HOME HELP O A K RIDGE NATIONAL LABORATORY o p e r a t e d by U N I O N CARBIDE C O R P O R A T I O N f o r the
U. S. A T O M I C ENERGY C O M M I S S I O N
ORNL- TM- 1017
TENSILE A N D CREEP ____ - p-v*---.--- PROPERTIES O F I N O R - 8 F O R -.
~
THE M O L T E N - S A L T REACTOR E X P E R I M E N T
J. T. Venard
NOTICE This document contains information of a preliminary nature and wos prepared primarily for internal use a t the Oak Ridge National Laboratory. It is subject to revision or correction and therefore does not represent a final report.
I I
1 LEGAL NOTICE T h i s report w a s prepored
03
on account of Governmsnt sponsored work.
Neither the United States,
nor the Commission, nor ony person octing on behalf of the Commission:
A. Makes any warranty or representotion, expressed or implied, w i t h respect completeness,
or
any information,
usefulness apparatus.
to the occurocy,
of the
informotion contoined i n t h i s report, or thot the use of
method,
or process disclosed i n t h i s report may not infringe
p r i v a t e l y owned rights; or
8 . Assumes any l i a b i l i t i e s w i t h respect t o the use of,
or for domoges r e s u l t i n g from the use of
ony informotion, apparatus, method, or process disclosed i n t h i s report.
A s used i n the above, "person contractor o f the Commission, or contractor
of the
acting on behalf of the
Commission"
includes ony employee or
or employee o f such controctor, t o the extent thot such employee
Commission,
or employee
of
such contractor
prepares,
disseminotes.
or
provides access to, ony information pursuant t o h i s employment or controct w i t h the Commission, or h i s employment w i t h such contractor.
1
OHNL-TM-1017
Contract No. W-7405-eng-26 METALS AND CERAMICS DIVISION
T E N S I L E AND CREEP PROPERTIES OF INOR-b FOR TKE MOLTEN-SALT REACTOR EXPERIMEUT
J. T. Venard
FEBRUARY 1965
OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee operated by UNION CARBIDE CORPORATION for the U.S. ATOMIC ETJE8GY COMMISSION
TENSILE AND CREEP PROPE8TIES OF INOR-8 FOR THE MOLTEN-SALT REACTOR EXPERIMENT
J. T. Venard ABSTRACT T e n s i l e and creep-rupture t e s t i n g has been c a r r i e d out on t h r e e h e a t s of INOR-8 s e l e c t e d from t h o s e used f o r t h e MoltenSalt Reactor Ekperiment construction. The primary a i m w a s t o develop s t r e n g t h information r e p r e s e n t a t i v e of t h e r e a c t o r c o n s t r u c t i o n m a t e r i a l and t o compare t h e d a t a on t h e s e commerc i a l h e a t s with t h a t from e a r l y experimental h e a t s . The d a t a r e p o r t e d a r e u l t i m a t e t e n s i l e s t r e n g t h , 0.2$ o f f s e t y i e l d s t r e n g t h , percent elongation, and percent r e d u c t i o n i n a r e a vs temperature from room temperature t o 982°C (1800°F). Creep-rupture behavior w a s i n v e s t i g a t e d a t 593, 704, and 816°C (1100, 1300, and 1500°F). In greater alloy. i s thus
general, t h e commercial MSRE c o n s t r u c t i o n m a t e r i a l shows s t r e n g t h and d u c t i l i t y t h a n d i d e a r l i e r h e a t s of t h e Additional confidence i n t h e MSRE design s t r e n g t h v a l u e s i n order. INTRODUCTION
The d e c i s i o n t o b u i l d t h e Molten-Salt Reactor Experiment n e c e s s i t a t e d t h e procurement of some 100 t o n s of INOR-8
(Ref. 1).
