ORNL-TM-1017

Page 1

HOME HELP O A K RIDGE NATIONAL LABORATORY o p e r a t e d by U N I O N CARBIDE C O R P O R A T I O N f o r the

U. S. A T O M I C ENERGY C O M M I S S I O N

ORNL- TM- 1017

TENSILE A N D CREEP ____ - p-v*---.--- PROPERTIES O F I N O R - 8 F O R -.

~

THE M O L T E N - S A L T REACTOR E X P E R I M E N T

J. T. Venard

NOTICE This document contains information of a preliminary nature and wos prepared primarily for internal use a t the Oak Ridge National Laboratory. It is subject to revision or correction and therefore does not represent a final report.


I I

1 LEGAL NOTICE T h i s report w a s prepored

03

on account of Governmsnt sponsored work.

Neither the United States,

nor the Commission, nor ony person octing on behalf of the Commission:

A. Makes any warranty or representotion, expressed or implied, w i t h respect completeness,

or

any information,

usefulness apparatus.

to the occurocy,

of the

informotion contoined i n t h i s report, or thot the use of

method,

or process disclosed i n t h i s report may not infringe

p r i v a t e l y owned rights; or

8 . Assumes any l i a b i l i t i e s w i t h respect t o the use of,

or for domoges r e s u l t i n g from the use of

ony informotion, apparatus, method, or process disclosed i n t h i s report.

A s used i n the above, "person contractor o f the Commission, or contractor

of the

acting on behalf of the

Commission"

includes ony employee or

or employee o f such controctor, t o the extent thot such employee

Commission,

or employee

of

such contractor

prepares,

disseminotes.

or

provides access to, ony information pursuant t o h i s employment or controct w i t h the Commission, or h i s employment w i t h such contractor.

1


OHNL-TM-1017

Contract No. W-7405-eng-26 METALS AND CERAMICS DIVISION

T E N S I L E AND CREEP PROPERTIES OF INOR-b FOR TKE MOLTEN-SALT REACTOR EXPERIMEUT

J. T. Venard

FEBRUARY 1965

OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee operated by UNION CARBIDE CORPORATION for the U.S. ATOMIC ETJE8GY COMMISSION



TENSILE AND CREEP PROPE8TIES OF INOR-8 FOR THE MOLTEN-SALT REACTOR EXPERIMENT

J. T. Venard ABSTRACT T e n s i l e and creep-rupture t e s t i n g has been c a r r i e d out on t h r e e h e a t s of INOR-8 s e l e c t e d from t h o s e used f o r t h e MoltenSalt Reactor Ekperiment construction. The primary a i m w a s t o develop s t r e n g t h information r e p r e s e n t a t i v e of t h e r e a c t o r c o n s t r u c t i o n m a t e r i a l and t o compare t h e d a t a on t h e s e commerc i a l h e a t s with t h a t from e a r l y experimental h e a t s . The d a t a r e p o r t e d a r e u l t i m a t e t e n s i l e s t r e n g t h , 0.2$ o f f s e t y i e l d s t r e n g t h , percent elongation, and percent r e d u c t i o n i n a r e a vs temperature from room temperature t o 982°C (1800°F). Creep-rupture behavior w a s i n v e s t i g a t e d a t 593, 704, and 816°C (1100, 1300, and 1500°F). In greater alloy. i s thus

general, t h e commercial MSRE c o n s t r u c t i o n m a t e r i a l shows s t r e n g t h and d u c t i l i t y t h a n d i d e a r l i e r h e a t s of t h e Additional confidence i n t h e MSRE design s t r e n g t h v a l u e s i n order. INTRODUCTION

The d e c i s i o n t o b u i l d t h e Molten-Salt Reactor Experiment n e c e s s i t a t e d t h e procurement of some 100 t o n s of INOR-8

(Ref. 1).

