HOME HELP
LEGAL NOTICE T h l s report was propored os an occount of Covernnrnt sponsored work. nor the Commission,
nor
Neither the United Statos,
ony person octing on behalf o f the Commission:
A. Makes any waronty or representotion, expressed or implied, with respect to the occurocy, completeness, 01 usofulness of the information contained In t h i s repor(, or that the use sf ony informotion,
opparatus,
privotely owned rights;
i
method, or process disclosed In t h i s report moy not infringe
01
6. Assumes ony l i a b i l i t i e s with respect to the us. of, or for damages resulting from the use of ony information, apparatus, mthod, or procoaa disclosrd in this report. As used in the obove, "person octing on behalf of the Commission'' includes any e m p l o p e or controctor of the Commission, or e m p l o p e of such controctor, to tho extent that such o m p l o p e or controctor of the Commission, or e m p l o p e of such contractor propares, dissemiMos, or provides occess to, ony information pursuont to h i s employment
or h i s employment w i t h such controctor.
!
or contract w i t h the Commission,
i
ORNL-TM-1997
C o n t r a c t No. W-7405-eng-26
MFPALS AND CERAMICS DIVISION
AN EVALUATION OF THE MOLTEN SALT REACTOR
EXPERIMENT
HASTELLOY N SURVEILLANCE SPECIMENS - FIRST GROUP
H.
NOVEMBER 1967
OAK RIDGE NATIONAL LABORATORY Oak R i d g e , Tennessee operated by UNION CARBIDE CORPORATION f o r the U.S. ATOMIC ENERGY COMMISSION
THlS EOCUMENf Is
e
\
!
iii
........................... Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . Experimental Details . . . . . . . . . . . . . . . . . . . . . Surveillance Asseuibly . . . . . . . . . . . . . . . . . . &terials . . . . . . . . . . . . . . . . . . . . . . . . . Test Specimens . . . . . . . . . . . . . . . . . . . . . . Irradiation Conditions . . . . . . . . . .-. . . . . . . . Testing Techniques . . . . . . . . . . . . . . . . . . . . Test Results . . . . . . . . . . . . . . . . . . . . . . . Discussion of Results . . . . . . . . . . . . . . . . . . . . Summary and Conclusions . . . . . . . . . . . . . . . . . . . Acknowledgments . . . . . . . . . . . . . . . . . . . . . . .
Abstract
I
Page 1 1
2
2 4 4 6 8 9
49 52
52
,,
'
AN EVALUATION OF THE MOLTENSALT REACTOREXPERIMENT HASTELLOYNSURVEILLANCESPEK!IMENS-FIRSTGROUP H.'E.
McCoy, Jr.
,
ABSTRACT We have tested the first group of surveillance specimens from the Molten Salt Reactor Experiment,core. They were removed after 7823 Mwhr of reactor operation during which the specimens were held at 645 + 1O'C for 4800 hr and accumulated a thermal dose of 1.3 x 102' neutrons/cm2. The high-temperature ductility was reduced, but the reduction was similar to that observed for these materials when irradiated in the Oak Ridge Reactor in a helium environment. The low-temperature ductility was reduced, and this is thought to be due to the formation of intergranular MeC. The specimens showed no evidence of corrosion; however, a carbon-rich layer, 1 to 2 mils in depth, was noted where the Hastelloy N and graphite were in contact. The mechanical properties of the Hastelloy N appear adequate for the continued satisfactory operation of the MSRE. Test results are presented for the effects of several variables on the tensile ductility of irradiated and unirradiated Hastelloy N. These variables included test temperature, strain rate, and prestraining.
.*
INTRODUCTION
The Molten Salt Reactor Experiment is a single region reactor that is fueled by a molten fluoride salt (65 LiF, 29.1 BeF2, 5 ZrF4, and contained by Hastelloy 0.9 UF4 mole $), moderated by unclad graphite,
N
(Ni-16 MO-7 Cr-4 Fe-O.05 C, ‘w-t $). The details of the reactor design and We knew that the neutron environment construction can be found elsewhere.' - graphite and would produce some changes inthe two structural , I -I_._.. .materials . of these Hasteiloy N. Although we were very confident of the compatibility L 'R. C. Robertson, MSRE Design and Operations of Reactor Design, ORNL-TM-728 (January 1965).
LJ
t .
Report,
Pt.
1, Description
r
2 materials with the fluoride s a l t , we needed t o keep abreast of t h e possible
3
development of corrosion problems within the reactor i t s e l f .
For these reasons, we developed a surveillance program t h a t would allow us t o follow the property changes of graphite and Hastellcry N specimens as the reactor operated. The reactor went c r i t i c a l on June 1, 1965, and a f t e r numerous
small problems were solved, assumed normal operation on Mziy 1966.
The
present group of surveillance specimens was i n the reactor from Septeuiber 8, 1965, t o July 28, 1966, and was removed a f t e r 7823 Mwhr of operation (designated "first group").
This report covers t h e tests t h a t
were run on Fhe Hastelloy N specimens t h a t were removed.
9
Surveillance Asseuibly' The core surveillance assembly was designed by W. H. Cook and others,
and t h e d e t a i l s have been reported previously.2
The f a c i l i t y i s shown
p i c t o r i a l l y and schematically i n Fig. 1. The specimens are arranged i n three stringers. Each stringer i s about 62 in. long and consists of t w o Hastelloy N rods and a graphite section made up of various pieces that are. Y
joined by pinning and tongue-and-groove joints.
The Hastelloy N rod has periodic reduced sections 1 1/8 in. long x 1/8 in. i n diameter and can be
4, k
cut i n t o small t e n s i l e specimens after it i s removed f r o m t h e reactor. Three stringers are joined together so t h a t they can be separated i n a hot c e l l and reassembled with one o r more new stringers f o r reinsertion i n t o the reactor.
The assernbled stringers f i t i n t o a perforated Hastelloy N
basket t h a t i s inserted i n t o an a x i a l position about 3.6 in. f r o m t h e core center line.
*W. H. Cook, MSR Program Semiann. Progr. Rept. Aug. 31, 1965, ORNL-3872, p. 87.
U
b
c'
BT PHOTO et671
w
( Fig. 1. MSRE Surveillance Fixture,
R = REMOVABLE STRINGER
II)
-
f
4
U
When the basket was removed on July 18, 1966, some of the specimens were bent and the e n t i r e assenibly had t o be replaced.3
Slight modifications
'in the design were made, and the assembly was removed recently and found $0
be i n excellent condition. A control f a c i l i t y i s associaCed with the surveillance program.
It
u t i l i z e s a "fuel s a l t " containing depleted uranium i n a s t a t i c pot t h a t i s heated e l e c t r i c a l l y .
The temperature i s controlled by the HRE computer so
t h a t the temperature matches that of the reactor.
Thus, these specimens
a r e exposed t o conditions the same as those i n the reactor except f o r t h e s t a t i c s a l t and t h e absence of a neutron flux. There i s another surveillance f a c i l i t y for Hastelloy N located outside the core i n a v e r t i c a l position about 4.5 in. f r o m t h e vessel. specimens are- exposed t o the c e l l environment (N2
+ 2-54
02).
These
'
They were
not 'removed during the first group. lkterials
Two heats of Hastellay N were used i n t h i s program: heats 5081 and 5085. Both of these heats were air-melted by S t e l l i t e Division of Union Carbide Corporation, and their chemical analyses a r e given i n Table 1, Heat 5085 w a s used for making the cylindrical portion of t h e core vessel,
*
and heat 5081 was used for various p a r t s inside the reactor.
I Y
Test Specimens The specimens were put i n t o t h e reactor as rods 62 i n . long by 1/4 in. i n diameter with reduced sections 1/8 in. i n diameter by 1 1/8 in. long. 'The long rod was made i n seven pieces and welded together \
t o obtain the 62-in.-long rod.
After removal f r o m t h e reactor, the rod
was sawed i n t o small specimens with a gage section 1 l/8 in: long by
1/8 in. i n diameter.
Each rod i s designated by a l e t t e r and the individual
%. H. Cook, MSR Program Semiann. Progr. Rept. Aug. 31, 1966, ORNL-4037, p. 97. Ann.
%. H. Cook, "Molten Salt Reactor Program," Metals and Ceramics Div. Prom. Rept. June 30, 1967, ORNL-4170, Chap. 34 ( i n press).
'
U e
. 5
Table 1. Chemical Analysis of Surveillance Heats 'content, w t Element Heat 5085
%
f
Heat 5081
Cr
6.2
6.1
Fe
3.3
3.4
Mo
16.3
16.4
C
0.054
Si
0.58
CO
0.15
0.10
W
0.07
0.07
Mn
0.67
0.65
v
0.20
0.20
P S
0.013
0.012
0.004
0.002
A1
0.02
0.05
4.01
43.01
cu
0.01
0.01
B
0.0038
0.0050
Ni
bal
bal
f
4
3
0.059 I
0.52
6
--.
w* specimens are numbered beginning a t the bottom of t h e rod and increasing t o 27 a t the top. The rods i n t h e first group were bent, and it was necessary t o examine
each specimen with an optical comparator t o determine whether it was
If’the t o t a l indicated runout of the gage section was greater than 0.002 in., t h e specimen was not used. The best specimens were used f o r the higher temperature t e s t s where the expected s t r a i n s were smallest. The results from a b r i t t l e material are affected more seriously by specimen alignment than are those from a d u c t i l e material. suitable‘for use.
i
The materials were received i n the m i l l annealed condition (lhr a t They were given a M h e r anneal of 2 h r a t 900°C p r i o r t o
1177°C).
insertion i n t o the reactor and t h e control f a c i l i t y . s
Irradiation Conditions The specimens from the first group were i n the reactor from . September 8, 1965, t o July 28, 1966.
The reactor had operated 0.0066 &hr
when the specimens were inserted and 7823 Mwhr when they were removed. They were at temperature f o r 4800 h r w i t h the temperature range being 645 f 10°C.
Huwever, t h e material was only exposed t o s a l t f o r 2796 hr,
The f l u x was measured by H. B. Piper5 using s t a i n l e s s s t e e l wires t h a t were attached t o the surveillance specimens.
p r o f i l e s a r e shown i n Figs. 2 and 3 along with t h e a x i a l location of each specimen.
P
The thermal and fast f l u x k
The peak thermal dose, based on the 59Co(n,7)60Co transmutation,
lo2’
was 1.3 X
neutrons/cm2 and t h e fast dose (>1.22 Mev), based on the
58Ni(n,p) 58Co transmutation, was 3 X
lo1’
neutrons/cm2.
