ORNL-TM-1626

Page 1

HOME HELP



Contract

No *

w-7405 -eng-26

REACTORDIVISION

PERIOD KEASUREKENTSON THE MOLTENSALT REACTOR EXPERIF!!l!T DURLMGFUEL CIRCULATION: TKEORYANI EXPERIIQNP

OAK RIDGE NATIONAL lLA.EORATORY Oak Ridge: Tennessee operacede by TJKION Cm&DE CORPORATIOM for the U.. ATOMIC EKERGY COHMISSIS~


h


...

111

CONTENTS

Page

.ABSTRACT... INTRODUCTIOM

e

O

..

e

. . .

.

. .

.

s

.

.

.

e

.

Mwnericsl Grow-dwork

a

ExFerirnentaS Resullt,s

.

DISCUSSION OF RESULTS

.

. .

..

e

e

. . .

*

. .....

*

T h e o r e t i c a l Model Verifica,tion

e

.

.... . . . . . . ..

Recormendations fc;r t h e MSRE ACKNQWUDC-MENT REPEREE\rCES

...., ..... .:y 0

..

.

e

e

*

.

e

..

a

a

e

a

e

. .

a

e

-

. .. .

e

..

- .

e

THEORY OF ZERO BOWER MIhETICS DURING FUEL C I R C b U T I O N RUI’CERECAL AXE EXPERIKENJ”AL WESULTS

I

e

.

.

e

e

e

a

e

e

e

,

.

e

. .

.

.

e

..

e

e

I

e

e

. . . . .

. .

*

.

a

*

..

a7

-

1’7

*

a

. . e

e

.. .

..

1

a

25

e

29

.

29 31

a

.

32

33



B. E . Prince

A s an a i d i n i n t e r p r e x l n g t h e zero-power k i n e t i c s e x p e r i n e n t s performed on t h e YGRE, a t h e o r y of p e r i o d dependence on t h e fuel c i r c u l a c i o n i s developed from t h e g e n e r a l space dependent reactor k i n e t i c s equations * A procedcre for evaluati n g t h e r e s u l t i n g inhow-type e ~ p ~ t by i ~machine n computazion i s presented, t o g e t h e r with numerical r e s u l t s r e l a t i n g t h e r e a c t i v i t y t o the observed asymptotic period, both with %he f u e l c i r c z r l a t i n g and with i z s t a t i o n a r y . Based on % h i s a n a l y s i s , t h e calcl;lated reac",vity d i f f e r e n c e between -the time independent f l u x c o n d l t i o n s f o r t h e nonclrculating and t h e circula-eing fuel s t a t e s i s i n c lose agreement with t h e value i n f e r r e d from t h e YSKX rod c a l i b r a t i o n experiments. Rod-b-m-p p e r i o d measurements made with $he f u e l c l r c u b a t i n g were conv e r t e d to d i f f e r e n t i a l rod worth by m e of t h i s model, These results a r e coqa-sed w i t h similar rod s e n s i t i v i t y meas-awrients made w i t h t h e f u e l sta-tionary. The rod s e n s i t i v i t i e s xeasured m d e r t h e s e two c o n d i t i o n s a g r e e favorably, w i t h i n t h e l i m i t s of p r e e l s i o n o f t h e p e r i o d m e a s n e x e n t s . Due t o t h e problem of maintaining adequate p r e c i s i o n , however: t n e period-rod s e n s i t i v i t y measurements provlde z less eonclasive t e s t of t h e t h e o r e t i c a l model t h a n t h e r e a c t l v i t y d i f f e r e n c e between the t i m e independent f l u c o n d i t i o n s , Suggestions are made f o r improving t h e precision of t h e experiments t o provide a more r i g i d test of t h e t h e o r e z i c a l model f o r t h e effects of c i r culation on the delayed neutron k i n e t i c s .

1. INTWQDUCTEON It i s w e l l recognized t h a t t h e c i r c u l a t i o n of fliel i n a Hiquid f u e l e d r e a c t o r i n t r o d u c e s some unique e f f e c t s i n t o i t s observabbe k i n e t i c behavior.

Foremost i n t h i s category i s t h e phenomenon of emission of"

delayed n e z t r o n s i n t h e p a s t of t h e c i r c u l s t i n g system e x t e r n a l t o t h e reac-Lor core where t h e y do not c o n t r i b u t e t o t h e chain r e a c t i o n .

The

b i t e r a t w e i n r e a c t o r k i n e t i c s c o n t a i n s s e v e r a l t h e o r e t i c a l s t u d i e s of ....

t n i s effect,'>

a but

there have been few o p p o r t u n i t i e s for p a r a l l e l

e x p e r i x e n t a l spludles.

The Molten Salt Beactor Experiment, h e r e a f t e r

2J


r e f e r r e 6 tc as thy hGREJ has p r e s e n t e d a uvliquc chance t o develop and

-,est soxe ar:alykizal rrodels f o r t k e zero power k i n e t i c s c f a c i r c u l a t i n g fuel r e c ' e c r

Thc e x p e r 4 a e c t a l measurements d i s c u s s e d Fn t h i s report

x e r e made as parz of an o w r a l L p ~ c ~ ; ~ tc a r ic e l i b r a t e the control rods

i n the MSRE. I n t h e i'irst s e r t i c n fcllvcice;J we dc;.tlop the t h e o r y dependence cn :%el

circ-illaticn.

The second

EF-ct?lcn

o j '

period

gives an account

o f t h e r e z : u l t s of a-pGLyirq thls theory t o t h e experimental measuremenTs me3e a u r i n g MSN R u n No, 3 .

F i n e l l y , in t b e third section, we

&~SCU.SE

t h e r e s d ' r s cf t k 5 s m r k i n teims of the general yroblem o f k i n e t i c s

analysis f o r c I r c - d a t i a ~ ;f u e l retwzcrp. by

Se-vera1 q w s t i o n s a r e left open

the present s-tu&-, adia these are diz.c;asced i n thak section.

s


r e p r e s e n t t h e MSWE c c r e , w i t h b o m d a r i e s corresponding pnysicaily t o t h e

channebleci r e g i o n of t h e actual c o r e . We have eombiied and extended t h e s e a n a l y s e s t o ixclude t h e c o n t r i b u t i o n t o t h e chaln 2 p e a c t i ~ ~o1f t h e delayed m u m o m e m i t t e d ~ h i l ethe f u e l i s in t h e plenums J u t shove and below t h e g r a p h i t e core, arid to f n c l u d e t h e case of t h e f l i z varying e x p o n e n t i a l l y witk a s t a b l e z s p p t o t i c perlod,

It w i l l be seen t h a t

8n

i d l o u r - t y p e equatior, r e s u l t s

which r e l a t e s the p e r i x l of a c i r c u l a t i n g fuel reactor- t o t h e s t a t i c r e a c t i v i t y of t h e saae r e a c t o r c o n f i g u r a t i o n , but i n which the f u e l i s

not circulating,

The s t a t i c r e a c t i v i t y , p c , i s d e f i n e d by t h e r e l a t i o n u

in which v is t h e p h y s i c a l , energy-averaged number of ceutrons e m i t t e d per f i s s i o n , and v

c

is t h e f i c t i t i o u s v a l u e f o r which t h e r e a c t o r w i t h

t h e s m e geometric and material c o n f f g u r a t i o n w m l d be c r i t i c a l w i t h the fuel stationary.

One f i n d s that 8 s a r e s u l t oâ‚Ź' z h l s d e f i n i t i o n , tne

r e a c t i v i t y for a c r i t i c a l , c i r c u l a t i n g f u e l c o n d i t f o n I s g r e a t e r Than z e r o ( h e r e , c r i t i c a l i t y de~otest-ne c o n d i t i o n of t i m e independence of t h e r,eu$ron and prec~rsorc o n c e n t r a t i o n s

e

ow ever, s i m e t h e s t a t i c

r e a c t i v ' l t y i s t h e q u a n t i t y norm&l%y o b t a i n e d En reactol- c a l c u l a t i o n p r o g r m s , it i s most convenient to reiate t h i s q u m t i t y directly to t h e ... ... b

asynpzotic period,

The t h e o r y following a s d-eveloped by beginning along g e n e r a l l i n e s

and d e l i n e a t i n g s p e c i a l a s s u a p t i o n s as t h e y are i n t r o d u c e d .

