CF-60-11-108

Page 1

HOME HELP

OAK RIDGE NATIONAL LABORATORY Operated By

UNION CARBIDE NUCLEAR COMPANY

m

CENTRAL FILES NUMBER

POST OFFICE BOX X

cE 60-11-108

OAK RIDGE, TENNESSEE

I n t e r n a l D i s t r i b u t i o n On11 COPY NO.

November 30, 1.960

Gy

MSRE R a d i a t o r Design

li

Distribution W.

C. U l r i c h

Abstract

-

An a i r - c o o l e d r a d i a t o r c a p a b l e of r e j e c t i n g 10 fi of r e a c t o r thermal power t o t h e atmosphere w a s designed f o r t h e MSRE. The d e s i g n w a s based on u t i l i z i n g- i n p a r t equipment and f a c i l i t i e s l e f t from t h e ART program which were a v a i l a b l e f o r u s e i n b u i l d i n g 7503.

. 1

I _ _ _ I I _

LEGAL NOTICE Thls'nport v u preprrd u n r m t . IGw8-t .pwwrd wrk. Ileither the United Oefimmldon. .or any pereon Sctimg sh tahalf d Om Gommisnlon: stam. A. Makes mywasranty o r repranentation. expressed o r impUed.with respect to the accuracy. completeness, o r usefuIness of the informanod containad in thls report. or that the we of any information. apparatns. mstbod, or process Qlmlo.ed h thls =port rmy not Infringe privately owned rlghtn; or B. Assumes c n UabWUea ~ with respect to the y s of. or for darmgen resultlag from the use of any information, apparatns. method, o r proceC dinclosed h thls report. As used ta the ahove. "person acting on of the Commission" Includes any employee o r cantractor of the Commission. o r employ? of nreh contractor, to the extent that such smployee o r contractor of the Commission. ot employee of much contractor peparen, disseminates. or provides accesa to. any Informationwnunt to Us e m p l o w t o r contract r i t b the Commission, or his employment with such contractor.

9

NOTICE Thts report ~ontainsinformation d a prelhnixwy nature and wan prepared primarfly for internal u e at the orInstallation. E is subject to revision or correction d therefore does not represent a final report. E Is passed to the recipient in confidence lad should not be abstracted or further dlsclosed without the rppmal of the O r i g l M w installation or DTI Extension, Oak Ridge.

NOTICE T h i s document contains information of a preliminary nature and was prepared primarily for internal US^ o t the Oak Ridge National Laboratory. I t i s subject to revision or correction and therefore does not represent a final report.

'"--

'

~ ' ' hib b g d ;&-,I

9

\

*Ot

?%e

. ..

m'h**-6v* .<,:

in br . b i p u t . d , c;.*.ra Dllbiip ~ i g , n * ~ ~ o f thc 02'11. ,>hb*

:cl~ntmarron

L).tl.rtru


CONTENTS Page Introduction

2

R a d i a t o r Design

2

1.

Secondary S a l t Flow Rate

2

2.

A i r Flow Rate

2

3.

C o i l S i z e and C o n f i g u r a t i o n

2

4.

MSRE O p e r a t i o n a t Power Levels Less t h a n 10 Mw

8

5.

Cooling A i r

9

6.

R a d i a t o r Frame and Doors

10

7.

Duct

11

8.

Heating

41

9.

Conclusions

11 12

References Append i x F i g u r e 1.

MSRE R a d i a t o r Tube Arrangement

13

F i g u r e 2.

MSRE R a d i a t o r C o i l C o n f i g u r a t i o n

14

Figure

3. A i r Mass-Flow Rate and Temperature Rise

15

f o r MSRE Radiator Calculations

16

L i s t of Drawings as of 11-15-60

18

Distribution

19


2.

Introduction -_---------_ -__-_-_----_

The d e s i g n of a h e a t exchanger f o r removing MSRE thermal power w a s based on u t i l i z i n g as much as p o s s i b l e t h e e x i s t i n g f a c i l i t i e s and equipment i n t h e A i r c r a f t R e a c t o r ' T e s t b u i l d i n g 7503. Since t h e s e f a c i l i t i e s i n c l u d e d blowers, motors, ducting, and a s t a c k f o r d i s c h a r g e of a i r t o t h e atmosphere, a n a i r cooled c o i l o r r a d i a t o r seemed t o be most f e a s i b l e . Because t h e secondary p i p i n g system of t h e MSRE, of which t h e r a d i a t o r is a p a r t , w i l l c o n t a i n a LiF-BeF2 s a l t mixture from which t h e r e a c t o r h e a t i s t o be e x t r a c t e d , t h e d e s i g n e n t a i l e d determining t h e s i z e and c o n f i g u r a t i o n of t h e r a d i a t o r c o i l based on t h e p h y s i c a l p r o p e r t i e s of t h i s s a l t and t h e amount of c o o l i n g a i r a v a i l a b l e . Also included i n t h e d e s i g n was a n i n t e g r a l s u p p o r t i n g frame w o r k - i n s u l a t e d e n c l o s u r e f o r t h e c o i l . Because t h e LiF-BeF2 s a l t mixture f r e e z e s a t about 85OoP, p r o v i s i o n s were made f o r s u p p l y i n g heat t o t h e 1 Control c o i l t o keep t h i s secondary s a l t f l u i d d u r i n g r e a c t o r down p e r i o d s . of a i r flow r a t e s over t h e coil, n e c e s s a r y b a f f l i n g , and d u c t m o d i f i c a t i o n s were a l s o determined.

