F r c a %TaderWa,Director
Beactor Technology eomists of two aemsters of f o r W e o w s e i n s t r u c -
tion, followed by ten weeks given t o r e a c t o r design s t u d i e s .
These
s t u d i e s provide each s t u d e n t as1. sTprsrtunity of applying t o a s p e c i f i c
t o include mi3 of the ~ m i o u sengineering professions and s c i e n t i f i c f i e l d s i n much t h e
6-
p a t t e r n found i n a ty-picetl reactor p r o j e c t .
T h i s report is based on the s t u Q made! by its authors w h i l e !
they were students i n the 19521-33 session of ORSORTe the report prepared in t a n weeks.
spent,
It
WEZB
made and
Obarious%y those weeke were diligently
Even so it woviLd be zanroeasr>nab%e to expect t h a t %he studs
repasted hem i s either definitive or free of defect i n Judgemmt.
The
f a c u l t y and many, perhaps all of the studenks m e comineed that the p r o j e c t w e l l serve& i t s peaagog3ca2. purpose,
received f ~ o its a consultant, E.. â‚Ź3, Ham.
-3
-
The report i s published
This group wishes t o excress i t s appreciation t o the members of the CRSORT f a c u l t y who presented the i n f o r m a t i o n which served as the technical background f o r %his study.
a l l members o f %he Oak Ridge ANP group
Thanks are also extended to foy their invaluable
assistance, p a t i e n t consul%ation and e o r d i a l h o s p i t a l i t y . For hPs gaidance and assistance. t h i s g m u p expresses i t s appreciation t o the group a dvisor , E, R , Nann.
Particular thanks
are also extended t o If. F. Poppeirdiek who n:ade the f l o w experiment possib7.e and to A, I I . Fox foy Of'
the reactor.
his guldmce
Q~I
tbE
nucle81" aepeets
Pwe
P,
38
39 39 40
Faw 1
10
2
11
3
Typical. keff vs. Uranium Mass Curve
1,
Cheracteristic Self-shielding Factors
5
Thermal U t i l i z a t i o n Curves f o r C y l i n d r i c a l
19 20
21
fie1 Tubes Nuclear Approximation of the Screwball.
25
Ga?ms Heating Uist r i b u t i o n
45
Over-all Heat Transfer C o e f f i c i e n t vs.
47
NaOD V e i o c i t y
. NaOD
La
10
Ternperatui,e Varfijltions Thuou@~t h e Core
50
11
Reflector Powep. Absorption Curve
52
12
Photograph o f the Flow Experiment iipparatus
56
13
Shield Weight C u ~ v e
58
1.4
C r i t i c a l Detezminarzt
30
3
Ne013 Heat T r a n s f e i - C o e f f i c i e n t vs Velocity
I
INTTtODUCTION The objective of t h i s p r o j e c t was t o apply the t h e o r e t i c a l
information psesented a t ORSORT to the d e s i g n o f
tt
reflector-
moderated, c i r c u l a t i n g f u e l , aircraft r e a c t o r . . The seope of t h e i n v e s t i g a t i o n was l i m i t e d primarily t o
an analytical evaluation, although a minor f l o w experiment was perf omed Thfs design study has been l i m i t e d to the r e a c t o r ;
propulsion system has not been considered.
the
I1 SrnmRY A preliminary f e a s i b i l i t y skvtdy o f a 200 MW r e f l e c t o r moderated,
circulating fuel
atrcraf'c, r e a c t o r i s presented
I
The Screwball
' core
configuration as p r e s e n t l y conceived c o n s i s t s o f : 1) A spherical s h e l l beryllfum r e f l e c t o r
2) APE type f l u o r i d e f u e l i n h e l i c a l tubes arranged i n annular form
3) NaOD moderator and r e f l e c t o r coolant I n an attempt t o j u s t i f y t h e use
o f fuel tubes, an experimental
i n v e s t i g a t i o n o f the flow i n a model h e l i c a l Lube was conducted. The r e a c t o r a n a l y s i s was conducted on a Luo group, t h r e e region basis.
Tne nuclear c r o s s s e c t i o n s were a p p r o p r i a t e l y weighted and
judiciously appllied s o t h a t t h e r e s u l t s compared favorably with t h e multi-group machine c a l c u l a t i o n s
~
The r e a c t o r presented i s believed t o he conservative and appears t o be f e a s i b l e .
'The fundamental l i m i t a t i o n i s t h e 1250째F maximum. w a l l
temperature toc prevent, excessive NaOD corrosion.
Large NaOD f l a w i-abes
and m p l e flow guidanw: are require6 t o minimize corrosion.
If t h e
c o r r o s i o n limit can be r a f s e d , Vne use of NaOD as moderator and coolant has grea'ter p o t e n t i a l
e
Helical fuel tubes a m recommended t o reduce the u n c e r h i n t i e s of
unstable flow i n high power-density r e a c t o r s ,
!he engineering
complexities introduced by t h e i T use are just,i f i e d f o r c o n t r o l l e d flow
The r e a c t o r descrfbed i n t h i s r e p o r t w i l l be c a l l e d t h e PsScrewba31.tt ( t h e F i r e b a l l with a new t w i s t ) .
-
8-
III GEHhTAL PLANT DESIGN 3 J . General Description The Screwball i s a sphesical., r e f l e c t o r moderated. c i r c u l a t i n g fuel reactor.
The f u e l e n t e r s t h e core a% t h e north pole ant3 flows
downmrd through six 3.5 inch I .De inconel t u b e s ,
Five of these tubes
a r e wrapped i n a variable p i t c h helfx t o f o n a spherical annulus of f u e l and t h e s i x t h tube passes through t h e centavr o f t h e sphere forming
a h e l i x of smaller diameter.
See F i g w e s 1 and 2.
In returning t h e
f u e l flows over Hair cooled %ubes i n t h e primary h e a t exchanger which is wrapped i n a s p h e r i c a l annulus surrounding the beryllium r e f l e c t o r .
The beryllfum r e f l e e t o r has t h e form o f a s p h e r i c a l s h e l l with h o l e s a t t h e north and south poles f o r e n t r y of t h e f u e l tubes.
Sodium deuteroxide
flows downward through the s p h e r i c a l c a v i t y f n t h e beryllium and surrounds t h e h e 1 tubes, hence functioning as a moderator t8island". The NaOD r e t u r n s t o t h e top through 0,23 inch dfmeter h o l e s d r i l l e d i n t h e r e f l e c t o r and through a s p h e r i c a l cavity o u t s i d e %he r e f l e c t o r thereby removing t h e h e a t produced in %he r e f l e c t o r ,
The NaOD then passes through
a h e a t exchanger and i s pumped hack through the core, The intermediate heak transfer medium, NaF, r e t u r n i n g from t h e propulsion system passes through the sodium deuterox5.de h e a t exehanger and then through the primmy h e a t axchanger,
This system uses only one
intermediate h e a t t r a n s f e r medium and eliminates t h e n e c e s s i t y o f a d d i t i o n a l r a d i a t o r s f o r subcooling n p o r t i o n o f t h e EaK as proposed f o r the Fireball.
However,
8
control. system
$5
required which will keep the
r e t u r n HaK temperature constan%, If -the te-tperature rises, the NuOD w i l l
be i n s u f f i c i e n t l y cooled and exeesslve eorrosion nay r e s u l t ,
-9-
A t return
I 4 f
1
a t
u.9
E
!
FUEL IN
S
temperatures below 900째F., t h e fuel w i l l fyeeze i n t h e primat-y h e a t T*dith i t s idi.:rent s i m p l i c i t y , the use o f a s i n g l e t r a n s f e r
exchanger,
inedjum warrants furtiiier i n v e s t i g a t i o n ,
Figu-e 1 i s a rh-awing o f t h e
Scrwdmll system, and a t a b u l a t i o n o f design d a t a i s contained i n t h e Appendix 1,
3.2 Design Philosophy A byief survey o f NEPA, erJP, R, K . Ferguson, and Technical Advisory Board r e p o r t s indicated t h a t homogeneous r e a c t o r s held the g r e a t e s t p o t e n t i a l f o r e f f i c i e n t nuclear propelled f l i g h t .
Since l i t t l e information
i s a v a i l a b l e on a combined hydroxide of l i t h i m and sodium ( t h e rnost obvious candidate f o r a high temperature homogeneous r e a c t o r f u e l ) t h e c i r e u l a t i n g f u e l type r e a c t o r was chosen as an intermediate s t e p between f i x e d fuel elements and the homogeneous type f u e l .
The l a r g e h e a t t r a n s f e r s u r f a c e
r e q u i r e d i n fixed f u e l reactors i s removed from t h e
COTE
in c i r c u l a t i n g
f u e l r e a c t o r s and t h e p o t e n t i a l s i m p l i c i t y o f homogeneous r e a c t o r s i s retained
Thc moderating propest2es o f t h e uranium b e a r i n g
fused sal t s
are generally p o o r , but employing t h i c k , e f f i c i e n t r e f l e c t o r s enables t h e construction of a small high power reactor.
Waving chosen a r e f l e c t o r moderated, c i r c u l a t i n g f u e l tyye i e a c t o r ,
a more d e t a i l e d i n v e s t i g a t i o n vas f n i t i a t d on t h e Fireball as described i n Reference 2,
I n v e s t i g a t i o n o f t h e F f r e b a l l design parameters yielded t h e
following f i v e problems which appeared t o warrant basic design changes o r modificatfons:
1, El& 2
power d e n s i t y
Questionable fuel f l o w p a t t e r n s
3 - P o s s i b i l i t y o f pl-essure surges
4.
Cooling t h e Be "island"
5.
Self-shielding i n t h e f u e l
The Screwball e l i m i n a t e s o r reduces t h e magnitude of each o f t h e s e problems except presswe surges.
To achieve these ends compromises
i n s i m p l i c i t y and r e a c t o r s i z e have been made;
however, t h e increase i n
s h i e l d weipht over the 22.5 inch core is less t h a n 10%.
I t is believed
t h a t t h i s reactor has a real p o t e n t i a l f o r aircraft a p p l i c a t i o n , and as such warrants f u r t h e r i n v e s t i g a t i o n , The c o n t r o l l a b i l i t y of a high power d e n s i t y r e a c t c r has been n e i t h e r
proven n o r disproven,
E. R. Mann states t h a t c o n t r o l l i n g a r e a c t o r i n which
t h e f'uel temperature rise i n t h e core exceeds 2000째F. p e r second w i l l be d i f f l c u l t and somewhat doubtful.. To be more conservative: a power d e n s i t y
o f 3.5 KW/m (1O7O0F. per second) bas been chosen f o r t h i s r e a c t o r .
