Elastic Settlement of Shallow Foundations on Granular Soil—A Critical Review

Page 1

Diapositiva 1

___________________________________

ELASTIC SETTLEMENT OF SHALLOW FOUNDATIONS ON GRANULAR SOIL— A CRITICAL REVIEW BRAJA M. DAS

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________

Diapositiva 2

___________________________________ Settlement, S

___________________________________ • Elastic settlement, Se

• Consolidation settlement

___________________________________

• Primary, Sp • Secondary, Ss S = Se + Sp + Ss

___________________________________ ___________________________________ ___________________________________ ___________________________________


Diapositiva 3

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________

Diapositiva 4

In his landmark paper in 1927 entitled The Science of Foundations, Karl Terzaghi wrote: “Foundation problems, throughout, are of such character that a strictly theoretical mathematical treatment will always be impossible. The only way to handle them efficiently consists of finding out, first, what has happened on preceding jobs of a similar character; next, the kind of soil on which the operations were performed; and, finally, why the operations have led to certain results. By systematically accumulating such knowledge, the empirical data being well defined by the results of adequate soil investigations, foundation engineering could be developed into a semi-empirical science. . . .” “The bulk of the work—the systematic accumulation of empirical data—remains to be done.”

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________


Diapositiva 5

___________________________________ To evaluate the current state of the art for settlement predictions of shallow foundations in sand, in an attempt to promote the use of shallow foundations.  A FHWA initiative 1. 2. 3. 4.

Federal Highway Administration (FHWA) Texas A & M University Geotest Engineering American Society of Civil Engineers (ASCE)

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________

Diapositiva 6

___________________________________ Texas A&M University National Geotech Experiment Site Approximately 12m  28m

5 Square Footings:

1m  1m 1.5m  1.5 m 2.5m  2.5m 3m  3m (North) 3m  3m (South)

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________


Diapositiva 7

PROBLEM:  Predict the load at 25 mm settlement In Situ Test Summary Bore hole shear test  3 Cross hole test  4 Cone penetration test  7 Dilatometer test  4 Pressuremeter test  4 Step blade test  1 Standard penetration test  6

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________

Diapositiva 8

___________________________________ Number of participants:  31 15 consultants 16 academics  Israel – 1

 Brazil – 1

 Japan – 1

 France – 1

 Canada – 2

 Italy – 1

 Hong Kong – 1

 Australia – 2

 USA – 21

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________


Diapositiva 9

Methods Used for Settlement Prediction

22 different methods Schmertmann (1970, 1978), Burland and Burbidge (1985) and FEM being popular Alpan (3 times) Bowles (4) Buisman, DeBeer (3) Burland & Burbidge (9) Canada Found. Manual (1) D’Appolonia (4) DeBeer (1) Decourt (1) FEM (1) Hanson (1) Leonard & Frost (4)

Menard/Briaud (5) Meyerhof (4) NAVFAC (4) Oweis (4) Parry (1) Peck (2) Robertson & Campanella (1) Schmertmann (18) Schulze & Sherif (3) Terzaghi & Peck (5) Vesic (6)

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________

Diapositiva 10

___________________________________ Predicted vs. Measured Values of Q25

___________________________________ Footing (m) Item

11

1.51.5

2.52.5

33

33

Prediction range (kN)

591100

1162950

2954271

4075600

4156400

Measured

850

1500

3600

4500

5200

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________


Diapositiva 11

___________________________________ Elastic Settlement, Se Existing methods for predicting settlement may be grouped into three categories: A — Methods in which observed settlement of structures are linked to in situ test results (standard penetration test, cone penetration test, Pressuremeter tests) B — Semi-empirical method C — Use of theory of elasticity and modulus of elasticity, Es

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________

Diapositiva 12

___________________________________ CATEGORY A

___________________________________  

  

Terzaghi and Peck (1948, 1967) Meyerhof (1956, 1965) DeBeer and Martens (1957) Hough (1969) Peck and Bazaraa (1969) Burland and Burbidge (1985)

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________


Diapositiva 13

___________________________________ Terzaghi and Peck (1948, 1967) Se 4  Se(1)   B1  2 1   B  Se = settlement of prototype foundation measuring BB