The cross section
used f o r t h e 59Co(n,7)60Co transmutation was 22.25 barns, and that f o r the 58Ni(n,p)58Co transmutation was 0.1262 barns. 5H. B. Piper, private commication.
E
I
.
7 ORNL-DWG
I
I
I
I
I
67-7932
I
NEUTRON
MTL ENERGY
6
REACTION <0.876 eV 58Fe(n.y)5sFe <0.876 eV 59C~(n.7)60Co <0.876 eV 58Fe(n,y)5sFe EXPOSURE-7823 MW-hr
A Fe 0
0
5
SS SS
I
0
8
4
12
16
20
24
32
28
36
40
44
48
52
56
60
inches
Fig. 2. Measurements of the Thermal Flux for the NSRE Core Specimens -First Group.
ORN L- OW0 67-7933
MTL Fe 0 SS 0 SS
1.4
A
1.2
ENERGY
> 2.02 MeV 54Fe(n,p) 54Mn
> 4.22 MeV 5eNi(n,p)58Co > 2.02 MeV 54Fe(n,p)58Mn EXPOSURE
- 7823 MW-hr
'
.O
3
f
0.8
8-
,
0.6
0.4
0.2
0
0
4
8
12
16
20
24
28
32
36
40
44
48
52
56
60
inches \
Fig. 3. Measurements of the Fast Flux for the MSRE Core Specimens First Group.
Y
8 Testing Techniques The laboratory creep-rupture tests were run i n conventional creep
machines of the dead load and lever arm types.
The s t r a i n was measured by
a d i a l indicator t h a t shared the t o t a l movement of the specimen and part of the load t r a i n .
The zero s t r a i n measurement was taken immediately a f t e r
/
the load was applied.
The temperature accuracy was *0.75$, the guaranteed
accuracy of t h e Chromel-P-Alumel thermocouples used. The postirradiation creep-rupture t e s t s were run i n lever arm machines t h a t were located i n hot c e l l s . The s t r a i n was measured by an extensometer with rods attached t o the upper and lower specimen grips. The r e l a t i v e .
7
movement of these two rods was measured by a l i n e a r d i f f e r e n t i a l t r a n s former, and the transformer signal was recorded. measurements i s d i f f i c u l t t o determine.
The accuracy of t h e s t r a i n
i=
The extensometer (mechanical and
e l e c t r i c a l portions) produced measurements that could be read t o about
&0.02$ s t r a i n ; however, other factors (temperature changes i n t h e c e l l , mechanical vibrations, etc.) probably combined t o give an overall accuracy of k0. I$ s t r a i n .
This i s considerably better than the specimen-to-specimen
reproducibility t h a t one would expect for r e l a t i v e l y b r i t t l e materials. !he temperature measuring and control system was the same a s t h a t used i n the laboratory with only one exception.
I n t h e laboratory, t h e control
system was stabilized a t t h e desiredtemperature by use of a recorder with an expanded scale.
I n the tests i n t h e hot c e l l s , the control point was
established by s e t t i n g the controller without the a i d of the eaanded-scale recorder.
This e r r o r and the thermcouple accuracy combine t o give a
temperature uncertainty of about *l$. The t e n s i l e t e s t s were run on Instron Universal Testing Machines.
The
s t r a i n measurements were taken from the crosshead travel. The t e s t environment was a i r i n a l l cases.
Metallographic examination
showed t h a t the depth of oxidation was small (4.002 in.), and hence we f e e l t h a t the environment did not appreciably influence the test r e s u l t s .
LJ I
i
c I
c
9
T e s t Results
Since the surveillance assembly was b nt, it w a s necessary t
remove
a l l t h e specimens i n t h e first group, and we had about 50 specimens of each heat a f t e r - t h e bent ones were discarded.
Thus, we had enough specimens
t o run t h e desired t e s t s f o r surveillance purposes and enough t o look a t
some f u r t h e r variables t h a t a r e of value i n understanding t h e behavior of. i r r a d i a t e d Hastelloy N.
We s h a l l present a l l the r e s u l t s t h a t were obtained
even though much of t h i s idormation has l i t t l e d i r e c t bearing on t h e s a f e operation of t h e l43RE.
Since the rupture d u c t i l i t y i s of primary impor-
tance, we shall be most concerned w i t h t h i s property. The results of t e n s i l e t e s t s on t h e control specimens of heat 5081 a r e given i n Table 2.
The t o t a l elongations a t f r a c t u r e as a function of
temperature a r e shown i n Fig. 4 f o r s t r a i n rates of 0.05 and 0.002 min-l. This material exhibits t h e d u c t i l i t y minimum t h a t i s c h a r a c t e r i s t i c of
nickel-base alloys.
The temperature of the minimum d u c t i l i t y seems t o
decrease w i t h decreasing s t r a i n rate.
Several of t h e specimens were run
a t various s t r a i n rates over the range of 2 t o 0.002 min”.
The results
of these t e s t s a r e a l s o given i n Table 2, and t h e f r a c t u r e elongations are given i n Fig. 5.
The f r a c t u r e elongation i s very s e n s i t i v e t o s t r a i n rate
a t 650”C, but r e l a t i v e l y insensitive a t higher and lower temperatures. The r e s u l t s o f , t h e tests on t h e surveillance specimens from heat 5081
a r e summarized i n Table 3,
The elongation a t f r a c t u r e i s p l o t t e d as a
function of temperature i n Fig. 6. The irradiated material i s characterized by a sharp drop i n d u c t i l i t y with increasing temperature above about 500°C. The d u c t i l i t y continues t o decrease with increasing temperature r a t h e r than exhibiting a d u c t i l i t y minimum like t h e unirradiated material (Fig. 4). The d u c t i l i t y i s lower a t a s t r a i n r a t e of 0.002 min” than a t 0.05 min-l, but t h e difference decreases with increasing temperature. demonstrated quite w e l l i n
This point i s
i g . 7 where the dependence of the d u c t i l i t y on
s t r a i n rate i s shown f o r several temperatures. We have looked individually a t t h e properties of t h e surveillance and control specimens of heat 5081; l e t us now compare these properties.
bd
The
r a t i o s of t h e property f o r t h e i r r a d i a t e d material t o t h a t of t h e unirradiated material a r e compared i n Fig. 8 as a function of temperature.
c
f
Table 2.
Specimen Number
*
("C)
25
0.05
47,700
llS,700
55.9
57.6
48.8
67.4
.AC-11
200
0.05
40,200
l07,100
53.3
54.6
42.0
58.9
CC-27 CC-26 CC-25 AC-22 CC-24 CC-23 BC- 8
400 400
.coo
2 0.5 0.2 0.05 0.02 0.005 0.002
41,400 34,600 36,300 36,700 37,800 34,700 37,100
94,500 97,000 97,900 100,600 99,900 97,400
50.4 53.7 52.2 51.0 51.7 55.4 52.9
53.6 58.2 53.8 52.0 56.0 ' 56.3 55.2
42.4 46.6 42.7 48.7 41.7 44.0 46.7
cc-21 CC-19 CC-29 CC-18 AC-19 CC-17 CC-16 AC-24 BC-9
500 500 500 500 500 500 500 500 500
2 2 0.5 0.2 0.05 0.02 0.005 0.002 0.002
36,200 35,200 52,600 36,800 35,800 34,900 34,700 35,000 36,200
93,200 92,700 105,400 98,800 97,800 97,600 92,500 97,700 95,300
52.0 52.4 45.8 55.0 53.6 . 55.5 54.4 44.9 46.2
56.0 56.0 49.4 57.0 56.6 56.6 55.4. 45.3 47.0
48.8 42.6 40.5 51.1 46.2 46.2 40.3 33.6 38.1
67.4 55.8 52.0 72.0 62.0 62.5 51.6 41.0 48.2
AC-20 AC-25
550 550
0.05 0.002
35,900 37,300
93,300 80,300
49.7 22.8
51.1 23.7
40.3 23.0
51.8 26.2
AC-18 AC-29
600 600
0.05 0.002
34,900 37,400
81,200 71,400
31.8 21.3
32.3 21.7
31.0 19.9
37.2 22.4
400
400 400 400
Street3 ( p s i ) Yield Ultimate
Elongation ($1 Uniform Total
Strain Rate (min-l)
AC-8
Test Temperature
Results of T e n s i l e Tests on IBRE S u r v e i l l a n c e Control Specimens Heat 5081 Reduction i n Area
($1
,
--
ff
4
True Fracture Strain (Q)
I
55.7 63.1 56.0 66.8 54.4 58.6 63.0
I-'
0
Table 2 (continued)
Specimen Number
Test Temperature ($1
Strain' Rate (min-l)
Stress (psi) Piem Ultimate
Elongation ($) Uniform Total
Reduction i n Area
True Fracture Strain
($1
($1
52.4 46.8 39.0 29.3 24.6 17.7 23.1 23.2
36.9 37.2 28.8 23.4 23.1 19.0 24.4 21.6
46.3 46.5 34.0 26.4 26.2 21.1 28.0 21.4
BC-10 cc-8 AC-4 AC-10 AC-27 AC-7 AC- 5 AC-17
650 650 650 650 650 650 650 650
2 2 0.5 0.2 0.05 0.02 0.005 0.002
36,'300 42,400 32,900 36,300 32,400 34,400 33,900 33,600
88,500 85,200 81,500 78,200 68,400 65,200 68,400 66,700
AC-28 AC-16
700 700
0.05 0.00
39,500 32,400
68,400 63,100
18.8 20.0
19.8 29.3
25.8 23.5
14.9 21.7
760 760 760 760 760 760 760
2 0.5 0.2 0.05 0.02 0.005 0.002
41,600 30,800 32,100 29,900 32,400 32,700 32,600
76,600 72,700 71,900 64,500 63,800 54,500 47,200
36.8 37.1 33.3 25.1 20.0 12'7 9.4
40.8 40.2 38.9 41.6 43.8 39.2 39.5
24.4 30.7 21.9 35.0 42.4 41.0 42.7
28.0 36.9 24.7 43.1 55.3 52.9 56.0
CC-15 CC-14
850 850
2 0.5
33,200 28,900
66,300 60,600
30.0 23.2
48.0 49.2
46.3 43.9
62.5 58.2
cc-12 AC-6 cc-11 cc-10 AC-15
850 850 850 850 850
0.2 0.05 0.02 0.005 0.002
29,600 28,300 30,000 29,200 26,400
54,100 43,400
16.3 11.2 7.8 2.0 1.5
51.4 53.2 43.6 44.4 45.0
50.8 49.8 48.7 50.9 43.9
71.1 69.0 67.0 71.6 58.3
cc-2 cc-9 cc-5 AC-12 cc-4 cc-3 AC-14
'
40,400
30,600 26,400
51.5
44.4 37.1 28.5 23.8 16.8 22.6 22.8
~
I-J
P
r
Fig. 4. Tensile Ductilities of MSRE Surveillance Control Specimens, Heat 5081.
