Explosives today series 4 no 5

Page 1

Explosives Today - Series 4, No 5

% of maximum potential movement

100

50

0 0

3

5

8

10 Delay (ms/m)

13

15

18

20

Figure 8 Conceptual effect of delay period on ground movement for Intra-row and Inter-row delay

Given any combination with the above factors, the blast layout has a critical effect on the success of the cast blasting. We now look at those parameters which can be varied with relative ease and which therefore provide the most convenient means for optimising results. The key principles for maximising throw are: • Ensuring freedom of movement of the face, • Providing adequate energy • Ensuring the holes in each row fire as close to simultaneously as possible • Providing sufficient timing between these rows to achieve proper relief of burden These can be implemented by attention to: • Blast Layout o Block staking (Hole coordinates) • Explosive energy • Back filling of holes • Timing between front holes • Timing between rows of holes • Angle of holes to bench • Stemming • Priming position

Blast layout The drilling pattern is described by the burden and spacing of the blastholes which, together with the explosive density and the hole diameter, determine the powder factor of the blast. While it is usually possible to increase the percentage of rock cast without changing powder factor at all, conversion to optimised cast blasting normally involves an increase of between 15 and 50% in explosives consumption. – Drilled burden For a given rock, hole diameter and explosive, face velocity is primarily determined by the burden, that is the distance from the blasthole to a free, unrestricted face. Figure 6, generated using SABREX shows a typical Velocity – Burden curve for 251mm holes in a 28GPa medium strength unjointed Sandstone, using oxygen-balanced ANFO at a density of 0.8 and maintaining a constant powder factor. Because face velocity is directly influenced by powder factor, the drilling spacing has been varied in this graph to maintain a constant powder factor for the range of burdens shown. The graph shows

clearly that smaller burdens result in higher face velocities even at the same powder factor. The first row of holes is where the success of a cast blast is normally determined: if movement here is restricted it holds back the entire bench. The normal problem encountered is that of maintaining the design burden at the toes of these holes. Pre-splitting is the only technique by which to achieve consistent burdens in the front row, but even with this it can be difficult to ensure that correct burdens are maintained (Figure 7). Backbreak at the crest misleads drillers into collaring the holes too far back, while accumulations of overburden at the bottom, which look minimal from a distance, combine to severely hamper the development of full velocity at the toe. A degree of paranoia, both about the collaring of the first row of holes and the quality of the entire split face, is therefore well justified. It is also essential to ensure that there is no loose muck lying against the face, as this has a severe damping effect on movement. On the other hand, inadequate burdens in the front row result in blow outs at the face, releasing pressure before much


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Explosives today series 4 no 5 by AEL Mining Services - Issuu