:
E q u i v a l e n t c i r c u i t f o r f a r a d a i c impedance s t u d i e s .
21
ORNL-DWG 68-2220
APPENDIX I IMPEDANCE BRIDGES
A.
WHEATSTONE BRIDGE, NO
@ DETECTOR
DETECTOR
DETECTOR
C. KELVIN BRIDGE(38)
1 ,+qT
D. THDMSON BRI!d4') ~
1
I
Z = IMPEDANCE OF CONNECTIOYS
CAREY-FOSTER BRI DGE(48)
F. (CELL AND S ARE INTER-
-
CHANGEABLE)
TYPE " BRIDGE( 28129) E. (EMPLOYED BY WINTERHAGER AND WERNER)
Z = IMPEDANCE OF .CONNECTIONS
22
APPENDIX I1 For t h e s a k e of c o m p l e t e n e s s , r e f e r e n c e s t o t h o s e c r y o l i t e s y s t e m s w,,ich c o u l d n o t be c o n s u l t e d
are l i s t e d i n t h i s a p p e n d i x .
n the or-ginal
An i n d i c a t i o n o f t h e i r c o n t e n t ,
t o g e t h e r w i t h t h e s e c o n d a r y s o u r c e , is g i v e n . Batashev, K. and A. Zhurin, M e t a l l u r g , 1 0 , 67 ( 1 9 3 5 ) ;
30, (K
G.,
70189 ( 1 9 3 6 ) . o f KF-AlF,
s y s t e m v s . T)
-
B a t a s h e v , K . P . , L e g k i e M e t a l l y , 1 0 , 48 ( 1 9 3 6 ) ; r e f . 4 . (K
of c r y o l i t e v s . T)
B a t a s h e v , c i t e d by M a s h o v e t s i n The E l e c t r o m e t a l l u r g y o f Aluminum ( R u s s i a n ) , 1 9 3 8 ; r e f . 5 3 .
+ NaF a n d c r y o l i t e + AlF6) Alluminio, 1 9 , 215 ( 1 9 5 0 ) ; C . A . , 44,
(Am o f c r y o l i t e Vayna, A . ,
10,54?d
(1950) and r e f . 4 . (K
o f c r y o l i t e v s . T;
NaF, CaF,, Abramov, G . A . ,
or AlF, M. M.
K
of c r y o l i t e w i t h a d d i t i o n s of
n e a r 1000째C)
V e t y u k o v , I . P. G u p a l o , A . A . K o s t y u k o v ,
and L. N . Lozhkin, " T e o r e t i c h e s k i e osnovy e l e c t r o m e t a l l u r g i i a l y m i n i a , " M e t a l l u r i z d a t , Moscow ( 1 9 5 3 ) ; r e f . 4 . (K
o f c r y o l i t e v s . T)
Ponomarev, V. G . ,
F. M . K o l o m i l s k i i , Yu. M . P u t i l i n , I z v e s t .
Vysshikh. Ucheb., Z a v e d e n i i , T s v e t n a y a M e t . , 78; C.A., (K
Of K2TiF6
Belyaev, A.
53, (K
53, -
1958, No.
6,
1 4 , 6 7 0 i (1959). VS.
T)
-
I . , Tsvetnye M e t a l l y , 3 1 , No. 1 0 , 6 1 ( 1 9 5 8 ) ; C . A . ,
6832i (1959).
of c r y o l i t e w i t h a d d i t i o n s of L i F , NaF, BeF,,
CaF,,
BaF,,
o r AlF,)
MgF,, Y
23
A n t i p i n , L. N . ,
S. F. Vazhenin, and V. K.
D o k l a d y Vysshe!
S h c h e r b a k o v , Nauch.
Met. 1 9 5 8 , 11; C.A., Shkoly, -
55, -
1241f
(1961). (K
r a t i o s of 1 . 6 t o 3 . 9 )
o f NaF/AlF,
A n t i p i n , L . N . a n d S. F. V a z h e n i n , T s v e t n y e M e t a l l y , 3 1 , No.