S e v e r a l of

t h e s e s i m p l i f y i n g approximations are s u i t a b l e f o r MSRE a n a l y s i s , b o t h i n t h e neutyonica model and t h e flow model f o r the c i r c d a t i n g f u e l . The s t a r t i n g p o i n t sf t h e ana%ysis i s t h e g e n e r a l t i m e dependent

rea,ctor equations, w r i t t e n

TO

i n c l u d e t h e t r a n s p o r t of delayed n e u t r o n

p r e e w s o r s by f u e l n o t i o n i n t h e a x i a l d i r e c t i o n :


4

!â‚ŹTie symbols Q and C r e p r e s e n t t h e neutron %lux and delayed neutron precursor d e r r s i t i e s .

'%he o p e r a t o r L r e p r e s e n t s n e t neutron l o s s ( l e a k a g e ,

a b s o r p t i o n , and energy t r a n s f e r by s c a t t e r i n g ) , and P r e p r e s e n t s t h e produetion processes by fission. The e x p l i c i t r e p r e s e n t a t i o n of t'nese o p e r a t o r s depends on the model used i n a n a l y s i s .

If t h e s e processes

are given t h e i r rnost g e n e r a l r e p r e s e n t a t i o n i n terms o f t h e Bohtzman t r a r s p o r t equation, the neutron flux,

@

energy: d i r e c t f o n , and time v a r i a b l e s .

J

will be a f u n c t i o n

In order t o provide

position,

O f

8

framework

f o r d i s c u s s i o n which can ke d i r e c t l y r e l a t e d t o a p p l i c a t i o n , we s h a l l ~ S B U I T . thaF ~

t h e angular v a r i a b l e s have been i n t e g r a t e d from t h e equation,

i a e e jt h a t a, rrodel such as multigroup d i f f u s i o n t h e o r y o r i t s continuous eraesgy counterpart prcvides ax zdequate description of t h e neutron pspu-

Eation.

I n Eg. 3 , 8,bore: N i s taken as z e r o i n t h a t p a r t of t h e c i r -

c - d e t i n g l o o p which i s e x t e r n a l t o t h e chaFn r e a c t i n g regions. r e m i n i n g sjnbo%s i n Eqs

-

2 and

3 a r e (I - BTj,

%he

t h e f r a c t i o n of all.

n e ~ t r o n sf r s ~ f i s s i o n wkich a r e prompt, and f3, and hi? t h e production f r a c t i o n and decay c o n s t a n t f o r the i t h p r e c u r s o r group.

!â‚Źbe q u a n t i t i e s

- a r e energy s p e c t r m o p e r a t o r s which m u l t i p l y t h e t o t a l voluP and foi rretrpic p r s d u e t i ~ nL ' G P , ~ S of prompt and delayed neutrons to o b t a i n neutrons of s spec-iflc energy. Fi;r,ally, t h e syxbols v and V r e p r e s e n t the neutron f

v e l o c i t y and d i e Ifl-&%dv e l o c i t y , respeculveby A s ap9lded t o a. f l ~ ' , df u e l e d r e a c t o r wizh

such as t h e hEWE (-&ere

.... ...

8

keterogeneous s t r u c t u r e

t h e axial f u e l channels are l o c a t e d i n a m a t r i x

of solid g r s p h f t e n o d e r a t a r ) , ;he

u s u a l c e l l u l a r homogenization must be

azde en t h e neutron production and d e s t r u c t i o n r a t e s .

(1 -

BT) P@ =

X.1 C.1

T'nus, f o r exampbe

local r a t e of p r o d m t i o n of prompt fission neutrons, p e r -mit c e l l vol-me

= l o c a l F Z Z ~of production of i t h group of delayed

neutrons, per u n i t c e l l volUn;e.

If we assime t5at %he o p e r a t o r s

'6;

and P are time independent, corre-

poiidirig t o a f l x e d r"cd p o s i t i o n , we can i n v e s t i g a t e t h e c o n d i t i o n s mder

E


5 vhtck t h e f l u x a:ad

prec~rsord e n s i t i e s i n t h e r e a c t o r and -~,hee x t e r n a l wt

c i r c u l a t i n g system ~ a r yi n kime as e

Assuming s o l u t i o c s of E q s . 2

and 3 e x i s t of tlie form:

then 9

6

A s p r e v i o u s l y steted,

OUT

primary objectbve i s t o r e l a t e t h e observed

-1

s t a b l e reactor p e r i o d , w configuration.

t o the s t a t i c r e a c t i v i t y of t h e given r e a c t o r

Tbae s t e t i c r e a c t f v i t y deffned by Eq.

I is

t h e ahgebra-

i c a l l y largest eigenvalue of tlie equation :

where;

E.

Eather t h a n attexpting t o solve t h e r e a c t o r e q m t i o n s

6 and 7 d i r e c t l y ,

we w i l l make use of a procedure which i s o f t e n u s e f u l for spatial reactor k i n e t i c s problems.

S e v e r a l s o u r c e s give d e t a i l s o f similar a n a l y s e s f o r

s t a t i o n a r y f ~ e breactor systems (see, f o r example, R e f .

4).

we m l t i p l y

t h e ' r l o e ~ l "e q u a t i o n f o r the neutron popubatior?, by ari a p p r o p r i a t e weight-

i n g Function and i n t e g r a t e over t h e p o s i t i o n and energy variables of t h e

neutron popirlation i n order t o o b t a i n a. r e l a t i o n invoEving only " g l o b d "

or i n t e g r a l quantities. As seen bebow, 'by using the s t a t i c a d j o i n t flux, the s o l u t i o n of t h e a d j o i n t equa$ion corresponding t,a ~ q 8. as the

@i7


weight%ng f u n c t i o n , t h e r e s u l t i n g r e l a t i o n admits a d i r e c t physical interpretation.

Tfie a d j o i n t f l u , a l s o obtained i n most reactor physics calcu-

E ~ i t i ~ programs ia in cornon usage: is the solution sf

9

where L ana

(?PI

c

AT

o ~ ~ I - ~ ~aod Ij o- isn t to I,ana

FP

of ~ q 8. , ana p s

TS

the s m e algebraically l a r g e s t eigenvalue of ~ q .8. w i t h a p p r o p r i a t e l y prescribed boimdary coaditEons

32

t h e allowable f m c t i s n s on which these

ezpcrs,tars a r e d e f i n e d , the following r e l a t i o n ’ adjoint o p e r a t o r ;

++

can be used t o define t h e

Here A seprese~tsa b s t r a c t l y e i t h e r o f t h e o p e r a t o r s L and ?E’ and

(@i2 A$) de~otesthe scalar p r o d - x t , -t

gs asd

integratlm

Q V ~ Ft5e

i.e., t h e m u l t i p l i c a t i o n of Ag by

p o ~ i - e i ~and n energy variabEes of the rieutron

p a p a l a t ion O n forming the scaltir product o f Eq.

4-

6 with psJ we obtain

6

.......... ....... .:.

(12)

R


4

6 i=E

By makixg; use of Eq. 9; we nay yewrite tkis e q - u a t i x as

The f i r s t term on t h e Fight hand ~ i d eof E q ,

14 i s

s i m p l f f i e d i n appear-

axice if we make a convenkfonal type of definition of xhe p m x p t neutron

g e n e r a t i o n time;

We may a l s o note that :fie

second term con

ts?e r i g h t hand

side of Eq. E 4

appears as t h e diPferenee between t h e weighsed t o t a l p r o d w t i o n of de-

layed rie-utrsns and t h e weigkted pro&d@tionof delayed geutrens f r o m

.:.

precursor decay within the -

P~ECLOP.

__yl-____I_

cd

In

E I C C G ~ w ~ r~t h~ its C ~

definition

by Eqa. i and 8, t h e s t & , t t c I-eactivTty i s csmpletely determined by t h e geome',ric

and nateriz,b c o n f f g w a t i s n of t h e r e a c t o r : whether o r n o t the

fuel i s c i r c - d s - t f n g i n t h e actuaP r e a c t o r .