Since some minor
chemistry changes had been made t o ensure w e l d a b i l i t y i n t h e s e commercial h e a t s 2 and because of a d e s i r e t o have s t r e n g t h information r e p r e s e n t a t i v e of MSRE c o n s t r u c t i o n m a t e r i a l , a s e r i e s of t e n s i l e and creep t e s t s were performed. Three h e a t s of m a t e r i a l were s e l e c t e d from t h e 27 heats used i n t h e f
reactor.
This m a t e r i a l was used for t e n s i l e t e s t s i n t h e range of 21°C
(70°F) t o 982°C (1800'F).
Creep-rupture t e s t s were performed a t 593,
704, and 816°C (1100, 1300, and 1500°F). 'Designated
as Hastelloy N by S t e l l i t e Division of Union Carbide
Corporation and as INCO-806 by t h e I n t e r n a t i o n a l Nickel Company.
2R. G. G i l l i l a n d and G. M. Slaughter, I n f l u e n c e of Minor Alloying Additions i n INOR-8 Welds. Paper presented a t Annual Meeting of American Welding Society, Philadelphia, Pa., A p r i l 22-26, t o t h e Welding J o u r n a l ) .
b
c
1963.
(To be submitted
a
2
c
1
MATERIAL AND SPECIMENS
The a l l o y INOR-8 w a s developed e s p e c i a l l y f o r use i n m o l t e n - s a l t The following t a b u l a t i o n g i v e s t h e nominal composition of
systems. t h i s alloy.
Element
Weight Percent4 Balance
Nickel
15.00-18.00
Molybdenum
6.00-8.00
Chromium
5.00
Iron
4
0.04-0.085
Carbon Manganese
1.0
Silicon
1.0
Tungsten
0.50
Aluminum
+
0.50
Titanium
Copper
0.35
Cobalt
0.20
Phosphorus
0.015
Sulfur
0.020
Boron
0.010
Vanadium
0.50
The t h r e e h e a t s of m a t e r i a l s e l e c t e d f o r t e s t i n g were i n t h e form of p l a t e .
Their compositions a r e given i n Table 1. Note t h a t t h e r e i s
l i t t l e d i f f e r e n c e i n t h e composition of t h e t h r e e heats.
The major
d i f f e r e n c e s are i n t h e chromium, i r o n and manganese content of h e a t 5075. Metallographically, t h e t h r e e h e a t s of m a t e r i a l look q u i t e t h e same,
as i s seen i n Figs. 1 through 3.
Note t h e s t r i n g e r s of p r e c i p i t a t e d
m a t e r i a l which a r e a l i g n e d with t h e p l a t e r o l l i n g d i r e c t i o n .
This kind
of s t r u c t u r e i s t y p i c a l of t h i s a l l o y i n t h e wrought condition.
3T. K. Roche, The Influence of Composition Upon t h e 1500째F CreepRupture Strength and Microstructure of Molybdenum-Chromium-Iron-NickelBase Alloys, ORNL-2524, (June 24, 1958). 4 ~ i n g l ev a l u e s a r e maximum percentages.
J
50.02 t o 0.08 f o r pipe and t u b i n g i s included. I t
Table 1.
Designation
Ni
Heat 5055 Heat 5075 Heat 5081
Bal Bal Bal
Chemical Analysis
MO
Cr
Fe
C
Mn
16.20 16.14 16.87
7.86 6.76 7.43
3.76 4.03 3.35
0.06 0.06 0.07
0.69 0.42 0.55
From Certified
Composition (w-t ($1 Si W Al Ti
Test Reports
Cu
Co
P
S
B
v
0.01 0.01 0.02
0.10 0.0% 0.07
0.006 0.003 0.001
0.00% 0.007 0.006
0.005 0.001 0.004
0.21 0.2% 0.26
u 0.61 0.59 0.60
0.03 0.04 0.03
0.06 0.01 0.01
0.02 0.01 0.01
f
4
d)
Fig. 1. As-Received INOR-8 Heat 5055.
Etchant: aqua regia.
Fig. 2.
As-Received INOR-8 Heat 5075.
Etchant: aqua regia. 1OOx.
Fig. 3.
&-Received INOR-8 Heat 5081. Etchant: aqua regia.
lOOx.
