Autumn Dances

Page 1

Commissioned by the Michigan Music Teachers Association

- Autumn Dances for Flute and Percussion (2010)

Eric Guinivan (b. 1984)

Duration: 8 minutes


- Autumn Dances Instrumentation / Notation Flute Percussion 3 Piccolo Woodblocks 5 Wooden Planks 7 Singing Bowls

Notes • X-shaped noteheads in the flute part indicate a "chiff" sound made by forcefully blowing over the mouthpiece. • The duration of each feathered-beam accelerando is indicated by a bracketed note above or below the beams. • The accidentals and indicate quarter flat and quarter sharp, respectively, in the context of flute pitch bends. • Flute trills should be executed alternation between alternate fingerings for the given note. • X-shaped noteheads in the percussion part indicate the dampening of a singing bowl on the beat where written.

Mallets Required: One singing bowl mallet, one soft yarn mallet, and two hard yarn mallets

• The stem indication indicates rubbing the singing bowl to produce the note, while all other notes are struck.


Commissioned by the Michigan Music Teachers Association

- Autumn Dances Meditative, q = 60 ca.

  

Flute

         

     

f

n

Eric Guinivan                     fp f

(2010)  p

f

p 3

3            f

                               3                                 [h] p [ ]

7

f

f fp

12     ff

  

p

Singing Bowls Bowl mallet (–B)

n

p

[ h. ]

     

p



           pp

p

     

Soft yarn mallet (–S)

f

q

    

p

 –B

   p

    

      f

p

f

                        



f

 



p fp

f

 

f

p

  –S

 

f

n

 



mf

f

     

Wood Blocks Hard yarn mallet (–H)

 –S

–B

      

p

f

f



 


17

 

 

     20                         [ h. ]

f

  

p

p

f

  

 

–S

  f

 

p

   

 

f

 

p

 

p

f

   

3

    [h ]   

–H

  

ff



 

    

mf

       

 f

 

p f

     

 

p

   

pp f

 

f

           22                               [q ]

p

2

p

ff

p

                 

  

   

3

f

  

p

      

  

f

 f

f

p

 

   

   

      f

    p

[h]

 

pp

 

f

    

 

mf

p

 f

  p


28 Moving Forward, q = 120 ca.                  [h]

27

   p

f

[q ]    



p

pp

mf

  

p

 

               

 

p

ppp

 

 

 

 

–H

          p

                

                                                                                                p mf mf                                                  33

p

mf

  40              

39

p

  

    

 

                                                       

Wood Planks

 p

mf

 

   

 

 

   

  

f





 

 

mf

3


                                                               

43

 

p

 

 

   

 





 



    

 



 

 

     

 



p

  poco accel.                                                                               

46

p

f

   

 

   

mf

4

 

   

 

 

 



 

       

 

mf



   p

  

  

   

 


molto accel.                                                 49                                                            f

    

Wood Blocks



Wood Planks

    

 

   

    



  

f

  

 

p



  

   p

  

 

 

 

     

                52 Suddenly Fast, q = 144                                                                                        ff                                     

  f

     

f

 

  5


56

 

        



 

sffz

   

     

 

   

            

q=e

 

  

    

ff

                                     

ff

  

 

f

poco

 

   

 

 

 

 

 

   

 

60    p

 

 

p

n

  

 

 

 

 

 

     

 

fp

p

f

ppp

sfz

q=e

  

 

Wood Blocks

   

f

                                        p

6

        mf

p

 

l.v.   f


      

     

64

fp

f

  

p

68

 

 

ff

p

      

    

 

ff

    

 

               



3



p

mf

[ h. ]

 

f p

ff

[ h. ]

p

   



                      p

f

                  l.v.                          

                    poco accel

mf

[ h. ]

 

f

f

f

p

f

                                     f

                             

   f

                  p

7


71 Bright, q = 132   (continue previous accel)                70                                    [w]

f

f

                 mf 73

 

 

 

 8

     

 

 





 



 

 



       

 

ff sfz

     p



mf sempre

 

p

     

 

f

mf

  

  f

p

 

 

                      mf

p

ff sfz

f

f



f  

  

                                            

f

       

 

 

f

ff

  

 

6

6

 

6

  f

 mf

 

 



 

      ff sfz

 

   


              77                    p

f

           p



   

f



      

 82

    



 



p

ff

      



