Diapositiva 1
___________________________________
ELASTIC SETTLEMENT OF SHALLOW FOUNDATIONS ON GRANULAR SOIL— A CRITICAL REVIEW BRAJA M. DAS
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 2
___________________________________ Settlement, S
___________________________________ • Elastic settlement, Se
• Consolidation settlement
___________________________________
• Primary, Sp • Secondary, Ss S = Se + Sp + Ss
___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 3
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 4
In his landmark paper in 1927 entitled The Science of Foundations, Karl Terzaghi wrote: “Foundation problems, throughout, are of such character that a strictly theoretical mathematical treatment will always be impossible. The only way to handle them efficiently consists of finding out, first, what has happened on preceding jobs of a similar character; next, the kind of soil on which the operations were performed; and, finally, why the operations have led to certain results. By systematically accumulating such knowledge, the empirical data being well defined by the results of adequate soil investigations, foundation engineering could be developed into a semi-empirical science. . . .” “The bulk of the work—the systematic accumulation of empirical data—remains to be done.”
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 5
___________________________________ To evaluate the current state of the art for settlement predictions of shallow foundations in sand, in an attempt to promote the use of shallow foundations. A FHWA initiative 1. 2. 3. 4.
Federal Highway Administration (FHWA) Texas A & M University Geotest Engineering American Society of Civil Engineers (ASCE)
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 6
___________________________________ Texas A&M University National Geotech Experiment Site Approximately 12m 28m
5 Square Footings:
1m 1m 1.5m 1.5 m 2.5m 2.5m 3m 3m (North) 3m 3m (South)
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 7
PROBLEM: Predict the load at 25 mm settlement In Situ Test Summary Bore hole shear test 3 Cross hole test 4 Cone penetration test 7 Dilatometer test 4 Pressuremeter test 4 Step blade test 1 Standard penetration test 6
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 8
___________________________________ Number of participants: 31 15 consultants 16 academics Israel – 1
Brazil – 1
Japan – 1
France – 1
Canada – 2
Italy – 1
Hong Kong – 1
Australia – 2
USA – 21
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 9
Methods Used for Settlement Prediction
22 different methods Schmertmann (1970, 1978), Burland and Burbidge (1985) and FEM being popular Alpan (3 times) Bowles (4) Buisman, DeBeer (3) Burland & Burbidge (9) Canada Found. Manual (1) D’Appolonia (4) DeBeer (1) Decourt (1) FEM (1) Hanson (1) Leonard & Frost (4)
Menard/Briaud (5) Meyerhof (4) NAVFAC (4) Oweis (4) Parry (1) Peck (2) Robertson & Campanella (1) Schmertmann (18) Schulze & Sherif (3) Terzaghi & Peck (5) Vesic (6)
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 10
___________________________________ Predicted vs. Measured Values of Q25
___________________________________ Footing (m) Item
11
1.51.5
2.52.5
33
33
Prediction range (kN)
591100
1162950
2954271
4075600
4156400
Measured
850
1500
3600
4500
5200
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 11
___________________________________ Elastic Settlement, Se Existing methods for predicting settlement may be grouped into three categories: A — Methods in which observed settlement of structures are linked to in situ test results (standard penetration test, cone penetration test, Pressuremeter tests) B — Semi-empirical method C — Use of theory of elasticity and modulus of elasticity, Es
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 12
___________________________________ CATEGORY A
___________________________________
Terzaghi and Peck (1948, 1967) Meyerhof (1956, 1965) DeBeer and Martens (1957) Hough (1969) Peck and Bazaraa (1969) Burland and Burbidge (1985)
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 13
___________________________________ Terzaghi and Peck (1948, 1967) Se 4 Se(1) B1 2 1 B Se = settlement of prototype foundation measuring BB
Se(1) = settlement of a test plate measuring B1B1
B1 is usually of the order of 0.3m to 1m
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 14
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 15
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 16
Terzaghi and Peck (1948, 1967)
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 17
___________________________________ 2
3q B Se CW CD N60 B 0.3
___________________________________
where q is in kN/m²; B is in m; S is in mm CW = ground water table correction = 1 if depth of water table is greater than 2B below foundation = 2 if depth of water table is less than or equal to B CD = correction for depth of embedment = 1 – (Df /4B )
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 18
___________________________________ Sivakugan, Eckersley and Li (1998) analyzed 79 settlement records of foundations provided by Jeypalan and Boehm (1986) and Papadopoulos (1992).