1.

Secondary S a l t Flow Rate The secondary s a l t which w i l l remove h e a t from t h e f u e l s o l u t i o n i n t h e primary h e a t exchanger and rejec: h e a t t o t h e atmosphere i n t h e r a d i a t o r w i l l c o n s i s t of a mixture of 66 mol I LiF and 34 mol 7, BeF2. For MSRE o p e r a t i o n a t 10 Mw thermal power, t h e secondary s a l t temperature drop through t h e c o i l w a s s e l e c t e d as 75'F. (llOOoP i n l e t temperature, 1025'F o u t l e t temperature.) The flow r a t e n e c e s s a r y f o r 10 Mw h e a t t r a n s f e r e n c e c a p a c i t y w a s found t o be 830 gpm.

2.

A i r Flow Rate

A i r w i l l be s u p p l i e d by two 250 hp a x i a l blowers l e f t from t h e ART program. Each blower i s r a t e d a t 82,500 cfm a t 15 i n , w a t e r s t a t i c p r e s s u r e , o r 114,000 c f m f r e e a i r d e l i v e r y . For 10 Mw r e a c t o r power o p e r a t i o n , t h e a i r Assuming a n a i r i n l e t temperature r i s e a c r o s s t h e c o i l w a s s e t a t 200'F. temperature of 100째F, t h e temperature of t h e a i r l e a v i n g t h e c o i l would be 3OOOP. For t h i s a i r temperature r i s e , 164,000 cfm of a i r w i l l be r e q u i r e d t o reject 10 Mw of thermal energy t o t h e atmosphere.

3.

C o i l S i z e and C o n f i g u r a t i o n The c o i l s i z e and c o n f i g u r a t i o n depends on b o t h t h e secondary s a l t and a i r flow rates, A f i r s t estimate of t h e c o i l area r e q u i r e d was o b t a i n e d by assuming an o v e r a l l h e a t t r a n s f e r c o e f f i c i e n t of 55 Btu/hr-'F-ft2 and s o l v i n g for A i n the equation

q = u tm


3. where

q = r a t e of h e a t t r a n s f e r ,

Btu/hr

U = o v e r a l l heat t r a n s f e r c o e f f i c i e n t , Btu/hr-'F-ft2 A = heat t r a n s f e r area, f t 2 Atm = log mean temperature d i f f e r e n c e ,

Atm

--

-

1025-100) 1025 In 1100

-

OF

(1100-300) 100

- 300

(10 Mw)(3.415 x lo6 Btu/Mw-hr) = (55 Btu/hr-ft2-'F)(A

ft2)(862'F)

A = 720 f t 2 of h e a t t r a n s f e r s u r f a c e area needed. For '/* i n . OD x 0.072 i n . w a l l tubing, length. Therefore,

720 f t 2

=

t h e s u r f a c e a r e a is 0.1963 f t 2 / f t

3670 f t

0.1963 f t 2 / f t

of t u b i n g would be r e q u i r e d . An a r b i t r a r i l y s e l e c t e d tube l e n g t h of 30 f t gave a t o t a l of about 122 tubes. Because of s p a c e l i m i t a t i o n s i n t h e e x i s t i n g ductwork and because of t h e p h y s i c a l l a y o u t of t h e r e a c t o r secondary s a l t system piping, a n S k h a p e d c o i l of 120 tubes, e a c h 30 f t long, was proposed f o r c a l c u l a t i n g the a c t u a l r a d i a t o r performance, The 120 "/+ i n . OD tubes were a r r a n g e d i n 10 rows w i t h 12 tubes p e r row w i t h a 1%i n . squAre p i t c h . See Figs. 1 and 2. Tube rows were s t a g g e r e d .

The s a l t film h e a t t r a n s f e r c o e f f i c i e n t , equation2,

where the subscript

b

refers

was c a l c u l a t e d from t h e f o l l o w i n g o the b u l k temperature:

i i i.

b


I

2,

4.

