Newsletter EnginSoft Year 7 n°4 -
3
EnginSoft Flash Now that 2011 has arrived, we recapitulate what we have learned and achieved in the past, and what awaits us in the future. Fresh thinking and optimism will help us to create a wealth of opportunities, both in our personal and professional lives. The past two years have shown how important it is Ing. Stefano Odorizzi to maintain an open and EnginSoft CEO and President positive attitude and to believe in our ability to create a promising future. CAE and Virtual Prototyping are and will be the foundations of successful state-of-the-art product design. By the same token, they will support a healthy growth in R&D, product development and in industry as a whole. Thus they are and will be important foundations for innovation! We are proud of our customers and partners, of our Network and EnginSoft, of how we all contribute to the success of CAE and VP today. This issue features, among many other topics, a review of the EnginSoft International Conference, a major gettogether of engineering simulation experts and technology providers which welcomed almost 600 participants this year. Outstanding engineering expertise comes to us from Pierburg Pump Technology who present their work for reliability evaluation on an innovative oil pump under crankshaft torsional vibrations. CADFEM GmbH Germany, a founding member of the TechNet Alliance, presents electro-thermal simulations for EV/HEV applications. Fonderia F.lli Maspero and BRAWO Brassworking tell us about stamping simulations for brass and aluminium with
the Forge software. The University of Pisa, Department of Information Engineering, describes the design of metamaterial based devices for electromagnetic applications while Istanbul Technical University’s Department of Space Engineering reports about their work for the structural identification of a composite ARW-2 wing model. The Software News this time inform our readers about modeFRONTIER 4.3.0, ANSYS Mechanical 13.0, ANSYS CFD 13.0 and MAGMA5. EURO/CFD and Flowmaster CFD tell us about the coupling of 1D and 3D CFD and the challenges and rewards of co-simulation. We hear about Scilab and how these and various other technologies, such as modeFRONTIER, successfully support the simulation work of industry and academia. With the Corporate News, we would like to update our readers on EnginSoft, ESSS North America and our Houston Venture. Aperio Spain interviewed Joan Villadelprat, the President of Epsilon Euskadi. Our consultant in Japan spoke to Koichi Ohtomi, the President of the Japan Society for Computational Engineering and Science and Chief Research Scientist at the Corporate R&D Center of Toshiba Corporation. Riganti SpA inform us about their expertise for steel stamping, the use of Forge and their collaboration with EnginSoft. Finally, we report about recent seminars, the EnginSoft Partner Meeting and TechNet Alliance Fall Meeting 2010, as we wish to share our visions for the future with our readers. We close this Newsletter with an invitation to enjoy your Spring and Cherry Blossom in Kyoto, Japan’s cultural treasure house! We hope that some of the articles will inspire you and create ideas for a new exciting year in engineering simulation. Please do contact us with any feedback and topics for future publications. EnginSoft and the editorial team of the Newsletter would like to take this opportunity to wish you and your families a very Happy, Healthy and Prosperous New Year! Stefano Odorizzi Editor in chief
4
- Newsletter EnginSoft Year 7 n°4
Sommario - Contents ENGINSOFT INTERNATIONAL CONFERENCE
6 7 10
A BIG SUCCESS: The Enginsoft International Conference on CAE Technologies for Industry EnginSoft Network met for Partner Meeting at Villa Fenaroli EnginSoft e MAGMASOFT: una fusione di qualità
CASE STUDIES
12 15 19 20
Reliability Evaluations of an Innovative Oil Pump under Crankshaft Torsional Vibrations Design of metamaterial based devices for electromagnetic applications Electro-thermal simulation for EV/HEV applications Structural Identification of a Composite ARW-2 Wing Model
SOFTWARE NEWS
23 25 29 31 34 37 37
ANSYS CFD 13.0 A Maxwell overview Novità ANSYS Mechanical versione 13 modeFRONTIER 4.3.0 is now available Customized KEY to METALS Solutions for Materials Properties Third Wave Systems Boosts Software Performance. AdvantEdge FEM 5.6 Delivers Improved Robustness, Accuracy Third Wave Systems AdvantEdge Production Module 5.8
IN DEPTH STUDIES
39 45 53
An unsupervised text classification method implemented in Scilab Simulare con Forge lo stampaggio di ottone ed alluminio Coupling 1D and 3D CFD The Challenges and Rewards of Co-Simulation
INTERVIEWS
56
Interview with Joan Villadelprat, President of EPSILON EUSKADI
TESTIMONIAL
59
RIGANTI SpA: Acciaio stampato al maglio dal 1891
The EnginSoft Newsletter editions contain references to the following products which are trademarks or registered trademarks of their respective owners: ANSYS, ANSYS Workbench, AUTODYN, CFX, FLUENT and any and all ANSYS, Inc. brand, product, service and feature names, logos and slogans are registered trademarks or trademarks of ANSYS, Inc. or its subsidiaries in the United States or other countries. [ICEM CFD is a trademark used by ANSYS, Inc. under license]. (www.ANSYS.com) modeFRONTIER is a trademark of ESTECO srl (www.esteco.com) Flowmaster is a registered trademark of The Flowmaster Group BV in the USA and Korea. (www.flowmaster.com) MAGMASOFT is a trademark of MAGMA GmbH. (www.magmasoft.com)
ESAComp is a trademark of Componeering Inc. (www.componeering.com) Forge and Coldform are trademarks of Transvalor S.A. (www.transvalor.com) AdvantEdge is a trademark of Third Wave Systems (www.thirdwavesys.com)
.
LS-DYNA® is a trademark of Livermore Software Technology Corporation. (www.lstc.com) SCULPTOR is a trademark of Optimal Solutions Software, LLC (www.optimalsolutions.us) Grapheur is a product of Reactive Search SrL, a partner of EnginSoft For more information, please contact the Editorial Team
Newsletter EnginSoft Year 7 n°4 -
JAPAN CAE COLUMN
60 62
For the growth of MONOZUKURI in Japan Enjoy your Spring with Cherry Blossom in Kyoto
CORPORATE NEWS
64 65
ESSS North America: the right Company for the Oil&Gas and Offshore Industry Jobs – ESSS & EnginSoft “Houstonventure” EnginSoft al Kilometro Rosso
EVENTS
66 66 67
5
Newsletter EnginSoft Year 7 n°4 - Winter 2010 To receive a free copy of the next EnginSoft Newsletters, please contact our Marketing office at: newsletter@enginsoft.it All pictures are protected by copyright. Any reproduction of these pictures in any media and by any means is forbidden unless written authorization by EnginSoft has been obtained beforehand. ©Copyright EnginSoft Newsletter.
Advertisement For advertising opportunities, please contact our Marketing office at: newsletter@enginsoft.it
TechNet Alliance Fall Meeting 2010 EnginSoft Event Calendar
EnginSoft S.p.A.
SEMINARIO: Integrare Strumenti e Metodi di Progettazione e Simulazione
24124 BERGAMO Via Galimberti, 8/D Tel. +39 035 368711 • Fax +39 0461 979215 50127 FIRENZE Via Panciatichi, 40 Tel. +39 055 4376113 • Fax +39 0461 979216 35129 PADOVA Via Giambellino, 7 Tel. +39 49 7705311 • Fax 39 0461 979217 72023 MESAGNE (BRINDISI) Via A. Murri, 2 - Z.I. Tel. +39 0831 730194 • Fax +39 0461 979224 38123 TRENTO fraz. Mattarello - via della Stazione, 27 Tel. +39 0461 915391 • Fax +39 0461 979201
PAGE 12 RELIABILITY EVALUATIONS ON AN INNOVATIVE OIL PUMP UNDER CRANKSHAFT TORSIONAL VIBRATION
www.enginsoft.it - www.enginsoft.com e-mail: info@enginsoft.it
COMPANY INTERESTS
CONSORZIO TCN 38123 TRENTO Via della Stazione, 27 - fraz. Mattarello Tel. +39 0461 915391 • Fax +39 0461 979201 www.consorziotcn.it
PAGE 23 ANSYS CFD 13
PAGE 39 AN UNSUPERVISED TEXT CLASSIFICATION METHOD IMPLEMENTED IN SCILAB
EnginSoft GmbH - Germany EnginSoft UK - United Kingdom EnginSoft France - France EnginSoft Nordic - Sweden Aperio Tecnologia en Ingenieria - Spain www.enginsoft.com
ASSOCIATION INTERESTS NAFEMS International www.nafems.it www.nafems.org TechNet Alliance www.technet-alliance.com
Errata corrige In the last newsletter issue number 3 year 7 the article "Elysium CADdoctor enriches product data quality in PLM" at page 57 was wrongly attributed to Ing. Giovanni Borzi, EnginSoft SpA. The real Author of the article is Dr. Sakae Morita, ELYSIUM Co.,Ltd., Japan. We apologize for the error with the people involved.
RESPONSIBLE DIRECTOR Stefano Odorizzi - newsletter@enginsoft.it PRINTING Grafiche Dal Piaz - Trento The EnginSoft NEWSLETTER is a quarterly magazine published by EnginSoft SpA
Autorizzazione del Tribunale di Trento n° 1353 RS di data 2/4/2008
ESTECO srl 34016 TRIESTE Area Science Park • Padriciano 99 Tel. +39 040 3755548 • Fax +39 040 3755549 www.esteco.com
A BIG SUCCESS: The Enginsoft International Conference on CAE Technologies for Industry Every year since 1984, the EnginSoft International Conference offers an excellent networking platform where attendees take the opportunity to talk to industry representatives about how CAE – or as we say nowadays: Virtual Prototyping – can decisively influence the innovation of design and production processes. At the EnginSoft Conference, we talk to industry using the language of industry. This is how we discuss the presentations and testimonials from managers, practitioners, researchers, scientists and technology providers – always from a business value perspective. The ideas of the Conference organizers are expressed in the conference themes which respond to the tremendous expansion of software technologies and computing power and the challenges of successfully integrating these technologies into industry processes. This is why the agenda also includes such topics as cost-benefit analysis, organizational challenges, knowledge capitalization, methods and methodologies, staff training and career development, how to manage the growing complexity for the supply chain, the reliability of engineering simulation, the validation and integration through test and measurement, and finally how to deal with uncertainties. For a few years now, the Conference takes place concurrently with the ANSYS Italian Users’ Conference. The growing interest in the event is reflected in the number of participants – steadily growing over the years, to a record of 600 in 2010! The annual get-together of technology users
also underlines the philosophy and success behind the business models of EnginSoft, a company that has gained broad and deep experiences in all sectors and at different levels of virtual prototyping and that has performed highly valued engineering and computational work since the pioneering times of CAE, and also ANSYS Inc. - the leading worldwide producer of engineering simulation technology. ANSYS offers a range of products which are unparalleled in depth, breadth and applicability, and which meet today’s simulation needs in the most efficient ways. The 2010 edition of the Conference was held at the Fiera Montichiari, near Brescia, and has enjoyed – in addition to the advantages offered by the beauty and quality of the venue – two extraordinarily sunny days, as if to mark how by leveraging our knowledge, software technologies can bring value to our ideas and turn them into winning solutions for today’s design processes. The conference program was structured into a plenary session and five parallel sessions with a strong focus on two key areas: enabling technologies and industrial applications in different sectors. The plenary session was opened by Stefano Odorizzi, CEO of EnginSoft. Dr. Odorizzi welcomed the audience and thanked in particular the participants who had arrived from around the globe. In his presentation, Dr. Odorizzi summarized the recent evolution at EnginSoft, he pointed out how the company is now located in the market area of software developers and technology transfer providers. Mr Odorizzi emphasized that today simulation is “not just simulation as usual”. He explained the international expansion of the company, including the consolidation of its subsidiaries in Europe, the new initiatives in the USA, new partnerships with software developers (ReactiveSearch, KeyToMetals), and why existing partnerships (Flowmaster, Transvalor, TWS) have been strengthened to satisfy the customers’ needs in the best possible way. Dr. Odorizzi also presented to the audience recent Joint Ventures with Cascade Technologies, Hy.per.CAE, ESSS and the latest news on co-funded research and educational projects.
Prof. Gianluca Iaccarino from Stanford University, and cofounder of Cascade Technologies, - a California-based company that collaborates with EnginSoft – presented a keynote talk on high-fidelity multi-physics simulations, highlighting where and how these can have an incomparable value for industry, in applications such as gas-turbine combustion, noise prediction and multi-phase flows in general. Dr. Andreas Vlahinos from AES in Denver who now collaborates with EnginSoft Americas, presented an overview of recent advances in infrastructural engineering and new concepts for electric vehicles, by comparing different scenarios through different approaches, also with modeFRONTIER. The last keynote speaker Prof. Carlo Poloni, who with EnginSoft is one of the co-founders of ESTECO, showed why modeFRONTIER could be considered a ‘green technology’ tool, by giving an example built around a typical trip through Europe where the use of the software, as demonstrated by some users, can positively affect the CO2 footprint. The ANSYS experts from the various sectors then informed the audience about the latest developments of the technologies. They provided an update on the ANSYS products with exciting news for the users, and aroused the curiosity of those who were not yet familiar with these technologies. The conference ‘Gold Sponsors’, Microsoft, IBM and MathWorks, presented the final talks of the plenary session. In the parallel sessions and in the ‘poster session’ a wealth of about 100 papers by speakers from different industries, research institutions, academia and software producers was presented. The exhibition has been well visited throughout the two Conference days. Attendees and exhibitors enjoyed proactive talks sharing knowledge about new solutions and their possible applications, visions and strategies for the future, and discussed questions on complex CAE topics. Hands-on experiences were provided in the demo sessions. The Conference has kept its promise and showed that it deserves the trust of the participants, in the excellent content of the agenda and in the attitude of the organizers. Above all, the conference was also a get-together of extraordinary people who brought not only engineering knowledge to Brescia, but also enthusiasm, liveliness and a warmth, qualities that give the event every year, and especially this year, a unique atmosphere and character.
EnginSoft Network met for Partner Meeting at Villa Fenaroli On 22nd and 23rd October this year, EnginSoft S.p.A. welcomed its Network Partners from France, Germany, Greece, Spain, Sweden & Nordic Countries, the UK and the USA to the annual EnginSoft Partner Meeting at Villa Fenaroli in Rezzano, near Brescia. EnginSoft S.p.A. the mother company of the Network, welcomed for the first time, many of the new Network Partners from the USA: Cascade Technologies, Stanford University, Advanced Engineering Solutions AES, Converged Mechanical Solutions and ESSS Brazil. The Partner Meeting offered an opportunity to exchange experiences and knowledge between the Network Partners, and with the EnginSoft experts. The 2 days saw a Get-together and lively discussions of different cultures with a wealth of knowledge and diverse expertise in CAE, in various sectors.
Network Partners from Europe, USA and Brazil met at Villa Fenaroli
The aim of the annual Meeting is to strengthen ties between the Network nodes, to provide an update on the different product and service portfolios of the Partners, and hence to leverage the Network’s resources to meet our customers’ needs and expectations in the best possible way!
CONFERENCE PROCEEDINGS The EnginSoft International Conference 2010 Proceedings are now available on CD. The CD includes more than 90 papers presented during the different sessions of the event. To receive a copy of the CD, please email to: eventi@enginsoft.it
UN GRANDE SUCCESSO: La Conferenza Internazionale EnginSoft sulle Tecnologie CAE per l’industria Ogni anno, dal 1984, la Conferenza Internazionale di EnginSoft raccoglie il successo di un ‘format’ che, nell’idea ispiratrice, è sempre lo stesso: parlare all’industria di come la sperimentazione virtuale – il CAE, per utilizzare un termine di più lunga storia – possa contribuire in modo determinante all’innovazione del processo progettuale, e, di conseguenza, dei processi produttivi. Parlare all’industria utilizzando il linguaggio dell’industria, che si sostanzia nelle testimonianze degli operatori del settore – manager, direttori tecnici, utilizzatori, ma anche ricercatori, scienziati, e produttori di tecnologie – presentate in ottica di valore.
tecnologie, con un’offerta che non ha eguali per completezza, applicabilità ed integrabilità. L’edizione 2010 del convegno si è tenuta al Centro Fiera del Garda di Montichiari presso Brescia, e ha goduto, oltre ai vantaggi offerti dalla bellezza ed efficienza della sede, di due giornate straordinarie di sole, quasi a rimarcare la prorompente evidenza di come, facendo leva sulle conoscenze – il cui ruolo è, e rimarrà, imprescindibile - le tecnologie proposte possano portare in piena luce quanto, nei processi progettuali, può dar valore alle idee rendendole vincenti nella competizione industriale.
Se l’idea ispiratrice – singolare e caratterizzante, rispetto ad altri convegni del settore – è sempre la stessa, la sua espressione, e, quindi, i temi trattati, rispecchiano da un lato l’evoluzione formidabile delle tecnologie software e dell’hardware, e, dall’altro, i problemi e le opportunità connesse con la loro integrazione nei processi industriali. Si parla, quindi, di analisi costi-benefici, di aspetti organizzativi, della capitalizzazione delle conoscenze, di metodi e metodologie, della formazione del personale e delle carriere, ma anche di come far fronte alla crescente complessità dei contesti e delle catene produttive, dell’affidabilità degli approcci della simulazione al computer, dei metodi per validarli e dell’integrazione con la sperimentazione diretta, del trattamento delle incertezze. Da alcuni anni, l’evento è svolto congiuntamente alla Conferenza Italiana degli utilizzatori di ANSYS. Ed il successo, misurabile nel numero dei partecipanti – in crescita ogni anno, e, quest’anno, oltre la soglia record dei 600! – segna, da solo, il seguito che le due aziende hanno. EnginSoft, da un lato, per la vastissima esperienza in tutti i settori ed a tutti i livelli cui si applica la simulazione virtuale, e presente sul mercato sin dai tempi pionieristici delle tecnologie software; ANSYS dall’altro, come principale produttore mondiale di
Il convegno è stato articolato in una sessione plenaria introduttiva, ed in cinque successive sessioni parallele, organizzate secondo una matrice a due ingressi: quello delle tecnologie abilitanti, e quello delle applicazioni industriali, distinte per settore. La sessione plenaria è stata aperta da Stefano Odorizzi, presidente di EnginSoft, che ha innanzitutto dato il benvenuto e ringraziato i partecipanti, in particolar modo quelli provenienti dai Paesi Europei, dagli Stati Uniti e dal Giappone. L’Ing. Odorizzi ha poi illustrato, in sintesi, l’evoluzione di EnginSoft e la sua collocazione nell’attuale panorama dei produttori e mediatori di tecnologie di settore,
tenuto conto che, oggi, la simulazione non è certamente più “just simulation ‘as usual’”. Ha così parlato dell’espansione dell’azienda a livello internazionale, con il consolidamento delle filiali europee, e l’avvio di nuove iniziative negli Stati Uniti; delle nuove partnership con i produttori di tecnologie, sia in estensione di precedenti collaborazioni (Flowmaster, Transvalor, TWS), che in vista di settori complementari a quelli trattati (ReactiveSearch, KeyToMetals); di recenti accordi e cointeressamenti societari (Cascade, Hy.per.CAE, ESSS, …); dei progetti di ricerca e per la formazione specialistica e continuativa. Successivamente nella sessione plenaria ha parlato il prof. Gianluca Iaccarino, dell’Università di Stanford, co-fondatore di Cascade, società californiana con cui EnginSoft ha avviato un accordo di collaborazione. Egli ha parlato di applicazioni multi-scala di “alta fedeltà”, e di come queste possano avere, in alcune circostanze, valore incomparabile per l’industria, discutendone attraverso esempi di grande evidenza nella simulazione della combustione, del rumore, e dei flussi multi-fase. Dopo di lui, Andreas Vlahinos, di AES, Denver, e, recentemente, collaboratore di EnginSoft Americas, ha presentato uno studio sull’attualità dei veicoli alternativi – veicoli elettrici, rispetto a diversi modelli di infrastrutture per la ricarica delle batterie – ponendo a confronto diversi scenari, confrontati utilizzando modeFRONTIER. Carlo Poloni, fondatore, con EnginSoft, di ESTECO, ha chiuso la serie degli interventi mostrando come modeFRONTIER possa essere considerato una ‘tecnologia verde’, proponendo, con un vivace esempio preso dalla quotidianità di un viaggio attraverso l’Europa, di misurare la riduzione di emissioni di CO2 imputabile all’applicazione dell’ottimizzazione nella progettazione.
ATTI DELLA CONFERENZA È disponibile il CD degli atti EnginSoft International Conference 2010, contenente oltre 90 paper presentati nelle varie sessioni della Conferenza. Per ricevere una copia del cd inoltrare una richiesta via email a: eventi@enginsoft.it
È stata, poi, la volta di ANSYS, che, con un intervento articolato tenuto dagli esperti dei diversi settori, ha aggiornato sulla nuova versione dei prodotti, ingolosendo gli utilizzatori, ed incuriosendo quanti, nell’assemblea, non avessero ancora familiarità con le tecnologie proposte. I “gold sponsor” del convegno, Microsoft, IBM e MathWorks, hanno, infine, concluso la sessione. Successivamente, nelle sessioni parallele – e nella “poster session” – sono state presentate un centinaio di relazioni, contribuite da esponenti del mondo dell’industria, dell’università e della ricerca scientifica. Le relazioni sono disponibili negli atti del convegno. È stata molto apprezzata, infine, l’area fieristica dove i partecipanti al convegno hanno avuto modo di discutere con gli espositori, prendendo visione delle loro soluzioni e strategie di sviluppo, di porre domande specifiche e di toccare con mano, nelle dimostrazioni, la qualità e l’estensione delle applicazioni offerte. Complessivamente, anche quest’anno il convegno ha mantenuto le promesse, meritando la fiducia che i partecipanti – sia i fedelissimi che quelli intervenuti per la prima volta – hanno accordato agli organizzatori. Ma il convegno è stato anche un incontro straordinario di persone, che con la loro vivacità, entusiasmo e calore hanno conferito all’evento un carattere ed uno stile unico nel corso degli anni.
EnginSoft e MAGMASOFT: una fusione di qualità La Redazione ha intervistato Piero Parona, responsabile commerciale EnginSoft del settore della Metallurgia. Domanda d’obbligo: qual è il tema scelto per quest’incontro e come sono state organizzate le giornate? Il motto della Conferenza di quest’anno è “Credere nell’innovazione, simulare il mondo!”, in esso è racchiuso lo spirito che anima EnginSoft e la nostra propensione ad applicare la simulazione numerica, o prototipazione virtuale, alle diverse applicazioni industriali. All’interno di questa Conferenza che ha carattere internazionale e che si svolge in due giornate, sono previste otto Sessioni dedicate a specifici settori: Meccanica, Fluidodinamica, Ottimizzazione, Design Chain, Fonderia, Forgiatura, Elettromagnetismo. In queste sessioni è possibile ascoltare direttamente dalla voce delle Industrie, lo stato dell’arte sull’applicazione del CAE (Computer-Aided Engineering o per dirlo in Italiano: Ingegneria assistita dal computer) alle diverse tematiche di interesse industriale e della ricerca. Quest’anno i relatori sono più di 90. Quanto sono importanti le tecnologie Œsmart nel mondo della fonderia? La fonderia è uno dei settori manifatturieri in cui interviene il maggior numero di interazioni fra discipline diverse: la chimica, la metallurgia, la termica, la fluidodinamica, solo per citarne alcune. Esse concorrono, durante i diversi processi fusori, a dar vita al prodotto finale: il getto di fonderia. La sfida è riuscire a rendere la complessità di queste interazioni, trasparenti all’utente, senza per questo fare delle approssimazioni che renderebbero vani i vantaggi della simulazione. In altre parole dobbiamo
poter disporre di uno strumento potente e robusto per l’accuratezza delle analisi, ma utilizzabile facilmente da qualsiasi tecnico di fonderia. In questo modo possiamo avere a disposizione una fonderia virtuale in cui sperimentare e ottimizzare processi e prodotti con l’ottica della riduzione dei costi e del miglioramento qualitativo e prestazionale dei getti. Con questi presupposti la società tedesca MAGMA presenta in questa Conferenza MAGMA5, la nuova generazione del software di simulazione dedicato alle fonderie, più diffuso al mondo, e MAGMAfrontier, il modulo di ottimizzazione automatica multiobiettivo, che rappresenta il fine cui ogni fonditore aspira: il getto migliore, al costo minore. Qual è stata la risposta in termini di partecipazione all’evento? Siete soddisfatti della sua riuscita? La Conferenza EnginSoft è diventata ormai un evento culturale ben consolidato e di grande importanza per il mondo industriale italiano e internazionale. Possiamo dire che in Europa non esistano altre Conferenze dedicate al CAE, con la stessa ampiezza di temi trattati e la partecipazione di relatori e pubblico provenienti da tutti i continenti, Asia e Americhe incluse. I partecipanti sono più di 600 e in questi due giorni ciascuno di
essi ha la possibilità di seguire le sessioni tematiche che più lo interessano, i workshop applicativi dei software, i forum con gli esperti di ogni tecnologia, e visitare gli stand degli sponsor, che quest’anno sono circa una ventina. Ci può riassumere quali sono le tematiche principali emerse in questi due giorni? Per quanto riguarda la fonderia, molti sono stati i temi affrontati provenienti sia dal settore dei metalli non-ferrosi che da quello dei ferrosi. Per quanto riguarda i non-ferrosi lo studio di progettazione bergamasco SPS ha trattato l’importante argomento della simulazione come ausilio alla progettazione degli stampi da pressocolata e ad esso si è collegato quello della fonderia friulana Friulpress, anch’esso dedicato alla pressocolata, ma questa volta con l’esposizione di uno studio di Ottimizzazione automatica con MAGMAfrontier per il miglioramento qualitativo di un getto per il settore motociclistico. Sempre al settore dei non ferrosi appartiene la relazione tenuta dal Prof. L. Kallien dell’Università di Aalen, che ha fatto una panoramica entusiasmante degli attuali settori sui quali il suo gruppo sta lavorando, soprattutto per la pressocolata, e come la simulazione con MAGMASOFT venga largamente utilizzata per la formazione di base degli ingegneri di fonderia. Per quanto riguarda i metalli ferrosi, l’Università Politecnica delle Marche con l’ing. Michela Simoncini, ha presentato un interessante studio di ri-progettazione delle modalità di colata in shell moulding di anelli in ghisa in cui MAGMAiron è stato fondamentale per il miglioramento della qualità dei getti, l’aumento della resa per colata e la previsione delle caratteristiche meccaniche finali del getto. La fonderia veneta VDP ha relazionato invece su un innovativo progetto che integra la previsione dei difetti con MAGMAiron in un sistema di progettazione automatica per il dimensionamento delle colate e del sistema di alimentazione dei getti, con lo svolgimento di prove sperimentali che hanno dimostrato la bontà delle simulazioni rispetto alla realtà di fonderia. Particolarmente stimolante e originale è stato poi l’intervento della fonderia piemontese Perucchini, che occupandosi di una tecnologia di nicchia come quella dello shell moulding, ha parlato dell’uso della simulazione MAGMASOFT in chiave marketing per dimostrare ai potenziali clienti la bontà tecnica ed econo-
mica di questo processo, rispetto ad altri processi più convenzionali. La giornata è proseguita con la nuova versione MAGMA5.1 dedicata a tutti i processi con stampo metallico, quindi parliamo di pressocolata, bassa pressione e conchiglia in gravità, che ha suscitato notevole interesse per la sua innovativa modalità di impostazione delle analisi e facilità d’uso, grazie anche alle nuove interfacce dirette con CATIA, ProE e i principali CAD. La possibilità di prevedere la durata degli stampi prima dell’insorgere in essi delle cricche da fatica termica, e la previsione delle caratteristiche meccaniche dei getti in lega leggera, grazie all’uso di un nuovo modello micro-strutturale, è stato recepito come una reale innovazione che potrà portare a notevoli vantaggi economici per le fonderie. L’ottimizzazione automatica, la simulazione della formatura delle anime, dei processi Disamatic e Shell moulding, la simulazione dei trattamenti termici e la previsione dell’andamento delle tensioni e deformazioni del getto durante l’intero ciclo di trattamento, sono stati altri argomenti che sono stati accolti con grande interesse a saranno sicuramente oggetto di applicazione immediata da parte di molte delle fonderie intervenute, con delle immediate ricadute sulla qualità dei getti prodotti. Ed è proprio questo il fine di questa Conferenza: rendere fruibili nel lavoro quotidiano di ogni azienda lo “stato dell’arte” del CAE, per favorire con esso, l’innovazione e la competitività sul mercato. Intervista a Piero Parona EnginSoft Intervista pubblicata su Pressocolata e Tecniche Fusorie Anno 2010 - Num. 2
12
- Newsletter EnginSoft Year 7 n°4
Reliability Evaluations of an Innovative Oil Pump under Crankshaft Torsional Vibrations Pierburg Pump Technology (PPT) is a company specializing in the development and the production of mechanical and electrical oil pumps, mechanical and electrical water pumps and vacuum pumps. PPT is collaborating with most of the automakers worldwide in order to develop new products that fulfil the requirements of the Euro5 and Euro6 standards.
automotive market, could provide fuel consumption reductions of up to 2.5%, with corresponding CO2 reductions. Nevertheless, these vane pumps are significantly more complex and less robust of the traditional geared ones and for this reason, they require a long engineering phase in which the support of the most advanced simulations technologies is even more important every day.