W i t h such r a p i d i n c r e a s e s i n fuel temperature only short l i v e d flow i n s t a b i l i t i e s o r eddies can be t o l e r a t e d i n t h e fuel.
Tke use o f f u e l
tubes i n t h e Screwball has greatly reduced t h e u n c e r t a i n t y o f s u s t a i n e d i n s t a b i l i t i e s fn %he fuel region.
A b r i e f q u a l i t i v e experkent v a r i r y i n g
s t a b l e florcr through h e l f c a l pipes i s described i n Section 6 * 3 *
Pressure surges result from r a p i d d e n s i t y changes due t o temperature varTations which occur i n eddies of lengthy d u r a t i o n , o r froxi t h e instantaneous i n t r o d u c t i o n o f a c o l d s l u g o f fuel.
A s t e p decrease i n
temperature i s d i f f i c u l t to v i s u a l f a e i n a c i r c u l a t i n g fuel r e a c t o r . Pressure surge c a l c u l a t i o n s have been made on t h e Fireball assuming stagnant fuel i n t h e core and a s t e p f n c r e a s e i n
k of 1% throughout t h e core.
These assu=flptions are both conservatfve s i n c e n e i t h e r condition i s l i k e l y t o QCCW
i n the reactor.
Based on t h e s e assumptions t h e r e s u l t i n g pressure
-13-
surge i s not expected t o exceed 150 p s i . .
A s a r e s u l t o f the more
tortuous expansion path out o f t h e cope, pressure surges i n t h e Screwball alee expected i o be l a r g e r .
However, Yne f u e l tubes i n t h e
Screwball w i l l withstand preasures o f 200 p s i and no d i f f i c u l t y from t h i s phenomenon i s a n t i c i p a t e d e The bery-llium c e n t r a l "island" i n t h e F i r e b a l l r e a c t o r r e q u i r e s cooling t o remove attenuation.
tine
h e a t generated by neutron moderation and gamma r a y
The density of h e a t generation i s 100 t o 200 watts/cc, and
it; removal w i l l r e q u i r e a l a r g e number o f c o o l a n t tubes.
The beryllium
has been replaced in t h e Screwball by a c i r c u l a t i n g r?islandltof NaOD. However, the problem o f NaOD corrosion has been introduced.
As i n d i c a t e d
in Section 6 . 2 2 , no stagnant o r low v e l o c i t y laycrs i n NaOD can be t o l e r a t e d next t o t h e h o t fluel tubes or containing s h e l l . The s e l f - s h i e l d i n g e f f e c t , as described i n Section 5 * 2 , for the
3.5 i n c h diameter tubes o f t h e Screwbal-l should be l e s s severe tnan f o r t h e s p h e r i c a l f u e l annulus i n tine Ffreball.
-1L-
IV MATE3iAL3 4.1 The proposed fueel f o r the Screwball is a fused s a l t containing 50 mole p e r c e n t
N S , l+7'mole p e r c e n t ZrFltt and 3 mole percent enriched
uF4. This fuel I s similar
t o t h a t proposed f o r the AXE and was chosen
f e a+ailetbh on its because eomfderable i~I?orma%fora p h y s i c a l and chemical p r o p e r t i e s .
'
To relax t h e l i m i t a t i o n on t h e
temperature o f t h e r e t u r n i n g NaK (Section 3 2 1 , a f u e l with a lower melting p o i n t xould be desirable,
Inconel will be used as the &el
containing
material e
L,2 R e f l e c t o r The r e f l e c t o r has two functions; moderation and s h i e l d i n g . a good moderator,
Be i s
Its a o d e r a t i n g r a t i o 1s 159 compared t o 170 f o r carbon.
In a d d i t i o n , it s e r v e s as an excellent s h i e l d due t o i t s high atomic d e n s i t y and small age,
The fast neutron leakage f o r a given r e f l e c t o r
t h i c k n e s s is much smaller f o r beryllfum than far substances such as NaOD,
BeC, g r a p h i t e and Be0 aggregate
e
(Reference 2, Figure 7)
L)
Hence?
beryllium has been chosen for t h e Screwball reflector. lo 3 Moderator
A f l u i d moderator with a low vapor pressure a t elevated temperature
was desi;.ed,
Their high vapor pressures eliminated the possibility o f
using l i g h t o r heavy water.
Hydroxides were
then considered.
The d i f f h s i o n l e n g t h of a hydroxide is v e r y small r e l a t i v e t o i t s age,
Heme, a hydroxide i n t h e core o f the Screwball would serve 8s a
s i n k f o r f a s t neutrons r a t h e r % h a as a moderator,
Deuteroddes do not
have this undesirable nuclear property and should e x h i b i t sfiljlar physical
-15-
arid corrosive p r o p e r t i e s . both were considered.
Therefore, 1,iOD
~
FJaOD and combinations o f
The double i s o t o p i c separation eliminated LiOD
f r o m s e r i o u s consideration; NaOD was chosen f o r t h e core moderator. NaOD a l s o serves as t h e coolant f o r t h e r e f l e c t m .
It 3.s a b e t t e r
moderator than sodium (the proposed Fireball m f l e c t o r coolant) s o t h a t
t h e Screwball r e f l e c t o r should be a more e f f e c t i v e s h i e l d .
However, t h e
macroscopic- cross s e c t i o n f o r thermal neutrons i s l a r g e r f o r NaOD than for sodium.
The s l i g h t d i f f e r e n c e i n absorption does n o t warrant cohsidering
t h e additional. complexity o f a s e p a r a t e s o d h r ~system f o r t h e Serevball, B M I has made R survey o f containinE materials f o r NaOH a t elevated temperatures (Reference 23)
.
Graphite, s i l v e r and n i c k e l were
the most s a t i s f a c t o r y o f t h e materials t e s t e d ,
Nickel was chosen f o r the
Screwball on t h e basis of ease o f c l a d d i n g and e l e c t r o p l a t i n g and t o l e r a b l e neutron c r o s s section.
The corrosion mechanism o f MaOH
on nickel i s
reported i n Refemnce
The r e a c t i o n equilibrium i s temperature s e n s i t i v e resnl.ting i n
mass t r a n s f e r of n i c k e l from h o t r e g i o n s t o adjacent c o l d e r suyfaces, The corrosion can be suppressed by hydmgen pressure over %he NaOH.
The
corrosion mechanism f o r N&D
i s expected t o be similar t o
t h a t f o r NaOH, but t h e degree and %exnperatzlre dependance o f the corrosion
are unknown.
For %'lis skudy, t h e temperature
l i m i t a t i o n f o r NaOD
comosiop"I o f n i c k e l i s assiuned t h e same as f o r NaOH.
According t o Reference 3, corrosion o f n i c k e l by stagnant NaOH i s ,
1) n o t nci%icable at LOOQOF 2 ) small a t 1250째F and would be tolerable f o r a i r c r a f t applications
3 ) excessive a t 1500째F A l h f t i n g wall temperature o f 125PF and a deuterium gas pressure i n t h e AiaOD expansion t a n k of two t o three atmospheres are proposed f o r t h i s r e a c t o r .
4 ,L+ Intermediate lieat Transfer Medium A near e u t e c t i c a l l o y
of sodium and potassium, 56 welpht percent
1% and +!,A weiqht pel-cent K , has been chosen as t h e i n t e m e d i a t e heat
transfer. medium.
n;S
i s typical nf l i q u i d metals, %his a l l o y has e x c e l l e n t
beat transfer. p r o p e r t i e s and a l s o has a low m e l t i n g point (66째F).
The
main disadvantage o f NaX i s t h e induced r a d i a t i o n r e s u l t i n g from neutron
bombardment i n t h e primary heat exchanger.
A.5 Fabrication The proposed methods f o r f a b r i c a t f n g t h e primary h e a t exchanger,
p u q x and beryllium ?=eflector are t h e stme as those desci-fbed i n Reference 2,
N f will be substitutei! for chromium i n t h e reflector,
Bending t h e fuel1 tubes 2s p w s i b l e (Reference 51, with the u s e
of a cernet i n t e r n a l mandrel,
The HaOD h e a t exchanger i s standard, welded s h e l l and tube construction a
The e n t i r e system will be welded,
Reference 6 states t h a t welds
i n nickel f o r 100U째F NaOH c o r m s i o n t e s t s were rnade with no unusual t i i f ficulLy
Inconel. weldLi-ig presents no m a g o r cc+mplfcations
The fabrication sequence has not been f u l l y considered i n t h e layout of ysgWe 1
flodifications :nay be requi-ed t o f a c i l i t a t e assembly o f parts *
-17-
V REACTOR
PHYSICS
5.1 @-Sections The cross sections tzscd f o r nuclear c a l c u l a t i o n s i n t h i s r e p o r t a r e based on c u r r e n t ABP d a t a . 5.2 :elf-shielding
The a p p l i c a t i o n of d i f f u s i o n LheoTy i.n Reactor design, yields a t b e s t only a reasonable approxtmstion o f the micfeas c h a r a c t e r i s t i c s o f homogeneous systems.
The Screwball i.; a heteropenenus m a c t o r which has
been homogenized f o r the purpose o f e % e d i t i n g t h e nuclear c a l c u l a t i o n s . This f a c t makes it necessary t o correct t h e d i f f u s i o n equa%iom by 1nCroducing a parmeter commonly r e f e r r e d t o as t h e s e l f - s h i e l d i n g f a c t o r ,
F. T h i s
factor accounts for t h e l o c a l depression of the neutron f l u x wi3hin t h e f u e l reglon, which i n t,urm results i n decreased thermal u t i l i z a t i o n o f t h e fuel.
Tho major disadvantages r e s u l t from self-shielding, F i r s t , more f u e l i s reqliired than f a r a homoqcneous r e a c t o r of the sa'ie pFoportions:
second, t h e negative temperat1lre c o e f f i e i e n t i s n o t as l a r g e ,
and
As seen i n
FXgwt 3, a smaller change i n keff r e s u l t s from t h e removal o f an equal mass o f uranium f o r a r e a c t o r with a greater uranium investment,
Pigare 4 d e p i c t s esti.natcd values of F vs. fuel tube d i a m t e l - afu
various r e a c t o r o p e r a t k g temperature;. t h e n e t k o d s e t f o r t h i n Reference 7.
The c a l c u l a t i o n s were kased on
To apply t h e method one m s t know
Zs and ZL of each constZtuent, the atom%@d e n s i t i e s in t h e f i e 1 tube and f t s diameter, and t h e v a r i a t i o n of f with 2RXb as shovn i n Plgm-eS.