Se(1) = settlement of a test plate measuring B1B1 

B1 is usually of the order of 0.3m to 1m 

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________

Diapositiva 14

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________


Diapositiva 15

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________

Diapositiva 16

Terzaghi and Peck (1948, 1967)

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________


Diapositiva 17

___________________________________ 2

3q  B  Se  CW CD   N60  B  0.3 

___________________________________

where q is in kN/m²; B is in m; S is in mm CW = ground water table correction = 1 if depth of water table is greater than 2B below foundation = 2 if depth of water table is less than or equal to B CD = correction for depth of embedment = 1 – (Df /4B )

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________

Diapositiva 18

___________________________________ Sivakugan, Eckersley and Li (1998) analyzed 79 settlement records of foundations provided by Jeypalan and Boehm (1986) and Papadopoulos (1992).

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________


Diapositiva 19

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________

Diapositiva 20

___________________________________

2

Se B   4  Se(1)  B  0.3  2  B   1  Se     B  0.3  4  Se(1) 

___________________________________ 2

3q  B    N60  B  0.3 

___________________________________

3q 1  Se    Se  N60 4  Se(1)  q N  60 Se(1) 0.75

___________________________________

Se 

___________________________________ ___________________________________ ___________________________________


Diapositiva 21

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________

Diapositiva 22

Meyerhof  2q(kN/m2 ) (B  1.22m) Se (mm)  N60  1956  2 2 3 q (kN/m )  B  (B  1.22m) S (mm)     e N60  B  0.3 

 1.25q(kN/m2 ) (B  1.22m) Se (mm)  N60  1965  2 2 S (mm)  2q(kN/m )  B  (B  1.22m)    e N60  B  0.3 

___________________________________ ___________________________________ ___________________________________ ___________________________________

Note: q increased by about 50%

___________________________________ ___________________________________ ___________________________________


Diapositiva 23

___________________________________ Se (mm)  CW CD and

1.25q (B  1.22m) N60

___________________________________

2

2q(kN/m2 )  B  Se (mm)  CW CD   (B  1.22m) N60  B  0.3 

___________________________________

CW  1.0 and

CD  1.0 

Df 4B

___________________________________ ___________________________________ ___________________________________ ___________________________________

Diapositiva 24

___________________________________ Meyerhof’s Analysis (1965)

Structure T. Edison, Sao Paulo Banco do Brasil, Sao Paulo Iparanga, Sao Paulo C.B.I. Esplanada, Sao Paulo Riscala, Sao Paulo Thyssen, Dusseldorf Ministry, Dusseldorf Chimney, Cologne

B (m)

Average N60

q (kN/m2)

Se(predicted)

18.3 22.9 9.15 14.6 3.96 22.6 15.9 20.4

15 18 9 22 20 25 20 10

229.8 239.4 220.2 383.0 229.8 239.4 220.4 172.4

1.95 0.99 1.29 1.20 1.56 0.77 0.98 3.30

___________________________________

Se (observed)

___________________________________ ___________________________________

Average ≈ 1.50

___________________________________ ___________________________________ ___________________________________


Diapositiva 25

DeBeer and Martens (1957) Se 

     2.3 log10  o H C  o 

‘o = effective overburden pressure at a depth  = increase in pressure due to foundation loading H = thickness of layer considered q C  1.5 c o Sepredicted  1.9 Field Test Results:

Seobserved

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________

Diapositiva 26

___________________________________ DeBeer (1965)

___________________________________  Method applied to normally consolidated sand  Reduction factor needed for over−consolidated

___________________________________

sand

___________________________________ ___________________________________ ___________________________________ ___________________________________


Diapositiva 27

___________________________________ Hough (1969)

___________________________________

     C Se  c H log10  o  1  eo  o 

___________________________________

C c  a(eo  b)

___________________________________ ___________________________________ ___________________________________ ___________________________________ Diapositiva 28

Value of constant Type of soil

a

b

Uniform cohesionless material (uniformity coefficient Cu ≤ 2) Clean gravel Coarse sand Medium sand Fine sand Inorganic silt

0.05 0.06 0.07 0.08 1.00

0.50 0.50 0.50 0.50 0.50

Well-graded cohesionless soil Silty sand and gravel Clean, coarse to fine sand Coarse to fine silty sand Sandy silt (inorganic)

