ORNL-TM-0202

Page 1

HOME

HELP OAK RIDGE N A T I O N A L LABORATORY operated by

UNION CARBIDE CORPORATION NUCLEAR DIVISION for the

U.S. ATOMIC ENERGY COMMISSION

ORNL- TM- 2021, Vol. I

Q

W

s

iii EFFECT OF ALLOYING ADDITIONS ON CORROSION BEHAVIOR OF NICKEL

-

MOLYBDENUM ALLOYS IN FUSED FLUORIDE MIXTURES (Thesis) Jackson Harvey DeVan

b

This report i s a portion of a thesis submitted to the Graduate Council of the University of Tennessee i n partial fulfillment of the requirements for the degree of Master of Science.


LEGAL NOTICE T h i s report was prepaed a s an account of Government sponsored work.

Neither the United States,

nor the Commission, nor ony person octing on h h a l f of the Commission:

A. Makes ony warranty or representation, expressed or implied, w i t h respect t o the accuracy, completeness, or usefulness of the information contained i n t h i s report, or that the use o f any information. apparatus, method, or process disclosed i n t h i s report moy not infringe privately owned rights; or

6.

Assumes any l i a b i l i t i e s w i t h respect t o the use of, or for damages resulting from the use of

any information, opparatur, method, or process d i Tc1or.d

i n t h i s report.

A s used i n the above, "person octing on behalf of the Commission" controctor of the Commission. or employ.. or

contractor

of the Commission,

includes any employee or

of such contractor, to the extent thot such employee

or employee of such contractor prepares,

disseminates,

or

provides access to, any information pursuant t o h i s mmployment or contract w i t h the Commission, or h i s employment w i t h such contractor.


LEGAL

w ’

NOTICE-

.

____

This report was prepared a s an %(.Countof Government bponSOrpd work. Neither the United States, mor the Commi6Sion, nor my person acting on behalf of the Commission: A. Makes any warranty o r rexesentation, expressed or implied, with respect to the accuracy, completeness, o r usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process discloaed in this report may not infringe privately owned rights; or B. A88umes any liabilities with respect to the use of, o r for damages resuiting from Lhe use of any information, apparatus, method, or Process diacloRed in this report. As used in the above, “perlion acting on behalf of the Commlseian” includes .any employee o r contractor of the Cominlssion, or employee of such contractor, to the extent that such employee or contractor of ihe Commission, or employee of such contractor prepares, disseminates, or provides acce88 to, any information pursuant to his employment o r contract with the Commission, or his employment with such contractor.

ORNL-TM-2021 VOl. I

C o n t r a c t No. W-7405-eng-26

MET!;LS

AND CERAMICS DIVISION

EFFECT OF ALLOYING ADDITIONS ON CORROSION BEHAVIOR OF NICKELMOLYBDENUM ALLOYS I N FUSED FLUORIDE MIXTURES Jackson Harvey DeVan

MAY 1969

This r e p o r t i s a p o r t i o n o f a t h e s i s submitted t o t h e Graduate Council o f t h e U n i v e r s i t y o f Tennessee i n p a r t i a l f u l f i l l m e n t of t h e requirements f o r t h e degree of Master of Science.

OAK RIDGE NATIONAL LABORATORY c

Oak Ridge, Tennessee operated by UNION CARBIDE CORPORATION f o r the U.S. ATOMIC ENERGY COMMISSION



iii

CONTENTS

Abstract

..............................

............................ Review of Related Work . . . . . . . . . . . . . . . . . . . . . . . Corrosion by Fluoride Mixtures . . . . . . . . . . . . . . . . . Corrosion Reactions . . . . . . . . . . . . . . . . . . . . Introduction

................ Corrosion o f Nickel-Molybdenum Alloys . . . . . . . . . . . . . . M a t e r i a l s and Procedures . . . . . . . . . . . . . . . . . . . . . . Test M a t e r i a l s . . . . . . . . . . . . . . . . . . . . . . . . . Test Equipment . . . . . . . . . . . . . . . . . . . . . . . . . S a l t Preparation . . . . . . . . . . . . . . . . . . . . . . . . Operating Procedures . . . . . . . . . . . . . . . . . . . . . . Test Examination . . . . . . . . . . . . . . . . . . . . . . . . R e s u l t s and Discussion . . . . . . . . . . . . . . . . . . . . . . . Chromium . . . . . . . . . . . . . . . . . . . . . . . . . . . . Corrosion-Product Concentrations . . . . . . . . . . . . . . Metallographic Results . . . . . . . . . . . . . . . . . . . Aluminum . . . . . . . . . . . . . . . . . . . . . . . . . . . . Corrosion-Product Concentrations . . . . . . . . . . . . . . Metallographic R e s u l t s . . . . . . . . . . . . . . . . . . . Titanium . . . . . . . . . . . . . . . . . . . . . . . . . . . . Corrosion-Product Concentrations . . . . . . . . . . . . . . Metallographic R e s u l t s . . . . . . . . . . . . . . . . . . . Vanadium . . . . . . . . . . . . . . . . . . . . . . . . . . . . Corrosian-Product Concentrations . . . . . . . . . . . . . . Metallographic Re s u l k s . . . . . . . . . . . . . . . . . . . Iron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Corrosion-Product Concentrations . . . . . . . . . . . . . . Metallographic R e s u l t s . . . . . . . . . . . . . . . . . . . Reduction of UF4 by Chromium

. rc

1

1

3

3 3

4 6

8 8 8 12

13 13

15 15 15 21

24

24 25

28 28 29 30

30 30 30

30 32


iv 1

Page

...,.......,................ Corrosion-Psoduct Concentrations . . . . . . . . . . . . . . Metallographic Results . . . . . . . . . . . . . . . . . . .

Niobium

Tungsten

............................

.............. Metallographic Results . . . . . . . . . . . . . . . . . . . Relative Thermodynamic S t a b i l i t i e s of Alloying C o n s t i t u e n t s . . General Discussion of Alloying E f f e c t s . . . . . . . . . . . . . Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . Corrosion-Product Concentrations

32 32 33 34 34 36 36

38 40 42

V


EFFECT OF ALLOYING ADDITIONS ON CORROSION BEHAVIOR OF IIICKELMOLYBDENUM ALLOYS I N FUSED FLUORIDE MIXTURFS ABSTRACT

F

Fused f l u o r i d e mixtures containing WL+ have been developed a s f u e l s o l u t i o n s f o r hi'gh-temperature nuclear r e a c t o r s . To develop c o n t a i n e r m a t e r i a l s f o r such mixtures, we i n v e s t i g a t e d t h e c o r r o s i o n p r o p e r t i e s of nickel-molybdenum a l l o y s with v a r i ous s o l i d - s o l u t i o n strengthening a d d i t i o n s . These e v a l u a t i o n s u t i l i z e d thermal convection loops which c i r c u l a t e d s a l t mixt u r e s between a hot-zone temperature of 815째C and a cold-zone temperature of 650 "C. The a l l o y s s e l e c t e d f o r s t u d y contained 17 t o 20% Mo and Loops of v a r i o u s percentages of C r , A l , T i , V, Fe, Nb, and W. i n d i v i d u a l a l l o y s were exposed t o t h e s a l t mixture NaF-LiF-KF-UF4 (11.2-45.341.0-2.5 mole 8) f o r p e r i o d s of 500 and 1000 h r . Measurements of t h e c o n c e n t r a t i o n s o f c o r r o s i o n products i n a f t e r - t e s t s a l t samples i n d i c a t e d t h e c o r r o s i o n s u s c e p t i b i l i t y of a l l o y i n g a d d i t i o n s t o i n c r e a s e i n t h i s o r d e r : Fe, I%, V, C r , inJ, T i , and A l . However, metallographic examinations o f loop s u r f a c e s showed r e l a t i v e l y l i g h t a t t a c k f o r a l l a l l o y s except t h o s e containing combined a d d i t i o n s of aluminum and t i t a n i u m or aluminum and chromium. A nickel-base a l l o y containing 17%Mo, 7% C r , and 576 Fe, designated H a s t e l l o y N, w a s found t o a f f o r d t h e b e s t combinat i o n o f s t r e n g t h and c o r r o s i o n r e s i s t a n c e among t h e a l l o y compositions t e s t e d .

INTRODUCTION

Molten f l u o r i d e s of uranium, thorium, o r plutonium, i n combination with o t h e r f l u o r i d e compounds, have wide a p p l i c a b i l i t y a s f u e l s f o r t h e production of nuclear power.'

Because of t h e i r high b o i l i n g p o i n t s , t h e s e

mixtures can be contained a t low p r e s s u r e s even a t extremely high o p e r a t i n g temperatures. c

Their chemical and p h y s i c a l p r o p e r t i e s impart a d d i -

t i o n a l advantages such a s e x c e l l e n t s t a b i l i t y under i r r a d i a t i o n and l a r g e

'R. C . B r i a n t and A . M. Weinberg, "Molten F l u o r i d e s a s Power Reactor Fuels," Nucl. S e i . Eng. 2, 797-803 (1957).

-


s o l u b i l i t y ranges f o r both uranium and thorium.

These f a c t o r s have

prompted design s t u d i e s of molten f l u o r i d e f u e l systems i n conjunction with thorium-uranium thermal b r e e d e r s , uranium-plutonium c o n v e r t e r s , and uranium burners. The development o f r e a c t o r s which i n c o r p o r a t e a c i r c u l a t i n g f l u o r i d e s a l t i s p r e d i c a t e d on t h e a v a i l a b i l i t y of a c o n s t r u c t i o n m a t e r i a l which w i l l c o n t a i n t h e s a l t over long time p e r i o d s and a l s o a f f o r d u s e f u l

structural properties.

The c o n t a i n e r m a t e r i a l must a l s o be r e s i s t a n t t o

a i r o x i d a t i o n , be e a s i l y formed and welded i n t o r e l a t i v e l y complicated shapes, and be m e t a l l u r g i c a l l y s t a b l e over a wide temperature range. I n o r d e r t o provide a m a t e r i a l for i n i t i a l r e a c t o r s t u d i e s , s e v e r a l commercially a v a i l a b l e high-temperature a l l o y systems were evaluated with r e s p e c t t o t h e above r e q ~ r e m e n t s . A s a r e s u l t o f t h e s e s t u d i e s , Inconel,

a nickel-base a l l o y c o n t a i n i n g 15 w t ‘$ C r and 7’wt ’$ Fe, w a s found t o a f f o r d t h e b e s t combination o f d e s i r e d p r o p e r t i e s and w a s u t i l i z e d for t h e c o n s t r u c t i o n of t h e A i r c r a f t Reactor Experiment. sion tests,’’“

Extensive c o r r o -

as w e l l as p o s t t e s t examinations of t h e ARE,5 confirmed

t h e s u i t a b i l i t y of I n c o n e l a s a c o n t a i n e r m a t e r i a l f o r r e l a t i v e l y s h o r t term f l u o r i d e s a l t exposures.

Corrosion r a t e s encountered w i t h t h i s

a l l o y a t temperatures above 7OO0C, however, were excessive f o r long-term use w i t h most f l u o r i d e f u e l systems.

U t i l i z i n g experience gained i n c o r r o s i o n t e s t i n g o f commercial a l l o y s , we i n i t i a t e d an a l l o y development program t o provide a n advanced c o n t a i n e r m a t e r i a l for f l u o r i d e f u e l r e a c t o r systems.

The r e f e r e n c e

a l l o y system w a s composed o f n i c k e l w i t h a primary s t r e n g t h e n i n g a d d i t i o n of 15-20’$ Mo.

This composition afforded e x c e p t i o n a l r e s i s t a n c e t o f l u o -

r i d e a t t a c k b u t lacked s u f f i c i e n t mechanical s t r e n g t h and o x i d a t i o n

e.

A i r c r a f t Reactor Experiment *W. D. Manly e t A m e c t s . ORNL-2349719575.

- Metallurgical

‘ G . M. Adamson, R. S. Crouse, and W. D . Manly, I n t e r i m Report on Corrosion b y Zirconium-Base F l u o r i de s , ORNL-2338 ( 1961)

.

5W. B. C o t t r e l l et a -l . , Disassembly and P o s t o p e r a t i v e Examination of t h e A i r c r a f t Reactor Experiment, ORNL-1868 (1958).