3

where

\

=

l i q u i d f i l m h e a t t r a w f e r c o e f f i c i e n t , Btu/hr-ft2-'F

D

=

tube i n s i d e d i a . f t

%

=

thermal c o n d u c t i v i t y , Btu/hr-ft2-'F/f

G

=

mass v e l o c i t y , l b / h r - f t 2

p,.

=

viscosity,

=

s p e c i f i c h e a t , Btu/lb-OF

c

P

t

lb/ft-hr

(at constant pressure)

0 -606 i n . ) (830 gpm) (60 min/hr) (8.33 l b / g a l ) (120 l b / f t 3 )

I'

(12 i n . / f t ) ( 6 2 . 4 l b / f t3) (22 l b / f t - h r ) (120 t u b e s ) ( 2 ~ 1 0 - f~t 2 / t u b e )

(

= (7"i'50)Oo8 = 1290

-

Q.4

3.5 B t u / h r - f t 2 - O F / f t )

and

k= I

pd ~~

I

i

(0.023) (1290) (1.665) (3

4 Btu/hr-f

t2-'F/ft)

0.606 i n . 12 i n . / f t

5 = 3420 Btu/hr-ft2-"F The a i r f i l m h e a t t r a n s f e r c o e f f i c i e n t , hm, was found fx'om t h e f o l l o w i n g e q u a t i o n 3 where t h e s u b s c r i p t f r e f e r s t o t h e a i r f i l m temperature, e s t i m a t e d t o be 900째F;


6 5.

hi2

where hm

= air film heat transfer coefficient, Btu/hr-ft2-OF

Do

=

tube outside diameter, ft

kf

=

thermal conductivity Btu/hr-ft2-’F/f t

c P p

=

specific heat, Btu/lb-PF (at constant pressure)

=

viscosityj lb/ft-hr

=

air mass velocity through minimum flow area, lb/hr-ft2

GIMX

(

?>1’”

=

[

1 /3

( F) (

(0.2598 Bt~/lb-~F)(0.0854 lb/ft-hr) 0.0320 Btu/hr-ft2-Op/ft

1

=

(0.693)

/3

=

0.885

=

(0.750 in.)(6929000 (12 in./f()t

(

= (21,600)006

=

23.5 f t2)(

lb/hr)

398

and

h A.

m

=

L1°’6

0.0854 lb/ft-hr)

( 0.33)( 0.885) (398) (0.0320 Btu/hr-ft2-OF/f t)


6.

h

.

.

59.5 Btu/hr-ft2-OF

=

m

The o v e r a l l h e a t t r a n s f e r c o e f f i c i e n t , U, w a s t h e n determined.

where

-a x- -

thermal r e s i s t i v i t y of tube w a l l ,

-1 --

0.000292

+

0.0168

+

hr-DF Bt u

0.00171 = 0.0188

U

and

U

53.2 Btu/hr-ft'-OF

=

Therefore, which a g r e e s c l o s e l y w i t h t h e assumed v a l u e of 55 Btu/hr-ft2-OF. t h e assumed v a l u e s f o r tube length, arrangement and c o n f i g u r a t i o n were acceptable The b u l k secondary s a l t and a i r temperatures were taken as t h e a r i t h m e t i c average, g i v i n g 1062.5OF f o r t h e s a l t and 200'F f o r t h e a i r . The temperature drops a c r o s s e a c h f i l m and t h e p i p e w a l l were then c a l c u l a t e d .

Salt film At

Wall A t

=

A i r f i l m At

=

0.000292 0.0188

0.001 1

=

"F

x

862.5"F

=

13.4

x 862!.S째F = ~ 8 . 4 ~ ~

o*0168 0.0188

x

862.5OF

=

.

7 ~ 0 . 7 ~ ~

i


The air film temperature was calculated as against the assumed value of 900'F. coefficient then becomes 58.4 Btu/hr-ft*-o coefficient 52.4 Btu/hr-ft*-“F. The secondary salt following equation:*

fG; Lst

=

L

%@

pressure

n at

Psi

drop

to be 1062,~ The corrected F, and the

through

the

coil

- (13.4 + 78.4) = 970.7"F air film heat transfer overall heat transfer

was determined

from

J

the

(3)

where =

pressure

drop,

f

=

friction

factor,

Gt

=

mass velocity,

L

=

equivalent

npt

n

g

ZZ acceleration

P

=

density;

D

=

inside

&at

=

viscosity

and was found

Apt

Apt

=

=

The air following

ft?/in.' lb/hr-ft*

tube

length,

of

gravity,

ft ft/hr*

lb/ft" tube

diameter, ratio,

ft

dimensionless

to be

(0.00029

ft2/in.2)(3032

(2)(32.2

ft/sec*)($OO

21.4

psi

x lo6

lb/hr-ft2S2(33.75

sec/hr)*(120

lb/ft3)(T

ft)(l) psi ft>(1)

psi=.

pressure drop across two correlationsj5

the

coil

was similarly

determined,

using

the


8.