F1-onl t,'siese ita La cal c u l a t e ,
-18-
.....
................ ................................... ............. ~
as a function of
,kt%ra-gy, d~hichi s then used as a multiplying constant
on the mzcroscopic cross s e c t i o n of uranium, The self-shielding factors which were incorporated in the Screwbal.1 e o n f L p a l i o n were
=
pth = O , s ,
0.8,
It
Is
believed that -these
figures resulted i n a conservative value f o r t h e c r i t i c a l mass.
T,3 One Group, Two Region, C r i t f c a l i t s C a l c u l a t u A3 a basis f o r Bdvanced zngincering ajnd nuclear calculations, m
estimate of the Screwball c r i t i c a l nauss was necessary.
For t h i s purpose a
one group, t w o r e g i o n calculation was made of Lhe proposed configuration. me general method of ca7culation i s discussed i n Reference 8,
equation 8 31.1
-
k- 31
â‚ŹJotez wuation S.31.31 f s i n error i n the f i r s t edition o f Reference 8 The item
k-
should read
The e f f e c t i v e reflector tM.cknsss was eonp-uted f o r ANT Reactor
121 f o r wh9eh the c r i t i c a l m e s s had been cal.culated by the 32 group 1BlI technique.
Assum3 ny the scme effective r e f l e c t o r thickness, Lhe critical
nass was det,emined f o r the proposed Screwball
-22-
For the purpose of
CPOBIS
section weighting both reactors were
f m t and the faat f r a c t i o n to bes equally d i s t r i b u t e d among
o f intermediate reactors is more d i f f i c u l t than for thermal r e a c t o r s ,
The
The approxi-nati on of t h e Screwball used for nucl.eai- cal-culation i s schematically depicted i n F f g w e b . sphere (I) 9
R1__ i s the radius o f the i n n e r
with R2 and R 3 representing the r a d i i of s p h e r i c a l shells
11 and 111. A s applied t o t h i s r e a c t o r , region I i s the moderator, region 11 t h e f u e l bearing medium and region I11 the r e f l e c t o r . The d i f f u s i o n equations which inrere used i n t h e r e a c t o r a n a l y s i s
where s u b s c r i p t s I , i n d i c a t e s f a s t group region I: and where s u b s c r i p t s
I2
indicates thermal group region I , e t c .
The above equations arc
founited
3n the following assmiptions:
(1)There re no f a s t a b s o r p t i o n s i n t h e r e f l e c t o r ( 2 ) There are no s c a t t e r i n g c o l l i s i o n s with the
iiranfvm in t h e h e 1
( 3 ) A l l f a s t a b s o r p t i o n in the fuel region i s due t o urani un
(!+.I The use
of
"f Ct in pl-ace of
approximation providing
C
-2 =s
3 Xs
is a valid
<< i
(5) The neutron energy spectrum, from source t o thermal, Can be divided i n t o -two r e p r e s e n t a t i v e energy groups.
(6) Neutrons do n o t leak before the f i r s t c o l l i s i o n . (7) Thc Doppler E f f e c t i s neglected. (8) C r y s t a l effects are neglected.
(9) Kodera t i o n e s s e n t i a l l y takes place i n t h e r e f l e c t o r moderator region
The a p p l i c a b l e boundary conditions for both groups are: (1) Synvnetry o r nonsingularity of f l u x a t the center o f (2) Q u a l f l u x e s a t t h e i-nterfaces
.
(3) Equal currents at the i n t e r f a c e s .
( 4 ) Fluxes vanish at the e x t r a p o l a t e d boundary. Sol-vlng t h e d i f f u s i o n equations and applying the f i r s t and fourth
boundary c o n d i t i o n s y i e l d s the f ollowj-ng expressions f o r the flm:
The constants in t h e above equations $re defined
(L)
-h
as f o l l o w s :
2 L
d
?I=
s2 =
-27-
(8)
SA =
5i111,
[LIIIZ L-
-28-
E i g h t equations with e i g h t &noms t h e remaining boundary eonditfons,
r e s u l t from applying
A non-trivial solution for
these equations i s o b h i n e d If the c o e f f i c i e n t s of t h e determinant
(Figwe I&) vanish; t h i s then e s t a b l i s h e s the c r i t i c a l equation.
Tho two eroup cal.culs5fon method r e q u i r e s accurate and
judfciaus application of" n u c l e a r cross s e c t i o n s .
Thermal base 92
values were used f o r determining thermal pou-p Cross s e c t i o n s and
an average over lethargy groups 1 through 26 f o r t h e f a s t group. or2 vs,
r
curves were plotted f o r RNP reactor 129 and nomalezed
area f r a c t i o n s (Appendix 3 ) determined f o r each lethargy group and region,
These areas are proportional. t o t h e f r a c t i o n of neutrons
i n each group.
The same neutron versus l e t h a r g y d i s t r i b u t i o n was
assumed f o r t h e proposed Screwball r e a c t o r ,
1% i s poss5ble t o solve t h e c r i t i c a l i t y determinant after c a l c u l a t i n g t h e nuclear c o n s t a n t s (L, I), and 2=
from t h e s p e c i f i e d
dimensfons and m a t e r i a l c o n s t i t u e n t s f o r each region.
The c r i t i c a l mass
is obtained by i t e r a t i o n and i s that uranium mass which results i n the aero value o f the determLnant, is
The rnetRod f o r scl-uing the determinant
presented i n Reference 9 * To check t h e va9ftlity of the method o f malysis, a e a l c u l a t i o n
was eonduct;ed on t h e F i r e b a l l Reactcr 12.9; i t s critical. mass as deterrrdned by a 32 g~roupIBM @a]-culation was 23 pounds of U235.
me two
g r w p t h r e e region calculatfon of reactor 129 predicted 23.4 pounds o f
U235 +
T h h i n d i c a t e d e x c e l l e n t c o r r e l a t f o n between analytical methods
and e b o i c e af cross sect50nae
-29-
_.
-:. ..
r
u
I
4
c.
0
0
0
0
I
......
0
I I _ _
0
I
0"
The value of the deterninant varies radically x i t h small change
in wmfm massa The d e t e d n e n t f o r the Screwball was zero f o r two assumed uranium masses, 31+,,8pomds and 49 p o ~ n d s . The c u r v e of
fluoride fuel composition;
2,9 mole percent UFA
47J. mole percent ZrFq 50.0 mole percent N i F Several e f f o r t s t o calculate t h e spatial distribution o f the flux
yielded results of questionable validity,
Very srnal.1 chnngr?s in t h e nucl.ear
c o n s t a t s produce major change;; in the flu.x distribution.
With such a
sensitive rela,tionship no signiffcant mnclusions have been obtained. Based on thc results of t h e
32 group c a l c u l a t i o n s , it is
znticipat,cd that the Screwball will. be approfimatcly 50 percent thermal
If' s o 9
t,hs flux level requiietl to produce
centfmeter per second
280 W is 3 ' 0 1
~
Wutrsm per squme
5 * 5 Tcm~e-'c"Lture-Coefficieni;o f Reaetivi%x The Screwball has been conceived for p o s s i b l e use i n aircraft.
appHcathns,
It is therefore f m p o s t a n t that its control system be as
simple as posslble.
Since the use of control.. rods i s not anticipated
and t h e de2ayed neutron c o n t r i b u t i o n s t o the f l i x x are attenuated when
%he fuel- is circulating, t h e control o f t h i s reactor can be assur!?ed t o satLsfuctory only if it is provided with a strong negative temperature
be
c o e f f i c i e n t of r e a c t i v i t y .
This c o e f f i c i e n t i s a function of numerous
nuclear and physical parameters, a few o f t h e more important ones being: (1 ) l i q u i d f u e l expansion
(2) f u e l tube wall expansion
(3) Doppler e f f e c t i n f u e l
( 4 ) moderator expansion ( 5 ) thermal base changes with teaperatuye There are s e v e r a l reaaons why keff i s temperature dependent, t h e n o s t important one being t h e thermal expansion of t h e core m a t e r i a l s . This e f f e c t u s u a l l y r e s u l t s i n r e a c t i v i t y decreases with t e n p e r a t u r e
increase.
If the o v e r - a l l temperature c o e f f i c i e n t i s p o s i t i v e , t h e
continuoils i n c r e a s e nonuseful l i f e .
i n temperature r e l e g a t e s t h e r e a c t o r t o a s h o r t
The r e a c t o r then contains a b u i l t - i n s u i c i d e complex.
A negative c o e f f i c i e n t i s obtained from t h e t h e i m a l expansion o f %he f u e l and i t s loss from the a c t i v e volume.
Moderator expansion, resul.tint~,i n
increased neutron leakaqe, i s a l s o a l a r g e c o n t r i b u t o r toward a negative coefficient.
The Doppler broadening, which f o r enriched fhel could
provide a p o s i t i v e component o f t h e temperature c o e f f i c i e n t , has n o t been considered i n
t h i s report.
I n t h T s connection, it i s believed t h a t
a d d i t i o n o f $38
â&#x20AC;&#x153;0
Doppler e f f e c t ;
t h e p r i c e i s a g r e a t e r f u e l inves-knent.
t h e enriched fuel may possibly cancel o r overcome t h e
The c a l c u l a t i o n s therms3 reactor.
trier-e
conducted on t h e b a s i s o f a two group
Although t h e Screwball has been estimated t o be 50
percent thermal, it i s believed t h a t a reasonable e s t i - m t e o f t h e temperature c o e f f i c i e n t was obtained,
It was a l s o assumed t h a t t h e product
ofâ&#x20AC;&#x2DC; t h e resonance escape p r o b a b i l i t y and t h e f a s t f i s s i o n f a c t o r
t o unity.
rere equal
This steady s t a t e equation i s
temperature dependent as a result
o f temperature variation of core peometry, m a t e r i a l d e n s i t i e s and energy d i s t r i b u t i o n o f the neutrons,
The f r a c t i o n a l . change i n keff whfch
accompanies a u n i t temperature rise i s the temperature coefficient of reactivity.
This q u v l t i t y must be negative f o r stable r e a c t o r operation;
It i s obtained by taking the logarithmfc
der5vatLve o f t h e above equation
w-itih respect to t h e temperature,
The solutdon o f t22i.s equation bused
on t h e m a n
o p e r a t i n g temperature o f
app rofimately 130OoF a d 5nclud2ng cross s e c t i o m appropriately weighted by t h e se3 f-5hk.s I: Inp; fC:tctor ,yielded t h e f o l l o w i n g r e s u l t s :
Tne r a t i o of the noderator t o f u e l c o e f f i c i e n t is two Lo one. Tki,; ratio has ir:ipor'tant bearing on the k i n e t i e behavior of t h e r e a c t o r
bemuse of the relat5onshLp between the tennperaturs response tirae
constants for f b l and moderator regions,
For t h e Screwball these t5me
constan%s a r e approximatefy 1 - 3 and. 3 seconds f o r t h e f u e l and moderator respectively;
the r a t i o o f moderator t>o fuel con:%ant:; is: approximately
-33-
seven.