Remarkably, these environmental restrictions have caused a radical change in the design of oil pumps which now must be able to optimize the engine lubrication while at the same time reducing the fuel consumption. In order to achieve this, PPT is developing the new generation of oil pumps based on the new vane concept with variable displacement (VOP), instead of the traditional gear design. In fact, through this design revolution, PPT, as well as some other competitors leader in the pumps development for the
An example of the PPT engineering approach As an example of the PPT engineering approach, we describe here the activities of the Calculation and Simulation group during the development of an oil pump for a new Euro5 engine. These activities involve both calculation and testing. Based on the requirements of the customer, one of the world’s leading automakers – the R&D group of PPT has decided to develop, a vane oil pump with variable displacement in order to achieve the required fuel consumption reduction while maintaining the same performance level as is provided by a traditional pump. This VOP pump was designed for a new gasoline engine; this new engine was based on an existing engine, but with a modified injection system, the power has been doubled.
Fig. 1 - A crack in the VOP rotor after the engine test
Fig. 2 - Magnification of the worn and cracked rotor engagement face
During this design phase, the PPT team made all preliminary verifications of the design following the internal standard calculation procedure, using on both commercial and in-house software. This procedure is based on both commercial and in-house software and allows the design team to verify that the pump is well-designed from the standpoints of kinematics, dynamics, hydraulics and structural. Early testing of prototypes confirmed a successful design, however there were some failures observed in a following validation phase when installed on the actual engine. In particular, the breakages have affected the pump rotor that cracked generally at 1/3 of the total tests duration or, in some cases, even before. As a first step, a SEM investigation of the cracked surfaces of the parts have been performed in order to investigate deeper the failure mode and to guess the main causes of breakages. Through this investigation it has been clarified that the failures have been the result of a classical fatigue phenomenon which starting point is likely located on the rotorcrankshaft (CS) engagement face, where the surfaces have also a ductile aspect due to the several impact loads between the two parts.
Newsletter EnginSoft Year 7 n°4 -
13
effects were taking place while the pump was working [3]. Based also on these results, some MB simulations were performed modelling the complete oil pump and applying as external loads the oil delivery pressures previously estimated through the CFD analyses. Through this modeling and the imposition of the torsional vibrations on the CS, the dynamic forces between the VOP parts in presence of acyclisms have been estimated. In this way also the contact forces between the rotor and the crankshaft, which should be the main cause of the rotor failures, have been evaluated in several working Fig. 3 - Comparison of the CS torsional vibrations for the Euro4 and Euro5 engines conditions [1]. Moreover, the detailed The simulation work analysis of these loads has clarified that the “Evo” engine Based on these results, a complete calculation loop causes a dramatic increase of in the CS-rotor impacts due involving hydraulic, kinematic, dynamic and structural to its high motion irregularity. As confirmation of this, the evaluations was conceived by the R&D simulation group in maximum values of the CS-rotor contact forces have been order to verify the suspicion that the crankshaft’s irregular estimated to be 5 times higher for the Euro5 engine motion could be the main cause of the failures. Although, application than the ones of the Euro4. even if some preliminary calculations were performed in the design phase, it was absolutely necessary to investigate whether the crankshaft torsional vibrations, which was not included in the previous verification simulation, could significantly increase the level of load in the VOP. In order to do so, the CS acyclisms in various working conditions were measured by the customer, readily verifying easily that the irregularity of the motion in the “new” Euro5 engine was much higher than that in the “old” Euro4 [2]. Moreover, some CFD analyses were carried out, to estimate the oil pressure level and to verify that no unwanted fluidodynamic
Fig. 5 - CFD evaluation of the VOP oil pressure
Fig. 4 - CS-rotor contact forces and rotor speeds vs CS rotation angle from MBs
Fig. 6 - Equivalent stress in the rotor from FEAs
14
- Newsletter EnginSoft Year 7 n°4
The forces evaluated in this way were then used to perform an FEM simulation in order to evaluate their effect on the stress level in the rotor in general and in the rotorcrankshaft interface in particular. In order to do so, the dynamic problem schematized in the MB has been reduced to an equivalent static one applying the “d’Alembert Principle” [4-5], so that the inertial torques are distinguished from the reaction torque due to the constraints and the loads. For this reason, the forces, the angular accelerations and the friction and inertia torques in specific high-stressing instants have been recollected from the MB and implemented in ANSYS. The FEM simulations so completed have confirmed that the crack initiation starts on the rotor engagement surface in contact with the CS. Remarkably, the FEAs have also demonstrated that the failures are essentially caused by the abnormal loads coming from the engine and not by a lack of robustness in the rotor. As further confirmation of this, the level of
more the safety of the part and to avoid further failures. As final confirmation of the whole reliability analysis activity, the significant improvement of the rotor safety was confirmed by the following tests on the engine. These test were successfully passed even for the worst working conditions. Summarizing, the multidisciplinary analysis so performed has allowed PPT to find and to examine the causes of failures of a rotor for an innovative oil pump, allowing PPT to describe them very carefully to the customer. In this way, the engineering choices already taken during in the first design phase have been confirmed, allowing PPT to propose and evaluate only the design modifications that could significantly increase the reliability of the part. Finally, through this approach, PPT has managed to propose and validate through calculations the final proposed pump design, thus avoiding a long tests phase that could significantly increase the time and costs of the product development.
Fig. 7 - Stress reduction in the rotor and consequent SF increase as result of redesign activity
stress in the current Euro4 application has been estimated through the repetition of the MB and FEA calculations, confirming that the dramatic increase of the engine motion irregularity could cause rotor breakages for the pump already in production also. The rotor redesign to avoid the failures In addition to this, the calculations loop here described has enabled the evaluation of the possible benefits of some design modifications through the repetition of the MBs and the FEAs. In particular, the variation of the CSrotor clearance at the engagement surfaces, the increase of the critical strength section of the rotor and increase of the number of the engagement surfaces have been evaluated as possible modifications for the reduction of the stresses in the rotor. Through the evaluation of these, it has been verified that a proper combination of all these modifications will increase the part SF from 1 up to almost 2. In addition to this, a decrease of the motion irregularity has been finally agreed to with the customer in order to increase even
Bibliography [1] Nicola Novi, Raffaele Squarcini, Francesco Frendo, Dynamic and kinematic evaluation of automotive variable displacement vane pumps for reliability characterization, SAE2009 09PFL-1221. [2] Dante Giacosa, Motori Endotermici, Hoepli editore. [3] F. Brusiani, G. M. Bianchi, M. Costa, R. Squarcini, M. Gasperini, Analysis of Air/Cavitation Interaction Inside a Rotary Vane Pump for Application on Heavy Duty Engine, SAE2009 2009-01-1943. [4] G. Mattei, " Lezioni di Meccanica Razionale", Servizio Editoriale Universitario di Pisa. [5] E. Funaioli, A. Maggiore, U. Meneghetti, “Lezioni di Meccanica Applicata alle Macchine Vol.1”, Patron Editore.
Alessandro Testa, Raffaele Squarcini, Matteo Gasperini, Riccardo Maccherini Calculation and Simulation Group, Research & Development Department Pierburg Pump Technology Italy SpA, Livorno
Newsletter EnginSoft Year 7 n째4 -
15
Design of metamaterial based devices for electromagnetic applications In the last decade, great attention has been devoted to the study of Metamaterials. The electromagnetic properties of homogeneous materials arise from the microstructure and chemical composition of the material. These properties, generally measured by permittivity and permeability, dictate the response of the material to external electric and magnetic fields, respectively. Artificial electromagnetic materials are man-made composite structures which exhibit properties not found in natural bulk materials. Compared to the artificial electromagnetic materials, in artificial impedance surfaces the structure is bound into two dimensions.
These HISs are mainly used at microwave and (sub) millimeter wave frequency and provide surface wave suppression, improve antenna performance for modern wireless communication systems, limit the interference among adjacent devices, realize enhanced radar absorbing materials, and foster novel microwave circuits and waveguide designs. In this work the unique properties of metamaterials will be shown by using some examples regarding the suppression of simultaneous switching noise and the implementation of novel radar absorbing materials.
Fig. 1 - Three-dimensional sketch of the analyzed configuration (a) and a picture of a manufactured wideband absorber.
These surfaces can control the propagation or the boundary conditions of electromagnetic fields and are generally referred as High Impedance Surfaces (HIS). The basic configuration of a metamaterial generally comprises an arrangement of metal elements of on a periodic lattice which are printed on a planar grounded dielectric slab.
High impedance surfaces can be exploited to realize Electromagnetic Bandgap (EBG) structures, which prevent surface wave propagation within the socalled forbidden band, and Artificial Magnetic Conductors (AMC), which approximate the behavior of a Perfect Magnetic Conductor (PMC). The electromagnetic behavior of these surfaces can be tailored by using a proper design of the basic element shape and size, a suitable value of the periodicity and a correct choice of the dielectric properties and thickness of the single or multiple dielectric slabs employed for the structure.
Fig. 2 - Reflection coefficient of the ring FSS over a grounded air slab of 5mm. The results obtained by Ansoft HFSS are compared both with MoM simulations and with an equivalent circuit approach.
16
- Newsletter EnginSoft Year 7 n°4
Fig. 3 - Phi-cut of the electric field scattered by a finite absorber. (b) Scattering pattern of the 10x10 ring array on top of a 5 mm grounded air slab. The scattering patterns is shown at a frequency within the absorption band and compared with the scattering patterns of a PEC plane with the same dimensions.
Radar Absorbing Materials The absorbing panel consists of a conventional high impedance surface comprising lossy frequency selective surfaces over a thin grounded dielectric slab [1]. The FSS array, made up of capacitive cells, behaves as a capacitor in the low frequency region but its impedance becomes inductive after the first resonance. Let us consider an FSS composed by a ring array, with a periodicity D equal to 11 mm and a surface resistance Rs of 70 Ω/sq, printed on a air grounded dielectric substrate with a thickness of 5 mm (see Fig. 1). In Fig. 2 the reflection coefficient of the absorber obtained by a periodic MoM code, by the equivalent circuit approach and by Ansoft HFSS v.10 is reported.
the matching condition over a wide frequency range. The energy would be reflected in other directions only if the FSS period were larger than one wavelength. In the present design the redirection of the energy toward the grating lobes starts after 27 GHz. In Fig. 3a the scattered field of a finite absorbing structure obtained by HFSS is represented within a phi cut.
The absorbing structure provides remarkable performance (-15 dB in the band from 7 GHz to 20 GHz) with an overall thickness of only 5 mm. The thickness of the absorber for obtaining the shown absorption profile approaches the physical limitation of the non-magnetic RAM [2]. Indeed, in this case, the minimum theoretical thickness is 4.5 mm.
Fig. 4 - The two power planes form an effective parallel-plate waveguide with the same area of the PCB.
This performance cannot be accomplished by lightweight configurations employing optimized Jaumann screen [3] or by other commercially available non-magnetic multilayer structures (see for instance [4]) with a thickness lower than 9-10 mm. Despite the intrinsic periodicity of the structure, its dimension can be reduced down to a 4 by 4 array preserving almost the same absorption performances, with respect to a PEC plate of the same dimensions. The absorber here presented does not redirect the energy in other directions as in other RAM designs [5] but it dissipates the incoming power by realizing
Fig. 5 - (a) Planar EBG unit cell and (b) qualitative equivalent circuit..
Newsletter EnginSoft Year 7 n°4 -
17
x-direction can be neglected. When a high-speed device switches, a sudden time-varying currents changes the current consumption and a voltage wave arises and propagates along the two planes, causing the so called Simultaneous Switching Noise (SSN), which produces false switching in digital circuits and malfunctioning in analog
Fig. 6 - Planar EBG structure with test ports for S parameter evaluation.
The graph shows that the energy is dissipated by the structure and not redirected in other directions. The reflected patterns both for a metallic square of 110 mm x 110 mm and for the presented absorbing structure with the same dimension (10 x 10 unit cells) in correspondence of a frequency inside the absorption band are reported in Fig. 3b. The radiation pattern has been obtained by using the HFSS full wave simulator. Fig. 7 - Numerical result of the magnitude of S21 parameter.
The manufactured structure results in a very lightweight configuration, indeed a 30 cm Ă— 30 cm sample weighs 10 g compared with the 450 g of a commercial magnetically loaded absorber (Eccosorb [6]) with the same dimensions. Metamaterials for Simultaneous Switching Noise Suppression The recently emerged system-on-package (SoP) technology provides low-cost and compact digital circuits for communication devices, sensors or high-speed modules; SoP requires highly integrated systems [7][8]. This is obtained by integrating multiple dies and passive devices on substrates which are stacked in three dimensions and interconnected laterally or vertically onto the package substrate. The use of vias as interconnection structures in high-density System on Package substrates and Printed Circuit Boards (PCBs) is the most common solution to route signals in these multilayer structures. These closely-spaced interconnections may become sources of high-frequency noise and generate coupling wich affects both signal and power integrity. This can cause serious problems regarding electromagnetic interference (EMI) and electromagnetic compatibility (EMC) control. In fact, as a result, the noise reduces the achievable performance, worsens the bit error rate (BER) and greatly lowers the system reliability. Active devices are generally connected between two planes or can be linked to the signal layer by using through-vias. These two planes, which have the same area as the PCB, can be considered as an ideal parallel-plate waveguide (Fig. 4), where the dimension in the y-direction is assumed to be much larger than the thickness h and therefore any variation along the
Fig. 8 - Numerical result of the magnitude of S31 parameter.
Fig. 9 - Numerical result of the magnitude of S41 parameter.
18
- Newsletter EnginSoft Year 7 n°4
circuits. The guiding structure reported in Fig.4 can support transverse electric (TE), transverse magnetic (TM) and transverse electric and magnetic (TEM) modes [9]. Since the typical thickness of the commercially available PCBs is on the order of few millimetres (1 mm – 5 mm), the cut-off frequencies for TE and TM modes are very high (on the order of hundred of gigahertz) hence the only modes of concern are the dominant waves of TEM modes with the cutoff frequency corresponding to that of the TM0. In addition to this, since practical power planes have finite width and length it is also important to consider the resonance modes TEmnp and TMmnp excited in the structure given by:
Since h is very small with respect to w and l, only TEmn0 and TMmn0 modes have to be investigated. It is therefore of paramount importance to suppress the resonant modes induced in the parallel-plate waveguide of finite length and width. Our aim is to design a metamaterial which is able to inhibit the propagation of the SSN within a large bandwidth (from 1.0 GHz to 6.6 GHz) with a good suppression level (less than -30 dB) and also along a wide range of directions. More specifically, we look at to the employment of an Electromagnetic Bandgap (EBG) structure which prevents the propagation within a specific frequency band. The EBG unit cell is shown in Fig. 5a. The size is 30 mm x 30 mm and the gap between the lines is equal to 1 mm. A simple model for the qualitative behaviour of the unit cell is presented in Fig.5b. This equivalent circuit with lumped elements contains a capacitance Ca and an inductance La which take into account the interaction between the EBG patch and the continuous plane. The second part refers to the thin line connecting the inner patch of each unit cell to the other part of the structure (Lb) and the capacitance Cb produced by the gaps between neighbouring cells. The addressed power/ground plane with the planar EBG printed on the upper layer comprises 3 x 3 unit cells. The whole dimension is 90 mm x 120 mm as reported in Fig. 6, where the ports used for S parameter evaluation are indicated. The two conductive layers are placed at the top and down face of a slab of FR4 dielectric material (εr=4.4, tg loss=0.02). The thickness considered for the dielectric layer is 1.54 mm. The behaviour of the structure is probed at four points by means of lumped ports. Each lumped port used to test the SSN suppression is located at the inner patch centre. The employment of four ports makes it possible to check the
different level of suppression for different directions of propagation along the EBG structure. As a reference, we compare the EBG performance with a two-layer solid power plane. All the simulated results were obtained using the Ansoft High Frequency Structure Simulator (HFSS). In Fig. 7, Fig.8 and Fig.9 there are reported comparisons between the attenuation realized by the structure along the path connecting various connecting ports. The magnitude of the parameter S21 is maintained below -30 dB over the bandwidth starting from around 1.0 GHZ up to 6.6 GHz for all the investigated cases.
References [1] F. Costa, A. Monorchio, G. Manara “Analysis and Design of Ultra Thin Electromagnetic Absorbers Comprising Resistively Loaded High Impedance Surfaces”, IEEE Trans. on Antennas and Propagation, vol. 58, no. 5, 2010. [2] Rozanov, K. N., “Ultimate Thickness to Bandwidth Ratio of Radar Absorbers,” IEEE Trans. on Antennas and Propagation, vol. 48, no. 8, pp. 1230-1234, 2000. [3] B. Chambers and A. Tennant, “Optimized design of Jaumann radar absorbing materials using a genetic algorithm,” Inst. Elect. Eng. Proc. Radar Sonar Navigat., vol. 143, pp. 23–30, Jan. 1996. [4] Laird Tecnologies Company, http://www.lairdtech.com/ Products/EMI-Solutions/Specialty-EMI-Solutions/ Microwave-Absorbers/. [5] Paquay, M. Iriarte, J.-C. Ederra, I. Gonzalo, R. de Maagt, P., “Thin AMC Structure for Radar Cross-Section Reduction”, IEEE Trans. on Antennas and Propagation, vol. 55, no. 12, pp. 3630-3638, 2007. [6] Emerson and Cuming Microwave product, 28 York Avenue Randolph, MA 02368 USA, http://www.eccosorb.com/main/Home.html. [7] R. R. Tummala, M. Swaminathan, M. M. Tentzeris, J. Laskar, G.-K. Chang, S. Sitaraman, D. Keezer, D. Guidotti, Z. Huang, K. Lim, L. Wan, S. K. Bhattacharya, V. Sundaram, F. Liu, and P. Markondeya Raj,“The SoP for miniaturized, mixed-signal computing, communication,and consumer systems of the next decade,” IEEE Trans. Adv. Packag.,vol. 27, no. 2, pp. 250–267, May 2004. [8] T. Sudo, H. Sasaki, N. Masuda, and J. L. Drewniak, “Electromagnetic interference (EMI) of system-onpackage (SoP),” IEEE Trans. Adv. Packag., vol. 27, no. 2, pp. 304–314, May 2004. [9] D. Pozar, Microwave Engineering, 2nd ed., New York: Wiley, 1998.
Agostino Monorchio, Simone Genovesi, Filippo Costa University of Pisa, Dipartimento di Ingegneria dell’Informazione: Elettronica, Informatica, Telecomunicazioni - Pisa, Italy
Newsletter EnginSoft Year 7 n°4 -
19
Electro-thermal simulation for EV/HEV applications High power energy storage systems are necessary for the new age of electric vehicles. Lithium ion batteries have the advantage of high energy density, good aging characteristics and high efficiency, but at the same time their thermal range of operation is limited. With temperatures under 0°C, the power capacity of the lithium battery is reduced about 70% and with a temperature over 40°C, irreversible damage can occur over 70°C there can also be thermal runaway. Hence efficient and accurate thermal management is necessary. The battery cooling system shown in Fig 1 is analyzed and designed with the aid of numerical tools. We use a modeling methodology starting with CFD and ending at a low dimensional
Fig. 1 - The battery pack model (http://www.lionsmart.de/)
the cell model (see Fig 3 right). The electrical model is implemented in VHDLAMS language. The effect of discharge current is evaluated in 25Ah cells connected in series in 1,5 and 10 C-rates, see Fig. 4. Losses effects are present in higher currents showing a reduced total capacity and lower voltage, which can be observed in the voltage profiles. Fig. 2 - The idea of model order reduction (http://ModelReduction.com)
L. Kostetzer; S. Nallabolu; E. Rudnyi CADFEM GmbH, Grafing bei München, Germany
but accurate compact thermal model for system level simulation. This model is ready to be coupled with other physical domains For more information, please contact: like electrical, chemical and mechanical. Detailed CFD simulation Mr Erke Wang - ewang@cadfem.de is performed to analyze the air flow over corrugated channels. Heat transfer coefficients are calculated with CFD and then used in a finite element (FEM) thermal model of a Li-Ion battery pack with one-dimensional flow (FLUID116). The finite element thermal model is, however, incompatible with system level simulation, since it is high dimensional and its transient simulation takes too much time. We use modern model reduction (see Fig 2) in order automatically to develop an accurate compact thermal model of the battery pack. After that we use a semi-physical electrical model of the battery. It is based on electrochemical equations developed by the group Fig. 3 - Electro-thermal battery coupling in Simplorer of Prof Newman (DualFoil), but with simplified assumptions to speed model simulation. The parameters of the model still have some physical meaning but they should be determined during a parameterization procedure. The system level thermal model is coupled with an electrical battery cell model in Simplorer (see Fig 3 left). For simplicity, only three cells that are coupled with the battery pack are shown. A sub-circuit model describes Fig. 4 - Voltages and temperatures in constant current discharge
20
- Newsletter EnginSoft Year 7 n°4
Structural Identification of a Composite ARW-2 Wing Model At NASA Langley Research Center, a program called Drones for Aerodynamics and Structural Testing-DAST was carried out to generate an extensive database of measured steady and unsteady pressure data to be used in validation of computational aero-structural studies. The data concerning the composite aeroelastic research wing (ARW-2) presented in this program has been used as a benchmark problem by many researchers in the past mostly with simplified models. However, the structural definition of the composite skin as presented in literature is not complete enough to create a 3D "Finite Element Model" of the wing skin to use in validation of computational studies today. Thus, a computational composite ARW-2 wing model which has the similar structural response with the experimental wing should be identified to be used in highfidelity computations. ARW-2 composite skin is made of fiberglass material with honeycomb panels sandwiched between the middle two layers of fiberglass. Moreover, the thicknesses of ribs, spars, skin and axial bars of the wing are still missing geometrical properties. Several experimental studies about ARW-2 wing exist in literature. Sanford [1] provides geometrical and structural properties of the ARW-2 wing. Sanford [2] also presented experimental studies for steady state conditions in order to generate extended database for the ARW-2 wing. Unsteady transonic aerodynamic characteristics of the ARW-2 wing are given in Seidel's [3] experimental work. In addition, computational studies concerning the ARW-2 wing have been presented by Cohen [4] and Bhardwaj [5]. Bhardwaj created a 3D the ARW-2 wing model with isotropic skin and verified the ARW2 computational wing model for static aeroelastic analysis in the transonic regime. Farhangnia [6] performed static and dynamic Aeroelastic analysis by using an aeroelastic code ENSAERO which was also used by Bhardwaj. Farhangnia modeled the wing structure as a composite plate. A 3D computational isotropic ARW-2 wing model which has a compatible structural response with the experimental wing was identified in a former study and also aeroelastic validation and multi-disciplinary optimization of this isotropic ARW-2 wing model was performed by Nikbay and Aysan [7]. In this paper, a further study is carried on identifying a 3D structural model of ARW-2 wing with composite skin parameters by taking into account only bending, torsional
Fig. 1 - Computational model of ARW-2 wing structure
responses and modal analysis. The aim of the whole study is to come up with a reliable computational ARW-2 model with composite skin which is validated in both structural and aeroelastic responses to be used in benchmark studies. This identification process utilises an inverse engineering approach based on a multi-objective optimization algorithm modeFRONTIER 4.1 driving a structural finite element solver, Abaqus 6.7. NASA's ARW-2 wing had three different supercritical airfoils in order to investigate the interaction between the flexible, or elastic wing and the aerodynamic forces experienced during flight in transonic regime [1]. The geometric model created via the software CATIA V5R17 is shown in Figure 1. The spars and ribs were machined from 7075-T73 aluminum alloy. In Table 1, mechanical properties of Aluminum 7075-T73 are presented.