U

and

4

where

f

I Ii

Ap

f =

friction factor, dimensionless

DC

=

transverse clearance, ft

=

fluid velocity through minimum flow area, ft/sec

p

=

fluid density, lb/ft'

p

=

viscosity, lb mas/ft-sec

Ap

=

pressure drop, lb force/ft2

Nr

=

number of rows of tubes normal to flow

gc

=

conversion factor, 32.174 lb mass ft/lb force-sec2

=

=

0.75

[( 0.750ft ) (4.19 x lo5 ft/hr)(0.0692 0.0521 lb/ft-hr 1 12

(4>(0.093)(12)(0.0692 (2)(32.2

ft/sec2)(3600

.

lb/ft" =

0.093

x lo5 ft/hrI2 ~ec/hr)~(144 inO2/ft2)

lb/ft3)(4.19

1

Ii

Ap

I& iI!

*

ii * 1

4.

=

0.45 psi or 12.5 in. water.

MSRK Operation at Power Levels Less than 10 Mw

Because the MSRE will not always operate at 10 Mw, it was necessary to


9. determine t h e r a d i a t o r o p e r a t i n g c h a r a c t e r i s t i c s f o r a l l r e a c t o r power levels. By u s e of t h e v a r i a b l e - s p e e d f u e l - c i r c u l a t i n g pump, t h e flow rate of t h e f u e l through t h e primary h e a t exchanger may be v a r i e d . The secondary s a l t flow rate, however, i s t o be maintained c o n s t a n t . The amount of h e a t e x t r a c t e d from t h e secondary s a l t as i t passes through t h e r a d i a t o r i s thus c o n t r o l l e d by t h e amount of a i r f o r c e d over t h e r a d i a t o r c o i l . C o n t r o l of t h e a i r flow r a t e t h e n w i l l be t h e most s e n s i t i v e r e a c t o r power l e v e l c o n t r o l . The e f f e c t i v e A t ' s between t h e f u e l and secondary s a l t i n t h e primary h e a t exchanger f o r v a r i o u s r e a c t o r power levels have been e s t i m a t e d , and a r e g i v e n below.6 From t h e s e f i g u r e s , and assuming t h a t t h e secondary

l

!

F r a c t i o n Reactor Design Power

AteffOF

1

Corresponding Secondary S a l t At i n Radiator OF

1.0

130

75

0.8

117

60

0.6

1.03

45

89

30

0.2

73

15

0.1

62

0.4

'

7.5

s a l t f l o w r a t e w i l l be c o n s t a n t , t h e c o r r e s p o n d i n g secondary s a l t temperat u r e changes i n t h e r a d i a t o r were c a l c u l a t e d . The a i r mass-flow r a t e s t o a c h i e v e t h e s e secondary s a l t temperature changes i n t h e r a d i a t o r were t h e n c a l c u l a t e d by assuming a c o n s t a n t a i r i n l e t temperature of 100째F and u s i n g t h e c o r r e l a t i o n s given above. (Equations 1 and 2 . ) T h e r e s u l t s a r e shown i n F i g . 3 a l o n g w i t h t h e a i r temperature r i s e through t h e r a d i a t o r .

5.

Cooling A i r

A i r f o r c o o l i n g t h e r a d i a t o r w i l l be s u p p l i e d by two 250 hp v a n e - a x i a l blowers l e f t from t h e ART program. Each blower i s r a t e d a t 82,500 cfm a t 15 i n . water s t a t i c p r e s s u r e , o r 114,000 cfm f r e e a i r d e l i v e r y . The blower6 are provided w i t h h o r i z o n t a l m u l t i b l a d e d dampers, gang-operated by a i r - o p e r a t e d motors, t o p r e v e n t "blow-back" when a blower i s not i n operation.

A bypass d u c t w i t h a c o n t r o l l e d damper w i l l be provided t o s h o r t - c i r c u i t The purpose of t h e d u c t i s p a r t of t h e a i r f l o w around t h e r a d i a t o r . t h r e e f o Id:


10.

64

1.

A t low r e a c t o r p.ower l e v e l s , t h e a i r l e a v i n g t h e r a d i a t o r w i l l be a t v e r y h i g h temperatures as shown i n F i g , 3. During t h e s e p e r i o d s , t h e bypass damper w i l l be open a l l o w i n g c o o l e r a i r t o mix w i t h t h e h i g h At temperature a i r t o keep t h e d u c t a t a temperature below 300'F. h i g h e r r e a c t o r power l e v e l s when t h e a i r l e a v i n g t h e r a d i a t o r i s a t a lower temperature, t h e bypass damper w i l l be c l o s e d .