%e

r e l s t i o n s h i p between

and w expressed by Eq. a&, therefose,has an e x p l f e f t physical

Q

s

inter-

Fer example, i f the fuel composition 8,nd c o n t r o l r o d pcsitisn are such t h a t the f l u x i s time independent when t h e fuel. i s c i r c u l a t i n g , w = 0 in E q s . 6 and 7 . Eqaation 14 t h e 2 shows t h a t the s t a t i c r e a c t i v i t y pretation.

%os the j u s t criticel r e a c t o r is nm1eriezlby eqw,l t 3 t h e n e t d i f f e r e n c e

in t h e production o f del2yed neutrons described a'uovf?, ... ............

. e

1E

the More gen-

e r a l case wcen -,he f l u x L s varying in t i m e aczariiigg t o a stable period,


8 t h e f i r s t term

QE

t h e r i g h t hard side of ~ q 14 . w i l l aiffer from zero,

and a l s o t h e e f f e c t i v e ebecrerrient in production sf delayed neutrons will

differ nmerrfcably from tke time independent case ( ci and J2 depend on w tkrsugl? E q s . CEUI

I X

-UX~

6 and 7'. 8

Equation

E4

i s an i n h o w type r e l a t i o n which

f o ~ a d ~ ~ t i ~an n 8,pprsximte d e t e r m i n a t i o n cs p 8 :

given an observed asymptotic p e r i o d , od

-1

One may observe t h a t it i n -

cludes the usuel iKilsur r e l a t i o n f o r t h e s t a t i o n a r y i%eE r e a c t o r as a s p e c i a l case, simply by s e t t i n g V = 0 i n Eq.

practical a s e of Eq.

14: we

7 . Before discussfrag t h e

can e x k i b i t the previous concepts i n an

e x p l i c i t algebraic xanner. From Eq. '9 we have,

Insertitig t h i s r e l a t i o n s h i p i n t o Ec,. E 4 g i v e s

/d

i=P

'i


9

6 (PO)

L= I T h i s equatiol? has t h e appearance o f t h e oydinary TRhoiLr r e l a t i o n i'or the

s t a t i o n a r y feel r e a c t o r , " except "that t h e e f f e c t i v e p r c a u c t i o c f r a c t i c i l s , B

-

i

wh.ich depecas on t h e c i r c u l a t i o n r a t e and i II?a d d i t i o n , the l a s t tern OK t h e r i g k t hand s5.de of' E q . 20

a r e r e d x e d by a qmnti.-Ly y

a l s c ~on w.

appears because t h e zero p o i n t of t h e s t a t i c react? corresponcx ts t i e c

t y was chosen to

positLon and geometry n t t h e j u s t - c r i t i c a l s t a t i o n a , r y

The u s u a l inhour relatlion f o r t,he s t a t i o n a r y f u e l reac%or

f w l react;or.

-

i s obtained by l e t t i n g V

0 amd y

-+

i

0 i n Eq. 20.

--+

Kltthudgk Eq. 20 :i.s

i n s t r u c t i v e i n d i s c u s s i n g t h e riet e f f e c t s c f e~elc i r c u l a t i c n , i t s s i r n -

-

piici.t;l. i s sonewhat deceptZve s i n c e y w,

through Ey.

7.

i

depends i n a complicated way or_

T h e r e f c r e , it w i l l 'be mcr'e convecicnt tc discuss t h e

use c? t h e inhour r e i a t i o c startixxg with t h e fcrm given in Eq.

14.

A t first appearaai.ce, iE o r d e r t o use Eq. 1 4 we tire required to

solve Eys. E q * lo f o r

6 and '7 f o r W , ci(x; a>, acd (b(2, E; w ) > arid a l s o to solve + Both a r e eigenvalue pro-slcriis i n wiiich (9 s and 4 s ( 2 , E; p s ) .

t i e algebraLcaLly l a r g e s t r e a l eiger.values, interest.

ana p

?

S'

are cc irrmctliate

Not only does Eq,. 111reduce tc an Id.eriti-t;y 3.f t1ii.s pr:icedurc

i s used., b a t it i s p r e c i s e l y t h e e x F l f . c i t s o l u t i o n QT ~ q s .6,and we w-ish t3 a v o i d .

T'ne g r e a t .

u

p,

4:

approximated by the s t a t i c f l u x distr?.'bution,

i s s u ' f i c l e n t l y we11

%

p o i n t , t h e va9i.di.ty o f t i i t s approximation i s a n e s s o f t h e delayed neutron f ' r a c t l c n , p

6s

end t h e observed s t a b l e

The b a s i c s i m p l i f i c a t f o n r e s u l t s from assuming t h a t t h e

shape of t h e asymptotic f l u x d i s t r i b u t i o n ,

ar_d

that

Yulr-,ess oi? ~ q 111 , is in i h e b a s i s i t pro-

v i d e s f o r approximating .the r e l a t i o ~bet wee^

period w - l .

7

i s s u b s t i t u t e d ?or

6

T'

e

Eron

B

CGl'lSeCpelice

physical. stand-

o?' t h e sna19.-

I_"t h i s approxirrialior: i s ~ a d e ,

i n E q . 7, t h i s equation e a be i n t e g r a t e d

a r o m d t h e c i r c u l a t i n g p a t h of t h e f 5 e l t,o o b t a i r , t k e distribT&ions of

delayed. precursors, c .

i

Before c o x p l e t i n g t h e a n a l y s i s , hcwevc;r, we

s k a i l n ; a k a seemi* apprmi.mat:i on t o siriplj f y the c o m p u t a t l x o

i c t e g r a l s occurring i n Eq.

2.4. It

the

can h e a s s u m d t h a t t h e correctiori


EO f o r the difference

ini

E ~ U T F B ~ appearirig S

i n Eq.

rate s"kep.

energy s p e c t r a f o r emisslon of prompt and delayed

14 can

b e cs;lculated approximately as a sepa-

is done by redl;cing

Tlr_:~

' C ~ Eage

for the ith group of de-

bayed neutrons f r s n k a t si? t h e prompt Eeutrors and modifying the s t a t i c delayed neutron f r a c t i o n s , f e c t o r s a p p r o p s i e x to

9

Bi,

by t h e r e l a t i v e non-leakage probability

b a r e r e a c t o r which approxirnates t h e a c t u a l c o r e .

S w h an apprexlmztisn c a also ~ b e J u s t i f i e d from an o b j e c t i v e sxandpoint,

since the correction f o r t h e d i f f e r i n g " e ~ e r g ye f f e c t i v e n e s s r ' of delayed n e u t m n s r e l a z l v e t o pro~ptneutrons is s m a l l compared t o t h e e f f e c t of

For ?;he IGRE,

t h e spa-eial t r s n s p o r t sf pl-ec-msors under c o n s i d e r a t i o n .

cd.cda,thons

6if

correction changes the e f r e c t h v e value of 0

0

3 . The net energy f o r T J % ~from ~ 0.006L t o

t h e former effect are given i n Ref.

T

00666

0

One f u r t h e r remark s x d d be Eade concerning Eq.

s t a t i c r e e c t i v i t y , p,

14,

A given

corres2o~dlngt o sone t i m e independenz reacisr

configuration %s also r e k t e d x i r o u g h Eq. l ! : ta e l l p h y s i c a l b j allowable ~

T r m s i e z x modes present i r t h e ce-Jtron f l u e f t e r t h e f i n a l r e a c t o r con-

In This study, we heve chosen t o

f l g a a t l s r ~has 5een eszabLished.

erilphasize s r ~ l yt h e rels,tim between tile c i r c u l a t i o n and t h e asymptotic

An spproxirrate ar2hys-Ls i n d f c a t e s c h a t t h e remaining eigenvalGes

rr.ode.

and eigenf~~:?cticne of' FQG. 6 a:d

d i f f e r I n c e r t a i n fu.nda,nen?;al r e s p e c t s

i ' r s m t - s s e csf ststisnery fie1 r e x t e r e , >E

S h Z l L EOL &$",lTpt

h i s topic

3::

a lzzer

L 4 dC:rLG2i5trZ;e Sect

tLliS.

For t h e purpose of t n i s report,

Except f o r

%,

brief retUsfi t o

we w i l l r e s t r g c t z . t t e n t i o n e n t i r e l y t o

$he analysis of the s i z b i e a s y x p t o t i c perfod measurenents Tke cGmpbetiO2 of' :he

of Eq.