The combination o f t h e above r a t i o s becomes rriost
when t h e power i n c r e a s e s
u n l e s s t h e mean moderator t e n p e r a t u r e i s kept
constant t h e f u e l may freeze. follovs;
important
The explanation of t h i s phenomenon i s as
an increased moderator temperature reduces t h e rea c t i v i by and
cauSes t h e f u e l texperatwe t o decrease since i t s negative temperature c o e f f i c i e n t compensates f o r this reduction i n r e a c t i v t t y and maintains Since t h e reactor i s without servo-type control r o d s ,
t h e reactor c r i t i c a l .
it ma37 be p o s s i b l e t o f o r e s t a l l t h i s p o s s i b i l i t y by maintaining a constant
mean moderator t e n p e r a t w e .
5.6 Fission Product Handline; The two major f i s s i o n products which a b s o r b neutrons p a r a s i t i c a l l y are Xe135
and
Sm149.
An important advantage o f cfrcul-ating
fuel r e a c t o r s is the p o s s i b i l i t y o f continuously purging X e and o t h e r f i s s i o n product gases from t h e system, thereby appreciably reducing t h e
fuel inventory r e q u i r e d .
Reference 22 proposes bypassing a f r a c t i o n of
t h e primary f u e l stream through a turbo-diffuser unit in which the Xe i s purged with helium.
It has been estimated t h a t f o r an assumed equi.librium
Xe concentration condition of
=
, about
oe3g
6 percent o f t h e
K primary flow must be con tfnuously passed throuzh t h e s e p a r a t o r . Additional fuel. w i l l be due
.&a&
'A
accor;nt f o r t h e reduction of k,ff
t o absor.p-tion by t h e equilfbriuni Xe,
Samarium poisoning under
= oe6g e Fuel r ~ i l l k have t o be added to t a k e c a r e of the e q u i l i b r i u i Sm abeorptfon.
equiLibi-iwn conditions i s expected t o have EL
-34-
SISI
5.7 Excess Fuel %qui~-ernents
I n accordance with Reference 2, t h e change i n uranium mass required for a given change In keff ( f o r rlpjP c i r c u l a t i n g f l u o r i d e fuel r e a c t o r s i s given by t h e r e l a t i o n :
It viis estimated t h a t z
kerf of
1,021 w i l l be required i f the
reactor i s Go operate a% 100 MU f o r 100 hours.
Background information
SOT calculating t h i s f i p o was obtxined from v a r i o u s ANIâ&#x20AC;&#x2122;, rWX and RIGâ&#x20AC;&#x2122; reports,
A breakdown oP the component
keff is:
Critical
1.QOO
Equilibrium Xe override
Q,OO?
Equil5.bsit.m 4n override
0.006
Fuel d e p l e t i o n
0.006
Excess f o r delayed neutron a t t e n u a t i o n
0 .OO5
Excess f o r instrrur;lentation i n t h e r e f l e c t o r
0,001
k,jy
=
2,021
The excess reactivit;y required 5s obtained by i n c r e a s i n g t h e
c r i L i c d mass by 3,3 p o u n d s ~ of t h i s , approximately one pound w i l l be used t o shkn t h e system during operation. 5 * 8 Kinetics
The question of i n h e r e n t s % a b i l i t y i s sxtremeLy important With high powered, mobile, c i r c u l a t i n g a e l reactors,
Since high power at
high themodptimic e f f i c h n s y i s required9 a reactor temperature approach5ng the upper permissible lhit is desirable, The extremely r a p i d power
f l u c t u a t i o n possible i n r e a c t o r s of high power d e n s i t y I-1.e m s manual o r even servo-type control inipi-actica,!..
As a r e s u l t cont,rol rods f o r use
during normal reactor operation were no 1; considered f e a s i b l e . The . t r a n s i t t i n e sf t h e fuel till-ough t h e i-eactcxr i s a f r a c t i o n o f a second,
As a pesu.t.t, t h e delayed neutmn contributinns t o t h e f l u x
are attenuated when t h e file1 i s circulaked
Nomally , t h e delayed neutrons
play 8.n iniportant 1,ol.e i n conventional r e a c t o r s ; t h e i r a t t e n u a t i o n raises
a l e g i t i m a t e worry regardin,?t h e s t a b i l i t y o f t h e Screwball
e
There aye two a s p e c t s t o fnl?emnL s t a b i l i t y , (1) s t a t i c , which
means t h a t an increase i n jxactor â&#x20AC;&#x2DC;cej-:iperature causes Lhe r e a c t i v i t y Lo
decrease, and (2), d p m i c , i>!hich mans t h a t t h e o s c i l l a t i o n s i n r e a c t o r
power are ir2rte:rentl.y dam;ted
A5 indica-bod under Section 5.5 t h e Screwball
has been eal.culated t o have a strong iiegeitive tempc:!-ature c o e f f i c i e n t .
Current d a t a and t h e o r e t i c a l s t u d i e s i n d i c a t e t h a t the r a p i d c.i-rculation o f the f u e l i t s e l f provides oscillations
powerful- damping f a c t o r f o r power
with periods compzrabhe Lo the t r a n s i t tkoe o f t h e fuel.
through t h e r e a c t o r .
ThTs damping f a c t o r i s presumed t o compensate f o r
t h e d-elayed ncutron a t t e n w t i o n
is
2
Evidence sup1mrting t h i s statement
# e t f o r t h under References 1 0 , 11, and 1.2; it
c i r c u l a t i n g fuea-
reacttyir
is indicated that -the
equation (tritIiou.t r e l i a n c e on c!eI.ayed
neutrons o r
control rod^^,, ha8 no antic 1-ealistic c o n ~ l . - t l o2 r ~
(I) constant power ex-traction ( 2 ) l a r g e temperature and power excursions where t h e
steady s t a t e power. i s four times dzsigii power f o r a l l times
-35-
( 3 ) sudden p o s i t i v e excursions of the power Lo ten tines design power, t
It would seen t h a t a properly designed c i r c u l r t i n g f u e l reactor is no nurse w i t h r e s p e c t t o c l a q ~ f n go s c i l l a t i o n s than one i n which none of the delayed neutrons are a t t e n u a t e d ,
5.9 Controls
The underlying c o n t ~ o lphilosophy f o r this reactor i s t h e %aster-s1ave''
?elationship
reactor the slave.
uhere the power p l a n t
is the master and the
In o t h e r words, Yine power extracted from t h e reactor
is d e k m i n e d solely by the demand of the propulsion sys-tera. The Screwball e o n t m l systert 9s basically depenclcnt upon i t s
large negative fuel terqxsature cbefficient. shim control i s obtafned
lis s%a%edin Section 5.7,
So:, a d d i t i o n o f enriched fael;
scheme to accomplish this is set f o r t h in Reference 1 3 .
a
possible basic
There are no%
expected t o be con-Grol rQds in tht: reaetor fuel and moderator regions.
Cqnsideration should be given t o the possibility o f a v a r i a b l e h y p ~ s son thc Xe s e p a r a t o r Lo provide f i n o adjustments i n r e a c t i v i t y between brteh a d d i t i o n s of eiiriehx3 fuel$3 ia:iortant
advantags o f the c i r c u l a t i n g rUcl reactor Fowerplant
conbination, I s t h a t p r e l h i n a r y mal.ys5.s o f c o n t r o l a b i l i t y of a loosely c5upJ.ed system e m be predicted f o r each separate c c q o n e n t ,
e n ~ i n es t a b i l i t y problems can
Reactor and
therefore, be attacked independently since
surges in e i t h e r eonpanant are admitted Lo the other after considerable delay.
A s indicated i n Reference I.& it appear:; that the master-dxme i d e a
can probably be s a t k s f a s t o y i f y reduced t o practice.
5.10 S t a r t UP A p o s s i b l e proccdure f o r s t a r t i n g %he reactor i s as follows: (1-1 Heat t h c fiiroridc J extarsl;ri sye;t&m
ma
ada
to a m m tcsmgerature
emmea
0%
1300% in rn
~UCKL
(2) Using an external heat source, heat the NaK and NaOD,
(3) Bring
t h e f u e l , a t c o r r e c t concentration,
-to 15000F.
( I + ) Install a strong polonium-beryllium sourcc: in the r e f l e c t o r (perhaps by n i x h g molten polonium with the beryllium in a sepayate r e f l e c t o r tube)
(5) Transfer t h e f u e l into the heated r e a c t o r system.
(6) Allow the s u b c r i t i c a l f u e l t o c o o l ,
11%
a b o a t 1300°F, with
t h e moderator tempesatuvo close1.y c o n t r o l led by t h e NaK
the core should
be c i - i i i c a l ,
The r e a c t o r should now be ready t o supply h e a t to t h e propulsion system,
In
ike
ovent that the tetlperatuizc o f t h e moderator cun n o t be
p r e c i s e l y controlled, it may be p o s s i b l e to vary t h e h e i p h t o f t h o moderator level in the core znd thereby s f f e c t a reasondL1c [legsee of
control f o r s t a r t up.
5.19. S i u t Down Driving a r e a c t o r s u b c r i t i c a l ariien at idle, power without tâ&#x20AC;&#x2122;ne
use of s a f e t y r o d s mzy not be a p r a c t i c a l possibility, The p r a c t i c a b i l i t y
of draining t h e flml froi:i t h e core was given l e n y t l y consideration.
This
was e-iiminated on the ground-; that t h e add i ttonal m i ht, higher r a d i e t i o n
levels and manifold e n g i n c s r i n g complzxities would be t h i s sys tea.
-38-
assocdatlsd t&th
To drive the reactor subcritical a ahut down rod in the reflector appears to be neee~isary. This rod will be completely withdrawn from t h e
reactor during normal operation;
t o drive the r e a c t o r s u b c r l t i e a l it will
be irnserteit In %he refleetor either manually or automatically.
not. expected to unduly penalize the s h i e l d o r reactor design.