0.09 0.12 0.15 0.18

0.20 0.35 0.25 0.25

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________


Diapositiva 29

___________________________________

Peck and Bazaraa (1969) Se (mm)  CW CD

2

2q(kN/m2 )  B    (N1 )60  B  0.3 

___________________________________

where B is in m

(N1)60 = corrected standard penetration number CW = ‘o /o at 0.5B below the bottom of foundation o = total overburden pressure ‘o = effective overburden pressure CD = 1.0 – 0.4(D/q) 0.5  = unit weight of soil

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________

Diapositiva 30

___________________________________ Peck and Bazaraa (1969)

___________________________________ (N1 )60 

4N60 3.25  0.01o

(N1 )60 

4N60 1  0.04o

(o  75 kN/m2 )

___________________________________ (o  75 kN/m2 )

___________________________________ ___________________________________ ___________________________________ ___________________________________


Diapositiva 31

Peck and Bazaraa’s Method

___________________________________

(after D’Appolonia et al. 1970)

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Diapositiva 32

GRANULAR SOIL

___________________________________

Burland and Burbidge (1985) For gravel or sandy gravel  N60(a)  1.25N60 For fine sand or silty sand below the ground water  N60(a)  15  0.6(N60  15) and N60  15

___________________________________ ___________________________________ ___________________________________

where N60(a) = adjusted N60 value

___________________________________ ___________________________________ ___________________________________


Diapositiva 33

Depth of Stress Influence, z' If N60(a) [or N60(a)] is approximately constant (or increasing) with depth, B z  1.4  BR  BR 

0.75

___________________________________ ___________________________________ ___________________________________

where

BR = reference width = 0.3m B = width of the actual foundation (m)

___________________________________ ___________________________________ ___________________________________ ___________________________________

Diapositiva 34

___________________________________ Depth of Stress Influence, z'

___________________________________ If N60(a) [or N60(a)] is decreasing with depth, calculate z‘ = 2B and z‘ = distance from the bottom of the foundation to the bottom of the soft soil layer (z“ ).

___________________________________

Use z‘ = 2B or z‘ = z“, whichever is smaller.

___________________________________ ___________________________________ ___________________________________ ___________________________________


Diapositiva 35

___________________________________ Depth of Influence

Correction factor,  

H H 2    1 z  z 

___________________________________ ___________________________________

H = thickness of compressible layer

___________________________________ ___________________________________ ___________________________________ ___________________________________ Diapositiva 36

For Normally Consolidated Soil Se 1.71    0.14  1.4   BR [N 60 or N 60(a) ] 

___________________________________ ___________________________________

2

 1.25 L       B 0.7  q   B      L   0.25      BR   pa   B   where L = length of the foundation pa = atmospheric pressure (= 100 kN/m2)

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________


Diapositiva 37

For Overconsolidated Soil

___________________________________

(q  c ; c  overconsol idation pressure)

___________________________________ Se 0.57    0.447   1.4  BR [N 60 or N 60(a) ]  2

 1.25 L       B  0.7  q   B      L   0.25      BR   pa   B  

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________

Diapositiva 38

For Overconsolidated Soil (q  c ) : Se 0.57    0.14  1.4   BR [N 60 or N 60(a) ]   1.25 L       B  L   0.25      B  

2 0.7

 B   q  0.67c      pa  BR   

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________


Diapositiva 39

Probability of Exceeding 25-mm Settlement in the Field (After Sivakugan and Johnson 2004) Predicted methods

Predicted settlement (mm)

Terzaghi & Peck (1948)

Schmertmann (1970)

1 5 10 15 20 25 30 35 40

0.00 0.00 0.00 0.09 0.20 0.26 0.31 0.35 0.387

0.00 0.00 0.02 0.13 0.20 0.27 0.32 0.37 0.42

Burland & Burbidge (1985) 0.00 0.03 0.15 0.25 0.34 0.42 0.49 0.44 0.51

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________

Diapositiva 40

___________________________________ CATEGORY B 

Schmertmann (1970), Schmertmann et al. (1978)

Briaud (2007)

Terzaghi, Peck and Mesri (1996)

Akbas and Kulhawy (2009)