7 arclbrd

reql.lllsed

E E ~ J S ~ cSo n s i s t s

;he sircul~tingp e t 5 of t h e f u e l ,

of' t h e i n t e g r ~ ~ t i ~ ~

BbviousHy, even if $

is replaced by 13 calculated fron Z q a 8 , fwther s i m p l i f i c a t i o n s i n t h e s

flow model a,re ~ c e s s a r ybeccre t h e problem becomes amenable t o practical csnptatisn.

'Sl?e approx'matisns

we have used i n r e p r e s e n t i n g t h e circu-

laL%ng l o o p of t h e $ERE are sliown s c h e x a t i c a l l y i n ?Tgo 1. Tkae model c o n s i s t s of a Zhree r e g r z n a p p r o x i n a t i o n t o %he actual core, r e p r e s e n t i n g t h e lower cr e i t r i i n c e pEemrn, Lke g r a p h i t e moderated r e g i s n , and t n e -~;pper,o r e x i t pbe:;im,

respectLuely.

Tle core I s r e p r e s e n t e d as

2.

right

cylinder with volurr_es ,n t h e upper and lower plenums e q u a l t o tkose of


z=H : z

H,

IM'T

7 C 3 N T H 3 L H06

--CONTI701 ROD TPIKBLE (TYDICAL) CHANNELEC REGION

ST GRAPHITE

((I)

MSRE CORE GEOMETRY (SCHEMCTIC!

!=O

(6:

MODEL FOR N E a T R O N

CS CALCU:

AT'ONS

Fig. 1. Geometry of' MSRE Care and Three Region Corc Modei Used in Physics Calculations.

.. .... . _.... ...... =/


the

actual

of that

NEm.3 ccxe. used

Fluid that

in

a

velocity

@OilStEUlt

OV&T

region

upper

plenum,

flow

distribution

between

the

is

wheye

is

k

of

the

prec~~sox

the

linear

axial

fluid densities

aepencl

,!LIct.hough importance assigr: 5 c:iz

a

-KTl tf;

ay;

the

determined

the

kth

fluid

region. of

plerrm

in

velocity

to

physecai

st.at-uIpo~l~t~

this t3

neilkrcc

-fl?lr

in

flow

these

botto-m flow

In

the

head

the

direction region.

velocity

in

flow),

with

each the

it

(external

loop)

low

neutron

relatively

allowable,

rather

was considered

region

the

flux regions.

of

are

region

and

*

moderated

neutron

a region

t.re8.t;

the the

(plug

zero

se I-87-71 >-.. C..& approximations

a. lir-ear

radius

reg ion,

time

is

QCCUX

by

It

regions

very

and t k is the r-es iaence wi.11 be seen later t-hat tine

kth

residence

lower

so that

awl-age

velocity

the

in in

the

t o be constant

In the

OrL,?T 03 the

assumed

plenum

of

outer

graphite

is

velocities

the

reversal

indicated

region

whereas

and the

we have

1er.gtl-i

in

near

due tcl the

study, lower

of the

E

time

the

and

version

have

Kiglies

coxe.

Haminar,

downcomer

present

except

magnitude

complex

peripheral

12 the

nearly

mockup

moderated

the

axis

a sinrphified

computatfons.T

TP&~?..core

of

core

is

physics

graphite

part

tke

flow

the

the

large

abQut

the

with

within 3,

n?odeb Is

MS?E core

studies

fxel

small

region

al% previous

dynamics

the

12e&XlJr

fsr

Tlrkis thxee-region

importance

as

more

"'well

a

(adjaint

than realistic

stirred

flux)

tanlk"

assigned

to

. 0 14; Withi;. spatis tke

~sszmed

the

eztixe

aver

the

of

velocity

flow,

profile

to

be flat

rates radial

ass-~2ing and s&joint coordinate,

neglected the

and

consider

neutrons

in

the

radial product

and axial

fluxes.

primary

radial

of

axial

to

across the

neutron

in

Eq,

l)i.

of

the

neutron

we preaverage the

the

we have

direction

averaging

separability

only

in

approximation,

integrals

Thus 9 if

difference can be expected

As a first

the

scalar

radial.

the

and delayed

salt

ratesimplledin to

region,

fuel

coxe 2 and have

equfvalent

yoduetion

moderated of prompt

direction

prod-uction is

graphite

distributions

be is

the

the

(z>

the

This

fluxes

dependence


of P@

8

i n the i n t e g r a t i o n of E q .

7, the problem reduces e n i i r e l y t o a

one-dimensional c a l c u l a t i o n ( l i n e model).

*

With t h e s e s i n p l i f i c a t i o n s , t5e reqLired i m e g r a t i o n of Eq. now b e completed.

7 can

A s w r i t t e n i n t h e preceeding formulas, the p r e c u r s o r

d e n s i t i e s and nectron r e a c t i o n rates are t h e homogenized v a l u e s , i . e . , normalized to a u n i t c e l l v o E u e of t h e r e a c t o r .

To i n t e g r a t e Eq. 7 ,

a c c o m t must be t a k e n of t h e v a r i a t i o n i n t h e f l u i d volume f r a c t i o n over khe path of flow tlirough t h e r e a c t o r ,

I f ak is tlie l ~ o l m ef r a c t i o n of

f u e l i n the k t h r e g i o n and s u p e r s c r i p t

(01

i s used t o i n d i c a t e t h e gre-

c u r s o r d e n s i t i e s 2nd prompt neutron production r a t e i n the f u e l ;

The v a l u e s of a used far numerical c a l c u l e t i o n s w i t h :he: model of t h e

MSRE core shown i n Fig. lb were 8.225 f o r t h e g r a p h i t e moderated r e g i o n ,

and 1.Q and 0.91 f o r t h e t o p and b o t t o n p l e n ~ m s , r e s p e c t i v e l y . e x p l i c i t forms of Eq.

The

7 for t n e v a r i o u s r e g i o n s become:

a> Graphite moderated r e g i o n

b)

Top p l e n m

c)

External piping

~

*ICne

~

v a l i d i t y of *his approximation i s n o t imuiediately obvious; how eve^, it appears t o be adequate i n the l i g h t of resczlts p r e s e n t e d

later


d)

In

Bottom

the

above

B-EC is

of

region lb).

a well

(as

Ia is the

tank regions.

the

loweT

average

the

upper the

above,

heig‘nt

fission

plenum,

external the

approximation, Pn Eq.

of

the

and L-H pi?ing

lower

contrast

27,7 tQ is

the

production

rate

is

moderated the

and heat

plenum

in

graphite

effective

is

to

plug

average for

Length

exchanger

region the

region,

treated

by means

flow

residence es&

(see

model time

and

element

of

fluid

the

precursor

plenum,

!Tbe boundary concentrations As applied

the

representing

mixed

remaining

Bc is of

As described

the

in

eq-z&ions,

tk-,e thickness

of the Fig.

p%enum

to

conditions in

the

salt,

for each region cl i' p: are continuous

Eq.

24,

these

conditiors

reqluire along

are;

qt =tl,) = qz = 3) 1

that

-the path

of

flow.

for


The last ~f t h e eqixations given above r e s u l t s frsm averaging he precursor

c o n c e n t r a t i o n obtained from solving Eq.

27 over the ~ e s i d e ~ ct ei m e t

4" By lise of t h e csntinuity c o c d i t i o n s for t h e e n t r a n c e and e x i t c o n c e n t r a t i o n s i n each region, the above equatLons may be sed z o solve l"sr ci0 ( 0 ) m e result is:

-

where t h e following d e f i n i t i o n s of the residence t i m e s have been used:

e


a6 H

The computational p l - ~ ~ e 6 ~ 1developed -e i n t h 5 s s e c t i o n iriay be summm-feed as f o l l o w s :

CalciLz.te appraxlma$locs to t h e s t a t i c flux and a d j o i n t f l u

:o

a x i a l d i s t y i b u t i o n s k y s t a n d a r d teckxiques of core p h y s i c s a,nalysis,. n

From a" specified asynp-cotic inverse p e r i o d , w, and tile static

C.

"?,:

flux uis:sibution, 0 c, ( 0 ; ~usfng )

-

Eq-

35

e

corresponding to t h e same r e a c t o r state, c a l c u l a t e Note = h a t t h e a b s o l u t e n o r m a l i z a t i o n of t h e f l u x

i s ar';3itrary s i n c e Ea_. 1 b i s icdependent of t h e f l u x n o r m a l i z a t i o n .