-39-
This rod ie
Nickel inconel ;hell
5 . 17e r c f l e c t o ; . arid c2n estimated q u a n t i t y of NaOD and Ri for* cooling. W , S o F;imer9s method (Reference 16) was used with modifications suggested by F. 11, Abern::f.h:r ABshunptiQm
< m d SA. H . Fox.
inherent fri %he mth& m e :
The % t r a i : h t ahead" theory o f g m a absorptlon applies, i a e . , eompton s c a t t e r i n g deprtdes t h e photon i n energy but does n o t change i t s d i r e c t i o n .
b.
Plo reffrac-tioii I;al..es place
c , The
equivalent
a t boundaries.
source power d e n s i t y i s uniform o v e r t h e
source annulus.
d, The fission r a t e i s unifam. Assumptions used f o r -the Screwball: a. The l'amulus" o f
fuel tubes may be replaced by
a
homogeneous annulus of the s m e thickness. b. The g m a spectsum may be i d e a l i z e d as a source
c o n s i s t i n g o f 1 ~ e gemmas v mly.
( A more accurate treatment
would be t o use sources cf 1, 2, and 3 Me-u gacmas with t h e
source s t r e n g t h s a d j u s t e d according t o the n m b e r of gammas
between 0 and 1,5, l . 5 and 2.5, and 2.5 and i n f i n i t e &lev
energy. } c , T h e use o f
for b o t h energy deposition probobil.ity
and a t t e n u a t i o n f a c t o r s , r a t h e r khan u;fng p and a build;up factor fm- a t t e n u a t i o n , w i l l not resd-t i n s e r i o u s eri-ors ,.
(The proper
build-up factors for t h e SCrebJball configuration w e not known
This assumption will cause an e r r o r such khat t h e c o o l i n g tubes
will be placed c l o s e r than necessal-y
I
Accurate r e s u l t s can
o n l y be obtained throirgh t h e use o f c r i t i c a l experiments o r
actual mockups d
For ealculnt,ions in t h e source r e g i o n , gmms's
e
which t r a v e r s e t h e i s l a n d must be considered,
Therefore; f o r
f o r t h e i s l a n d (0,117 inchesm1)
these eaJ.@ulations, t h e
was assumed equal t o t h a t f o r tize source r e g i o n ( 11-1th,.soul-ce region (
absorber hrive t h e sane
y,
I;
q>he:-ical axnul_us) where the soux-ce and
I
P(r) = POT
0,152 inches'-').
I n t e g r a t i n g by p a r t s and -usins Reference 17.
d 63 d
x
(1)
Close t o %hc source region,
subscripts;
an i n f i n i t e
s l a b source is as.;umd,
i
refers t o laycr(s) of t h e slab
s
refers t o t h e source
i.e.,
FzizVner f r o m t h e source region, a s u r f a c e source i s used t o
calculats t h e a t t c n u a t i o n p
(Ei
F
)Ro
I n the wIslandn, t h e slab Source should be used for a t t e n u a t i o n near t h e fuel amxilus, and t h e surface system at greater distnace,
At the
ceiiter of t h e island, spherical s p u a e t r y reduces the fornula t o s 3 " " O
A f i c t l t i o u s surface source which yields reasonable h e a t i n g results i n the ifIsland'gi s obtained by matching t h e power absorption at
I,AA-i
from tfie source.
I n the r e f l e c t o r r e g i o n , %e slab source is used f o r about
1/2
...... ~....................
h; then
it i s matched t o a surface source on the o u t s i d e of t h e
1 nickel
E
,-
-
Fqua.tion (6) may be modified by rep]-acing t h e
inconel s h e l l .
functions by E
f u n c t i o n s , thus c o r r e c t i n s the non-isotropic
emission from t h e surface source?. The second te-m i n the parenthesis
i s a?ways n e g l i g i b l e and may be deleted. Equation (6) thus becomes:
r
> Ro
The gamma heating ca1cu.l.at i o n s appear i n Appendix 6 By p l o t t i n g . 4 y2 ~ P ( r ) vs
.
r
a
and paphical1.y integratj-ng, "ine
percentage o f the f i s s i o n energy emitted i n gamma r a y s and ncut,mns whj.ch is absorbed i n t'nc r e a c t o r i s determined f o r each region,
8.8%
Island
Fuel
51, .4&
Ni-Inconel s h e l l
Ref1ec t o r ApproxBmately 300
11(w
3 09% 32.98
leak
out of the reactor.
Figure 7 shows t h e spatial d i s t r i b u t i o n o f heat absorption in the r e a c t o r . 6,2,2
I n t e r n a l Heat Transfer Due to t h e complex flow passage f o r t h e NaOD, an exact
p r e d i c t i o n or anzlysis o f t h e NaOD v e l o c i t i e s in t h e core i s impossible. Hence, t h e f o l lowing simplified method has Seen used f o r determining t h e requlred NaQD flow rate,
Sfnce corrosfo-rm and enqfneering d a t a are
n o t a v a i l a b l c f o r NaOD, NaOH has been i i s e d in the engfnee-fnp a n a l y s i s ,
The thermal conductivity o f NaOH I s small (6,72 Dixi/hr ft "F.
a t 1100oF.)
.......
-4s-
Drawing # 23193
eompared with liqufci metals atld is appmx%mat,ely half t h e thermal conductivity o f t h e f u e l .
Hence. a l a r g e f r a c t i o n o f t h e temperature
d i f f e r e n c e between t h e f u e l and hydroxide may occus i n t h e NaOD f i l m f o r low v e l o c i t i e s To estimate more i n t e l l i g e n t l y t h e f l o w r a t e which r e s u l t s
i n a Pabe wall temperature n o t exceeding 12500F. a c a l c u l a t i o n was made for a
3-6 inch sw:Gsi&eJimeter f u e l tube w i t h a one inch annulus o f
NaOH surrounding i t .
The f u e l v e l o c i t y was assumed t o be 20 f t / s e c ,
and the NaOH vel-ocity was v a r i e d ,
The v a r i a t i o n of U with VNaOB was
determined and i s shown i n Figure". The NaOD flow a - e a perpendicular t o t h e p o l a r axis was determined a% various l a t i t u f i e s
e
Then t h e v a r i a t i o n o f VNaCID with p o s i t i o n
in t h e r e a c t o r could be c a l c u l a t e d , a t t h e e q u a t o r i a l plane (V,)
A r e l a t i o n between the NaOD v e l o c i t y
and t h e average v e l o c i t y was found.
Assuming a v e l o c i t y normal t o t h e equator, t h e average U was c a l c u l a t e d and t h e t o t a l ternperature rise of t h e NaOD through t h e core
was estimated.
Since t h e t o t a l texperature r i s e ineludfng Ynat due t o
gama h e a t i n g w8.s small I10
- 200F,),
a l i n e a r temperature r i s e through
t,he reactor was assumed,
A t one inch i n t e r v a l s along the axis, average velocTtfes, h ' s end AT ' 9 were estimated
flux.
'IT'S,
The product o f U and AT gave t h e h e a t
The temperature rise i n t h e NaOD f f h ,
ATl MaOD
, was
calculated
by (3fviciing t h e heat f l u x by hNaODo F f p r e 9 i s a p l o t o f hNaODv s ,
The g m a heat which i s generated i n t h e tube walls w i l l be N ' aOD transfoi-red t o %he NaOD causing an a d d i t T o m 7 tenperattire ;fse AT2"
Rrauing # 23194
The sum of AT1
and t h e NaOD temperature i s t h e outstde tube
.AT,
wall temperature, which inust n o t exceed 1250째F, Figure 10 shows t h e v a r i a t i o n o f fuel mixed mean temperature, tube outsfde 1 ~ 1 temperature 1 and t h e NaOD mixed mean teriperature with p o s i t i o n i n t h e core,
o f 125A째F,
A V, o f 6 f t / s e c , gives a maximum w a l l temperature
This c a l c u l a t i o n e s t a b l i s h e s t h e magnftude o f t h e flow r a t e
based on t h e s i m p l i f i e d flow system,
6,2,3 f l . f l e c t o r Cooling The h e a t eeneratcd i n t h e beryllium r e f l e c t o r is removed by the
passage of NaOD through 0,23 inch diameter coolant tubes.
The
c a l c u l a t i o n o f coolarat tube spacing i s based on t h e f o l l o w i n g assumptions: 1. Neutron flux dBstributfon from t h e two group, t h r e e region c a l c u l a t i o n s were n o t available f o r this c a l c u l a t i o n .
Therefore, t h e h e a t
generation due t o t h e neutron moderation was assumed &qual t o t h e gamma heating.
This assumption agrees with work done on t h e Fireball (Feference
2) * 2 , Each coolant tube sow f s t r e a t e d as a s e p a r a t e annular c e l l ,
3. A mean, uniform power density i s assumed f o r each c e l l . The tubes are arranged i n an e q u i l a t e r a l m3.tFlxa
5 , The tube diameter is 0.2'3 Snches. 6 . The m a x i m u m beryllium temperature will not exceed t h e coolant tube w a l l temperature by more than SOOF. 7 , Eeating from capture g m a s f n the inconel shell is neglected.
8 , &I f l s s f o n product gammas are ernftted i n t h e core, Prom the basic heal; conduction equation it can be shown t h a t
-114"-
-50-
f
Froin geometric considerations
p
= k,
/g(11)
s=bJ7-
To determine t h e cooling tube spacing, t h e following i t e r a t i v e method tms used,
1. Assum t h e row spneinc,
2, Calculate u n i t c e l l dLQensions using equation:; (2) and (3) 3. Estirclate l o g , mean power d e n s i t y from figure XI.
4* Prom equations (1) ( 2 ) and (3) which
hT
calculate the value s f o r
50OF.
J:
5. Check t h e c a l c u l a t e d value of
S w i t h t h e assumed row spacing
and i t e r a t e u n t i l equal.
From t h e row spacing and r e f l e c t o r dimensions, t h e tube p i t c h c i r c l e r a d i u s i s determined,
The number o f tubes i n each row i s calculated
from t h e p i t c h c i r c l e cfrcumference and tube spacing.
Non-integral
numbers o f tubes were adjusted t o t h e next h i g h e r i n t e g e r and t h e i r
spacing on t h e p i t c h c i r e l e a l t e r e d accordingly
.
The results for t h e Screwball r e f l e c t o r are l i s t e d below,
Row
Spacing
1
0.788 i n
15.69 i n .
1-25
2
0 e974
16,52
103
3
1.23
17,63
90
r,
1.62
13.05
?A
P i t c h C i r c l e Radius
No, o f Tubes
(con fa)
-51-
.............
N
e
Pitch CSrcPe Radius
5
2,32
21.174
6
4.12
21, .27
I n cal-culating the g a m a h e a t i n g ,
Eo, of Tube6 57 37
/e
was used as t h e
r e s u l t i n g i n more r a p i d a t t e n u a t i o n
attenuatAor? factor ra.ther than p and hence l a r g e r heat generat;ion.