1OOx.
f
r
5 W
The specimens for t h e t e s t program were cut both p a r a l l e l and normal t o t h e p l a t e r o l l i n g direction.
A drawing of t h e specimen i s shown i n
Fig. 4.
64-7808
ORNL-DWG
1/8 '/2-13
THD DIMENSIONS IN INCHES
Fig, 4.
Creep and T e n s i l e Specimen, INOR-8.
TESTING METHODS AND RESUETS A l l t e n s i l e t e s t s were run i n a 12,000-lb capacity Baldwin Hydraulic
Testing Machine a t a crosshead speed of 0.05 in./min.
Stress-strain
curves were obtained through load cell-deflectometer outputs.
In t h e
case of elevated-temperature t e s t s , 1/2 h r w a s allowed f o r t h e specimen t o reach equilibrium before loading was begun. Average t e n s i l e d a t a f o r h e a t s 5075 and 5081 a r e shown i n Table 2.
Two specimens of each heat were run a t every temperature. Table 2.
Average Tensile P r o p e r t i e s f o r INOR-8,
TemperaUltimate T e n s i l e ture Strength {"C) ( O F ) ( P s i1 21 70 113,600 315 600 103,300 427 800 lOO,100 538 1000 96,000 '74,800 649 1200 '760 1400 61,800 36,400 871 1600 20,300 982 1800
a
Heat 5075
bHeat 5081 1
0.2% Offset Yield Strength (psi) 46,500 36,000 35,000 33,200 32,600 31,800 31,600 20,000
Heats 5075 and 5081
Elongation
Reduction of Area
(72
(%I
53.1 55.0 53.3 53. 3a b 22.0, 35.8b 21.0 30.5b 23.0' 39.8 27.9
54.0 50.0 52. 5a 46.5, 27.9, 22.8 24.6" 28.9
b
52.0b 35.gb 29.8b 43.2
6
Creep t e s t s were run i n Arcweld Lever Arm T e s t i n g Machines and s t r a i n d a t a obtained through dial-gage extensometers a t t a c h e d t o t h e specimen shoulders. D e t a i l e d t a b u l a t i o n s of t h e creep-rupture t e s t r e s u l t s a r e given i n Tables 3, 4 , and 5 . DISCUSSION OF RESULTS The t e n s i l e p r o p e r t i e s of h e a t s 5075 and 5081 a r e p l o t t e d i n Figs. 5 ,
6, 7, and 8.
These f i g u r e s show u l t i m a t e t e n s i l e s t r e n g t h , 0.2% o f f s e t
y i e l d s t r e n g t h , elongation, End reduction of a r e a vs temperature.
The
s c a t t e r bands f o r experimental h e a t s of INOR-b' shown i n t h e s e f i g u r e s
were developed from d a t a generated some time ago.
6,
The u l t i m a t e and y i e l d s t r e n g t h s show no s i g n i f i c a n t v a r i a t i o n with t h e heat t e s t e d nor d i d t h e y vary w i t h specimen-plate o r i e n t a t i o n .
The
d u c t i l i t y values, however, i n d i c a t e t h a t above approximately 536째C (1000째F) h e a t 50'75 i s l e s s d J c t i l e t h a n h e a t 50bl.
Creep and r u p t u r e curves p l o t t e d as l o g time t o reach a t o t a l s t r a i n of 0.2, 0 . 5 , 1 . 0 , 2.0, and 5.0% and l o g time-to-rupture
given i n Figs. 9 through 17.
vs log s t r e s s are
The elongation a t f r a c t u r e f o r each t e s t i s
noted by t h e numbers i n parentheses. Comparison of t h e v a r i o u s creep d u c t i l i t y values show t h a t , as i n t h e t e n s i l e t e s t s , h e a t 5075 was l e s s d u c t i l e t h a n t h e o t h e r h e a t s t e s t e d . A s t r e s s - r u p t u r e p l o t f o r a l l t h r e e h e a t s i s shown i n Fig. 18.