Since some minor

chemistry changes had been made t o ensure w e l d a b i l i t y i n t h e s e commercial h e a t s 2 and because of a d e s i r e t o have s t r e n g t h information r e p r e s e n t a t i v e of MSRE c o n s t r u c t i o n m a t e r i a l , a s e r i e s of t e n s i l e and creep t e s t s were performed. Three h e a t s of m a t e r i a l were s e l e c t e d from t h e 27 heats used i n t h e f

reactor.

This m a t e r i a l was used for t e n s i l e t e s t s i n t h e range of 21°C

(70°F) t o 982°C (1800'F).

Creep-rupture t e s t s were performed a t 593,

704, and 816°C (1100, 1300, and 1500°F). 'Designated

as Hastelloy N by S t e l l i t e Division of Union Carbide

Corporation and as INCO-806 by t h e I n t e r n a t i o n a l Nickel Company.

2R. G. G i l l i l a n d and G. M. Slaughter, I n f l u e n c e of Minor Alloying Additions i n INOR-8 Welds. Paper presented a t Annual Meeting of American Welding Society, Philadelphia, Pa., A p r i l 22-26, t o t h e Welding J o u r n a l ) .

b

c

1963.

(To be submitted


a

2

c

1

MATERIAL AND SPECIMENS

The a l l o y INOR-8 w a s developed e s p e c i a l l y f o r use i n m o l t e n - s a l t The following t a b u l a t i o n g i v e s t h e nominal composition of

systems. t h i s alloy.

Element

Weight Percent4 Balance

Nickel

15.00-18.00

Molybdenum

6.00-8.00

Chromium

5.00

Iron

4

0.04-0.085

Carbon Manganese

1.0

Silicon

1.0

Tungsten

0.50

Aluminum

+

0.50

Titanium

Copper

0.35

Cobalt

0.20

Phosphorus

0.015

Sulfur

0.020

Boron

0.010

Vanadium

0.50

The t h r e e h e a t s of m a t e r i a l s e l e c t e d f o r t e s t i n g were i n t h e form of p l a t e .

Their compositions a r e given i n Table 1. Note t h a t t h e r e i s

l i t t l e d i f f e r e n c e i n t h e composition of t h e t h r e e heats.

The major

d i f f e r e n c e s are i n t h e chromium, i r o n and manganese content of h e a t 5075. Metallographically, t h e t h r e e h e a t s of m a t e r i a l look q u i t e t h e same,

as i s seen i n Figs. 1 through 3.

Note t h e s t r i n g e r s of p r e c i p i t a t e d

m a t e r i a l which a r e a l i g n e d with t h e p l a t e r o l l i n g d i r e c t i o n .

This kind

of s t r u c t u r e i s t y p i c a l of t h i s a l l o y i n t h e wrought condition.

3T. K. Roche, The Influence of Composition Upon t h e 1500째F CreepRupture Strength and Microstructure of Molybdenum-Chromium-Iron-NickelBase Alloys, ORNL-2524, (June 24, 1958). 4 ~ i n g l ev a l u e s a r e maximum percentages.

J

50.02 t o 0.08 f o r pipe and t u b i n g i s included. I t


Table 1.

Designation

Ni

Heat 5055 Heat 5075 Heat 5081

Bal Bal Bal

Chemical Analysis

MO

Cr

Fe

C

Mn

16.20 16.14 16.87

7.86 6.76 7.43

3.76 4.03 3.35

0.06 0.06 0.07

0.69 0.42 0.55

From Certified

Composition (w-t ($1 Si W Al Ti

Test Reports

Cu

Co

P

S

B

v

0.01 0.01 0.02

0.10 0.0% 0.07

0.006 0.003 0.001

0.00% 0.007 0.006

0.005 0.001 0.004

0.21 0.2% 0.26

u 0.61 0.59 0.60

0.03 0.04 0.03

0.06 0.01 0.01

0.02 0.01 0.01


f

4

d)

Fig. 1. As-Received INOR-8 Heat 5055.

Etchant: aqua regia.

Fig. 2.

As-Received INOR-8 Heat 5075.

Etchant: aqua regia. 1OOx.

Fig. 3.