. , I
I
..
eo
-
0
0
1
I
I
1 1 1 1 1
I
I
I
I 1 1 1 1
I
I
I
I 1 1 1 1
Fig. 5. Influence of Strain Rate on the Ductility of MSRE Surveillance Control Specimens, Heat 5081.
Table 3.
1
Specimen Number
Test Temperature
D-16 D-19
Results of T e n s i l e T e s t s on MSRE S u r v e i l l a n c e Specimens Heat 5081 Strain Rate (min-l)
Stress ( p s i ) Pield Ultimate
25 25
0.05 0.05
51,lQO 54,100
105,500 109,000
D-15
200
0.05
42,700
F-2 F-1 E-15 F-7 D- 24 F-23 F-10 F-19
400
("a
Elongation ($) Uniform Total
Reduction i n Area ( $1
38.5 42.6
38.7 42.6.
31.3 25.9
99,600
49.0
49.4
33.3
51.6 33.9 49.1
34.4
400
91,400 88,300 93,800 92,200 94,100 91,700 93,300 92,500
49.2
0.5. 0.2 0.05 0.02 0.005 0.002
41,200 43,700 39,900 38,300 37,100 37,800 38,80G 39,100
F-5
450
0.002
38,200
86,900
F-8 F-20 E-6 D- 9 E-25 E- 12 F-13 E-9
500 500 500 . 500 500 500 500 500
2 0.5 0.2 0.05 0.02 0.005 0.002 0,002
44,000 36,400 37,300 38,600 36,600 3 8,000 38,800 38,000
85,600 87,000 86,500 90,200 83,600 76,800 75,800 84,800
D-25 F-27
550 550
0.05 0.002
35,400 42,200
E- 23 E-24
600 600
0.05 0.002
35,200 36,100
,-
400 400 400 400 400 400
T r u e Fracture Strain
(46)
37.0 30.0
.
40.7
33.3
47.1
50.9 46.1 50.4 47.7
32.3
42.0 39.5 41.5 46.9 40.7 44.7 47.7 38.9
37.8
38.6
25.8
30.1
44.4
22.4 31.0
46.0 44.1 48.5 51.0 37.5 24.1 23.1 32.1
31.6 36.2 32.1 31.9 30.2 24.2 21.9 29.8
77,800 62,700
31.6 11.8
32.1 13.8
26.1 3.34
30.3 6.5
74,800 62,100
25.6 15.0
26.4 15.8
31.8 16.7
38.2 18.3
33.2
48.3 49.4 49.3 45.8 49.9
43.1 47.8 50.6 37.0 23.3
51.0
32.5
33.9 37.2 36.0 37.7
'
38.2 45.2 38.7 38.7 35.8 27.8 24.9 35.4
P
w
.,
,,
...
.^
. ..
.
.
_ *.
..
. ..
.-..~
.
~". , . ., ., ~. _.,."" ,...
"^_
."
i
.
.. . ...
. .,
, ,,..
.,
...
.
.
.
. .
\
Table 3 (continued)
Specimen Number
,
Test Temperature ( "C)
Strain Rate (min-1)
Stress ( p s i ) Yield Ultimate
Elongation (&> Uniform Total
Reduction in Area
True Fracture Strain
($1
($1
21.8 15.4 2.9 22.5 13.9 17.6 14.6 11,6
24.4 16.9 21.5 58.4 25.4 14.8 19.1 15.9 12.2
F-18 F-6 F-26 F -3 E-3 E-7 E-13 E-19 E- 14
650 650 650 650 650 650 650 650 650
2 0.5 0.5 0.5 0.2 0.05 0.02 0.005 0.002
36,700 33,400 30,500 34,300 37;200 34,600 33,800 34,600 34,400
61,100 63,900 34,900 75,600 64,200 57,200 53,600 53,000 48,400
20.8 18.2 2.6 34.0 14.9 13.8 11.1 10.8 8.2
24.0 18.9 3.7 35.3 15.8 14.3 12.9 11.3 9.0
E- 22 E-2
700 700
0.05 0.002
31,700 33,800
53,900 44,000
13.8 4.8
14.2 5.5
12.9 6.7
13.9 6.9
F-22 D-8 D-13 E- 8 D-10 D-27 E-20
760 760 760 760 760 760 760
2 0.5 0.2 0.05 0.02 0.005 0.002
36,100 31,000 31,300 31,400 32,000 36,500 32,100
57,600 49,100 49,400 43,200 42,200 40,600 36,700
18.8 12.0 11.9 6.7 5.2 4.0 1.9
22.0
14.7 11.0 10.2 6.2
3.3
15.9 $11.5 10.5 6.1 4.6 2.6 3.6
E-4 E-27 Ell F-17 D- 14 D-23 E-21
850 850 850 850 850 850 850
2 0.5 092 0.05 0.02 0.005 0,002
32,700 33,600 30,700 30,600 20,200 21,800
39,100 38,600 32,400 30,700 20,200 21,800
8.7 5.4 1.6 2.3 1.7 0.3 0.7
9.0 5.5 0.8 2.4 0.9 0.2 0.3
'
4.4 3.5 3.0 1.8 1.2
0.7 0.7
12.9
12.4 7.4 5.7 4.3 3.9 8.4 4.6
3.8 2.3 2.0 2.0 2.1
'
29.1
4.6 2.6
.
. . ,
15 ORNL-OW 67-244
I E = .os MIN-I
0
o
& .002
MIN-I
I
TEST TEMP. *C
W
Fig. 7. Influence of Strain Rate on the Ductility of Hastelloy N (Heat 5081) MSRE Surveillance Specimens.
-
16 4.2
4.0
.
+ 0
YELD STRESS
A ULTIMATE
I
STRESS
-
m TOTAL ELONGATION min-’
ai
1
C 0
400
200
300
400
500
700
600
800
900
to00
TEST TEMPERATURE PC)
Fig. 8 .
Comparative Tensile Properties of I r r a d i a t e d and Unirradiated
M5FE Surveillance Specimens, Heat 5081. The y i e l d stress is unaffected by i r r a d i a t i o n .
The ultimate s t r e s s i s
reduced approximately 846 up t o about 600°C where t h e reduction becomes greater w i t h increasing temperature. The t o t a l elongation a t f r a c t u r e f o r t h e i r r a d i a t e d m t e r i a l i s lower by about 3O$ a t room temperature, but recovers t o be almost equivalent a t 400°C.
A s t h e temperature i s increased above 400”C, t h e d u c t i l i t y of t h e
irrailiated material drops t o where it i s only about 4%of t h a t of t h e
,
unirradiated specimens.
The s t r a i n r a t e versus temperature data a r e 11
t r e a t e d i n a similar way i n Fig. 9. A t 400°C t h e surveillance and control specimens have about t h e same d u c t i l i t y with only a s l i g h t decrease i n t h e r a t i o with decreasing s t r a i n r a t e .
A t 500°C there i s a sharp drop i n t h e
r a t i o a t a s t r a i n r a t e of about 0.05 min”.
This sharp change i n s t r a i n
r a t e s e n s i t i v i t y i s probably’due t o the t r a n s i t i o n from transgranular t o intergranular fracture.
!be r a t i o i s a b i t confusing a t 650°C; i t s r i s e
with decreasing s t r a i n r a t e i s due t o the f a c t t h a t t h e d u c t i l i t y of t h e control specimens decreases more rapidly with decreasing s t r a i n r a t e than that of t h e surveillance specimens.
A t 760 and 850°C the r a t i o becomes
quite small and i t s dependence on s t r a i n r a t e becomes l e s s .
/
17
8 5 0 0 OC
.I STRAIN RATE, MIN.-~
.01
V0SO0C
I
10
Fig. 9. Comparative p u c t i l i t i e s of MSRE Surveillance Specimens as a Function of S t r a i n Rate, Heat 5081. The r e s u l t s of t h e t e n s i l e t e s t s on the control specimens of heat 5085 a r e given i n Table 4. The t o t a l elongation a t f r a c t u r e i s p l o t t e d i n Fig. 10 as a function of t h e test temperature.
The c h a r a c t e r i s t i c d u c t i l i t y minimum i s obtained, but t h e temperature of t h e minimum d u c t i l i t y does not appear t o be sensitive t o s t r a i n r a t e . The r e s u l t s of t h e t e n s i l e t e s t s on t h e surveillance specimens from
heat 5085 a r e given i n Table 5.
The fracture elongation i s p l o t t e d a s a
function of t e s t temperature i n Fig. 11. The d u c t i l i t y drops precipitously above 500째C w i t h t h e elongation being lower a t t h e lower s t r a i n r a t e . The r a t i o of t h e i r r a d i a t e d property t o t h a t of t h e unirradiated property f o r heat 508 The y i e l d and ultimat
shown i n Fig. 12 as a function of temperature.
resses of t h i s heat a r e influenced about the same
by i r r a d i a t i o n as those pf heat 5081 (Fig. 8 ) .
The elongation a t low temperatures i s not reduced a s much by irradiation, but it does not recover as the
t e s t temperature i s increased.
.
.-
,
. -
. ._,..._._I
.,
.......
.
"
.. .."... .
." ....
..
,
. .. ,
,
. . .~ . .
Table 4, Results of Tensile Tests on MSRE Surveillance Control Specimens Heat 5085
Specimen Number
Test Temperature
("a
DC-24
FC-3 E-20
DC-23 DC-19 Dc-26 E-18 DC-13 FC-2
DC-17 E-16 DC-14
Dc-25 Dc-5 Dc-10 Dc-3 DC-9 Dc-22 Dc-8
25 25
0.05 0.05
200 400
0.05
500 I
Strain R a te (min-1)
500 550 550 550 600 600 650 650 700 700 760 760 850 850 '
0.05 0.05 0.002
0.05 0.002 0.002
0.05 0.002
0.05 0.002 0.05 0.002 0.05 0.002 0.G5 0.002
Stress ( p s i ) Yield Ultimate
'
Elongation CQ) Total
Uniform
Reduction True Fracture i n Area Strain
(9) 46,200 45,500 39,100 34,800 33,600 33,400 33,700 32,500 33,600
109,200 111,200 105,200 95,800 94,300 91,700 89,200 74,000 77,900
40.0
32,200 32,100 31,800 31,500 29,200 30,900 28,100 28,900 25,700 27,900
78,300 69,600 70,100 62,500 64,000 62,100 60,800 51,500 45,100 28,400
33.8 26.5 25.8 22.8
28.4
29.5 28.3 33.0 35.1.