T h e r e f o m , t h e above r e s u l t s should
be conservative.
by-pass annulus. The NaQD veloclty in t h e r e f l e c t o r was detemiined by c a l c u l a t i n g t h e heat f l u x , h e a t t m n s f e r AT, and temperature r i s e of t h e NaOD a t
v a r i o u s assumed velocities,
Calculations were mhde for t h e tube row i n the
highest power density region. A t a v e l o c i t y of' 7 ft/sec, the temperature r i s e o f t h e NaOD i s
156@F, h i;
2600, and the h e a t t r a n s f e r h T 1:; 80째F.
tenperatuse a t the end o f f h e c o o l m t tube o f 1251
This g i v e s a t o t a l
"F: which is
approximately t h e max2mua temperature allowable fj-om a corrosfon standpoint
6 2 4 Primary Hen% Exchanger The primary h e a t exchanger f o r t h e Screwball reactor i s a s p h e r i c a l s h e l l which w i l l m a p around n 53 inch diarneter sphere, s h e l l will be
This
inches t h i c k and w i l l begin and. end on the sphere a t
645' Horth L a t i t u d e and 60'
Smth Latitude, respectively.
Within the
s h e l l t h e f u e l and NE& cooJ.ant w i l l flow comter-currend2y; t h e NaIi flows
-53-
dolisn
within tne tubes i n the h e a t exchanger.
The tubes w i l l be wrapped
i n such a way t h a t t h e r e i s a constant clearance between tubes o f 0.035 inch,
Two spacers p e r foot, o f length o f tubing appear t o be adequate, The fuel v i l l enter at the Sotton of the h e a t exchanger a t
1550'F
and will leave a t t h e top a t 1150째E'.
On the NaiS s i d e the entrance
temperature i s 940OF and the temperature r i s e w i 1 . l be 510째F.
The
v e l o c i t i e s and pressure drops f o r the f u e l and NaK a r e , r e s p e c t i v e l y ,
6.95 f t / s e c , , 36.3 f t / s e e , , 32.9 p s i 2nd 31 p s i .
The m a t e r i a l o f
construction w i l l be inconel-. The primary heat exchanger design f o r t h e Screwball i s based on the method presented i n Reference 19;
a s ~ m a r gof the tal-culations f o r
t h i s exchanger appear i n Appendix 8.
This h e a t exchanger represents a f e a s i b l e d e s i p n and no major a t t e n p t has been made t o optimize it.
It i s a n t i c i p a t e d t h a t t h e fuel
volume i n the h e a t exchanger can be reduced t o approach t h a t o f t h e
Fireball d e s i q and further e f f o r t i n this d%rection i s recommended,
6.2,.5 NaOD Heat Exchanger The NaOD heat exchanger has the form of a i.j.ght, circul-ar
cylfndrical annulus s i x inches t h i c k 2nd 1 5 inches t a l l . ciomward through l / 2 inch 0, D ,
The Malk flow:;
ineonel tubes which have a w a l l
thickness o f 50 m i l s , including an external 10 mil cladding o f nickel. These tubes fqrm a l a t t i c e f n the form o f an e q u i l a t e r a l t r i a n g l e with a minimum clearance o f 0,125 inches between the tubes,
The NzQD flows
across the battnm o f the ~ ~ u f u l u sup , the outside and back down the j.nsj-de of the w-mulus m Tndlceatsd in Figure 1, For t h i f i cd:ula.tIon
pe7Teffat
-5L-
eight
(
o f t h e reactor heat was assumed to bc removed by t h e NnOB.
16 &Rd
The h e a t t r a n s f e r c a l c u l a t i o n s are bssed on r e l a t i o n s presented
Sn Reference 2 0 ,
Two pass, parallel! flow o f NuOD and s i n g l e pass
downward f l o w o f NaK were assurtzcd.
Pressure loss c a l c u l a t i o n s f o r the
f'JaG;D assmed mixed parallel and cross flow.
A zmnample calcul.ation and
t a b u l a t i o n o f design d a t a are contained i n Appendix 9 and Appendix 1,
respectively, The NaOD h e a t exchanger 5s a cqnsemative design; more h e a t t r a n s f e r area i s provided than 2s actually required s i n c e the higher rates
of h e a t t r a n s f e r in cross flow h w e been neglected t o simplify the analysis
4,+3Fuel Flow Emerhcni; A s mentioned i n Section '?,2it i s assumed that t h e flaw patterns
in t h e tubes of constant cross s e c t i o n Ere -nore p r e d i c t a b l e than t h e vgrfable mea passat?@enp1o;ied 4n t h e F i r e b a l l ,
T h i s experiment was
conducted t o verif;y flew s t a b i l i t y i n h e l i c a l tubes.
Figure 12 is a photograph of the apparatus.
The one inch glass
tube i s geometricelly similar t o %he Screwball fuel t u b e s ?
i r r e g u l a r i t i e s were observed,
no flow
The f l u i d is an aniline dye.
il secondayy flow t y p i c a l o f khat generated i n smooth tube bends
was observed;
t h f s added turbulence should fncrease f u e l nixinp:
~
produce a more uniform v e l o c i t y p r o f i l e and Increase p~asaurakW%?S.
This experfinenti supports t h e assumption of fuel flow stability i n the Screwball,
El
3
i
VII. SHIELDING Figure 13 i s taken from the r e p o r t of the meeting.
1953 S h i e l d i w Board
The s h i e l d c o n s i s t of lead and borated w a t e r .
Lead w a s used
adjacent t o the pressure s h e l l and i n a 20’ shdow s h i e l d which i s incorporated i n those s h i e l d designs requiring s e l e c t i v e reduction of e x t e r n a l dose. The curve8 ehown a r e f o r r e a c t o r core diameters of (Screwball) and 22.5”.
28.5’
Details of the calculations can be found i n the
reference report.
-58
-
VI11 GOI\JCLUSTONS AND ~ E ~ O ~ ~ N ~ A ~ I O ~ ~ ~
On %he b a s i s of t h e work presented Pn t h i s r e p o r t , t h e Screwball
reactor appears t n be feasible, However, a considerable q u a n t i t y of detafled analysis and experfmerat is required before its p r a c t i c a b i l i t y is WLabliShed,
Based an the work covered by t h e r e p w t , t h e concl-usions and reeomendatfons are:
1) The use of NaOD as a moderatm and r e f l e c t o r coolant, as proposed, h a s great p o % e n t i d i % g ;
however, with the assumed corrosion
limitation on tbbs wall tempera%ure (1250째F), usei-y l a r g e flaw rates and adequate flow guidance are reqarired t o attain marginal performance,
2) The uncertainty about flow i n s t a b i l i t i e s is less severe
h e l i c a l fuel tubes -than in s p h e r i c a l , annular flow passages,
in
Hence, the
use o f h e l i c a l tubes i s recommended u n t i l s t a b i l i t y in spherical annulif has been conffrmed e x p e r h e n t a l l y .
3 ) For d e s i p pointt operation, preheating the NaK w i t h the moderator h e a t lends I t s e l f t o a s h p l e reactor and propulsion system des5gii
The desirability of this acheme increases
o f fused s a l t fuels is decreased,
is recommended
as the mel ting-point
Further i n v e s t i g a t i o n of NaK preheat
partit.dtilar1.y f o r operation o f f the design point,e
4 ) Although the f u e l v o l m e externa.l.
t o %he core
is l a r g e , by
o p t i n i z i n g t h e p r h w y heat exchanger f o r rninSmura f i e 1 volwie whSle
mafntainfng raasonable pressure drops; t h e fuel volume r e p o r t e d should approach that o f the Fireball, With an exGesnal f u e l volume equal t o t h a t i n t h e Fireball ( 5 , 7 cubic. feet;), the Screwball core w f l I c o n t a b
-59-
33 percent of $he t o t a l f u e l volrme.
' B e h i s h e r delayed ncutron
cancentration i n the core and a more conservative power density make control o f Vne Screwball more practicable than t h e F i r e b a l l
5 ) Despite the l a g e r size and the use o f tubes f o r fuel c o n t a i n e r s , the critical mEs8 of t h e SCrewball (35 pounds
-
base4 on
cnnservaf,ive sell f-shielding factors) compares favorably with tlhe F i r e b a l l c r i t i c a l mass (30 pounds) as reported f n Reference 1, I n addition, t h c ratio of t o t a l f u e l volume to core v o l m e f o r t h e Screwball may be rediaeed by op%imi.zfnz t h e primary heat exchanger, thus y i e l d i n g a smaller
t o t a l fuel mass f o r %he Screwball
6 ) The NaOD flow p a t t e r n in t h e core i s unknown.
The assumption
t h a t NaOn will flow betimen t h e tubes nay n o t be r e a l h t i c and more poTitive guidance or" flow may be required. 7 ) Support of t h e t h b - w a l l e d f u e l tubes at such close tolewmces
nay be d i f f i c u l t , p a r t i c u l a r l y s i n c e -the thermal expansion p a t t e r n s art?
analytically mipredictable
Any support s tuwcture contactfnz the tubes i n
t h e core p r e s e n t s a p o t e n t i a l NaOD stagnation p o i n t and hcnce, a corrosion
eent2-r.
8) The assumption of quantitatively similar physical and chemical properties f o r NaOD and NaOW i s unfnemded, The major, f m d m a n t a l limitation o f t h e Scrawbal 1. Is "Lie NaOD
csrrosion,
Title
R e f . No.
_ I _
ORfaz 1556, W, B e C o t t r e l . l + "P
1.
Quarterly Progress Report".
f o r period ending Jms 10, 1953.
CF-53-3-210
2.
A P
e
FmaS
I
C
. B.
MBlls
Ref]-ectsr Moderated
Circulating Fuel Reactor For an A i r c r a f t Power. P l a t t f , March 27, 1953.
..
-.
3.
The lieactor Handbook, PH-3, Technical Information Service ;'AEC NRL-Herno Report No. 130, R , R , Miller, "Fourth Progress Report
L.
on the Thermal P r o p e r t i e s of S o d i u t Hydroxide and L i t h i m f4etaln, iiai-ch 1953.
5.
Conversation v? :i Lao Hemphill
- P-12
Engineer.