&-Received INOR-8 Heat 5081. Etchant: aqua regia.

lOOx.

1OOx.

f

r


5 W

The specimens for t h e t e s t program were cut both p a r a l l e l and normal t o t h e p l a t e r o l l i n g direction.

A drawing of t h e specimen i s shown i n

Fig. 4.

64-7808

ORNL-DWG

1/8 '/2-13

THD DIMENSIONS IN INCHES

Fig, 4.

Creep and T e n s i l e Specimen, INOR-8.

TESTING METHODS AND RESUETS A l l t e n s i l e t e s t s were run i n a 12,000-lb capacity Baldwin Hydraulic

Testing Machine a t a crosshead speed of 0.05 in./min.

Stress-strain

curves were obtained through load cell-deflectometer outputs.

In t h e

case of elevated-temperature t e s t s , 1/2 h r w a s allowed f o r t h e specimen t o reach equilibrium before loading was begun. Average t e n s i l e d a t a f o r h e a t s 5075 and 5081 a r e shown i n Table 2.

Two specimens of each heat were run a t every temperature. Table 2.

Average Tensile P r o p e r t i e s f o r INOR-8,

TemperaUltimate T e n s i l e ture Strength {"C) ( O F ) ( P s i1 21 70 113,600 315 600 103,300 427 800 lOO,100 538 1000 96,000 '74,800 649 1200 '760 1400 61,800 36,400 871 1600 20,300 982 1800

a

Heat 5075

bHeat 5081 1

0.2% Offset Yield Strength (psi) 46,500 36,000 35,000 33,200 32,600 31,800 31,600 20,000

Heats 5075 and 5081

Elongation

Reduction of Area

(72

(%I

53.1 55.0 53.3 53. 3a b 22.0, 35.8b 21.0 30.5b 23.0' 39.8 27.9

54.0 50.0 52. 5a 46.5, 27.9, 22.8 24.6" 28.9

b

52.0b 35.gb 29.8b 43.2


6

Creep t e s t s were run i n Arcweld Lever Arm T e s t i n g Machines and s t r a i n d a t a obtained through dial-gage extensometers a t t a c h e d t o t h e specimen shoulders. D e t a i l e d t a b u l a t i o n s of t h e creep-rupture t e s t r e s u l t s a r e given i n Tables 3, 4 , and 5 . DISCUSSION OF RESULTS The t e n s i l e p r o p e r t i e s of h e a t s 5075 and 5081 a r e p l o t t e d i n Figs. 5 ,

6, 7, and 8.

These f i g u r e s show u l t i m a t e t e n s i l e s t r e n g t h , 0.2% o f f s e t

y i e l d s t r e n g t h , elongation, End reduction of a r e a vs temperature.

The

s c a t t e r bands f o r experimental h e a t s of INOR-b' shown i n t h e s e f i g u r e s

were developed from d a t a generated some time ago.

6,

The u l t i m a t e and y i e l d s t r e n g t h s show no s i g n i f i c a n t v a r i a t i o n with t h e heat t e s t e d nor d i d t h e y vary w i t h specimen-plate o r i e n t a t i o n .

The

d u c t i l i t y values, however, i n d i c a t e t h a t above approximately 536째C (1000째F) h e a t 50'75 i s l e s s d J c t i l e t h a n h e a t 50bl.

Creep and r u p t u r e curves p l o t t e d as l o g time t o reach a t o t a l s t r a i n of 0.2, 0 . 5 , 1 . 0 , 2.0, and 5.0% and l o g time-to-rupture

given i n Figs. 9 through 17.

vs log s t r e s s are

The elongation a t f r a c t u r e f o r each t e s t i s

noted by t h e numbers i n parentheses. Comparison of t h e v a r i o u s creep d u c t i l i t y values show t h a t , as i n t h e t e n s i l e t e s t s , h e a t 5075 was l e s s d u c t i l e t h a n t h e o t h e r h e a t s t e s t e d . A s t r e s s - r u p t u r e p l o t f o r a l l t h r e e h e a t s i s shown i n Fig. 18.