The
r e s u l t s f o r h e a t s 5055 and 5081 have been f i t t e d w i t h a s i n g l e curve, while h e a t 5075 shows a somewhat lower r u p t u r e s t r e n g t h .
It should be pointed
out t h a t t h e weakest of t h e s e h e a t s , h e a t 5075, i s as s t r o n g as t h e strong-
est experimental h e a t s previously reported. It i s i n t e r e s t i n g t o n o t e from Fig. 19, which p l o t s l o g minimum c r e e p r a t e vs l o g s t r e s s , t h a t t h e c r e e p rates of a l l t h r e e h e a t s a r e t h e same. 6R. W.
Swindeman, Mechanical P r o p e r t i e s of INOR-8,
ORNL-2780,
(Jan. 10, 1961). 7R. W. Swindeman, Unpublished Data i n P r i v a t e Communication t o J. T. Venard, January, 1963. J
. -
Table 3.
*
,
-
Creep and Rupture Data for INOR-8 Tested i n A i r a
5.1 33.5 140.4 1040.7 9818.7
Minimum CreeD Rate Elongation a t (hr-l) F r a c t u r e ($) 7.8 x 37.2 6.5 x 19.6 2 . 2 x lo-' 4.6 2.3 x 6.2 2.6 x 5.4
6.2 29.8 68.3 160.3 346.7 859.7 526.4 1707.3 2682.2
3.5 3.4 1.9 7.8 3.5 3.0 2.6 9.4 5.0
13.9 93.5 189.0 390.9 909.1
1.8 2.8 1.2 4.2 1.5
Test
A.
Temperature
IoC)
(OF)
2 267 2262 2248 2201 1833
593 593 593 593 593
1100 1100 1100 1100 1100
Stress (psi) 81,000 70,000 61,000 50,000 35,000
2273 2264 2254 2246 1840 2200 2144 1982 1842
7oc, 704 704 704 704 704 704 704 704
1300 1300 1300 1300 1300 1300 I300 1300 I300
52,000 39 000 34,000 31,000 27,500 25,000 22,000 20,000 18,000
2274 2272 2253 2239 2188 2263 1986
8 16
1500 1500 1500 1500 1500 1500 1500
23,000 15,000 12,500 10,500 8,200 5,600 5,600
Test
Number
8 16 8 16 816 816 816 8 16
a
,
0.2%
0.10 0.50
10.0 500
Time t o Reach S t r a i n Level ( h r ) 0.5% 1.0% 2.076 5.0% Rupture 0.15 2.0 18.0
1800
0.20 0.40 14.0 53.0 40.0 100.0 3350 5350
0.10 0.20 0.50 2.0 4.0 5.0 5.0
10 5
0.1 1.0 1.0 1.0 2.5 56
100
2.5 5.0 14.0 15 14 30 70
2.7 5.2 12.0 30.0 30 34 95 160
0.3 4.0 4.0 5.0 5.0 250 280
0.6 6.0 8.0 20 40 550 660
1.0
0.40 6.2
11.0 25.0 60 60 75 210 400 1.2
11 16 40
120 1250 1660
0.80 32.2
87 5 9325 1.6 13.8 26.2 64.0
144 160 185 530 950 3.0 22 42 120 340 3500
Specimens of heat 5055 cut p a r a l l e l t o p l a t e r o l l i n g d i r e c t i o n .
bDiseontinued.