3 r e s i s t a n c e a t d e s i r e d o p e r a t i n g temperatures.

To augment t h e s e l a t t e r

p r o p e r t i e s , a d d i t i o n s of v a r i o u s s o l i d - s o l u t i o n a l l o y i n g agents were evaluated, among them C r y Al, T i , Nb, Fe, V, and W.

An optimum a l l o y

composition was s e l e c t e d on t h e b a s i s of p a r a l l e l i n v e s t i g a t i o n s of t h e mechanical and c o r r o s i o n p r o p e r t i e s which were imparted b y each of t h e s e additions.

The composition b e s t s u i t e d t o r e a c t o r use was determined t o

be w i t h i n t h e range 15-17 w t

0.044.08 w t

%

C, balance N i .

$ Mo, 6-8

wt

$I C r , 4-6

wt

$ Fe,

Subsequent s t u d i e s of t h e a l l o y , d e s i g -

nated H a s t e l l o y N, have shown it t o be extremely w e l l s u i t e d f o r a p p l i c a t i o n s demanding long-term c o m p a t i b i l i t y with f l u o r i d e s a l t s i n t h e temperature range 650-800"C. The p r e s e n t r e s e a r c h w a s concerned with t h e c o r r o s i o n e f f e c t s r e s u l t i n g from a d d i t i o n s of a l l o y i n g elements t o t h e nickel-molybdenum system and an a n a l y s i s of t h e thermodynamics of t h e c o r r o s i o n process a s i n d i c a t e d by t h e s e a l l o y i n g e f f e c t s .

RFVIEW OF R F U I E D WORK Corrosion by Fluoride Mixtures Corrosion Reactions The c o r r o s i o n of nickel-base a l l o y s , containing i r o n and chromium, by f l u o r i d e f u e l mixtures has been found t o r e s u l t from a combination

of t h e following types of o x i d a t i o n r e a c t i o n s :

1. Reactions7 involving i m p u r i t i e s i n t h e s a l t

2HF + C r = CrF2 + NiF2 + Cr

-

=

,

-,

CrF2 + N i

FeF2 + C r = CrF2

--

H2

+Fe

.

6W. D. Manly e t a l . , " M e t a l l u r g i c a l Problems i n Molten Fluoride Systems, I' Progr. Nucl. Energy, Ser. I V 2, 164 (1960). V

-

7 S o l i d - s o l u t i o n a l l o y i n g elements a r e underlined.


4 2.

Reactions involving i m p u r i t i e s i n o r on t h e metal, f o r example 2Ni0 + ZrF4

=

ZrO2 + 2NiF2

(4)

followed by r e a c t i o n ( 2 ) . 3.

Reactions involving components i n t h e s a l t 2UF4

+C r = CrF2 + 2UF3

,

(5)

The e x t e n t of t h e f i r s t f o u r of t h e s e r e a c t i o n s , which proceed s t r o n g l y t o t h e r i g h t and t o completion r a p i d l y , can be reduced by maintaining low impurity c o n c e n t r a t i o n s Ln t h e s a l t and on t h e s u r f a c e of t h e metal. Reactions ( 5 ) and (6), on t h e o t h e r hand, a r e indigenous t o f l u o r i d e systems which d e r i v e t h e i r u s e f u l n e s s through t h e containment o f UF4. While t h e r o l e of chromium has been i n v e s t i g a t e d e x t e n s i v e l y i n connect i o n with t h e s e r e a c t i o n s , 8 c o n s i d e r a b l y l e s s information i s a v a i l a b l e regarding t h e thermodynamics of t h e s e r e a c t i o n s f o r t h e o t h e r a l l o y i n g elements which were o f i n t e r e s t i n t h e p r e s e n t study. Reduction of UF4 by Chromium The r e a c t i o n of UF4 with chromium i s found t o be s t r o n g l y i n f l u e n c e d by t h e r e a c t i o n medium employed.'

I n melts composed p r i n c i p a l l y of

NaF-ZrF4 o r NaF-BeF2, t h e r e a c t i o n produces o n l y d i v a l e n t chromium, t h a t i s ,

However, i n t h e case of NaF-KF-LiF-UF4 mixtures used f o r t h i s i n v e s t i g a t i o n , t h e r e a c t i o n between chromium and UF4 produces b o t h d i v a l e n t and

8J. D. Redman, ANI? Quart. Progr. Rept. Dec. 31, 195'7, O m - 2 4 4 0 , pp. 78-82.


5 t r i v a l e n t chromium.

A t e q u i l i b r i u m , approximately 80% of t h e t o t a l

chromium i o n s i n t h e mixtures a r e observed t o be t r i v a l e n t , g i v i n g t h e net r e a c t ion

2.8UT4

+

Cr =

0.2CrF2 + O.8CrF3

+ 2.8vF3

,

The e q u i l i b r i u m c o n s t a n t for t h i s r e a c t i o n i s given by

where

CY

r e p r e s e n t s thermodynamic a c t i v i t y .

Because of t h e r e l a t i v e l y

small c o n c e n t r a t i o n s of CrF2 and UF3 which a r e a t t a i n e d i n t h e s a l t solut i o n s a t equilibrium, t h e a c t i v i t i e s of each of t h e s e components can be c l o s e l y approximated by t h e i r mole f r a c t i o n s , i n accordance with Henry's law.

Thus, for a s a l t system of f i x e d UF4 c o n c e n t r a t i o n , assuming t h e

r e f e r e n c e s t a t e s f o r s a l t components t o be t h e i n f i n i t e l y d i l u t e s o l u t i o n ,

For a system i n i t i a l l y containing no UF3, CrF2, or CrF3, it follows t h a t

.

I n such systems where t h e change i n = 1/14Nm NCrF2 = 1/4NCrF1 3 c o n c e n t r a t i o n i s small, Eq. ( 9 ) reduces t o

where

0

UF4


6

The c o n s t a n t LiF-KF-NaF-UF4

% has

been experimentally determined f o r t h e mixture

( 11.2-41.045.3-2.5

mole $) b y e q u i l i b r a t i n g it w i t h pure

chromium (CY" = 1) a t 600 and 800째C ( r e f . 8 ) . Under t h e s e c o n d i t i o n s , Cr t h e constent i s equivalent i n value t o t h e mole f r a c t i o n of chromium ions i n t h e s a l t a t equilibrium.

The measured v a l u e s of

5 are

listed in

Table 1. a Table 1. Equilibrium Concentrations of Chromium F l u o r i d e s f o r t h e Reaction of Pure Chromium w i t h UF4

Concentration o f Chromium I o n s i n NaF-LiF -KF -UF4 (11.241.045.3-2.5 mole

E q u il i b r a t i o n Temperatwre

(

4)

"a

ppm

mole f r a c t i o n

600

1100

1.0 x

800

2600

2.4 x

a

(s-)

J. D. Redman, ANP Q u a r t . Progr. Rept. Dee. 31, 1957, pp. 78-82.

o m -2440,

Eecause t h e chromium-UF4 r e a c t i o n i s temperature dependent, chemic a l e q u i l i b r i u m between t h e s e two components i s precluded i n systems o f uniform a l l o y composition where t h e c i r c u l a t i n g s a l t c o n t i n u a l l y e x p e r i ences a temperature change.

I n such systems chromium t e n d s t o be con-

t i n u a l l y removed from h o t t e r p o r t i o n s and d e p o s i t e d i n c o o l e r p o r t i o n s . A t h e o r y r e l a t i n g t h e r a t e o f t h i s movement t o t h e o p e r a t i n g parameters of t h e c o n t a i n e r system has been formulated by Evans.

9

Corrosion o f Nickel-Molybdenum Alloys Because of t h e o x i d a t i o n of chromium by f u e l - b e a r i n g f l u o r i d e s a l t s , a l l o y s employing l a r g e percentages of t h i s element were not s a t i s f a c t o r y 'R. E. Evans, ANP Quart. Progr. Rept. Dec. 31, 1957, ORNL-2440, pp . 1-04-113.


7 a s c o n t a i n e r m a t e r i a l s except a t temperatures where d i f f u s i o n r a t e s i n t h e a l l o y s were r e l a t i v e l y low.

Accordingly, e v a l u a t i o n s were made of

s e v e r a l commercial a l l o y s i n which chromium was not employed as a major alloying addition.

Based on t h e s e t e s t s , a l l o y s of n i c k e l and molybdenum

appeared t o o f f e r t h e most promising c o n t a i n e r system f o r achieving r e l a t i v e l y high r e a c t o r o p e r a t i n g temperatures.

Unfortunately, commercially

a v a i l a b l e nickel-molybdenum a l l o y s which e x h i b i t e d e x c e l l e n t c o r r o s i o n p r o p e r t i e s were not well s u i t e d t o contemplated r e a c t o r systems because

o f t h r e e adverse c h a r a c t e r i s t i c s :

(1) poor f a b r i c a b i l i t y ; ( 2 ) a tendency

t o age-harden and e m b r i t t l e a t s e r v i c e temperatures between 650 and

815째C ( r e f . 10); and ( 3 ) poor r e s i s t a n c e t o o x i d a t i o n b y a i r a t e l e v a t e d temperatures.

The s c a l e formed on exposure of t h e s e a l l o y s t o high-

temperature a i r w a s of t h e type NiMoO4, which upon thermal c y c l i n g between 760 and 350째C underwent a phase t r a n s f o r m a t i o n and s p a l l e d as a consequence of a r e s u l t a n t volume change. 11 By means of an a l l o y development program, however, it was considered p l a u s i b l e t o e l i m i n a t e t h e u n d e s i r a b l e f e a t u r e s o f t h e commercial m a t e r i a l s while r e t a i n i n g t h e i r i n h e r e n t c o r r o s i o n r e s i s t a n c e .

The i n i t i a l objec-

t i v e of t h i s program was t o provide an a l l o y which d i d not e m b r i t t l e under t h e thermal t r e a t m e n t s imposed by r e a c t o r o p e r a t i o n .

By experimenting

with v a r i o u s compositions of b i n a r y nickel-molybdenum a l l o y s , it was determined t h a t lowering t h e molybdenum c o n c e n t r a t i o n t o a l e v e l of 1 5 1 7 % served t o avoid d e t r i m e n t a l age-hardening e f f e c t s i n t h e a l l o y system.'* Although such an a l l o y system was s a t i s f a c t o r y from t h e standpoint of c o r r o s i o n r e s i s t a n c e , it w a s n e c e s s a r y t o augment t h e o x i d a t i o n and s t r e n g t h c h a r a c t e r i s t i c s of t h e system through a d d i t i o n a l s o l i d - s o l u t i o n alloying agents.

The c o r r o s i o n e f f e c t s which r e s u l t e d from t h e s e a d d i -

t i o n s were t h e s u b j e c t s of t h e p r e s e n t study.

'OR. E. C l a w i n g , P. P a t r i a r c a , and W. D. Manly, Aging C h a r a c t e r i s t i c s of H a s t e l l o y B, ORNL-2314 (1957).

H. Inouye, p r i v a t e communication. f

1 2 D . W. S t o f f e l and E . E . Stansbury, "A Metallographic and X-ray Study of N i Alloys of 20-30 Per Cent Mo," Report No. 1 under Subcontract No. 582 under Contract No. W-7405-eng-26, Knoxville, Tenn., Dept. of Chem. Eng. of t h e Univ. of Tenn. (1955).


8 Y

MATERIALS AND PROCEDURFS

Test M a t e r i a l s The nickel-molybdenum a l l o y compositions s e l e c t e d f o r study were supplied b y t h e Metals and Ceramics Division a t ORNL and, under subcont r a c t agreements, by B a t t e l l e Memorial I n s t i t u t e and Superior Tube Company.

Alloys furnished by ORNL were induction-melted under vacuum,

while those furnished by subcontractors were induction-melted i n a i r using a p r o t e c t i v e s l a g .

Each a l l o y h e a t , which ranged i n weight from

12 t o 100 l b , was e i t h e r forged o r extruded i n t o a 3-in.-diam tube blank and was subsequently drawn i n t o 1/2-in.-OD Superior Tube Company.

seamless tubing b y t h e

The cold-drawn tubing w a s annealed a t 1120째C.