TAB-20, D . 3 , Bloom, rfReport o f T r i p to BMI, I n t e r n a t i o n a l
6
Nickel Company and Pi. 1.T
7,
f1
June 29 to July 3, 15350
P-F10-902, C, â&#x201A;Ź3, MiIXs, I r A n Outlinc;
3f
the General Methods
of Reaetor h a l y s i s used by %he N P Physics Gr.oupl'. 8,
Glasstome and Edlund, "The Elenents of Reactor Theory".
?*
1434-182, 1'. D, Crout, "A Short Method f o r Evaluating Deter-
minants and S o l u t b n s of Systems o f Linear Equations With Real and Complex C o e f f i c i e n t s t f .
la.
GF-53-3-2315 br. K, Ergen, %inetics Muclear 2eacLors", March 30
I1
I)
o f Circulating Fuel
1953.
Y-Fl.5-98, W. I;, Ergen, RPhysies Consideration of Circulating Fuel Reactors", A p r i l 16, 1952,
1 . 1
-61. -
12.
Y-FlO-IQ9, S. Tomoi-; 19Woteon t h e Non-linear Kinetics o f C i r c u l a t i n g Fuel ReactorsI1, Lug
13.
OWL
a
15, 1.952.
1%3/,,W . 5 , C o t t r e l l , T3eactor Program f o r t h e Plircrzft
XiicLear Propulsion Project", June 2, 1.952 a
14 *
15.
CF-52-9-201,l?r S Farmer, "Cooling Bole Distribution for ~
Reactor Reflectors", Sept. 3, 1952.
16
I
Cooling System" 17.
-
18
19
"Tables of Sine
, Cosine and
1940, Vols
ikw York
Exponential I n t e g r a l s " , FJPA,
. I and IT
6
MT-I, G . Phaezek, Part I, "The Functions P a r t 11, '"Table OWL
1330, *
ql(x) =
of E,(x)"
A. P. Frws 74. E , LaVerne, "Ileat Exchanger Design
Charts". 20.
W. I.].
~ ~ I c A d m s'%at ,
Transmission!!, M c G r a s ~ - l I i l l Book Go.
, Inc
New York and London, 1942.
21.
OML 1.375, IH. F. Poppendiek, and L. D , P a k ~ e r ,W e a t Transfer
i n Pipes With Volume Heat Source Within t h e Fluids", 22.
HKF-109, Karl. Cohen, "Homogeneous Fceactor f o r hkbsonii: Aircx*aft*', Dec. 1 5 , 1950.
23.
B?41--"76, C. 14. Craighead, L, A, Smiith and X. I. JaPfee, f9ScreeningTests on Metals nnd Alloys i n Contact 145th Sodium IiydroxTrle at 1000 and 150O0Fgt,
-62-
.;
X APFETWEES
Appendix 1, Design Data
1) General Power
-
200 InyL.
Power d e n s i t y
- 2.5
C r j t i c a l mass
-
Aw/cc
34.8 pounds o f U235
Estimated add;tional f u e l required f o r poisons, burn-up, e t c . ,
3.3 pounds. Estimated (not optimized) t o t a l uranium investment
Temperatxre coefffcient of reactivity
- 2,lx 10"'
- 1.06 x loz5 n/(cm2see) thermal flux - 1,06 x l0l5 n/(cm2see).
- 175 pounds.
/OF.
negative
Estimated â&#x201A;Źast f l u x Estimated
(These are
assuming the r e a c t o r is 5Q percent thermal.) Dimens i o n s :
Pressure s h e l l diameter
- 68,5
in,
fIeight t o o u t s i d e of pressure shell
Flow rates he1
NaOD
M& 2 ) Materials
Fuel
- 1410 pounds/sec.
-
1890 pounds/see.
2640 pounds/sec.
- 50 snole percent P I S r;7 mole percent ZsFG 3 mole percenk UF k
- 84 i n .
Ihrlerator and reflector coolant,
Reflector
- NaOD
- bery2lfum.
Intermediate h e a t t r a n s f e r medium Structural material
-
-
N&
(56 weizht percent Na)
.
inco~iel-,with n i c k e l p l a t i n g o r cladding when? i t i s i n c o n t a c t with NaOD
3} Core Fuel volutne = 1,880 cubic inches
NaOD volume
=
7200 cubic inches
Dimensions: Moderator "islandtj diameter = 21 .5 inches
Fuel region outside diameter h e ? tube i n s i d e diameter
=
= 28.5
inches
3.5 inches
Tube wall thickness = 50 mils o f inconel with 10 m i l n i c k e l cladding
Number o f f u e l tubes = s i x , including c e n t r a l tube Tur-ns i n core = 1 5 Rie7- temperature rise = &0OoF
Maximum file? temperature = 155O0F
Waxirnm NaOD temperature
1000째F
=
M a x i m u m waJ1 temperature on MaOD s i d e Fuel pressure drop
r
12540F
10 p s i including e?c3ansion an6 contraction l o s s e s a t tube entrance and e x i t
4 ) Reflector Thickness = 11 inches o f Be and 2 inches o f NaQD
Number o f coo3ing tubes
486
:
Cooling tube diameter = 0,23 inches Rows of coo1lng tubes
=
6
NzOD velocity i n cooling tubes = 3*4 ft/sec
5) Primary heat exchanger Neat removal = 185 14M
Fuel volume = ?,45 cublc f e e t PJaK volune = 7,5L cubic f e e t
Spherfcal s h e l l thEckness
=
k inches
Tube inside diameter = 3/16 inches
Tube wall thickness = 0,017 inches Plinimwn tube spacing = 0,035 inches
ISumber o f tubes = 5220 Latitude o f entrance header = 45?
Latitude o f ex5t header
Fuel pressme drop
=
=
60째
33 p s i
RaK pressure drop = 39 p s i Average tube length = 7,35 feet Equatorial c r o s s k g angle = 30째
E x i t IJaK tenperature = 1t,50QF
Heat t r a n s f e r area = 2280 sqttare f e e t , based on tube outside diameter
6 ) MaOD heat exchanger
Reat removal = 16 Pm
Dimensions y.
Cylindrisa.3 annulus with r a d i i o f 21 snd 27 inches
HeiLTht = 1 5 inches
NaK voliune = 5030 cubic inches NaOD vol-me = 5700 cubic inches Tube outside cliiamcter = 1/2 inch Tube hrall. thickness = 0.050 inches 1.lininiw-i tube spacing (equilateral. t r i a n g u l a r p i t c h ; = 0.125 inches
Number of -tubes = 2675
N&X temperature r i s e
==
4O0F
NaOD temperature decrease = 20째F
NaK pressure drop
=
HaOD pressure drop
3 psi = 20 p s i
Is) &ps Type
- mixed
Number
f l o w , sump pmps
- 4 fuel P W ~ ~ S 4 NaOD pumps
Seals
-
gas s e a l s f o r the f u e l jmnps
e i t h e r gas o r frozen seals for. t h e NaOD p u x p h
p horsepower
8 ) Shield Estimated weight
- undetermined
- imdeterniined
External dose a t 50 f e e t - 10 r/h
9) Total weight Reactor, s h f e l d and Crew compartment s h i e l d %
-66-
= 96,000
pounds
Screwball
6 Tubes
-
3 1/2 inches Dimetel-.
Be r e f l . ~ c G ~ RaGD r, cooled; core f u e l 30 and MaOD Two %&on,
Note:
37 inch d i a m t e r core, 51 inch diameter reflector
AI..?. the values are k,toms/cc] x 10-2L+ u n l e s s otherwise indicated
(I
Appendix 3 , TWO Group Cross Section I d e i g h a
The foll.owing r e l a t i o n s were the b a s i s f o r weighting t h e cross sections f o r .the two group, three region analysis. The fl-ux i n each l e t h a r g y group was averaged over each reactor
region
Oi=
I-
4
r e g i on i region
(T)
r2
r2 d r
ar
The fraction o f t h e t o t a l f a s t f l u x
each lethargy group.
($i)
was determined f o r
Then
The values of
qi a r e tabulated
below.
The cross sections f o r Vne f a s t group were obtained by multiplying t h e cross s e c t i o n s i n each l e t h a r g y group by i t s â&#x201A;Ź1-
fraction and s w i n g .
Hodera tor
Core
R e f 1e c t o r
0.0061,
0.0055
0.0019
1
0 .Ol%
0.0307
0.0081
2
0.0571
0 A792
0.0260
a
0.0051
0.0127
0 .0033
4
0.0802
0 .S.354
0 .OL92
5
0 09 4-4
0.J-342
o .04s6
6
0.1128
0.1360
0 .(I571
7
0.0923
0 .I170
0 s05ii.3
a
0 .of373
(? .0876
0.0546
9
0.0646
0.05Etl
0 .O537
3-0
Group
(Con d)
Moderator
Reflector
GL*UP
0 .O.532
0 .C1476
2.1
0.0518
0,0497
22
0,0:?26
0.0483
13
0.0312
0 .OL61
14
0.0277
0 e.01134
15
0.0262
0 a 0403
16
i) .0234.
r? .(I398
17
0 0199
0 *.0392
n .ol_tlp,
18
0 .O3%1
19
0 .0170
n ,13372
29
fi .0163
0.0361
21
0,0156
0.035cr
22
0 0149
0.0356
23
0.0135
0,0355
24
0 .OX28
0.0353
0 B Ol&
25
0.0352
26
e
Q .9999
0
#,
9992
1,0000 -- T o t a l
&mnrlix L , Two Group. Three ReEion Data I n p e ~ f o m i r qa critical i t y calculation on the Screwbal.1
reactor, the three r e g i o n s were chosen
%o a p p o x i m a t e
most accuratel-y
ihe a c t u a l r e a c t o r .
The dimensions o f the IAree regtons aye shown i n .Figure 6 . The constituent volumes in each r e n i o n a r e as follows:
I
I1
Region TI1
El-ement
Reircion
NaOD
5117.10
1936 3
6975.20
Fue 1
0
4890 .OO
0
Inconel
0
2'75.03
Nickel
0
SleEion
56.14
Beryllium
--0
Totals
5117,lO in3
0
T o t a l volume o f a l l regions
-70-
71.57.5 in3
--
75764.6 i n 3
145.77 236.27
%ziL&L% 63492.17 in3
Apmndix 5, Optimization
2, &sPe Ass-: I n order t o e x t r a c t 2C0 f?%!
o f h e a t a t 2,5
of fuel i n t h e r e a c t o r core i s necessary,
Moi/cc, a fixed volume
Usine this volme the system
was o p t i m i ~ e dfror: t h e nuclear and engineering standpoint by varying t h e
number o f tubes an6 t h e tube dimeters. 2
Fs.ctors Considered and Their Associated Parameters ; The self s h i e l d i n g factor F
a. Self Shielding:
i s discussed
i n Section 5 $ 2 . It can be shown that F depends directly. upon the 2 5 m e t e r af %hi: tubc.
b. Pressw-e Surze:
This c r i t e r i o n r e q u i r e s further i n v e s t i g a t i o n .