X
lo-*
x X X
loW3
x x lom4 X X X
x x x x X
loW5 lo-'
lom4
29.8 16.1 15.9 38.0 29.1 50.3 14.9 26.8 25.0 48.0 42.9 33.7 23.2 20.5 20.1
4
Table 4. Creep and Rupture Data for INOR-8 Tested i n Aira
Test Temperature ("C) (OF) ~
Test
Number
Stress (psi)
Time t o Reach S t r a i n Level ( h r )
0.29
0.55
1.0%
2.05 0.a 3.0 1.2 135 203
5.o$l
3142 (P) 3127 (P) 2547 (T) 2427 (P) 2564 (T) 2826 (T) 2782 (P) 3097 (T)
593 593 593 593 593 593 593 593
1100 1100 1100 1100 1100 1100 1100 1100
0.1 0.3 64,000 59,000 1.2 0.2 0.5 0.2 0.3 0.6 55,000 133 48,500 33.0 103 200 47,000 40.0 130 465 732 42,000 130 625 732 39,000 250 3890 1400 2600 31,000 400
2982 (T) 2952 (P) 2944 (T) 2637 (P) 2997(T)
704 704 704 704 704
1300 1300 1300 1300 1300
35,000 26,000 23,000 22,000 18,500
0.3 1.5 2.0 25.0 1.0
10.0 48.0 6.0
2998 (P) 2888 (T) 2783 (P) 2951(P)
704 704 704 704
I300 1300 1300 l300
16,500 15,000 14,000 13,000
10.0 10.0 10.0 10.0
50.0 65.0 150 100
126 195 350 300
305 450 750 820
3086 (T) 3025 (P) 2977 (T) 2565 (P) 2948 (T) 2892 (P)
816 816 816 816 816 816
1500 1500 1500 1500 1500 1500
19,000 12,000 10,000 7,200 6,700 4,900
0.1 0.5 2.0 15.0 1.0 40.0
0.4 2.0 11.0 45.0 45.0 105
0.9 4.5 20.0 90.0 105 360
6.5 2.0 35.0 11.5 46.0 121 185 385 555 230 930 2175
a
2.0
4.4 11.0 25.0 77.0 67.0
4.5
10.0 50.0 60.0 114 193.0
6.7 18.0 75.0
l33 451.0 645 855 1410 1605
Rupture
Minimum Creep Rat e (hr-l)
Elongation a t F r a c t u r e ($)
8.9 23.5 78.6 135.6 205.5 885.2 749.5 3927.0
6.0 x iom4 2.0 x 10-4 5.0 x i o m 5 5.5 x iom5 3.5 x iom5 6.0 x lom6 3.0 x lom6 1.6 x
13.9 10.8 9.1 7.8
22.6 75.7 135.3 137.9 491.2
2.0 x 10-3 2.1 x 10-4 1.3 x iom4 1.3 x 10-4 8.3 x
4.8
680.2 924.8 1505.1 1698.8
5.1 x 4.2 x 2.6 x 1.8 x
7.5 7.1 7.6 7.6
20.6 148.6 358.1 486.4 1034.3 2757.4
6.3 x iom3 1.3 x iom3 3.9 x 5.8 x 8.3 x 10-5 1.9 x iom5
10-5 io-' 10-5 10-5
4.4 1.6 1.5 3.9
4.4 5.2
4.2 7.5
28.9 23.9 19.9 11.2 12.8 10.0
Specimens of h e a t 50'75.
b(P) i n d i c a t e s specimen c u t p a r a l l e l t o p l a t e r o l l i n g d i r e c t i o n and (T) i n d i c a t e s specimen cut transverse t o plate rolling direction.
....
t .
-*
8 1
' (
Table 5.
Test Number
Test Temperature ("C)
-
I
Creep and Rupture Data for INOR-8 Tested i n A i r "
Minimum CreeD Rate A.