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 19
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 20
___________________________________
2
Se B 4 Se(1) B 0.3 2 B 1 Se B 0.3 4 Se(1)
___________________________________ 2
3q B N60 B 0.3
___________________________________
3q 1 Se Se N60 4 Se(1) q N 60 Se(1) 0.75
___________________________________
Se
___________________________________ ___________________________________ ___________________________________
Diapositiva 21
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 22
Meyerhof 2q(kN/m2 ) (B 1.22m) Se (mm) N60 1956 2 2 3 q (kN/m ) B (B 1.22m) S (mm) e N60 B 0.3
1.25q(kN/m2 ) (B 1.22m) Se (mm) N60 1965 2 2 S (mm) 2q(kN/m ) B (B 1.22m) e N60 B 0.3
___________________________________ ___________________________________ ___________________________________ ___________________________________
Note: q increased by about 50%
___________________________________ ___________________________________ ___________________________________
Diapositiva 23
___________________________________ Se (mm) CW CD and
1.25q (B 1.22m) N60
___________________________________
2
2q(kN/m2 ) B Se (mm) CW CD (B 1.22m) N60 B 0.3
___________________________________
CW 1.0 and
CD 1.0
Df 4B
___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 24
___________________________________ Meyerhof’s Analysis (1965)
Structure T. Edison, Sao Paulo Banco do Brasil, Sao Paulo Iparanga, Sao Paulo C.B.I. Esplanada, Sao Paulo Riscala, Sao Paulo Thyssen, Dusseldorf Ministry, Dusseldorf Chimney, Cologne
B (m)
Average N60
q (kN/m2)
Se(predicted)
18.3 22.9 9.15 14.6 3.96 22.6 15.9 20.4
15 18 9 22 20 25 20 10
229.8 239.4 220.2 383.0 229.8 239.4 220.4 172.4
1.95 0.99 1.29 1.20 1.56 0.77 0.98 3.30
___________________________________
Se (observed)
___________________________________ ___________________________________
Average ≈ 1.50
___________________________________ ___________________________________ ___________________________________
Diapositiva 25
DeBeer and Martens (1957) Se
2.3 log10 o H C o
‘o = effective overburden pressure at a depth = increase in pressure due to foundation loading H = thickness of layer considered q C 1.5 c o Sepredicted 1.9 Field Test Results:
Seobserved
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 26
___________________________________ DeBeer (1965)
___________________________________ Method applied to normally consolidated sand Reduction factor needed for over−consolidated
___________________________________
sand
___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 27
___________________________________ Hough (1969)
___________________________________
C Se c H log10 o 1 eo o
___________________________________
C c a(eo b)
___________________________________ ___________________________________ ___________________________________ ___________________________________ Diapositiva 28
Value of constant Type of soil
a
b
Uniform cohesionless material (uniformity coefficient Cu ≤ 2) Clean gravel Coarse sand Medium sand Fine sand Inorganic silt
0.05 0.06 0.07 0.08 1.00
0.50 0.50 0.50 0.50 0.50
Well-graded cohesionless soil Silty sand and gravel Clean, coarse to fine sand Coarse to fine silty sand Sandy silt (inorganic)
0.09 0.12 0.15 0.18
0.20 0.35 0.25 0.25
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 29
___________________________________
Peck and Bazaraa (1969) Se (mm) CW CD
2
2q(kN/m2 ) B (N1 )60 B 0.3
___________________________________
where B is in m
(N1)60 = corrected standard penetration number CW = ‘o /o at 0.5B below the bottom of foundation o = total overburden pressure ‘o = effective overburden pressure CD = 1.0 – 0.4(D/q) 0.5 = unit weight of soil
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 30
___________________________________ Peck and Bazaraa (1969)
___________________________________ (N1 )60
4N60 3.25 0.01o
(N1 )60
4N60 1 0.04o
(o 75 kN/m2 )
___________________________________ (o 75 kN/m2 )
___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 31
Peck and Bazaraa’s Method
___________________________________
(after D’Appolonia et al. 1970)
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Diapositiva 32
GRANULAR SOIL
___________________________________
Burland and Burbidge (1985) For gravel or sandy gravel N60(a) 1.25N60 For fine sand or silty sand below the ground water N60(a) 15 0.6(N60 15) and N60 15
___________________________________ ___________________________________ ___________________________________
where N60(a) = adjusted N60 value
___________________________________ ___________________________________ ___________________________________
Diapositiva 33
Depth of Stress Influence, z' If N60(a) [or N60(a)] is approximately constant (or increasing) with depth, B z 1.4 BR BR
0.75
___________________________________ ___________________________________ ___________________________________
where
BR = reference width = 0.3m B = width of the actual foundation (m)
___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 34
___________________________________ Depth of Stress Influence, z'
___________________________________ If N60(a) [or N60(a)] is decreasing with depth, calculate z‘ = 2B and z‘ = distance from the bottom of the foundation to the bottom of the soft soil layer (z“ ).