Table 1 - Mechanical Properties of Aluminum 7075-T73
The ARW-2 wing composite skin was made of fiberglass material with honeycomb panels sandwiched between the middle two layers of fiberglass for areas of skin not located over the spars or ribs. The number of layers of fiberglass used to make the skin varied from 36 at the inboard end to 27 at the outboard end, with approximately 25 % of the layers at ±45 degree orientation [3]. By using these definitions, the wing skin is divided into two as inner and outer surfaces. The honeycomb core is located at the center of these surfaces. The ±45 degree plies are located around the honeycomb core, symmetrically. The 0 degree and 90 degree plies are placed above the ±45 degree plies. In order to determine the upper and the lower limits of unknown mechanical properties of the fiberglass material, microstructural composite analysis is done by using Halpin-Tsai equations [8]. The Halpin-Tsai equations are simple approximate forms of the generalized self consistent micro mechanical solutions and proven to agree well with experimental values [8]. To generate the macro-structure of the composite model for the ARW-2 wing skin, orthotropic elasticity in plane stress case is considered in this study, which Abaqus 6.7 is used as the finite element solver. If both material properties and thickness parameters of composite skin are introduced as optimization variables in the inverse identification problem, the number of optimization variables increases dramatically, thus complicating the process to find a feasible optimum solution. For the sake of simplicity, the material properties of reinforcement and matrix materials are taken from literature and the average material values for composite skin is provided by using Halpin-Tsai equations and tabulated in Table 2. In the optimization problem, concerning
Newsletter EnginSoft Year 7 n째4 -
Table 2 Mechanical Properties of Fiberglass and Honeycomb
the composite skin, only the thicknesses of honeycomb and fiberglass layers are left as optimization variables. Here, we consider a multi-objective optimization problem based on structural mechanics where the missing thicknesses of the fiberglass layers, the honeycomb core and, ribs, axial bars and spars are defined as optimization variables. The optimization problem for the composite ARW-2 structural identification has eight inequality constraints and two objective functions. The objective functions of the optimization algorithm are; 1) to minimize the average relative error in first five modal frequencies and 2) to minimize the average of relative error in static bending displacement at the wing tip on rear and front spars. For bending analysis, a 100 lb load is applied in the upward direction at the wing tip on the front spar of the wing to carry out the identification study. The torsional response is not included as an error criterion in the optimization problem but will be checked after the optimum solution for the identified model is provided. There are four inequality constraints which control the thickness and radius of axial bars. The remaining inequality constraints are defined to limit the relative error for the first mode, the average relative error for the first three modes, the average relative error of five and to limit the wing tip deflection relative error. The optimization workflow is constructed in the multidisciplinary and multi-objective optimization program, modeFRONTIER 4.1. using a gradient-based optimization algorithm NLPQL which is based on a "Sequential Quadratic Programming"(SQP) algorithm. SQP is an algorithm that has demonstrated robustness and efficiency for a broad range of optimization problems [9]. NBI-NLPQLP (Normal Boundary Intersection-Sequential Quadratic Programming Method) [10] is used to solve multi-objective optimization problems. Figure 2 gives a detailed explanation for the symbols of nodes used in the optimization flowchart. Figure 3 shows the modeFRONTIER workflow scheme which is constructed for this structural identification type of optimization problem. As seen in Figure 3, the optimization variables are placed on the left side and also the inequality constraints for the radii and thicknesses of the axial bars are located on the left bottom corner of the figure. These constraints do not depend on the results of either structural analysis or modal analysis but only on geometric definition. The FE solver Abaqus node, which performs both modal analysis and static analysis, is at the core of Figure 3. The three modal analyses and also the modal objective function appear on the upper right side of the workflow. Similarly, the bending constraint given and the objective function appear on the lower right side of the workflow. All of these criteria are related to the function evaluations of Abaqus, and this is why they are located after Abaqus node in the workflow. The optimization process uses 20 design of experiments (DoE) with "Sobol sequence", which distributes the experiments
21
uniformly in the design space [11]. Then, the best 20 solutions produced by the first DoE run are fed to the actual optimization run as user defined DoEs for the NBI-NLPQLP generations. Finally, a total of 128 designs are generated for the optimization problem. The solution of the problem took 125 hours 55 minutes and 44.328 seconds on a workstation with Intel(R) Core(TM)2 CPU 6700 @ 2.66 GHz processor, with 2 GB of RAM on Microsoft Windows XP operating system. 108 designs were found to be feasible that satisfy the constraint condition given in the optimization problem, and 19 designs were unfeasible that did not satisfy the constraint condition. Moreover, there was 1 error design that did not give any solution because modeling or computational errors occurred during the optimization workflow. As a result, 5 designs are found in the Pareto-front set for the solution of the multi-objective problem. These Pareto designs with their objective and constraint values are tabulated in Table 3 for comparison. Here, a solution which has a lower error in the first natural frequency would be a more prefered solution than others since first modes dominate the total deflection of the wing. In Table 3, Pareto number 3 is considered to be the final
Table 3 - Pareto Optimal Set
solution since it has the smallest error in first mode, smallest error for the average of first three modes, second smallest error for the average of five modes and also an acceptable error in wing tip displacement. This final solution yields the identified computational model of the ARW-2 composite wing. For the identified model, the natural frequency values for five modes, and the tip displacement of forward and rear spars are tabulated
Fig. 2 - modeFRONTIER Workflow Nodes
Fig. 3 - Workflow of the modal and structural optimization problem of ARW-2
22
- Newsletter EnginSoft Year 7 n簞4
Table 4 - Relative Errors Between the Computational and the Experimental Data
in Table 4 to compare the values with the experimental data in a detailed way. The identified computational model is subjected to a twisting moment created by a 1 lb load applied upward at the wing tip on the front spar and a 1 lb load applied in downward at the wing tip on the rear spar. Then, the twisting response of the identified composite ARW-2 wing is obtained and validated with Bhardwaj's study [5] as shown in Figures 4 and 5. This study aimed to identify a full composite model of a 3D ARW-2 wing structure that can be used in validation studies of aeroelastic tools. Former studies assuming isotropic skin were published, however a 3D composite skin approach was not reported in the literature to the best of author's knowledge. In this paper, this model is identified by utilization of multiobjective optimization techniques in an inverse engineering approach where the unknown thickness parameters and material properties were used as optimization variables while trying to minimize the error of the structural responses in modal frequencies and bending displacements. Also, the twisting response of the identified computational model is compared with the experimental and former computational data. The next step of this study will be to validate the aeroelastic response of the identified composite model with experimental data and even improve the model by taking into account the fluid-structure interaction for specified flow conditions. References [1] M.C. Sandford, D. A. Siedel, C. V. Eckstorm and C.V. Spain. In Geometrical and Structural Properties of an Aeroelastic Research Wing (ARW-2). NASA Technical Memorandum 4110, 1989. [2] M.C. Sandford, D. A. Siedel, and C. V. Eckstorm. In Steady Pressure Measurements on an Aeroelastic Research Wing (ARW-2). NASA Technical Memorandum 109046, 1994. [3] D. A. Siedel, M.C. Sandford, and C. V. Eckstorm. In Measured unsteady transonic aerodynamic characteristics of an elastic supercritical wing. Journal of Aircraft, 24 (4):225-230, 1987. [4] D. E. Cohen. In Trim Angle of Attack of Flexible Wings Using Non-Linear Aerodynamics. PhD thesis, Virginia Polytechnic Institute and State University, USA, 1998. [5] M. K. Bhardwaj. In A CFD/CSD Interaction Methodology for Aircraft Wings. PhD thesis, Virginia Polytechnic Institute and State University, USA, 1997. [6] M. Farhangnia, G. Guruswamy, and S. Biringen. In Transonicbuffet associated aeroelasticity of a supercritical wing. 34th Aerospace Science Meeting and Exhibit,January 15-18 1996, Reno, NV. AIAA, 1996.13 [7] M. Nikbay and A. Aysan. In Identification of Structural and Aeroelastic Properties of a Computational ARW-2 Wing Model
(a) Refence Study [5]
(b) Current Study
Fig. 4 - Displacement of the Front Spar of ARW-2 Subjected to a Twisting Load
(b) Current Study (a) Study [5] Fig. 5 - Displacement of the Rear Spar of ARW-2 Subjected to a Twisting Load
For Aeroelastic Optimization Applications. IFASD-2009, International Forum on Aeroelasticity and Structural Dynamics, Seattle, WA, June 21-25 2009. [8] P. K. Mallick. Fiber-Reinforced Composites. Materials, Manufacturing, and Design Second Edition, Revised and Expanded, New York, USA, 1993. [9] K. Schittkowski and C. Zillober, and R. Zotemantel. In Numerical Comparison on Nonlinear Programming Algorithms for Structural Optimization. Struc. Optim., 7: 1--28, 1994 [10] I. Das and J.E. Dennis. In Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems. SIAM Journal on Optimization, 8:631--657, 1998 [11] modeFRONTIER V4 Version Documentation. Esteco. For more information, please contact: Melike NIKBAY, Ph.D. - Assistant Professor Istanbul Technical University - Faculty of Aeronautics and Astronautics. Department of Astronautical Engineering, Air Space Medium and Systems Division. nikbay@itu.edu.tr Nikbay Melike Istanbul Technical University, Faculty of Aeronautics and Astronautics, Dept. of Astronautical Engineering - Turkey nikbay@itu.edu.t G羹r F覺rata Istanbul Technical University, Faculty of Aeronautics and Astronautics, Aeronautical and Astronautical Engineering Program - Turkey gurfi@itu.edu.tr Tan覺r Emreb Istanbul Technical University, Faculty of Aeronautics and Astronautics, Aeronautical and Astronautical Engineering Program - Turkey tanire@itu.edu.tr
Newsletter EnginSoft Year 7 n°4 -
23
ANSYS CFD 13.0 In questo articolo vengono presentate le principali novità di ANSYS CFD 13. Sotto questo nome vengono inclusi i due principali solutori fluidodinamici ANSYS CFX e ANSYS FLUENT oltre ad una serie di strumenti verticalizzati per lo studio di turbomacchine (BladeModeler e TurboGrid) e di raffreddamento di componenti elettronici (Icepak). Nella versione 13.0 viene rafforzata la struttura di Fig. 2 - struttura di ANSYS CFD 13 ANSYS Workbench, l’ambiente di lavoro parametrico che costituisce il punto di integrazione di tutti i software ANSYS come parametri ed utilizzate in Workbench per lanciare e permette la definizione di un unico processo di analisi per sequenze di analisi in batch. Per esempio anche le dimenla simulazione di diversi aspetti fisici di uno stesso sistema. sioni della mesh possono essere trattate in maniera paraDalla versione 13.0, oltre all’interazione fluido-struttura, è metrica ed è stato aumentato il numero di parametri insepossibile studiare l’interazione tra aspetti elettromagnetici, ribili nel set-up di Fluent; fluidodinamici e strutturali in un unico processo di simulazio• Una gestione più rapida del passaggio di carichi da una ne. soluzione CFD ad un modello termico e strutturale. È Nell’articolo vengono inoltre spiegate le principali novità dei infatti possibile dalla versione 13 passare un campo di due solutori CFD e le linee di sviluppo che si basano su tre temperatura su un intero corpo anziché sulle sole superprincipi fondamentali: robustezza, efficienza ed accuratezza fici ed è stato reso più rapido il processo di interpolazione dei dati (Figura 4); del calcolo. • Il passaggio di informazioni tra il codice elettromagnetiANSYS CFD in Workbench co Maxwell e un modello fluidodinamico (Figura 5); La struttura di ANSYS CFD rimane immutata rispetto alla ver• La possibilità di lanciare sequenze di analisi in batch sione 12 ed è completamente integrata in ANSYS Workbench mediante Remote Solver Manager. Questo permette di lan(Figura 1 e Figura 2). ciare diverse analisi in simultanea sfruttando tutte le macchine disponibili in rete tramite un sistema a code. • L’inclusione di MS Excel in un processo di analisi e la sua interazione con gli altri software.
Fig. 1 - ANSYS Workbench, modellazione parametrica ed integrazione di diverse discipline
Gli strumenti di interfaccia con i CAD, il modellatore geometrico ed ANSYS Meshing consentono di importare o costruire il modello in maniera parametrica e di generare una griglia di calcolo automatica utilizzando diversi metodi di mesh. Il set-up dell’analisi e la soluzione vengono eseguite separatamente per i due codici ANSYS CFX e ANSYS FLUENT, mentre il post-processamento torna ad essere eseguito in un ambiente unico CFD-Post. Le principali novità di ANSYS Workbench riguardano: • L’estensione nell’utilizzo dei parametri (Figura 3). Un maggior numero di grandezze possono essere definite
Fig. 3 - definizione di una sequenza di analisi parametrica e lancio batch
Fig. 4 - interazione fluido-struttura, passaggio di carichi termici e di pressione
24
- Newsletter EnginSoft Year 7 n°4
•
Fig. 5 - interazione tra elettromagnetismo e fluidodinamica, passaggio di potenze termiche.
DesignModeler e ANSYS Meshing: strumenti geometrici e di mesh Un ulteriore passo avanti è stato fatto sia nella modellazione geometrica sia nei metodi di mesh unificati. È importante ricordare che gli strumenti DesignModeler e ANSYS Meshing permettono di creare geometrie e mesh di calcolo per tutti i software ANSYS con notevoli vantaggi nella condivisione di geometrie tra discipline diverse. Un unico modello geometrico e lo stesso ambiente di mesh possono essere messi in condivisione tra CFD, FEM ed elettromagnetismo con notevole risparmio di lavoro e tempo. DesignModeler garantisce l’import da CAD con lettura dei parametri e con la versione 13 ha visto l’introduzione di strumenti che consentono la pulizia e la generazione delle geometrie in modo più rapido e flessibile. Per quanto riguarda i metodi di mesh per la fluidodinamica lo sviluppo è andato nella direzione di: • Aumento di efficienza nella generazione con riduzione dell’occupazione di memoria e conseguente aumento della massima dimensione di mesh; • Generazione di mesh in parallelo per l’abbattimento dei tempi di calcolo; • Introduzione di metodi di mesh derivati da ICEM-CFD, Gambit e T-grid per rendere disponibili tecniche avanzate di mesh; • Miglioramento della diagnostica e del controllo qualità; • Interoperabilità: diversi metodi di mesh possono essere impiegati su uno stesso modello in diverse parti geometriche. Questo porta maggiore flessibilità per domini complessi; • Meshing Body-by-Body: l’aggiornamento o la modifica di mesh viene gestita separatamente per i corpi diversi ed è quindi più rapida per le geometrie complesse. ANSYS CFX e ANSYS Fluent: i solutori fluidodinamici Nello sviluppo della versione 13 è stata data continuità alle linee di sviluppo della versione 12 seguendo le richieste dei clienti e le applicazioni dei principali settori industriali. I punti fondamentali di sviluppo sono i seguenti e sono comuni sia ad ANSYS CFX che ad ANSYS FLUENT: • Robustezza e accuratezza del solutore, efficienza del calcolo parallelo: in Fluent è stato introdotto un nuovo schema numerico (pseudo-transient) che permette di ridurre
•
•
•
di un ordine di grandezza il numero di iterazioni necessarie per convergere. È stato inoltre reso più efficiente il calcolo parallelo su processori multi-core ed è stato ridotto il tempo necessario per le operazioni di Input/Output con sensibili incrementi di velocità di calcolo; Simulazione di motori a combustione interna: sia in Fluent che in CFX continua lo sviluppo delle metodologie di simulazione motore. In Fluent sono disponibili nuove modalità di gestione delle mesh deformabili, mentre in CFX sono state sviluppate delle interfacce che guidano l’utente nella definizione della movimentazione di valvole e pistone, nella gestione della mesh deformabile e delle condizioni di flusso nella varie fasi-motore. Le stesse interfacce consentono anche di far comunicare CFX con software mono-dimensionali di comune impiego in ambito motoristico; Modelli di trasporto di particelle: questi modelli trovano impiego nella simulazione dei processi di iniezione di combustibile liquido e solido e sono utilizzati nell’industria chimica e di processo e in quella dei motori auto e aeronautici. L’utilizzo della CFD in questi settori ha lo scopo di ridurre i consumi di combustibile e le emissioni inquinanti. In CFX il tempo di calcolo di traiettorie è stato ridotto di 3-4 volte con miglioramenti del 30-40% sui tempi dell’intera simulazione. Sono stati introdotti inoltre nuovi materiali e la possibilità di definire miscele di sostanze, rendendo quindi più realistica la composizione dei combustibili simulati. Infine è stata migliorata la robustezza del calcolo ed è quindi possibile simulare carichi più elevati di particelle; Modelli multifase euleriani: oltre ai metodi più precisi per la risoluzione delle interfacce tra le fasi, sono stati introdotti modelli di ebollizione e condensazione a parete e di wall film; Modelli di combustione: anche in questo ambito sono stati introdotti nuovi modelli per la simulazione di motori a combustione interna (G-equation e spark ignition models);
Fig. 6 - modello transient-blade-row
Newsletter EnginSoft Year 7 n°4 -
25
• Interazione fluido-struttura: continua lo sviluppo dell’interazione fluido-struttura 2-way tra Fluent ed ANSYS, mentre in CFX è ora disponibile come full release il solutore a 6 gradi di libertà. Questo permette il calcolo del moto di un corpo rigido sotto l’effetto delle forze fluidodinamiche e di altre natura. Questo modello è ora validato e documentato.
Fig. 7 - strutture turbolente risolte con modello LES
• Turbolenza: sia in Fluent che in CFX continua lo sviluppo dei metodi Large Eddy Simulation, con miglioramenti sugli schemi numerici e sulla velocità di calcolo. Questi modelli sono per esempio di impiego per la risoluzione di problematiche aeroacustiche; • Turbomacchine: è stato introdotto in CFX il modello Transient-Blade-Row che consente di eseguire simulazioni transitorie su un ridotto numero di pale anche in caso di pitch differente tra rotore e statore. Questo consente di ridurre le estensioni dei domini di calcolo e di ottenere risultati accurati con un basso impiego di RAM e ridotti tempi di CPU;
ANSYS CFD 13: conclusioni L’uscita della nuova release ANSYS 13 costituisce un notevole passo in avanti sia dal punto di vista dell’integrazione tra i software CFD, elettromagnetici e strutturali, che dal punto di vista dei modelli disponibili e dei fenomeni fluidodinamici simulabili. A questo si aggiungono i miglioramenti relativi alla modellazione parametrica e alla facilità nella gestione di analisi parametriche. Tutti questi aspetti nascono dall’idea che la simulazione non debba essere utilizzata a posteriori come strumento di verifica o di soluzione di problemi, ma come uno strumento di progettazione e di sviluppo prodotto.
Per ulteriori informazioni: Massimo Galbiati - EnginSoft info@enginsoft.it
A Maxwell overview Con l’uscita della nuova release 13 di ANSYS trovano spazio in interfaccia WorkBench la maggior parte dei software per l’analisi elettromagnetica provenienti da casa Ansoft (Figura 1). Qui vengono presentati alcuni aspetti significativi del software che implementa il metodo agli elementi finiti per le analisi statiche, armoniche e transitorie in bassa frequenza: Maxwellv14. 1) La facilità di utilizzo. Maxwell si presenta come una piattaforma semplice da utilizzare. L’interfaccia agevola Fig. 1 – integrazione dei software l’utente in tutte le operazioni Ansoft nell’analysis System di di modellazione, di pre- e ANSYS WorkBench post-processing, infatti tutti i comandi sono accessibili direttamente da interfaccia o tramite short cut menu. La gran parte delle quantità di interesse ingegneristico,
come forze e coppie, perdite nel ferro, densità delle correnti, flussi concatenati, tensioni indotte, velocità, posizione, etc, sono disponibili come output diretti. L’algoritmo di mesh autoadattiva concorre alla semplicità di utilizzo di Maxwell. L’abilità di questo algoritmo di generare in maniera completamente automatica il modello nodi-elementi, consente al progettista di risparmiare tempo durante la fase di preparazione del modello e di concentrarsi maggiormente sulla sintesi e sulla comprensione ingegneristica dei fenomeni da analizzare. Per quanto riguarda la progettazione e verifica dei motori elettrici è possibile utilizzare i modelli generati con RMxprt o utilizzare all’interno di Maxwell le cosi dette UDP (User defined Primitives), una serie di geometrie parametriche bidimensionali e tridimensionali che riproducono una vasta gamma di modelli di macchine elettriche (Figura 2). Sempre nell’ottica di una rapida modellazione e set-up dei modelli di motori elettrici, dalla release 14 di Maxwell è presente una nuova funzionalità che consente l’accoppiamento degli avvolgimenti elettrici attraverso le superfici su cui si applicano dei vincoli di continuità - matching boundary - (Figura 3).
26
- Newsletter EnginSoft Year 7 n°4
po avvalendosi di una tecnologia che consente di risolvere problemi di grandi dimensioni, caratterizzati da matrici sparse e con un elevato numero di elementi. Tale tecnologia si basa sullo sviluppo di due tipi di solutori iterativi PCG (Preconditioned Conjugate Gradient) e QMR (Quasi-Minimal Residual). Il solver PCG viene utilizzato nel caso di analisi di tipo Eddy Current, mentre il solver QMR viene utilizzato per analisi di tipo magnetostatico ed elettrostatico. 3) Definizione dei circuiti esterni di pilotaggio Maxwell consente di connettere un circuito esterno al modello agli elementi finiti: • mediante la definizione dell’equazione del segnaFig. 2 – Una selezione di alcune UDP (User defined Primitives) per la modellazione dei le di alimentazione, o mediante una look-up table motori elettrici. in cui si indicano i valori assunti dal segnale in corrispondenza di diversi istanti temporali; • mediante accoppiamento con un simulatore circuitale embedded (TDSLink) che estrae il circuito a parametri concentrati o il circuito equivalente di Norton (Figura 4); • in cosimulazione con Simplorer attraverso un link dinamico che pilota il modello realizzato in Maxwell in corrispondenza di determinati istanti temporali.
Fig. 3 – Modello 3D di motore elettrico a magneti permanenti ottenuto con RMxprt. La continuità del carico elettrico sulle bobine (A-B) è automaticamente garantita dalle condizioni di continuità matching boundary
2) I solutori di Maxwell Per la gestione del calcolo distribuito, in Maxwell sono presenti due strumenti particolarmente efficaci: il Multiprocessing e il Distributed Solve (DSO). In particolare, il Multiprocessing consente di splittare un’analisi parametrica o uno sweep in frequenza su più core appartenenti ad una stessa macchina, mentre il DSO consente di utilizzare più macchine separate per una stessa analisi. L’utilizzo combinato delle due opzioni massimizza lo sfruttamento delle risorse di calcolo, non solo in termini di memoria e CPU accessibile su una singola macchina, ma su più macchine separate. Sebbene il solutore diretto consenta di ottenere risultati accurati in tempi relativamente contenuti, Maxwell 14 permette di ridurre l’onere computazionale della simulazione sia in termini di memoria che di tem-
4) Accoppiamento con software alta frequenza Esistono due possibili tipologie di accoppiamento tra Maxwell e HFSS: • Accoppiamento Near Field: la distribuzione del campo magnetico, effettuata mediante l’analisi in frequenza eseguita in Maxwell, viene utilizzata in HFSS come sorgente di campo vicino. Al fine di ottenere la distribuzione di campo lontano non è necessario simulare il modello completo;
Fig. 4 – integrazione della circuiteria esterna con i modelli di Maxwell.
Newsletter EnginSoft Year 7 n°4 -
27
Dalla release Maxwell 14 la procedura descritta può essere implementata considerando una curva di demagnetizzazione BH estesa al terzo quadrante. La Figura 5 sintetizza quanto finora descritto. 6) Calcolo delle perdite nel ferro per gli acciai elettrici: Le perdite nel ferro si compongono di tre termini come indicato nell’equazione seguente:
Fig. 5 – Curva di demagnetizzazione estesa al terzo quadrante.
• Quando in HFSS è necessario modellare materiali ferromagnetici che presentano una magnetizzazione non uniforme, questa può essere valutata in Maxwell mediante un’analisi statica e successivamente esportata verso il modello in HFSS. 5) Calcolo della demagnetizzazione dei magneti permanenti. Maxwell consente di valutare la demagnetizzazione dei magneti permanenti sottoposti ad un campo magnetico che si oppone a quello proprio del magnete, come ad esempio quello generato da una bobina percorsa da corrente. Il calcolo può essere effettuato sia mediante un’analisi magnetostatica che transient. La procedura utilizza 2 analisi successive: Nella prima analisi viene considerato un modello nel quale vi sia il magnete permanente e la sorgente smagnetizzante. In tal modo per ciascun elemento del magnete si determina il punto di lavoro sulla curva BH. La seconda analisi importa la soluzione precedente, ed attribuisce ad ogni elemento del magnete permanente un nuovo tratto di curva BH (recoil curve) ottenuto con i dati resi disponibili dall’analisi precedente.
in cui compaiono le perdite per isteresi, le perdite dovute alle Eddy Current e le perdite addizionali [1]. I valori dei coefficienti presenti nell’equazione (Kh, Kc e Ke) sono difficilmente reperibili. Maxwell calcola tali coefficienti a partire dalle curve di perdita dei lamierini magnetici (note da DataSheet) attraverso una procedura di Curve-Fitting. Le curve di perdita possono essere inserite in corrispondenza di una o più frequenze. La Figura 6 mostra le perdite nel pacco magnetico di un trasformatore implementando la procedura illustrata. 7) Insulating Shell Boundary Le Insulating Shell Boundary sono condizioni al contorno di particolare interesse ingegneristico che Maxwell consente di definire. Tali condizioni sono generalmente utilizzate per modellare fogli di materiale isolante caratterizzati da spessori infinitesimi, o crack sottili all’interno di conduttori. In Figura 7 viene mostrato come un crack modellato con tale boundary possa modificare il percorso delle correnti indotte. 8) Curve BH per materiali anisotropi e laminati Maxwell permette di definire la composizione di un materiale non lineare come laminato, o di assegnargli proprietà anisotrope. I lamierini magnetici sono ampiamente utilizzati per la riduzione delle perdite dovute alle correnti parassite.
Fig. 6 – Perdite nel pacco magnetico di un trasformatore elettrico (a), evoluzione delle perdite nel tempo (b).