The

r e s u l t s f o r h e a t s 5055 and 5081 have been f i t t e d w i t h a s i n g l e curve, while h e a t 5075 shows a somewhat lower r u p t u r e s t r e n g t h .

It should be pointed

out t h a t t h e weakest of t h e s e h e a t s , h e a t 5075, i s as s t r o n g as t h e strong-

est experimental h e a t s previously reported. It i s i n t e r e s t i n g t o n o t e from Fig. 19, which p l o t s l o g minimum c r e e p r a t e vs l o g s t r e s s , t h a t t h e c r e e p rates of a l l t h r e e h e a t s a r e t h e same. 6R. W.

Swindeman, Mechanical P r o p e r t i e s of INOR-8,

ORNL-2780,

(Jan. 10, 1961). 7R. W. Swindeman, Unpublished Data i n P r i v a t e Communication t o J. T. Venard, January, 1963. J


. -

Table 3.

*

,

-

Creep and Rupture Data for INOR-8 Tested i n A i r a

5.1 33.5 140.4 1040.7 9818.7

Minimum CreeD Rate Elongation a t (hr-l) F r a c t u r e ($) 7.8 x 37.2 6.5 x 19.6 2 . 2 x lo-' 4.6 2.3 x 6.2 2.6 x 5.4

6.2 29.8 68.3 160.3 346.7 859.7 526.4 1707.3 2682.2

3.5 3.4 1.9 7.8 3.5 3.0 2.6 9.4 5.0

13.9 93.5 189.0 390.9 909.1

1.8 2.8 1.2 4.2 1.5

Test

A.

Temperature

IoC)

(OF)

2 267 2262 2248 2201 1833

593 593 593 593 593

1100 1100 1100 1100 1100

Stress (psi) 81,000 70,000 61,000 50,000 35,000

2273 2264 2254 2246 1840 2200 2144 1982 1842

7oc, 704 704 704 704 704 704 704 704

1300 1300 1300 1300 1300 1300 I300 1300 I300

52,000 39 000 34,000 31,000 27,500 25,000 22,000 20,000 18,000

2274 2272 2253 2239 2188 2263 1986

8 16

1500 1500 1500 1500 1500 1500 1500

23,000 15,000 12,500 10,500 8,200 5,600 5,600

Test

Number

8 16 8 16 816 816 816 8 16

a

,

0.2%

0.10 0.50

10.0 500

Time t o Reach S t r a i n Level ( h r ) 0.5% 1.0% 2.076 5.0% Rupture 0.15 2.0 18.0

1800

0.20 0.40 14.0 53.0 40.0 100.0 3350 5350

0.10 0.20 0.50 2.0 4.0 5.0 5.0

10 5

0.1 1.0 1.0 1.0 2.5 56

100

2.5 5.0 14.0 15 14 30 70

2.7 5.2 12.0 30.0 30 34 95 160

0.3 4.0 4.0 5.0 5.0 250 280

0.6 6.0 8.0 20 40 550 660

1.0

0.40 6.2

11.0 25.0 60 60 75 210 400 1.2

11 16 40

120 1250 1660

0.80 32.2

87 5 9325 1.6 13.8 26.2 64.0

144 160 185 530 950 3.0 22 42 120 340 3500

Specimens of heat 5055 cut p a r a l l e l t o p l a t e r o l l i n g d i r e c t i o n .

bDiseontinued.