___________________________________
Use z‘ = 2B or z‘ = z“, whichever is smaller.
___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 35
___________________________________ Depth of Influence
Correction factor,
H H 2 1 z z
___________________________________ ___________________________________
H = thickness of compressible layer
___________________________________ ___________________________________ ___________________________________ ___________________________________ Diapositiva 36
For Normally Consolidated Soil Se 1.71 0.14 1.4 BR [N 60 or N 60(a) ]
___________________________________ ___________________________________
2
1.25 L B 0.7 q B L 0.25 BR pa B where L = length of the foundation pa = atmospheric pressure (= 100 kN/m2)
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 37
For Overconsolidated Soil
___________________________________
(q c ; c overconsol idation pressure)
___________________________________ Se 0.57 0.447 1.4 BR [N 60 or N 60(a) ] 2
1.25 L B 0.7 q B L 0.25 BR pa B
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 38
For Overconsolidated Soil (q c ) : Se 0.57 0.14 1.4 BR [N 60 or N 60(a) ] 1.25 L B L 0.25 B
2 0.7
B q 0.67c pa BR
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 39
Probability of Exceeding 25-mm Settlement in the Field (After Sivakugan and Johnson 2004) Predicted methods
Predicted settlement (mm)
Terzaghi & Peck (1948)
Schmertmann (1970)
1 5 10 15 20 25 30 35 40
0.00 0.00 0.00 0.09 0.20 0.26 0.31 0.35 0.387
0.00 0.00 0.02 0.13 0.20 0.27 0.32 0.37 0.42
Burland & Burbidge (1985) 0.00 0.03 0.15 0.25 0.34 0.42 0.49 0.44 0.51
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 40
___________________________________ CATEGORY B
Schmertmann (1970), Schmertmann et al. (1978)
Briaud (2007)
Terzaghi, Peck and Mesri (1996)
Akbas and Kulhawy (2009)
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 41
___________________________________ Schmertmann (1970)
z
q(1 s ) [(1 2 s )A B] Es
E Iz z s (1 s )[(1 2 s )A B] q
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 42
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 43
___________________________________ I Se C1C2 q z z Es
q = net stress at the level of the foundation C 1 = correction factor for the depth of the foundation = 1 – 0.5(qo /q) qo = effective overburden pressure at the level of the foundation C 2 = correction factor to account for creep in soil = 1+0.2 log(t/0.1)
___________________________________ ___________________________________ ___________________________________
Es = 2qc
___________________________________ ___________________________________ ___________________________________ Diapositiva 44
___________________________________ The same 79 foundations records given by Jeypalan and Boehm (1986) and Papadopoulos (1992) were analyzed by Sivakugan et al. (1998).
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 45
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 46
___________________________________
Schmertmann et al. (1978) q Iz(peak) 0.5 0.1 o
0.5
Item Iz at z = 0 zp /B
L/B = 1 0.1 0.5
L/B 10 0.2 1.0
zo /B Es
2.0 2.5qc
4.0 3.5qc
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 47
___________________________________ Salgado (2008)
___________________________________
L Iz (at z 0) 0.1 0.0111 2 B zp L 0.5 0.0555 1 1 B B zo L 2 0.222 1 4 B B
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 48
___________________________________
Lee et al. (2008) FEM Analysis Iz (peak ) 0.5
___________________________________
zp L 0.5 0.11 1 1 B B
L with a maximum of 1 at 6 B
zo L 0.95 cos 1 3 4 B 5 B with a maximum of 4 at
L 6 B
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 49
___________________________________ Terzaghi et al. (1996) L zo 21 log 4 B
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 50
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 51
Iz z z 0 E s
z zo
___________________________________
Se q
E s (L / B ) L 1 0.4 log 1.4 E s(L / B1) B E s(L / B1) 3.5qc t days Se (creep) 0.1 zo log 1 day qc q c weighted mean value qc (in MN/m2 )
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 52
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 53
81 Foundation and 92 Plate Load Tests
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 54
Load-Settlement Curve Based on Pressuremeter Test Briaud (2007)
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 55
Pressuremeter Test
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 56
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 57
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 58
___________________________________ q [ f(L / B) , fe , f , fd ]pp(mean) Se R 0.24 B R
___________________________________ ___________________________________
gamma function
___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 59
___________________________________ SHAPE FACTOR f(L / B) 0.8 0.2
B L
ECCENTRICITY FACTOR e fe 1 0.33 Center B 0.5 e fe 1 Edge B
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 60
LOAD INCLINATION FACTOR (deg) f 1 Center 90
___________________________________
2
(deg) f 1 Edge 360 0.5
___________________________________ ___________________________________
SLOPE FACTOR 0.1
f, d
d 0.8 1 3 : 1 slope B
d f, d 0.7 1 B
0.15
2 : 1 slope
___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 61
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 62
___________________________________ Long-term settlement, including creep = t Se t1
___________________________________
0.03
t = design life (in hours) t 1 = 1 hour
