IJRET: International Journal of Research in Engineering and Technology
ISSN: 2319-1163
SPATIO-TEMPORAL MODELING OF SNOW FLAKE CRYSTALS USING PACKARD’S CELLULAR AUTOMATA Shanthi.M1, E.G.Rajan2 1
Research Scholar, Mysore University, Hyderabad, India,shanu_shivak@yahoo.com 2 Director, PRC Ltd, Hyderabad, India, rajaneg@yahoo.com
Abstract Cellular automata (CA) modelling is one of the recent advances in spatial–temporal modeling techniques in the field of growth dynamics. Spatio-temporal modeling of growth patterns has gained more importance in the recent years especially in the field of crystal growth, urban growth, biological growth etc. It has become an interest for researchers to study the model on spatial and temporal dynamic behavior. This paper aimed at modeling crystal growth using cellular Automata, which have dynamic capabilities to handle spatio-temporal phenomenon for better and efficient growth process. Cellular Automata models are used to simulate the process of crystal growth and to generate various patterns that the crystals create in nature. CA’s do quite easily reproduce the basic feature of the overall behavior that occurs in real world.CA models have been successfully used to simulate different growth behavior of crystals, since cellular Automata and crystals have similar structure.
Index Terms: Crystal Growth, Snowflake Crystal, Cellular Automata, and Types of crystal
----------------------------------------------------------------***-----------------------------------------------------------------1. INTRODUCTION The spatial dimension plays a key role in many social phenomena. Spatial dynamics refers to the sequence of changes in space and time. The changes which takes place with respect to space is called spatial process, the latter is called temporal process. The spatial and the temporal process are one and the same and they cannot be separated. This spatiotemporal process is used in planning, urban development and issues related to geographical phenomenon. All geographical phenomena are bound to have a spatial and a temporal dimension. The aim of modeling is to abstract and represent the entity being studied. Modeling can be conceptual, symbolic or mathematical, depending on the purposes of the specific application. Modeling can be utilised for analysing, evaluating, forecasting and simulating complex systems to support decision-making. From the perspective of spatial science, modeling must take both the spatial and temporal dimensions. Model can be represented as “a schematic representation of reality, developed with the goal of understanding and explaining it”. Spatial interactions can also be expressed as an influence of a location on another, without being explicitly embodied in the form of a measurable exchange or flow. Spatial dynamics are easy to implement when compared to that of temporal dynamics since the change in time should be also be taken into account while modeling. Many techniques were currently used to model spatial and temporal growth especially in the field of crystal growth. 'Crystal' comes from a Greek word meaning clear ice. In the late sixteenth century, Crystal growth has been widely studied for many years.
Andreas Libavius, made the theory, which said, "Mineral salts could be identified by studying the shapes of the crystal grains." In 1669, Nicholas Steno observed that corresponding angles in two crystals of the same material were always the same. The first synthetic gemstones were made in the mid1800s, and methods for making high-quality crystals of various materials have been developed over the course of the past century. Since the mid-1970s such crystals have been crucial to the semiconductor industry. Systematic studies of the symmetries of crystals with flat facets began in the 1700s, and the relationship to internal structure was confirmed by Xray crystallography in the 1920s. Crystals form whenever a solid is formed from fluid. Crystals form from vapors, solutions or molten materials, and are built from repeating units. Crystals grow from the outside. Crystal formation is called crystallization. Crystallization means "become crystals". At a microscopic level, crystals consist of regular arrays of atoms laid out much like the cells in a cellular automaton. Crystals always start from a seed such as a grain of dust and then progressively adding more atoms to their surface. Some of the examples are: snowflakes formation from water vapor, rocks like felsite, and most nonliving substances. Snow crystals have a rich diversity of forms with striking hexagonal symmetry. The two-dimensional types include dendrite, stellar, sector and plate forms. Physical studies have shown that the particular form of a snow crystal is dependent upon the temperature and saturation in the growth environment. Snow crystals exhibit remarkable, intriguing six
__________________________________________________________________________________________ Volume: 01 Issue: 04 | Dec-2012, Available @ http://www.ijret.org 558