Table 2 l i s t s t h e experimental a l l o y compositions used f o r t h i s c o r r o s i o n study. Test Equipment The method s e l e c t e d t o e v a l u a t e t h e c o r r o s i o n p r o p e r t i e s of t h e s e a l l o y s was based on t h e following c o n s i d e r a t i o n s :

1. The method n e c e s s a r i l y had t o be t a i l o r e d t o t h e use o f r e l a t i v e l y small q u a n t i t i e s of m a t e r i a l , s i n c e it was p r a c t i c a l t o produce o n l y small h e a t s o f t h e many a l l o y s d e s i r e d f o r study. 2.

Tubing was considered t o be a h i g h l y d e s i r a b l e form i n which t o

t e s t t h e m a t e r i a l , s i n c e production of t h e m a t e r i a l i n t h i s form was c a r r i e d out a s an adjunct t o e v a l u a t i n g t h e f a b r i c a b i l i t y of each a l l o y .

3.

Previous demonstrations o f t h e e f f e c t s of temperature g r a d i e n t

i n t h e s a l t and t h e s a l t flow r a t e on t h e c o r r o s i o n behavior o f c o n t a i n e r m a t e r i a l s i n f l u o r i d e s made it mandatory t h a t c o r r o s i o n t e s t s be conducted under dynamic c o n d i t i o n s , t h a t i s , c o n d i t i o n s which provided f o r t h e continuous flow of s a l t through a temperature g r a d i e n t . The thermal convection loop, which had been used e x t e n s i v e l y f o r Inconel c o r r o s i o n s t u d i e s and had been developed i n t o an extremely s t r a i g h t f o r w a r d and r e l i a b l e t e s t device, was judged t o be t h e b e s t form of experimental device f o r meeting t h e s e requirements.

This device con-

s i s t s o f a closed loop o f tubing, bent t o resemble t h e o u t l i n e of a harp,

W


Table

Heat Number"

2.

Compositions

Composition, Ni

MO

Cr

80.12 78.55 73.65 78.50 77.0 73.30

16.93 16.65 16.37 15.11 20.39 20.34

2.83 4.62 9.21 6.40 2.62 6.34

Fe

of Experimental

82.10 80.30 81.10 81.10 79.80 80.00 79.00 79.20 78.90 82.00 86.58

15.93 17.80 16.8 16.60 16.53 16.80 16.90 16.60 16.40 17.42 11.23

Ti

Al

Nb

W

79.93 79.53 77.74 77.65 74.07 76.13 76.30 69.19 66.95 71.50 74.42 80.86

a0R denotes Memorial Institute.

17.56 16.50 16.00 15.90 15.15 20.50 20.50 21.10 21.60 15.06 15.20 16.70 heats

V

2.09 2.23 3.68 3.22 4.10 4.18 4.71 0.53 2.19

3.65 5.69 5.01

5.07

0.95 2.45 1.12 1.16 0. 70

1.25 2.44 7.58 7.82 3.84

furnished

1.31 C!. 53 3.513 0 . 57 by the Metals

4.90 5.23

and Ceramics

MO

85.50 83.60 78.30 82.70 83.30 78.90

11.10 10.80 10.60 9.72 13.50 13.40

85.60 85.90 88.10 86.40 85.10 86.70 87.10 84.10 85.50 87.40 88.16

10.15 11.60 11.20 10.80 10.80 11.10 11.40 10.80 10.90 11.40 6.99

84.48 82.11 81.01 80.27 77.26 83.61 82.60 75.17 71.72 79.O4 83.14 85.22

11.35 10.42 10.20 l,'] . Cl5 9.66 13.77 13.20 14.00 14.2O 10.20 10.36 10.76

Cl-

Fe

Ti

$ Al

Nb

W

V

3.41 5 5.5 11:04 7.60 3.20 7.71 4.26 2.47 0.72 2.73 4.12 2.20

Division;

a

1.44 5.11 3.62 1.22 4.85

III

0.60 1.32 1.31 2.16 2.32 4.17 4.57

Ni

at.

II

1.88

1.56 1.52 1.49

Studies

I

..89

Series OR 30-13 -14 -16 -22 -33 B2897 B2898 B3276 B3277 S T23011 S T23013 S T23014

Corrosion

Composition,

Series OR 30-7 -8 -9 -10 -11 -12 -19 -20 -21 S T23012 OR 1491

Used for

wt $

Series OR 30-l -2 -4 -6 37A-1 43A-3

Alloys

4.30 6.64 5.90

2.02 1.92 1.90 5.56

2.18 5.51 2.54 2.61 1.59

1.68 3.24 9.32 9.47 4.79

S T by Superior

2.71 Tube Company;

3.06 1.27 1.40 1.30

0.39 0.92 0.90 1.48 1.57 2.91 3.23

1.72 1.85

and B by Battelle


10 W

two l e g s of which a r e heated and two of which a r e exposed t o t h e cooling e f f e c t s of ambient a i r .

Flow r e s u l t s from t h e d i f f e r e n c e i n d e n s i t y of

t h e s a l t i n t h e hot and cold p o r t i o n s of t h e loop. The c o n f i g u r a t i o n and dimensions of t h e loop d e s i g n a r e presented i n Fig. 1. A l l loops were f a b r i c a t e d of seamless t u b i n g having an o u t s i d e diameter o f 0.500 i n . and a w a l l t h i c k n e s s of 0.035 i n .

The tubing

w a s assembled b y t h e Heliarc welding technique using an i n e r t g a s backing. During o p e r a t i o n t h e l o o p s were heated b y a s e r i e s o f c l a m s h e l l r e s i s t a n c e h e a t i n g elements l o c a t e d as shown i n Fig. 1. To f i l l t h e loop required t h a t we apply h e a t t o b o t h t h e cold- and hot-leg s e c t i o n s . A u x i l i a r y heating f o r t h i s purpose was provided b y passage of e l e c t r i c c u r r e n t d i r e c t l y through t h e tube w a l l .

When t h e loop w a s f i l l e d , a s

determined b y an e l e c t r i c a l s h o r t i n g probe near t h e t o p of t h e loop, t h e a u x i l i a r y h e a t source was turned off a d t h e h e a t i n g elements were turned on.

I n s u l a t i o n was t h e n removed from t h e cold l e g t o whatever amount

w a s r e q u i r e d t o e s t a b l i s h a predetermined temperature g r a d i e n t .

Loop temperatitre s were measured w i t h Chromel-P-Alumel l o c a t e d a s shown i n Fig. 1.

thermocouples

The thermocouple j u n c t i o n s , i n t h e form of

s m a l l beads, were welded t o t h e o u t s i d e tube w a l l w i t h a condenser d i s -

charge welder and covered b y a l a y e r of q u a r t z t a p e , which i n t u r n w a s covered w i t h s t a i n l e s s s t e e l shim stock.

A l l t e s t s were operated so as

t o achieve a maximum mixed-mean s a l t temperature of 815째C and a minimum s a l t temperature of 65C"C.

The maximum s a l t - m e t a l i n t e r f a c e temperature,

which w a s a t t a i n e d near t h e t o p of t h e v e r t i c a l heated s e c t i o n , exceeded t h e maximum b u l k s a l t temperature b y approximately 95째C ( r e f . 1 3 ) .

l'he

s a l t - f l o w r a t e under t h e s e temperature c o n d i t i o n s w a s e s t a b l i s h e d from h e a t balance c a l c u l a t i o n s t o be i n t h e range of 5 t o 7 ft/min. 13Measurements of t h e maximum i n s i d e wall temperature could not p r a c t i c a l l y be made i n each loop t e s t ; however, values of t h i s temperat u r e were recorded by means of h e a t balance c a l c u l a t i o n s and imbedded thermocouples using a s p e c i a l l y instrumented t e s t loop which e x a c t l y simul a t e d t h e geometry and temperature p r o f i l e used i n t h e c o r r o s i o n experiment.


11 V ORNL-LA-DWG

6-in. C L A M SHELL HEATERS

750/

27228R

\

7 1

CONTROL 8 NO. 2 T.C. NO. 5'

-t-

METALLOGRAPHIC SAMPLES THERMOCOUPLE LOCATIONS

4-

T.C. NO. 6 7

c

Fig. 1. Schematic Diagram of Thermal Convection Loop Used for Evaluations of Experimental Nickel-Molybdenum Alloys. The locations of thermocouples and test samples are shown.


12 Y

S a l t Preparation

The f u e l mixture used i n t h e s e s t u d i e s was of t h e composition shown

i n Table 3.

We s e l e c t e d t h e LiF-KF-NaF-UF4 composition ( S a l t 107) on

t h e b a s i s t h a t t h e o x i d a t i o n of c o n t a i n e r c o n s t i t u e n t s by a given conc e n t r a t i o n o f UF4 tended t o be g r e a t e r f o r t h i s mixture t h a n f o r o t h e r mixtures of p r a c t i c a l importance.

Thus, achievement of s a t i s f a c t o r y

c o m p a t i b i l i t y with t h i s mixture i n e f f e c t provided a c o n t a i n e r m a t e r i a l

of u l t i m a t e v e r s a t i l i t y with r e s p e c t t o a l l f u e l mixtures. Table 3. Composition of Fluoride Mixture Used t o Evaluate Experimental Nickel-Molybdenum Alloys S a l t Number: 137 Liquidcs Temperature:

490째C

Component

&Tole %

NaF

11.2

LiF

45.3

24.4

KF

41. C

49.4

m4

2.5

16.3

%

Weight 9.79

The f l u o r i d e mixtures were prepared from reagent-grade m a t e r i a l s and were p u r i f i e d by t h e Fluoride Processing Group of t h e Reactor Chemistry Division.

I n general, t h e procedure f o r p u r i f i c a t i o n was a s follows:

(1)t h e dry i n g r e d i e n t s , except f o r U F 4 , were mixed, evacuated s e v e r a l times f o r moisture removal, and then melted under an atmosphere of helium;

( 2 ) t h e molten mixture was held a t 815OC and t r e a t e d with hydrogen f o r 4 h r t o pmge h y d r o f l u o r i c a c i d from t h e mixture; ( 3 ) t h e mixture was cooled t:, 205째C under a helium atmosphere and UF4 was admitted.

Upon t h e a d d i t i o n

of t h e UF4, t h e mixture was remelted, heated t o 815"C, and then t r e a t e d again with hydrogen t o purge t h e excess h y d r o f l u o r i c a c i d . A l l mixtures were prepared i n 303-lb q u a n t i t i e s and apportioned i n t o

50-lb c o n t a i n e r s , a f t e r which samples were submitted for a n a l y s i s of N i , Fe, and C r .

It was required t h a t each of t h e s e elements be p r e s e n t

I


i n amounts l e s s t h a n 500 ppm a s determined from i n d i v i d u a l b a t c h analyses. A second b e f o r e - t e s t a n a l y s i s of each s a l t mixture w a s obtained from a

sample of t h e s a l t t a k e n as it was being admitted t o t h e t e s t loop. Operating Procedures Each loop w a s thoroughly degreased with acetone and checked f o r l e a k s using a helium mass spectrometer.

A f t e r thermocouples and h e a t e r s

were assembled and i n s u l a t i o n was a p p l i e d , t h e loop was placed i n a t e s t stand, a s shown i n Fig. 2. The s a l t charging pot was connected t o t h e loop with n i c k e l or Inconel tubing, and both t h e loop and t h e charging pot were heated t o 650째C under a dynamic vacuum of l e s s t h a n 50 p Hg.

Helium p r e s s u r e was

t h e n a p p l i e d t o t h e charging pot i n o r d e r t o f o r c e t h e s a l t mixture from t h e pot t o t h e loop.

A f t e r f i l l i n g , s a l t was allowed t o stand i n t h e

loop a t 650째C f o r approximately 2 h r , so t h a t oxides and o t h e r impuri-

t i e s would be d i s s o l v e d from t h e c o n t a i n e r s u r f a c e i n t o t h e s a l t mixture. This mixture was t h e n removed, and a f r e s h s a l t mixture was admitted from t h e f l u o r i d e charging pot.