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 63
___________________________________ Akbas and Kulhawy (2009) L1 - L2 Method 37 Sites
___________________________________ ___________________________________
167 Axial compression field load tests
___________________________________ ___________________________________ ___________________________________ ___________________________________ Diapositiva 64
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 65
___________________________________ ___________________________________ Mean Se(L1) = (0.23%)B Mean Se(L2) = (5.39%)B
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 66
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 67
___________________________________ ___________________________________ Se Q B QL2 0.69 Se 1.68 B
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 68
___________________________________ B>1m QL2 = ultimate bearing capacity Qu (Vesic 1973, 1975)
___________________________________
B≤1m Q QL2 u Quq B Qu N portion of Vesic' s theory
___________________________________ ___________________________________
Quq Nq portion of Vesic' s theory
___________________________________ ___________________________________ ___________________________________
Diapositiva 69
___________________________________ Note: Vesic’s theory includes compressibility factor. So
Qu f ( , E s , , , B)
___________________________________ ___________________________________
Proper assumption of Es and is needed.
___________________________________ ___________________________________ ___________________________________ ___________________________________ Diapositiva 70
CATEGORY C Use of Theory of Elasticity and Modulus of Elasticity 1 2s Se qo (B) Is If Es Es = average modulus of elasticity (z = 0 to z = 4B) B‘ = B/2 s = Poisson’s ratio
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 71
___________________________________ Steinbrenner (1934)
___________________________________ Is = shape factor = f (m, n) For Se at the center : = 4 m n
L B
H B 2
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 72
___________________________________ Fox (1948) D L I f depth factor f f , and s B B
___________________________________ ___________________________________
Se(rigid) 0.93Se(flexible, center)
___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 73
___________________________________
Variation of If L /B Df /B
1.0
2.0
5.0
Poisson’s ratio s = 0.30 0.20 0.40 0.60 0.80 1.00 2.00
0.902 0.808 0.738 0.687 0.650 0.562
0.930 0.857 0.796 0.747 0.709 0.603
0.951 0.899 0.852 0.813 0.780 0.675
___________________________________ ___________________________________
Poisson’s ratio s = 0.40 0.20 0.40 0.60 0.80 1.00 2.00
0.932 0.848 0.779 0.727 0.689 0.596
0.955 0.893 0.836 0.788 0.749 0.640
0.970 0.927 0.886 0.849 0.818 0.714
___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 74
___________________________________
Bowles (1987)
Weighted average, E s
E s(i ) z
z = H or 4B, whichever is smaller Es = 500(N60 + 15) kN/m2
___________________________________
z
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 75
___________________________________ Mayne and Poulos (1999)
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Diapositiva 76
E s Eo kz Se
q Be IG IR IE (1 2s ) Eo
E H IG influence factor f o , k Be Be IR foundation rigidity correction factor
___________________________________ ___________________________________ ___________________________________
IE foundation embedment correction factor 4BL Be
0.5
___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 77
___________________________________ IR
IE 1
4
1 Ef 2t 3 4.6 10 B e Eo k Be 2
___________________________________ ___________________________________
1 B 3.5 exp1.22 s 0.4 e 1.6 Df
___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 78
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 79
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 80
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 81
Berardi and Lancellotta (1991) qB Es Is = influence factor for a rigid foundation (μs = 0.15) (Tsytovich, 1951)
___________________________________
Se Is
L /B 1 2 3 5 10
0.5 0.35 0.39 0.40 0.41 0.42
H 1 /B 1.0 1.5 0.56 0.63 0.65 0.75 0.67 0.81 0.68 0.84 0.71 0.89
2.0 0.69 0.88 0.96 0.99 1.06
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 82
___________________________________ Berardi and Lancellotta (1991) re-analyzed field performance of 130 structures on predominantly silica sand as reported by Burland and Burbidge 0.5 Es KE pa o pa
___________________________________
0.5
(Janbu, 1963)
pa = atmospheric pressure o and at a depth B/2 below the foundation
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 83
KE f N1 60
N1 60 average corrected standard penetratio n number in the influence zone
Influence zone for square foundation: H15 = (1.2 to 2.8)B H25 = (0.8 to 1.3)B Influence zone for L/B ≥ 10: H15 (1.8 to 2.4)B H25 (1.2 to 2.0)B
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 84
___________________________________ Skempton (1986)
___________________________________ 2 N1 60 N60 1 0.01o o is in kN/m2
N1 60 Dr2
60
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 85
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 86
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 87
Procedure for Calculating SE
___________________________________
Berardi and Lancellotta (1991)
1. Obtain the variation of N60 within the influence zone (i.e., H25). 2. Obtain (N1)60 within the influence zone. 3. Obtain N 1 60 . 4. Obtain KE at Se /B = 0.1%.