28
- Newsletter EnginSoft Year 7 n°4
Fig. 7 - densità di correnti indotte (b-c) in prossimità di crack presenti all’interno di un conduttore metallico (a)
Mentre le proprietà anisotrope vengono largamente utilizzate nei trasformatori di potenza e nelle macchine elettriche di grandi dimensioni. Per definire un laminato in Maxwell non è necessario modellare geometricamente le singole lamine, ma è sufficiente assegnare al materiale corrispondente la composizione di laminato, indicata attraverso il valore di stacking factor e la direzione di laminazione (Figura 8). Per quanto riguarda l’anisotropia dei materiali è possibile definire un curva BH per ciascuna direzione. Fig. 8 - Laminato di un motore sincrono a riluttanza: La laminazione è definita rispetto al L’interfaccia ANSYS13-Maxwell14 Come già accennato Maxwell può essere lancia- componente radiale di un sistema di coordinate cilindriche solidale al rotore. to direttamente dall’interfaccia di ANSYS Workbench, trageometrici, insieme ad altri definiti eventualmente nei semite l’icona presente nella finestra dell’Analysis System. tup delle analisi, in un unico foglio di calcolo, il Parameter In questo modo Maxwell2D/3D può essere utilizzato all’inSet (Figura 9), per effettuare sweep parametrici o come terno del Project Schematic di ANSYS Workbench, e condibase per una successiva analisi di ottimizzazione. vide le informazioni con altri blocchi di analisi attraverso le procedure tipiche dell’interfaccia WB (Figura 9). Un'altra [1] Lin, D.; Zhou, P.; Chen, Q. M.: The Effects of Steel caratteristica importante di questa integrazione è la posLamination Core Losses on Transient Magnetic Fields Using sibilità di utilizzare in Maxwell, come negli altri prodotti T-Ω Method. IEEE VPPC, 2008-09-03 -05, Harbin, China Ansoft presenti nell’interfaccia Workbench, le geometrie parametriche modellate in Design-Modeler, o importate in ANSYS attraverso i plug-in parametrici a disposizione dei Per maggiori informazioni: principali CAD in commercio. Emiliano D’Alessandro - EnginSoft info@enginsoft.it Un’unica geometria parametrica è così a disposizione dei solutori Ansoft e dei solutori di ANSYS. L’interfaccia Alice Pellegrini - EnginSoft Workbench consente inoltre di gestire questi parametri info@enginsoft.it
Fig. 9 - Esempio di analysis flow nel Project Schematic di ANSYS Workbench
Newsletter EnginSoft Year 7 n°4 -
29
Novità ANSYS Mechanical versione 13 dotto vari processi automatizzati per il trasferimento dei La nuova release ANSYS 13.0 è caratterizzata da diverse dati tra differenti fisiche di progetto: nuove ed avanzate funzionalità finalizzate a rendere più • da CFD a Strutturali; veloce, più semplice e più economico il raggiungimento • da CFD a Termiche; dei risultati, controllando contemporaneamente l’accura• da Termiche a Strutturali; tezza del risultato finale della simulazione. • da LF Emag a Strutturali; Le nuove funzionalità si riferiscono alle seguenti tre aree • da HF Emag a Termiche. di applicazione: 1. Maggiore precisione e fedeltà: la progettazione multiCon ANSYS 13.0, tramite l’”External disciplinare è uno degli obiettivi prinData Mapper” (Figura 1), c’è la possicipali della versione di ANSYS 13.0, bilità di importare i dati sotto forma di finalizzati a rispettare le esigenze un file di testo che definisce una nuprogettuali espresse dagli utilizzatori vola di punti con la corrispondente e di rispecchiare in maniera sempre grandezza da rimappare (Temperatura, più accurata la realtà e la sua evolupressione…). Il mapping dei dati zione nel tempo. esterni consente agli utenti di diversi 2. Maggiore produttività: ANSYS 13.0 gruppi (come gli utenti CFD e struttucomprende una serie di tools, che rali) lo scambio di dati relativi al mohanno l’obiettivo di ridurre al minimo dello in modo molto semplice ed imi tempi di gestione, in favore della mediato; prevedendo la possibilità di fase di progettazione. importare la temperatura corporea, la 3. Maggiore potenza di calcolo: per pressione superficiale, il coefficiente alcune simulazioni di ingegneria, di scambio termico… L'utente può deANSYS 13.0 è in grado di fornire ridufinire, da interfaccia (Figura 2), le unizioni di velocità, nei tempi di simula- Fig. 1 - Link per l’importazione dei dati esterni tà per i dati da importare e allineare i zione, anche da 5 a 10 volte maggio- importati dati con la geometria corrente. re delle versioni software precedenti. Di conseguenza anche simulazioni multifisiche molto complesse possono essere compiute in modo più rapido ed efficiente, accelerando lo sviluppo dei prodotti e la fase di progettazione. Un aspetto centrale che va ad inserirsi all’interno di questi aspetti di multidisciplinarietà è l’”External Data Mapper”. In molti team di progettazione meccanica, più ingegneri, di discipline diverse, si trovano a collaborare ad uno stesso progetto con l’utilizzo di strumenti differenti. Per esempio ingegneri che si occupano di analisi fluidodinamiche (FLUENT o CFX) devono scambiare dati e risultati, su un medesimo progetto, con coloro che si occupano di analisi strutturali (per esempio la necessità di fornire temperature o pressioni provenienti da calcolo fluidodinamico, ad ingegneri che si occupano di un successivo calcolo strutturale). Come parte dell’impegno per la simulazione multifisica, ANSYS ha intro-
Per quanto riguarda l’analisi esplicita, sempre nell’ottica della multidisciplinarietà, ANSYS ha proseguito il cammino verso la completa integrazione di AUTODYN all’interno della piattaforma ANSYS Workbench. Nell’ambito delle simulazioni esplicite, poiché i liquidi o gas, presenti nel nostro modello (per esempio liquidi contenuti in un recipiente) possono influenzare drasticamen-
Fig. 2 - Inserimento delle unità di misura per i dati
30
- Newsletter EnginSoft Year 7 n°4
• • • •
Navi; Esplosivo; Formatura e idroformatura; Impatti ad alta velocità, dove la deformazione del bersaglio e /o di un proiettile è estrema, (e quindi è preferibile scegliere l’accoppiamento EulerianoLagrangiano); • In Ambito Aerospaziale (ammaraggio aereo…). Un aspetto fondamentale dell’inserimento di AUTODYN all’interno della piattaforma Workbench, è la disponibilità dell’intera libreria di materiali espliciti che erano presenti solo in AUTODYN, e il loro conseguente facile utilizzo tramite l’Engineering Data con cui gli utenti di ANSYS WB hanno già familiarità dalle versioni precedenti (Figura 4).
Fig. 3 - Accoppiamento Eulero-Lagrange
Un ulteriore aspetto sul quale si è concentrata ANSYS nella nuova release è l’impegno nel fornire soluzioni ad alte prestazioni, monitorando l'evoluzione hardware al fine di trarne vantaggio per i processi di simulazione. L’obiettivo è di ridurre i tempi di soluzione per gli utenti in modo da essere un leader del settore in questa tecnologia, non solo come soluzioni ottenute ma anche come tempistica. L'idea generale sta nell’utilizzo delle GPU, scaricando i pesanti algoritmi di calcoli complessi su più schede di GPU in grado di eseguire calcoli general-purpose con precisione doppia.
Fig. 4 - Libreria materiali espliciti (TNT, PBX…)
te il comportamento generale dell’intero assieme, ANSYS ha introdotto una nuova funzionalità chiamata "accoppiamento di Eulero-Lagrange" all'interno dell’Explicit ANSYS Solver della release 13.0. Questa caratteristica, prima disponibile solo in interfaccia AUTODYN, è disponibile per l'ambiente Workbench (Figura 3), rendendola così di facile utilizzo per tutti coloro che già sfruttavano la piattaforma ANSYS WB per altre applicazioni. Di conseguenza, per gli utenti di ANSYS Mechanical WorkBench, la definizione del modello è molto simile a una simulazione implicita con corpi rigidi e flessibili: sarà necessario solamente selezionare l’opzione euleriana rispetto a quella lagrangiana, che, nella precedente release era l’unica disponibile.
Le applicazioni tipiche di questa tecnica sono: • Impatto o caduta di fluido (corpo riempito o parzialmente riempito, bottiglie, contenitori…);
Attualmente, sfruttando queste nuove tecnologie, ci si può aspettare un incremento di velocità dei tempi di risoluzione pari a 2-3 volte, nel caso di una simulazione con 4 core della serie Nehalem 5.500.
Per maggiori informazioni: Daniele Calsolaro - EnginSoft info@enginsoft.it
Fig. 5 - Confronto dei tempi di risoluzione con l’uso delle GPU
Newsletter EnginSoft Year 7 n°4 -
31
modeFRONTIER 4.3.0 is now available We are pleased to announce that version 4.3.0 of modeFRONTIER has been released. modeFRONTIER 4.3.0 includes significant new features and several enhancements to the existing components. Schedulers and Optimizers New Features and Improvements • NSGA-II was entirely re-designed to support unordered discrete variables for mixed-integer problems. New schemes have been added: o Controlled Elitism to increase uniformity distribution of Pareto front. o Variable Population Size for higher accuracy of approximated Pareto front. o Steady State Evolution (MFGA): steady state evolution with an adaptive elitism procedure for an efficient parallelization scheme. • The External Schedulers Bridge lets the users integrate userdefined optimizers with modeFRONTIER to enhance flexibility and efficiency for specific optimization problems. A runtime library to exchange data between modeFRONTIER
• Support of unordered discrete variables for the Evolution Strategy algorithm. RSM algorithms Improvements • Evolutionary Design RSM can now perform parallel RSM training using multi-thread technology in order to exploit computational resources available.
Fig. 2 - External Schedulers Bridge
The Design Space New Features • New Correlation Matrix chart which is now provided with an interactive threshold filter for selective visualization of correlation matrix. In addition to the already existing Pearson coefficient, Spearman, Partial Correlation and Partial Ranking Correlation coefficients have been added to the list. The RSM Multiple Function Plot for comparative display of multiple RSM functions created and interactive moving sliders to change input values and update the related RSM function. The Design Space Template which allows Design Space visualization charts to be saved to an XML Template file for later reuse in different projects. The Workflow New Features • The Grid System powered by GridGain system which enables modeFRONTIER for grid computing. This system lets modeFRONTIER submit Workflow design evaluation jobs across a local network, wait for the execution and retrieve
Fig. 1 - The new NSGA-II configuration panel
and third-party software tools (including MATLAB, Scilab and Octave) is provided, thus custom optimization algorithms can be coupled with modeFRONTIER. • Parallel RSM training using multi-thread technology in the FSIMPLEX and FMOGA-II algorithms. • Enhancements for the MOSA algorithm, which include: o Support of unordered discrete variables. o Steady-state evolution option.
Fig. 3 - New Correlation Matrix chart
32
- Newsletter EnginSoft Year 7 n°4
Fig. 4 - RSM Multiple Function Plot
The METAPost Direct Integration Node to let METAPost users extract FEA responses for the optimization problem, by reading the following quantities: • Real Scalar History • Real Vector History (X,Y history curve) • Complex Vector History (Frequency, Magnitude and Phase) • The SimulationX Direct Integration Node for coupling with the SimulationX software used for design, analysis, and optimization of complex systems. The interface available enables parsing of inputs/outputs parameters to/from Components and Connections, including scalar (e.g. component/connection parameters), vector (e.g. output curves) and matrix (e.g. Component Tables) data. The SimulationX node supports the GridGain system for distributed computing. • The new JMAG Direct Integration Node which supports JMAG Designer and handles input scalar parameters for the Study available as well as scalar output parameters.
Fig. 5 - Design Space Template
the results. The Grid System is available in beta version for the UGS-NX, LabVIEW, ANSYS Workbench and SimulationX nodes only. The new ANSYS Workbench Direct Integration Node which includes the following features: • Support of ANSYS Workbench v12.1. • Handling of Input/Output Parameters defined in the Workbench Parameter Set. • Pre-processing macro functionalities available to detect geometry failure, check mesh quality or similar. • Post-processing macro functionalities available for advanced assessment of results. • Support GridGain system for distributed computing.
Fig. 6 - The Grid Manager interface
Fig. 7 - The METAPost Interface
• The new Octave Direct Integration Node for coupling with the Octave software tool. • The SoC Node allows easy integration into the modeFRONTIER optimization workflow of any System-onChip simulator that follows the Multicube specifications. The integration node takes care of the design space introspection, automatic workflow generation and simulator interaction. • The LookUpTable (LUT) node which for a given set of inputs X=(X1,X2,...,Xn), and a reference sets of data (i.e. any table in the Design Space) finds the nearest point to X, by returning the array corresponding to the design of the dateset which best matches X. Consequently, combined use of the LUT node and SOM utility enables the users to use any SOM Table in the Workflow to find the BMU in order to classify sets of data for each iteration of the scheduler selected. • The Workflow Creation Wizard which allows the users to quickly and easily create basic Workflow patterns, including Input/Output variables, vectors, application nodes and file nodes.
Newsletter EnginSoft Year 7 n°4 -
33
Corsi di Addestramento Software 2011 - EnginSoft & modeFRONTIER
Fig. 8 - The Workflow Creation Wizard
Fig. 9 - The Custom Workflow Library
• The Workflow Creation and Edit from Excel which now supports import/export of variable settings for vector variables. • The Custom Workflow Library for selective view of the Workflow nodes library. Improvements Major improvements of the existing features include: • Ambient conditions available as input and custom unit selection in the Flowmaster node. • New license check option before the evaluation run starts for the ANSA and GT-SUITE node. • PRT and ASM versioning control in the ProEngineer node. • Timeout option available in the application script nodes For more information: Francesco Franchini - EnginSoft info@enginsoft.it
Nel contesto di un’applicazione ingegneristica (sviluppo prodotto, analisi numerica FEM/CFD tramite strumenti CADCAE, analisi di scenario, …), modeFRONTIER è in grado di determinare come le diverse possibili soluzioni progettuali si collochino e si differenzino una rispetto all’altra (in funzione delle variabili monitorate), e quindi è in grado di ricercare quelle configurazioni che garantiscano il miglioramento delle prestazioni (obiettivi) del sistema investigato e/o il conseguimento delle specifiche prefissate (obiettivi/vincoli). L’utente di turno (i.e. project engineer, process/product engineer, …) ha dunque la possibilità di comprendere se la soluzione ottenuta è effettivamente quella di ottimo rispetto alle condizioni al contorno prestabilite oppure se è fattibile e/o conveniente ricercarne una migliore. modeFRONTIER: Corso Standard • Introduzione a modeFRONTIER; • Ambiente di pre-processing di modeFRONTIER e logica di costruzione del workflow; • Applicazione degli strumenti fondamentali del workflow di modeFRONTIER; • Metodologie DOE e descrizione delle tecniche DOE disponibili in modeFRONTIER; • Acquisizione dati, fondamenti di analisi statistiche e di distribuzione con modeFRONTIER; • Introduzione alla teoria di base dell’ottimizzazione (mono e multi-obiettivo), algoritmi e strategie di ottimizzazione con modeFRONTIER; • Post-processing dei dati per mezzo di strumenti dedicati alla analisi di problemi multi-obiettivo, analisi di sensitività, analisi statistica; • Introduzione all’utilizzo delle tecniche RSM (Response Surface Methodologies) con modeFRONTIER; • Cenni alla Robust Design Optimization con modeFRONTIER. modeFRONTIER: Corso Avanzato • Implementazione di workflow con logiche di ottimizzazione complesse con modeFRONTIER; • Algoritmi di ottimizzazione avanzati e loro benchmarking con modeFRONTIER; • Analisi statistica avanzata ed analisi multi-variata di dati con modeFRONTIER; • Self-Organizing Maps (SOM) e Clustering di dati in modeFRONTIER; • tecniche RSM – teoria, pratica e loro combinazione con l’ottimizzazione diretta in modeFRONTIER; • Multi Objective Robust Design Optimization (MORDO) con modeFRONTIER – analisi di robustezza; • Multi Criteria Decision Making (MCDM) – supporto alle decisioni per problemi multi-obiettivo.
www.enginsoft.it/corsi
34
- Newsletter EnginSoft Year 7 n°4
Soluzioni Customized KEY to personalizzate di METALS Solutions Key to Metals per for Materials proprietà di leghe Properties metalliche The following article presents an overview of the technical collaboration between EnginSoft and Key to Metals. The common project concerns the development of the KTM product for the “Extended Range” module and also the agreement for the commercial distribution of the “Customized Solution” module, both at national and international level.
Questo articolo si fonda sul rapporto di collaborazione di natura tecnica tra EnginSoft e Key to Metals per lo sviluppo del prodotto KTM per il modulo “Extended Range”, nonché sull’accordo di distribuzione commerciale, sia nazionale che internazionale, per il modulo “Customized Solutions” particolarmente interessante per i Key Accounts di EnginSoft in Italia e nel mondo"
The KEY to METALS database is designed to help a broad range of engineering professionals in finding equivalent materials worldwide, getting easy-to-use and accurate metal properties, and navigating through international standards. The KEY to METALS database includes more than 4,000,000 property records for over 160,000 metal alloys from all over the world, with the “standard” dataset comprising of international cross-reference tables, composition, mechanical and physical properties, heat treatment diagrams, advanced properties such as stress-strain curves, fatigues and more. The platform is available in 19 languages, online and as desktop software. Turn-key, easy to use and versatile, the KEY to METALS database is currently being used in over 100 countries, in companies ranging from world leaders and Fortune 500 Companies to the smallest Businesses, providing the customer with time and money savings in conjunction with increased quality of engineering and sourcing possibilities. For companies whose material properties information needs to go beyond the standard database and search engine, Key to Metals AG now offers tailor-made, customized solutions. With flexible implementation, our solutions range from online Web services to closed intranet applications to embedded OEM components depending on the customer’s needs. Customized Key to Metals solutions can be grouped into two categories: private databases and material data export.
Il Database KEY to METALS è stato sviluppato per supportare una vasta gamma di Progettisti strutturali nella ricerca di proprietà
Private Databases These solutions combine the complete information scope and functionality from the Key to Metals database, or a part thereof combined with a private database containing the customer’s proprietary information. The information contained is highly dependent on the needs of the particular customer and may include:
Fig. 1 - schema di database e soluzioni proprietarie Fig. 1 - General schematics of private database and solution.
chimico-fisico-meccaniche di leghe metalliche mondiali unitamente alle loro corrispondenze incrociate. KEY to METALS include più di 4.000.000 singoli dati relativi a più di 160.000 leghe e contiene anche ulteriori utili informazioni quali diagrammi di trattamento termico, curve stress-strain, fatica e altro ancora. La piattaforma è disponibile in 19 lingue che utilizzano caratteri originali, e consente accessi on-line o da desktop. Il database è attualmente utilizzato in oltre 100 paesi, in Aziende che vanno dai leader mondiali compresi nella lista Fortune dei “major 500” fino a Imprese medio-piccole anche sotto i 10 dipendenti, fornendo agli Utenti un notevole risparmio di tempo assieme a un seti dati per la progettazione difficilmente reperibile altrimenti.
Newsletter EnginSoft Year 7 n°4 -
35
Per le aziende che necessitano di informazioni e strutture informatizzate basate su specifici motori di ricerca, Key to Metals offre delle soluzioni “personalizzate”. Grazie ad una implementazione flessibile si offrono soluzioni che vanno da servizi web on-line ad applicazioni di tipo “chiuso” (intranet), fino ad accordi OEM basati sulle singole esigenze. Queste soluzioni possono essere raggruppate in 2 categorie: database proprietari ed esportazione di dati secondo determinati formati.
Fig. 2. - Esempio di selezione dei materiali, esportazione e aggiornamento Fig 2. - An example of material selection, exporting and updating workflow.
• Proprietary metals used in customer’s supply chain; • Cross-referencing customer’s proprietary designations to other standard and proprietary designation; • Approved materials and cross-references/replacements for sourcing and engineering; • Collection of grades used for material identification in conjunction with a spectrometer; • Proprietary heat treatment and welding procedures and details; • Advanced properties, dimensions, tolerances, various tables; • Full texts or abstracts of customer’s standards and internal specifications; • Additional information regarding shapes, dimensions, tolerances, etc. The private database is then combined with a custom-made application, which is then deployed to the customer’s internal users and possibly to its partners and suppliers if required (Fig. 1).
• •
• • • • • •
Database proprietari Queste soluzioni combinano la funzionalità parziale o totale di Key to Metals con un database proprietario del Cliente. Le informazioni contenute dipendono sostanzialmente dalle esigenze dell’Utente e possono comprendere: Metalli proprietari utilizzati nella supply chain del cliente; Riferimenti incrociati tra le designazioni proprietarie del cliente e quelle definite dalle Normative internazionali (riferimenti incrociati); Materiali alternativi per l’outsourcing e per la progettazione; Raccolta specifica di Designazioni di leghe utilizzate per identificare materiali tramite strumenti di analisi chimica; Procedure di trattamento termico e saldatura proprietarie con relativi dettagli; Proprietà avanzate, dimensioni, tolleranze, tabelle, Documentazione interna per capitolati, procedure etc. Ulteriori informazioni in merito a forme, dimensioni, tolleranze, ecc.
A richiesta, questo database “proprietario” può essere gestito con una procedura sviluppata “su misura” per utilizzo all’interno dell’Azienda o per una capillare distribuzione presso la rete esterna dei partners, clienti e fornitori (Figura 1).
The main benefits are: • It’s a turn-key solution, which will save a lot of time and money when compared to in-house solutions; • Highest quality product, supported by a wealth of experience in developing applications for the metal working industry; • Cost and price advantage owing to developers in Eastern Europe; • Full support, ISO 9000 and ISO 27000 service level; • Enables a “quick victory” for the customer by deploying a system which brings results instantly.
I vantaggi principali sono: • È una soluzione “chiavi in mano”, che produce un sensibile risparmio di tempo e denaro rispetto alle soluzioni “fatte in casa”; • Massima qualità del prodotto, supportata da una notevole esperienza nello sviluppo di applicazioni per l'industria della lavorazione dei metalli; • Costi molto competitivi che beneficiano della localizzazione nell’area Est-Europa; • Supporto completo, qualità certificata ISO 9000 e ISO 27000 per il livello dei servizi; • Consente l’ottenimento di risultati in tempi estremamente rapidi con conseguente recupero dell’investimento iniziale.
Material Data Export Key to Metals AG provides a full materials property data export facility from the Database, giving the customer the freedom to use the exported data in their own information system, for Enterprise Resource Planning (ERP), Product Lifecycle
Esportazione di dati sui materiali Key to Metals AG offre una totale fattibilità nella esportazione dei dati verso altri programmi, dando al cliente la completa libertà di processarli nel proprio sistema informatico rispettando specifiche esigenze quali quelle dettate da Enterprise
36
- Newsletter EnginSoft Year 7 n°4
Resource Planning (ERP), Product Lifecycle Management (PLM) o qualsiasi altra applicazione. Oltre ai dati per migliaia di materiali che possono essere importati nel sistema del cliente, Key to Metals offre il cosiddetto “KEY to METALS data Builder”. Questa è un'applicazione unica che ricopre un flusso di lavoro completo, dalla selezione dei materiali di interesse per il cliente, all'esportazione dei dati, al controllo periodico degli aggiornamenti per sintonizzare il dati con le Normative in continua evoluzione (Fig. 2).
Fig 3. il servizio di “Avviso Aggiornamenti” tiene sotto controllo gli aggiornamenti sui materiali di interesse del cliente. L’importazione degli aggiornamenti si effettua semplicemente premendo un tasto sullo schermo. Fig 3. Update Alert Service monitors updates made on the materials of customer’s interest. Importing the updates and keeping the database always up-to-date is then as simple as pushing the button.
Management (PLM) or any other application the customer deems useful. Besides the material data for thousands of materials that can be imported into the customer’s system, Key to Metals offers KEY to METALS Data Builder. This is a unique application that covers the complete workflow from the selection of the materials of interest for the customer, exporting the data, to later monitoring the updates done on the materials in the standard KEY to METALS database and importing the changes back into the customer’s system (Fig 2). This way, besides having seamless material data, the customer has a database that is completely up-to-date, and remains so via the push of a button (Fig 3). The main benefits of the KEY to METALS material data export and Data Builder are: • Tremendous savings in time and money comparing to “homemade” databases, both in initial deployment and maintenance; • Easy-to-use wizard, with direct access to over 160,000 alloys from the database, possibility for data reviewing, recalculating, refining, multiple exporting file formats and workflow support; • Priority data updating plan and monthly updates via the Web; • Full support, ISO 9000 and ISO 27000 service level; • High quality of data, always up-to-date, which ultimately brings “peace of mind” to the customer. Victor Pozeit, Key to Metals AG, Zürich, Switzerland
In questo modo, oltre a disporre di dati sui materiali senza soluzione di continuità, il cliente dispone di un database che è completamente upto-date, e rimane tale tramite la semplice pressione di un tasto (Fig. 3). I principali vantaggi della esportazione di dati e del Key to Metals data Builder sono: • Un notevole risparmio di tempo e denaro rispetto a database “empirici” fatti in modo autonomo con notevoli problemi di manutenzione e aggiornamento; • Facilità di uso, con accesso diretto a oltre 160.000 leghe dal database, con possibilità di verifica, di ricalcolo, di formati multipli di esportazione files e supporto per il flusso operativo; • Piano di aggiornamento prioritario con aggiornamenti mensili via web; • Supporto completo con qualità certificata ISO 9000 e ISO 27000 per livello di servizio; • Alta qualità dei dati, sempre aggiornati, che forniscono la massima “tranquillità” operativa per il cliente. Victor Pozeit, Key to Metals AG, Zürich, Switzerland
Newsletter EnginSoft Year 7 n°4 -
37
Third Wave Systems Boosts Software Performance. AdvantEdge FEM 5.6 Delivers Improved Robustness, Accuracy EnginSoft is pleased to announce the release of Third Wave Systems AdvantEdge FEM version 5.6. AdvantEdge FEM is a materials-based software solution for the optimization of metal cutting, and has been an innovative computer aided engineering (CAE) software package since its inception. The FEM software provides detailed information about heat flow, temperatures, stresses, and forces for machining processes. Recognizing that improved software performance would benefit users of all backgrounds and industries, Third Wave Systems developers centered their activities for AdvantEdge FEM version 5.6 on the software’s physics-based computation platform. Subsequently, enhancements were made to contact algorithms and wear modeling approaches; the resulting machining modeling data is more robust and accurate than previouslygenerated data.
All standard features for AdvantEdge FEM continue to be supported in version 5.6: STEP, STL, VRML, and DXF tool import; Standard and custom tool creation; Library of 130+ workpiece materials; User-defined material and constitutive models; Residual stress modelling; Temperature and stress analysis of the following processes: Milling, Turning, Drilling, Boring, Tapping, Grooving, Broaching, Sawing. Ongoing software benefits experienced by AdvantEdge FEM users are: Increased material removal rates; Improved tool life; Predicted chip shape; Shortened product design cycles; Reduced trial and error testing.
