Jan Rabaey at Nano-Tera 2015

Page 1

& (3 ($ % $($5 # & / $!$ #

- )$#' # $" . "%! '

# 4 /

# , &' (/ $ ! $&# 6 & ! /

#$( & ##+ ! )# 2 / : 978:


#&'2$ % &+* * ) ( ) ')% * ( )+ ' + )# $ 3: &+ ) ') 0) $ & !& )!& & )'*+ * * ; < * 2 $$ * + + ) + &+ )9 *0((')+ ' + $! ')&! !* '1 )3 ()' ) %7 7 & + % % ) '%( &! * ' & 2 )% !* ) +$3 (() ! + 9

'&+)! 0+')*8 $ $'&7 '* )% & 7 2 ) & 7 ' &! +7

3*+ %* '& &'* $

& ')% ,'& )! *

! $ ) !47 9 $ & 7 9 & 0$37 & ##'& &7 " & )#'1! 7 !%'& % !&!7 !##3 0$$ )7 ! $ )#7 1! &7 !$$ ! )% &7 & )7 + ) ' '2!+* 7 '&! "')&!& &7 & !7 *0& : !07 9 #*!%'1! 7 9 )+) & 7 )0&' $* 0* &7 &. & )1 7 !& : & 0 & 7 * # & ')& 7 !$!( '& 7 0 *!* !+) 7 ** & $*7 1 & )% 7 ) * &



1

Energy (norm.)

12x

0.1

0.01

0.3V

0.001 0

0.2 0.4 0.6 0.8 VDD (V)

# $

1

1.2



0 )- # ! ) ' , ) 2 3 )! )!" ! 1

" )! " ) (

& " " ! $

!" & "&

4 / ). 977;5

!

4 / . . 978:5


# % # !

& " ()'

$


# ! " ) # + ,

- #' ( & .

! #* !

  /   # ' & #* ! & #&

' &

#&


# ) ! " 1 # # ! 2

Antenna Load (LED)

Impedance Matcher Voltage Doubler

3 &!# "). / ! "4

0 ! ) !' "# ! 3 / !"- 4

! ! ! ( #! "

  & #&! ) " ! $   !) ! ! & $ ". " " - ! )0 !' "$ "# ! - !)- ! "" & $

". - ! #)-

3 &!# "). / ! "- / ! *4


E W T A H W T I S I N V O E I R T A O T T U P M O NEED C Y B N A E M




2-3 orders more efficient than today’s silicon equivalent (>1016 FLOPS with ~20 W) Robustness in presence of component failure and variations   Neural response is highly variable (Ďƒ/Îźâ‰ˆ1) [Faisal]

Amazing performance with mediocre components   E.g. sensory pathways– auditory, olfactory, vision,

!



& ' "

$ # # # ( $ # % ,*+-)


! # # % ! " #& # # " "&"# " $ " ' ! #! " ## ! "$

"#


Physical Interface Platforms across Scale and Modality

#! " ! # 1 ! . # & ! & #

. ! *

( #! # "

1 ! & # !) !# ( # ! ' #" . . ! *

# ! ' #" . & !

. ! *

ÎźECoG+BMI Peter Ledochowitsch / Aaron Koralek

Carmena / Maharbiz

" !$ ! $ " ! & #! / # #! " "

" #) ( #! "- #! 0 $

" . ! *

)" * !

. ! *


Free-floating wireless AP acquisition electrodes [Biederman, Yeager, VLSI12]

Spike Detection

Asynchronous 250 nW/ channel spike-sorting [Liu, VLSI12]

Preamble Buffer Feature Extraction

Spike Alignment

Register Bank Memory

"!#

64 channel remotely powered wireless uECoG [Muller, Le, Ledoschowicz, Li]


! %#$&"

! %#$&"


! % &(' μ

[DJ Seo et al, Arxiv, June 2013]

  $  


$ % & Voltage (mV)

20

Input Input Reconstructed

0

-20

-40

200

400

600

800

1000 1200 1400 1600 1800 2000 i d

20

0

-20

Slow conducting peaks

-40 50

' # )*(

100

150

200

250

300


#

& ! & ! ' ' ( ' ) ( ! )

! # )

( ")


$

!