___________________________________ ___________________________________
0.5
0.5 . 5. Calculate E s KE pa o pa
___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 88
___________________________________ Procedure for Calculating SE (continued) 6. Determine Is. 7. Use an equation from theory of elasticity to calculate Se. 8. Calculate Se /B. Is it equal to assumed Se /B ? 9. If so, the calculated Se in Step 7 is the answer. 10. If not, use Se /B from Step 8 to obtain the new KE. 11. Repeat Steps 5, 7 and 8 until the assumed and calculated Se /B are equal.
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 89
Settlement Prediction in Granular Soils ― A Probabilistic Approach Sivakugan and Johnson (2004), Geotechnique, Vol. 54, No. 7, 449-502.
___________________________________ ___________________________________
Predicted Settlement – 25 mm
Method Terzaghi & Peck (1948) Schmertmann (1970) Burland & Burbidge (1985) Berardi & Lancellotta (1991)
Probability of exceeding 25 mm in the field 0.26 (26%) 0.27 (27%) 0.42 (42%) 0.52 (52%)
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 90
___________________________________ COMMENTS AND CONCLUSIONS 1. Meyerhof’s relations (1965) simple to use. On the average, will give Se(predicted)/Se(observed) 1.5 to 2.0. 2. Peck & Bazaraa method (1969) is not superior to that of Meyerhof (1965). 3. Burland & Burbidge (1965) is an improved method over that of Meyerhof (1965) and Peck & Bazaraa (1969). Difficult to estimate overconsolidation pressure from field exploration.
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 91
___________________________________ 4. Modified strain influence factor methods of Schmertmann et al. (1978), Terzaghi et al. (1996), Salgado (2008) and Lee et al. (2008) will give reasonable results with proper values of Es .
___________________________________
5. Suggested Es relations: E s (L / B ) L 1 0.4 log 1.4 E s(L / B1) B
___________________________________
E s(L / B1) 3.5qc
6. The Es (L/B = 1) relationship can be related to N60 via D50 .
___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 92
___________________________________ 7. Pressuremeter method of developing loadsettlement relationship is very effective, but may not be cost effective. 8.
L1 – L2 (Akbas and Kulhawy) is a good method. However proper assumption of E and needed to estimate QL2.
9. Relationships for settlement developed using theory of elasticity will give equally good results provided a realistic Es is used. Use of iteration method is suggested. If not, used Terzaghi et al.’s relationship
___________________________________ ___________________________________ ___________________________________
(1996).
___________________________________ ___________________________________ ___________________________________
Diapositiva 93
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 94
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 95
___________________________________ What we have seen is a systematic
accumulation of knowledge over 60 years. The parameters for comparing settlement prediction methods are accuracy and reliability.
___________________________________ ___________________________________
Reliability is the probability that the actual
settlement would be less than that computed by a specific method.
___________________________________ ___________________________________ ___________________________________ ___________________________________
Diapositiva 96
___________________________________ In choosing a method for design, it all comes down to keeping a critical balance between reliability and accuracy, which can be difficult at times, knowing the non-homogeneous nature of soil in general. We cannot be overconservative but, at the same time, not be accurate. We need to keep in mind what Karl Terzaghi said in the 45th James Forrest Lecture at the Institute of Civil Engineers in London: “Foundation failures that occur are no longer ‘an act of God’.”
___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________