6.

2.

The bypass d u c t w i l l be used t o reduce t h e wind f o r c e on t h e r a d i a t o r and r a d i a t o r door i n e v e n t of power f a i l u r e o r r e a c t o r scram. I n e i t h e r of t h e s e occurrences, t h e r a d i a t o r doors w i 1 be c l o s e d and t h e f a n s w i l l be running down, s t i l l d e l i v e r i n g a i r . T h i s a i r w i l l t h e n be r o u t e d around t h e r a d i a t o r through t h e open bypass d u c t r e d u c i n g t h e a i r s t a t i c p r e s s u r e on t h e r a d i a t o r .

3.

During reactor-down p e r i o d s when h e a t i s be ng s u p p l i e d t o t h e r a d i a t o r c o i l i n t h e e n c l o s e d r a d i a t o r frame, t h e bypass d u c t w i l l be open t o reduce t h e s t a c k e f f e c t a c r o s s t h e r a d i a t o r .

R a d i a t o r Frame and Doors The r a d i a t o r frame w i l l be r.iainly s t r u c t u r a l s t e e l ; members exposed t o h i g h t e m p e r a t u r e s w i l l be s t a i n l e s s s t e e l . The r a d i a t o r frame w i l l be completely enclosed, i n s u l a t e d , and equipped w i t h r a d i a n t h e a t s h i e l d s t o p r o t e c t t h e s t r u c t u r a l members from high temperatures. The r a d i a n t h e a t s h i e l d s and i n s u l a t i o n w i l l a l s o l i m i t r a d i a t o r h e a t l o s s d u r i n g reactor-down p e r i o d s w h i l e m a i n t a i n i n g <he secondary s a l t i n t h e f l u i d s t a t e by s u p p l y i n g h e a t from a n e x t e r n a l s o u r c e . B a f f l e s w i l l be made i n t e g r a l w i t h t h e frame t o d i r e c t t h e a i r over t h e r a d i a t o r c o i l . The secondary s a l t i n l e t header of t h e r a d i a t o r c o i l assembly w i l l be anchored t o t h e frame; t h e secondary s a l t o u t l e t h e a d e r w i l l be allowed t o move i n t h e h o r i z o n t a l d i r e c t i o n t o a l l o w f o r thermal expansion of t h e secondary p i p i n g and t h e r a d i a t o r c o i l . The c o i l w i l l be suspended from hangers which w i l l a l l o w thermal expansion, s u p p o r t t h e weight of t h e c o i l , and m a i n t a i n c o i l tube s p a c i n g . The r a d i a t o r frame w i l l a l s o c o n t a i n p r o v i s i o n s f o r two v e r t i c a l l y o p e r a t i n g i n s u l a t e d doors. The doors w i l l c l o s e o f â‚Ź t h e a i r passage o v e r t h e c o i l t o reduce h e a t l o s s from t h e c o i l d u r i n g reactor-down p e r i o d s . The doors are suspended from r o l l e r c h a i n s which r u n over s p r o c k e t s t o a s i n g l e counter-weight which weighs l e s s t h a n t h e combined w e i g h t s of t h e two doors. When t h e doors a r e i n t h e up (open) p o s i t i o n , t h e c o u n t e r weight i s h e l d down by t h r e e magnets, any two of which a r e c a p a b l e of h o l d i n g t h i s weight. I n e v e n t of power f a i l u r e o r r e a c t o r scram, t h e magnets release t h e counter-weight and t h e doors are allowed t o f a l l f r e e l y . A t o t h e r times t h e doors w i l l be lowered by a n e l e c t r i c motor through a magnetic c l u t c h b r a k e arrangement. This same arrangement w i l l a l s o be used t o raise t h e doors. The doors w i l l normally be e i t h e r f u l l y open o r c l o s e d ; however, i t w i l l be p o s s i b l e w i t h t h e magnetic c l u t c h - b r a k e t o p o s i t i o n them a t any p o i n t i n between. The doors w i l l be guided by means of r o l l e r s t h a t t r a v e l i n a machined t r a c k s o t h a t "cocking" of a door i s p r e v e n t e d .

-

~~


11.

.

The e x i s t i n g d u c t w i l l be modified t o p r o v i d e as smooth a t r a n s i t i o n as p o s s i b l e from t h e f a n o u t l e t t o t h e r a d i a t o r c o i l i n l e t . A bypass duct, d e s c r i b e d above, w i l l a l s o b e i n s t a l l e d .

8.