Third Wave Systems AdvantEdge Production Module 5.8 EnginSoft is pleased to announce the release of an updated version of Third Wave Systems NC program optimization software, AdvantEdge Production Module 5.8. Production Module is process-analysis CAE software that integrates workpiece material properties, CAD/CAM inputs, and machine dynamics to map forces, temperatures, and more. Over the years, this technology has become integral to engineers looking to reduce costs and cycle times, maximize machine utilization, and reduce tool breakage. By displaying results visually, Production Module allows users to better understand the machining process to avoid potential problems and identify opportunities for improvements. Production Module 5.8 3D will be packed with more new features than usual for TWS: • With the new MULTI-CONSTRAINT OPTIMIZATION feature, minimum and maximum optimization limits are consolidated into one value and a new optimization constraint is introduced. This secondary input allows users to define another variable and limit not to be exceeded during optimization. These two force checks, combined with preexisting feed rate constraints, will provide a more complete optimization solution. • SELECTIVE FORCE COMPUTATION allows user to select which results they want to compute. Calculating only the results which are of interest increases graph display speed and decreases the amount of memory required. • A new AIR-CUT OPTIMIZATION safety check ensures that cutting tools are a safe distance from the workpiece, providing a safer air-cut optimization. • PERFORMANCE SPEEDUPS mean the software delivers results
faster and makes the software quicker to navigate. Speedups of up to 2x have been achieved for force computation, graph displays, and workpiece loading. Significant efforts were also dedicated to better align the 2D Production Module user experience with that of Production Module 3D. Current PM3D users may recognize several features that will now be integrated with PM2D, including: • COMPARISON GRAPH – a second graph to better analyze multiple results at the same time. • NAVIGATOR – allowing users to easily review and navigate the toolpath. • ARCHIVING – automatically zips the key input files needed for setup, providing easy storage of the projects for future use. • MACHINE FILE SETUP – enabling all changes to machine parameter and transient files to be made within the Production Module 2D user interface. Benefits to using the software include: Reduced cycle times; Maximized machine utilization; Improved tool life; Increased productivity. For further information on Third Wave System AdvantEdge: Ing. Enrico Borsetto - EnginSoft info@enginsoft.it
!PPLICAZIONI SEMPRE PIÂ ESIGENTI RICHIEDONO ELABORAZIONI SEMPRE PIÂ VELOCI
% #OMPUTER %NGINEERING SI PROPONE COME UNA REALTA ITALIANA DI ECCELLENZA NELL INTEGRAZIONE DI SOLUZIONI DEDICATE AL CALCOLO AD ALTE PRESTAZIONI (0# L OFFERTA DI % SI BASA SU UN ESTESA GAMMA DI PRODOTTI WORKSTATION GRAFICHE SERVER STORAGE 3!. FINO AI SISTEMI CLUSTER hCHIAVI IN MANOv DI GRANDI DIMENSIONI TUTTI PROGETTATI IN BASE ALLA ESIGENZE DEL CLIENTE E TESTATI SECONDO RIGOROSE PROCEDURE PER OFFRIRE SOLUZIONI SCALABILI ED AFFIDABILI NEL TEMPO GARANTENDO IL RITORNO DEGLI INVESTIMENTI SULL HARDWARE
% #OMPUTER %NGINEERING EXCELS AT INTEGRATING SOLUTIONS FOR THE (IGH 0ERFORMANCE #OMPUTING (0# % S RANGE INCLUDES A BROAD SELECTION OF PRODUCTS FROM COMPUTER GRAPHICS 7ORKSTATIONS TO SERVER STORAGE 3!. UP TO POWERFUL CUSTOM BUILT CLUSTER SYSTEMS EACH ONE OF THEM DESIGNED FOLLOWING THE CLIENT S REQUIREMENTS AND TESTED ACCORDING TO STRICT PROCEDURES IN ORDER TO PROVIDE SCALABLE SOLUTIONS WHICH ARE RELIABLE EVEN AS TIME GOES BY AND GUARANTEE A PROFITABLE RETURN ON HARDWARE INVESTMENTS
% COMPUTER ENGINEERING 3 P ! 6IA -ARTIRI DELLA ,IBERTÜ 3CANDIANO 2EGGIO %MILIA )TALIA 4EL &AX WWW E COMPANY COM E MAIL INFO E COMPANY COM
Newsletter EnginSoft Year 7 n°4 -
39
An unsupervised text classification method implemented in Scilab Text mining is a relatively new research field whose main concern is to develop effective procedures able to extract meaningful information - with respect to a given purpose from a collection of text documents. There are many contexts where large amounts of documents have to be managed, browsed, explored, categorized and organized in such a way that the information we are looking for can be accessed in a fast and reliable way. Let us simply consider the internet, which is probably the largest and the most used library we know today, to immediately understand why the interest around text mining has increased so much during the last two decades. A reliable document classification strategy can help in information retrieval, to improve the effectiveness of a search engine for example, but it can be also used to automatically understand whether an e-mail message is spam or not. The scientific literature proposes many different approaches to classify texts: it is sufficient to perform a web search to find a large variety of papers, forums and sites discussing this topic. The subject is undoubtedly challenging for researchers who have to consider different and problematic aspects emerging when working with text documents and natural language. Usually texts are unstructured, they have different lengths and they are written in different languages. Different authors means different topics, styles, lexicons, vocabularies and jargons, just to highlight some issues. One concept can be
expressed in many different ways and, as an extreme case, also the same sentence can be graphically rendered in different ways: You are welcome! U @r3 w31c0m3!
This strategy can be used to cheat the less sophisticated email spam filters, which probably are not able to correctly categorize the received message and remove it; some of them are based on simple algorithms which do not consider the real meaning of the message but just look the words inside, one at a time. The search for an exhaustive and exact solution to the text mining problem is extremely difficult, or practically impossible. Many mathematical frameworks have been developed for text classification: naïve Bayes classifiers, supervised and unsupervised neural networks, learning vector machines and clustering techniques are just a short - and certainly not complete - list of possible approaches which are commonly used in this field. They have both advantages and disadvantages. For example, some of them usually ensure a good performance but they have to be robustly trained in advance using predefined categories: other ones do not require a predefined list of categories, but they are less effective. For this reason the choice of the strategy is often tailored to the specific categorization problem that has to be solved. In spite of their differences, all of the text categorization approaches have however a first common problem to solve: the text has to first processed in order to extract the main features contained inside. This operation erases the “superfluous” from the document, retrieving only the most relevant information: the categorization algorithm will therefore work only with a series of features characterizing the document. This operation has a fundamental role and it can lead to unsatisfactory results if it has not been conducted in an appropriate way. Another crucial aspect of data mining techniques is the postprocessing and the summarization of results, which have to be read and interpreted by a user. Fig. 1 - This image has been generated starting from the text of the EnginSoft Flash of the Year 7 n°1 This means that the faster and the more effective data mining algorithm is useless issue and the tool available in [4].
40
- Newsletter EnginSoft Year 7 n°4
if improperly fed or if results cannot be represented and interpreted easily. Our personal interest for these techniques was born some weeks ago when reading the last issue of the EnginSoft newsletter. In a typical newsletter issue there usually are many contributions of different kinds: you probably noticed that there are papers presenting case studies coming from several industrial sectors, there are interviews, corporate and software news and much more. Sometimes there are also papers discussing topics “strange”, for the CAE community, as probably this one may seem to be. A series of questions came out. Does the categorization used in the newsletter respect a real structure of the documents, or is it simply due to an editorial need? Can we imagine a new categorization based on other criteria? Can we discover categories without knowing them a-priori? Can we finally have a representation of this categorization? And finally, can we have a deeper insight into our community? We decided to use the EnginSoft newsletters (see [3]) and extract from them all the articles written in English, starting from the first issue up to the last one. In this way we built the “corpus”, as it is usually called, by the text miners community, the set of text documents that have to be considered. The first issues of the newsletter were almost completely written in Italian, but English contributions occupy the most of pages in the later years. This certainly reflects the international growth of EnginSoft. The corpus was finally composed of 248 plain text documents of variable lengths. The second step we performed was to set up a simple text mining procedure to find out possible categorizations of the corpus, taking into account two fundamental aspects: first the fact that we do not have any a-priori categorization, and secondly the fact that the corpus cannot be considered as “large” but, on the contrary, probably too poor to have clear and robust results. We finally decided to use an unsupervised self organizing map (SOM) as a tool to discover possible clusters of documents. This technique has the valuable advantage of not requiring any predefined classification and certainly of allowing a useful and easily readable representation of a complex dataset, through some two-dimensional plots. The preprocessing of the corpus It easy to understand that one of the difficulties that can arise when managing text, looking one word at a time and disregarding for simplicity all the aspects concerning lexicon, is that we could consider as “different” words which conceptually can have the same meaning. As an example, let us consider the following words which can appear in a text; they can be all summarized in a single word, such as “optimization”: optimization, optimizing, optimized, optimizes, optimization, optimality. It is clear that a good preprocessing of a text document should recognize that different words can be grouped under
a common root (also known as stem). This capability is usually obtained through a process referred to as stemming and it is considered fundamental to make the text mining more robust. Let us imagine to launch a web search engine with the keyword “optimizing”: we probably would like that also documents containing the words “optimization” or “optimized” are considered when filling the results list. This probably because the true objective of the search is to find out all the documents where optimization issues are discussed. The ability of associating a word to a root is certainly difficult to codify in a general manner. Also in this case there are many strategies available: we decided to use the Porter stemming approach (it is one of the most used stemming technique for processing English words: see the paper in [5]) and apply it to all words composed by more than three letters. If we preprocess the words listed above with the Porter stemming algorithm the result will be always the stem “optim”. It clearly does not have any meaning (we cannot find “optim” in an English dictionary) but this does not represent an issue for us: we actually need “to name” in a unique way the groups of words that have the same meaning. Another ability that a good preprocessing procedure should have is to remove the so-called stop words, that is, all the words which are used to build a sentence in a correct way, according to the language rules, but that usually do not significantly contribute to determine the meaning of the sentence. Lists of English stop words are available on the web and they can be easily downloaded (see [2]): they contains words such as “and”, “or”, “for”, “a”, “an”, “the”, etc… In our text preprocessor we decided to also insert a procedure that cuts out all the numbers, the dates and all the words made of two letters or less; this means that words such as “2010” or “21th” and “mm”, “f”, etc… are not considered. Also mathematical formulas and symbols are not taken into consideration. Collect and manage information The corpus has to be preprocessed to produce a sort dictionary, which collects all the stems used by the community; then, we should be able to find out all the most interesting information describing a document under examation in order to characterize it. It’s worth mentioning that the dictionary resulting from the procedure described above using the EnginSoft newsletters is composed of around 7000 stems. Some of them are names, surnames and acronyms such as “CAE”. It immediately appears necessary to have a criterion to judge the importance of a stem in a document within a corpus. To this purpose, we decided to adopt the so–called tf-idf coefficient, term frequency – inverse document frequency, which takes into account both the relative frequency of a stem in a document and the frequency of the stem within the corpus. It is defined as:
Newsletter EnginSoft Year 7 n°4 -
41
coefficients computed for each stem, listed in columns, as they appear while processing the documents, listed in rows. The strange The current status of research and applications in profile of the non-zero coefficients in the Year 6, issue 2 0.0082307 Multiobjective Optimization. matrix is obviously due to this fact: it is interesting to see that the most used stems Multi-objective optimization for antenna design. Year 5, issue 2 0.0052656 appear early on while processing documents, Third International Conference on Multidisciplinary and that the rate of dictionary growth - that Year 6, issue 3 0.0050507 Design Optimization and Applications. is the number of new stems that are added to the dictionary by new documents - tends modeFRONTIER at TUBITAK-SAGE in Turkey. Year 5, issue 3 0.0044701 to gradually decrease. This trend does not depend, on average, on the order used in Optimal Solutions and EnginSoft announce Distribution Year 6, issue 3 0.0036246 Relationship for Sculptor Software in Europe. document processing: the resulting matrix is always denser in the left part and sparser on Table 1 - The results of the search for “optimization” in the corpus using the tf-idf coefficient. the lower-right part. Obviously, the top-right Published in Document title Stem tf-idf the Newsletter corner is always void. The matrix in Figure 2 VirtualPaintShop. Max Year 2, issue 4 VPS represents a sort of Simulation of paint processes of car bodies. 0.0671475 database which can be Combustion Noise Prediction in a Small Diesel Engine Min (non-zero) Year 7, issue 3 design used to accomplish a Finalized to the Optimization of the Fuel Injection Strategy 0.0000261 document search, Table 2 - The stem with the maximum and the minimum (non zero) tf-idf respectively found in the corpus are reported in according to a given the table together with the document title where they appear. criterion; for example, if we wanted to find out the most relevant documents with respect to the “optimization” topic, we should simply look for the documents corresponding to the highest tf-idf of the being stem optim. The results of this search are collected in Table 1, where the first 5 documents are listed. In Table 2 we list the stems which register the highest and the lowest (non zero) tf-idf in the dictionary, together with the documents where they appear. More generally, it is interesting to see that high values of tf-idf are obtained by words that appear frequently in a short document, but that where the subscripts w and d stand for a given word and a globally are not used at all (see the acronym “VPS”). On the given document respectively in the corpus C - done by N contrary, low values of this coefficient are obtained by documents - while ni,j represents the number of times that the common words in the corpus (see “design”) that are word i appears in the j-th document. This coefficient allows us to translate words into numbers. infrequently used in long documents. In Figure 2, the corpus has been graphically represented, In Figure 3 the histogram of the tf-idf coefficient and the plotting the matrix containing the non-zero tf-idf empirical cumulate density function are plotted. It can be seen that the distribution is strongly left-skewed: this means that there are many stems that are largely used in the corpus, therefore having very low values of tf-idf. For this reason the logarithmic scale is preferred in order to have a better representation of the data. Document title
Published in the Newsletter
Fig. 2 - A matrix representation of the non-zeros tf-idf coefficients within the corpus. The matrix rows collect the text files sorted in the same order as they are processed, while the columns collect the stems added to the dictionary in the same order as they appear while processing the files.
tf-idf of stem “optim”
A text classification using Self Organizing Maps Self Organizing Maps (SOMs) are neural networks which have been introduced by Teuvo Kohonen (we address the interested reader to [6] to have a complete review of SOMs). One of the most valuable characteristics of such maps is certainly the fact that they allow a two-dimensional representation of multivariate datasets, preserving the original topology; this means that the map does not alter the distances between records in the original space when projecting them in the two-dimensional domain. For this reason they can be used to navigate multidimensional
42
- Newsletter EnginSoft Year 7 n°4
Fig. 3 - The histogram (left) and the empirical cumulative distribution (right) of the tf-idf. The distribution has clearly a high skewness: the large majority of stems has a low tf-idf. For this reason the logarithmic scale has been used in the graphs.
datasets and to detect groups of records, if present. A second interesting characteristic of these maps is that they are based on an unsupervised learning: this is the reason why, sometimes, such maps are said to learn from the environment. They do not need any imposed categorization nor classification of data to run, but they simply project the dataset “as it is”. The mathematical algorithm behind these maps is not really difficult to understand and therefore is not difficult to implement; however, the results have to be graphically represented in such a way that they can be easily accessed by the user. This is probably the most difficult task when developing as SOM: fortunately Scilab has a large set of graphical functions which can be called upon to build complex outputs, such the one in Figure 6. A common practice is to use a sort of honey-comb representation of the map, where each hexagon stands for a neuron: colors and symbols are used to draw a result (e.g. a dataset component or the number of records in a neuron). The user has to set the dimensions of the map, choosing the number of neurons along the horizontal and the vertical directions (see Table 3, where the set up of our SOM is briefly reported) and the number of training cycles that have to be performed. Each neuron has a prototype vector (that is a vector with the same dimension of the designs in the dataset) which should be representative, once the net has been trained, of all the designs pertaining to that neuron. Certainly the easiest way to initialize the prototypes is to choose random values for all their components, as we did in our case. The training consists of two phases: the first one is called “rough phase”, the second one “fine tuning” and they usually have to be done with slightly different set-ups to obtain the best training, but operationally, they do not present any difference. During the training a design is submitted to the net and assigned to the neuron whose prototype vector is closest to the design itself; then, the prototypes of the neurons in the neighborhood are updated trough an equation which rules the strength of the changes according, for example, to the training iteration number and to the neuron distances. During a training cycle all the designs have to be passed to
the net, always following for example a different order of submission, to ensure a more robust training. There is a large variety of rules for updating available in the literature which can be adopted according to the specific problem. We decided to use a Gaussian training function with a constant learning factor which is progressively damped with the iteration number. This leads to a net which progressively “freezes” to a stable configuration, which should be seen as the solution of a nonlinear projection problem of a multivariate dataset on a two dimensional space. At the end of the training phase, each design in the dataset has a reference neuron and each prototype vector should summarize at best the designs in their neuron. For this reason the prototype vectors can be thought as a “summary” of the original dataset and used to graphically render information through colored pictures. One of the most frequent criticism to SOMs that we hear within the engineering community is that these maps do not provide, as a result, any number but rather colored pictures that only “gurus” can interpret. All this, and the fact that results often depend on the guru who reads the map, confuses engineers. We are pretty convinced that this is a wrong feeling; these maps, and consequently the colored pictures used to present results, are obtained with a precise algorithm such those used in other fields. As an example, let us remember that even results coming from a finite element simulation of a physical phenomenon are usually presented through a plot (e.g.: stress, velocity or pressure fields in a domain) and that they can change as the model set up changes (e.g.: mesh, time integration step…) and that therefore they have to be always interpreted by a skilled engineer. We submitted the dataset with the tf-idf coefficients and ran an SOM training with the setup summarized in Table 3. To prevent stems with too high or too low values playing a role in the SOM training, we decided to keep only those belonging to the interval [0.0261 - 2.6484]·10-3. This interval has been chosen starting from the empirical cumulative distribution reported in Figure 3 and looking for the tf-idf corresponding to the 0.1 and the 0.8 probability respectively. In this way, the extremes, which could be due, for example, to spelling
Newsletter EnginSoft Year 7 n°4 -
43
between neurons’ prototypes outside the blue zones. Number of horizontal neurons = 15 Training = sequential nCycles = 50 nCycles = 10 The dimension of the white diamonds Number of vertical neurons = 15 Sample order = random iRadius = 4 iRadius = 1 superimposed on the neurons is Grid initialization = random Learning factor = 0.5 fRadius = 1 fRadius = 1 proportional to the number of documents which pertains to the neuron. It is clear Scaling of data = no Training function = gaussian that there are many files that fall into Table 3 - The setup used for the SOM training phase. See [6] to have an exhaustive description of them. one of these two groups. Looking to the map drawn in Figure 6, we can try to understand what is the main subject discussed by papers in these groups. We decided to report the stems which gain the highest tf-idf in the prototype vectors, providing in this way two “keywords” that identify papers falling in the neurons. In the first group, positioned on the left-upper part of the map, certainly there are documents discussing EnginSoft and the international conference. Documents discussing optimization and computational fluid dynamics belong to the second group, positioned on the central-lower part of the net; actually, stems such as “optim” and “cfd” often gain the Fig. 4 - The quantization error plotted versus the number of the training itehighest tf-idf. rations. This gives us a measure of the goodness of the map training. Grid
Rough Phase
Fine Phase
mistakes, are cancelled out from the dataset, ensuring a more robust training. The dictionary decreases from 7000 to around 5000 stems, which are considered to be enough to describe exhaustively the corpus, keeping very common words and preserving the peculiarities of documents. Once the SOM has been trained (in Figure 4 the quantization error versus the training iteration is drawn), we decided to use the “distance matrix” as the best tool to “browse” the results. The so-called D-matrix is a plot of the net where the color scale is used to represent the mean distance between the neurons’ prototype vector and their neighbors (red means “far”, blue means “close”). In this way, with just a glance, Fig. 5 - The D-matrix. The white diamonds give evidence of the number of one can understand how the dataset is distributed on the files pertaining to the neuron. The colormap represents the mean distance net, and also detect clusters of data, if any. This graphical between a neuron’s prototype and the prototypes of the neighbor neurons. Two groups of documents (blue portions) can be detected. tool can be also enriched with other additional information, plotted together with the color scale, making it possible to represent the dataset in a more useful way. An example of these enriched versions is given in Figures 5 and 6. Looking at the plot of the D-matrix reported in Figure 5, one can conclude that there are mainly two large groups of papers (the two blue zones), which are not however sharply separated, and there are many outliers. It is not easy to identify in a unique way other clusters of papers, since the Fig. 6 - The D-matrix. For each neuron the first two stems with highest tf-idf as given by the prototype vectors are reported, distance is too high in the attempt to highlight the main subject discussed by articles falling in the neurons.
44
- Newsletter EnginSoft Year 7 n°4
Fig. 7 - The contributions by Stefano Odorizzi (left), by Akiko Kondoh (middle) and by Silvia Poles (right) as they fall in the SOM (see white diamonds).
Conclusions It is interesting to see some of the relations and links that We have considered the English articles published in the old appear in the net. For example, the lower-right corner is issues of the EnginSoft newsletter and preprocessed them occupied by documents mainly discussing laminates and adopting some well-known methodologies in the field of text composite materials; going up in the net, following the right mining. The resulting dataset has been used to train a self border, we meet papers on casting and alloys and the Turkish organizing map; the results have been graphically presented corner at top, where contributions by Figes have found a and some considerations on the documents set have been place. Moving to the left we meet stems such as “technet”, proposed. “allianc” and “ozen”, that remind us of the great importance All the work has been performed using Scilab scripts, that EnginSoft gives to international relationships and to the expressly written to this aim. “net”. We also find several times “tcn”, “cours” and “train”, which is certainly due to the training activities held and References sponsored by EnginSoft in the newsletter. In the upper left [1] http://www.scilab.org/ to have more information on corner the “race” stem can be found: the competition corner Scilab. - we could say - because contributions coming from the world [2] http://www.ranks.nl/resources/stopwords.html to have of racing (by Aprilia, Volvo and others) fall here. an exhaustive list of the English stop words. Figure 6 certainly gives us a funny but valuable view on our [3] http://newsletter.enginsoft.it/ to download the pdf community. version of the EnginSoft newsletters. Another interesting output which can be plotted is the [4] http://www.wordle.net/ to generate funny images position that documents written by an author assume in the starting from text. net. This could be useful to detect common interests [5] http://tartarus.org/~martin/PorterStemmer/def.txt between people in a large community. This kind of output is [6] http://www.cis.hut.fi/teuvo/ summarized in Figure 7, where, starting from left to right, the position of documents by Stefano Odorizzi, by Akiko Kondoh and by Silvia Poles are reported. It can be seen that Contacts our CEO contributions, the “EnginSoft Flash” at the For more information on this document please contact the beginning of all the issues, fall in the first group of author: documents, where EnginSoft and its activities are the focus. Akiko’s contributions are much more Massimiliano Margonari spread on the net: some of them fall EnginSoft S.p.A. in the left-lower portion, that could info@enginsoft.it be viewed as the Japanese corner, some other between the two main groups. Finally, we could conclude that Silvia’s contributions mainly focus on PIDO and multi-objective optimization topics. In Figure 8 the prototype vector of a neuron in the first group of documents is drawn. On the right side of the picture the first 10 stems which register the highest values of tf-idf are reported. These stems could be read as keywords that concisely Fig. 8 - The prototype vector of the pointed neuron in the net: the tf-idf is plotted versus the stems in the define documents falling in the dictionary. On the right the first 10 highest tf-idf stems are displayed. The horizontal red line gives the lowest tf-idf registered by the 10th stem. neuron.