                                 mf

f

 

 

6          mf 6 6    



f

  

    



  

 



p ff

ff

   

 

p

 



 

 

  

mf

                                              

f

p

    



sfz

 

  

p

sfz

 

ff



       

   sfz



p ff

p

ff

f

p

 



   6              6      f



 

p ff

     

9


       86              

p ff

p

      

ff

f

p

     

89                                               

  

   10

 

 

       90                            

 

 

   6   

    

  

 

ff

 

              3

 

  



  

                                                     

                

  

f

p

   

 

6



ff

f

      

 

3

3

 

 

     

 

 

    




95

 

 

   

                                                                                                    

 

f

 

             



3



             

ff 3

3

3

 

 

 

 



                      ff 3

  

 

  

 

100                                                                         p

mf

  

      p

    

p

p

 

 

   



 

n

  

  

   p



 

     

   

  n

  11


                                                                          

105

f

p

  

 

 

 

     p

 

 

     

  

     

 

 

 

 

p

n

 

     

     p 

 

p

n

 

    

 

n

 

pp

                                                                       

110

f

p

  

 

 

 

   

   

mf

p

12

p

f

 

 

          mf

p

   p

n

    p

  n

 

  

 

    p

 

p

n

 

n

 


                                                                    

115

f

p

f

  

 

 

 

 

 

p

 

 

     p

                             p

f

f

  n p

   

 

n p

n

 

 

   

 

mp

mf

n

  n

 

p

124                                 121                      p

ff

f

 

  

 

 

 

 

ff

  

                         f mf

   





f



ff

  13


                                   125                                                                

 

   

 

 

  

    

  



p

ff 

  

 

       

   

 

p

ff

 



 

f

                                                               130                                                            

 

f

14

 

 



      

 

    



  

      

 

 

 

  

3

    

    

   


                                                                          134            

         

   

    

    

                                

ff

ff

 

 

 

      3

 

 

  3

  

f

 138  

fff

 

139              q =q.                                            f                      p mf mf              3

    

3

   

     p

(dampen with forearm)

 

     



                                

 

mf

mf

p

 15


                                                               f ff                                       142

  

p



4

f



 



                                

 

 

  

p

       f

                                                                                                                 

146

ff

  

  f

 

 

16

f



    

  p

f

         

 

 

f

     

     4







   

p



         f






              150                                                                 ff

          

 



153

 

        





p

4

               f



              



 4

  

 

    

p







   f

           p





          



 

     

4

f



                



              

f

ff

       



 

  

f

        2

 f



    2

           4





4            4     

p 4



f

2

  

p



f 4

  17


157

 

     

       

 

4







 

            

 

         18

p4

 

 f 2



160

f

ff

      p

 

         

 

 



   

p

 

4

                                    

p

 

f





    

 



p

     

f

ff

2

f

 

f

2

        4



2

                                             

f



     

4

     

   

4

4

4



f







    



4

        

ff

   

    

4

  

4

4

    

4




                                                             

163



 

166

 

  

    

   

      

4

4

4

4

4

4

4

                             





4

 

  

  

4

4

l.v. sim.

 



4

4

                                

cresc. poco a poco

 

  

 

 

4

cresc. poco a poco

4

       

 

 4

4

4



4

4

4



 

  

4

4

 

  

4

4



19


170 q. = q                             169      

172

4

4

 

  

  

 

ff

    

  

   

 20

 

 

  



 

    

   

    

ff

4

         



   

f





    

                                                             

     

4

 

 

f

f

ff

  

  

 

   



   

 

                 

 

 

 

 

 

       

   

 

 

  


178

 

   

  

   

 

   

 

                 

         

    

  



 p



 



 

 

 

             

 

 

 

 

 

 

185                





 

                           

mf

 

accel.

   

 

   

 

183

 

 



 

poco accel.

   

 

   

   

    

 

 

Freely, q = 60 ca.  

p

ff

 f

6

 

f

 

 

 

ff

mf

  



 

     

 

 

ff

6

      6

 



6

   

 

     

6

 

6

   

 21


187

 

    

 

 

fp

22

ff

 

189 Bright, q = 144                                           

rit.

6

  

    6

11

      

     fp

     

fff

   

 

p

     



          

ff

(dampen with forearm)

fff

mf

   August 30, 2010 Los Angeles, California


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.