3.

CaEeuHste t h e a x i a l distribution of precursor d e n s i t i e s in the 0

s a l t , c _ . ( z ; w ) , by means cf I

~C)~~TU% 30 ~ Lt Sh r m g h

34.

E i t h e r a nuqerical

i_?tcgratisnprsceciuse or an~byticalapproximations f o r i 3 evaluaziing t n e i n t e g - e l s e de^ c r i b e d in

4.

Tr-e fsrmer method

the f'olbowirg s e c t i c n

ZakJiate p

6

WBS

gs( z >

can b e used

used in the work

e

by p e r f o n i ~ gthe i n t e g r a t i o c s ix Ea_. L4*

: 1 is obvious tnet the m%ymeans of practical c a l c u l a t i o n w i t h t h i s ~ck?en;ei s the d i g i t s 1 c o ~ p u t e s . A c a l c u l a t i o n program based on thts scheme

w a s w 5 t t e n f o r the 1B.i-7390. S p e c i f i c d e t a i l s concerning t h e n m x r i c a l ~ e s ~ l l - t sand ,

the appbica;ion

given i n Sectiovi 3 .

of t h i s analysls to t h e MSRE experiments %re


Our i n t e n t i o n i n t h i s secLion Ls t o a p p l y Eq. 1 4 t o t h e ar;alysis of a s e r i e s of r o d bump-stable p e r i o d rneasurernents made with t h e MSRE curing f u e l c i r c u l a t i o n .

TP%,eserreaswements were t a k e n a t v a r i o u s con-

t r o l r o d i n s e r t i o n s during the c o u s e of enriclment of t h e f u e l s a l t i n

R u n KO* 3 .

It has been seer frore t h e a n a l y s i s p r e s e n t e d i n S e c t i o n 2

t h a t t h e q u a n t i t i e s r e q u i r e d t o r e l a t e t h e measured a s y x p t o t i c v e r i o d

t o r e a c t i v i t y are t h e s t a t i c d i s t r i b u t i o n s of the p r e c u r s o r c o n s e n t r a t i o n and t h e f i s s i o n prsd-dction rate t o g e t h e r w i t h t h e a s s s c i a t e d a d j o i n t f l u x

We have alreedy intl-ochced s e v e r a l approximations i n order

distribution,

to s i x p l i Y y c a l c u l a t i o n s w i t h Eg. 1 4 .

We now make e x p k i c f z use of t h e

group d i f f u s i o n model f o r t h e neutron fluxes.

The f l u x d i s t r i b x t i o n s we

s h a l l use were o b t a i n e d from s t a n d a r d core p h j r s i c s a n a l y s i s w i t h onedimensional multigroup and two-dimensional,

for t h e neutron:@ b e h a v i o r .

few group d i f f u s i o n models

I n performing a "first

pound" a n a l y s i s of

the experimental rr,easurements, t h e attempt w a s made to m i n t a i n as much computational s i m p l i c i t y as p o s s i b l e withoat d i s c a r d i n g t h e e s s e n t i a l f e a t u r e s of t h e r e a c t o r and f ~ e hc i r c u l a t i o n models.

It has been shown t k a t t h e s t a t i c d i s t r i b u t i o n P i n Eq.

l4 are

r)

6 s ancl 0,s

those appropriate t o t h e a s p p t o t i c state, :.e.,

reactor-rod configuration d u r i n g t h e period measureiKent

cjzc-x-ring

the

However

the

t h r e e control rods i n the MSRE are i c a highPy l o c a l i z e d c l u s t e r about t h e c e n t e r of t h e core ( F i g . 2 ) > m d t h e i n s e r t i o n of a s i n g l e rod

produces a p e r t u r b a t i o n i n t h e thermal fbux d i s t r i b u t i o n which Ls f a i r l y

well localized

ila

t h e radial d i r e c t i o n .

Some calculational results i n

support of t h i s conclusion are s:iown i n F i g . 3 .

These are p l o t s of tl?e

r a d i a l variation of the thermal flux, t a k e n at sn azimuthal a n g l e h a l f way between c o n t r o l r o d s 2 and 3.

The c a l c u l a t i o n s were made w i t h t h e

two dimensional d i f f u s i o n program EXT.EBNPNATOR,G a s i n g an R-Q model of t h e M3RE c o r e geometry.

Tne p e r t u r b e d fluxes w i t h r o d No. 2 i n s e r t e d

a r d w i t h a l l t h r e e r o d s i n s e r t e d are cmpared with the fluxes when a l l ................ .. ww ../


k--I

2

--

I

TYPICAL FUEL PASSAGE

REACTOR CENTERLINE

Fig. 2 .

Lattice Rrrangenect o f NS3X C o n t r o l Rods

e

r


19

: CALCULATIONS

I

I

10

20

I 30

40 RADIUS (crn)

50

66

70

80

Fig. 3 . Radial Distribution of Thermal F l u in MSRE Core (Calcul a t e d ~ u r v e )s


rods ere f u l l y w i t h d r B m * * I n a l l c a s e s , the fluxes al-e normalized to

a core power level of" EO Nw.

It may be s e e n t h a t t h e shape of t h e f l m

is relatively undisturbed over a barge f r a c t i o n of t h e radial c r o s s section of t h e c o r e .

One xay a l s o m t e t h a t t h e t o t a l neutron production rates i n t h e numer-

14 are

a t o r and denominatsr of' Eq. r e u t r e n papoau-ction.

m u l t i p l i e d by t h e energy spectrums of

ela ace, when performing t h e i n t e g r a t i o n

energy

i n evalu&ting the scalar products i n Eq. 14, only t h e h i g h energy p o r t i o n (whel-e ?(E)

f 0) c o n t r i b u t e s

approximate :he

t~ t n e r e s u l t .

fast g r o q e d j o i x t

flzlx

We t h e r e f o r e need only

distribution*

Based on the p r e c e e d i ~ go b s e r v a t i o n s , as a final set of" simplifying approximations we have used only -,he u r p e r t u ~ b e dd i s t r i b u t i o n s of I'ission production and fas-c adjoic-, f'lu, corresponding t o t h e case of t h e rods

Tcis s i i n p E i f l e a t i s n i s c o n s i s t e n t with t h e n e g l e c t oi' t h e r a d i a l vzr1atLons of' f l u and precursor c o n c e n t r a t i o n s over the core wh'lch LES dLscussed in Section 2* f d l y w i t h d r e w ~from the care

e

The calculated ulapez.tu,,rbed axicE d i s t r i b u t i o n s o f f i s s i o n p r o a m t i o n

rates and f s s t adjoin:

;'lux a r e given in Pig.

4. These

were used f o r

t h e c a l c u l a t i o n of the zxia2 6 i s ~ ~ i b u t i o nofs The s i x delayed neirtron

p r e c u r s o r grougs, in accardaiice w i t h t h e scheme developed En SectjoP, 2. 0

The Pndi\Ti&Uai p r e c u r s o r c c n c e n t r a t i o n s , c I( 2 ) were mflc.ltipbied by hi acci sumed t o aktain the total Escal rate of emission o r delqyed ne-d~rona ~

along tr,e flaw p z t h thro-:gh tributions

the r e a x t o r c o r e .

re s t m n h F4g- $,

:or

!These r e s u l t i n g t o t e l a s -

t5e particular cases of w = 0 1

( c i r c d a t i n g c r H t i c a 1 ) and

~4

=

0-1s e e - (10 see stable period), and a l s o

f o r the c z s e when the P ~ e li s n c t c i r c u l a t i n g .

A l l chree d i s t r i b u t i o n s

are i o r n a ~ i z e i it o t h e s m e t o t s 1 production rate:

pegs.

m e botzom

plen7m i s amftted frcm E g ; . 5 s i n c e t h e w e l l s t i r r e d t a c k mo&eE w a s used to r e p r e s e n t The dePayed neutron production i n t h i s reglon.

Based on these s m e unpertur3ed f l - z e s t h e r e l a t z o n s h i p between the stabEe irverse p e r i o d , w

-1

correspandicg XItile rsdi

a ~ tdh e increment i n s t a t i c r e a c t i v i t y S I

shown in p i g .