Heating During p e r i o d s when t h e r e a c t o r i s n o t o p e r a t i n g , i t w i l l b e n e c e s s a r y t o s u p p l y h e a t t o t h e r a d i a t o r c o i l t o keep t h e secondary s a l t i n t h e f l u i d s t a t e . When t h i s h e a t i n g i s r e q u i r e d , t h e r a d i a t o r doors w i l l be c l o s e d , t h e bypass d u c t w i l l be open, and t h e r a d i a t o r c o i l e s s e n t i a l l y i s o l a t e d from t h e ambient atmosphere. Heat w i l l b e s u p p l i e d t o t h e r a d i a t o r c o i l by means of p a n e l s c o n t a i n i n g e l e c t r i c r e s i s t a n c e h e a t i n g elements embedded i n a ceramic material. These p a n e l s w i l l b e l o c a t e d on t h e h o r i z o n t a l and v e r t i c a l s u r f a c e s of t h e a i r b a f f l e s a d j a c e n t t o t h e t u b e s of t h e r a d i a t o r c o i l . Heat t r a n s m i s s i o n from t h e p a n e l s t o t h e c o i l w i l l be p r i m a r i l y by r a d i a t i o n , w i t h some c o n v e c t i o n caused by t h e a i r h e a t e d w i t h i n t h e e n c l o s u r e .

9.

Conclusions The r a d i a t o r w i l l c o n t a i n a c o i l which c o n s i s t s of 120 3 / 4 i n . OD x 0.072 i n . w a l l t u b e s spaced 1%i n . a p a r t on c e n t e r s i n a s q u a r e p i t c h arrangement. ( F i g . 1) Each S-shaped tube i s approximately 30 f t i n l e n g t h and t e r m i n a t e s i n a 2% i n . p i p e d n i f o l d which i s connected t o a n 8 i n . I D header. T o t a l h e a t t r a n s f e r s u r f a c e : a r e a i s about 706 s q . f t . The h e a d e r s a r e connected t o t h e 5 i n . secondary s a l t c i r c u l a t i n g p i p i n g . (Fig. 2) Tubes, manifolds, headers, and secondary p i p i n g are a l l INOR-8.

The secondary s a l t m i x t u r e of 66 mol % L i F and 34 mol 74 BeF2 w i l l be circul a t e d through t h e r a d i a t o r a t 830 gpm and w i l l undergo a 75OP temperature drop as i t l o s e s 10 Mw of h e a t . Cooling a i r w i l l be s u p p l i e d by two 250 hp v a n e - a x i a l blowers e a c h c a p a b l e of d e l i v e r i n g 82,500 cfm of a i r a t 15 i n . water s t a t i c p r e s s u r e , o r 114,000 cfm f r e e a i r d e l i v e r y . For 10 Mw h e a t removal, 164,000 cfm of a i r w i t h a t e m p e r a t u r e r i s e of 200째F a c r o s s t h e r a d i a t o r w i l l be r e q u i r e d . The a i r p r e s s u r e drop a c r o s s t h e r a d i a t o r w a s c a l c u l a t e d t o be 12,5 i n . w a t e r s t a t i c p r e s s u r e , and t h e o v e r a l l h e a t t r a n s f e r c o e f f i c i e n t w a s c a l c u l a t e d t o be 52.4 Btu/hr-ft2-OF under t h e s e conditions.

A c u r v e of c o o l i n g a i r r e q u i r e d and a i r temperature r i s e f o r v a r i o u s r e a c t o r power levels i s shown i n Fig. 3.

L*'

The r a d i a t o r c o i l w i l l be e n c l o s e d i n an i n s u l a t e d frame equipped w i t h v e r t i c a l l y o p e r a t i n g i n s u l a t e d doors. During p e r i o d s when i t i s n e c e s s a r y t o s u p p l y h e a t t o t h e . r a d i a t o r t o m a i n t a i n t h e secondary s a l t i n a l i q u i d s t a t e , t h e doors w i l l be c l o s e d forming a r e a s o n a b l y a i r - t i g h t e n c l o s u r e .


f

'Y

fr

12.

Heat w i l l b e s u p p l i e d t o t h e r a d i a t o r c o i l d u r i n g reactor-down p e r i o d s by p a n e l s of e l e c t r i c a l r e s i s t a n c e h e a t e r s i n s t a l l e d i n b a f f l e s a d j a c e n t t o t h e tube rows.

References

- Summary of

I

R. C. Robertson and S. E. Bolt, MSRE H e a t e r s S t u d i e s , August 11, 1960, p. 20.

2

W. H. M d d a m s , Heat Transmission, 3d ed., Company, Inc., New York, 1954.

3'

Ibid, p . 272.

4

Donald Q. Kern, P r o c e s s Heat T r a n s f e r , 1st ed., Book Company, Inc., New York, 1950.