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________


Diapositiva 41

___________________________________ Schmertmann (1970)

z 

q(1   s ) [(1  2 s )A  B] Es

E Iz  z s  (1   s )[(1  2 s )A  B] q

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________

Diapositiva 42

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________


Diapositiva 43

___________________________________ I Se  C1C2 q  z  z Es

q = net stress at the level of the foundation C 1 = correction factor for the depth of the foundation = 1 – 0.5(qo /q) qo = effective overburden pressure at the level of the foundation C 2 = correction factor to account for creep in soil = 1+0.2 log(t/0.1)

___________________________________ ___________________________________ ___________________________________

Es = 2qc

___________________________________ ___________________________________ ___________________________________ Diapositiva 44

___________________________________ The same 79 foundations records given by Jeypalan and Boehm (1986) and Papadopoulos (1992) were analyzed by Sivakugan et al. (1998).

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________


Diapositiva 45

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________

Diapositiva 46

___________________________________

Schmertmann et al. (1978)  q  Iz(peak)  0.5  0.1   o 

0.5

Item Iz at z = 0 zp /B

L/B = 1 0.1 0.5

L/B  10 0.2 1.0

zo /B Es

2.0 2.5qc

4.0 3.5qc

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________


Diapositiva 47

___________________________________ Salgado (2008)

___________________________________

L Iz (at z 0)  0.1  0.0111   2 B zp L  0.5  0.0555  1   1 B B  zo L  2  0.222  1   4 B B 

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________

Diapositiva 48

___________________________________

Lee et al. (2008) FEM Analysis Iz (peak )  0.5

___________________________________

zp L  0.5  0.11   1  1 B  B  

L with a maximum of 1 at  6 B

zo   L   0.95 cos   1     3  4 B  5  B   with a maximum of 4 at

L 6 B

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________


Diapositiva 49

___________________________________ Terzaghi et al. (1996) L zo  21  log    4  B  

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________

Diapositiva 50

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________


Diapositiva 51

Iz z z 0 E s

z  zo

___________________________________

Se  q 

E s (L / B ) L  1  0.4 log    1.4 E s(L / B1) B E s(L / B1)  3.5qc    t days  Se (creep)   0.1  zo log    1 day   qc  q c  weighted mean value qc (in MN/m2 )

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________

Diapositiva 52

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________


Diapositiva 53

81 Foundation and 92 Plate Load Tests

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________

Diapositiva 54

Load-Settlement Curve Based on Pressuremeter Test Briaud (2007)

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________


Diapositiva 55

Pressuremeter Test

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________

Diapositiva 56

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________


Diapositiva 57

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________

Diapositiva 58

___________________________________ q   [ f(L / B) , fe , f , fd ]pp(mean) Se R  0.24 B R

___________________________________ ___________________________________

  gamma function

___________________________________ ___________________________________ ___________________________________ ___________________________________


Diapositiva 59

___________________________________ SHAPE FACTOR f(L / B)  0.8  0.2

B L

ECCENTRICITY FACTOR e fe  1  0.33  Center B 0.5 e fe  1    Edge B

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________

Diapositiva 60

LOAD INCLINATION FACTOR  (deg)  f  1   Center  90 

___________________________________

2

 (deg)  f  1   Edge  360  0.5

___________________________________ ___________________________________

SLOPE FACTOR 0.1

f, d

d  0.8 1   3 : 1 slope  B

d f, d  0.7 1    B

0.15

2 : 1 slope

___________________________________ ___________________________________ ___________________________________ ___________________________________


Diapositiva 61

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________

Diapositiva 62

___________________________________ Long-term settlement, including creep = t Se    t1 

___________________________________

0.03

t = design life (in hours) t 1 = 1 hour

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________


Diapositiva 63

___________________________________ Akbas and Kulhawy (2009) L1 - L2 Method 37 Sites

___________________________________ ___________________________________

167 Axial compression field load tests

___________________________________ ___________________________________ ___________________________________ ___________________________________ Diapositiva 64

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________


Diapositiva 65

___________________________________ ___________________________________ Mean Se(L1) = (0.23%)B Mean Se(L2) = (5.39%)B

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________

Diapositiva 66

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________


Diapositiva 67

___________________________________ ___________________________________ Se Q B  QL2 0.69  Se   1.68   B

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________

Diapositiva 68

___________________________________ B>1m QL2 = ultimate bearing capacity Qu (Vesic 1973, 1975)

___________________________________

B≤1m  Q  QL2   u   Quq  B  Qu  N portion of Vesic' s theory

___________________________________ ___________________________________

Quq  Nq portion of Vesic' s theory

___________________________________ ___________________________________ ___________________________________


Diapositiva 69

___________________________________ Note: Vesic’s theory includes compressibility factor. So

Qu  f ( , E s , ,  , B)

___________________________________ ___________________________________

Proper assumption of Es and  is needed.