(OF)
Stress (Psi)
3137 (T) 3119 (P) 3105 (T) 3103 (P) 2478 (P) 2466 (T) 2571 (P)
593 593 593 593 593 593 593
1100 1100 1100 1100 1100 1100 1100
74,000 66,000 63,000 57,000 52,000 50,000 46,000
2991(T) 2958 (P) 2943 ( T ) 2968 (PI 2559 ( T ) 1958 (P) 2900 (P)
704 704 704 704 704 704 704
1300 1300
I300 I300 1300 1300 1300
48,000 39,500 28 ,500 25,500 20,500 20,000 19 ,300
3067 ( T ) 3072 (P) 3014 (T) 2976 (T) 2949 (P) 2575 (T) 3071 (P)
8 16 816 816 816 816 816 816
1500 1500 1500 1500 1500 1500 1500
21,000 16,000 14,000 11,000 8,700 8,000 6 ,300
0.2%
Time t o Reach S t r a i n Level (hr) 0.5% 1.0% 2.0% 5.0% Rupture
0.1 5.0
0.2 0.3 22.0
20.0
75.0
0.1
0.3 0.4 46.0 0.1 220
0.6 0.5 88.0 0.4 42 5
16.0 72.0 121 340 602
(hr-l)
Elongation a t F r a c t u r e ($I)
x x x x x x x
28.7 20.3 14.6 13.5 7.6 8.9 7.0
24.1 93.4 122.9 377.5 609.4 786.2 1615.3
1.4 2.8 2.1 3.5 3.0 1.8 1.2
1 0 ' 3 10-4
10-5 10-5
400
800
0.5 2.0 5.0 10.0 60.0 10.0
0.1 1.5 9.0 20.0 40.0 13 5 50.0
0.2 3.0 19.0 42.0 80.0 270 120
0.5 6.5 39.0 82.0 17 5 425 280
3.0 16.0 92.0 200 460 9 10 735
13.2 53.3 150.9 469.3 1194.6 1152.1 1596.7
1.3 x lo-* 3.2 x 5 . 1 x 10-4 2.6 x iom4 1.1 x ioe4 3.7 x 6.8 x
28.6 26.1 12.8 17.2 23.2 5.9 17.9
0.5 1.0 2.0 5.0 5.0 12.0
0.2 1.0 4.5 6.0 20.0 30.0 50.0
0.8 2.5 6.5
2.0 5.5 13.5 35.0 100 145 325
5.0 12.0 34.0 95.0 27 5 385 1330
25.2 52.8 125.2 422.8 834.2 1429.8 4896.3
9.0 x 4.3 x 1.4 x 5.1 x 1.8 x 1.1 x 2.3 x
46.8 38.2 30.0 35.8 23.2 20.3 26.5
15.0 45.0 65.0 150
1300
16 12
10-5
iom3 ios3 10-4 10-4 10-4 10-5
~~
a
Specimens of h e a t 5081.
b ( T ) i n d i c a t e s specimen c u t t r a n s v e r s e t o p l a t e r o l l i n g d i r e c t i o n and (P) i n d i c a t e s specimen cut p a r a l l e l t o p l a t e r o l l i n g direction.
a
10
440
I
I '
i
I
'
I
I
I
120 ._ Q u)
100 0
-0 80 W
2 W
K
5
60
W
4 cn Z W
40
F
20
0
0
200
400
1000
800
600
1200
1400
1600
1800
TEMPERATURE ( O F )
Fig. 5 .
Ultimate T e n s i l e Strength of MSRE INOR-8. ORNL-DWG
0
TEMPERATURE ("C) 400 500 600
to0
300 _ _ 200 _ _ _ _ - - -
700
800
64-4445R2
900
$000
T
-
8 50 SJ
i
I
I
5
40
W
K I-
cn 30 n A
wta-"
20
HEAT 5075 A P A R A L L E L TO R.D. * N O R M A L TO R.D.
2 IO
HEAT 5081 o P A R A L L E L TO R.D. v N O R M A L TO R.D.
I
I
I f
_
1-
t-
0 0
200
400
600
800
1000
TEMPERATURE
Fig. 6 .
:-I1 i
I
1200
1400
4600
1800
(OF)
Two Percent Yield S t r e n g t h of MSRE INOR-8.
11
ORNL-DWG 64-4446R2
0
100
200
300
TEMPERATURE ("C) 400 500 600 700
800
900
70
60
.-.
50
-a-"z s 40 W
z
0
d
30
20
10
0
Fig. 7.
Elongation i n 2 i n . of MSRE INOR-8.