53,
1 2 , 56 ( 1 9 5 8 ) ; C . A . , (K
7824e ( 1 9 5 9 ) .
o f c r y o l i t e w i t h a d d i t i o n s o f CaF,
Chu, Y . A . a n d A .
o r MgF,)
I . Belyaev, I z v e s t . Vysshikh. Ucheb.,
--
Z a v e d e n i f , T s v e t n a y a Met., 2 , No. 2 , 69 ( 1 9 5 9 ) ; C.A.,>, 24,025i (1960). (K
o f c r y o l i t e a n d c r y o l i t e w i t h a d d i t i o n s o f L i F or BeF,)
Belyaev, A.
I . and E. A.
Zhemchuzhina, T s v e t n y e M e t a l l y , 33,
- 55,
No. 4 , 45 ( 1 9 6 0 ) ; C . A . , (K
of NaF/AlF,
1242a ( 1 9 6 1 ) .
r a t i o o f 2 . 2 t o 2 . 7 8 w i t h a d d i t i o n s of MgF2)
K u v a k i n , M . A . a n d P. S. K u s a k i n , T r u d y I n s t . M e t . , SSSR, Unal. (K
MOSCOW,
(K
2255i (1961).
I . , " E l e k t r o l i t alyuminievykh vann," M e t a l l u r g i z d a t , 1961; r e f . 4.
of cryolite with EkF,
Matiasovsky, K . , 17, -
55,
of c r y o l i t e )
Belyaev, A.
(K
Filial, 5 , 145 (1960); C.A.,
Akad. Nauk.
additions u p to 17 wt. 70 at 1000째C)
S. O r d z o v e n s k y , a n d M . M a l i n o v s k y , Chem. z v e s t i ,
839 ( 1 9 6 3 ) ; r e f . 4 . o f c r y o l i t e v s . T)
Vakhobov, A . V . a n d A .
I . Belyaev, " V i i a m i e r a z l i c h n y k h solevykh
komponentov (dobavok) n a e l e k t r o p r o v o d n o s t e l k t r o l i t a a l y u m i n i e v y k h vann , " i n " F i z i c h e s k a y a khima r a s p l a v l e m y k h
s o l e i , " e d . by The I n s t i t u t e o f G e n e r a l a n d I n o r g a n i c C h e m i s t r y of t h e S o v i e t Academy of S c i e n c e . , M e t a l l u r g i z d a t ,
24
Moscow, 1965, pp. 99-104; ref. 4. (K
of cryolite with additions of LiF, MgF,, CaF,, BaF,,
orAlF, up to 20 wt. 70 at 1000째C)
25
ORNL-TM-2180
Y
INTERNAL DISTRIBUTION 1. 2. 3. 4. 5. 6. 7. 8.
9. 10. 11. 12. 13. 14. 15. 16. '17.
18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31.
32. 33. 34.
R. G. R. L. A. C. S. C. C. H. S. U. C. E. P. F. R'. E. C. C. J. M. R. H. G. J. S. W. G. E. W. L. J. F.
K. A d a m s U. Adamson G. A f f e l G. A l e x a n d e r L. B a c a r e l l a F. B a e s J. B a l l E. Bamberger J. B a r t o n F . Bauman E. B e a l l Ber t o c c i E. B e t t i s S. B e t t i s B. B i e n F. B l a n k e n s h i p E. B l a n c o G. Bohlmann J. Borkowski E . Boyd Braunst e i n A. B r e d i g B. B r i g g s R. Bronstein D. B r u n t o n B r y n e stad Cant o r L. Carter I. Cathers L . Compere H. Cook T. C o r b i n L. Crowley L . C u l l e r , Jr.
35.
J. M.
36.