___________________________________ ___________________________________ ___________________________________ ___________________________________ Diapositiva 70

CATEGORY C Use of Theory of Elasticity and Modulus of Elasticity 1  2s Se  qo (B) Is If Es Es = average modulus of elasticity (z = 0 to z = 4B) B‘ = B/2 s = Poisson’s ratio

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________


Diapositiva 71

___________________________________ Steinbrenner (1934)

___________________________________ Is = shape factor = f (m, n) For Se at the center :  = 4 m n

L B

H B   2

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________

Diapositiva 72

___________________________________ Fox (1948) D L  I f  depth factor  f  f , and  s   B B 

___________________________________ ___________________________________

Se(rigid)  0.93Se(flexible, center)

___________________________________ ___________________________________ ___________________________________ ___________________________________


Diapositiva 73

___________________________________

Variation of If L /B Df /B

1.0

2.0

5.0

Poisson’s ratio s = 0.30 0.20 0.40 0.60 0.80 1.00 2.00

0.902 0.808 0.738 0.687 0.650 0.562

0.930 0.857 0.796 0.747 0.709 0.603

0.951 0.899 0.852 0.813 0.780 0.675

___________________________________ ___________________________________

Poisson’s ratio s = 0.40 0.20 0.40 0.60 0.80 1.00 2.00

0.932 0.848 0.779 0.727 0.689 0.596

0.955 0.893 0.836 0.788 0.749 0.640

0.970 0.927 0.886 0.849 0.818 0.714

___________________________________ ___________________________________ ___________________________________ ___________________________________

Diapositiva 74

___________________________________

Bowles (1987)

Weighted average, E s 

 E s(i ) z

z = H or 4B, whichever is smaller Es = 500(N60 + 15) kN/m2

___________________________________

z

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________


Diapositiva 75

___________________________________ Mayne and Poulos (1999)

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Diapositiva 76

E s  Eo  kz Se 

q Be IG IR IE (1  2s ) Eo

 E H IG  influence factor  f    o ,  k Be Be   IR  foundation rigidity correction factor

___________________________________ ___________________________________ ___________________________________

IE  foundation embedment correction factor 4BL  Be      

0.5

___________________________________ ___________________________________ ___________________________________ ___________________________________


Diapositiva 77

___________________________________ IR 

IE  1 

  4

1    Ef  2t 3 4.6  10   B e  Eo  k  Be   2 

___________________________________ ___________________________________

1 B  3.5 exp1.22 s  0.4  e  1.6   Df 

___________________________________ ___________________________________ ___________________________________ ___________________________________

Diapositiva 78

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________


Diapositiva 79

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________

Diapositiva 80

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________


Diapositiva 81

Berardi and Lancellotta (1991) qB Es Is = influence factor for a rigid foundation (μs = 0.15) (Tsytovich, 1951)

___________________________________

Se  Is

L /B 1 2 3 5 10

0.5 0.35 0.39 0.40 0.41 0.42

H 1 /B 1.0 1.5 0.56 0.63 0.65 0.75 0.67 0.81 0.68 0.84 0.71 0.89

2.0 0.69 0.88 0.96 0.99 1.06

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________

Diapositiva 82

___________________________________ Berardi and Lancellotta (1991) re-analyzed field performance of 130 structures on predominantly silica sand as reported by Burland and Burbidge    0.5  Es  KE pa  o  pa  

___________________________________

0.5

(Janbu, 1963)

pa = atmospheric pressure o and  at a depth B/2 below the foundation

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________


Diapositiva 83

KE  f N1 60

N1 60  average corrected standard penetratio n number in the influence zone

Influence zone for square foundation: H15 = (1.2 to 2.8)B H25 = (0.8 to 1.3)B Influence zone for L/B ≥ 10: H15  (1.8 to 2.4)B H25  (1.2 to 2.0)B