5

J. H. P e r r y (Editor); Chemical Engineers Handbook2 3d ed., H i l l Book Company, Inc., New York, 1950.

6

J. H. Westsik, P e r s o n a l Communication.

Preliminary

p. 219, McGraw H i l l Book

p. 148,

836,

McGraw H i l l

p. 391, McGraw


QJ

Lo

U

3

*n 0

w

8

Lo

k

2

Unclassified

ORNL-LR-Dwg . 54696

'y


__-header '\

'.

&

. A _ -

5 in. secondary salt outlet

rf'

2% in. pipe

downcomei-

120 S-shaped

I

3 OD tubes 4

5 in. secondary salt inlet

Figure 2.

MSRe Radiator Coil Configuration (Air Flow Out of Paper)


15.

Unclassified Om-LR-Dwg

. 54698

0.

"7

6

I200

5

p

//

k i r mass-flow a t e through adiator

/ 1000

/

4

J EO0

3

600

2

400

1.

7/\

\

A i r temp e r, :ure r i s e madiator 200

0 0

0

?

0

c

- -. . 0

3

0

3

1 0

F r a c t i o n Reactor Design Power ,+

Figure

3.

A i r Mass-Flow Rate and A i r Temperature Rise f o r MSRE Radiator WCU 11/17/60 4

*


Calculations ___-------__

-_--I-------

1.

Secondary s a l t flow r e q u i r e d f o r 10 Mw h e a t removal:

66 mol % LiF, 34 mol % BeF2

a.

Secondary s a l t ,

b.

S p e c i f i c heat,

c.

Density? = 120 l b / f t 3

d.

S a l t i n l e t temperature = 1100째F

e.

S a l t o u t l e t temperature = 1025'F

q

Wc A Btu/hr P t

=

c

P

= 0.51 Btullb-OF

,

where q

=

r a t e of h e a t t r a n s f e r , Btu/hr

W

=

mass flow r a t e ,

c

=

s p e c i f i c heat, Btu/db-OF,

=

ter.iperature d i f f e r e n c e , "F

P

A

t

lb/hr a t constant pressure

(10,000 Kw)(3415 Btu/Kw-hr) = ( W l b / h r ) ( 0 . 5 7 Btu/1boF)(75"F)

W

=

8000,000 l b / h r .

(800,000 l b / h r ) ( 7 . 4 8 g a l / f t " ) (60 min/hr) (120 I b / f t3)

2.

-

- _83G-gPrn --__

Amount of a i r r e q u i r e d f o r 10 Mw h e a t removal: a.

A i r i n l e t temperature = 100째F d.b.,

b.

Air o u t l e t temperature = 300째F

c.

Specific h e a t of a i r ,

0.24

+

0.45H = 0.24

S = 0.24

+

0.0063 =

S

+

76"~ w.b.

+

0.45 x 0.014

0.2463 Btu/lb-OF

d.

Humidity of a i r , , I-I = 0.014 l b w a t e r / l b d r y a i r

e.

Volume of a i r , Va = 14.45 f t 3 / l b d r y a i r

,


..

-

1 - 0.0692 l b dry a i r / f t 3 d r y a i r a ' Amount of water i n a i r = d e n s i t y of a i r x humidity

Density of dry a i r ,

f. g.

= 0.0692 l b d r y a i r / f t 3 x 0.014 I b w a t e r l l b

dry a i r = 0.001 l b w a t e r / f t 3 d r y a i r

h.

D e n s i t y of a i r = 0.0692 l b d r y a i r / f t 3 d r y a i r dry a i r

+

0.0010 l b w a t e r / f t 3

= 0.0702 l b / f t 3

q

=

WSAt Btu/hr,

where q

=

r a t e of h e a t t r a n s f e r , Btu/hr

W

=

mass flow rate, l b / h r

S

=

humid heat, Btu/lb-OF

=

temperature d i f f e r e n c e , OF

A

t

(10,000 Kw)(3415 Btu/Kw-hr) = ( W lb/hr)(0.2463 W

=

692,000 l b a i r j h r

692,000

l b air/hr

(60 min/hr)(0.0702

l b air/ft")

-

=

L~&,~o_O __-----cfm

Btu/lb-OF)(200QF)

"

..