D. S. B. L. A. J. E. D. L. H. J. E.
37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47*
Dale
G. D a v i s J. D i t t o c. Duggins A . Dunn S . Dworkin R. Engle P. E p l e r E. Ferguson M. Ferris A. Friedman H. F r y e , Jr. L. F u l l e r
48. 49. 50.
51. 52. 53. 54. 55. 56. 57. 58. 59. 60.
61. 62. 63. 64. 65. 66. 67. 68. 69. 70. 71. 72. 73. 74. 75. 76. 77. 78. 79. 80. 81.
C. R. L. W. A. R. B.
c.
P. D. J. M. B. H. H. R. T. R. H. H. G. W. P. M. C. H.
s.
H. J.
c. J. R. A. M.
82.
R.
83.
H. R.
84. 85. 86. 87. 88. 89. 90. 91. 92. 93. 94.
G. D.
w.
C. H. H. C. C. L. R.
H. Gabbard B. Gammage 0. G i l p a tr i c k R. G r i m e s G. G r i n d e l l H . Guymon A. Hannaford S. H a r r i l l N. Haubenreich N. Hess R. Hightower R. H i l l F. H i t c h W . Hoffman F. H o l m e s W. Horton L. Hudson F. H y l a n d Inouye W. J e n k i n s H. J e n k s H. J o r d a n R. Kasten T. K e l l e y R . Kennedy T . Kerr S. K i r s l i s W . Kohn W. Krewson E . Lamb A. Lane B. L i n d a u e r P. L i t m a n I. Lundin N . Lyon G. MacPherson E. MacPherson Maman t o v L. Manning L. M a r s h a l l D. M a r t i n E . McCoy F. M c D u f f i e K. McGlothlan J . McHargue E . McNeese E. Mesmer
26
95. 96. 97. 98. 99. 100. 101. 102. 103. 104. 105-119. 120. 121. 122. 123-124. 125. 126. 127. 128. 129.
A . S . Meyer R . L . Moore D. M . M o u l t o n T. R . Mueller J . P. N i c h o l s E . L. N i c h o l s o n L. C . Oakes F. A . Posey J . L. R e d f o r d J . D . Redman G . D. R o b b i n s R. C . Robertson W. C . Robinson K . A . Romberger M. W. Rosen t h a l R . G . Ross H. C . S a v a g e Dunlap S c o t t J . H. S h a f f e r M. J. S k i n n e r
130. 131. 132. 133. 134. 135. 136. 137. 138. 139. 140. 141. 142. 143. 144. 145 - 14 6.. 147. 148-150. 151. 152.
G. R. H. R. J. R. L. J. C. A. J. M. J.
P. S m i t h W. S t e l z n e r H. S t o n e A. Strehlow R. Tallackson E . Thoma M. T o t h S . Watson F . Weaver M. Weinberg R . Weir E. Whatley C . White F . L. W h i t i n g J . P. Young Central Research Library Document R e f e r e n c e S e c t i o n L a b o r a t o r y Records D e p t . L a b o r a t o r y R e c o r d s , ORNL ORNL P a t e n t O f f i c e
EXTERNAL DISTRIBUTION 153-154. 155. 156. 157-158. 159. 160-161. 162. 163. 164-178. 179-180. 181.
D. F. Cope, A E C , O R 0 A . Giambusso, AEC, W a s h i n g t o n , D. C . W. J. L a r k i n , AEC, OR0 T. W . M c I n t o s h , A E C , W a s h i n g t o n , D . C . H. M . R o t h , AEC, OR0 M . Shaw, A E C , W a s h i n g t o n , D . C . W . L. S m a l l e y , A E C , O R 0 R . F . Sweek, A E C , W a s h i n g t o n , D . C . D i v i s i o n of T e c h n i c a l I n f o r m a t i o n E x t e n s i o n Reactor D i v i s i o n , O R 0 R e s e a r c h and Development D i v i s i o n , OR0
W