6. For

C Q I T I ~ Z ~ ~ ~ O ; ~

*The "dip" i n the ta:erxah f l u x wher, the three pods a r e f - d b y w f t h d r a m i s ca;~sed by the presecce of the IIT5R-8 rod thimbles.


AXIAL %ISTAN:;E

FROM BOTTOM OF GRAPHITE [cm)

Fig. 4 e Axial Distributions of Fissicjn Cerssitg in F u c l S a l t and Fast Groups A d j o i n t Flux (CalcuLated Curves).

e,.&

............

L 6


22

QRNL-DWG 65-48654R

_____

0

20

40 60 80 (80 120 i40 16.0 DISTANCE FROM BOTTOM OF GRAPHITE ( c m )

180

200

e


23

I 2

1

Fig. 6 . CurYes ) 0

E

R e a c t i v i t y vs S t a b l e I n v e r s e Period of IGRE ( C a l c u l a t e d


p ~ ~ p o s e aa? calculated curve i s also given for t h e standerd inhour rela-

tisn47"when t h e f u e l i s s t a t i o n a r y in the c o r e . . A l l of t h e s e c a l c u l a t i o n s are baaed on the static values of pi and hi and t h e f u e l r e s i d e n c e times given in Table E .

Table I S t a . t i c Delayed Neutron P ~ ~ C W S Q T C h a r a c t e r i s t i c s and Fuel Residence Times used L n C a l c u l a t i o n s

4

3

13.07

26.28

5 7.66

6 2.86

Fcae 1

As t x curves

ir_

Ti&#

2

i i l u s t r a t e , beeause t h e rr4argin between t 4 e p?omp-L

a ~ deldiyed d n e u t r o n s o u c ~ has ~ s been i n c r e a s e d by t h e spctiak trarsport

of t h e

~ ~ ~ C U ~ S Ot h F eS sace ,

static reactivity increment prodwes a f a s t e r

r a t e of"rise of' b a t h x u t r o n and precursor d e m i t l e s .

The calculated.

c - a ~ e sexxend sorevhat beyond t n e r e g i o n of p r a c t i c a l i n t e r e s t i n experl-

mental messweanents of che sta-ske p e r l o d . -,he p x p o s e s of i l l u s t r a t i o n .

They m e p r e s e n t e d mainly f o r

Plz acalyzing the experimental daza, it

proved t o be most expedient to c a r r y out machine calc-iAations of t h e

r e a c t i v i t y increments corresponding t o each observed s t a b l e p e r i o d .


Exxxrimental R e s u l t s I n t h e chronology of t h e MSRE zero power experlments, t h e masurements of I n t e r e s t i n t h i s study began a t t h e p o i n t o f reaching t h e mini-

mum

235

U c o n c e n t r a t l o n r e q u i r e d f o r c r i t i c a l i t y w i t h c l r c u l a t i o n s topped

and a l l c o n t r o l rods f u l b y w i t h d r a m .

A summary of' t h e z e r o power e x p e r i -

ments i s g i v e n elsewhere,aQ and we consider only t h o s e d e t a i l s perLinent t o t h e t o p i c of t h i s r e p o r t . Once t h i s f i r s t basepoLnt 236U c o n c e n t r a t i o n had keen reacned, the c o n c e n t r a t i o n w a s f u r t h e r i n c r e a s e d by t h e e d d i t l s n of capsules of enr i c h e d f u e l s a l t con%a,inir_g approximately

85g mounts of

a3sU.

me

m o u n t of c o n t r o l rod i n s e r t i o n r e q u i r e d t o coapensate for t h e s e e d d i t i o n s w a s measured, and p e r i o d measurements about t h e s e x w c r i t i c z l rod p o s i -

t i o n s were made.

Csre w a s t a k e n to determine t h e minimum e x t r a a d d i t i o n

of 235U r e q u i r e d t o reach c r i t i c a l i t y w i t h t h e f u e l c i r c i i h a t i n g and &I-

rods f u l l y withdrawn,

Ozce t h i s second b a s e p o i n t w m reached, t h e

c r i t i c a l r o d p o s i t i o n and p e r l o d measurements were made f i r s t w i t h t h e pmp stopped t h e n wizli t h e f u e l c i r c u l a t i n g .

The measurements w e r e

t e r m i n a t e d when enough p 3 5 U had been added 50 c a l i b r a t e one rod over i t s e n t i r e l e n g t h of' t r a v e l .

Most of t h e p e r i o d measureaects were made 2n p a i r s .

The rod whose

s e n s i t i v i t y w8s t o be measzlred was f i r s t a d j u s t e d t o make t n e r e a c t o r c r i t i c a l a t about

lo

watts.

%her: it

wzs pulled a p r e s c r i b e d d i s t a c e e

and h e l d t h e r e u n t i l the p o w e r nsd i n c r e a s e d by about t w o decades.

The

rod was t h e n imserteed t o b r i n g the power back t o EO warts and- t h e neaswe-

ment wa,s r e p e a t e d at a somewhat s h o r t e r s t a b l e p e r i o d .

Two f i s s i o l ? c h m -

b e r s d r i v i n g l o g - c o u n t - r a t e meters and a two-pen r e c o r d e r were used t o

measure the p e r i o d .

The s t 8 b l e p e r i o d w a s determined by averaging t h e

s l o p e s of t h e two curves (which u s u a l l y agreed w i t h i n about 2$)*

Periods

observed w e r e g e n e r d l y i n t h e range o f 30 t o l$O s e e . P r i o r t o p u l l i n g t h e rod for each period measurement: the a-ctempt

wzs made t o h o l d t h e power l e v e l a t 1 0 w a t t s f o r a t l e a s t 3 minutes, i n an e f f o r c t o asswe i n i t i a l equilibriun of t h e delayed neutron p r e c u r s o r s . GenerPalky, however, it w a s d i f f i c u l t t o prevent a s E f g h t i n i t i a l d r i f t

f.n t h e power l e v e l as observed on a l i n e a r r e c o r d e r , and c o r r e c t i o n s were


t h e r e f o r e introduced f o r t h i s i n i t i a l p e r i o d .

The d i f f e r e n c e between

%L.,er e a c c i v i t y dcring t h e t r a n s i e n t and the initial r e a c t i v i t y , as cornputed from t h e in-hour r e l a t i o n , w a s d l v i d e d by t h e r o d movement and

this s e n s t t i v i t y w a s a s c r i b e d to t h e sod a t t h e m ~ a np o s i t i o n . The results of The rod s e n s i t i v i t y measuremats made w i t h t h e Yael s t a t i o n a r y are --

7.

shown i n E g .

Sirace t h e rod r e a c t i v i t y wsr-ch i s

a f f e c t e d by the %asu c o n c e n t r a t i o n , t h e o r e t i c a l c o r r e c t k m s have been a p p l i e d t o t h e raw data t o a c c o m t for t h e f a c t t h a t t h e 2351J

mss w a s

c a n t i n - m l l y being i n c r e a s e 0 dwil(lg cke course of t'nese experiments. 1-06secsitivities shovn Ln F i g .

7 have

%he

been normalized to a single a s s U

c o n c e n t r a t i o n , t h e t a t t h e beginning of the c a l i b r a t i o n measurements.

Tiie c a l i b r a t i o n curve in Fig. '7 c o n s t i t u t e s a convenient refereslce from which the sta"kc r e a c c i v i t y e q u i v a l e n t of t h e a 3 5 U a d d i t i o n s can be determined, simply by r e l a t i n g t h e l n t e g r a l under t h e curve between t h e f d b y witklr6ram p o s i t i o n and t h e e r d t i c a l r o d position 'vo %he a 3 s U mass.

By '3.pplyHng % k l s equivalence t o t h e rr,inimlxn % 3 ยง U increment between c r i - t i c a l i t y w i t h the f u e l sxationary and w i t h it c i r c u l a t i n g , one o b t a i n s an

experimental determ5na"Yon of the r e a c t i v i t y l o s s increment due t~ c i r -

culation. In addition, t h e curve i n Fig.

a convenient comparison

d a t a taken while t h e f u e l was c i r c u l a t i n g .

curve far t h e rod sensltivl:y

En the f i r s t sf :he

7 is

two zbove cases, t h e reactivity increment

cbtsined f r o x e x p e r f r x n t was 0.212 & 0.004$ 6k/k.