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________

Diapositiva 84

___________________________________ Skempton (1986)

___________________________________   2 N1 60  N60    1  0.01o  o is in kN/m2

N1 60 Dr2

 60

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________


Diapositiva 85

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________

Diapositiva 86

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________


Diapositiva 87

Procedure for Calculating SE

___________________________________

Berardi and Lancellotta (1991)

1. Obtain the variation of N60 within the influence zone (i.e., H25). 2. Obtain (N1)60 within the influence zone. 3. Obtain N 1 60 . 4. Obtain KE at Se /B = 0.1%.

___________________________________ ___________________________________

0.5

   0.5   . 5. Calculate E s  KE pa  o pa  

___________________________________ ___________________________________ ___________________________________ ___________________________________

Diapositiva 88

___________________________________ Procedure for Calculating SE (continued) 6. Determine Is. 7. Use an equation from theory of elasticity to calculate Se. 8. Calculate Se /B. Is it equal to assumed Se /B ? 9. If so, the calculated Se in Step 7 is the answer. 10. If not, use Se /B from Step 8 to obtain the new KE. 11. Repeat Steps 5, 7 and 8 until the assumed and calculated Se /B are equal.

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________


Diapositiva 89

Settlement Prediction in Granular Soils ― A Probabilistic Approach Sivakugan and Johnson (2004), Geotechnique, Vol. 54, No. 7, 449-502.

___________________________________ ___________________________________

Predicted Settlement – 25 mm

Method Terzaghi & Peck (1948) Schmertmann (1970) Burland & Burbidge (1985) Berardi & Lancellotta (1991)

Probability of exceeding 25 mm in the field 0.26 (26%) 0.27 (27%) 0.42 (42%) 0.52 (52%)

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________

Diapositiva 90

___________________________________ COMMENTS AND CONCLUSIONS 1. Meyerhof’s relations (1965) simple to use. On the average, will give Se(predicted)/Se(observed)  1.5 to 2.0. 2. Peck & Bazaraa method (1969) is not superior to that of Meyerhof (1965). 3. Burland & Burbidge (1965) is an improved method over that of Meyerhof (1965) and Peck & Bazaraa (1969). Difficult to estimate overconsolidation pressure from field exploration.

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________


Diapositiva 91

___________________________________ 4. Modified strain influence factor methods of Schmertmann et al. (1978), Terzaghi et al. (1996), Salgado (2008) and Lee et al. (2008) will give reasonable results with proper values of Es .

___________________________________

5. Suggested Es relations: E s (L / B ) L  1  0.4 log    1.4 E s(L / B1) B

___________________________________

E s(L / B1)  3.5qc

6. The Es (L/B = 1) relationship can be related to N60 via D50 .

___________________________________ ___________________________________ ___________________________________ ___________________________________

Diapositiva 92

___________________________________ 7. Pressuremeter method of developing loadsettlement relationship is very effective, but may not be cost effective. 8.

L1 – L2 (Akbas and Kulhawy) is a good method. However proper assumption of E and  needed to estimate QL2.

9. Relationships for settlement developed using theory of elasticity will give equally good results provided a realistic Es is used.  Use of iteration method is suggested.  If not, used Terzaghi et al.’s relationship

___________________________________ ___________________________________ ___________________________________

(1996).

___________________________________ ___________________________________ ___________________________________


Diapositiva 93

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________

Diapositiva 94

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________


Diapositiva 95

___________________________________  What we have seen is a systematic

accumulation of knowledge over 60 years. The parameters for comparing settlement prediction methods are accuracy and reliability.

___________________________________ ___________________________________

 Reliability is the probability that the actual

settlement would be less than that computed by a specific method.

___________________________________ ___________________________________ ___________________________________ ___________________________________

Diapositiva 96

___________________________________  In choosing a method for design, it all comes down to keeping a critical balance between reliability and accuracy, which can be difficult at times, knowing the non-homogeneous nature of soil in general. We cannot be overconservative but, at the same time, not be accurate.  We need to keep in mind what Karl Terzaghi said in the 45th James Forrest Lecture at the Institute of Civil Engineers in London: “Foundation failures that occur are no longer ‘an act of God’.”

___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________



Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.