A helium cover g a s under s l i g h t p o s i t i v e

p r e s s u r e (approx 5 p s i g ) was maintained over t h e s a l t mixture during a l l p e r i o d s of t e s t i n g . A t t h e end of t e s t , power t o t h e loop was c u t o f f and i n s u l a t i o n

was s t r i p p e d f r o m t h e loop so as to f r e e z e t h e s a l t mixture a s r a p i d l y as possible.

Te st Examination Each loop was sectioned with a t u b i n g c u t t e r i n t o approximately 6-in.

lengths.

Five 2-in.

s e c t i o n s were t h e n removed from t h e loop p o s i -

t i o n s i n d i c a t e d i n Fig. 1 f o r metallographic examination.

Two of t h e

remaining 6-in. s e c t i o n s , one from t h e h o t t e s t s e c t i o n of t h e loop (specimen H) and one from t h e c o l d e s t s e c t i o n (specimen C ) , were obtained f o r s a l t chemistry s t u d i e s , and t h e remaining loop segments were held i n s t o r a g e u n t i l a l l examinations of t h e loop were completed. S a l t removal was accomplished by h e a t i n g each s e c t i o n i n a small t u b e furnace a t 600째C i n helium.

The s a l t was c o l l e c t e d i n a g r a p h i t e


ig. 2.

-_

Photograph o

ermal Convection Lo


15 c r u c i b l e l o c a t e d below t h e furnace windings.

The f i v e 2-in.

s e c t i o n s of

tubing were examined m e t a l l o g r a p h i c a l l y , and t h e s a l t samples were submitted i n d i v i d u a l l y f o r petrographic and chemical analyses.

If layers

of c o r r o s i o n products were discovered on t h e tube w a l l , samples of t h e tubing and s a l t contained i n t h a t s e c t i o n were a l s o submitted f o r x-ray d i f f r a c t i o n examination.

RESULTS AND DISCUSSION Alloying e f f e c t s were evaluated i n terms of both t h e c o r r o s i o n products e n t e r i n g t h e s a l t mixtures and t h e metallographic appearance of the alloy a f t e r t e s t .

Results have been grouped i n t h i s s e c t i o n

according t o t h e a l l o y i n g element s t u d i e d . chromium Corrosion-Product Concentrations E f f e c t s of chromium a d d i t i o n s were examined i n s i x t e r n a r y a l l o y s with chromium c o n t e n t s of 3.2 t o 11.0 a t . $.

One loop of each of t h e s e

compositions w a s operated with S a l t 107 f o r 500 h r under t h e t e s t condit i o n s described above.

The compositions i n v e s t i g a t e d and t h e a t t e n d a n t

c o n c e n t r a t i o n s of chromium i o n s i n s a l t samples taken a t t h e conclusion of t h e s e t e s t s a r e shown i n Table 4.

The e x t e n t of r e a c t i o n between

chromium and f l u o r i d e c o n s t i t u e n t s , a s i n d i c a t e d by t h e chromium ion conc e n t r a t i o n s , increased w i t h t h e amount of chromium i n t h e a l l o y .

This

i n c r e a s e i s i l l u s t r a t e d g r a p h i c a l l y i n Fig. 3, where t h e d a t a a r e compared with data f o r Inconel14 and f o r pure chromium.15

It may be noted

t h a t t h e chromium c o n c e n t r a t i o n s of t h e s a l t s were l e s s t h a n t h o s e for Inconel loops operated under i d e n t i c a l temperature c o n d i t i o n s .

A hori-

z o n t a l l i n e , which r e p r e s e n t s t h e chromium i o n c o n c e n t r a t i o n a t 1 4 G . M. Adamson, R. S. Crouse, and W. D. Manly, I n t e r i m Report on Corrosion b y Alkali-Metal F l u o r i d e s : Work t o May 1, 1953, ORNL-2337 (1959).

"J. D. Redman, A pp . 7842.

5 ORNL-2440,


16 Table 4.

W

Corrosion-Product Concentrations of S a l t s Tested w i t h Nickel-Molybdenum-Chromium Alloys

Alloy Composition Heat Number

(at.

Test Duration

$1

Other Components

Cr

Chromium Concentration i n S a l t Samples" (mole $1

(hr)

Sample H

Sample C

Other

OR 37A-1 OR 30-1 OR 30-2

3.20 13.5 Mo, b a l N i 3.41 11.1Mo, b a l N i

520

3.3194

0.0180

0.0213

500

3.0222

0.0365

0.0291

5.55

10.8 Mo, b a l N i

5C0

3.3375

0.0352

0.0376

OR 30-2

5.55

10.8 Mo, b a l N i

1300

0.0509

0.0509

0.0543

OR 30-6

7.60

500

0.0606

0.0606

0.0566

500

0.0453

0.0476

0.0425

520

0.0819

0.0814

0.0699

9.72 Mo, b a l N i

OR 43A-3 7.71 13.4 Mo, b a l N i OR 30-4 11.04 10.6 Mo, b a l N i a

Sample d e s i g n a t i o n s "H" and "C" a r e discussed on page 13; "other" d e s i g n a t e s s a l t samples obtained f r o m metallographic specimens. equilibrium w i t h pure chromium a t GOO"C, i s seen i n Fig. 3 t o be above t h e measured chromium i o n concentrations for a l l a l l o y s t e s t e d .

Thus,

t h e observed concentrations were l e s s t h a n t h o s e required f o r t h e format i o n of pure chromium c r y s t a l s i n t h e c o l d e s t p o r t i o n of t h e loops (approx 650 " C )

.

A s discussed previously, t h e concentration o f chromium i o n s under t h e c o n d i t i o n s of t h e s e t e s t s should be governed by t h e r e l a t i o n rEq.

(1111

where NCr ions i s t h e mole f r a c t i o n of chromium i o n s i n S a l t 107 a t If we assume Cr' t h e r e s u 1 G n t chromium ion

e q u i l i b r i u m w i t h an a l l o y o f given chromium a c t i v i t y , t h a t NCr g i v e s an approximate measure of

aC r '

Q

c o n c e n G a t i o n s for t h e s e a l l o y s should l i e w i t h i n a r e g i o n which i s bounded above b y t h e f u n c t i o n determined a t a temperature e q u i v a l e n t t o t h e maximum loop temperature and below by t h e f u n c t i o n determined a t t h e minimum loop temperature.

Bounds using experimental v a l u e s of K2

W


17 ORNL-LR-DWG

46946

3000

200 2000

450

4600 c

5 n =0 G

E

(200

400 I

1000

I

l

I

l

0

I

x

Z W V

5

80 800

E

V

z 0

55n

I V

s-" -

400p-

60

600

~-~ ~-

I

i

j

/ I /

200

40

.

RANGE OF CHEMISTRY SAMPLES H AND C - 500 hr TESTS AVERAGE CONCENTRATIONS I N METALLOGRAPHIC SAMPLES -500 hr TESTS

x ,

RANGE OF CHEMISTRY SAMPLES H AND C -io00 hr TESTS AVERAGE CONCENTRATIONS I N METALLOGRAPHIC SAMPLES - 1000 hr TESTS

I

- 20 -

I 0.03

0.04

0.06

0.2 ATOM FRACTION OF CHROMIUM I N ALLOY

0.08 0.10

0.4

0.6

0.8

4.0

F i g . 3. Concentration of Chromium Ions i n S a l t 107 a s a Function of Chromium Content i n Nickel-Molybdenum-Chromium Alloys. measured a t 800 and 600 "C (Table 1), which reasonably approximate t h e maximum and minimum loop temperatures, a r e p l o t t e d i n Fig. 3 and a r e seen t o include o n l y two of t h e observed loop c o n c e n t r a t i o n s , both c o r r e sponding t o chromium compositions g r e a t e r t h a n 7 a t .

%. However,

except

for t h e a l l o y w i t h l e a s t chromium c o n t e n t , a l l c o n c e n t r a t i o n s l i e r e l a t i v e l y c l o s e t o t h e lower bound and roughly approximate t h e slope of t h i s bound. The d e v i a t i o n o f measured corrosion-product c o n c e n t r a t i o n s i n t h e s e t e s t s from t h e p r e d i c t e d c o n c e n t r a t i o n ranges may have r e s u l t e d p r i m a r i l y equals Cy However, assuming from inaccuracy i n t h e assumption t h a t N Cr Cr' t o be a c c u r a t e l y known, t h e c o r r o s i o K p r o d u c t c o n c e n t r a t i o n s i n t h e s e cy Cr t z t s would n e v e r t h e l e s s have been lower than t h o s e p r e d i c t e d , s i n c e corr o s i v e a t t a c k would n e c e s s a r i l y reduce t h e chromium content and hence t h e


18 chromium a c t i v i t y a t t h e s u r f a c e o f t h e a l l o y s r e l a t i v e t o t h e o r i g i n a l chromium a c t i v i t y .

We a l s o examined t h e p o s s i b i l i t y t h a t t h e t e s t times

were not s u f f i c i e n t l y long f o r t h e chromium c o n c e n t r a t i o n of t h e s a l t t o have completely a t t a i n e d t h e maximum or s t e a d y - s t a t e l e v e l .

To e v a l u a t e

t h i s l a t t e r p o i n t , s u f f i c i e n t m a t e r i a l of one of t h e a l l o y compositions, h e a t OR 30-2, was obtained t o permit t h e o p e r a t i o n o f a 1000-hr t e s t . R e s u l t s of t h i s t e s t , which are shown i n Table 4 and F i g . 3, i n d i c a t e d t h a t only a small i n c r e a s e i n chromium c o n c e n t r a t i o n occurred between t h e

500- and 1000-hr i n t e r v a l s .

It was concluded, t h e r e f o r e , t h a t t h e 500-hr

t e s t provided a reasonably c l o s e e s t i m a t e of t h e l i m i t i n g c o r r o s i o n product c o n c e n t r a t i o n s a s s o c i a t e d with t h e temperature c o n d i t i o n s of t h e s e experiments. A d d i t i o n a l data on t h e e f f e c t s of chromium i n nickel-molybdenum a l l o y s

were afforded by t e s t s of f i v e a l l o y s which contained chromium i n combinat i o n w i t h one o r more o t h e r alloying e l e m e n t s , as shown i n Table 5.

Not-

withstanding t h e a d d i t i o n a l a l l o y i n g agen+,s, t h e c o n c e n t r a t i o n s of chromium-containing c o r r o s i o n prodncts following 500-hr t e s t s o f t h e s e a l l o y s i n S a l t 1C7, as shown i n Table 5: were comparable t o t h e concent r a t i o n s a s s o c i a t e d with t h e simple t e r n a r y chromium-containing a l l o y s . The corrosion-product c o n c e n t r a t i o n s f o r t h e a l l o y s with m u l t i p l e a d d i t i o n s a r e p l o t t e d i n F i g . 4 , and a r e seen t o show t h e same g e n e r a l v a r i a t i o n w i t h chromium c o n t e n t as t h e t e r n a r y a l l o y s ( s e e F i g . 3 ) .

Also shown i n Table 5 and F i g . 4 a r e t h e r e s u l t s of 1000-hr t e s t s of f o m o f t h e a l l o y s c o n t a i n i n g m x l t i p l e a d d i t i o n s . A f t e r a l l b u t one of t h e s e t e s t s , t h e chromium i o n c o n c e n t r a t i o n s i n t h e s a l t s were s l i g h t l y h i g h e r t h a n f o r 500-hr t e s t s of t h e same a l l o y s ; i n one t e s t , t h e chromium i o n c o n c e n t r a t i o n was unaccountably lower.

The chromium i o n concentra-

t i o n s of t h e s e multicomponent a l l o y s a g a i n f e l l n e a r t h o s e p r e d i c t e d on t h e b a s i s o f e q u i l i b r i u m d a t a f o r pure chromium a t 600째C and were cons i d e r a b l y l e s s t h a n t h e c o n c e n t r a t i o n needed t o d e p o s i t pure chromium a t

600 "C. The chromium a c t i v i t i e s i n a l l of t h e a l l o y s t e s t e d would appear on t h e b a s i s of corresponding corrosion-product c o n c e n t r a t i o n s t o be lower t h a n t h e a c t i v i t y o f chromium i n I n c o n e l .

However, it i s important t o

note i n F i g s . 3 o r 4 t h a t any a l l o y I n which t h e chromium a c t i v i t y

Y


Table

5.