Newsletter EnginSoft Year 7 n°4 -
45
La deformazione plastica dei metalli ed in particolare lo stampaggio a caldo dell’ottone è un processo largamente diffuso che ha sostituito, laddove possibile, i classici processi di fonderia. Il costo elevato di produzione dei particolari in ottone viene sensibilmente abbattuto dall’estrema lavorabilità e dall’elevato valore di recupero degli sfridi generati in fase di fabbricazione, rendendo quindi economicamente vantaggioso questo tipo di processo. Volendone analizzare in dettaglio le specificità, il processo parte da barre estruse cilindriche, che vengono tagliate, scaldate alla temperatura opportuna (sopra i 700°C), quindi formate il più delle volte in un’unica operazione. La tipologia di particolari prodotti è estremamente varia, ma la maggior parte riguarda la raccorderia per impianti idraulici, dove è possibile ottenere il pezzo già con i fori interni, limitando al minimo le successive fasi di foratura e lavorazione meccanica. Per far questo si sfrutta l’estrema duttilità del materiale, ma si sono anche perfezionate delle macchine con cinematiche complesse, a forare su cuscino, dove le spine entrano quando lo stampo superiore scende sull’inferiore, quest’ultimo contrastato da un cuscino idraulico; oppure configurazioni “a campana”, con due semistampi e spesso dei punzoni che scendono contro una spina principale. La forma sempre più complessa dei particolari da produrre ha portato ad una evoluzione continua delle presse di stampaggio tradizionali, con carrelli inclinabili dall’utente, ma anche allo sviluppo di nuove macchine con cinematica a ginocchiera o “link-drive” e di recente lo sviluppo di macchine per le quali la cinematica dei punzoni è guidata da sistemi idraulici o elettrici, in grado di muovere i punzoni secondo tempi e velocità scelte dall’utente. Parimenti si è osservato di recente uno sviluppo di nuove leghe di ottone a basso tenore di piombo, elemento utile per la rottura del truciolo, ma nocivo a contatto con l’acqua potabile. Dal punto di vista industriale, l’Italia vede una notevole concentrazione di trasformatori di ottone, concentrati nelle provincie di Brescia e di Novara, legati per lo più al mondo della rubinetteria. Quando Enginsoft si è trovata, ormai più di 10 anni fa, a confrontarsi con questo particolare processo industriale, ci si è subito accorti della complessità del tema da affrontare. Forge, il software prodotto da Transvalor e specifico per la deformazione dei materiali metallici, è sembrato lo strumento ideale, con la possibilità di implementare tutte le peculiarità di questo processo. Ad una prima caratterizzazione in laboratorio delle leghe di ottone più utilizzate, sono seguite le prime simulazioni, che hanno dato subito buoni risultati, ma che hanno evidenziato il punto critico di questo
processo: il materiale ottone, per la sua duttilità, è solito creare una notevole quantità di ripieghe, sia in fase di uscita in bava, ma anche durante il riempimento delle impronte. Seguire questo comportamento si è rivelato subito essere molto complesso dal punto di vista numerico, dovendo la modellazione del pezzo tener conto delle zone dove due o più lembi di materiale tendevano a riunirsi, per effetto del flusso del materiale. Il produttore del software, stimolato dalle esperienze che Enginsoft ha fatto con alcuni importanti gruppi trasformatori di ottone in Italia, ha migliorato progressivamente il software, introducendo recentemente delle nuove funzioni di contatto e nuovi traccianti, in grado di evidenziare le ripieghe e seguirne l’evoluzione durante il processo di stampaggio. Questo sviluppo ha portato and un significativo vantaggio anche in termini di riduzione di oltre il 30% dei tempi di calcolo. Un altro aspetto specifico di questo processo produttivo riguarda la necessità di considerare una lubrificazione differenziata di parti dei punzoni o degli stampi e la considerazione di eventuali problemi di intrappolamento di gas/lubrificanti. In riferimento al primo punto, il modello è stato migliorato e consente di specificare zone a lubrificazione differenziata, mentre per l’intrappolamento di gas/lubrificanti, il modello di calcolo tiene conto di questo effetto, evidenziando difetti di riempimento legati all’aumento di pressione in aree isolate, oltre a consentire di specificare delle tirate d’aria e valutarne l’effetto sulla forma finale. Dal punto di vista del miglioramento delle cinematiche, sono stati via via perfezionati i modelli di processo per lo stampaggio a forare ed introdotte nuove cinematiche richieste dagli utilizzatori. Per quanto riguarda lo stampaggio a forare, il modello attuale replica perfettamente tutti i movimenti della macchina: ad esempio se c’è troppo materiale, lo stampo inferiore si muove contro il cuscino prima del contatto con lo stampo inferiore, quindi i punzoni entrano anticipati rispetto al movimento voluto, ma è possibile anche vedere l’apertura dello stampo a pacchetto chiuso, per effetto della spinta interna legata all’entrata dei punzoni. Sono stati implementati carrelli inclinati, il cui movimento è legabile anch’esso alla discesa dello stampo inferiore contro il cuscino. Recenti sviluppi hanno riguardato l’implementazione di presse a ginocchiera o di tipo “link-drive”, per le quali la cinematica consente una fase di chiusura più graduale, unitamente ad una fase di apertura più rapida. La flessibilità nella definizione delle leggi di movimento dei punzoni ha consentito di simulare senza problemi le nuove macchine ad azionamento idraulico o elettrico, per l’ottenimento di pezzi senza bava (flash-less). La possibilità di concatenare più movimenti
STAMPAGGIO OTTONE E ALLUMINIO
Simulare con Forge lo stampaggio di ottone ed alluminio
46
- Newsletter EnginSoft Year 7 n°4
consente di seguire le varie azioni di chiusura dei punzoni e delle matrici in una pressa “a campana”. Per particolari di maggiori dimensioni, si passa al modello della pressa a bilancere/vite, grazie al quale è possibile valutare se la macchina è in grado di completare la corsa o se esaurisce l’energia disponibile prima di completare il pezzo. Lo sviluppo del software è continuo: ad esempio si sta lavorando per aggiungere dei risultati in grado di descrivere con maggior dettaglio il flusso di materiale attorno ai punzoni rispetto allo stampo in movimento contro il cuscino, visualizzare meglio le azioni di flessione dei punzoni per effetto del materiale, valutare gli effetti di risucchio del materiale nella fase di apertura degli stampi. Sempre più numerosi sono inoltre gli esempi di utilizzo della funzione di ottimizzazione automatica contenuta nel programma, ad esempio per modificare la posizione della barra sullo stampo e per ridurre al minimo il materiale utilizzato, garantendo comunque il completo riempimento e l’assenza di ripieghe sul pezzo. Da qualche tempo molte aziende che stampano ottone hanno iniziato a dedicarsi anche all’alluminio, per applicazioni principalmente nel campo automotive. In questo specifico ambito l’esperienza di Transvalor con numerosi stampatori di alluminio ha garantito fin da subito di poter utilizzare il software anche in questo ambito, consentendo ai molti utilizzatori italiani di poter valutare “in virtuale” le differenze tra un processo a loro ben noto, avendo loro sempre stampato ottone, ed un processo non noto, lo stampaggio di alluminio. Per quanto riguarda le specifiche del processo, normalmente vengono utilizzate presse a bilancere/vite, ben implementate nel programma, lo scorrimento del materiale alluminio è molto differente e ben riprodotto, grazie alla precisa caratterizzazione del materiale, e il range delle temperature di trasformazione risulta essere più delicato che per l’ottone. Volendo cercare una sintesi, si può dire che Forge è uno strumento molto accurato, in particolare nello specifico ambito dello stampaggio dei metalli non ferrosi. È in grado di consentire una valutazione a priori molto precisa della fattibilità di un particolare con il proprio processo e di intervenire in virtuale sugli stampi per migliorare la qualità del pezzo. Lo stampo frutto del lavoro di simulazione può essere lavorato e mandato in produzione, limitando al minimo le operazioni di campionatura in linea. Riportiamo di seguito alcuni esempi di utilizzo del programma ed i pareri di alcuni utilizzatori italiani. Caratteristiche comuni a tutte le modalità di stampaggio: • Importazione da CAD delle geometrie degli stampi/punzoni/spine in formato .stl e .step; • Definizione del materiale da database, sono presenti le leghe non ferrose più utilizzate (Cu, ottone, Al, …), sono in fase di caratterizzazione le leghe recentemente messe in commercio (ad esempio “ecobrass”, “Munz”, …);
• Ampia flessibilità nella definizione delle cinematiche tramite modelli predefiniti di “pressa” ed opzioni specifiche; • Per la pressa meccanica sono presenti modelli per la pressa biella-manovella, pressa a ginocchiera, pressa link-drive, cinematiche utente (fig. 1); • Possibilità di specificare attriti differenziati legati ad una superficie degli stampi con differente finitura super-
biella-manovella
ginocchiera
link-drive
Fig. 1 – modelli di presse meccaniche presenti nel programma
Fig. 2 - lubrificazione differenziata sulla testa del punzone
ficiale e/o lubrificazione indirizzata solo in alcune zone, come ad esempio la testa di un punzone (fig. 2); • Possibilità di calcolare l’intrappolamento di gas/lubrificante ed i relativi effetti sul completamento del pezzo, valutando l’effetto degli scarichi (venting); • Possibilità di simulare l’operazione di tranciatura delle bave. Peculiarità Il software è in grado di simulare i processi principali di stampaggio a caldo di leghe non ferrose: • Stampaggio a bilancere/pressa a vite (fig. 3): pressa “ad energia” da database, specificata l’energia disponibile
Fig. 3 – stampaggio al bilancere: configurazione reale ed esempi di particolari simulati
Newsletter EnginSoft Year 7 n°4 -
Fig. 5 – stampaggio a forare con spina inclinata
ed il numero di colpi il software permette di valutare le quote di chiusura degli stampi; • Stampaggio “a forare” su cuscino (fig. 4): pressa meccanica da database che guida lo stampo superiore, stampo inferiore su cuscino del quale si specifica la resistenza, spine che si muovono in funzione del movimento del cuscino. Forge consente di valutare l’apertura degli stampi legata all’eccessiva pressione esercitata dal materiale nella fase di entrata delle spine. Tra le opzioni sviluppate “ad-hoc” vi sono la possibilità di utilizza-
idraulico/elettrico (fig. 8): la flessibilità di impostazione della cinematica consente di specificare, per ogni stampo/punzone, tempi di entrata e leggi di moto differenti, con l’ottenimento di pezzi “flash-less”. Esempio di risultati ottenibili Flusso di materiale Forge è in grado di simulare correttamente il flusso di materiale nello stampo per effetto della chiusura delle matrici e per effetto dell’entrata dei punzoni. Una modifica delle
Fig. 7 – stampaggio in campana: chiusura punzone superiore, chiusura matrici e discesa contro il punzone inferiore.
re carrelli inclinati (fig. 5), di introdurre nello stampo degli inserti (fig.6), la funzione di “gas trapping” per valutare l’effetto dell’intrappolamento di gas/lubrificanti; • Stampaggio “in campana” (fig. 7): grazie alla funzione di concatenamento di più analisi, è possibile valutare tutte le azioni di chiusura degli stampi, quindi di entrata delle spine ed infine di discesa contro il punzone principale; • Stampaggio “in campana” – chiusura punzone sup., chiusura matrici, discesa contro punzone inf.; • Stampaggio con nuove presse con punzoni ad azionamento
Fig. 6 – stampaggio a forare con inserto e grafico forze sui punzoni
Fig. 8 – stampaggio “flash-less”: vista dei contatti e curve di movimento dei punzoni.
Fig. 9 – Corpo pompa – confronto tra sequenza interrotta e simulazione e versione ottimizzata.
STAMPAGGIO OTTONE E ALLUMINIO
Fig. 4 – stampaggio a forare su cuscino: configurazione reale
47
48
- Newsletter EnginSoft Year 7 n°4
PARTICOLARI IN OTTONE Di seguito una serie di esempi reali di particolari in ottone, dove la simulazione ha aiutato i progettisti a migliorare la qualità del proprio processo produttivo. Corpo collettore tre vie (fig. 10): la simulazione mostra con l’analisi dei contatti (in blu i contatti con lo stampo, in rosso le mancanze) che il materiale ha modo di allargarsi verso i raccordi laterali, dando origine ad un risucchio nella parte interna dei punzoni principali. Il pezzo reale mostra lo stesso tipo di difetto.
Fig. 10 - Corpo collettore tre vie - risucchi su entrata spine.
Corpo ad incasso (fig. 11): nell’ipotesi originale di stampaggio si riscontra una ripiega profonda in corrispondenza degli attacchi laterali esagonali. Sono state studiate diverse ipotesi di stampaggio, che hanno portato ad una eliminazione del difetto.
Fig. 11 - Corpo incasso - configurazione originale con ripiega e configurazione ottimizzata senza ripiega.
Corpo valvola (fig. 12): nelle campionature si riscontrano delle ripieghe sul lato delle spinette. La simulazione mostra come si forma il difetto e suggerisce degli accorgimenti per eliminare il problema.
Fig. 12 - Corpo valvola con ripieghe lato spinette – vista globale e vista del difetto.
Piletta stampata al bilancere (fig. 13): la simulazione evidenzia tutti i difetti riscontrati nella realtà: delle ripieghe sulla parte esterna (con il risultato “folds”), dovute alla giunzione di flussi, delle ripieghe sulla parete estrusa legate alla chiusura di materiale sul profilo ed un risucchio sul lato opposto legato all’estrusione di materiale.
Fig. 13 - Piletta su bilancere – ripieghe esterne, ripieghe su parte estrusa, risucchio su parte piana opposta.
Raccordo a 3 vie con spina inclinata (fig. 14): la configurazione, inizialmente non presente in Forge, è stata implementata sfruttando la flessibilità del codice a trattare cinematiche non-standard. La simulazione ha mostrato come si muove il materiale e le mancanze, che a finecorsa si completano dando luogo alle ripieghe presenti nel pezzo reale. Una modifica nella posizione della barra di partenza, verificata con la simulazione, ha risolto il problema.
Newsletter EnginSoft Year 7 n°4 -
49
Fig. 14 - Raccordo a 3 vie con spina inclinata – mancanze che generano poi ripieghe su attacco laterale.
Leva miscelatore (fig. 15): le prime campionature mostravano diverse ripieghe critiche. Il pezzo è stato verificato con la simulazione, che ha rilevato tutti i difetti presenti nella realtà. Sempre tramite la simulazione si sono studiati diversi accorgimenti, che hanno consentito di ottenere il pezzo privo di difetti.
Fig. 15 - Leva miscelatore – varie ripieghe identificate su varie versioni e soluzione finale senza difetti.
Fig. 16 - Guscio con ghiera quadra - ripieghe sottopelle.
Corpo mix lavabo (fig. 17): la forma particolare del pezzo ha portato a valutare in virtuale diverse ipotesi di processo, con barre di diverso diametro e alcune ipotesi di preformatura. Dopo una giornata di studi si è identificata la configurazione migliore in termini di sfruttamento di materiale (massimo riempimento con la minor bava), che presentava comunque un difetto di sfogliature sulla testa (visualizzato con il risultato “folds”), ritenuto comunque accettabile in quanto viene successivamente asportato con le lavorazioni meccaniche.
Fig. 17 - Corpo mix lavabo - confronto reale - simulato e presenza di sfogliature sulla testa.
STAMPAGGIO OTTONE E ALLUMINIO
Guscio con ghiera quadra (fig. 16): il pezzo risulta critico da ottenere da barra tonda a causa della profonda estrusione inversa cui è sottoposto ed alla necessità di ottenere la ghiera quadra superiore. La simulazione evidenzia la formazione di una prima ripiega in corrispondenza della prima variazione di diametro, sulla quale il materiale si ripiega ulteriormente a formare il difetto presente sulla ghiera quadra. La simulazione mostra la posizione e la profondità del difetto, che è stato possibile eliminare con la scelta di una barra di diametro differente.
50
- Newsletter EnginSoft Year 7 n°4
PARTICOLARI IN ALLUMINIO Di seguito sono mostrati una serie di esempi nei quali la simulazione ha aiutato i tecnici a comprendere le motivazioni dei difetti riscontrati nei pezzi, indicando la strada per risolverli. Braccetto sospensione (fig. 18): particolare di forma molto complessa, dove lo studio ha consentito di minimizzare le bave e di identificare il difetto di riempimento riscontrato nella realtà. Una minima aggiunta di materiale ha consentito di ottenere il pezzo privo di difetti.
Fig. 18 - Braccetto - Riduzione delle bave e mancanza di riempimento di un dettaglio.
Tappo per automotive (fig. 19): la particolare forma interna dava luogo ad una ripiega, in una zona critica per la chiusura del tappo, difetto identificato dalla simulazione. Sono stati valutati in virtuale diversi accorgimenti, che hanno consentito di eliminare completamente il difetto.
Fig. 19 - Tappo - Giunto nella zona inferiore del rilievo e versione senza difetto.
Testa di sterzo motociclistica (fig. 20): lo stampaggio di questo particolare risulta critica per la formazione di ripeghe nella zone del profilo intermedio superiore. Lo studio dei flussi effettuato con la simulazione ha spiegato le cause di questo difetto: una giunzione di flussi nel caso di risalita non equilibrata di materiale. Si è valutata quindi una modifica nello stampo inferiore, che ha orientato meglio il materiale verso il profilo, ha eliminato il difetto ed ha consentito anche un risparmio di materiale, scaricando una zone che poi viene lavorata alla macchina utensile.
Fig. 20 - Testa di sterzo motociclistica - Giunti legati alla chiusura dei flussi.
Perno (fig. 21): l’errata scelta della barra può portare ad un flusso non corretto di materiale verso la zona esterna e quindi al riempimento per ritorno e ripiega in prossimità delle razze. La simulazione ha aiutato a comprendere come si chiude il materiale su se stesso e quindi a testare varie geometrie di barra, fino a trovare quella che garantisce la miglior qualità del pezzo.
Fig. 21 - Perno - il materiale si allarga verso l’esterno, chiudendosi quindi su se stesso e formando le ripieghe sulle razze.
Newsletter EnginSoft Year 7 n°4 -
51
Raccordo (fig. 22): il pezzo, molto massivo, ad una prima analisi non mostrava dei difetti significativi di riempimento. Il cliente ha però evidenziato la presenza di bolle in corrispondenza della linea di trancia delle bave, difetti considerati critici per la qualità del pezzo. La simulazione ha mostrato un aumento importante di temperatura nella zone di uscita del materiale in bava, ad un livello sufficiente per innescare le bolle nel materiale. Tramite la simulazione si sono testate diverse ipotesi di temperature iniziali di barra, identificando il compromesso migliore per garantire un flusso corretto di materiale, una sollecitazione non eccessiva della pressa e temperature sulle chiusure non eccessive, ottenendo quindi il particolare con la qualità richiesta.
BRAWO BRASSWORKING – Cividate Camuno (BS) Ogni nuovo pezzo passa prima dalla simulazione per eliminare mancanze e ripieghe. Dove è possibile, testiamo noi e poi proponiamo ai nostri clienti modifiche che migliorano la producibilità e spesso anche la funzionalità di quello che siamo chiamati a produrre. Fondamentale è l’interfaccia costante con Enginsoft, che ci supporta nell’implementazione di nuove configurazioni e ci fa crescere nella coscienza dell’analisi dei risultati, ma anche il confronto con Transvalor, che ci segue nell’implementazione di funzioni sempre più complesse, ma che rendono la simulazione sempre più vicina alla realtà.
METALPRINT – Ponte S. Marco – Calcinato (BS) Abbiamo scelto Forge come uno strumento utile a farci crescere nello specifico dello stampaggio di alluminio, un campo a noi poco noto. Usando lo strumento abbiamo messo a punto il nostro processo e siamo stati in grado di proporci ai nostri clienti come realtà in grado di supportarli nel percorso di analisi di fattibilità di un pezzo. In diverse occasioni, il software è stato elemento determinante per prendere una commessa, garantendo a-priori il risultato finale, prima promesso solo sulla carta.
ZUCCHETTI MARIO – Antegnate (BG) La simulazione della deformazione della billetta tra gli stampi rappresenta un valido aiuto per l’ottimizzazione del processo di stampaggio a caldo. L’analisi dei risultati della simulazione consente di valutare i problemi sul pezzo e sugli stampi, di testare versioni modificate e deliberare stampi e sequenza di produzione dopo aver individuato la soluzione ottimale. In questo modo si riducono al minimo i tempi di messa a punto “trial and error” arrivando alla soluzione ottimale senza impegnare fisicamente le presse e la materia prima. Forge è stato essenziale anche per far crescere rapidamente delle nuove figure tecniche, che hanno potuto stampare “in virtuale” un numero rilevante di particolari (nell’ordine di 60 pezzi nei primi 3 mesi), risolvendo, con l’aiuto degli esperti di stampaggio presenti da anni in azienda, sia problemi “storici” di stampaggio, che via via supportando le scelte per nuovi particolari.
FONDERIA F.LLI MASPERO – Monza (MI) La nostra produzione è caratterizzata da particolari spesso molto complessi, in leghe non ferrose spesso non comuni (bronzo-alluminio, cupro-nickel, …), che abbiamo trovato già disponibili nel database dei materiali di Forge. Le esperienze iniziali con il programma ci hanno spinto a meglio approfondire i dati di processo per inserirli nella simulazione, attraverso un monitoraggio delle nostre macchine. Questo ci ha portato ad un maggiore controllo dei parametri fondamentali dello stampaggio, con un miglioramento complessivo della qualità dei pezzi prodotti ed una migliore ripetibilità delle operazioni. Si è ottenuta una reale ottimizzazione del nostro processo, con ricadute sensibili sul conto economico. L’evoluzione del mercato ci porterà ad affrontare prodotti sempre più difficili e di nicchia, per i quali avere questo strumento ci garantisce sicurezza nell’affrontare i progetti più impegnativi ed innovativi, dando un notevole impulso alla nostra competitività.
STAMPAGGIO OTTONE E ALLUMINIO
Fig. 22 - Raccordo - bolle su linea di bava legate a T troppo elevata e pezzo finale privo di difetti.
52
- Newsletter EnginSoft Year 7 n°4
condizioni di processo, quali ad esempio il cambio della barra (dimensioni e posizione) o modifiche apportate alla geometria delle matrici, portano a dirette conseguenze sul risultato finale, indicando la via per procedere verso il miglioramento del pezzo. Un primo caso mostra la sequenza di riempimento di un corpo pompa in ottone (fig. 9): la simulazione ricalca in modo fedele quanto accade nella realtà, che è possibile comprendere solo effettuando delle sequenze interrotte.
Procedere con la simulazione del processo di stampaggio, valutando a priori i problemi, consente di testare diverse configurazioni e scegliere la migliore, riducendo al minimo i tempi ed i costi di campionatura in stampaggio. Mancanze e ripieghe I risultati che normalmente si utilizzano per capire il flusso di materiale sono i contatti e le ripieghe. Per i primi, in blu sono riportate le aree di contatto con stampi/punzoni, in rosso le mancanze. Per le ripieghe, il software evidenzia con il colore rosso le zone dove il materiale ripiega su se stesso. Appositi sensori consentono di valutare anche come si muove la ripiega durante la stampata e quindi aiutano a capire se rimane interna o esce sulle bave. OTTIMIZZAZIONE AUTOMATICA Forge è l’unico software di simulazione di stampaggio ad includere una funzione per l’ottimizzazione automatica. Partendo da un progetto di riferimento, è possibile specificare il range di variabilità di alcuni parametri (ad es. dimensione della barra, sua posizione sullo stampo, …) e chiedere al software di trovare i migliori valori per soddisfare gli obiettivi (ad es. riempimento dello stampo, assenza di ripieghe, …). Nell’esempio seguente, è stato ottimizzato uno stampo per la produzione di un raccordo a T in ottone. I parametri impostati sono un diametro barra tra 36,8mm e 55,2mm, una lunghezza barra tra 48mm e 72mm ed una possibile variazione rispetto alla posizione iniziale di -5mm lungo Y. Si chiede all’ottimizzatore di trovare i migliori valori per minimizzare il materiale impiegato. Primo risultato ottenuto: con una barra d=38,13mm, L=49,2mm e dY=-3,7, si ottiene il riempimento del pezzo con il minimo materiale possibile, ma si riscontrano delle ripieghe. Richiedendo come vincolo anche l’assenza di ripieghe, il software individua un’altra configurazione, che necessita di molto più materiale. Partendo infine da barra coricata, si ottiene la migliore soluzione, con riempimento completo senza ripieghe e con un significativo risparmio di materiale (-15% rispetto all’ipotesi iniziale) L’ottimizzatore valuta diverse generazioni di individui, selezionando via via i migliori per convergere alla combinazione di valori e parametri che consentano di ottenere i migliori obiettivi (completo riempimento dell’impronta, nel rispetto dei vincoli imposti (assenza di ripieghe). Per maggiori informazioni: Marcello Gabrielli - EnginSoft info@enginsoft.it
Newsletter EnginSoft Year 7 n째4 -
53
Coupling 1D and 3D CFD The Challenges and Rewards of Co-Simulation It is now well known that 3D CFD simulations can give detailed information about fluid and flow properties in complex 3D domains and that, on the other hand, 1D CFD simulations can give important information at system levels, i.e. about the performances of an entire system of internal flows. The drawbacks of the two simulation methods are that the former requires high computational costs while the latter cannot capture complex local 3D features of the flow. Therefore, the two simulations methods are to be seen as complementary, indeed a coupling of the two methods can use the strongest points of the two methods while minimizing the drawbacks. In particular, with a multi-scale modelling approach (achieved by coupling 1D and 3D codes) it is possible to simulate large and complex domains by modelling the complex parts with a 3D approach and the rest of the system with a 1D approach. This methodology can provide detailed information only where needed while providing system level information in the rest of the domain; this minimizes the computational costs. Moreover, the multi-scale approach avoids the need of imposing approximated boundary conditions to the 3D simulation which would badly affect the reliability of the simulation itself. EnginSoft has a long and important experience both in 1D and 3D simulation modelling (with ANYS Fluent, ANSYS CFX and Flowmaster) and is active in multi-scale simulations. There are different methodology for coupling 1D and 3D codes. The coupling methodologies can be divided in manual or automatic depending on the method of data transfer between the two codes, or in one-way or two-way depending whether both systems mutually influence each other or not. Manual one-way coupling between 1D and 3D CFD codes is a standard practice in EnginSoft. Usually the complex components in the systems (such as valves, orifices, heat exchangers, vessels) are modelled in 3D with ANSYS CFX or ANSYS Fluent. The characterization of these components allows the definition of an equivalent 1D component used inside the 1D model of Flowmaster. Using this simple approach all the detailed information gained with the 3D simulations are embedded and used inside the 1D system model. EnginSoft is also actively investigating automatic one-way and
two-way coupling methodologies between Flowmaster and ANSYS Fluent and ANSYS CFX. The coupling possibility is not limited to CFD field but can extend to multi-physics. An example of multi-physics one-way coupling is the simulation of vibrations in piping systems (e.g. compressed gas systems, blow-down systems); this simulation is performed by modelling the pressure wave propagation inside the piping system with Flowmaster and passing the forces exerted by the internal flow to ANSYS for a mechanical analysis. EnginSoft has performed several vibration analyses for different customer using this one-way multi-physics approach with a semi-automatic procedure. Another example of multi-physics two-way coupling is the simulation of thermal deformation of solid structures and the fluid flow though them. In this case both systems influence each other so that the coupling needs to be two-way and automatic. EnginSoft has developed a fullyautomatic interface between Flowmaster and a thermomechanical code for such a simulation. Finally, in this framework it is worth mentioning that Flowmaster can be directly coupled with mode-FRONTIER allowing multi-objective optimizations. EnginSoft is active in this field with different optimization projects involving 1D CFD and Flowmaster. "This article originally appeared in the October 2010 edition of Benchmark and has been reprinted with permission from NAFEMS"
Vincent Soumoy of EURO/CFD and David Kelsall of Flowmaster Ltd, both members of the NAFEMS CFD Working Group, provide an overview of the recent NAFEMS UK seminar on coupling 1D and 3D. The benefits of coupling 1D and 3D CFD codes have long since been recognised. Automotive and aerospace companies have used 1D codes to gain a better understanding of system performance (such as fuels systems), whilst 3D codes are used to analyse detailed behaviour within and around key components. With that in mind, the NAFEMS CFD Working Group recently arranged a seminar at the Heritage Motor Centre in Gaydon to understand the benefits of such links and assess the current state of the art. Approximately 40 interested parties from across the NAFEMS membership attended to hear a number of interesting and thought-provoking presentations from various speakers. Darren Morrison started the technical presentations by sharing an interesting view on the subject from the perspective of a large aerospace company (AIRBUS). Validation is seen as
54
- Newsletter EnginSoft Year 7 n°4
of a complicated flow topology. Even with 1D analyses simplifying the fluid dynamic calculations, about 250 CPU-days of CFD computations where used to optimise the configuration.