1000
12 J
ORNL-DWG 64-4447R
0
I00
200
__ 300
TEMPERATURE ("C)
400
500
600
I
700
800
900
77-TT-T-
~-
~
1000
I
a W
5
40
z 2
0 30
t, 3 n
20
10
0 0
200
400
600
800 1000 TEMPERATURE
1200
1400
1600
(OF)
Fig. 8 . Reduction of Area of MSRE INOR-8.
1800
ORNL-DWG 6 4 - 4 4 3 5 R
01
10
100
10
1000
10,000
TIME ( h r )
Fig. 9.
Creep and Rupture Data f o r MSRE INOR-8.
ORNL-OWG
64-4438R
100 80
10 0.1
1 .o
10
100
1000
10,000
TIME ( h r )
Fig. 10.
Creep and Rupture Data f o r MSRE INOR-8.
14
ORNL-DWG
64-4441R
r
1
. 0.1
1.0
10
100
1000
10,000
TIME ( h r )
F i g . 11.
100
C r e e p and R u p t u r e D a t a for MSRE INOR-8.
-
_-
-----
ORNL-DWG 6 4 - 4 4 3 6 R
80
60 1
.-
Q m
8 40 0, I
TIME ( h r )
Fig. 12.
C r e e p and R u p t u r e D a t a f o r MSRE INOR-8.
r
15 W
ORNL-DWG 64-4439R
400 80
- 60 ICnl
0" 40
.0 .,
v)
cn W
20
iUPTURE iLw
0.1
10
10
400
1000
40,000
TIME (hr)
Fig. 13. Creep and Rupture D a t a for MSRE INOR-8.
ORNL-DWG
64-4442R
~
0.4
4 .O
10
100
1000
10,000
TIME ( h r )
Fig. 14.
Creep and R u p t u r e D a t a for MSRE INOR-8.
16
ORNL-DWG
64-4437R
100
80
.... 60 ._ a UI
4
to 0.t
io
1.0
100
too0
10,000
TIME ( h r )
Fig. 15.
C r e e p and R u p t u r e D a t a f o r MSRE INOR-8.
ORNL-DWG
64-4440R
100 80
-.- 60 (0
a
8
40
0
I
v, v, W
E
20
v)
RE I 10 '
0.1
1/11
I
1 .o
I
too
10
to00
10,000
TIME ( h r )
Fig. 16.
C r e e p and R u p t u r e D a t a f o r MSRE INOR-8.
17
ORNL- DWG 6 4 - 4 4 4 3 R
40
30
-'2 2 0 0 0
-cn0
cn 40 w E 8 cn 6 4 4 .O
0.4
4 00
40
1000
10,000
TIME (hr)
Fig. l'7.
C r e e p and R u p t u r e Data for MSRE INOR-8.
ORNL-DWG 6 4 - 4 4 1 8 R
100
50
0
0
I
.
10
HEAT 5 0 5 5 A HEAT 5 0 7 5 0 HEAT 5081
0
(0
0)
K W
L
5 2
1
10
100
1000
10,000
TIME TO RUPTURE ( h r )
Fig. 18.
S t r e s s - R u p t u r e Behavior of MSRE INOR-8.
18 ORNL-DWG 64-4434R
( x t ~ 3 )
80 60
40
.-
VI
20
v) v)
IT w Iv)
40 8
6
4
3 10-6
to- 4
10-
10-3
40-2
10-'
MINIMUM C R E E P RATE ( & )
Fig. 19.
Creep Behsvior of MSRE INOR-8.
CONCLUSIONS These experiments on t h r e e h e a t s of INOR-8 used i n t h e MSRE construct i o n can be summarized with t h e following conclusions: 1. The t e n s i l e p r o p e r t i e s a r e equivalent t o t h o s e f o r e a r l i e r e x p e r i mental h e a t s of INOR-8.
2.
The t h r e e h e a t s t e s t e d show no t e n s i l e s t z e n g t h v a r i a t i o n w i t h
p l a t e o r i e n t a t i o n or with heat.
3.