*
46.8 48.6 47.6 48.8 43.3 47.0
26.5 30.3
22.3 27.0 11.0 11.5 1.4
40.0 46.8 49.8 48.8
28.61 31.45 36.69 39.01 41.48 37.78 35.19 26.1
($1 33.8 39.5
33.98
46.1 49.6 54.1 47.7 43.4 30.2 41.6
34.6 27.3
32.60
37.8
25.55
26.8
29.97 27.15' 28.14 24.04 32.16 36.07 47.23 43 e 76
29.6 35.9 31.8 33.2 27.5 38.7 44.8 64.1 55.7
49.3 44.3 47.5 27.5 31.0
24.3
38.8 39.2
? !3
I
ORNL-DWG 67-244
o E = .002 MIN-
I
4
500
I 600
700
800
900
TEST TEMP, "C Fig. 10. Tensile Ductilities of E R E Surveillance Control Specimens, Heat 5085.
1000
..........
,. ..............
..
.......................
........
.ll.l*l."
......
......
. . ~.
........
..,~I..
Table 5.
Test Specimen Number
'
Temperature ("C)
Results of Tensile Tests on USRE Surveillance Specimens Heat 5085
Strain Rate (min-l) 2
Stress ( p s i )
Elongation ($)
Reduction i n Area
True Fracture Strain
Total
($1
($1
25.6 26.7
28.4 27.3
17.1 19.7
19.0 22.0
100,300
34.3
34.5
26.0
30.1
Yield
Ultimate
Uniform
62,300 50,200
101,500 95,600
48,100
C-27 A-25
25 25
A-16
25
0,5 0.05
A-15
200
0.05
39,500
94,100
37.8
38.6
28.2
33.3
A-26
400
0.05
35,700
$7,300
35.0
36.0
26.3
30.6
A-9 B-23
500 500
0.05 0.002
34,900 34,000
8'7,900 71,600
42.2 21.9
42.8 23.1
33.9 27.9
40.0 32.6
B-1 B-5
550 550
0.05 0.002
42,000 33,700
74,000 55,100
19.6 10.4
20,o 12.7
18.7 14.7
20.9 15.9
B-26 B-4
600 600
0.05 0.002
32,500 32,300
62,000 52,000
18.2. 11.1
19.6
21.7 12.5
24.5
12.0
B-19 '8-6
650 650
0.05 0,002
32,000 32,100
52,800 42,900
12.6 6.5
13.7 9.4
13.9 7.9
c-20'
c-1
700 700
0.05 0.002
29,900 37,800
43,600 43,100
9.3 2.4
12.3 2.8
5.6 5.9
B-2 c-21
760 760
0.05 0.002
28,900 28,010
41,100 33,700
8.0 2.4
8.5 3.5
10.0 2.3
B-20
850 850
0.05 0.002
27,900 20,600
31,400 20,600
2.5 0.8
3.8
C-8
, I
,
1.8
0.65 1.3,
13.5 15.0 8.1 9.4 5.9 10.5 2.0 0.20 0.60
......
.l..*l...-..l*.*..
.,,
c i
21
Fig. 11. Tensile Ductilities of MSRE Surveillance Specimens, Heat 5085.
4 .O
c
57- 2455
-A-
>. >.t t a = w
g 0.8 $n E f
-t--
O O W Wt-
t9
2 Q6
2s 3
0.4
0.2
0
0
cd c
100
200
300
400
500
600
700
800
900
TEST TEMPERATURE ("CI
Fig. 12. Comparative Tensile Properties of Irradiated and Unirradiated MSRE Surveillance Specimens, Heat 5085.
4000
22 The elongations a t f a i l u r e f o r the two heats of material are compared i n Figs. 13 and 14.
A t a s t r a i n r a t e of 0.05 min'l
(Fig. 13) there are
several minor variations i n the d u c t i l i t i e s of the control specimens.
The
main difference i s t h a t the d u c t i l i t y of heat 5085 i s consistently lower up t o about 500째C.
Both heats of the surveillance specimens exhibit a
reduction i n d u c t i l i t y at a test temperature of 25째C; however, the reduction is greater f o r heat 5085.
The d u c t i l i t y of heat 5081 re'covers
some with increasing test temperature, but heat 5085 maintains i t s reduced ductility.
Above about 500째C the d u c t i l i t y of t h e controls drops rapidly,
but t h e d u c t i l i t y of t h e irradiated surveillance specimens decreases more Both heats have very s i m i l a r d u c t i l i t i e s a t temperatures above
rapidly. 600째C.
The d u c t i l i t i e s of t h e two heats at a s t r a i n r a t e of 0.002 min-'
are compared i n Fig. U. The control specimens of both heats exhibited very similar d u c t i l i t i e s , the characteristic d u c t i l i t y minimum being exhibited.
The irradiated surveillance specimens have much lower
d u c t i l i t i e s , but the values are very similar f o r t h e two heats.
TEST TEMP.
*C
Fig. 13. Comparative Tensile Ductilities of IERE Surveillance Specimens and Their Controls a t a S t r a i n Rate of 0.05 min'l.
U
23 60
50
-8z 40 0 5 z 30 sw 20 2
io P
0 0
100
200
400
300
500
600
700
800
I000
900
TEST TEMPERATURE ("C)
Fig. 14. Comparative Tensile D u c t i l i t i e s of M3RE Surveillance Specimens and Their Controls at a S t r a i n Rate of 0.002 min-l. W e took a b r i e f look a t how t h e t e n s i l e properties of t h e material
varied as a function of heat treatment i n t h e unirradiated s t a t e .
The
properties of heat 5081 i n several metallurgical conditions are given i n Table 6.
The anneal f o r 2 h r a t 900°C generally decreased the strength
and increased t h e rupture s t r a i n over t h a t of t h e as-received material. One exception t o t h i s behavior i s an increase i n ultimate stress a t 650°C The exposure t o molten salt a t 650°C
due t o t h e 2 h r anneal a t 900°C.
f o r 4800 h r caused a decrease i n t h e d u c t i l i t y and s l i g h t variations i n t h e strength.
The t e n s i l e properties of heat 5085 i n t h e unirradiated The properties of t h i s heat are not
condition are given i n Table 7. significantly different i n t
2 h r a t 900°C.
The exposure
as-received condition and after annealing molten salt a t 650°C caused a general
decrease of 10 t o 20% i n t h e rupture d u c t i l i t y , but t h e strength was not affected significantly. The p o s t i r r a d i a t i o n t
i l e properties of several heats of MSRE
material are compared i n Table 8.
The first two sets of data f o r
heat 5065 show t h a t t h e p o s t i r r a d i a t i o n properties w e r e not affected by
.
__
..
. . . . . . . .
..i_ .".I_,~
i_i
....
. . . . . -.
..................
......
.
.
Table 6, Tensile Properties of Unirradiated Hastellay N Heat 5081 Specimen Number
5006 5005 5004 5008 5007
I
Test Temperature
("a
25 500 500 650 650
25
4300 4303
500
4301 4302
650 650
AC- 8 AC- 19 BC-9
AC-27 AC- 17
25 500 500 650 650
Strain Rat e (min-l)
Reduction in Area
($1 As-received 77,400 130,600 38,200 103,300 40,000 103,200 39,100 73,400 38,200 65,100
0.05 0.05 0.002 0.05 0.002
Elongation ($) Dnlrorm Tot a1
Stress (psi) U L t imate Yield
Annealed 2 hr at 900째C 0.05 52,600 125,300 0.05 32,000 100,300 0.05 32,200 81,800 0.002 32,900 74,900 r
Annealed 2 hr at 900째C plus 4800 hr in MSRE I 0.05 47,700 118,700 0.05 35,800 97,800 0.002 36,200 95,300 0.05 32,400 68,400 0.002 33,600 66,700
44.9 53.3
46.9
51.2 18.0 14.4
19.8 15.2
w
s
59.5
56.7 57.8 31.7 29.0
50.5 44.4 29.9 31.8
60.7 33.9
29.5
salt at 650째C 55.9 57.6 53.6 56.6 46.2 47.0 23.8 24.6
22.8
1
48.0 34.0 41.5 19.1 15.8
55.3 52.6
23.2
4
'
48.8 46.2 38.1 23.1 '21.6
U'
1'
c
z
3 '
2
Bc
el
Table 7. Tensile Properties of Unirradiated Hastelloy N Heat 5085
Specimen Number
Test Temperature ( "C>
Strain Rate (min-l)
Stress (psi) Yield Ultimate
Elongation ( 8 ) Uniform Tota1
Reduction in Area
($1 As-received
25 427 60 65 650 650. 760
76 77 2 84 78 2 85 2 83 79 80 81
982
0.05 0.05 0.02 0.05 0.02 0.002 0.05 0.05 0.05
25 500 500 650
0.05 0.05 0.002 0.05
871
4295 4298 4299 4296
52,200 116,400 30,700 102,900 32,200 85,100 28,700 80,700 31,900 65,000 64,300 30,500 32,100 61,500 30,700 42,300 23,100 23,100 Annealed 2 hr at 900째C
51,500 32,600 33,500 29,600
120,800 94,800 100,200 75,800
51.3 57.6 46.6 35.5 25.8 22.6 24.7 9.0 1.8
52.5 59.4 47.6 36.7 31.8 24.1 27.0 31.8 40.2
56.3 49.9 40.4 33.2 27.2 28.8 31.9 33.4 43.9
52.3 51.2 52.0 31.7
53.1 54.1 53.3 33.7
42.2 40.9 41.7 34.6
Annealed 2 hr at 900째C plus 4800 hr in MSRE salt at 650째C FC-3 E19 DC-26 E-14 E-25
-
25 500 500 650 650
0.05 0.05 0.002 0.05 0.002
45,500 33,600 33,400 31,800 31,500
111,200 94$300 91,700 70,100 62,500
46.8 48.8 43.3 25.8 22.8
46.8 49.3 44.3 26.8 24.3
31.5 41.5, 37.8 30.0 27.2
tu
VI
4h
.- .-- -.-...~... "
Table 8. Specimen Number
Heat Mber
-..