Large aircraft system co-simulation
desperately important, so that much of their work is to prove that any couplings are producing realistic and reasonably accurate predictions. In designing fuel systems, much of the analysis is done with 1D codes – for reasons of computational economy – but sometimes the passages and fluid interactions are so complex that only a 3D treatment is felt appropriate. Hitherto results have been passed manually from 1D to 3D analyses. There is a desire for such couplings to be automatic – but without compromising the integrity of the analysis. Representing a vendor’s perspective, Domonik Sholz from ANSYS Germany called for participating codes to develop a common infrastructure so that they could support a wide range of multiphysics applications. Using the example of tracer transport in a pipe network, he showed how co-simulation between ANSYS CFX and LMS AMESim gave excellent agreement with experiment, for flows in- and around- pipe junctions. The inter-code coupling was partially enabled by ANSYS CFD codes (CFX and Fluent) providing direct links to several 1D Codes (including AMESim, Flowmaster and GTPower). Further examples included: • a vehicle thermal management model simultaneously running Fluent, GTPower and Flowmaster which gives temperature results to within 2% of experimental observations; • an exhaust gas recycle (EGR) featuring CFX and GTPower. LMS International’s R&D Manager Roberto d’Ippolito then demonstrated an exciting application of 1D-3D coupling: optimization. 3D CFD on its own is currently too computationally intensive to be used in conjunction with optimization analyses for large industrial systems. 1D codes can be used to approximate the essential features of 3D CFD predictions so that meaningful optimization analyses can be performed in conjunction with CFD analyses. Using the example of a water jacket for a 5-cylinder in-line turbo-diesel, d’Ippolito demonstrated a practical methodology to optimise the design of the cooling holes of the head gasket. This is a multi objective optimization problem with a need to maximize the minimum velocity through the holes and to minimize the related pressure losses between the cylinder head and crank-case in the context
Picking up on some of the concepts raised by ANSYS’s Sholz, Sreenadh Jonnavithula from CD-adapco discussed the motivations for coupling 1D and 3D CFD drawing on experience gained within CD-adapco. (In fact, these struck a chord with most participants in the meeting.) He showed how couplings to SPT Group’s multiphase flow code OLGA, Gamma Technologies’ GT-Power and Ricardo’s WAVE have been implemented in CDadapco’s newest CFD code, STAR-CCM+. Jonnavithula used automotive and oil industry case studies to demonstrate the generic coupling capabilities of STAR-CCM+ together with specific interfaces to 3rd party products, including: • a coupling to OLGA to facilitate the design of an oil company slug-catcher (to capture a large plug or slug of liquid that might be projected from a multiphase oil pipeline); • a coupling with GT-POWER to facilitate the design of auto engine intake and exhaust systems, with GT-POWER modelling exhaust pipes and ducts, whilst STAR-CCM+ simulated detailed flows within the manifolds. As a complete contrast to the bespoke couplings offered by ANSYS and CD-Adapco, Pascal Bayrasy of the Fraunhofer Institute for Algorithms and Scientific Computing (Fraunhofer SCAI) presented the neutral coupling interface server, MpCCI( Mesh-based parallel Code Coupling Interface). MpCCI was originally developed as a multi-physics coupling application. It facilitates coupling and data exchange between, for example, a finite element (FE) stress analysis code and a CFD flow analysis codes for Fluid Structure Interaction (FSI) calculations and has recently been enhanced to allow 1D-3D couplings. MpCCI addressed some of the challenges inherent in cosimulation - complex hardware environments and challenging software engineering requirements - by using adapters (developed for each software vendor) to establish a direct connection between the MpCCI Coupling Server and the 1D or 3D CFD code. Currently coupling adaptors exist for Abaqus, ANSYS, Fine/HEXA, Fine/TURBO, Flowmaster, Fluent, Flux, ICEPAK, MSC.Marc, Permas, STAR-CD and RadTherm amongst others. In principle, MpCCI offers the potential of even more complex couplings than bi-lateral ones between 1D and 3D CFD codes. Nevertheless Bayrasy demonstrated the attention to detail that
Full vehicle thermal management
Newsletter EnginSoft Year 7 n°4 -
55
Much of ESDU’s experience is now captured in CFD Best Practice Guidelines for modelling pressure loss and flow characteristics. The final talk of the day came from David Burt of MMI engineering. He showed a multiply coupled problem featuring buoyancy driven flow in a complex ventilation system. It related to a nuclear facility where no contaminants could be allowed to escape from a process building. The modelling involved coupling a 3D CFD model (for the building space), a 1D model (for the ventilation system) and MATLAB to define some of the key components within the overall model. Much of the coupling was achieved manually, and whilst this gave acceptable results it limited the test scenarios, use cases and failure cases that could be assessed. Burt felt that an automatic coupling capability (between the computer applications) would have led to an improved understanding of the influence of each model on any of the others. The links with 1D software are fully integrated in the STAR-CCM+ user interface
has been necessary to ensure that MpCCI produces stable, convergent, conservative and consistent co-simulation solutions. Flowmaster’s David Kelsall then illustrated how a 1D code might be coupled to a 3D code (Fluent, STAR-CD or STAR-CCM+) using MpCCI as a coupling adaptor. Using the example of an aircraft environmental control system (ECS) to manage passenger cabin climate, Flowmaster was used to model the equipment and ducting within the ECS supply, whilst 3D CFD codes were used to model a partial section of the cabin (to minimize CFD runtimes). MpCCI was used as a coupling adapter. The overall model allowed various what-if scenarios to be tested. Changes within the ECS supply network were shown to have a demonstrable effect on passenger comfort within the aircraft cabin. The example showed that realistic simulations are possible and provided further scope for development and optimization. The presentation discussed some of the challenges overcome in coupling 1D and 3D models and demonstrates that a methodical approach promotes convergence. With the MpCCI coupling adaptor it was a relatively straightforward exercise to swap the CFD codes between STAR-CD, Fluent and STAR-CCM+ The final session of the day was dedicated to different aspects of the 1D-3D coupling challenges. Francesca Iudicello from the ESDU Fluid Mechanics Group reminded the meeting of the importance of using fully validated data and correlations, particularly when 3D calculations are approximated as 1D processes. ESDU has a rich history in developing methods for the design of internal flow systems for over 40 years, using validated experimental data and 1D analytical methods. Their methods now include the use of 3D CFD predictions to supplement and support experimental data. Iudicello emphasized the importance of understanding: • the type of averaging to use for the flow parameters at the inlet and outlet boundaries; • the sensitivity of the CFD solutions to the location, magnitude, profile and turbulence entity of the boundary conditions.
Concluding Remarks The presentations of the day clearly demonstrated that there is a significant interest in the coupling of 1D-3D CFD. The type of organisation undertaking coupled solution would seem to be capital intensive industries (such as automotive, aerospace, and oil) where significant gains may accrue from improved understanding of system interactions. Developers and vendors are clearly responding to customer needs because many 3D CFD developers (e,g, ANSYS, CD-adapco) are developing bespoke coupling solutions for their own products, linked to specific 3rd party applications. However many users will be lucky if they happen to have the specific combination of 1D-3D applications that specific vendors already support – otherwise the development costs may be significant if a new coupling adaptor needs to be developed. Fraunhofer-SCAI are pursuing a different strategy. They provide a neutral interface for simulation code coupling and already provide coupling adaptors to a wide range of FE, 3D and 1D CFD and other simulation tools. During the day and in the questions time after the presentations there were a number of lively discussions, with some useful insight into the different perspectives of the vendors and users in a range of different industries. There are clearly many issues still to be addressed before coupling and co-simulation become universally stages of the analysis process. But the current state of the art (and the competing offerings from developers and suppliers) would seem to suggest that this technology will develop and improve over the coming years. It is an area that NAFEMS will continue to monitor and make information available to members. Thanks are recorded to members of the NAFEMS CFD working group who organised this event and especially to Jo Davenport (of NAFEMS) for organizing the venue and ensuring the day ran so smoothly and David Kelsall as technical champion. Vincent Soumoy – EURO/CFD • David Kelsall – Flowmaster Ltd For further information: Dr. Alberto Deponti - EnginSoft info@enginsoft.it
56
- Newsletter EnginSoft Year 7 n°4
Interview with Joan Villadelprat, President of EPSILON EUSKADI Epsilon Euskadi, situated in The Basque Country in Spain, was founded in 2003 as a racing team participating with two cars in the “Nissan World Series” and in this short time they have become a Technological Innovation Centre unique in the world. The Master in Technical Specialization within Automobile Racing, METCA, is the result of collaboration between Epsilon Joan Villadelprat, the President Euskadi and the University of of Epsilon Euskadi. Mondragón that, in the six years since starting in 2005, has become an international benchmark. The course provides more than 1,700 teaching hours over 11 months and this year the participation included 32 students from 6 different countries. AperioTec (Barcelona, Spain) and modeFRONTIER cosponsored the course together with other companies and for the first time was involved in training the students in the use of optimization within the "CAD & Calculation" course module. Here we provide parts of an interview held with Mr. Joan Villadelprat, the President of Epsilon Euskadi, to gain his impressions on the progress of Epsilon Euskadi, the METCA program and the usefulness of the modeFRONTIER software. 1. What were the main reasons for initiating the METCA? Joan Villadelprat: One of the main reasons that led us to start the Masters, and Epsilon in general, was to add special emphasis to motorsport that went beyond mere show. The main objective is to train the next generation of engineers who wish to develop their career in the world of high competition and industrial sectors that require a high degree of technological expertise and innovative components. The ambitious and unique combination of theory and practice that the METCA degree offers provides a unique opportunity to educate the next generation of engineers capable of reaching and meeting the highest level in motorsport as well as in other industries in which technology and innovation are the cornerstones.
2. Why it is considered a world pioneering master? JV: It is a pioneering master due to its combined theoretical and practical orientation. Students not only receive theoretical knowledge from high level teachers and lecturers but within the same program they implement this knowledge in the workshops, the wind tunnel, the engineering design department and with the Epsilon teams that participate in the World Series by Renault championship. Thanks to this approach, every day the students are faced with real situations and problems from which they obtain a unique experience that will enable them, tomorrow, to confidently accept any challenge. 3. Are you aware of any former METCA students currently working on a racing team? If so, in what team and what functions are they carrying out? JV: Year 2010 is the sixth promotion, but of the previous five promotions, we are aware of eight alumni who work or have worked as engineers in Formula 1, in Sauber, Renault, Toyota and Red Bull. We also know of students who work in other competitions such as the GP2 and the Le Mans Series where they work as engineers with different responsibilities. 4. Would you highlight any aspects of the new Epsilon facilities in Vitoria? JV: In January 2010 we moved to the new Innovation Centre, located in the Parque Tecnológico de Álava, Vitoria. Here we have 17.000 square metres of facilities equipped with the latest technologies to meet the four basic areas that Epsilon focuses on: R&D, manufacture, competition and training. These new facilities enable us to face many more challenges and to empower more students. For METCA we have a classroom fully equipped with the latest software and hardware in addition to using the rest of the facilities for their practical classes and projects, the most important of which is the Wind Tunnel. This is a unique facility in Spain based on its features - size, power and moving floor - making it the most modern in Europe. 5. Can you please tell us about the current use of the wind tunnel at the centre? JV: The wind tunnel at the centre is used both for our own projects and projects for others. Our current projects include the prototype development of a Le Mans car in accordance with current specifications and a prototype Formula 1 car. But we do not only
Newsletter EnginSoft Year 7 n째4 -
test vehicles, we can study any surface exposed to air flow to improve its aerodynamic efficiency. In the tunnel we have tested the official Nike football for the Spanish, Italian and English football leagues and the Bell helmet that cyclist Alberto Contador used for the time trials in the Tour de France this year. We have also done tests on new profiles for wind turbine blades, solar panels and high speed trains.
57
classes dedicated to optimization and use with modeFRONTIER. 11. What might be future opportunities for optimization using modeFRONTIER in your processes or designs? JV: Applications and areas where we can optimize the designs are so diverse that optimization can be performed in virtually all vehicle areas. The capabilities of this type of software tool enable us to precisely and confidently obtain optimal designs.
6. Why did you decide to include modeFRONTIER in this master? JV: The aim of the master is to provide a 12. Epsilon provides engineering services for multi-disciplinary education to students in companies with high technological value, so order to broaden their knowledge in what are the opportunities to utilize some of disciplines such as aerodynamics, vehicle the modeFRONTIER features? dynamics, powertrain (engine, gearbox and Driver Albert Costa signing autographs JV: The possibilities are vast. Our company transmission), calculation and simulation, with Commercial Director Jordi Caton. philosophy at Epsilon is that we use intellect and CAD, programming, track engineering and the available tools to provide high added-value team management. modeFRONTIER offers a good tool to to various industrial sectors. Reaching an optimal solution create very comprehensive process simulations and ensures the success of any project, so that with these tools, optimization calculations managing other software programs we can become even more empowering and reliable. so it is necessary that students know and understand this software tool. 13. Epsilon, together with other companies, has developed a new electric car concept called "Hiriko, Diving Mobility" 7. Logical, but was there were some notable non-technical that is sure to revolutionize the automotive industry and aspects? urban mobility in the future. What has been the role of JV: The close relationship we have with AperioTec was a Epsilon Euskadi in this project? major reason to opt for this software. The tool itself is not JV: Our role is to lead the "city car" prototype production of useful unless there is a leading technology partner guiding the new urban concept vehicle that MIT has developed, and helping users to best use it. contributing our technical knowledge and integrating the expertise of different automotive industry providers. This 8. Were your expectations met with this new section of the requires development and production, via a new course? decentralized model, of the first vehicle of its kind in the JV: We have reached the point where we have closed the world. Without doubt, the research and development of development cycle by using automatic optimization innovative products and technologies fits perfectly within techniques instead of just using experience and knowledge. the Epsilon philosophy, which goes beyond that of the It is still early to assess with certainty, but our primary competition. It is a challenge that goes beyond mere expectation has been fulfilled by obtaining optimal solutions technology, also appealing to social responsibility. to engineering problems which traditionally would not have been possible. 14. What results have Epsilon Euskadi achieved in the various competitions? 9. Each student must complete a final master project; have you any idea of possible projects to be undertaken by students using modeFRONTIER? JV: There are six projects that will use modeFRONTIER with a total of ten students working with this tool. I could mention one or two, but they are all very interesting, so it is difficult to highlight any in particular. 10. What is the overall impression that the students had of this new section? JV: Their initial assessment was very positive but they have requested to have more time with the tool, something which we sort of anticipated. Being the first year, we consider this our first trial, but next year we will surely double number of
58
- Newsletter EnginSoft Year 7 n°4
JV: Epsilon Euskadi participates with four cars in the Eurocup Formula Renault 2.0 and with two cars in the Formula Renault 3.5 or World Series. The Renault 2.0 would be a natural first step for young people moving from karting to cars. Here the cars are simple but certainly provide a great school. Our four drivers have done very well and three of the four have been on the podium on occasion. Substitute drivers were also on the podium and won some races, which gives an idea of the team's competitiveness. The World Series would be the next step and is generally the prelude to Formula 1. Drivers such as Kubica and Alguersuari grew up within Epsilon, but others like Vettel, Kovalainen and Alonso have also driven here. In the Renault 3.5 category we currently have Albert Costa who is one of the most promising young Spanish motorsport drivers and winner of the Eurocup and WEC (West European Cup) with Epsilon in 2009. Despite some physical problems he had this season he has had an extraordinary first year in the category, with several podiums to his credit. 15. And finally, your expectation was to enter F1 in 2010 but this did not come about. Is there some expectation that Epsilon could enter this competition next year? JV: Entering Formula 1 is one of our goals, but not the only one. And this license enabled direct entry, but neither will it be the only one. Epsilon will continue with its industrial and automotive projects. And among these projects is that of entering Formula 1 because it is the ultimate expression of motor racing and technology, basic principles of our company. While working on a new opportunity, we will always continue with our educational projects, competition, manufacturing and R&D.
AperioTec and modeFRONTIER in facebook and twitter The original Spanish version of the ”Interview with Joan Villadelprat, President of Epsilon Euskadi” can be found in the Aperiotec webpage and was even published on th 17 October 2010 in the official pages of Epsilon Euskadi on Facebook and Twitter.
Newsletter EnginSoft Year 7 n°4 -
59
RIGANTI SpA Acciaio stampato al maglio dal 1891 Riganti è una delle realtà più importanti in Italia per quanto riguarda la produzione di particolari in acciaio mediante forgiatura al maglio. Nello stabilimento di Solbiate Arno (VA) si producono fin dal lontano 1891 particolari da un minimo di 5kg ad un massimo di 1500kg in acciai comuni al carbonio ed inox, ma anche in leghe speciali (Monel, Inconel, Chromium-Duplex, Incoloy, etc.) per ogni settore della meccanica: veicoli industriali, impianti petrolchimici, ferrovie, motori marini e industriali, ruote dentate e cambi, aeronautica, … L’attività ruota attorno al processo di stampaggio al maglio, con le linee da 10.000 kgm, 16.000 kgm, 25.000 kgm, 2 linee da 32.000 kgm, 2 linee da 35.000 kgm e l’ultima installata da ben 40.000 kgm, che consentono con diversi colpi di ottenere particolari di diametro fino a 1m e forme molto complesse, particolari che poi sono trattati termicamente e lavorati al grezzo o al finito. Visitate il sito di Riganti all’indirizzo: www.riganti.com L’utilizzo di FORGE nella progettazione Riganti è sempre stata sensibile alle innovazioni tecnologiche in grado di implementare e ottimizzare la produzione ed il “service” relativo. Fra le prime ditte ad implementare l’uso del CAD 3D per la progettazione degli stampi è stata anche la prima industria di stampaggio in Italia, a credere nella simulazione di processo, scegliendo sin dal 1999 Transvalor e l’assistenza tecnica e formativa di EnginSoft. L’uso di magli di medie-grandi dimensioni, è una delle caratteristiche che distinguono il prodotto Riganti ed il software Forge è stato personalizzato ed implementato secondo le particolari necessità del processo di formatura con magli a contraccolpo e doppio effetto. Il continuo affinamento del programma, ha reso i risultati delle simulazioni sempre più realistici, rendendo Forge insostituibile sia in fase di valutazione preventiva che nella fase di ottimizzazione. Possiamo dire che l’esperienza analitico-scientifica con Forge, non sostituisce completamente la conoscenza pratica dell’esperto forgiatore, ma la affianca e la sostiene, dando logica e spiegazione ad un patrimonio quasi esoterico, frutto di tramandate conoscenze e di svariati anni di lavoro sul campo, legate però al singolo individuo e non al know-how aziendale. Se al momento della scelta di Forge, l’obiettivo primario era quello del-
l’eliminazione dei difetti di stampaggio (ripieghe, cricche per elevato scorrimento interno, mancanze), sono subito apparse utili altre caratteristiche legate alla simulazione di processo. L’uso di Forge si è rivelato fondamentale nell’esame di fattibilità preventiva dando così modo alla parte commerciale di esplorare nuovi mercati e nuove tipologie di prodotto, con la sicurezza di soddisfare una fornitura, anche al limite delle possibilità produttive dei magli a disposizione. Forge si è dimostrato indispensabile sia per l’ottimizzazione di commesse ad elevato numero di pezzi, ma ancor di più per lotti di produzione con basso numero di particolari di grossa dimensione, per i quali non è fattibile una fase di prototipazione e per i quali un errore progettuale è inaccettabile, per il grosso dispendio economico e per i conseguenti ritardi nella consegna dei pezzi. Perché EnginSoft e FORGE in Riganti L’uso costante di Forge consente di creare un data base suddiviso per famiglie di prodotto, a disposizione di quei clienti che si avvicinano per la prima volta alla Riganti ed ai suoi prodotti. L’ottima visualizzazione dei risultati facilita la comprensione anche a persone meno esperte del settore, diventando un ottimo strumento di comunicazione con il cliente finale, soddisfando le esigenze relative alla previsione dell’andamento fibre e permet-
tendo la tracciabilità del nucleo billetta, consentendo in alcuni casi, a pari qualità, l’uso di acciai da colata continua in sostituzione dei più costosi in laminato. Il dott. Marco Riganti ci ha detto: “Ho visitato la Transvalor nel 1999 per rendermi conto personalmente del livello tecnico di questa azienda e del suo software Forge, prima di deciderne l’acquisto. L’impressione di eccellenza che ne ricavai allora si è confermata negli anni e per questo continuo a sostenere l’importanza di questa scelta per il progresso della mia azienda”. “La piena soddisfazione nei risultati e nell’affidabilità, hanno reso nel tempo insostituibile Forge. Ogni anno siamo impazienti di ricevere la nuova versione per applicare nel concreto le diverse migliorie sempre presenti (miglioramento dei contatti e tracciatura delle ripieghe, ottimizzazione, strumenti per rendere più rapida la soluzione e più precisa l’analisi dei risultati, …). Il continuo lavoro di sviluppo del programma, a cura di Transvalor, e l’assistenza continua di EnginSoft nell’implementazione di progetti sempre più complessi, sono elemento essenziale per utilizzare quotidianamente questo strumento e trarne il massimo vantaggio”, dichiarano Dario Bressan, responsabile dell’Ufficio Tecnico e Franco Cermisoni, l’utilizzatore del programma.
60
- Newsletter EnginSoft Year 7 n°4
For the growth of MONOZUKURI in Japan activities are hosting lecture meetings as well as publishing journals and collecting technical papers. The last lecture meeting was held at Kyushu University last May and it drew to a successful close with more than 300 lectures from different fields. The quarterly JSCES was founded in 1995 by its published journal is very well accepted first president T.Kawai and the because of the timely feature articles. The organizers of WCCM III (The Third collection of papers builds a reputation for its World Congress on Computational high quality, and is a breakthrough as the Mechanics). JSCES has been first electric journal intended to the readers’ affiliated to the International Union convenience. of Theoretical and Applied Mechanics In addition to these activities, JSCES also (IACM) since 1995. JSCES has conducts activities that are aimed at currently over 900 members, all of “computational engineering for which are automatically registered MONOZUKURI” to draw a new road map of as international members of IACM. MONOZUKURI. It includes “Send and Receive” The purpose of JSCES is to promote advances in education and Mr. Koichi Ohtomi, President of JSCES and Chief between computational engineering and Research Scientist of the Corporate Research & MONOZUKURI and thus widens research and technology in computational Development Center ofToshiba Corporation. technology of the MONOZUKURI study group engineering by providing a platform and backups activities of the engineers’ educational system for communication to the members of JSCES and the related by offering qualification certificates. To realize all this and organization. In addition, JSCES contributes to to run a smooth and effective operation, we are open to advancements in these fields widely through international collaborate with other societies and associations both activities. domestic and overseas. We had the pleasure to interview Mr. Koichi Ohtomi, who What are the benefits and problems of CAE simulation? became the president of JSCES in April 2010, about the We can get the output very fast by using CAE. Experienced challenges of CAE in Japan, the JSCES’s efforts and the engineers understand the calculated value very quickly by opportunity for collaboration with the CAE community in comparing it with physical and theoretical answers. In other Europe. Mr. Ohtomi also holds the position of Chief Research words, if the right person uses CAE properly, it can have a Scientist of the Corporate Research & Development Center great effect. Various success stories can be witnessed in at Toshiba Corporation. different industries, such as a 1 year design cycle has been reduced to only 1 month or all necessary data can be *Toshiba, a world leader in high technology, is a diversified obtained without prototype testing. Clearly, MONOZUKURI manufacturer and marketer of advanced electronic and got the great benefit of speed from CAE. Especially, the last electrical products, spanning information & communications 20 years were a giant leap for CAE, as we have many equipment and systems, Internet-based solutions and excellent technologies, sophisticated capabilities and wellservices, electronic components and materials, power programmed software products. CAE has become a keyword systems, industrial and social infrastructure systems, and for the world of MONOZUKURI. household appliances. Interview with Mr. Koichi Ohtomi, President of JSCES - THE JAPAN SOCIETY FOR COMPUTATIONAL ENGINEERING AND SCIENCE
What are the main activities provided by JSCES? Computational engineering is now an important field in science technology that contributes a lot to MONOZUKURI and other industries beyond science and engineering disciplines. JSCES provides several activities to make use of the achievements of computational engineering. The main
However, the required drastic changes of design and manufacturing systems which go along with the introduction of CAE, produced a “collateral effect”. For example, young engineers face difficulties, they sometimes don’t know how to evaluate the answer from simulations properly. For instance, they tend to calculate any design case by 3D non-linear simulation, even if it can be analyzed
Newsletter EnginSoft Year 7 n°4 -
with a 2D linear simulation. All the necessary data and functions are prepared in the CAE software; this doesn’t challenge the engineers to use their own thoughts, although theoretical thinking was indispensable until CAE simulation became widely used some years ago. In the worst cases, users believe the simulation answer without a doubt as it does not seem right to think theoretically. Such problems may continue to occur until a new educational system which focuses on CAE embedded MONOZUKURI has been established. What are the JSCES activities in the current CAE environment? Recently, we started the study and promotion of 1D-CAE. The 1D-CAE study group was established in JSCES, it organizes regular workshops. Unlike typical 3D-CAE, 1D-CAE can be implemented into the very early phase of the design cycle, which describes all the functions and phenomena of both the products’ hardware and software, and realizes the parameter study. It also includes nonphysical phenomena, such as consumers, society, economy and distribution. If the engineers focus on this design concept at an early stage and then use 3D-CAE in the structural design, it will drive the innovation of the design and also the human resource development.
Furthermore, JSCES provides 2 more study groups to improve the problem we have now. The first group is the MONOZUKURI study group which fosters the use of CAE for MONOZUKURI and discusses computational engineering from the viewpoint of MONOZUKURI. It holds the periodical meeting to exchange ideas and to provide a platform for discussion between manufacturing companies, academic associations and vendors about, for example, simulation quality, verification & validation, 1D-CAE & 3D-CAE, and computational engineering and experimental engineering, etc. As the standard CAE software products used in Japan are mostly produced in the US and in European countries, these programs do not always suit the traditional Japanese design and manufacturing system called SURIAWASE (which means coordination). The study group’s aim is to find the right way to use CAE in the Japanese MONOZUKURI culture. The second group is the HQC study group. HQC means High
61
Quality Computing. Although HPC (High Performance Computing) has been discussed for years, we need to think more about “Quality” in the future. Maybe starting a routine to re-evaluate the simulation result inside the hardware would be a HQC. As far as CAE quality assurance is concerned, our studies refer to ASME V&V and NAFEMS. Are there any possibilities to collaborate with European associations? In 2010, I have visited the EnginSoft office in Padova, Italy in April and attended the TechNet Alliance Meeting in Aachen, Germany, in November. These were unique opportunities to meet with CAE specialists from different fields in Europe and to enrich both our understandings. I was impressed to see that CAE is on center stage, and that both users and vendors are keen to cooperate for a better use and enhancement of CAE software in Europe. If necessary, even a small company makes their own CAE program by applying new technology. I would like to introduce this positive attitude for CAE in Europe to Japan. Although the number of CAE software licenses used in Japan is much higher than in most other countries, the users often tend to be very passive. I think CAE users should be far more positive about improving their
own use of the software and the environment. With respect to CAE quality assurance, NAFEMS’ promotional activities for safe and reliable CAE gives us many hints. For all these reasons, we are hoping to collaborate with NAFEMS and also other European associations in various ways in the future. *MONOZUKURI is being used in this article and in the future instead of MONODUKURI which was introduced before in past editions. Though both are used in Japan, the “Z” is more natural in English-speaking countries. *MONOZUKURI is the Japanese expression for “production” or “manufacturing” in English, but it is also used often in discussions about Japanese engineering spirit and traditional manufacturing.