List of Drawings as of 11-15-60

E-DD-Ah0430 E-DD-A40431 D-DD-Ab0432 D-DD-A40433 D-DD-Ak0434 D-DD-A40435 D-DD-A40436 D-DD-Ab0437 D-DD-AhO438 D-DD-Ah0439 D-DD-Bk0440 D-DD-B40441 D-DD-840442 D-DD-Bh0443 D-DD-B40444 D-DD-Bb0445 D-DD-B40446 D-DD-B40447 D-DD-B40448 D-DD-Bk0449 D-DD-C4045O D-DD-C4045 1 D-DD-Ch0452 D-DD-Cb0453 D-DD-C40454 D DD-C40467 D-DD-C40468 D-DD-CkO469 E-DD-Db0470 E-DD-Db0471 E-DD-DG0472 D-DD-Dk0473 D-DD-D40474 D-DD-Dk0475 D-DD-D40476 D-DD-D40477 D-DD-D40478 D-DD-Db0479

-

*

D-DD-D40480 D-DD-DbOh1 D-DD-Dk0482

-

D-DD D40483 D-DD-Db0484 D-DD-Ak0485 D-DD-A40486 D DD-A40 487

-

D-DD-Ak0488 D-DD-Ab0489

i:

.--. . . ...... ... .

General Arrangement of Radiator Radiator Coil Assembly Radiator Coil Details, Sheet 1 Radiator Coil Details, Sheet 2 Radiator Coil Details, Sheet 3 Radiator Coil Details, Sheet 4 Rhdiator Coil Details, Sheet 5 Udiator Coil Supports, Sheet 1 Rakliator Coil Supports, Sheet 2 Radiator Coil Supports, Sheet 3 RadFator Door Assembly Radiator Door Frame Assembly Radiator Door Frame Details Radiator Door Frame Details Radiator Door!Reflective Plate Reflective Plate Hold Down and Gasket Retainer Ring Radiator Door Roller Guide Radiator Door Roller Guide Radiator Head Arrangement Radiator Head Assembly Radiator Head Sections Sprocket Shaft Details Counterweight Details Magnet and Spring Shock Absorber Details Drive Motor, Clutch, Brakes and Gear Reducer Assembly Drive Motor, Clutch, Brake and Gear Reducer Details Radiator Enclosure Assembly Radiator Enclosure Elevations Radiator Enclosure Frame Assembly Radiator Enclosure Sections and Details Radiator Enclosure Frame Radiator Enclosure Sections and Details Radiator Enclosure Framing Details Radiator Enclosure Baffle Frame Radiator Enclosure Baffle Frame Radiator Enclosure Framing Details Radiator Enclosure Framing Details Radiator Enclosure Plating Details Radiator Enclosure Plating Details Radiator Enclosure Reflector Plating Radiator Enclosure Reflector Plating Tube Support Details


$19

0

D i s t r i bu t i o n

1. 2.

L. G. Alexander

3.

S.

G. M. Adamson

E. Beall 4. C. E , B e t t i s 5. E. S . B e t t i s 6. D. S. B i l l i n g t o n 7. F. P . Blankenship 8. A. Lo Boch 9. S. E. B o l t 10. C. J. Borkowski 11, W, I,, E r e a z e a l e l>'* E, L e Breeding 13. F. R, Rrlsc.j Li, 0 - W, Burke 1 5 . D. 0. Camphell 16. R, A, Charpie 1;. W. G o Cobb 18. J, A. ConIin 19. W, H. Co;*k XIo G. A. C r i s t y 21- J, L. Crowley 2 ; ) - F, L. C u l l e r ,-' L--ja D. A. Douglas 24. E. P. E p l e r 2 5 0 W. IC. Ergen ?Go W. H. Ford 27. A . P. Fraas 2 8 , J, Yi, F r y c 2 g O C o H. Gabhard 30. W. R, Gal1 ' j l " R. B o G a l l a h e r 32. W. R, Grimes 33. A , G. Grindell 34. C , S, Harrill 35. E. C. H i s e 36- H. W. Hoffman 37" P . P. H o l z 38. Lo N. Howell 39. W, H. J o r d a n 1,O. P, R. Hasten 41. R, J. Hedl k2. G. W. K e i l h o l t z 43* II. W. Kinyon 4b. R e W. Knight L5. M. I. Lundin 46. K O G. MacPherson

-

D. Manly R. Mann B. McDonald K. McGlothlan C. Miller L. Moore J. C, Moyers C. W e Nestor T. E , Northup W, R, Osborn Lo F, P a r s l y P. P a t r i a r c a H. R. Payne W, B , P i k e R. E. Ramsey M e Richardson R e C. Robertson T. K O Roche H. W. Savage D. S c o t t w. L. S c o t t 0. Sisman G. M. SLaughter A . N. Smith P. G. Smith I. Spiewak J. A . Swartout R. W. Swindeman A . Taboada J, R. T a l l a c k s o n D o B. Trauger W. C. U l r i c h D. C. Watlcin A . M. Weinberg 3. H, W e s t s i l c Lo V. Wilson C. E. Winters C. H, Wodtke RD L i b r a r y C e n t r a l Research L i b r a r y Document Reference L i b r a r y L a b o r a t o r y Records ORNL-RC W. E. W. C. E. R.


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.