However, t h c l a r g e r the r a t i o o f c e n t r d flow area t o t h e exit f l o w area t h e more severe thy: problerl will be,
~ 2 - c e n t r a l flow a r e a e x i t flow area
Thus we w i z h t o minimize "L, where
E
a
The amount of heat t r a n s f e r r e d , Q, can be
e. Eeat Transfer:
shw-n t o be proportional t o nOe2L
3
o f l e n g t h , L , and Diameter,
, where
n is the nmber of tubes o f
D, It is desirable t o minimize the h e a t
trensferred t o t h e â&#x201A;Ź M I D . d
a
PresLjureLoss:
nu& lower than t h a t
major importance
The pressure drop in t h e fuel tubes w i l l be
i n t h e h e a t exchanger, hence this facto:- i s n o t of
The parameter used was AP
o(
J?y
D
e . fabrication:
An index of fah-.icai?ilitg i s tube length;
the l o n g e r &e tube, t'rie more turns made, and hence g r e a t e r f a b r i c a t i o n
problems
0
f, Poisons:
Since f o r a fixed diameter t h e t o t a l . tube length
i s constant, thc: r a t i o o f 11oison to fuel adccd i s independent o f t h e
nwiber o f tubes.
Howeve-., t h e poison increases as t h e tube diameter
The pzciinetzr i s ,
decreizses.
cc/
=
Volwne of fuel
The reactor weight iiicreases w i t h core
g e Core Uiaunzter:
It i,s secn tizat t h e dimie-ber increases
diameter. diameter
Volmie o f inconel
t.itki
decreasing tube
a
3, .-Table of Lbom Factors f o r Va-rious Conbinations: -
___l__m_ll__-cII-
I n the t a b l e tl-ere ,?re two values given f o r the s e l f - s h i e l d i n g factor
t'nc f i r s t being f o r t h e f a s t neutrons and the second figure
F,
for t h c theimal neutrons. Factor a
. 3cl f - s h i r l d i n g
-
Symbol 7
b, Prensure su-ge
F
If
e . Heat h.7nn;fe.r
q
d . Pressure l o s s
AP
-
/!
in
0 ..46
0.$2
0 .3F
['.R3
0.80
0.78
5.5
3.8
3.5
3.5
211
66
18.5
36
6
3.2
2L9
108
92 .IC
f PG? SOnS
' b " r)
5
0.50
L
e;. Core diameter
2- 3 9n 6 4 1/2 i n
0.61
e . Fabrication e
2 itl
34
0 .Ob9
27
0 .Or5
23
39 2.2
86 0 .nl,4 2'7
A s a cmp*omise between nuclear and cnzineering considerations,
s i x t,hree and
one-half inch tubes were sel.ected.
-72-
The power absorption was c a l c u l a t e d accoi:ding t o formula ( 3 ) yielding:
r (in1
WEOD
E!zL&.Lirz
P (r)
(~~/in3)
10.69
0.379
0.603
11
3.438
0,697
12
0.529
0.840
1.3
0.5~6
0.863
114
0.493,
0.782.
14.3
i? .r,Qo
0.731
h32LIlus :
The power a b m r p t i o n
~ 2 . sc a l c u l a t e d
according
tfi
(
4)
yielding:
1.4-4
0 e 1,oo
14.8
0.329
25 . l 3
0.291
Hickel-Inconel Shell:
-73-
'1
(in)
-P--( r j
FJ(1") /p ( 0 )
(~~/in3)
15.13
0.872
1.387
15 .S9
0.799
1.255
15.25
0.715
1.I 37
?e flect0'1 :
The power absorbed in the r e f l e c t o r
W E ~ Scalculated
equatiom(1,) and (8) and natching the two f o m s a-t
Using this s o u x e th;-ouqhout and ( 8 ) r (in)
I" =
u-iing
17 inches.
t h e power absorption is:
-P(~)/P& (in-11
P (r)
(XW/in')
?.5.25
0.161
0.798
76
0 .080l,
0.398
17
0 .0L21L
0.210
18
0.021!,0
0.119
19
0. O l Q
0.070/,
20
0.00862
0.01427
21
0.00534.
0.026L.
22
0.00298
0.01L8
23
0.00213
0.0106
24
0 .OOlLX-,
0.00695
25
0.(I0103
0.00508
26
o.ooog5
0.00.!+71
The power was evaluated using equations
( 4 ) and
(5).
The curves were matched at r = 6 i n , y i e l d i n g a fietLtious source on
0.e
0.0336
0.0747
1
0e 0337
0.0749
2
0.0346
0 0791
3
0,0362
0 .Of305
4
0.0386
0 .O358
5
0 .O&L
e so937
6
0 0,473
0 .105
0
P (r1/P ( 0 ) 7
0 e 9828
0.131
8
67,1055
0,168
9
0.1777
0.21-9
10
0 -191
0 304
io.69
0.269
0 -428
+ Celculrted from (
71
itppendlx 7, Core Heat Transfer The following
i,T
a saxiple c a l c u l a t i o n o f thc tube wall
t e ~ q ~ r a t u raet x = 19.
V, (NaOI))
=
h f e e t per second
B
==
1.57 x 4 = 9.&? f e e t p e r second
0
= 101.2 Ctu/hr.
T
=
f t2 O F
from Figwe 8
31+5OF (estimatcd)
Tine t o t a l h e a t t r a n s f e r a r e a c a l c u l a t e d i s 3i:.6
q =
u
= 1.28
A AT
~
f t2
x 107 e t u / h r .
The average temperature r i s e of the NaOD I n the core is then obtained. The gamma heat flux from t h c inconel tube i s estimated t o be
5.61 x 104 B t u / l i r .
AT,
=
f-t2.
1.2OF due t o g m n a heating.
Since the heat a d d i t i o n t o t h e Na0D r e s u l t s i n such a small tenpesature r i s e , the temperature i n c r e a s e through the core was assumed l i n e a r and t h e t e a p e p a t w e kise t o p o i n t x = 19 was 6OF.
t h e t e n p e r a t u r e difference between t h e 13.3013 snd
fuel.
= soy
P
5=
The h e a t flux i s t h u s ,
A
UX AT,=
3.65 x
lo5 Etu/
. .
hr f t 2
The t e n p c r a h r e rise through t h e fJaOD i s fomG by dividing the heat fluxes duc
tf2
lieat t r a n s f e r and g a m a h e a t i n g by the l o c a l h e a t trasfer c o e f f i c i e n t
~ O L .NnOD.
Heat -transfer
AT,
.@ding these temperature rises to
+ -
tine
va1.1 terzperature of 1254OF
-76-
215OF
Gm:la heatin? AT2 = 33OF
MaOD tzmperaturre o f 10C)O째F gives a
The design procedure f o r the primary heat exchawer is presented
in Reference 19. The following assumptions were made: 1, P?wnber of tubes = 5220
5. Tube crossing ang1.e at the equstor = 300
6,
Tube bundle thickness
4t'
Applying these assumptions to the c u r v e s Cmd equations in Reference 19, the following results were obtained:
1. For @= 450,
@=
450,
a
@= Goo,
(I) =
900,
a=
z
TO%& angle 02 r volution 2 . fie1 volume = 7.45 ft,
4. Fuel pressure Loss;
9
2
7&0
90째
~ 6 4 ~
= 33 psi
EaK pressure l o s s = 31 p s i
5. Tube length
=
?,35 ft,
6. Eleat transfer coeff'icients : Fuel NaK
= 2
3110 Rtu/hl-w ft?3 OF
16,600 Btu/l-i.:.
7 . Log mean temperature difference = I48OF
ft? O F
8 , Calculated heat t r a n s f e r = 198 FM
The heat transfer required for ti?@ prjnar-y h e a t exchanger i s approximately
185 NU, leaving a margin of 13 b%J to a l l o w for inaccuracies in t h e h e a t transfer calculations,
- 77-
1. 9equii-ed heet t r a n s f e r = 16 1114 3.. Flow r a t e s UaOD = 1595 lbs/sec (prelirninaxy
estimate)
General C onf igkzrat ion
NaK
.1-26
WaK Tubes .070 Tctal.
F'J.o~..JVel. o c i t i e s l
0 >336 in?
Qfs
Peat '?ransfer Coefffcientsa
ITah = 133,000 B.Cu/ht,. ft?
F w inconel, 11 =
t
fL:
= LO80 Btu/hr,
OF
or"
The over-all heat transfer c o e f f i c i e n t for the o u t s i d e tube area
1780 Btulhx ft2 h a t t r a n s f e r arcas:
iirea :*ecluired for
-iS
16 i4ld
? , ~ , * ~ i ~ : ? ~ i ~
=
43% ft2
Them calculations have been based on t w o p a r a l l e l . flow passes,
Tfie
aclditional heat t r a n z f e r due to cross Cl-ov will compensate f o r the
inaccuracies i n heat t r n n s f e r calculations. P:-*essure Loss Calmfiations :
Slxmary:
Tube I.0ss
=
0.7 p s i
Entrance l o s s = 0,5
Exit 103;s TO%&
=
1.2
_ I
?,5
(approxhately 3 p s i )
-0.15
%
A
B
c D E
f F
k? h
k I,
M s
R S
t F
6
v2 -T -3
,”
c 22
Sub8e r i p t s et
c
-
eff f
I
s L
tr
I1 I2
absorption cope
-
effective
-
fission
-
L e t h W a gPOU2
-
scattering
total
-
-
XI1
112
1111 1112
transport
fast group, region I
-
-
Superscripts
therm1 group, region I f a s t grouy, region 11 thermal group, region 13
fast g r o u ~ ,region 111
t h e r m a l . group, region III
A
-
b
-
c
-
P B
~~
f
-
F
-
k
-
L
-
n
-
N
-
P
-
P
-
P
-
O
9
-
Q
-
I " -
R
'"
rmlius of circle having area equal to hexagonal c e l l
B -
8,ngl.e between r aazd R angle o f latitnde
A p"-
7 -
e-
r e l m a t i o n leng:th tTIxco9ity
o r gamma absorption c o e f f i c i e n t
variable of integration
distance between F and R
C " demity
s -
sumnation
T -
garma energy deposition cosfficienty
e n t r a c e angle between tubes ad.hinge of constant longitude
poison gmmeer
pressure surge parameter Subscripts
c
-
e
-
i
-
R
*
reflector
-
heat tramfer component
1