One h e a t (5075) e x h i b i t e d somewhat l e s s d u c t i l i t y a t tempera-
t u r e s above approximately 536째C (1000째F) compared w i t h h e a t s 5055 and 5081.
4.
Rupture s t r e n g t h i n c r e e p f o r t h e s e 3 h e a t s i s somewhat b e t t e r
than those f o r t h e e a r l i e r heats.
5.
The m i n i m u m c r e e p r a t e behavior of a l l t h r e e h e a t s i s t h e same.
Since t h e design of t h e MSRE w a s based on t h e d a t a from e a r l i e r experimental h e a t s of INOR-8,
it would appear t h a t an e x t r a measure of
confidence i n t h e i n t e g r i t y of t h e I N O R - 8 components of t h e r e a c t o r components i s i n order.
C
19 W
ACKNOWLEDGEMENTS
The author wishes to express h i s appreciation to t h e Graphic Arts Department and the Metals and Ceramics Division Reports Office for their help in preparing this document. The work of C. W. Walker, who ran the creep experiments; C. W. Dollins, who ran the tensile tests; and
V. G. Lane, who helped prepare the data, is also appreciated.
L
21 ORNL-TM- 1017 INTERNAL D I STRIBUTI ON
1-2. 3. 44. 7.
8.
c
9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48.
49. 50-52. V
Central Research Library ORNL - Y-12 Technical Library Document Reference Section Laboratory Records Iaboratory Records, ORNL RC ORNL Patent Office G. M. Adamson, Jr. L. G. Alexander S. E. B e a l l C. E. B e t t i s E. S. B e t t i s D. S. B i l l i n g t o n F. F. Blankenship G. E. Boyd A. L. Boch S. E. Bolt C. J. Borkowski E. J. Breeding F. R. Bruce 0. W. Burke D. 0. Campbell S. Cantor W. G. Cobb J. A. Conlin W. H. Cook L. T. Corbin G. A. C r i s t y J. L. Crowley F. L. Culler J. E. Cunningham W. W. Davis J. H. DeVan C. W. Dollins R. G. Donnelly D. A. Douglas, Jr. E. P. Epler W. K. Ekgen A. P. Fraas J. H Frye, Jr. C. H. Gabbard W. R. G a l l R. B. Gallaher R. G. G i l l i l a n d W. R. Grimes A. G. Grindell D. G. Harmon C. S. H a r r i l l M. R. Hill
53. 54. 55. 56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70-72. 73.
E. H. P. L. P. R. C. B. R. V. M. H. E. W. H. W. C. E. R.
C. Hise
Hofkaan Holz Howell Kasten Ked1 R. Kennedy W. Kinyon W. Knight G. Lane I. Lundin G. MacPherson R. Mann R. Martin E. McCoy B. McDonald K. McGlothlan C. Miller L. Moore 74. J. C. Moyers 7 5 . C. W. Nestor 7 6 . T. E. Northup 77. L. F. Parsly 78. P. P a t r i a r c a 7 9 . H. R. Payne 80. W. B. Pike 81. M. Richardson 82. R. C. Robertson 83. T. K. Roche 84. H. W. Savage 85. J. H. Shaffer 86. G. M. Slaughter 87. A. N. Smith 88. P. G. Smith 89. I. Spiewak 90. R. L. Stephenson 91. R. W. Swindeman 92. A. Taboada 93. J. R. Tallackson 94. A. E. Thoma 95. D. B. Trauger 96-101. J. T. Venard 102. W. C. Ulrich 103. J. R. Weir 104. C. W. Walker 105. D. C. Watkin 106. A. M. Weinberg 107. J. H. Westsik W. P. N. R. J.
22
108. L. V. Wilson 109. C. H. Wodtke 110. J. W. Woods EXTERNAL DISTRIBUTION 111. 112-113. 114-115. 116-118. 119. 120-134.
C. M. Adams, Jr., Massachusetts Institute of Technology A. E. Carden, University of Alabams David F. Cope, AEC, OR0 J. Simmons, AEC, Washington Research and Development, AEC, OR0 Division of Technical Information Extension