^ "
P o s t i r r a d i a t i o n Tensile Propertiesa of Several Heats of NSRE Hastelloy N
Boron Level
(m)
Irradiation Temperature ( 'C)
Thermal Dose (neutrons/cm2)
Teat Temperature ( 'C)
Strain Rate (min-1)
Streas ( p s i ) eld U l t lmate
gtaadtL
Reduction i n Area ( %)
x 1020 57@
2289'
5065 5065 5065 5065 5065 5065 5065 5065 5065 5065 5065 5065
20 20 20 20 20 20 20 20 20 20 20 20
43 43 43 43 43 43 43 43 43 43 43 43
8.5 8.5
5067 5067 5067
20 20 20 38 38 38 20 20 20
500-700 500400
1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4
5085 5085 5085
5065 5065 5065
8.5 8.5
Experiment ORR-149 25 200 650 650
871
0.05
8.5 8.5
871
0.002
25 200 650
0.05
650 871 .87l
0.002 0.05
8.5 8.5
500-700
0.05 0.05 0.002
8.5 8.5 8.5 8.5
500400 500400 500-700 500400 500400 5woo
0.05
0.05 0.05
0.002
Experiment ORR-155 25 650 650 25 650 650 25 650 650
0.05 0.05 0.002 0.05 0.05 0.002 0.05 0.05 0.W
.
31.5 36.1 26.3 12.2 1.7 0.9 30.0 37.3 25.3 __ .~ 13.7 1.7 0.8
35.5 39.2 27.3 13.1 1.8 1.8 33.6 39.8 25.8 ~. . 14.3 1.9 1.6
59,000 123,700 38,400 66,800 36,400 59 900 46,300 110:600 30,800 64,400 30,200 51,800 50,100 ll7,OOO 37,400 62,100 34,800 49,100
49.4 14.0 9.6 41.1 18.0 9.3 54.4 12.3 6.4
51.2 14.0 9.6 41.2 21.2 9.9 56.1 12.4 6.5
45.4 20.5 16.0 40.3 19.1 u.4 53.2 17.2 15.3
49,100 42,200 41,200 42,600 41,900
68,600 56,300 59,000 51,800
9.4
46,OOO
9.1 8.2 10.8 5.9 2.8
11.3 6.1 2.8
14-7 11.7 14.7 10.2 5.6
46,700 37,700 40,000
76,200 53,300 57,500
21.6 9.3 11.4
22.2 10.0 ll.6
28.8 10.1 17.5
511100 105,500 34,600 57,200 34,400 48,400 48,100 100,300 32,000 52,800 32,100 42,900
38.5 13.8 8.2 34.3
38.7
31.3 13.9 11.6 26.0 13.9 7.9
102,900 l35,100 44,600 82,300 ll9,600 76,900 40,800 57,400 33,m
36,400
23,200 23,400 101,500 132,200 78,ll8,300 35,100 77,700 38,100 66,200 37,100 38,500 25,900 25,900
.
52.0 54.8 24.5 , 21.9 3.25 6.07 55.2 45.9 22.6 17.3 2.94 5.26
Experiment Ern(-41-31 1273' 1276' 1270b 127g' 1274
5065 5065
383' 380b 384i-J
5065 5065
&la' E-7 E-14' A-16'
5081
5c65
5065 5065
5065
20 20 20 20 20
600 600 600 600 600
f 100
20 20 20
4.50
5
4.50 c150
5
f 100
f 100 f 100 f
100
3.5 3.5 3.5 3.5 3.5
5
550 600
0.002 0.002
650 650. 760
0.05
0.002 0.002
Experiment Ern(-41-30 650 650 650
0.05
0.002 0.002
8.5
Experiment USRE
E-$ B-6
5081 5081 5085 5085 5085
50 50
50 38 38 38
650 650 650 650 650 650
25
1.3 1.3 1.3 1.3 1.3 1.3
a h a d t a t a d in a helium environment except for apeciuens from bAa received.
650 650 25 650 650
DBRE.
0.05 0.05 0.002 0.05
0.05 0.002
'Annealed 8 hr a t 871%. dAnnenled 2 hr at 900%
12.6
6.5
14.3 9.0 34.5 13.7 9.4
-
e
27
,tis whether t h e , m a t e r i a l was i r r a d i a t e d i n t h e as-received condition o r whether it w a s annealed 8 h r a t 871°C. These specimens were irradiated a t
43"C, and t h e d u c t i l i t i e s a t 25°C (0.05 min'') 34 t o 36 and I 3 t o 14$, respectively.
and 650°C (0.002 min-l) were
When i r r a d i a t e d a t an elevated
temperature, t h i s same heat had elongations a t 650°C (0.002 min'l)
of
6.5 and 6.1%. Heats 5067 and 5085'showed somewhat b e t t e r d u c t i l i t i e s a t 650°C (0.002 min-l) with values of 9 t o 10% being obtained f o r i r r a d i a t i o n s a t elevated temperatures.
The d u c t i l i t i e s of t h e two surveillance heats
a t 650°C agree closely with those observed previously f o r heats 5085 i
and 5067. However, t h e room temperature d u c t i l i t i e s a r e lower than those observed f o r any heat of material i r r a d i a t e d a t an elevated temperature.
%
Heat 5081 was included i n another experiment i n t h e Oak Ridge Research Reactor,6 and the r e s u l t s are compared with those f o r the MSRE surveillance specimens i n Fig. 15.
These r e s u l t s indicate t h a t t h e properties of the
material are unaffected by the s a l t environment.
6w. R. Martin and J. R. Weir, "Effect of Elevated Temperature I r r a d i a t i o n on t h e Strength and Ductility of t h e Nickel-Base Alloy, Hastelloy N," Nucl. Appl. 1(2), 160-67 (1965). 1c
.
--z
ORNL-DWG 67-353t
1.a
r=0.002 m i d
z
E9 0.8 5 W -I
0
THIS STUDY, 4,,=1.3 x1020nvt,
A
ORNL-TM-1005. +,h=9Xi020nv T=7000C
0.6
400
500
600 700 800 TEST TEMPERATURE CC)
900
4000
Fig. 15. Comparative Effects of I r r a d i a t i o n i n E R E and ORR on t h e Ductility of Hastelloy N, Heat 5081.
W *
3
28
LJ
We a l s o ran several creep-rupture t e s t s on the i r r a d i a t e d materials t o evaluate t h e i r properties under creep conditions. For comparison, t h e results of several creep-rupture t e s t s on unirradiated heat 5081 are given i n Table 9.
O f t h e two heat treatments investigated, 2 hr a t 900°C and
the st&eillance
control treatment, the l a t t e r resulted i n slightly lower
rupture strains.
The creep-rupture data are plotted i n Fig. 16, and the
IERE surveillance control specimens exhibit a s l i g h t l y reduced rupture
However, the minimum creep r a t e i s the same a f t e r the two heat
life.
treatments (Fig. 17). *
Table 9.
Creep-Rupture Properties of Unirradiated Hastellay N a t 650°C Heat 5081 ~~
Test Nuniber
Stress (Psi 1
Rupture Life
Rupture Strain
Reduction i n Area
(W
($1
($1
Minimum Creep Rat e
(%/W
Annealed 2 hr a t 900°C 6159
70,000
5.1
35.0
12.8
2.1
6155
55,000
71.8
33.9
29.2
0.26
6156
47,000
76.0
12.4
27.0
6157
40,000
648.3
42.5
25.2
0.091 0.032
6158
32,400
2133.3
46.8
20.1
0.012
6160a
27,000
2349.0
10.2
3.7
O.oOLc7
#
Annealed 2 hr a t 900°C plus 4800 h r a t 650°C i n MSRE s a l t 6077
55,000
40.7
24.3
21.9
0.25
6075
47,000
147.9
27.2
21.9
0.098
6076 6071
40,000 32,400
321.0 848.0
31.1
26.7 16.1
0.061 0. ol4
16.5
%iscontinued p r i o r t o f a i l u r e .
,
r
29
B,
ORNL-DWG 67-7934
70
I
60
--
I
,
I
PRETEST ANNEAL A 2 hr AT 9OO0C MSRE CONTROLS
50
-*
El
2 40 v)
E v)
30
v)
20
io 0
roo
40'
io2 RUPTURE LIFE (hr)
Fig. 16.
Creep-Rupture Properties of Hastelloy N a t 650째C, Heat 5081.
ORNL-DWG 67-7935
70
60
50
w
30
E ' in 20
10
0
IO-^
lo-2
40째 MINIMUM CREEP RATE (%/hr)
Fig. 17.
.
Minimum Creep Rate of Hastelloy N a t 650째C, Heat 5081.
1
30
L) The creep-rupture properties of heat 5085 were investigated i n three conditions
- as-received,
annealed 2 h r a t '900"C, and 2 hr a t 900°C plus The rupture s t r a i n of the as-received
4800 hr i n molten s a l t (Table 10).
material i s improved by annealing at 90O0C, but the long aging treatment a t 650°C brings about a slight reduction i n the f r a c t u r e d u c t i l i t y . Figure 18 compares the rupture l i f e a f t e r the various heat treatments. The pattern i s the same as t h a t f o r t h e d u c t i l i t y with t h e m i n i m strength being observed f o r the as-received material and the maximum f o r t h e material However, the minimum creep r a t e was unaffected by
annealed 2 hr a t 900°C. heat treatment (Fig. 19).
Table 10.
Creep-Rupture Properties of Unirradiated Hastellay N a t 650°C Heat 5085
Test Muuiber
Stress (Psi 1
Rupture Ef e
Rupture Strain
Reduction i n Area
($1
(hr)
H n i m Creep Rate
(4)
(Vhr)
21.9 13.3 14.6 5.6 5.6 6.4 7.1
9.0 0.27 0.086 0.024 0.024 0.006 0.006
As-recezved 70, OOO 55, OOO 47, OOO 40, OOO 40,000 30, OOO 30, OOO
3792 3710 3781 3713 37l4 3975 3795
0.4 10.8 48.6 179.5 215.7 672.6 1030.0
28.0 10.9 12.5 10.9 2.4.0
6.3
9.4
,
*
Annealed 2 hr a t 900OC 6153 6l49 6150 6151 6152a 6154
70,000 55, OOO 47,000 40, OOO 32,400 27,000
4.1 49.5 246.8 725.1 2386.0 2445.0
32.6 22.6 38.5 37.6 37.7 9.0
30.7 30.8 28.9 18.4 19.9 4.0
2.1 0.26 0.084 0.029 0,009 0.0035
Annealed 2 hr a t 900°C plus 4800 hr a t 650°C i n E R E s a l t 6074 6073 6072 6070
55,000 47,000 40,000 32,400
20.5 124.6 513.3 2054.6
20.8 31.2 22.3 26.7
21.9 22.9 19.7 16.7
0.30 0.080 0.029 0.0082
%iscontinued p r i o r t o Tailme.
e
t
31 ORNL-DWG 67-7936
70
60
50
40
30
20
io 0 40-'
to' 1 8 RUPTURE TIME (hr)
Fig. 18. Creep-Rupture Properties of Hastelloy N a t 65OoC, Heat 5085.