X

lo-*

x X X

loW3

x x lom4 X X X

x x x x X

loW5 lo-'

lom4

29.8 16.1 15.9 38.0 29.1 50.3 14.9 26.8 25.0 48.0 42.9 33.7 23.2 20.5 20.1

4


Table 4. Creep and Rupture Data for INOR-8 Tested i n Aira

Test Temperature ("C) (OF) ~

Test

Number

Stress (psi)

Time t o Reach S t r a i n Level ( h r )

0.29

0.55

1.0%

2.05 0.a 3.0 1.2 135 203

5.o$l

3142 (P) 3127 (P) 2547 (T) 2427 (P) 2564 (T) 2826 (T) 2782 (P) 3097 (T)

593 593 593 593 593 593 593 593

1100 1100 1100 1100 1100 1100 1100 1100

0.1 0.3 64,000 59,000 1.2 0.2 0.5 0.2 0.3 0.6 55,000 133 48,500 33.0 103 200 47,000 40.0 130 465 732 42,000 130 625 732 39,000 250 3890 1400 2600 31,000 400

2982 (T) 2952 (P) 2944 (T) 2637 (P) 2997(T)

704 704 704 704 704

1300 1300 1300 1300 1300

35,000 26,000 23,000 22,000 18,500

0.3 1.5 2.0 25.0 1.0

10.0 48.0 6.0

2998 (P) 2888 (T) 2783 (P) 2951(P)

704 704 704 704

I300 1300 1300 l300

16,500 15,000 14,000 13,000

10.0 10.0 10.0 10.0

50.0 65.0 150 100

126 195 350 300

305 450 750 820

3086 (T) 3025 (P) 2977 (T) 2565 (P) 2948 (T) 2892 (P)

816 816 816 816 816 816

1500 1500 1500 1500 1500 1500

19,000 12,000 10,000 7,200 6,700 4,900

0.1 0.5 2.0 15.0 1.0 40.0

0.4 2.0 11.0 45.0 45.0 105

0.9 4.5 20.0 90.0 105 360

6.5 2.0 35.0 11.5 46.0 121 185 385 555 230 930 2175

a

2.0

4.4 11.0 25.0 77.0 67.0

4.5

10.0 50.0 60.0 114 193.0

6.7 18.0 75.0

l33 451.0 645 855 1410 1605

Rupture

Minimum Creep Rat e (hr-l)

Elongation a t F r a c t u r e ($)

8.9 23.5 78.6 135.6 205.5 885.2 749.5 3927.0

6.0 x iom4 2.0 x 10-4 5.0 x i o m 5 5.5 x iom5 3.5 x iom5 6.0 x lom6 3.0 x lom6 1.6 x

13.9 10.8 9.1 7.8

22.6 75.7 135.3 137.9 491.2

2.0 x 10-3 2.1 x 10-4 1.3 x iom4 1.3 x 10-4 8.3 x

4.8

680.2 924.8 1505.1 1698.8

5.1 x 4.2 x 2.6 x 1.8 x

7.5 7.1 7.6 7.6

20.6 148.6 358.1 486.4 1034.3 2757.4

6.3 x iom3 1.3 x iom3 3.9 x 5.8 x 8.3 x 10-5 1.9 x iom5

10-5 io-' 10-5 10-5

4.4 1.6 1.5 3.9

4.4 5.2

4.2 7.5

28.9 23.9 19.9 11.2 12.8 10.0

Specimens of h e a t 50'75.

b(P) i n d i c a t e s specimen c u t p a r a l l e l t o p l a t e r o l l i n g d i r e c t i o n and (T) i n d i c a t e s specimen cut transverse t o plate rolling direction.

....

t .

-*


8 1

' (

Table 5.

Test Number

Test Temperature ("C)

-

I

Creep and Rupture Data for INOR-8 Tested i n A i r "

Minimum CreeD Rate A.

(OF)

Stress (Psi)

3137 (T) 3119 (P) 3105 (T) 3103 (P) 2478 (P) 2466 (T) 2571 (P)

593 593 593 593 593 593 593

1100 1100 1100 1100 1100 1100 1100

74,000 66,000 63,000 57,000 52,000 50,000 46,000

2991(T) 2958 (P) 2943 ( T ) 2968 (PI 2559 ( T ) 1958 (P) 2900 (P)

704 704 704 704 704 704 704

1300 1300

I300 I300 1300 1300 1300

48,000 39,500 28 ,500 25,500 20,500 20,000 19 ,300

3067 ( T ) 3072 (P) 3014 (T) 2976 (T) 2949 (P) 2575 (T) 3071 (P)