Corrosion-Product Concentrations of Containing Chromium in Combination

Alloy

Heat Number

Composition,

Chromium

Other

at.

$

Salts with

Tested Other

with Nickel-Molybdenum Alloying Elements

Alloys

Chromium Concentration Salt Samples," mole

in

Test Duration (hr)

Sample

MO,

500

0.0227

0.0236

0.0204

500

0.0490

0.0490

0.0426

1000

0.0689

0.0731

0.0620

Components

H

Sample

C

$ Other

OR 30-16

4.30

2.54 bal

S T23011

4.79

1.27 Al, 2.91 10.2 MO, bal

N-b, 1.72 Ni

W,

OR 30-33

5.90

1.59 bal

Fe,

9.66

MO,

OR 30-22

6.64

0.43 Fe, 0.39 Nb, 10.05 MO, bal Ni

2.61

Al,

500

0.0583

0.0555

0.0490

OR 30-22

6.64

0.43 Fe, 0.39 Nb, 10.05 MO, bal Ni

2.61

Al,

1000

0.0416

0.0402

0.0370

B3276

9.32

1.48

Nb,

500

0.0615

0.0615

0.0578

B3277

9.47

1.57 bal

N-b, 3.06 Ni

Al,

14.2

MO,

500

0.0698

0.0700

0.0624

B3277

9.47

1.57 bal

Nb, Ni

Al,

14.2

MO,

1000

0.0731

0.0657

0.0740

'Sample designations obtained from metallographic

'Hfl

Al, Ni

Al, Ni

1.90

5.56

14.0

3.06

Ti,

10.2

MO, bal

and "C" are specimens.

Ni

discussed

on page

13;

"other"

designates

samples


20 UNCLASSIFIED ORNL-LR-DWG 46945

W

3000

200 2000

-

(50

1600

: Q

z

0

1200

5

4000

slr

100

W 0

80

z

8

10

800

z

0 x

c

0

60

2 0

E

F CHEMISTRY SAMPLES - 500 hr TESTS

4 00

40

CONCENTRATIONS I N GRAPHIC SAMPLES - 500 hr TES

.

H AND C -1000 hr TESTS

AVERAGE CONCENTRATIONS IN METALLOGRAPHIC SAMPLES -1000 hr TESTS

20 200

0.03

0.04

0.06

0.00

0.40

0.2

0.4

0.6

0.8

j.0

ATOM FRACTION OF CHROMIUM IN ALLOY

Fig. 4 . Concentration 01’Chroniun I o n s i n S a l t 107 as a Function o f Chromium Contents i n Nickel-Molybdenum Alloys Containing M u l t i p l e Alloy Additions.

exceeded a value of 3.935 would support t h e formation o f pure chromium

a t 600°C i n any case where t h e c o n c e n t r a t i o n of CrF2 and CrF3 approached e q u i l i b r i u m w i t h t h e a l l o y a t temperatures of 800°C o r above.

Thus,

u n l e s s t h e a c t i v i t y c o e f f i c i e n t s f o r chromium i n t h e s e a l l o y s a r e much smaller t h a n u n i t y , t h e p o s s i b i l i t y for t h e d e p o s i t i o n o f pure chromium i n cold-leg r e g i o n s cannot be completely excluded f o r any of t h e a l l o y s tested

.

I n t h e case of ZrF4- o r EeF2-base s a l t mixtures, t h e temperature dependence o f t h e Cr-UF4 r e a c t i o n i s much l e s s t h a n f o r S a l t 107.

It

has been shown16 t h a t i n t h e s e mixtures, a l l o y s having a chromium

I6W. R. Grimes, ANP Quart. Progr. Rept. March 10, 1956, ORNL-2106,

pp. 96-99.

W


21 a c t i v i t y e q u i v a l e n t t o or l e s s t h a n t h a t f o r Inconel cannot support chromium i o n c o n c e n t r a t i o n s a t 800째C which a r e s u f f i c i e n t l y high t o maint a i n pure chromium a t 600째C.

Consequently, mass t r a n s f e r of chromium

by d e p o s i t i o n o f pure chromium c r y s t a l s i n t h e l a t t e r s a l t mixtures t

should not be p o s s i b l e f o r any of t h e a l l o y s l i s t e d i n Tables 4 and 5. MetalloaraDhic R e s u l t s Metallographic examinations o f t h e t e r n a r y a l l o y s shown i n Table 4 showed l i t t l e evidence of c o r r o s i v e a t t a c k o t h e r t h a n shallow surface roughening.

Void formation, which c h a r a c t e r i s t i c a l l y had been found i n

nickel-chromium a l l o y s under s i m i l a r t e s t c o n d i t i o n s , l7 was not d e t e c t e d i n any of t h e s e a l l o y s .

The r e l a t i v e depths of a t t a c k which occurred

f o r t h e a l l o y containing 5.55 a t .

'$

C r ( h e a t OR 30-2) a f t e r 500- and

1000-hr t e s t s , r e s p e c t i v e l y , a r e compared i n Fig. 5 .

Although t h e depth

of a t t a c k w a s s i m i l a r a t both time i n t e r v a l s , t h e i n t e n s i t y of surface p i t t i n g was somewhat g r e a t e r a f t e r t h e 1000-hr exposure.

The i n t e n s i t y

of s u r f a c e roughening was a l s o found t o i n c r e a s e with i n c r e a s i n g chro-

m i u m concentration.

.

This i s seen i n Fig. 6 which compares photomicro-

graphs of two a l l o y s containing d i f f e r e n t chromium c o n t e n t s .

Cold-leg

s e c t i o n s of t h e s e loops showed no evidence of c o r r o s i o n and contained no v i s i b l e d e p o s i t s of c o r r o s i o n products. The depths of a t t a c k observed m e t a l l o g r a p h i c a l l y f o r a l l o y s cont a i n i n g chromium i n combination with o t h e r a d d i t i o n s a r e shown g r a p h i c a l l y i n Fig, 7.

Attack i n t h e s e a l l o y s was manifested as surface

roughening af'ter 500 h r and a s a combination of s u r f a c e p i t t i n g and shallow void formation a f t e r 1000 h r .

Depths of c o r r o s i o n were i n gen-

e r a l h i g h e r t h a n f o r t h e t e r n a r y chromium-containing a l l o y s , p a r t i c u l a r l y i n a l l o y s which contained aluminum a d d i t i o n s .

1 7 L . S. Richardson, D. C . Vreeland, and W. D. Manly, Corrosion by Molten F l u o r i d e s , ORNL-1491 (Sept . 1 9 5 2 ) .


22

.

Appearance of inin? 5.55 at. Heat OR 30-2. a) After 50

f Ternary N i c xposure to Salt fter 1000 hr.

m


i

23

i

a

b.

Fig. 6. Hot-Leg Se Convection Loops Followin (a) 3.2 (3-13.5 Mo-bal

f Nickel-Molybdenum-Chromium Thermal hr Exposure to Salt 107. 1, (b) 11.0 CI-10.6 Mo-bal Ni (at. $1.


24 ORNL- LR- DWG 46944

5 I

10

500 hr

9

-

SALT 107

F S

x

._ 6

4 1000 hr - SALT 107

2

2 cn

3

0 Lz

n 8

2

LL

0

E ' a

W

D

0 Mo

-

Cr

2 z

Fe

I

0

11.35

I

AI

1.40 15.61 12.18

I

0

a

&J

I

I

10.36 12.89

I

10.76

1

1.30

I

I

I

I

I

I

I

I

I

I

I

10.2

10.2

(3.77 14.20 10.42

9.66

10.0:

9.32

4.30

4.79

9.47

5.90

6.64

5.56

0.43

I

I

I

14.00

12.54

I

1

1.27

I

13.06 15.51

I

I

I

I

1 1.59 12.61 I

I

I

I

Ti

1

a

I

Nb

3.23

w

1.85

0.07

I

1.48

I

I

2.91

I

0.92

I

1.57

0.39

1.72

F i g . 7. Depths o f Corrosion Observed f o r Nickel-Molybdenum Alloys with Multiple Alloy Additions Following Exposure t o S a l t 107. Bars d e s i g n a t i n g c o r r o s i o n depths appear d i r e c t l y above t h e a l l o y compositions vhick t h e y r e p r e s e n t . (Wkere b a r s have b o t h p o s i t i v e l y sloped and n e g a t i v e l y sloped cross-hatching, t h e h e i g h t of p o s i t i v e l y sloped c r o s s h a t c h i n g i n d i c a t e s depth of c o r r o s i o n a f t e r 500 h r and combined h e i g h t of both t m e s i n d i c a t e s depth a f t e r 1323 h r . )

Aluminum Corrosion-Product Concentrations Table 6 l i s t s t h e c o n c e n t r a t i o n s o f aluminum which w e r e a n a l y t i c a l l y determined i n f l u o r i d e mixtures operated f o r 500- and 1000-hr p e r i o d s w i t h nickel-molybdenum a l l o y s c o n t a i n i n g s i n g l e a d d i t i o n s of aluminum. I n t h e case o f a l l o y s c o n t a i n i n g g r e a t e r t h a n 2 a t . '$ A l , t h e c o r r e sponding aluminum c o n c e n t r a t i o n s i n t h e s a l t mixture were r e l a t i v e l y high, t h a t i s , i n t h e range o f 0.15-0.37 mole

$.

Only one a l l o y composi-

t i o n was subjected t o t e s t s a t b o t h 500 and 1000 h r ; however, r e s u l t s f o r t h i s a l l o y suggest t h a t e f f e c t i v e l y s i m i l a r s a l t c o n c e n t r a t i o n s were


25 W

Table 6. Corrosion-Product Concentrations of Salts Tested with Nickel-Molybdznum-AluminumAlloys

Heat Number

S T23012 OR 30-7 OR 30-7 OR 1491

Alloy Composition (at. $1

Test Duration

Aluminum Concentration in Salt Samples" (mole $)

A1

Other Components

(hr)

Sample H

Sample C

Other

1.22 4.26 4.26 4.85

11.4 Mo, bal Ni 10.15 Mo, bal Ni 10.15 Mo, bal Ni 6.99 Mo, bal Ni

500 500 1000 1000

0.000872 0.220 0.214 0.374

0.000872 0.070 0.105 0.374

b 0.137 0.178 0.374

a

Sample designations "H" and "C" are discussed on page 13; "other" designates samples obtained from metallographic specimens. bNot determined. realized for both time intervals.

Table 7 lists the concentrations of

corrosion products which formed in salt mixtures circulated in loops containing aluminum in combination with other alloying elements.

These

concentrations were of the same general magnitudes as those observed f o r the ternary Ni -Mo-A1 alloys. The corrosion-product concentrations showed no definable correspondence with the aluminum content of the alloys.

However, the propensity

for aluminum to react with interstitial contaminants, such as nitrogen, in these alloys, makes the activity of aluminum in the alloys very dependent on composition and metallurgical history.

For this reason poor

correspondence between the corrosion-product concentration and total aluminum concentration in the alloy would not be unexpected. It is apparent from tests of both the ternary and multicomponent alloys that aluminum additions less than 2 at. $ give rise to very much lower aluminum ion concentrations than additions above 2 at.

8.

This

observation may suggest that below a concentration of 2 at. $ the bulk of the aluminum addition has formed highly stable compounds with interstitial contaminants in the alloy. Metallographic Results v

Hot-leg surfaces of ternary alloys containing aluminum in amounts greater than 2 at. $ underwent relatively severe attack by Salt 107 in


Table 7. Corrosion-Product Concentrations of Salts Tested with Nickel-Molybdenum Alloys Containing Aluminum in Combination with Other Alloying Elements

Heat Number

Alloy Composition, at.