I ORNL- DWG 67-7937
70
60
i t
i
i
50
i
i
!
20
10
0
io+
IO-'
100
10'
MINIMUM CREEP RATE (%/hr)
Fig. 19. Minimum Creep Rate of Hastelloy N a t 650째C, Heat 5085.
I
t
32 The r e s u l t s of t h e t e s t s on the surveillance specimens are given
i n Table ll. The properties ( d u c t i l i t y and strength) of heat 5081 a r e superior t o those of heat 5085.
However, a comparison of these data w i t h
those f o r the control specimens i n Tables 9 and 10 shows t h a t i r r a d i a t i o n has significantly reduced the rupture l i f e and d u c t i l i t y of both heats. The rupture l i v e s are compared i n Fig. 20 f o r both heats of material i n the irradiated and unirradiated conditions. greater as the s t r e s s l e v e l increases.
The effect of i r r a d i a t i o n i s
The minimum creep r a t e s of the
two heats of material i n the i r r a d i a t e d and unirradiated conditions are compared i n Fig. 21.
This parameter appears t o be independent of the
variables being studied with the possible exception of the i r r a d i a t e d specimens exhibiting a higher s t r a i n r a t e a t t h e 47,000-psi s t r e s s level. Table 11. Postirradiation Creep-Rugture Properties of b5Rl3 Surveillance Specimens a t 650째C
Rupture I;ife
Rupture Strain
Reduction i n Area
M h i m u n Creep
Test Nunher
Heat Number
Stress (psi)
R-230
5085
47,000
0.8
1.45
10.0
0.81
R-266
5085
40,000
24.2
1.57
9.7
0.031
5085
32,400
148.2
1.05
6.5
0.006
R-250
5085
27,000
25.2
1.86
2.2
0. ow
R-229
5081
47,000
8.7
2.28
9.2
0.20
R-231
5081
40,000
. 98.7
.2.65
5.8
0.017
R-226
5081
32,400
474.0
3.78
4.0
0.0059
R-233
5081
27,000
2137.1
4.25
0.58
0.0009
R-267
'
(hr)
(4)
(4)
a Annealed 2 h r a t 9oO째C p r i o r t o irradiation.
3
\
33 ORNL-DWG 67-7938
70
60
50
-.
fn v)
2
30
Iv)
20
0 IO+
roo
IO‘
io2
io3
io4
RUPTURE TIME ( h r )
Fig. 20. Comparative Creep-Rupture Properties of Surveillance and Control Specimens a t 650°C.
i
\
34 The results of the creep-rupture tests on t h e surveillance specimens
were compfured with data which we had obtained on t h e
"MSmmaterials"
in
other i r r a d i a t i o n experiments i n the Om. The results used i n t h i s comparison are given i n Table 12. Fig. 22.
The creep-rupture l i v e s a r e compared i n ,
The data f o r heat 5085 agree quite w e l l w i t h those obtained
previously i n t h e ORR f o r t h i s same heat and several other =E However, the results f o r heat 5981 are slightly superior.
heats.
The f r a c t u r e
s t r a i n s f o r the various heats of i r r a d i a t e d material a r e compared i n Fig. 23. The data indicate a minimum d u c t i l i t y f o r a rupture l i f e of 1t o 10 h r with
d u c t i l i t y increasing with increasing rupture l i f e . heat 5085 a f t e r i r r a d i a t i o n i n t h e
MSm i s
A lower d u c t i l i t y of f
a l s o indicated, although t h e
data s c a t t e r will not permit t h i s as an unequivocal conclusion.
The
superior d u c t i l i t y of heat 5081 and t h e l e a s t d u c t i l i t y of heat 5065 (heat used f o r the top and bottom heads of MSRE) are c l e a r l y i l l u s t r a t e d . Since t r a n s i e n t s may occur i n which t h e material i s s t r a i n e d a t some temperature other than t h e operating temperature (650°C), we ran a series of t e s t s t o determine what e f f e c t such t r a n s i e n t s could have on the f r a c t u r e s t r a i n at 650°C.
The r e s u l t s of these tests a r e given i n Table 13.
The specimens w e r e strained a t other temperatures and then quickly cooled or heated t o 65OOC and t e s t e d t o failure.
Even though .the prestraining
treatments carried t h e specimens as far as 37% of t h e s t r a i n t o f a i l u r e , the s t r a i n a t 650°C was not decreased.
I n f a c t , the prestraining a t
760 and 850°C seemed t o improve t h e a b i l i t y of the material t o s t r a i n a t 650 "C
. Several of the specimens w e r e examined metallographically a f t e r
testing.
Figure 24 shows the microstructure of a control specimen from
heat 5 0 8 1 t h a t was t e s t e d a t 25°C.
The specimen has undergone extensive
'deformation, and the f r a c t u r e i s t y p i c a l of a transgranular shear-type failure.
There i s no evidence of intergranular cracking.
I n contrast,
the i r r a d i a t e d specimen f r o m t h e same heat, shown i n Fig. 25, failed
intergranularly with less s t r a i n and considerable intergranular cracking. A t 650°C t h e f a i l u r e of t h e control specimen was predominantly
intergranular (Fig. 26).
The failure of t h e surveillance specimen was
a l s o intergranular a t 650°C with no microstructural evidence of p l a s t i c deformation (Fig. 27)
.
W
I
Table 12, Postirradiation Creep-Rupture Properties of Irradiateda Hastelloy N at 650째C
Test Number
Thermal Dose ( neutrons/ cm2)
x
Experiment Number
Stress (Psi)
Rupture Life (
Rupture Strain
2.8 -62.6 765.8 1907.8 28.6 13.0 17.7 117.0 135.7
0.59 2.23 1.75 2.28 0.98 0.60 0.66 1.45
0.0019 0 0010 0.028 0.018 0.016 0.0049 0.0083
361.4
2;78
0.0056
6.7 49.3 102.8 2625.8 247.6
1.90 1.61 2.88 3.70 1.48
0.25 0.0098 0.0023 0.0009 0.0055
w
Minimum Creep
(4)
1020
Heat 5065
R-15 R-13 R-35 R-12 R-159 . R-167 - R-65 R-168 R-215
,
3.0 3.0 3.0 3 .o 5.2 5.2 5.2 5.2 1.4
a
om-138 ORR-138 ORR-138 OM-138 ORR-148 ORR-148 ORR-148 ORR-148 ORR-155
39,800 32,400 27,000 21,500 40,000 40,000 35,000 30,000 32,400
0.46
0.086 0.011
Heat 5067
R-214
ORR-155
1.4
32,400 Heat 5085,
R-14 R-11 R-41 R-10 R-206
2.0 2.0 2.0 2.0 1.4
'
y r r a d i a t i o n environment:
ORR-140 ORR-140 ORR-140 Om-140 ORR-155
39,800 32,400 27,000 21,500 32,400
He-1 vol $ 0 2 .
All specimens i n t h e as-received condition.
.
......
~ . . . ..
.
.
....
il,
...
. . .. "_
ID
L
.-fl g
n
I
. . ..
,
I
-
I
I
~
..
I
I
I
0
4 4
I
1
I
I
1 4
I
I I
..
I
..
- 7
I
*
"_"_
I
I
I I
I
I I
4
0
-
.
I
.L
....
I
I
I
"
,
I
I I
7
I
0
O
I
A 0
rl d
m
a, c,
a
I4
a,
Ld
4J
.d
a!
a
k
I!
e
~.~ . . " ". . . . .
.- .
0
h
rr
Table 13.
1
Specimen
Number '
#
H f e c t s of P r e s t r a i rling on theaTensile Properties of Hastelloy N Heat 5081
Pretreatment'
Stress (psi) Yield ultimate
Elongationb ($) h i f o r m Total
I
None
!kue Strain
($1
($1
($1
34,600
53,000
10.8
11.3
14.6
15.9
E- 14
34,400
48,400
8.2
9.0
11.6
12.2
F-11
Strained !$ at 4 0 " ~ 45,900
54,700
8.0
10.0
8.2
8.2
10
F-25
Strained 5$ at 500°C
47,700
58,300
10.9
11.5
14.2
15.4
20
F-24
Strafned 5$ a t 600°C
47,900
58,500
10.4
11.3
11.0
11.,3
D-11
Strained 2$ at 700°C
40,200
54,000
9.7
10.6
14.2
15.4
F-4
Strained l$ at 760°C
35,500
56,400
11.9
12.6
15.5
16.9
26
F-16
Strained 0.s a t 850°C
35,700
59,800
15.2
15.9
13.5
14.7
24
E-19
,
Reduction i n Area
Fraction of' Rupture Strain a t Prestrainin Temperature
bJ
a Ruptured a t 650°C: S t r a i n rate = 0.002 min'l. bPrestraining carried out a t a s t r a i n r a t e of 0.002 min-1. C
Inciudes only the s t r a i n a t 650°C.
.
32 ,
37
i
4
38 I
t
c
3'
t
i
Fig. 24. Photomicrographs of Control Specimen AC-8 from Heat 5081 (a) Fracture. (b) Edge Tested a t 25"C,and a t a S t r a i n Rate of 0.05 min'l. of specimen about l/4 in. from fracture. Etchant: glyceria regia.
b;! c
39
\
Fig. 25. Photomicrographs- of Surveillance Specimen D-16 from Heat 5081 Tested a t 25°C and a t a S t r a i n R a t e of 0.05 minâ&#x20AC;&#x2122;l. (a) Fracture. (b) Edge of specimen about 1/4 in. from fracture. Etchant: glyceria regia.