8 16 816 816 816 816 816 816

1500 1500 1500 1500 1500 1500 1500

21,000 16,000 14,000 11,000 8,700 8,000 6 ,300

0.2%

Time t o Reach S t r a i n Level (hr) 0.5% 1.0% 2.0% 5.0% Rupture

0.1 5.0

0.2 0.3 22.0

20.0

75.0

0.1

0.3 0.4 46.0 0.1 220

0.6 0.5 88.0 0.4 42 5

16.0 72.0 121 340 602

(hr-l)

Elongation a t F r a c t u r e ($I)

x x x x x x x

28.7 20.3 14.6 13.5 7.6 8.9 7.0

24.1 93.4 122.9 377.5 609.4 786.2 1615.3

1.4 2.8 2.1 3.5 3.0 1.8 1.2

1 0 ' 3 10-4

10-5 10-5

400

800

0.5 2.0 5.0 10.0 60.0 10.0

0.1 1.5 9.0 20.0 40.0 13 5 50.0

0.2 3.0 19.0 42.0 80.0 270 120

0.5 6.5 39.0 82.0 17 5 425 280

3.0 16.0 92.0 200 460 9 10 735

13.2 53.3 150.9 469.3 1194.6 1152.1 1596.7

1.3 x lo-* 3.2 x 5 . 1 x 10-4 2.6 x iom4 1.1 x ioe4 3.7 x 6.8 x

28.6 26.1 12.8 17.2 23.2 5.9 17.9

0.5 1.0 2.0 5.0 5.0 12.0

0.2 1.0 4.5 6.0 20.0 30.0 50.0

0.8 2.5 6.5

2.0 5.5 13.5 35.0 100 145 325

5.0 12.0 34.0 95.0 27 5 385 1330

25.2 52.8 125.2 422.8 834.2 1429.8 4896.3

9.0 x 4.3 x 1.4 x 5.1 x 1.8 x 1.1 x 2.3 x

46.8 38.2 30.0 35.8 23.2 20.3 26.5

15.0 45.0 65.0 150

1300

16 12

10-5

iom3 ios3 10-4 10-4 10-4 10-5

~~

a

Specimens of h e a t 5081.

b ( T ) i n d i c a t e s specimen c u t t r a n s v e r s e t o p l a t e r o l l i n g d i r e c t i o n and (P) i n d i c a t e s specimen cut p a r a l l e l t o p l a t e r o l l i n g direction.

a


10

440

I

I '

i

I

'

I

I

I

120 ._ Q u)

100 0

-0 80 W

2 W

K

5

60

W

4 cn Z W

40

F

20

0

0

200

400

1000

800

600

1200

1400

1600

1800

TEMPERATURE ( O F )

Fig. 5 .

Ultimate T e n s i l e Strength of MSRE INOR-8. ORNL-DWG

0

TEMPERATURE ("C) 400 500 600

to0

300 _ _ 200 _ _ _ _ - - -

700

800

64-4445R2

900

$000

T

-

8 50 SJ

i

I

I

5

40

W

K I-

cn 30 n A

wta-"

20

HEAT 5075 A P A R A L L E L TO R.D. * N O R M A L TO R.D.

2 IO

HEAT 5081 o P A R A L L E L TO R.D. v N O R M A L TO R.D.

I

I

I f

_

1-

t-

0 0

200

400

600

800

1000

TEMPERATURE

Fig. 6 .

:-I1 i

I

1200

1400

4600

1800

(OF)

Two Percent Yield S t r e n g t h of MSRE INOR-8.


11

ORNL-DWG 64-4446R2

0

100

200

300

TEMPERATURE ("C) 400 500 600 700

800

900

70

60

.-.

50

-a-"z s 40 W

z

0

d

30

20

10

0

Fig. 7.

Elongation i n 2 i n . of MSRE INOR-8.