Test Dura tion (hr)

Aluminum Concentration of Salt Samples," mole $ Sample H

Sample C

Other

<O .0009 0.0606

<O .0009

500

<O. 0009 0.160

9.7 Mo, 5.9 Cr, 5.6 Fe, bal Ni

1000

0.0660

0.0820

0.124

2.54

10.2 Mo, 4.3 Cr, 1.9 Ti, bal Ni

500

0.358

0.326

0.334

OR 30-22

2.61

10.0 Mo, 6.6 Cr, 0.4 Fe, 0.4 Nb, 2.6 W, bal Ni

500

0.382

0.570

0.244

OR 30-22

2.61

10.0 Mo, 6.6 Cr, 0.4 Fe, 0.4 Nb, 2.6 W, bal Ni

1000

0.249

0.259

B32 77

3.06

14.2 Mo, 9.5 Cr, 1.6 Nb, 3.1 W, bal Ni

500

0.502

0.525

0.481

B32 77

3.06

1000

0.473

0.394

0.374

OR 30-14 OR 30-14

5.51

14.2 Mo, 9.5 Cr, 1.6 Nb, 3.1 W, bal Ni 10.4 Mo, 1.9 Ti, bal Ni 10.4 Mo, 1.9 Ti, bal Ni

500

0.394

0.434

0.499

1000

0.250

0.174

0.0960

Aluminum

Other Components

S T23014 S T23013

1.30

10.8 Mo, 2.7 Ti, bal Ni

500

1.40

10.4 Mo, 3.2 Nb, 1.8 W, bal Ni

OR 30-33

1.59

OR 30-16

5.51

a Sample designations "H" and "C" are discussed on page 13 ; I f other" designates samples obtained from metallographic specimens. bNot determined.

b

b


27 t h e form of surface p i t t i n g and subsurface void formation.

Void formation

was evident t o a depth of 0.002 i n . i n 500-hr t e s t s of these alloys and

t o 0.003 i n . i n 1000-hr t e s t s .

Figure 8 shows the appearance of an a l l o y

containing 4.27 a t . $I A 1 a f t e r a 1000-hr t e s t exposure.

However, an

a l l o y containing only 1.22 at. $I A 1 revealed negligible a t t a c k a f t e r a 500-hr exposure t o S a l t 107. Alloys containing aluminum combined w i t h other alloying components a l s o exhibited both surface p i t t i n g and subsurface void formation a f t e r exposure t o Salt 107.

The depths of attack f o r these alloys a r e shown

graphically i n Fig. 7.

Additions of up t o 2 a t . $, A l resulted i n only

l i g h t a t t a c k except i n alloys where chromium additions were a l s o present. Alloys which contained over 2.5 a t . $, Al i n combination w i t h chromium or titanium revealed pronounced attack i n the form of subsurface voids t o depths ranging from 0.002 t o 0.00.5.5 i n .

Cold-leg sections of a l l loops

were unattacked and contained no insoluble corrosion products.

.

.

Fig. 8. Hot-Leg Containing 4.27 a t . $,

f Ternary Nickel-Molybdenum Alloy 000-hr Exposure t o S a l t 107. Heat OR 30-7.


28 Titanium Corrosion-Product Concentrations Titanium-containing a l l o y s which were i n v e s t i g a t e d a r e l i s t e d i n 4

Table 8, t o g e t h e r w i t h a t t e n d a n t t i t a n i u m corrosion-product concentrations.

Except for t h e f i r s t composition shown, which contained

2.47 a t . $ T i , a l l o y i n g a g e n t s i n a d d i t i o n t o t i t a n i u m were p r e s e n t i n a l l o f t h e a l l o y s evaluated.

The c o r r o s i o n p r o p e r t i e s o f t h e s i n g l e

t e r n a r y a l l o y were s t u d i e d a t b o t h 500- and 1000-hr time i n t e r v a l s . Analyses of s a l t s operated i n loops of t h i s a l l o y revealed t i t a n i u m Table 8. Corrosion-Product Concentrations of S a l t s Tested with Nickel-Molybdenum Alloys Containing Titanium

Heat Number

Alloy Coxposition ( a t . $1 Ti

Test Duration

Other Components

(hr)

Titanium Concentration i n S a l t Samples" (mole $> Sample H

Sample C

Other

OR 3C-8 OR 30-8

2.47

11.6 Mo, b a l N i

5c3

0.0394

0.0386

0.0380

2.47

11.6 Mo, b a l N i

1000

0.0404

0.0495

a897

1.68

13.8 Mo, 2.9 Nb,

1020

0.0373

0.0383

G. 05C5 0.0283

0.0378

0.0348

3.0500

503

0.0449

0.0489

0.03'78

lC00

0.0373

0.053C

0.0434

5 00

0.0389

0.0404

0.@A84

500

12.018'7

0.0242

0.0187

500

0.0353

0.0252

b

bal N i

OR 30-16

1.90

10.2 Mo, 4.3 C r , 2.5 Al, b a l N1

OR 3C-14

1.92

13.4 Mo, 5.5 Al, bal N i

OR 3C-14

1.92

10.4 Mo, 5.5 A l , bal N i

OR 30-13

2.02

11.3 Mo, 2.2 Al, bal N i

S T23014

2.71

10.8 Mo, 1.3 Al, bal N i

B2898

3.24

13.2 Mo, 0.9 Nb, bal N i

a

Sample d e s i g n a t i o n "H" and "C" a r e discussed on page 13; l f o t h e r ' f d e s i g n a t e s samples obtained from metallographic specimens. bNot determined.


29 concentrations of 0.038-0.04-0 mole $ a f t e r 500 h r and 0.040-0.055 a f t e r 1000 hr.

mole $

These 'analyses correspond c l o s e l y t o t h e analyses of

s a l t s circulated i n loops constructed of the other titanium-bearing alloys, i n which titanium contents ranged from 1.68-3.24 a t . $. Only the t e s t of the 2.71 a t . $ a l l o y effected a titanium salt concentration s i g n i f i c a n t l y d i f f e r e n t from t h e t e r n a r y alloy, t h e concentration i n the former t e s t being unaccountably lower than f o r t h e other t e s t s . Metallographic Results The t e r n a r y titanium-bearing a l l o y revealed only l i g h t a t t a c k i n the form of surface p i t t i n g a f t e r both the 500- and 1000-hr t e s t i n t e r vals.

The photomicrograph i n Fig. 9 shows the appearance of a t y p i c a l

hot-leg section of t h i s a l l o y a f t e r the longer t e s t i n t e r v a l .

Depths of

a t t a c k which were observed i n the remainder of the titanium-bearing a l l o y s are graphically depicted i n Fig. 7.

Except where aluminum addi-

t i o n s were present i n these a l l o y s i n amounts g r e a t e r than 2 at. 6, depths of a t t a c k were i n a l l cases l e s s than 0.003 in. and generall-Y

*

P

b,

Fig. 9. Hot-Leg Surface of Ternary Nickel-Molybdenum Alloy C ontaining 2.47 a t . $ T i After 1000-hr Exposure t o S a l t 107. Heat OR 30-8.


30 W

were l e s s t h a n 0.002 i n .

Attack i n a l l c a s e s w a s manifested as g e n e r a l

surface p i t t i n g and shallow vi;id formation.

No a t t a c k was seen i n t h e

cold-leg s e c t i o n s of any of t h e titanium-containing loops nor were c o l d leg deposits detected. Vanadium Corrosion-Product Concentrations Loops were operated with two t e r n a r y a l l o y s containing a d d i t i o n s of 2.73 and 5.11 a t . $, r e s p e c t i v e l y .

ranadi un

A s shown i n Table 9,

t h e vanadium c o n c e n t r a t i o n d e t e c t e d i n a s a l t mixture t e s t e d w i t h t h e former a l l o y a f t e r 500-hr exposure was l e s s t h a n 0.005 mole $.

However,

s a l t s operated with t h e a l l o y of higher vanadium c o n t e n t contained 0.027 mole

%V

i n a 500-hr t e s t and 0 . 0 1 9 4 . 0 2 0 mole $ V i n a 1000-hr

test.

Metallographic Results Metallographic examination of t h e a l l o y with 2.73 a t . v e r y l i g h t a t t a c k i n t h e form of s u r f a c e roughening.

$I V revealed

Hot-leg s u r f a c e s

of t h e a l l o y with 5.11 a t . $ V e x h i b i t e d a t t a c k i n t h e form of void formation t o a depth of 0.002 i n . i n t h e 500-hr loop and 0.004 i n . i n t h e 1000-hr loop.

A photomicrograph i l l u s t r a t i n g a t t a c k i n c u r r e d by t h e

l a t t e r loop i s shown i n Fig. 10.

Iron Corrosion-Product Concentrations 3 n l y t w o loop t e s t s were completed with a l l o y s c o n t a i n i n g i r o n a s a

major a d d i t i o n .

Results of b o t h t e s t s , one of which operated f o r 500 h r

and t h e o t h e r f o r 1000 h r , a r e summarized i n Table 9.

I n t h e 500-hr

’$ Fe, a f t e r - t e s t s a l t samples were analyzed t o c o n t a i n 0.013-0.015 mole $ Fe. I n t h e 1000-hr loop, which conloop, which contained 4.12 a t .

t a i n e d 5.56 a t .

%

Fe t o g e t h e r with aluminum and chromium a d d i t i o n s , t h e

a f t e r - t e s t s a l t samples contained an even lower i r o n c o n c e n t r a t i o n . would appear t h a t c o r r o s i o n products formed by r e a c t i o n s involving

It


Table 9.

Corrosion-Product

Concentrations Containing

Alloys

Alloy

Heat Number V

Fe

Composition MO

(at. Cr

of Salts Tested Vanadium and Iron

$> Al

Ni

Test Duration (hr)

with

Nickel-Molybdenum

Corrosion-Product Concentration in Salt Samples" (mole $1 Sample

H Vanadium

co.005

Sample

C

Other

Concentration

OR 30-10

2.73

10.8

bal

500

co. 005

OR 30-20

5.11

10.8

bal

500

0.0274

0.0274

0.0261

OR 30-20

5.11

10.8

bal

1000

0.0198

0.0194

b

Iron OR 30-11

4.12

10.8

OR 30-33

5.56

9.7

from

"Sample designation "H" and "C" metallographic specimens. b Not determined.

5.9

are

1.6

discussed

bal

500

bal

1000

on page

13;

'other"

co.005

Concentration

0.0146

0.0134

0.0152

0.00517

0.00387

0.00517

designates

samples

obtained


32

a

t

Fig. 10. Attack a t Hot-Leg Surface of Ternary Nickel-Molybdenum Alloy Containing 5.11 a t . 4 V. Alloy was exposed t o S a l t 107 f o r 1000 hr. Heat OR 30-20. chromium and aluminum i n t h i s l a t t e r t e s t served t o i n h i b i t t h e reaction with iron. Metallographic Results Metallographic examinations of specimens from the 500-hr loop showed no evidence of attack other than l i g h t surface roughening, Examinations of t h e 1000-hr t e s t , as i n d i c a t

7, showed corrosive a t t a c k t o subsurface voids.

ions were carried out with t e r nary a l l o y s containing 2.20 a i n Table 10, t h e niobium conce

$-Nb, respectively. As shown i n salts exposed t o these a l l o y s

increased from a value near 0,015 mole $ i n the 500-hr t e s t s t o values of from 0.022 t o 0.025 mole $I i n the 1000-hr tests. . S a l t s t e s t e d with

,. r


33 W

Table 10. Corrosion-Product Concentrations of S a l t s Tested with Nickel-Molybdenum-Niobium Alloys

Heat Number

Alloy Composition (at. Nb

OR OR OR OR

30-12 30-12 30-21 3C-21

2.20 2.20 3.62 3.62

Test Duration

Niobium Concentration i n S a l t Samples" (mole $)

Mo

Ni

(hr)

Sample .H

Sample C

11.1 11.1 10.9 lC.9

bal bal bal bal

5GO l0OC

0.00363 0. 0225 0.0155 2 . C244

0.02C7 0.0174 0.C228

;-\I

.,EL:

,

1CJX

b

Other

0.0135 C.G233 0.0153 0.02.59

a

Sample designations "H" and "C" are discussed on page 13; "other" d e s i g n a t e s samples obtained from metallographic spec:1 mens. bNot determined.

a l l o y s which contained niobium combined w i t h o t h e r a d d i t i o n s showed v e r y much lower niobium concentrations t h a n d i d t h e simple t e r n a r y a l l o y s . A s seen i n Table 11, c o n c e n t r a t i o n s i n t h e m u l t i p l e - a d d i t i o n t e s t s were l e s s t h a n 0.002 mole

%

f o r niobium c o n t e n t s a s high as 3.62 a t .

$I.