L
b
3
U
c
41 The f a i l u r e of t h e control material f r ~ mheat 5085 was found t o be
However, t h e elongated grains
predominantly intergranular (Fig. 28).
a t t e s t t o the large amount of s t r a i n t h a t has occurred. p r e c i p i t a t e s have been i d e n t i f i e d as M&,
The large
and they normally f r a c t u r e when
strained a t temperatures less than about 500°C. The surveillance specimen from heat 5085 t e s t e d a t 25°C i s shown i n Fig. 29.
The f a i l u r e i s largely
intergranular with numerous intergranular cracks i n t h e microstructure. The edge’ of t h e .specimen (Fig. 29b) i s quite clean w i t h no evidence of corrosion or material deposition.
However, t h e p a r t of t h e specimen t h a t
touched t h e .graphite i n the surveillance assenibly was found t o have a c t near t h e surface varying from 1 t o 2 m i l s i n depth (Fig. 30). as not distributed uniformly around the specimen and varied i n form from a lamellar t o a rope-like intergranular product.
A t 650°C t h e
f a i l u r e of t h e control specimen was predominantly intergranular (Fig. 31). The surface reaction praduct observed i n specimens from t h e reactor where
they were i n contact with t h e graphite was a l s o noted i n t h e control specimens (Fig. 32).
Although t h e micrographs t h a t have been shown are
f o r heat 5085, the surface reaction was a l s o noted i n heat 5081. Electron microprobe examination showed that t h i s layer contained‘fgom 0.3 t o 1.5 w t ’$ C, indicating t h a t t h e r e was some t r a n s f e r of carbon from the graphite t o t h e Hastelloy N where the two materials were i n contact.
Figure 33 shows t h e f r a c t u r e of t h e surveillance specimen from heat 5085 t h a t was t e s t e d a t 650°C.
The failure is predominantly i n t e r g r a n u l a r v i t h
no metallographic evidence of p l a s t i c deformation. IWraction r e p l i c a s were made on t h e surveillance and control specimens. This technique involves depositing carbon on a polished surface of the specimen and then dissolving e l e c t r o l y t i c a l l y t h e matrix i n a solution of
lo$ HC1 i n ethanol u n t i l t h e carbon f a l l s f r e e . attacked by t h e s o l u t i o washing and drying, t h e
The p r e c i p i t a t e s are not
they a r e held by the carbon. ca ca
examined i n t h e e l
After s u i t a b l e
ron microscope.
Transmission electron micrographs can be made as w e l l as selected area d i f f r a c t i o n patterns f o r phase identification.
An extraction r e p l i c a of
a control specimen from heat 5081 i s shown i n Fig. 34. The predominant feature i s the r e l a t i v e l y large p r e c i p i t a t e s t h a t have been i d e n t i f i e d
,
42
f
U
f
!
Fig. 28. Photomicrographs of Control Specimen E - 2 4 from Heat 5085 (a) Fracture. (b) Edge Tested a t 25OC and a t a Strain Rate of 0.05 an". of specimen about 1/4 in. from fracture. Etchant: glyceria regia.
u 9
t
~-
43
.
)
-
Fig. 29, Photomicrographs of Surveillance Specimen A-16 from Heat 5085 Tested a t 25째C and a t a Strain Rate of 0.05 min'l. (a) Fracture. (b) Edge of specimen about 1/4 in. from fracture. Etchant: glyceria regia.
.
44
4
I
Fig. 30. Cross Section of t h e Buttonhead of Surveillance Specimen A-16 from Heat 5085 Tested a t 25OC. (a) 100 X. (b) 500 X.
LIJ r
45
Fig. 31. Photomicrographs of Control Specimen DC-25 from Heat 5085 (a) Fracture. Tested a t 650째C and a t a S t r a i n Rate of 0.002 min-l. (b) Edge of specimen about 1/4 in. from fracture. Etchant: glyceria regia.
46
w
..
I
Fig. 32. Photomicrographs of t h e Cross Section of the 3uttonhead of Specimen E-25. ( a ) 100 X. (b) 500 X. Etchant: glyceria regia.
LJ
P
Fig. 33. Fracture of Surveillance Specimen 3-6 from Heat 50815 Tested a t 6150째Cand a t a S t r a i n Rate of 0.002 min-l. Etchant: glyceria regia.
Fig. 34.
Extraction Replica from Control Specimen, Heat 5081.
t
. 48
as MgC.
A ' r e p l i c a i s sham i n Fig. 35 f o r a surveillance specimen from
heat 5081. The large MgC p a r t i c l e s are present, but t h e r e i s a l o t of f
f i n e intergranular p r e c i p i t a t e that has a l s o been i d e n t i f i e d a s MgC. The i r r a d i a t i o n appears t o enhance t h e formation of t h e f i n e intergranular i
precipitate.
c
II
T
Fig. 35.
Extraction Replica From Surveillance Specimen, Heat 5081.
49 DISCUSSION OF €ESULTS Because of the large amount of data presented, we w i l l briefly recapitulate t h e most important observations. 1. The control specimens from both heats of Hastelloy N exhibited the c h a r a c t e r i s t i c d u c t i l i t y minimum i n the temperature range of 600 t o 700°C.
The d u c t i l i t y a t various temperatures was reasonably insensitive
t o s t r a i n r a t e except near 650°C where t h e d u c t i l i t y decreased with decreasing s t r a i n r a t e .
2. After i r r a d i a t i o n t h e t e n s i l e d u c t i l i t y was reduced significantly. There was an unexpected reduction i n t h e room temperature d u c t i l i t y w i t h fracture s t r a i n s i n t h e range of 35 t o 40%being observed. fractures w e r e obtained a t room temperature i n heat 5085.
Intergranular The f r a c t u r e
s t r a i n generally became lower as t h e t e s t temperature was increased and the s t r a i n r a t e decreased,
3.
A t elevated temperatures (40W50"C) the f r a c t u r e s t r a i n s were
equivalent f o r t h e two heats of surveillance specimens and were found t o be t h e same as those observed previously i n other experiments where molten salt was not present.
4. Creep-rupture tests run on unirradiated specimens indicated t h a t the p r e t e s t anneal of 2 h r a t 900°C improved the rupture strength and d u c t i l i t y over t h a t of the material i n the as-received condition. Thus, t h e stress-relieving anneals a t 871°C used i n fabricating t h e BERE improved t h e base properties. However, t h e long exposure of t h e control specimens a t 650°C (operating temperature of t h e BERE) caused slight reductions i n rupture strength and d u c t i l i t y . 5.
The creep-rupture l i f e of t h e surveillance specimens was less
than t h a t of t h e control specimens, t h e e f f e c t being greater a t t h e higher stress levels.
Heat 5085 was
ffected much as we had observed
previously i n other experiments on t h i s same heat and other MSRE heats. Heat 5081 exhibited a sign 6.
The creep-rupture
smaller e f f e c t . f irradiated Hastelloy N goes
through a minimum value f o r a rupture l i f e of from 1 t'o 10 h r f r a c t u r e s t r a i n increases as the rupture l i f e increases (or t h e ' s t r e s s l e v e l decreases).
Heat 5081 exhibited appreciably higher fra
ins
50
than did heat 5085.
Heat 5065 (material used f o r the top and bottom
heads of t h e MBE) exhibited the lowest d u c t i l i t y of any heat examined t o date.
7.
A s e r i e s of t e n s i l e t e s t s indicated t h a t prestraining at
temperatures Over the range of 400 t o 850째C did not appreciably lower the fracture s t r a i n of t h e material when t e s t e d . t o f a i l u r e a t 65OOC.
8. Neither t h e control nor t h e surveillance specimens showed any evidence of corrosion.
However, there was a surface product from
0.001 t o 0.002 in. i n depth t h a t formed where t h e Hastelloy N and graphite were i n contact.
Microprobe studies indicate t h a t t h i s layer i s high i n
L
carbon, and hence t h e reaction product i s probably a metal carbide. 9.
Extraction replicas indicated t h a t more intergranular precipitate
f o r m d i n the surveillance specimens than i n t h e controls. Thus, irradiation must enhance t h e nucleation and growth of t h e p r e c i p i t a t e (identified a s Q C )
.
The changes i n t h e unirradiated properties of these heats of
Hastellay N have been demonstrated p r e v i ~ u s l y . ~However, these changes a r e r e l a t i v e l y small, and t h e properties do not appear t o be deteriorating enough f o r concern.
They a r e probably due t o t h e solution and
reprecipitation of &C. The effects of irradiation on Hastelloy N are drastic, but p r e t t y
much a s expected.
Previous work had Shawn a reduction i n the rupture
d u c t i l i t y i n postirradiation t e n s i l e and creep-rupture tests at elevated temperatures. 8, the '%(n,a)
These e f f e c t s are attributed t o t h e helium produced by
transmutation.
Many of the d e t a i l s of t h e r o l e of helium
i n metals have been reviewed by Harries,1째 and we have applied these
'H. E. McCoy, Influence of Several Metallurgical Variables on the Tensile Properties of Hastelloy N, ORNL-3661 (August 1964). 8W. R. Martin and J. R. Weir, "Wfect of Elevated Temperature Irradiation on t h e Strength and Ductility of t h e Nickel-Base Alloy, Hastelloy N," Nucl. Appl. 1(2), 160-67 (1965).
-
t
W. R. &&in and J. R. W e i r , "Postirradiation Creep and Stress3(3), 167 (1967). Rupture of Hastellay N," Nucl. Appl. -
-
'%. R. wries, "Neutron Irradiation Embrittlement of Austenitic Stainless Steels and Nickel-Base Alloys," J. B r i t . Nucl. Energy SOC. 5, 74 (1966). =:
iJ s
\
51 /'
ideas t o Hastelloy N i n two-recent papers. 11,12 Hence, we s h a l l not
!
discuss the mechanism whereby helium a l t e r s t h e properties.
There a r e some questions concerning the comparison o r thermal f l u x measurements
f o r the MSRE and Om. However, about 30 t o 40% of t h e
was transmuted
i n the surveillance specimens with a r e s u l t i n g atomic f r a c t i o n of helium of about 1 X lo+.
W e f e e l t h a t , a t l e a s t a t l o w s t r a i n rates, t h e
deterioration of properties s a t u r a t e s a t helium l e v e l s an order of magnitude lower.
Hence, t h e exact helium l e v e l i s r a t h e r academic, and the high-
temperature properties have probably s t a b i l i z e d unless cohtinued exposure
i
a t 650째C causes metallurgical changes t h a t a r e detrimental.
The drop i n
d u c t i l i t y a t low temperatures is somewhat surprising and bears watching.