For more information, please contact: Akiko Kondoh - EnginSoft info@enginsoft.com
62
- Newsletter EnginSoft Year 7 n°4
Enjoy your Spring with Cherry Blossom in Kyoto Kyoto, the most famous tourist site in Japan, is also the favorite city of the Japanese people. In autumn, when I wrote this article, the different kinds of trees in the city and in the surrounding mountains are changing their colors, from green to yellow and red. The autumn colors create a beautiful harmony with the historical temples and shrines that have been watching the changes of the seasons for more than a thousand years. In spring, when this Newsletter reaches you, the cherry trees of Kyoto will be in full blossom everywhere, and we can again enjoy the brilliant balance between the gentle and graceful shades, from snow white to bright pink, embracing traditional Japanese architectures. Cherry-Blossom Viewing is one of the things people are looking forward to in winter! In this edition, I would like to introduce some world heritages and beauty spots of Kyoto to you, with the scenery of Cherry Blossom.
Fig. 1 - Togetsu-kyo Bridge in Arashiyama
To-ji Temple This is a familiar temple for everyone who visits Kyoto because it is located near the Kyoto station and can be seen from the local trains and the Shinkansen express train. It rises high showing us its wooden architecture and beauty in front of the modern buildings of Kyoto station. To-ji gives to us 1200 years of history, it is the only temple that remained from the Heiankyo era. The five-story, 57 meters high, pagoda is the highest wooden tower in Japan, it is also the home of many national treasures including several Buddhist statues. By the way, the world’s largest game company Nintendo is just a stone’s throw away from To-ji. Kiyomizu-dera Temple Kiyomizu-dera is one of the most popular temples in Kyoto. We can reach it in just 20 minutes from Kyoto station by bus and on foot. Apart from the heart of the temple area, also the entrance gate and surroundings with small shops and cafes and the mountains that enclose the temple are simply marvelous; not to mention the breathtaking views onto the city from the temple area. The highlight and most famous part of the temple
Fig. 2 - Cherry blossom at night: Kiyomizu-no-butai
is the stage Kiyomizu-no-butai. The stage on the mountain’s slope was made by applying the architectural technology and method called “Kakedukuri” which does not use any nails. All poles and beams are just crossed and jointed. Kiyomizu-nobutai is known as the largest and the most beautiful Kakedukuri architecture in Japan. Kiyomizu-dera is also famous for Cherry Blossom, especially the views of the illuminated trees at night are fabulous. Philosopher’s Walk At the base of Kyoto Higashiyama (East Mountain) and north of Kiyomizu-dera, there is a walkway, along the tiny stream from Nanzen-ji temple in the South to Ginkaku-ji Temple in the north. It was named “Philosopher’s Walk” after a story that says that some philosophers had been taking a contemplative walk here. The many cherry trees along the walkway make us feel that we walk in a Cherry Tunnel in spring. There are some typical Kyoto cafes dotted along the course that invite us to stop, look and relax for a while. Our point of arrival is Ginkakuji temple which hosts the beautiful Karesansui (Japanese Garden) with its waves and the moon viewing platform made only from sand. It is a symbolic temple of Japanese “Wabi and Sabi” (“Wabi and Sabi” are unique Japanese spirits based on traditional arts, such as the Japanese tea ceremony and the appreciation of simplicity – we avoid gaudiness!) Kinkaku-ji Temple If we start from Ginkaku-ji temple, it takes about a half an hour by bus. Kinkaku-ji temple is located in the North West of Kyoto city. The golden pavilion “Shari-den” is very famous. It was built in 1397, but burned down in 1950 and rebuilt afterwards to the original design. The elegant pavilion shows three types of architecture. The 1st floor is Shinden-Zukuri, the palace style. The 2nd floor is Buke-zukuri, the style of the Samurai house. The 3rd floor is Zen temple style. Both the 2nd and 3rd floors are covered with gold-leaf on Japanese lacquer. As the gold-leaf was peeled off and the base coat “Japanese
Newsletter EnginSoft Year 7 n°4 -
63
left the city to live a simple life there on the country. This is why we can still see and feel a lot of old Kyoto “flavor” in many places, also in the old and small temples, shrines, holiday houses and bamboo avenues. When you are tired after a day of sightseeing, you may want to relax and taste Tofu Kaiseki (Japanese cuisine) in the Japanese style restaurant overlooking Togetsu-kyo bridge.
Fig. 3 - Shari-den in Kinkaku-ji Temple
black lacquer” got depleted by UV, another restoration was completed in 1980’. For this restoration, fivefold gold-leaf (0.45•0.55µm) was used while the gold-leaf of 0.1µm is typically used. The total gold-leaf on Shari-den is 200000 sheets and 20kg. Also, 1.5 tons of Japanese lacquer have been used for the base coating. Ryoan-ji Temple Another world heritage Ryoan-ji temple is located in the North West of Kyoto city. It is famous for its Karesansui, the rock garden style. This simple yet remarkable garden measures 30 meters from the East to the West and 10 meters from the South to the North. The walls are made from clay boiled in oil. In the
If you visit Kyoto for the first time, I would recommend that you to spend 2 days to explore the above places. There are many other sights near them and it would be much fun to look out for Kyoto gifts and enjoy different food. Also, there is another spot that I recommend to visit on a short trip: the world heritage Byodo-in Temple in Uji. Uji is a half an hour south by train from Kyoto station, it is famous for high grade tea like Gyokuro and Maccha. Byodo-in Temple Byodo-in has a history of thousand years, it is relatively easy to discover because there are not many visitors usually. Although it is a very beautiful and unique place to visit, it is sometimes not on the tourists’ routes simply because it is in the southern area of Kyoto while most landmarks are located North of the city. The main hall called Phoenix Hall was designed in the image of heaven, visitors sometimes feel like floating on the pond in the garden. Its gorgeous views are very different from other temples. Phoenix Hall consists of 4 parts of the center hall and right, left and back transepts. We can see the Amitabha Tathagata Statue through the circle window in the front center of the main hall. The Byodo-in Phoenix hall has been drawn on the 10 Yen coin and the Phoenix displayed on the roof is shown on the 10,000 Yen banknote.
Fig. 4 - Rock garden in Ryoan-ji Temple
rectangular white sand garden, 15 stones are arranged by the rule of 5,2,3,2,3. There are several legends about this design, that it shows some tigers crossing a river or a scene of mountains and rivers in China. However, the truth is veiled in mystery. Still, this very simple rock garden is so calm and its imperial section shows the Japanese Zen spirit superbly. At Cherry Blossom time, we will be moved by the views on what appears like a painting of weeping cherry trees in the background of a peaceful garden. Arashiyama We can enjoy a beautiful scenery on a half-hour train journey from Ryoan-ji temple or also from Kyoto Station. Arashiyama is the famous spot for Cherry Blossom in the western part of Kyoto. Everybody in Japan loves the landscape of differentcolored mountain surfaces, the Katsura river and the delicate shape of Togetsu-kyo and of course, the famous traditional architectures. Many years ago, the aristocracies and litterateurs
Fig. 5 - Byodo-in Phoenix Hall
I lived near Kyoto during my college days and walked in the streets of Kyoto city very often. With this short article, I wanted to introduce to you some of the beautiful and famous sights that I would recommend to explore when you come to Kyoto for the first time. Other articles about Kyoto will appear in the Japan Columns of the next editions, they will tell you more about Japan’s cultural treasure house!
Akiko Kondoh Consultant for EnginSoft in Japan
64
- Newsletter EnginSoft Year 7 n°4
ESSS North America: the right Company for the Oil&Gas and Offshore Industry Jobs – ESSS & EnginSoft “Houstonventure” EnginSoft and ESSS both have their own individual history as highly innovative and successful organizations in virtual prototyping, process simulation and design/production process optimization. Additionally, both companies provide competencies in multidisciplinary engineering skills within their respective management and technical teams. Convinced that there is a fast growing market for Engineering Simulation today and that sharing and joining of experiences and competencies strengthen the ability to propose knowledge, ESSS and EnginSoft have given themselves a new challenge, relying both on EnginSoft’s 25 years of experience as a leading European CAE company and on ESSS’ 15 years expertise as computational modeling solution leader in South America for success of the proposed operation. In other words, there is the belief that a strong partnership between the two Companies could speed up and enhance the development of a joint project to promote the growth of the scenarios that both Companies already support in their own mother countries. Bearing in mind that ESSS’ primary mission has been to “close the existing gap between the knowledge acquired in research institutes and academia and its practical application to industry” and that this statement also deeply reflects the very founding principles of EnginSoft and the EnginSoft Network (that is, the ‘dissemination of knowledge’), it was almost ‘unavoidable’ that this shared vision made ESSS and EnginSoft ideal partners for furthering their expertise in CAE/VP technologies and competencies in the North American market. The idea of a partnership between EnginSoft and ESSS originated at the beginning of 2009, on the occasion of a TechNet Alliance (TNA) meeting. At that time, EnginSoft outlined its ‘EnginSoft Americas’ project (wherein Oil&Gas and Offshore Industry applications found a natural ‘place’ due to the experiences acquired along the years with leading Italian companies), while ESSS pointed out its interest specifically in promoting their Oil&Gas competencies in the United States, with primary operations in the Houston area. From this first shared vision of the Company’s founding step (established in the USA as ESSS North America Inc.) was, let me
say, so short that just 1.5 year after the initial discussions now the Company is a reality. Hence, the mission of the EnginSoft/ESSS joint operation is mainly focused on providing Oil&Gas and Offshore Industry Companies (in the Houston area) with Computer-Aided Engineering consulting services and customized software sales and training, through a highly-skilled professional team with expertise in Structural/Mechanical Design, Finite Element Analysis, Computational Fluid Dynamics, Multidisciplinary Optimization, Geology, Reservoir Engineering and Microstructural Characterization. In a nutshell, ESSS North America has the strategic objective of combining the service and product offerings where they can create attractive business propositions for its customers. The Company’s presence in the Houston area has been established and, by Q1 of 2011, the operations and activities corresponding to the “Company introductory phase”, will finally take off. Why Houston? Because of the city’s and area’s strategic location and core strengths which play a vital role in meeting the US national and global market demands. Our (parent companies and, hence, of ESSS North America) ‘core inspiration’ is driven by our wish to play a leading role in the pursuit of best performances and results. To that effect, we apply our ‘state of the art’ know-how of advanced technology applications, bearing in mind that our primary objective is to leverage this strength wherever there is an opportunity to convey our enhanced engineering innovation and performance to new markets. What we bring is our passion, as expressed through a joined team of highly talented and motivated engineers, analysts and designers. In addition, we bring the expertise, the potential of which lies in the diversity of knowledge that characterize our skills (it is just the case of saying that diversity is wealth). The only limitation is that you choose to believe upon it. But this is a challenge which EnginSoft and ESSS are willing to play.
Newsletter EnginSoft Year 7 n°4 -
65
EnginSoft al Kilometro Rosso Un nuovo partner di prestigio per Kilometro Rosso: arriva EnginSoft. Kilometro Rosso, secondo il Censis una delle 10 iniziative d’eccellenza per l’innovazione in Italia, si arricchisce di un nuovo partner di assoluto rilievo: è stato infatti siglato l’accordo per l’ingresso nel Parco Scientifico Tecnologico dell’unità produttiva bergamasca di “EnginSoft”. Kilometro Rosso è un Parco Scientifico Tecnologico che sorge lungo l’autostrada A4 alle porte di Bergamo: un luogo che ospita aziende, centri di ricerca, laboratori, attività di produzione high-tech e servizi all’innovazione. Ispirato alla multisettorialità ed alla interdisciplinarietà, è un campus che valorizza il dialogo tra cultura accademica, imprenditoriale e scientifica, la complementarietà e la specializzazione. Si contraddistingue quale “nodo di una rete di relazioni e connessioni”, che favorisce lo scambio di competenze, conoscenze, informazioni, know-how non solo tra i Partner insediati al proprio interno, ma tra questi ed il mondo esterno a livello locale, nazionale ed internazionale. Al suo interno operano aziende afferenti ai seguenti diversi cluster tecnologici: Alta Formazione, Biomedicale e Salute, Design-ProgettazionePrototipazione, Energia e Ambiente, I.C.T., Materiali Avanzati, Meccanica-Meccatronica, e Terziario Avanzato. EnginSoft è la 34a realtà ad insediarsi in Kilometro Rosso, che in questo modo supera ampiamente la quota dei 1.000 addetti (ricercatori, tecnici e personale altamente qualificato) nei diversi centri, imprese e laboratori già operativi. Kilometro Rosso diventa così, per dimensioni di occupati diretti, uno dei più importanti parchi scientifici tecnologici italiani, ma le prospettive di sviluppo sono ancora più ambiziose: tra 5-6 anni nel Parco opereranno non meno di 3.000 addetti e 50-60 saranno le realtà presenti al suo interno. Particolare soddisfazione è stata espressa dal Direttore Generale e Consigliere Delegato di Kilometro Rosso,
Mirano Sancin, nel commentare la sigla dell’accordo: “Enginsoft è stata una delle primissime realtà con cui siamo entrati in contatto sin dall’autunno 2003: da allora abbiamo collaborato su numerosi progetti di Ricerca&Sviluppo condivisi anche con realtà terze, abbiamo organizzato iniziative seminariali e congressuali, abbiamo partecipato assieme a numerose altre attività di sensibilizzazione culturale verso l’Innovazione. EnginSoft –sottolinea Sancin- ha seguito con noi un percorso che ha visto anche la loro adesione al Consorzio di Meccatronica
“Intellimech”, altro fiore all’occhiello di Kilometro Rosso. L’insediamento di questa prestigiosa realtà nelle nostre strutture è il coronamento di questo percorso, ma anche un’ulteriore opportunità per Enginsoft di proseguire sulla strada del successo e del potenziamento ed un importante e concreto riconoscimento di Kilometro Rosso quale Polo di eccellenza nel contesto nazionale”. Dal canto suo Stefano Odorizzi, Presidente di EnginSoft, ha commentato: “Il nostro obiettivo è diffondere l’utilizzo dell’engineering simulation tramite un approccio multidisciplinare, che coniughi la necessità di innovazione con la valorizzazione del patrimonio di conoscenze e con l’esigenza di trasferire tecnologie e know how: la nostra scelta di entrare nel Parco Scientifico e Tecnologico Kilometro Rosso costituisce un ulteriore passo in questa direzione, che ci apre nuove opportunità di collaborazione e di crescita”. www.enginsoft.it www.kilometrorosso.com
66
- Newsletter EnginSoft Year 7 n°4
EnginSoft Event Calendar ITALY EnginSoft is pleased to announce the next Seminars and Webinars. For more information on the next 2011 events, please contact: eventi@enginsoft.it SWEDEN 2011 Training Courses on modeFRONTIER - Drive your designs from good to GREAT. EnginSoft Nordic offices in Lund, Sweden. The Training Courses are focused on optimization, both multi- and single-objective, process automation and interpretation of results. Participants will learn different optimization strategies in order to complete a project within a specified time and simulation budget. Other topics, such as design of experiments, metamodeling and robust design are introduced as well. The two day training consists of a mix of theoretical sessions and workshops: 10-11 January, 1-2 February, 2-3 March, 7-8 April, 2-3 May, 7-8 June, 11-12 August, 5-6 September, 4-5 October, 2-3 November, 1-2 December. For more information and to register, please contact EnginSoft Nordic, info@enginsoft.se UK The workshops are designed to give delegates a good appreciation of the functionality, application and benefits of modeFRONTIER. The workshops include an informal blend of presentation plus ‘hands-on’ examples with the objective of enabling delegates to be confident to evaluate modeFRONTIER for their applications using a trial license at no cost. modeFRONTIER Workshops at Warwick Digital Lab 10.00 to 15:30 at the International Digital Laboratory, University of Warwick: 10 March, 12 May, 20 July, 14 September, 22 November.
FRANCE EnginSoft France 2011 Journées porte ouverte dans nos locaux à Paris et dans d’autres villes de France, en collaboration avec nos partenaires. Prochaine événement: Journées de présentation modeFRONTIER Pour plus d'information visitez: www.enginsoft-fr.com, contactez: info.fr@enginsoft.com GERMANY Please stay tuned to www.enginsoft-de.com Contact info.de@enginsoft.com for more information. modeFRONTIER Seminars 2011. EnginSoft GmbH, Frankfurt am Main. Attend our regular Webinars and Seminars to learn more on how design optimization with modeFRONTIER can enhance your product development processes. Seminars Process Product Integration. EnginSoft GmbH, Frankfurt am Main. How to innovate and improve your production processes. Seminars hosted by EnginSoft Germany and EnginSoft Italy. TechNet Alliance Fall Meeting 2010 The recent TechNet Alliance Fall Meeting which was held on 5th and 6th November at the Pullman Aachen Quellenhof, welcomed over 80 Members of the Alliance and invited guests to a most interesting program of presentations and discussions about CAE. CADFEM GmbH presented “Electro-thermal simulation for EV/HEV applications”, a captivating future-oriented topic which we are proud to feature in this Newsletter. EnginSoft S.p.A. used the Meeting as an opportunity to inform the audience of their expertise and services in the area of simulation of Metal Processing.
Training Days at International Digital Lab, Warwick University 18-19 May, 6-7 September.
About the TechNet Alliance: The TechNet Alliance is a unique consortium in the Computer Aided Engineering (CAE) or Simulation Based Engineering Sciences industry. It is comprised of a large network of engineering solution providers- dedicated to the application, development, training, support and marketing of CAE bestof-class software.
For more information and to register, please visit www.enginsoft-uk.com. Contact: Bipin Patel, info@enginsoft.com
For more information, please visit: www.technet-alliance.com or contact: Schuhegger, kschuhegger@cadfem.de
modeFRONTIER Workshops with InfoWorks CS at Warwick Digital Lab. 10.00 to 15:30 at the International Digital Laboratory, University of Warwick 8 February, 26 May, 9 November. Please register for free on www.enginsoft-uk.com
Mrs
Kristin
Newsletter EnginSoft Year 7 n°4 -
SPAIN Programa de cursos de modeFRONTIER and other local events. Please contact our partner, APERIO Tecnología: info@aperiotec.es. Stay tuned to: www.aperiotec.es 5-8 June - IDDRG 2011 International Conference. Bilbao (País Vasco). This year, apart from the stamping, materials characterization, numerical simulation, tooling and UHSS subjects normally covered, the IDDRG conference organizers would like to frame the conference considering a global concern, which is currently a target not only for industry but also for consumers, political leaders and business managers: Sustainability. For more information, please visit: http://www.iddrg2011.eu/ GREECE 9 May - 5th PhilonNet CAE Conference. Athens If you would like to present your work with ANSYS (including CFX, Fluent and Ansoft products), ANYBODY, DIFFPACK, ESACOMP, eta/DYNAFORM, eta/VPG, FLOWMASTER, FTI, LS-DYNA, modeFRONTIER, MOLDFLOW, SIMPLEWARE or ADVANTEDGE please send your abstract to: info@philonnet.gr. For more information, please visit: www.philonnet.gr USA 1 February - Optimization Day. Stanford University. An invitation-only Forum to Discuss New Research Directions and Industrial Applications. Organized by Enginsoft and the TFSA Program. Optimization Has Become an Indispensable Instrument in Engineering Practice, and Commercial Packages have Achieved Wide Popularity. Applications range from Rapid Product Development to Web searching, from Sophisticated Multidisciplinary Analysis to Robust Design Under Uncertainty. What are the Remaining Barriers for Optimization Algorithms? How are Present Computational Resources Changing the Paradigm of Engineering Design? Are Current Optimization Methods Sufficient to Drive Decision- Making? Presentation by Recognized Leaders in the Field will Provide an Opportunity to Discuss the Opportunities and Frontiers of Optimization Technology for Real-World Applications EUROPE, VARIOUS LOCATIONS modeFRONTIER Academic Training Please note: These Courses are for Academic users only. The Courses provide Academic Specialists with the fastest route to being fully proficient and productive in the use of modeFRONTIER for their research activities. The courses combine modeFRONTIER Fundamentals and Advanced Optimization Techniques. For more information, please contact Rita Podzuna, r.podzuna@enginsoft.it To meet with EnginSoft at any of the above events, please contact us at: info@enginsoft.com
67
SEMINARIO: Integrare Strumenti e Metodi di Progettazione e Simulazione Un grande successo per l’incontro organizzato il 23 novembre scorso presso lo Sheraton Hotel in Roma Commenti positivi e soddisfazione generale per il seminario proposto e organizzato da EnginSoft in collaborazione e sotto l’egida dell’AIAD il 23 novembre 2010 presso lo Sheraton Golf Parco de' Medici Hotel & Resort in Roma, evento che ha richiamato l’attenzione di numerosi partecipanti e ha riunito rappresentanti di molte realtà aziendali che da anni utilizzano la simulazione in ambito aerospaziale. Integrare Strumenti e Metodi di Progettazione e Simulazione, questo il titolo del Seminario, è un tema di grande attualità sia per chi opera a livello tecnico nell'industria, sia per chi ha responsabilità manageriali ed organizzative. L'attuale era industriale del settore aerospaziale è vibrante di nuove opportunità sia tecnologiche che commerciali alla luce del particolare momento dell’economia mondiale.
In tale contesto economico-finanziario, il successo delle aziende del settore può essere fortemente influenzato dai cambiamenti che sapranno mettere in atto in relazione alle loro metodologie progettuali, ad esempio arricchendo le proprie soluzioni di design in funzione di specifiche tecnologiche afferenti a tematiche diversificate (meccaniche, elettroniche, termiche, aerodinamiche e di processo), così da riuscire a interpretare correttamente le diverse richieste del mercato. Scopo dell’incontro era dunque evidenziare l’importanza e la declinazione delle opportunità offerte dalla simulazione virtuale, in funzione delle esigenze di un mercato moderno e sempre più competitivo. A dimostrazione di quanto sopra, EnginSoft ha voluto portare in campo la propria esperienza e competenza, mettendo a disposizione dei partecipanti un bagaglio di conoscenze acquisito negli anni, attraverso l’utilizzo delle tecnologie più avanzate nella quotidianità dei compiti aziendali. Il seminario, che ha riguardato alcune applicazioni in ambito strutturale, elettronico, fluidodinamico e per il design di sistemi con applicazioni di modeFRONTIER®, ha visto relatori e ingegneri specializzati EnginSoft che si sono alternati durante l’evento per proporre e illustrare attraverso casi applicativi alcuni esempi in ambito aerospaziale con modelli specifici nell’uso dei metodi di simulazione applicati ad ambiti multidisciplinari. Gli esempi illustrati hanno fatto riferimento a significative esperienze tra cui quella Aerosekur. Il confronto è stato un successo, così proficuo e vitale tanto che EnginSoft si ripropone di organizzare in futuro un nuovo incontro sul tema Aerospace.
Training Center EnginSoft
NUOVO LIBRETTO - NEW PUBBLICATION
CORSI DI ADDESTRAMENTO SOFTWARE 2011 SOFTWARE TRAINING COURSES 2011 EnginSoft è la società italiana di maggior consistenza e tradizione nel settore del CAE ove, grazie alla multidisciplinarietà delle competenze, è in grado di proporsi come partner unico per le aziende. L'attività di formazione rappresenta da sempre uno dei tre maggiori obiettivi di EnginSoft accanto alla distribuzione ed assistenza del software ed ai servizi di consulenza e progettazione. Per ciascuno dei possibili livelli cui la richiesta di formazione può porsi (quella del progettista, dello specialista o del responsabile di progettazione), EnginSoft mette a disposizione la propria esperienza per accelerare i tempi del completo apprendimento degli strumenti necessari con una gamma completa di corsi differenziati sia per livello (di base o specialistico), che per profilo professionale dei destinatari (progettisti, neofiti od analisti esperti). La finalità è sempre di tipo pratico: condurre rapidamente all'utilizzo corretto del codice, sviluppando nell'utente la capacità di gestire analisi complesse attraverso l'uso consapevole del codice di calcolo. Per questo motivo ogni corso è diviso in sessioni dedicate alla presentazione degli argomenti teorici alternate a sessioni 'hands on', in cui i partecipanti sono invitati ad utilizzare attivamente il codice di calcolo eseguendo applicazioni guidate od abbozzando, con i suggerimenti del trainer, soluzioni per i problemi di proprio interesse e discutendone impostazioni e risultati. Anche per il 2011 EnginSoft propone una serie completa di corsi che coprono le necessità di formazione all'uso dei diversi software commercializzati. Le novità proposte confermano che l'idea che EnginSoft ha della formazione non è una realtà statica che si ripropone uguale a se stessa di anno in anno, ma è un divenire, guidato dall'esperienza accumulata negli anni, dall'evoluzione del software e dalle esigenze delle società che si affidano a noi per la formazione del proprio personale. In tale contesto EnginSoft organizza e sviluppa anche attività didattiche attraverso un programma formativo personalizzato, soluzioni di Corsi su Misura progettati in relazione alle necessità e alle specifiche esigenze aziendali del committente. L'offerta dei corsi ANSYS si adegua all'evoluzione del software ed alle caratteristiche della recentissima versione 13: • in campo elettromagnetico vengono introdotti tre corsi specifici: ANSOFT MAXWELL 2D, ANSOFT MAXWELL 3D e ANSOFT SIMPLORER; • in campo fluidodinamico è da rimarcare l'introduzione, accanto ai corsi tradizionalmente erogati, del corso ANSYS ICEPAK e di corsi specifici per il solutore SCULPTOR.
Sono stati inoltre rivisti ed aggiornati i corsi relativi a tutti gli altri software sostenuti da EnginSoft per adeguarli allo stato attuale delle relative distribuzioni. Si segnala infine l'introduzione del nuovo corso SCILAB aperto a tutti coloro che intendono avvicinarsi ad uno strumento open source per la risoluzione di problemi di simulazione numerica ad ampio raggio. Dal punto di vista organizzativo nel 2011 tutte le cinque sedi EnginSoft saranno impegnate nella formazione, dando la possibilità agli utenti di scegliere la location a loro più conveniente in termini di vicinanza geografica alla propria società. Tutto questo a riprova dell'impegno nella formazione che, per EnginSoft, è e rimane un punto fondamentale della politica aziendale, un impegno costante verso l'eccellenza, un servizio per fare crescere i suoi clienti e, se lo desiderano, crescere con loro.
www.enginsoft.it/corsi
Key partner in Design Process Innovation