1000


12 J

ORNL-DWG 64-4447R

0

I00

200

__ 300

TEMPERATURE ("C)

400

500

600

I

700

800

900

77-TT-T-

~-

~

1000

I

a W

5

40

z 2

0 30

t, 3 n

20

10

0 0

200

400

600

800 1000 TEMPERATURE

1200

1400

1600

(OF)

Fig. 8 . Reduction of Area of MSRE INOR-8.

1800


ORNL-DWG 6 4 - 4 4 3 5 R

01

10

100

10

1000

10,000

TIME ( h r )

Fig. 9.

Creep and Rupture Data f o r MSRE INOR-8.

ORNL-OWG

64-4438R

100 80

10 0.1

1 .o

10

100

1000

10,000

TIME ( h r )

Fig. 10.

Creep and Rupture Data f o r MSRE INOR-8.


14

ORNL-DWG

64-4441R

r

1

. 0.1

1.0

10

100

1000

10,000

TIME ( h r )

F i g . 11.

100

C r e e p and R u p t u r e D a t a for MSRE INOR-8.

-

_-

-----

ORNL-DWG 6 4 - 4 4 3 6 R

80

60 1

.-

Q m

8 40 0, I

TIME ( h r )

Fig. 12.

C r e e p and R u p t u r e D a t a f o r MSRE INOR-8.


r

15 W

ORNL-DWG 64-4439R

400 80

- 60 ICnl

0" 40

.0 .,

v)

cn W

20

iUPTURE iLw

0.1

10

10

400

1000

40,000

TIME (hr)

Fig. 13. Creep and Rupture D a t a for MSRE INOR-8.

ORNL-DWG

64-4442R

~

0.4

4 .O

10

100

1000

10,000

TIME ( h r )

Fig. 14.

Creep and R u p t u r e D a t a for MSRE INOR-8.


16

ORNL-DWG

64-4437R

100

80

.... 60 ._ a UI

4

to 0.t

io

1.0

100

too0

10,000

TIME ( h r )

Fig. 15.

C r e e p and R u p t u r e D a t a f o r MSRE INOR-8.

ORNL-DWG

64-4440R

100 80

-.- 60 (0

a

8

40

0

I

v, v, W

E

20

v)

RE I 10 '

0.1

1/11

I

1 .o

I

too

10

to00

10,000

TIME ( h r )

Fig. 16.

C r e e p and R u p t u r e D a t a f o r MSRE INOR-8.


17

ORNL- DWG 6 4 - 4 4 4 3 R

40

30

-'2 2 0 0 0

-cn0

cn 40 w E 8 cn 6 4 4 .O

0.4

4 00

40

1000

10,000

TIME (hr)

Fig. l'7.

C r e e p and R u p t u r e Data for MSRE INOR-8.

ORNL-DWG 6 4 - 4 4 1 8 R

100

50

0

0

I

.

10

HEAT 5 0 5 5 A HEAT 5 0 7 5 0 HEAT 5081

0

(0

0)

K W

L

5 2

1

10

100

1000

10,000

TIME TO RUPTURE ( h r )

Fig. 18.

S t r e s s - R u p t u r e Behavior of MSRE INOR-8.


18 ORNL-DWG 64-4434R

( x t ~ 3 )

80 60

40

.-

VI

20

v) v)

IT w Iv)

40 8

6

4

3 10-6

to- 4

10-

10-3

40-2

10-'

MINIMUM C R E E P RATE ( & )

Fig. 19.

Creep Behsvior of MSRE INOR-8.

CONCLUSIONS These experiments on t h r e e h e a t s of INOR-8 used i n t h e MSRE construct i o n can be summarized with t h e following conclusions: 1. The t e n s i l e p r o p e r t i e s a r e equivalent t o t h o s e f o r e a r l i e r e x p e r i mental h e a t s of INOR-8.

2.

The t h r e e h e a t s t e s t e d show no t e n s i l e s t z e n g t h v a r i a t i o n w i t h

p l a t e o r i e n t a t i o n or with heat.

3.