;'F
i i
However, t h e d u c t i l i t y l e v e l s a r e s t i l l quite reasonable. \
The mechanical properties appear unaffected by the salt.
This i s
evidenced by the excellent agreement between t h e r e s u l t s of tests on
i i 1
materials i r r a d i a t e d i n t h e MSRE and t h e ORR (helium environment).
i
small amount of carburization t h a t occurred i n t h e Hastelloy N which was
1
!i i
i
1
i I 1
1 3
The
i n contact with graphite was not surprising and did not extend t o alarming depths. The very low stress l e v e l s i n t h e MSRE during normal operation, 13 coupled w i t h t h e experimental observation t h a t t h e deteriora$ion of t h e creep-rupture properties (rupture l i f e and d u c t i l i t y ) due t o i r r a d i a t i o n becomes smaller a t low stresses, indicate t h a t t r a n s i e n t conditions o f f e r
i
t h e greatest r i s k of f a i l u r e .
ji
does not appear a t t h i s t i m e that the l i f e of t h e MSRE w i l l be limited by
i
Thus, w i t h reasonable care i n operation, it
radiation damage t o t h e Hastelloy N.
"H. E. McCoy, Jr., and J. R. Weir, Jr., In- and &-Reactor StressRupture Properties of Hastelloy N Tubing, ORNL-TM-1906 (September 1967). I ~
I I
"H. E. McCoy, Jr., and J. R. Weir, Jr., EFfects o f I r r a d i a t i o n on t h e Mechanical Properties of Two Vacuum-Melted Heats of Hastelloy N, ( t o be published).
13R. B. Briggs, private communication.
52
SUMbKRY 'AND CONCLXTSIONS
-
We have t e s t e d he first group of surveillance specimens from -he They were removed a f t e r 7800 Mwhr of operation during which
KSRE core.
t h e specimens were held a t 645 f 10째C f o r 4800 hr and accumulated a thermal dose of 1.3 X
lo2'
neutrons/cm2.
Specimens were exposed t o
molten salt t o d q l i c a t e t h e thermal history of t h e surveillance specimens.
.
Two heats of material, 5081 and 5085, were used with both sharing similar deterioration of t e n s i l e d u c t i l i t y a t elevated temperatures. However, heat 5085 (cylindrical core vessel) exhibited a greater loss of creeps
rupture strength and d u c t i l i t y .
!be property changes were quite similar
t o those that had been observed f o r these same materials after i r r a d i a t i o n i n the ORR where the environment was helium. reduction
iiz
Y
There was a significant
t h e low-temperature d u c t i l i t y , but fracture s t r a i n s of
35 to 404 were s t i l l obtained.
This change i n properties i s probably
due t o the formation of intergranular MgC.
W e noted the formation of a carbon-rich layer on the Hastellay N where it was i n contact with graphite.
This layer was only 1t o 2 mils
deep and probably would have l i t t l e e f f e c t on the mechanical properties of thick sections.
S a c r i f i c i a l metal shims were placed i n the MSRF,
where the graphite and Hastelloy N were i n contact, s o the noted
-
carburization should present no problems i n the WFB.
-
The mechanical properties of t h e Hastellay N appear t o be quite adequate f o r the normal operating conditions of the M3RE.
&
However,
transients should be p r w e n t e d t h a t expose the material t o high stresses I
or s t r a i n s .
\
ACKNOWLEDGMENTS The author i s indebted t o numerous persons f o r assistance i n t h i s
Study.
W. H. Cook and A. Taboada
- Design of surveillance asselllbly and insertion of specimens.
W. H. Cook and H. B. Piper -Flux measurements. J. R. Weir, Jr., and W. H. Cook -Review of manuscript.
c
c
53 R. E. Gehlbach -Prepared t h e extraction replicas.
E. J. Lawrence and J. L. a r i f f i t h
- Assembled
survei'llance and control specimens i n fixture.
P. Haubenreich and WRE Operation Staff
- Ekercised
extreme care i n i n s e r t ing and removing t h e surveillance specimens.
E. M. King and Hot C e l l Operation Staff -Developed techniques f o r c u t t i n g long rods i n t o individual specimens, determined specimen straightness, and offered ass,istance i n running creep and t e n s i l e tests.
B. C. lillams, B.
kNabb, N. 0. Pleasant -Ran t e n s i l e and creep tests on surveillance and control specimens.
E. M. Thomas, V. G. Lane, and J. Feltner
- Processed t e s t
data.
H. R. Tinch and E. Lee -Metallography on control and surveillance specimens.
'Metals and Ceramics Reports Office -Preparation of manuscript. Graphic Arts
- Preparation
of drawings.
1
55 ORNL-TM-1997 INTERNAL DISTRIBUTION
1-2.
C e n t r a l R e s e a r c h Library Y - I 2 Technical Library D o c u m e n t R e f e r e n c e Section Laboratory R e c o r d s D e p a r t m e n t lriboratory R e c o r d s , ORNL R.C. ORNL Patent O f f ice R. K. Adams G. M. Adamson, Jr. R. G. A f f e l L. G. A l e x a n d e r / R. F. A p p l e C. F. Baes J. M. Baker S. J. Ball W. P. Barthold H. F. Bariman S. E. Beall M. Bender E. S. Bettis F. F. Blankenship R. E. Blanco J. 0. B l o m e k e E. E. B l o o m R. Blumberg E. G. B o h h n n C. J. B o r k o w s k i G. E. Boyd J. Braunstein M. A. B r e d i g R. B. Briggs H. R. Bronstein G. D. Brunton D. A. Canonico S. C a n t o r W. L. Carter G. I. Cathers J. M. C h a n d l e r E. L. C o m p e r e W. H. C o o k L. T. C o r b i n J. L. C r o w l e y F. L. Culler J. E. C u n n i n g h a m J. M. D s l e D. G. D a v i s J. H. DeVan
3-4. ORNL 5-l4. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41.
42. I
J
43. 44.
45. 46.
47. 48. 49. 50. 51. 52. 53. 54.
55. 56.
-
7
57. S. J. D i t t o 58. A. S. D w o r k i n 59. 60. 61. 62. 63.
64. 65. 66. 67. 68. 69. 70. 71. 72. 73.
74. 75.
J. R. Engel
E. D. L. A. H. J. C. R. H. W. A. R. B. P. D.
w.
76. C. 77. P. 78. F. 79. P. 80. J. 81-83. M. 84. H. 85. R. 86. T. 87. H.
88. W. 89. 90. 91. 92. 93. 94. 95. 96. 97. 98. 99. 100. 101. 102. 103. 1W.
P. R. M. M. C.
T. H. S. A. J. C. J. R. A. E. M.
P. Epler E. Ferguson M. Ferris P. Fraas A. Friedman H Frye, Jr. H. Gabbard B. Gallaher E. Goeller R. G r i m e s G. G r i n d e l l H. Guyman A. H a n n a f o r d H. H a r l e y G. Harman 0. Harms S. H a r r i l l N. H a u b e n r e i c h A. H e d d l e s o n G. H e r n d o n R. H i g h t o w e r R. H i l l W. H o f f m a n W. H o r t o n L. H u d s o n Inouye H. Jordan R. K a s t e n J. K e d 1 T. K e l l e y J. K e l l y R. K e n n e d y W. K e r l i n T. K e r r S. K i r s l i s I, Ki-akoviak W. K r e w s o n E. Lamb A. Lane B. Lindauer P. Litman L. h n g , Jr. I. Lundin
c
56 105. 106. 107. 108. 109. 110. 111. 112-116. 117.
1
won MacPherson MacF’herson Martin Mathews L. Matthews W. McClung E. McCoy, Jr. F. McDuffie K. McGlothlan J. McHargue E. McNeese S. Meyer L. Moore P. Nichols L. Nicholson L. C. Oakes P. Patriarca A. M. Perry H. B. Piper B. E. Prince J. L. Redford M. Richardson R. C. Robinson H. C. Roller M. W. Rosenthal H. C. Savage W. F. Schaffer C. E. Schilling Dunlap Scott
R. H. R. C. C. C. R. H. H. 118. C. 119. C. 120. L. 121. A. 122. R. 123. J. 124. E.
125. 126. I27.
128. 129. 130. 131. 132. 133. 134-138. 139. l40. 141. 142.
N. G. E. D. E.
Uf H. C. J. G. A. 148. F. 149. G. U O . 0. 151. P. 152. W. 153. I. 154. R. 155. H. 156. J. 157. E. 158. R. 159. J. 160. C. 161. ,B. 162. A. 163. J. 164. W. 165. K. 166. M. 167. J. 168. L. 169. G. 170. H.
143. 144. 145. 146. 147..
E. Sea’gren E. Sessions H. Shaffer M. Slaughter N. Smith J. Smith P. Smith L. Smith G. Smith F. Spencer Spiewak C. Steffy H. Stone R. Tallackson H. Taylor E. Thoma S. Watson F. Weaver H. Webster M. Weinberg R. W e i r , Jr. J. Werner W. West E. Whatley C. White V. Wilson Young C. Young
I
c
c
i
MTHimAL DISTRIBUTION
171. 172. 173. 174. 175. 176. 177. 178. 179. 180. 181-182. 183. 184. 185. . 186.
187.
G. G. Allaria, Atomics International G. Asquith, Atomics International F. Cope, RDT, SSR, AEC, Oak Ridge National Iaboratory M. Dieclcamp, Atomics International
J. D. H. A. J. F. C. W. W. T. A. D. G. D. R.
Giambusso, AEC, Washington L. Gregg, Bard Hall, Cornell University D. Haines, AM=, Washington E. Johnson, @, Washington L. Kittermn, AEE, Washington J. -kin, AEC, Oak Ridge Operations W. BkIntosh, AEC, Washington B. W i n , Atomics International G. Mason, Atomics International W. E y e r s , Atomics Internati6nal E. Reardon, AEC, Canoga Park Area Office M. Roth, AEC, Oak Ridge Operations
I
57
w
188. M. Shaw, AEC, Washington 189. 190. 191. 192. 193. 194. 195. . 196. 197-211.
U c
M. Simmons, AEC, Washington L. Smalley, AEC, Washington R. Stamp, AEC, Canoga Park Area Office K. Stevens, AEC, Washington R. F. Sweek, AEC, Washington A. Taboada, AEC, Washington R. F. Wilson, Atomics International , Laboratory and University Division, AEC, Oak Ridge Operations Division Technical Information Ektension
J. W. S. D.