Thus,

it appears t h a t c o r r o s i o n products formed by r e a c t i o n s w i t h o t h e r components i n t h e s e a l l o y s , namely t i t a n i u m , aluminum, and chromium, were e f f e c t i v e i n i n h i b i t i n g r e a c t i o n o f t h e s a l t w i t h niobium. Metallographic R e s u l t s Neither t e r n a r y a l l o y containing niobium showed s i g n i f i c a n t a t t a c k i n metallographic examinations of 500-hr t e s t s ; however, t h e presence of v e r y s m a l l subsurface voids t o depths of approximately 0 . 0 0 1 i n . was d e t e c t e d i n examinations of t h e 1000-hr t e s t s , as i l l u s t r a t e d i n Fig. 11. Corrosion r e s u l t s determined for a l l o y s containing niobium t o g e t h e r with o t h e r a d d i t i o n s a r e summarized i n Fig. 7.

Except where aluminum and

chromium were b o t h p r e s e n t , a t t a c k i n t h e s e a l l o y s w a s l e s s t h a n 0.002 i n . i n depth.


34 Table 11. Corrosion-Product Concentrations of S a l t s Tested w i t h Nickel-Molybdenum Alloys Containing Niobium i n Combination with Other Alloying Elements

Heat Number

Alloy Composition ( a t . $1

Test Duration

Niobium Concentration i n S a l t Samples" (mole

9)

(hr)

Sample H

Sample C

10.0 Mo, 6.6 C r , 2.6 A l , bal N i

500

0.00129

0.00181

0.00207

10.0 Mo, 6.6 C r ,

1000

0.00052

0.00104

0.00052

Nb

Other Components

OR 30-22

0.39

OR 30-22

0.39

Other

2.6 A l , bal N i

<O. 0005

B2898

0.90

13.2 Mo, 3.24 T i , bal N i

500

â‚Ź2897

(3.92

13.8 Mo, 1 . 7 T i ,

1000

0.00104

0.00052

0.00129

0.00078

0.00052

0.00078

<O. 0005

b

bal N i B3276

1.48

1 4 . 0 Mo, 9 . 3 C r , bal N i

500

B3277

1.57 1 4 . 2 Mo, 9 . 5 C r ,

500

<O. 0005

<O. 0005

<O . GOO5

3.1 A l , b a l N i

B32 77

1.57

S T23Q13 3.23

1 4 . 2 Mo, 9.5 C r , 3.1 Al, bal N i

loo!:

112.4 Mo, 1 . 4 Al, 1 . 8 W, b a l N i

500

0.002 59

<O. 0005

0.00181

<O. 0005

0.00104

.

<O. 0005

a

Sample d e s i g n a t i o n s "H" and rrC" a r e discussed on page 13; " o t h e r t 1 designates saniples obtained from metallographic specimens.

bNot determined. Tungsten Corrosion-Product Concentrations Single a l l o y i n g a d d i t i o n s o f t u n g s t e n t o t h e nickel-molybdenum system were evaluated a t l e v e l s of 0.72 and 1.44 a t .

'$, r e s p e c t i v e l y .

Loop

t e s t s of both a l l o y s were conducted f o r 500 h r , a t which time t u n g s t e n c o n c e n t r a t i o n s i n t h e s a l t mixtures had reached l e v e l s of 0.029 t o 0.032 mole

4.

I n 500-hr t e s t s o f two a l l o y s which contained t u n g s t e n i n

a d d i t i o n t o chromium, niobium, o r aluminum, t h e c o n c e n t r a t i o n o f t u n g s t e n d e t e c t e d i n s a l t samples w a s below 0.010 mole

4.

Compositions of t h e s e

a l l o y s and t h e i r a t t e n d a n t s a l t corrosion-product c o n c e n t r a t i o n s a r e shown i n Table 12.

d

Y


Li

Fig.' 11. Appearance of-Voids in Nickel-Molybdenum filoy Car to Salt 107. Heat OR 30-21. 3.62 at. $ Nb after lOOO-hr Exposure _ Corrosion-Product Nickel-Molybdenum

Table 12.

Alloy~;~p;;ition

Concentrations of Salts Tested Alloys Containing Tungsten

.

W

Other Components

Test Duration b=-)

OR 30-9 OR 30-19

0.72 1.44

11.2 MO, ~bal Ni 11.4 MO,- bal Ni

ST23011

1.72

ST23013

1.85

10.2 MO, 1.3Al, 2,9'Nb, 4*8 Cr, bal Ni 10.4 iI0,~ 1.4 Al, bal Ni ~~~

Heat Number

Sample H

Sample C

Other

500 500

0.0318 0.0384

0.0287

0.0311

0.0325 0..0310

500

0.00500

0.00983

b

500

0.00223

0.00105

b

aSamples designations ~"H" and "C" are discussed on page 13; wother" designates samples obtained -from-metallographic specimens. 'bNot determined.


36 Metallographic Results,

,

Metallographic examination of loops constructed of nickel-molybdenumtungsten alloys revealed only slight surface pitting, as illustrated in Fig. 12. The addition of aluminum together with tungstenled to heavy surface pitting, while the addition of aluminum, chromium, and niobium produced subsurface voids to a depth of 0.0025 in., as shown in Fig. 7.

t

Fig. 12. Hot-Leg Surface of Nickel-Molybdenum Alloy Containing 1.44 at. $ W after 500-hr Exposure to Salt 107. Heat CR 30-19. ‘ Relative ThermodynamicStabilitiesof

Alloying Constituents

Since-the salt mixtures supplied for this investigation were very uniform in composition, one.can presume that the samerelative activities It follows, therefore, of UFI, and tJF3existed at the start of each test. that the relative extent of reaction which occurred between the salt mixtures and an alloying element ~$+yuF4=MxFy+yUF3

2


37 f o r which

KCY =

should be d i r e c t l y r e l a t e d t o t h e a c t i v i t y of t h e f l u o r i d e compounds, M F i n v o l v i n g t h a t element. x Y9 An i n d i c a t i o n of t h e r e l a t i v e a c t i v i t i e s of t h e s e compounds i s provided by a c o n s i d e r a t i o n of t h e i r standard f r e e e n e r g i e s of formation, a s

derived from t h e r e a c t i c n

where

I n Table 13 a r e l i s t e d t h e standard f r e e e n e r g i e s o f formation, p e r gramatom o f f l u o r i n e , of f l u o r i d e compounds a t 800 and 600째C a s s o c i a t e d with each of t h e a l l o y i n g elements i n v e s t i g a t e d .

Values a r e given f o r t h e

most s t a b l e compounds ( t h a t i s , t h o s e w i t h most n e g a t i v e f r e e e n e r g i e s ) r e p o r t e d 1 8 f o r t h e s e elements, and a r e l i s t e d i n o r d e r o f d e c r e a s i n g stabilities.

The r e s u l t a n t o r d e r s u g g e s t s t h a t corrosion-product

c o n c e n t r a t i o n s a s s o c i a t e d with each element a t a given a c t i v i t y should have i n c r e a s e d i n t h e following order:

W, N b , Fe, C r ,

V, T i , and A l .

I n F i g . 13, t h e g e n e r a l ranges of corrosion-product c o n c e n t r a t i o n s a c t u a l l y observed f o r t h e s e components, when p r e s e n t as s i n g l e a l l o y i n g a d d i t i o n s , are p l o t t e d a s a f u n c t i o n of a l l o y c o n t e n t .

It i s seen t h a t ,

18A. Glassner, The Thermodynamic P r o p e r t i e s o f t h e Oxides, F l u o r i d e s , and C h l o r i d e s t o 2500째K, ANL-5'750.


38 Table 13. R e l a t i v e Thermodynamic S t a b i l i t i e s of F l u o r i d e Compounds Formed by Elements Employed a s Alloying Additions (Data Compiled by Glassner)"

Element

Most S t a b l e Fluoride Compound

A1

AlF3

Ti

AG i o 0 "C

YiO3OC

F)

f o '(g: : : -92

TiF3

-87 -q 5

-90

v

m2

-80

-84

Cr

C rF2

-72

-77

Fe

FeF2

-66

-66

m

mF5

-58

-60

W

wF5

-46

-48

c /

a

A. Glassner, The Thermodynamic P r o p e r t i e s of t h e Oxides, F l u o r i d e s , and C h l o r i d e s t o 253CCK,ANL-5750.

with t h e exception of niobium and t u n g s t e n , t k e c o n c e n t r a t i o n s p e r atomic p e r c e n t of a d d i t i o n do i n c r e a s e i n the e x a c t o r d e r p r e d i c t e d .

Only

t,ungsten n o t i c e a b l y d e v i a t e s from t h i s p r e d i c t e d behavior; t h e causes f o r t h i s d e v i a t i o n have n o t been e s t a b l i s h e d , although t h e number o f t e s t s completed on a l l o y s with t u n g s t e n a d d i t i o n s were q u i t e l i m i t e d .

General Discussion of Alloying E f f e c t s The corrosion-product c o n c e n t r a t i o n s a s s o c i a t e d w i t h e i t h e r i r o n , niobium, or t u n g s t e n a l l o y i n g a d d i t i o n s were much lower when t h e s e e l e ments e x i s t e d i n multicomponent a l l o y s than i n simple t e r n a r y a l l o y s . The reason f o r t h i s behavior i s undoubtedly a s s o c i a t e d with t h e presence of t h e more r e a c t i v e a l l o y i n g a d d i t i o n s i n t h e multicomponent a l l o y s . Consider, for example, a system containing comparable a d d i t i o n s o f chromium and i r o n , f o r which t h e c o r r o s i o n r e a c t i o n s a r e


39 v

O R N L - LR- DWG 46943

500

+/

400

300

200

-

/

IC)

0 X

s-� 0) -

-E

+ 400 -I

Q

m

90

Z

80

n w

70

c

0

60 W

n

0

5 c

50 Ti/

+

40

z W 0

c2

1 , / /

z 30

~

-Y

20

/

/ Fe

40 I

2

3

4

5

6

7

8

9

1

2

A L L O Y CONTENT (at. %)

Fig. 13. Comparison of Corrosion-Product Concentrations Formed in Salt 107 by Various Alloying Additions as a Function of Alloy Content.


40 Since &

I

i s considerably more negative t h a n

aII,t h e

e q u i l i b r i u m UF3

I

c o n c e n t r a t i o n produced b y t h e f i r s t r e a c t i o n i s higher t h a n t h a t which would be produced by t h e second r e a c t i o n .

According t o t h e l a w of mass

a c t i o n , t h e r e f o r e , t h e FeF2 concentration a t e q u i l i b r i u m should be reduced i n t h e presence of chromium compared t o a system containing i r o n only. While t h i s means of c o r r o s i o n i n h i b i t i o n w a s e f f e c t i v e f o r those a l l o y i n g components l e s s r e a c t i v e t h a n chromium, i t s e f f e c t was not apparent among elements of r e l a t i v e l y high r e a c t i v i t i e s .

Thus, chromium

corrosion-product concentrations were t h e same i n t h e case of a l l o y s cont a i n i n g both aluminum and chromium as i n t h e case of a l l o y s containing chromium alone.

S i m i l a r l y , t h e presence of aluminum d i d not n o t i c e a b l y

reduce t h e titanium-corrosion products a s s o c i a t e d w i t h titanium-containing alloys.

For most of t h e multicomponent a l l o y s , t h e amount of chromium and

t i t a n i u m , on an atomic percent basis, exceeded t h a t of aluminum; conse-

q u e n t l y t h e i r a c t i v i t i e s could have approached t h e a c t i v i t y of t h e aluminum component.

Nevertheless, t h e high aluminum c o n c e n t r a t i o n s of f l u o -

r i d e mixtures a f t e r t h e s e t e s t s suggest a l e v e l of UF3 higher t h a n would have been produced by e i t h e r chromium o r t i t a n i u m alone, so t h a t some i n h i b i t i v e a c t i o n would be p r e d i c t e d .

The f a c t t h a t none occurred may

suggest t h a t t h e measured aluminum c o n c e n t r a t i o n s were somewhat higher than a c t u a l l y existed.

' S L W R Y AND CONCLUSIONS

The c o r r o s i o n p r o p e r t i e s of s o l i d - s o l u t i o n a l l o y i n g elements i n t h e Ni-17$ Mo system were i n v e s t i g a t e d i n molten mixtures of NaF-LiF-KF-UFL

( 11.2-41.0-45.3-2.5 mole

5).