One h e a t (5075) e x h i b i t e d somewhat l e s s d u c t i l i t y a t tempera-

t u r e s above approximately 536째C (1000째F) compared w i t h h e a t s 5055 and 5081.

4.

Rupture s t r e n g t h i n c r e e p f o r t h e s e 3 h e a t s i s somewhat b e t t e r

than those f o r t h e e a r l i e r heats.

5.

The m i n i m u m c r e e p r a t e behavior of a l l t h r e e h e a t s i s t h e same.

Since t h e design of t h e MSRE w a s based on t h e d a t a from e a r l i e r experimental h e a t s of INOR-8,

it would appear t h a t an e x t r a measure of

confidence i n t h e i n t e g r i t y of t h e I N O R - 8 components of t h e r e a c t o r components i s i n order.


C

19 W

ACKNOWLEDGEMENTS

The author wishes to express h i s appreciation to t h e Graphic Arts Department and the Metals and Ceramics Division Reports Office for their help in preparing this document. The work of C. W. Walker, who ran the creep experiments; C. W. Dollins, who ran the tensile tests; and

V. G. Lane, who helped prepare the data, is also appreciated.

L



21 ORNL-TM- 1017 INTERNAL D I STRIBUTI ON

1-2. 3. 44. 7.

8.

c

9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48.

49. 50-52. V

Central Research Library ORNL - Y-12 Technical Library Document Reference Section Laboratory Records Iaboratory Records, ORNL RC ORNL Patent Office G. M. Adamson, Jr. L. G. Alexander S. E. B e a l l C. E. B e t t i s E. S. B e t t i s D. S. B i l l i n g t o n F. F. Blankenship G. E. Boyd A. L. Boch S. E. Bolt C. J. Borkowski E. J. Breeding F. R. Bruce 0. W. Burke D. 0. Campbell S. Cantor W. G. Cobb J. A. Conlin W. H. Cook L. T. Corbin G. A. C r i s t y J. L. Crowley F. L. Culler J. E. Cunningham W. W. Davis J. H. DeVan C. W. Dollins R. G. Donnelly D. A. Douglas, Jr. E. P. Epler W. K. Ekgen A. P. Fraas J. H Frye, Jr. C. H. Gabbard W. R. G a l l R. B. Gallaher R. G. G i l l i l a n d W. R. Grimes A. G. Grindell D. G. Harmon C. S. H a r r i l l M. R. Hill

53. 54. 55. 56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70-72. 73.

E. H. P. L. P. R. C. B. R. V. M. H. E. W. H. W. C. E. R.

C. Hise

Hofkaan Holz Howell Kasten Ked1 R. Kennedy W. Kinyon W. Knight G. Lane I. Lundin G. MacPherson R. Mann R. Martin E. McCoy B. McDonald K. McGlothlan C. Miller L. Moore 74. J. C. Moyers 7 5 . C. W. Nestor 7 6 . T. E. Northup 77. L. F. Parsly 78. P. P a t r i a r c a 7 9 . H. R. Payne 80. W. B. Pike 81. M. Richardson 82. R. C. Robertson 83. T. K. Roche 84. H. W. Savage 85. J. H. Shaffer 86. G. M. Slaughter 87. A. N. Smith 88. P. G. Smith 89. I. Spiewak 90. R. L. Stephenson 91. R. W. Swindeman 92. A. Taboada 93. J. R. Tallackson 94. A. E. Thoma 95. D. B. Trauger 96-101. J. T. Venard 102. W. C. Ulrich 103. J. R. Weir 104. C. W. Walker 105. D. C. Watkin 106. A. M. Weinberg 107. J. H. Westsik W. P. N. R. J.


22

108. L. V. Wilson 109. C. H. Wodtke 110. J. W. Woods EXTERNAL DISTRIBUTION 111. 112-113. 114-115. 116-118. 119. 120-134.

C. M. Adams, Jr., Massachusetts Institute of Technology A. E. Carden, University of Alabams David F. Cope, AEC, OR0 J. Simmons, AEC, Washington Research and Development, AEC, OR0 Division of Technical Information Extension


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.