Thfs was f o m d t o

co~perew i t k 9.222$ c e l c u b a t e d directly froln Eq. 14, with w = 0 .

In t h e

secocd c a s e , t h e roC s e n s l t i v i t i e s determrned from p e r i o d measurerrents 6uricg c b r c u l a t f o n and Eo_. l b are shown i n F i g . 8. curves i n Ffgures

7 and 6 ere

ider,tical.

Kote t h a t t h e s o l i d

The experimental p0int.s were

foirnd to be distributed fairly c%cseky absilt> ;he

r e f e r e n c e curve, but the

s c a t t e r of' p o i n t s r e l a t i v e ts t h i s curve i s somewhat larger t h a n observed w i t h t h e data p o i n t s o f F i g . s m r c e s of t h i s sca$uter,

7.

Suggestions concerning t h e possfble

snd methods f o r i a p r o v h g t h e precisLon of t h e s e

aeasurenents are ir_c%udedi n -the f o l l o w i n g s e c t l ~ n .


27

ROD POSITION (in.)

Fig. 7 . D i f f e r e n t i a l Wo~t:?of IGRE C o n t r o l Rod No. 1, Measured with Fuel Stationary. (Normalized to i n i t i a l . c r i t i c a l 23 'U l o a d i n g ) .


CRNL-DWG 65-IC657

0.07

__


4.

DISCUSSION QF RESULTS

T h e o r e t i c a l Model V e r i f i c a t i o n I n keeping w i t h -,he order of p r e s e n t a t i o n of t h e preceedlng p r t of t h i s memoran&rm, we snzll f i r s t d i s c u s s t h o s e a s p e c t s of t h e results which r e b a t e d i r e c t l y t o t h e t h e o r e t i c a l model,

Following t h i s , some

s u g g e s t i o n s concerning t h e MSRE experiments w i l l be made.

As a t e s t of t h e t h e o r e t i c a l model f o r d e t e r n i n i n g t h e e f f e c t s of fuel c i r c u l a t i o n on t h e delayed n e d r o n p r e c u r s o r s , q u i t e s a t i s f a c k o r y r e s u l t s were o b t a i m d f o r t h e r e a c t i v i t y rfncrement between tile J u s t c r i t i c a l states w i t h t h e pump stopped 2nd w i t h t h e i ' u e l In s t e a d y c i r c u lation.

Mere, t h e p r i n c i p a l d i f f e r e n c e i n our model and an e a r l i e r

c a l c d a t i o n by Haubenreich3 i s t h e s p e c r f i c ineHusioE of t h e t o p and bottom r e a c t o r plenums 8 s a d d i k i o n a l so2arces of delayed neutron emission which c o n t r i b u t e t o t h e chaln r e a c t i o n .

A s w a s shown i n F i g .

5,

the

combined e f f e c t of f u e l flow and r a d i o a c t i v e decay of t h e p r e c u r s o r s i s t o "skew" t h e d i s t r i b u t i o n of" delayed emission toward t h e upper core and t h e t o p plenum.

It' i s i x p o r t a n t t o n o t i c e tha-c t h i s r e l a t i v e i n c r e a s e

i n emission of &hayed neki;rons i n t h e t o p p l e n m i s f u r t h e r a c c e m u a t e d by t h e much l a r g e r f u e l vobme f r a c t i o n i n t h i s r e g i o n ( t h e e f f e c t i v e neutron production i s t h e product of t k e t h e fuel volume f r a c t i o n )

S Q U C ~

i n t h e fuel s e l t t i m e s

Because Maubenreich's model accounted for

the ultimate contributLon to f i s s i o n of o n l y t h o s e delayed neutrons

emitted I n the channelled r e g i o n of t h e c o r e ? he o b t a i n e d

8

somewhat

largel- e f f e c t i v e l o s s i n delayed neutrons due t o c i r c u l a t i o n . Although t h e s e r e s u l t s seem t o cons-eitute an adequate t e s t of the model f o r t h e s t e a d y s t a t e c o n d i t l o n , we cannot extend t h i s claim t o t n e s t a b l e asymptotic p e r i o d s measured over t h e e n t i r e range of r o d t r a v e l , due p r i m a r i l y to the l a c k of p r e c i s i o n i n t h e p e r i o d measurements.

Bow-

ever, u n t i l more p r e c i s e measurements can be made, t h i s c a l c u l a t i o n a l model appears t o b e an adequate d e s c r i p t i o n oP the delayed neutron p r e c u r s o r t r a n s p o r t due t o c i r c u l a t i o n . More g e n e r a l l y : one may pose t h e qiies-tion of t h e need f o r s e n s i t i v e

t e s t s and models of t h e delayed n e u t r s n kinetiics & z i n g flue% c i r c u l a t i o n


a t zero power.

For t h e 1-06c a l i b r a t i o n work, It i s alwrys p o s s i b l e t o

s t o p the f u e l p u m ~ , p e r f o r n ;he ~ e s t sw i t h t h e f u e l s t a t i o n a r y - i n t h e core, and use simpEer, t;elE developed methods f o r t h e a n a l y s i s of s t a b l e

periods. ALso, -;he q u e s t i o z s of ultin;a$e safety and s t a h i % i t y of t h e r e a c t o r g e n e r C l g i n v o l v e l a r g e r e a c t i v i z y a d d i t i o n s which take p l a c e on 8

timi? scale &srt compzred t o t h e core t r a n s i t time, and greatly in-

faiaence t h e k i n e t i c s of -,he prompt neutron generacion.

These q u e s t i o n s

a l s o involve n o n l i x e a r i x L e r a c t i s n e f f e c t s w i t h temperature a t high

.

pQTE!P.

En a d d f t i o n t o t h e tneoretisal i n t e r e s t , t h e r e are several contrib u t i o n s a good u d e r s t a n E 3 c g of tke e f f e c t of c i r c u l a t i o n on t h e delayed neutron k i c e t i c s c m make from t h e viewpoint of r e a c t o r o p e r a t i o n .

For

example: $he observed d i f f e r e n c e s between t h e f u e l s t a t i o n a r y and c i r c u Eating c r i t i c a l c o n d i t i o n s can c o n s t i t u t e a s e n s i t i v e method of deterrnin-

i r g Pile% c i r c u l a t i o n ra,te, cmo11;2t of c i r c a l a t i n g gas bubbles, o r any s p e c i a l c h a r a t e r i s t i c dLe t o -,he circula;ion.

PJecessasy control systen;

s e n s i t i v i t i e s and response t i m s f o r norxnab o p e r a t i o n can b e s p e c i f i e d wizh l e s s u n c e r t e i n i t y i n t h e desigr of ozher ~ o l - c e ns a l t reactors. Mtliough xusk of t h i s study o v e r l a p s t k e t of e a r l i e r work, it I s

u s e f u l t o re-exphasize h e r e that the k i n e t i c s of c i r c u l a t i n g fuel syscems

belong to a mtklematical category w3ich is f m k n e n t a l h y d i f f e r e n t rron: tbat of s t e t i s n a r y f ~ e i e dr e a c t o r s

T h i s I s ~ a r t i c u l a r b yimportant i n

t h e descriptioc sf r e a c t o r t r m s i e n t s o c c u r r i s e on parable with ;he

EL

t i m e scale con-

fuel ;rarsi-b tlrres-, I s i s a p p r o p r i a t e Lo r e f e r t o t h e

c ; r c u h ~ i n g fuel s y s t ~ l x sas ";,ime-lag" d i f f e r e n t i d equations for

7,he

systenas, g o x x n e d bj? p a r t l a 1

delayed e n i t t e r c o n c e m r a t l o m

t h a n by o r d b a r y d i f f e r e n t i a l eq;atLons.

rcther

For rnmy purposes, approximate

r e d u e t i o m of t h e equz,ticns t o a f o m sirnila- t o t h e k h e t i c s e q u a t i o x

cf t h e stationary t'ue%ed systems are adequate (e.&;., t h e replecement of eff the i n d i v i d u a l delayed f'rac-,,ons, pi, by e f ' f e c t i v e r e d m e d values, Pi i n the conventionel reactor k i n e t i c s ecpatiolas 9

dses mt seem transient,

-LO be f l ~ E l yj u s + , i f i e d

e

his r e d a c t i o n , however,

for TIE anaEysis of an a r b i t r a r y

I n t h i s s t u d y , the only- conditiofis w e have f u l l y examined are

t k e Just critlcab s t a t e and tke s z e l ~ eof f l u a n changing wi%

asymptotic p e r i o d ,

a stable

For a complete t h e o r e t i c a l understanding oâ‚Ź $lie


coupling of t h e c i r c u l a t i o n with t h e delayed neutron k i n e t i c s , w e need a l s o t o analyze t h e "cansient delayed neutron aodes, mentioned b r i e f l y i n Section 2.