The c o r r o s i o n s u s c e p t i b i l i t y of alloying

a d d i t i o n s was found t o i n c r e a s e i n t h e following o r d e r :

W, T i , and A l .

Fe, Nb, V, Cr,

With t h e exception of tungsten, t h e s u s c e p t i b i l i t y of

"Considerable d i f f i c u l t y was i n f a c t encountered i n a n a l y s e s of t h i s element by wet chemical methods. Analyses of a l i m i t e d number of samples were consequently made using s e m i q u a n t i t a t i v e spectrographic techniques. Concentrations obtained by t h e l a t t e r technique were lower by a f a c t o r of approximately 2/3 t h a n t h e values t h a t were reported i n Tables 6 and 7.

Y


41 t h e s e elements t o corrosion increased i n approximately t h e same order a s t h e s t a b i l i t i e s of f l u o r i d e compounds of t h e elements. The corrosion-product concentrations produced by e i t h e r i r o n , n i o bium or t u n g s t e n a l l o y i n g a d d i t i o n s i n t h e above s a l t mixture were much

lower when t h e s e elements e x i s t e d i n combination with chromium, t i t a n i u m ,

or aluminum t h a n when t h e y e x i s t e d a s s i n g l e a l l o y i n g a d d i t i o n s .

I n con-

t r a s t , corrosion-product c o n c e n t r a t i o n s a s s o c i a t e d w i t h chromium, t i t a nium, or aluminum were unchanged by t h e presence of o t h e r a l l o y i n g constituents. The metallographic examinations of a l l a l l o y s i n v e s t i g a t e d under t h i s program showed considerably l e s s c o r r o s i o n t h a n Inconel under equiva l e n t conditions.

Surface roughening or shallow p i t t i n g was manifested

i n hot-leg s e c t i o n s of a l l t h e loops t e s t e d .

Shallow subsurface voids

were a l s o seen i n aluminum- and niobium-containing systems.

Alloys con-

t a i n i n g more t h a n one a l l o y i n g a d d i t i o n i n v a r i a b l y were a t t a c k e d t o depths g r e a t e r t h a n a l l o y s containing each of t h e a d d i t i o n s i n d i v i d u a l l y . The g r e a t e s t depths of a t t a c k , which ranged from 0.003 t o 0.0045 i n . i n 1000-hr exposures, were incurred i n a l l o y s which contained combined a d d i t i o n s of aluminum and chromium or aluminum and t i t a n i u m .

Alloys without

e i t h e r aluminum or t i t a n i u m i n no case e x h i b i t e d a t t a c k t o depths of more t h a n 0.002 i n . and g e n e r a l l y showed a t t a c k i n t h e range from

0.001 t o 0.002 i n . I n t h e case of t h e m a j o r i t y of a l l o y s t e s t e d , t h e depth of a t t a c k increased a t a g r e a t e r r a t e between 0 and 500 h r t h a n between 500 and

1000 h r .

This f i n d i n g i s i n agreement w i t h t h e concentrations of c o r r o -

s i o n products, which i n g e n e r a l increased o n l y s l i g h t l y between t h e p e r i ods of 500 and 1000 h r .

Both r e s u l t s suggest t h a t n e a r l y s t e a d y - s t a t e

c o n d i t i o n s were e s t a b l i s h e d w i t h i n t h e f i r s t 500 h r of t e s t o p e r a t i o n . I n view of t h e g e n e r a l l y favorable r e s u l t s of t h e s e t e s t s , one h a s considerable freedom i n t h e choice of p o t e n t i a l a l l o y i n g components f o r nickel-molybdenum a l l o y s f o r molten salt s e r v i c e .

Only t i t a n i u m and

aluminum appear t o a f f o r d p o t e n t i a l c o r r o s i o n problems, p a r t i c u l a r l y i f used as combined a d d i t i o n s o r i n combination w i t h chromium.

Thus, t h e

choice of an optimum a l l o y composition f o r any given a p p l i c a t i o n can be judged mainly on t h e basis of s t r e n g t h and f a b r i c a t i o n requirement.


42 ACKNOWLEDGMENTS

V

The many loop experiments r e p o r t e d h e r e were c a r r i e d out under t h e s k i l l e d hand of M. A. Redden.

The author i s a l s o indebted t o W. 0. Harms

f o r h i s e d i t o r i a l a s s i s t a n c e and guidance a s t h e s i s advisor.

.


43 ORNL-TM-2021 VOl.

INTERNAL DISTRIBUTION

1-3.

C e n t r a l Research L i b r a r y

4-5. ORNL Y - 1 2 Technical L i b r a r y Document Reference Section

6-15. Laboratory Records 16. Laboratory Records, ORNL-RC 17. ORNL Patent O f f i c e 18. R. K. Adams 19. G. M. Adamson 20. R. G. A f f e l 21. J. L. Anderson 22. R. F. Apple 23. C. F. Baes 24. J. M. Baker 25. S. J. B a l l 26. C. E. Bamberger 27. C. J. Barton 28. H. F. Bauman 29. S. E. B e a l l 30. R. L. B e a t t y 31. M. J . B e l l 32. M. Bender 33. C. E. B e t t i s 34. E. S. B e t t i s 35. D. S. E i l l i n g t o n 36. R. E. Blanco 37. F. F. Blankenship 38. J. 0. Blomeke 39. R. Blumberg 40. E. G . Bohlmann 41. C. J. Borkowski 42. G. E. Boyd 43. J. Braunstein

4

44. M. A. Bredig 45. R. B. Briggs 46. H. R. Bronstein

47. G. D. Brunton 48. D. A. Canonico S. W. G. 0. A. 54. J. 55. F. 56. W. 57. H.

49. 50. 51. 52. 53. i

v

Cantor L. C a r t e r I. Cathers B. Cavin Cepolina M. Chandler H. Clark R. Cobb D. Cochran

58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70. 71-80.

81. 82. 83. %4.

85. 86.

87. 88. 89. 90. 91. 92. 93. 94. 95. 96.

97 * 98. 99. 100. 101. 102. 103. 104. 105. 106. 107. 108. 109. 110* 111. 112.

C. W. C o l l i n s L. Compere V. Cook H. Cook T. Corbin B. Cox J. L. Crowley F. L. C u l l e r D. R. Cuneo J. E. Cunningham J. M. Dale D. G. Davis R. J. DeBakker J. H. DeVan S. J. D i t t o A. S. Dworkin I. T. Dudley D. A. Dyslin W. P. E a t h e r l y J. R. Engel E. P. Epler R. B. Evans I11 D. E. Ferguson L . M. F e r r i s A . P. Fraas H. A. Friedman J. H Frye, Jr. W. K. Furlong C. H. Gabbard R. B. Gallaher R. E. Gehlbach J. H. Gibbons L. 0. G i l p a t r i c k W. R. Grimes A. G. G r i n d e l l R. W. Gunkel R. H. Guymon J. P. Hammond B. A. Hannaford P. H. Harley D. G. Harman W. 0. Harms C. S. H a r r i l l P. N. Haubenreich R. E. Helms P. G. Herndon

E. K. W. L.

I


44 113. 114. 115-11'7. 118. 119. 120. 121. 122. 123. 124. 125. 126. 12'7. 128* 129. 130. 131. 132. 133. 134. 135. 136. 13'7. 138. 139. 140. 141. 142. 143.

D. J. M. H. D. P. R. A. T. W. H. W. P. R. M. M. C. T. H. J. D. S. J. R. A. T. J. C. J.

144. c. 145. 146. 147. 148. 149. 153. 151. 152. 153. 154. 155. 156. 157. 158. 159. 160. 161. 162. 163. 164. 165. 166.

J. M. R. A. G. E. A. M. R. R. H.

R. J. D. C. W. H. T. H. R. H. D.

N. Hess R. Hightower R. H i l l W. Hoffman K. Holmes P. Holz W. Horton Hout z e e l L. Hudson R. Huntley Inouye H. Jordan R. Kasten J. Ked1 T. Kelley J. Kelly R. Kennedy W. K e r l i n T. Kerr J. Keyes V. Kiplinger S. K i r s l i s W. Koger B. Korsmeyer I. Krakoviak S. Kress W. Krewson E. Lamb A. Lane E. Larson J. Lawrence S. Lin B. Lindauer P. Litman H. Llewellyn L. Long, Jr. L. L o t t s I. Lundin N. Lyon L. Macklin G. MacPherson E. MacPherson C. Mailen L. Manning D. 5iartin R. Martin V. Mateer H. Mauney Mc C l a i n W. McClung E. McCoy L. McElroy

167. 168. 169. 1'70. 1'71. 1'72. 1'73. 174. 175. 1'76. 17'7. 178. 1'79. 180. 181. 182. 183.

184. 185. 186. 187. 188. 189. 190.

191. 192. 193.

194. 195.

1%. 197. 198. 199.

200. 201. 202. 203. 204. 205. 206. 207. 238. 209. 210. 211. 212. 213. 214. 215. 216. 21'7. 218.

K. McGlothlan J. McHargue E. McNeese R. McWherter J. Metz S. Meyer L. Moore M. Moulton W. Mueller A . Nelms H. Nichol P. Nichols L. Nicholson C. Oakes P. P a t r i a r c a A. M. Perry T. W. P i c k e l H. E. Piper B. E. Prince G. L. Ragan J. L. Redford M. Richardson G. D. Robbins R. C . Robertson K. A . Romberger R. C . Ross H. C. Savage W. F. Schaffer C. E. S c h i l l i n g Dunlap S c o t t J. L. S c o t t H. E. Seagren C. E. Sessions J. H. S h a f f e r W. H. Sides G. M. Slaughter A. N. Smith F. J. Smith G. P. Smith 0. L. Smith P. G. Smith 1. Spiewak R. C. S t e f f y W. C. Stoddart H. H. Stone R. A. Strehlow D. A. Sundberg J. R. Tallackson E. H. Taylor W. Terry R. E. Thoma P. F. Thomason

C. C. L. J. H. A. R. D. T. H. H. J. E. L.


45 219. 220. 221. 222. 223. 224. 225. 226. 227. 228. 229.

L. D. W. G. J. H. C. B. A. J. W.

M. Toth E. Trauger E. Unger M. Watson s. Watson L. Watts F. Weaver H. Webster M. Weinberg R. Weir J. Werner

230. 231. 232. 233. 234. 235. 236. 237. 238. 239.

K. W. West M. E. Whatley J. C. White R. P. Wichner L. V. Wilson Gale Young H. C. Young J. P. Young E. L. Youngblood F. C . Zapp

EXTERNAL DISTRIBUTION

240. 241. 242. 243. 244. 245. 246. 247. 248. 249. 250-251. 252. 253. 254. 255. 256. 257. 258. 259. 260.

261. 262. 263. 264. 265. 266-280.

G. J. D. C.

G. Allaria, Atomics I n t e r n a t i o n a l G. Asquith, Atomics I n t e r n a t i o n a l F. Cope, RDT, SSR, AEC, Oak Ridge National Laboratory B. Deering, AEC, OSR, Oak Ridge National Laboratory

H. M. Dieckamp, Atomics I n t e r n a t i o n a l A. Giambusso, AEC, Washington F. D. Haines, AEC, Washington C. E. Johnson, AEC, Washington W. L. Kitterman, AEC, Washington W. J. Larkin, AEC, Oak Ridge Operations T. W. McIntosh, AEC, Washington A. B. Martin, Atomics I n t e r n a t i o n a l D. G. Mason, Atomics I n t e r n a t i o n a l G. W. Meyers, Atomics I n t e r n a t i o n a l D. E. Reardon, AEC, Canoga Park Area Office H. M. Roth, AEC, Oak Ridge Operations M. Shaw, AEC, Washington J. M. Simmons, AEC, Washington W. L. Smalley, AEC, Washington S. R. Stamp, AEC, Canoga Park Area Office E. E. Stansbury, t h e University of Tennessee R. F. Sweek, AEC, Washington A. Taboada, AEC, Washington R. F. Wilson, Atomics I n t e r n a t i o n a l Laboratory and U n i v e r s i t y Division, AEC, Oak Ridge Operations Division of Technical Information Extension


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.