! % !



! % ! ) ! •  $ ! % –  " % ! % –  % " ( ) (

" –  ( # ! ( ) "

•  # ! ) % –  ! ! " % ! % *, + –  # % ! –  ! " %

" % !


"

"

"

"

Functional non-determinism present in most applications related to human-cyber interfaces feature extraction, classification, synthesis, recognition, decision making, learning,


$ " $ ,

02/

! ( 0 0/+0// *

! # 0 1

# $ - $( ) ' .


"

!

!


Sparse Representation

Storage Recognition

Energy-efficient Analog Adaptive Front End

CNFET+RRAM Sparse Vector Generator

Correlation Matrix Memory

" !

!

Choose the right information representation that   makes computation easy, efficient and robust   matches the platform!

Recognition

Feature Extraction

Sensor Responses


$ & %

• 

& • 

"

! #


! Trainer Training Data

Model

‘WEAK’ Linear Classifier 1 Weight 1 Sensor Data

Weighted Voter

‘WEAK’ Linear Classifier 2 Weight 2

SENSOR ARRAY Projector

Weak TFT classifier branches on glass

MB-

1cm

8x8cm photoconductor plane on glass

0.8

tn

0.7

tp

0.6 0.5 0.4

(measured)

1

2

3

4

5

6

No. of weak classifiers

MSMB+ GND

0.9

0.3

THIN-FILM CLASSIFIER

MS+

Rates (tp & tn)

Weak classifier fault due to circuit non-idealities

SVM tp tn

1 ‘STRONG’ Classification Result

DAQ SYSTEM / PC

2-5 weak classifiers based on highly non-ideal (TFT) multipliers achieve performance of ideal SVM

Probe card for testing

" #


" (

#

* +10 $ ,

j i

K ij

  #

  ! * M

∂θi ∂t

= ω i + ∑ K ij sin(θ j − θ i ) j=1

- #( ) ' .


" # * , $ + •  ! " ( ! $ $ • 

% - )


     


& + ' 0 1 ! ! % - # . 09 54*4441 $

  & ' #   # ' ! ! * $   # #

80

70

50

40

30

20

10

0 0

854444 85444 8544 854

60

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

$ /

  % # ! & ' $ # 6

2 + , $ * # ! #! # ! % / * 64473

1


' 1 "& ( ' , " ( % 76 % 6555 ! 1 % $ (

/ -0

%! !

'

' 65+555 ! & !

0

"& (

"& (

76+555 65+555 & ! ! "& (

" % ! % :8-9= "

2 % ! (, - & + 3

% ( ! + % + .


Learning

(Correlation)

Retrieval (Projection)

(Thresholding)


# ! ! ( & " '

  $ )   & , # ! )   - . *

# %

# # - # .

% *

37+54

/ 42360

# $


% CNFET RRAM

* +

# * +

22 100 Îźm Delay Cell

CNFETs

RRAM /

ILV

Target / > 1 5

0

Measured CNFET Ďƒ/Îź = 0.57 6

8

10 10 RRAM ( )

Delay Cell Coincidence Detector

RRAM ILVs

$ &

, $ ) .0-

100 Îźm

  / ! 1 &   1 &


! $ !

+ ' * !

$

3.5

3

2.5

2

1.5

1

0.5

0 0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

% &

ZN=0

ZN=1

Distribution

Up3Dn1

w/o IOFF with I OFF w/o IOFF with w/o

IOFF IOFF IOFF

with

Up3Dn2

Up1Dn1

VX (V)


% " ! " " !

! &

! &


% " $ '

'

! ' " ! #& " ! ! *()+"


, )   , , $ # ! -  !  

 

 

* " + * " + -  $ $ " ' " $ ( # " * , + " $


!


! U O Y K N A H T MER

CI B

EAU C

OUP !


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.