This t r a n s i e n 5 cou-pkirg d e t e r n i n e s t h e e f f e c 5 i v e t i n e t o

e s t a b l i s h t h e asymptotic p e r i o d , and should also provide a basis f o r approximations made i n t h e e n a l y s i s of a r b i t r a r y t r a a s i e r t s

I

S o r e pre-

l i m i n a r y work has been done en t h i s problem, and w e hope t o make t k i s t h e s u b j e c t of a future anemorsndu~n, Wecormendations f o r t.he YSRE

One reason f o r t h e leek, of p r e c i s i o n of z;?e rod Fw-p-period measurement of c o n t r o l r a d s e n s i t i v i t y i s t h e t t h e Hat,r,er i s t h e r a t i o o f two snrthl q u a n t i z i e s

For best ~ e s u E t s ,t n i s r e q u i r e s t n e experimenter

""0

maintain h i g h p r e c i s i o n i n both t h e rneasilreinent o f t h e increment i n r o d

positlsn and tr,e s l o p e cf t h e l o g n vs t i m e cu.rve.

FhrEy i n t h e course

of t h e s e e x p e r i x e n t s it w a s decided t h a t only t h e r e g u l a r r e a c t o r i n s t r ~ mentation would be used f o r t h e rod s e c s i t i v i t y measurenents,

Beterml-

n a t i o n of t h e p e r i o d i n ea& measurernent involved l a y i n g a s t r s i g h t - e d g e

along t h e pen l i n e r e c c r d en she Hog n c h a r t and reading t h e zinc i n t e r v a l g r a p h i c a l l y along t h e h o r i z o n t a l scale which corresponded to a. change of s e v e r a l decades i n t h e neutron l e v e l .

Since these c h a r t s , t o g e t h e r w i t h

t h e pen speeds, aye su'cJect t o v a r i z t i s n s , t h i s i s e r r o r i n t h e rod s e i s i t i v i t y measurements. e ~ " r o probably ~> less important Q

i n the rod p o s i t i o n s ?

8,

probzble source of

A second p o s s i b l e source of

l i e s in the measuremxt o f the Tncrements

It, has Seen seen t h a t

the s c a c t e r i n t h e experi-

mental points was larger for t h e s e n s i t i v i t y memuremerits made during circulation

a

This i s expected, s i n c e s i n i l a r increnaents i n r e d with-

tkrawal r e s u l t i n a s h o r t e r staaBe p e r i o d ucder t h e s e condLtfons. Although a c o q l e t e e r r o r a n a l y s i s h a s not been c a r r i e d out, t h e s e

considerations would seem t o b e obvious s t s , r t i E g p o i n t s i n any f u t u r e attempt t o obtain more p r e c i s e measmements of t h e r o d s e n s i t i v i t i e s .

At t h e t i m e t h e s e experiments wes'e p e r f o m e d ,

t h e bEWE o n - l i n e computer

w a s u n a v a i l a b l e f o r t h e automatic r e c o r d i n g of experimental d a t a .

It

would be useful, during f u t u r e MSRE operat%on, t o r e p e a t some o f t h e p e r i o d measuernents while a t zero power, using t h e coxputes i n the d a t a

h


Hogging shim

mode to

eutomatieally

record

csuEd

be adjusted

to vary

reds

regubatirr,g

rod

for

precise

experiments

bration

obtained

judged

the is from

adequate

for

'%he coc~eration cperatir-g is

sta-??

gratef-Lily

of the

in

not the

Data t3

great,

the

since

measurements

further

n and time

irritial

critical

intervals.

The

position

of the

The immediate the

with

precision the

fuel

of

need the

for

rod

stationary

more cabi-

is

operation.

of J,

W. Ergel

per? orxicg

the i?Jso,

Proecssi.ng

implement

log

measurements,

aekEci:rILedged.

Central

cornputatiocs

period

the

tkc

and various experiments 55e

Facility ana9ysj.s.

author for

members and aid,lng is

of the in

indebted

grogramming

to the

MSm

analysis $,

L.

machine

Lucius


33 REFERENCES 1. 5. k, Fleck, Jr., Theory o f Low Pcwer K i n e t l c s o f C i r c L l b t i n p FueL Reactors Wtth Sc\veraS Groups of Delayed Xeutrons, USMC Repcrt ~ ~ ~ - (3~ -35 4 ' i ) , Brookhaven Maiional L a b c r a t o r y , 1955

5.

B. Friedvan,

9

Chapter 1, J c

c

'I,

P. N. Hau5enreic-h e t al., MSRE Design ar,d Opyrations Report, P a r t 111; Nuclear A n a l y e i s , USAEC 3 e p o r t ORlK8-T%l-730,Cak Ridge N a t i o n a l Laborator& February 3, 1964.

se

S, Glasstone and M u C . E:ilczrid, Thc ELernects of Nuc;ear TherJry, Chapter 18, Van Nostra

Reactor



INTERPU'AL BISTRIBUTION

1. R. K . 2 * S . J. 3 . W. P. 4. 3 . F. 5. s. E . w. I,. L. 7. E. S . /-

8.

9. 10.

4E. E.

13. lk. 15.

16.

17. 18. 19. 2029. 22. 23.

24. 25.

~6~ 27. 28.

29. 30.

34*

y2. 33. 34. 35.

Admis Ball Bartncld Balman

Bcall

Bennett Bettie F. F. Blankrnship R. B l m b e r g C. 6. Bcrkowsaf R. B. B r i g g s G. M. Burger S. Cantor €3. S. C a r l s n i t h 8. D. Chevcrton C . W. Craven, Jr. J. L. Crowley F. L. C u l l e r J. G . Bclene S. J . D i t t o G. E. Ediscn J. R. Engel E. P. Epler W. K. Ergen D. E. F e r g u s m T. E , Fowler A. P. F r a a s B. IT. F r y C . H. G a b h a r d 8 . B. G a l l a h e r E , H. Gift w. R. GriIXs R. 1%. G u p o n P. 2. Harley P. N. Haubenreich

36. V. B.

Halt

37. 38. 39.

T. L. Hudson L. Sung P. R. Kasten 40. R. S . Ked1 41. M. 6. K e l l y Lt2. T. W. K c r l i n 43. H. T. Kerr + b e S. S. K i r s l i s

$5.

S. I. Krakoviak

46. R. B. Lindauer 47.

J. L. L ~ c i u s

M. I. E.m-din R. R. Ly-on K . G. MacPherson R. E. MacPhei; on C . B. Martin K. E. McCoy €I. C. McCardy 9.:. F. McDuffie A. J. M i l l e r R. E. Moore E . A. Nephew M, R. Fayne A. M. P e r r y II. E. P i p e r E'. H. Pi',katnen C. M. Podeweltz C . A. F r e s k i t t . B. E. P r i n c e J. I,. Redford M. Richardson R. C . Robertssl-, K. c. R o l l e r M. I;. R c s e r t h a l A. ide Savolaicen D. S c c t t 7'

M. J. Skinner 0 , E. Smith F. G. Smit.h I . Bpiewak R. C . S t e f f y J. R . Ta,llackson R. E. Tlrorrra W. E. Thomas M. E. Tobias B. E. Trauger M, E. Tsagaris

w. c.

Ulrieh

D. R. Vondy E. E* Webster A. M. Weinberg F. G. Welfare G. D. Whitman J, V. Wilson Centra1 Research L i b r a r y Docment Reference Section La5 c r a t o r y Records La4boratary Records (LRD-RC )


108-=2. E i v l s i o n 3f Technical In%rx!ation Extension (DTPE) 123. Research and DeveSopnent. Division, OR0 l.24-E5 8ea.ctor Slivfsion, OR0 a




Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.